WO2016047519A1 - Curable composition and cured product thereof - Google Patents

Curable composition and cured product thereof Download PDF

Info

Publication number
WO2016047519A1
WO2016047519A1 PCT/JP2015/076271 JP2015076271W WO2016047519A1 WO 2016047519 A1 WO2016047519 A1 WO 2016047519A1 JP 2015076271 W JP2015076271 W JP 2015076271W WO 2016047519 A1 WO2016047519 A1 WO 2016047519A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
curable composition
component
weight
parts
Prior art date
Application number
PCT/JP2015/076271
Other languages
French (fr)
Japanese (ja)
Inventor
のどか 太刀掛
雄 板野
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2016550131A priority Critical patent/JP6716459B2/en
Publication of WO2016047519A1 publication Critical patent/WO2016047519A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/10Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • C09J171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • C09J201/02Adhesives based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09J201/10Adhesives based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers

Definitions

  • the present invention relates to an organic polymer having a silicon-containing group (hereinafter also referred to as “reactive silicon group”) having a hydroxy group or a hydrolyzable group bonded to a silicon atom and capable of crosslinking by forming a siloxane bond. It relates to the curable composition containing this.
  • An organic polymer having at least one reactive silicon group in the molecule is crosslinked at room temperature by forming a siloxane bond accompanied by a hydrolysis reaction of the reactive silicon group by moisture, and a rubber-like cured product is obtained. It is known to have the property of being Among organic polymers having reactive silicon groups, organic polymers whose main chain skeleton is composed of a polyoxyalkylene polymer, a polyisobutylene polymer, and a (meth) acrylate polymer have already been industrially used. Produced and widely used for sealing materials and adhesives (Patent Document 1).
  • Patent Document 3 a method of adding a silicon-modified epoxy resin as an active ingredient has been proposed (Patent Document 3).
  • a curable composition based on an oxyalkylene polymer having a silicon atom-containing group to which a hydroxyl group or a hydrolyzable group is bonded such as a modified bisphenol A-epichlorohydrin type epoxy resin, etc.
  • compatibility with the oxyalkylene polymer was not good and sufficient water-resistant adhesion could not be obtained.
  • a silicon-modified epoxy resin obtained from a glycidyl ether having a polyalkylene glycol skeleton and a silicon compound having a functional group capable of reacting with an epoxy group is added.
  • a method has been proposed (Patent Document 4).
  • Patent Document 4 since the silicone-modified epoxy resin has at least two hydroxyl groups in the molecule, transesterification with the polymer occurs during storage of the curable composition, and the curability is lowered.
  • JP 59-24771 A Japanese Patent Publication No.62-35421 Japanese Patent Publication No.62-28177 JP 2004-107652 A
  • the object of the present invention is not only to adhere firmly to a porous substrate such as mortar and stone, but also to a metal, glass and painted surface, not only with primer treatment, but also with adhesiveness even when immersed in water.
  • An object of the present invention is to provide a curable composition capable of minimizing deterioration and having good storage stability.
  • the present inventors have obtained a storage by blending a reactive silicon group-containing organic polymer and a reactive silicon group-containing organic polymer having a specific structure. It has been found that the strength of the curable composition, particularly the adhesiveness after immersion in mortar, is significantly improved while maintaining various physical properties such as curability before and after.
  • the present invention (I) (A) Reactive silicon group-containing organic polymer (excluding component (B) below), and (B) Aromatic ring structure and / or hydrogenated aromatic ring structure, reactive at the terminal A curable composition comprising an organic polymer having a silicon group and no hydroxyl group; (II) The curable composition according to (I), wherein the component (B) has a bisphenol structure, (III) The curable composition according to (I) or (II), containing 3 to 100 parts by weight of component (B) with respect to 100 parts by weight of component (A), (IV) The curable composition according to any one of (I) to (III), wherein the component (B) contains an alkylene oxide addition reaction product of bisphenols, (V) The curable composition according to (IV), wherein the alkylene oxide addition reaction product of bisphenol is an addition reaction product of bisphenol A and propylene oxide, (VI) The curable composition according to (V), wherein the reaction amount of propylene oxide with respect to 1 mol of bisphenol
  • R 8 represents a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms.
  • R 9 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms.
  • X 2 each independently represents a hydroxyl group or a hydrolyzable group, and b represents 0 or 1.
  • —W—R 10 —SiR 11 c X 3 3-c (7) In the general formula (7), R 10 represents a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms.
  • R 11 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms.
  • X 3 each independently represents a hydroxyl group or a hydrolyzable group, c represents 0 or 1, W represents —O—CO—N (R 12 ) —, —N (R 12 ) —CO—O—.
  • A represents 0 or 1.
  • (XII) a sealing material comprising as a component the curable composition according to any one of (I) to (XI), (XIII) an adhesive comprising as a component the curable composition according to any one of (I) to (XI), (XIV) A coating material obtained by curing the curable composition according to any one of (I) to (XI), About.
  • the curable composition of the present invention is not primed for porous substrates such as mortars and stones, especially on metal, glass and painted surfaces, while maintaining various physical properties such as curability before and after storage. However, not only is it firmly bonded, but it is also possible to minimize the deterioration of the adhesiveness even during water immersion, and the storage stability is also good.
  • (A) Reactive silicon group-containing organic polymer (excluding the following component (B)) (hereinafter also referred to as the component (A)) is not particularly limited, and for example, an oxyalkylene type generally known as a main chain skeleton
  • An organic polymer having a polymer, a (meth) acrylic acid alkyl ester polymer, a saturated hydrocarbon polymer, a polyester polymer, or the like can be used.
  • oxyalkylene polymers are particularly preferred because of their low-temperature properties, flexibility, and compatibility with other components.
  • component (A) oxyalkylene polymers are used as main examples of main chain skeletons. Describe what to say.
  • the reactive silicon group-containing polyoxyalkylene polymer has a reactive silicon group represented by the following general formula (1).
  • -SiR 1 a X 1 3-a (1) (In the general formula (1), R 1 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms. X 1 independently represents a hydroxyl group or a hydrolyzable group. A represents 0 or 1. .)
  • R 1 in the general formula (1) include an alkyl group such as a methyl group or an ethyl group; a cycloalkyl group such as a cyclohexyl group; an aryl group such as a phenyl group; an aralkyl group such as a benzyl group; , R ′ is a methyl group, a phenyl group or the like; a triorganosiloxy group represented by —OSi (R ′) 3 ; a fluoroalkyl group such as a fluoromethyl group or a difluoromethyl group; a chloromethyl group or a 1-chloroethyl group Chloroalkyl group; alkoxyalkyl group such as methoxymethyl group, ethoxymethyl group, phenoxymethyl group and 1-methoxyethyl group; aminoalkyl group such as aminomethyl group, N-methylaminomethyl group and N, N-dimethylaminomethyl group
  • Examples of the hydrolyzable group represented by X 1 in the general formula (1) include known hydrolyzable groups. Specific examples include hydrogen, halogen, alkoxy group, alkenyloxy group, aryloxy group. Group, acyloxy group, ketoximate group, amino group, amide group, acid amide group, aminooxy group, mercapto group and the like. Among these, halogen, alkoxy group, alkenyloxy group, and acyloxy group are preferable because of their high activity, and alkoxy groups such as methoxy group and ethoxy group are more preferable because they are mildly hydrolyzable and easy to handle. The group is particularly preferred. In addition, the ethoxy group and the isopropenoxy group are preferably removed from the reaction by ethanol and acetone, respectively, from the viewpoint of safety.
  • the reactive silicon group represented by the general formula (1) include a trimethoxysilyl group, a triethoxysilyl group, a tris (2-propenyloxy) silyl group, a triacetoxysilyl group, a dimethoxymethylsilyl group, A diethoxymethylsilyl group, diisopropoxymethylsilyl group, (chloromethyl) dimethoxysilyl group, (methoxymethyl) dimethoxysilyl group, (methoxymethyl) diethoxysilyl group, and (ethoxymethyl) dimethoxysilyl group are preferred. Among these, dimethoxymethylsilyl group and trimethoxysilyl group are preferable because a cured product having high strength can be obtained.
  • the polyoxyalkylene polymer has a relatively low glass transition temperature, and the resulting cured product is excellent in cold resistance.
  • the resulting cured product is excellent in cold resistance.
  • it when it is made into a one-component composition with high moisture permeability, it has a feature that it is excellent in deep part curability and further excellent in adhesiveness.
  • component (A) examples include polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, and polyoxypropylene-polyoxybutylene.
  • polyoxyalkylene polymers such as copolymers.
  • the main chain skeleton of the polyoxyalkylene polymer may be composed of only one type of repeating unit, or may be composed of two or more types of repeating units.
  • an amorphous material when used in sealants, adhesives, etc., is a polyoxypropylene polymer having a repeating unit of oxypropylene of 50% by weight or more, preferably 80% by weight or more of the polymer main chain skeleton. From the viewpoint of quality and relatively low viscosity.
  • the main chain skeleton of the component (A) may have a polymer structure other than the oxyalkylene structure as long as the effects of the invention are not impaired.
  • the main chain structure of component (A) may be linear or may have a branched chain. When it is desired to obtain a cured product with higher strength, it is preferable to have a branched chain. When it is desired to obtain a cured product having a higher elongation, it is preferably linear.
  • the component (A) has a branched chain, the number of branched chains is preferably 1 to 4, and more preferably 1.
  • polyoxyalkylene polymer those obtained by ring-opening polymerization reaction of a cyclic ether compound using a polymerization catalyst in the presence of an initiator are preferable.
  • cyclic ether compound examples include ethylene oxide, propylene oxide, butylene oxide, tetramethylene oxide, and tetrahydrofuran. These cyclic ether compounds may be used alone or in combination of two or more. Among these cyclic ether compounds, it is particularly preferable to use propylene oxide because an amorphous and relatively low viscosity polyoxyalkylene polymer can be obtained.
  • the initiator include ethylene glycol, propylene glycol, butanediol, hexamethylene glycol, neopentyl glycol, diethylene glycol, dipropylene glycol, triethylene glycol, glycerin, trimethylolmethane, trimethylolpropane, pentaerythritol,
  • examples include alcohols such as sorbitol; polyoxyalkylene polymers such as polyoxypropylene diol, polyoxypropylene triol, polyoxyethylene diol, and polyoxyethylene triol having a number average molecular weight of 300 to 4,000. .
  • Examples of the method for synthesizing a polyoxyalkylene polymer include a polymerization method using an alkali catalyst such as KOH, and a complex obtained by reacting an organoaluminum compound with porphyrin as disclosed in JP-A-61-215623.
  • Polymerization method using transition metal compound-porphyrin complex catalyst Japanese Patent Publication No. 46-27250, Japanese Patent Publication No. 59-15336, US Pat. No. 3,278,457, US Pat. No. 3,278,458, US Pat. No. 3,278,459, US Pat.
  • Polymerization method using double metal cyanide complex catalyst as shown in US Pat. No.
  • the molecular weight distribution (Mw / Mn) of the component (A) is not particularly limited, but is preferably narrow, preferably less than 2.0, more preferably 1.6 or less, further preferably 1.5 or less, and 1.4 or less. Is particularly preferred.
  • the number average molecular weight of the component (A) is in terms of polystyrene by GPC, and the lower limit is preferably 8,000 or more, more preferably 9,000 or more, and particularly preferably 10,000 or more.
  • the upper limit is preferably 50,000 or less, more preferably 35,000 or less, and particularly preferably 30,000 or less.
  • the number average molecular weight of the component (A) is small, the viscosity is low and workability when using the curable composition is improved.
  • cured material obtained becomes hard and there exists a tendency for an elongation characteristic to fall. If the molecular weight is too large, the reactive silicon group concentration may be too low, and the curing rate may be slow. Also, the viscosity tends to be too high and handling tends to be difficult.
  • the method for introducing the reactive silicon group of the component (A) is not particularly limited, and a known method can be used.
  • the introduction method is illustrated below.
  • a hydroxyl group and an isocyanate group As a combination of the reactive group of the precursor polymer and the reactive group of the silane coupling agent, a hydroxyl group and an isocyanate group, a hydroxyl group and an epoxy group, an amino group and an isocyanate group, an amino group and a thioisocyanate group, an amino group and an epoxy group, Examples include, but are not limited to, Michael addition of amino group and acrylic structure, carboxylic acid group and epoxy group, unsaturated bond and mercapto group.
  • the method (i) is preferable because the reaction is simple, the adjustment of the amount of reactive silicon groups introduced, and the physical properties of the resulting reactive silicon group-containing polymer are stable.
  • the method (ii) has many reaction options, and it is easy and preferable to increase the rate of introduction of reactive silicon groups.
  • hydrosilane compound used by the method of (i) is illustrated.
  • Halogenated silanes such as trichlorosilane, dichloromethylsilane, dichlorophenylsilane, (methoxymethyl) dichlorosilane; dimethoxymethylsilane, diethoxymethylsilane, trimethoxysilane, triethoxysilane, (chloromethyl) dimethoxysilane, (methoxymethyl) )
  • Alkoxysilanes such as dimethoxysilane; isopropenyloxysilanes (deacetone type) such as triisopropenyloxysilane, (chloromethyl) diisopropenyloxysilane, (methoxymethyl) diisopropenyloxysilane, etc. .
  • silane coupling agent examples include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyldimethoxymethylsilane, 3-mercaptopropyltriethoxysilane, mercaptomethyltriethoxy, which react with an unsaturated bond.
  • Mercaptosilanes such as silane and mercaptomethyldimethoxymethylsilane; 3-isocyanatepropyltrimethoxysilane, 3-isocyanatopropyldimethoxymethylsilane, 3-isocyanatopropyltriethoxysilane, isocyanatemethyltrimethoxysilane, isocyanatemethyl which react with hydroxyl groups Isocyanate silanes such as triethoxysilane and isocyanate methyldimethoxymethylsilane; reacts with hydroxyl, amino and carboxylic acid groups, 3- Lysidoxypropyltrimethoxysilane, 3-glycidoxypropyldimethoxymethylsilane, 3-glycidoxypropyltriethoxysilane, glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, glycidoxymethyldimethoxymethylsilane Epoxysilanes such as: 3-amin
  • the main chain skeleton of the component (A) may contain other components such as a urethane bond component as long as the effects of the present invention are not significantly impaired. Although it does not specifically limit as a urethane bond component, The group (henceforth an amide segment) produced
  • the cured product obtained by curing the curable composition containing the component (A) containing a urethane bond or an ester bond in the main chain skeleton can obtain high hardness or improve the strength due to the action of hydrogen bonds, etc. An effect may be obtained.
  • the urethane bond may be cleaved by heat or the like.
  • an amide segment can be introduced into the component (A) or the amide segment can be excluded.
  • a polyoxyalkylene polymer having an amide segment tends to have a high viscosity.
  • the polyoxyalkylene polymer having an amide segment may be improved in curability.
  • the amide segment has the following general formula (2): —NR 2 —C ( ⁇ O) — (2) (In general formula (2), R 2 represents an organic group having 1 to 10 carbon atoms or a hydrogen atom).
  • groups generated by the reaction of the active hydrogen in the urethane group, urea group, and thiourethane group with an isocyanate group are also included in the group of the general formula (2).
  • An example of an industrially easy production method of a polyoxyalkylene polymer having an amide segment and a reactive silicon group is illustrated by reacting an excess polyisocyanate compound with a polyoxyalkylene polymer having an active hydrogen-containing group at the terminal.
  • all or part of the isocyanate group has the following general formula (3): ZR 3 —SiR 1 a X 3-a (3)
  • R 3 is a divalent organic group, more preferably a hydrocarbon group having 1 to 20 carbon atoms.
  • Z is a hydroxy group. Examples thereof include those produced by a method in which a Z group of a silicon compound represented by a group, a carboxy group, a mercapto group, and an amino group (primary or secondary) is selected, is reacted. it can.
  • the silicon compound represented by the general formula (3) is not particularly limited, but specific examples include ⁇ -aminopropyldimethoxymethylsilane, ⁇ -aminopropyltrimethoxysilane, N- ( ⁇ -aminoethyl)- Amino such as ⁇ -aminopropyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyldimethoxymethylsilane, (N-phenyl) - ⁇ -aminopropyltrimethoxysilane, N-ethylaminoisobutyltrimethoxysilane Group-containing silanes; hydroxy group-containing silanes such as ⁇ -hydroxypropyltrimethoxysilane; mercapto group-containing silanes such as ⁇ -mercaptopropyltrimethoxysilane and mercaptomethyltriethoxysilane; Also, JP-A-6-2111879 (US Pat.
  • Michael addition reaction products of various ⁇ , ⁇ -unsaturated carbonyl compounds and primary amino group-containing silanes, or various (meth) acryloyl group-containing silanes and primary amino group-containing compounds can also be used as the silicon compound represented by the general formula (3).
  • the reactive silicon group-containing isocyanate compound represented by the general formula (4) is not particularly limited, but specific examples include ⁇ -trimethoxysilylpropyl isocyanate, ⁇ -triethoxysilylpropyl isocyanate, ⁇ -methyldimethoxy.
  • the average number of amide segments is preferably 1 to 10, more preferably 1.5 to 5, more preferably 2 to 3 per molecule. preferable. When the number is less than 1, the curability may not be sufficient. When the number is more than 10, the component (A) may have a high viscosity and may be difficult to handle.
  • the component (A) When aiming at lowering the viscosity of the curable composition or improving workability, the component (A) preferably contains substantially no amide segment.
  • the component (A) may contain an average of more than one reactive silicon group at one terminal site.
  • a reactive silicon group is introduced by the above method (i)
  • the number is limited to one or less on average in one terminal site.
  • the precursor polymer is reacted with an epoxy compound having a carbon-carbon unsaturated bond, and the alcohol terminal is modified to an unsaturated group, thereby introducing more than one reactive silicon at one terminal site. It becomes possible to do.
  • epoxy compound having a carbon-carbon unsaturated bond examples include (meth) allyl glycidyl ether, glycidyl (meth) acrylate, butadiene monoxide, and 1,4-cyclopentadiene monoepoxide. Glycidyl ether is more preferred.
  • (meth) allyl represents allyl and / or methallyl.
  • the amount of the epoxy compound having a carbon-carbon unsaturated bond added may be any amount in consideration of the amount of carbon-carbon unsaturated bond introduced into the polyoxyalkylene polymer and the reactivity.
  • the lower limit of the molar ratio of hydroxyl groups contained in the polyoxyalkylene polymer is preferably 0.2 or more, and more preferably 0.5 or more.
  • the upper limit is preferably 5.0 or less, and more preferably 2.0 or less.
  • the reaction temperature for the ring-opening addition reaction of the epoxy compound having a carbon-carbon unsaturated bond to the precursor polymer is preferably 60 ° C. or higher and 150 ° C. or lower, and 110 ° C. or higher and 140 ° C. or lower. Is more preferable. If it is low, the reaction hardly proceeds, and if it is too high, the main chain of the polyoxyalkylene polymer may be decomposed.
  • the polymer structure having an unsaturated bond before introduction of the reactive silicon group obtained by the above method has a terminal site represented by the following general formula (5):
  • R 4 and R 6 are each independently a divalent organic group, and the atom bonded to each adjacent carbon atom is any of carbon, oxygen, and nitrogen.
  • R 5 , R 7 each independently represents hydrogen or a hydrocarbon group having 1 to 10 carbon atoms, and n represents an integer of 1 to 10).
  • the terminal structure having a reactive silicon group contained in one molecule of component (A) is preferably 0.5 or more on average, more preferably 1.0 or more, and 1.1 More preferably, it is more preferably 1.5 or more.
  • the lower limit of the average number of reactive silicon groups per component (A) is preferably 1.2 or more, more preferably 1.3 or more, and most preferably 1.5 or more.
  • the upper limit is preferably 6.0 or less, more preferably 5.5 or less, and most preferably 5.0 or less.
  • the number of reactive silicon groups is less than 1.2, a cured product with high strength may not be obtained, which is not preferable.
  • the number of reactive silicon groups exceeds 6.0, it is not preferable because a cured product having a high elongation may not be obtained.
  • the average number of reactive silicon groups in component (A) is defined as the average number determined by a method of quantifying protons on carbon directly bonded with reactive silicon groups by high resolution 1 H-NMR measurement.
  • the average number of reactive silicon groups in the component (A) in the present invention when the reactive silicon group is introduced into the precursor polymer, the precursor polymer and the secondary polymer in which no reactive silicon group is introduced.
  • the average number of reactive silicon groups in a molecule is also calculated for the polymer obtained by the reaction, in which no reactive silicon group is introduced, as a part of the component (A) having the same main chain structure. The calculation is included in the population parameter (number of molecules).
  • the curable composition of the present invention comprises (B) a polymer having an aromatic ring structure and / or a hydrogenated aromatic ring structure, a reactive silicon group at the terminal, and no hydroxyl group (hereinafter referred to as ( B) also referred to as component).
  • a polymer having an aromatic ring structure and / or a hydrogenated aromatic ring structure, a reactive silicon group at the terminal, and no hydroxyl group hereinafter referred to as ( B) also referred to as component.
  • the aromatic ring structure and / or hydrogenated aromatic ring structure of component (B) include biphenol, methylene bisphenol (bisphenol F), methylene bis (orthocresol), ethylidene bisphenol (bisphenol AD), and isopropylidene bisphenol (bisphenol).
  • the use of a structure derived from bisphenol A significantly improves the strength of the curable composition, particularly the adhesiveness after immersion in mortar. preferable.
  • the component (B) may contain an alkyleneoxy post-addition reaction product of bisphenols, and examples thereof include a reaction product of ethylene oxide, propylene oxide, butylene oxide and a mixture thereof with a bisphenol type epoxy resin. It is done.
  • an addition reaction product of bisphenol A and propylene oxide is preferable, but not limited thereto.
  • the reaction amount of propylene oxide with respect to 1 mol of bisphenol is preferably 2 to 30 mol, and particularly preferably 2 to 15 mol.
  • the component (B) is preferably a modified product of a silicon compound having a hydrolyzable functional group on a silicon atom from the viewpoint of water-resistant adhesion. It is considered that the component (B) has a hydrolyzable functional group on the silicon atom, so that a crosslinked structure is formed in the cured product, and good water-resistant adhesion is developed over a long period of time.
  • the method for introducing the reactive silicon group (B) is not particularly limited, and a known method can be used.
  • the introduction method is illustrated below.
  • the structure represented by the following general formula (6) can be introduced at the end. —O—R 8 —SiR 9 b X 2 3-b (6)
  • R 8 represents a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms.
  • R 9 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms.
  • X 2 each independently represents a hydroxyl group or a hydrolyzable group, and b represents 0 or 1.
  • Any method can be used for introducing the unsaturated bond.
  • a precursor polymer having a functional group such as a hydroxyl group is allowed to react with a compound having reactivity with this functional group and a compound having an unsaturated group.
  • Reaction of a reactive group-containing polymer (precursor polymer) with a silane coupling agent reacting with the precursor polymer having a reactive group such as a hydroxyl group, an amino group, or an unsaturated bond, and the reactive group. And a compound having both a group capable of forming a bond and a reactive silicon group (also called a silane coupling agent).
  • the combination of the reactive group of the precursor polymer and the reactive group of the silane coupling agent includes hydroxyl group and isocyanate group, amino group and isocyanate group, amino group and thioisocyanate group, Michael addition of amino group and acrylic structure, Examples include, but are not limited to, saturated bonds and mercapto groups.
  • the structure represented by the following general formula (7) can be introduced at the end of the component (B).
  • R 10 represents a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms.
  • R 11 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms.
  • X 3 each independently represents a hydroxyl group or a hydrolyzable group, c represents 0 or 1, W represents —O—CO—N (R 12 ) —, —N (R 12 ) —CO—O—.
  • R 12 is hydrogen or halogen-substituted Represents an optionally substituted hydrocarbon group having 1 to 18 carbon atoms.
  • the method (i) is preferable because the reaction is simple, the adjustment of the amount of reactive silicon groups introduced, and the physical properties of the resulting reactive silicon group-containing polymer are stable.
  • the method (ii) has many reaction options, and it is easy and preferable to increase the rate of introduction of reactive silicon groups.
  • hydrosilane compound used by the method of (i) is illustrated.
  • Halogenated silanes such as trichlorosilane, dichloromethylsilane, dichlorophenylsilane, (methoxymethyl) dichlorosilane; dimethoxymethylsilane, diethoxymethylsilane, trimethoxysilane, triethoxysilane, (chloromethyl) dimethoxysilane, (methoxymethyl) )
  • Alkoxysilanes such as dimethoxysilane; isopropenyloxysilanes (deacetone type) such as triisopropenyloxysilane, (chloromethyl) diisopropenyloxysilane, (methoxymethyl) diisopropenyloxysilane, etc. .
  • silane coupling agent examples include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyldimethoxymethylsilane, 3-mercaptopropyltriethoxysilane, mercaptomethyltriethoxy, which react with an unsaturated bond.
  • Mercaptosilanes such as silane and mercaptomethyldimethoxymethylsilane; 3-isocyanatepropyltrimethoxysilane, 3-isocyanatopropyldimethoxymethylsilane, 3-isocyanatopropyltriethoxysilane, isocyanatemethyltrimethoxysilane, isocyanatemethyl which react with hydroxyl groups Isocyanate silanes such as triethoxysilane and isocyanate methyldimethoxymethylsilane; reacts with hydroxyl, amino and carboxylic acid groups, 3- Lysidoxypropyltrimethoxysilane, 3-glycidoxypropyldimethoxymethylsilane, 3-glycidoxypropyltriethoxysilane, glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, glycidoxymethyldimethoxymethylsilane Epoxysilanes such as: 3-amin
  • the lower limit of the average number of reactive silicon groups per component (B) is preferably 1.2 or more, more preferably 1.3 or more, and most preferably 1.5 or more.
  • the upper limit is preferably 6.0 or less, more preferably 5.5 or less, and most preferably 5.0 or less.
  • the number of reactive silicon groups is less than 1.2, a cured product with high strength may not be obtained, which is not preferable.
  • the number of reactive silicon groups exceeds 6.0, it is not preferable because a cured product having a high elongation may not be obtained.
  • the average number of reactive silicon groups in component (B) is defined as the average number obtained by a method of quantifying protons on carbon directly bonded with reactive silicon groups by high resolution 1 H-NMR measurement.
  • the average number of reactive silicon groups in the component (B) in the present invention when the reactive silicon group is introduced into the precursor polymer, the precursor polymer and the secondary polymer in which no reactive silicon group is introduced.
  • the polymer obtained by the reaction and having no reactive silicon group introduced is also regarded as a part of the component (B) having the same main chain structure, and the average number of reactive silicon groups in one molecule is calculated. The calculation is included in the population parameter (number of molecules).
  • the content of the component (B) is not particularly limited, but is preferably 3 to 100 parts by weight with respect to 100 parts by weight of the component (A), and 5 to 30 parts by weight. More preferably.
  • the content of the component (B) is less than 3 parts by weight, sufficient water-resistant adhesion may not be exhibited, and when it exceeds 100 parts by weight, the brittleness of the cured product may be extremely reduced.
  • the curable composition of this invention may contain the curing catalyst as a silanol condensation catalyst of (A) component and (B) component.
  • the curing catalyst include titanium compounds such as tetrabutyl titanate, tetrapropyl titanate, titanium tetrakis (acetylacetonate), bis (acetylacetonato) diisopropoxytitanium, diisopropoxytitanium bis (ethylacetocetate); Dimethyltin diacetate, dimethyltin bis (acetylacetonate), dibutyltin dilaurate, dibutyltin maleate, dibutyltin phthalate, dibutyltin dioctanoate, dibutyltin bis (2-ethylhexanoate), dibutyltin bis (methylmaleate) , Dibutyltin bis (ethyl maleate), dibutyltin bis (butyl maleate), dibutyltin
  • carboxylic acid and / or carboxylic acid metal salt can also be used as a curing catalyst.
  • an amidine compound as described in International Publication No. 2008/077864 can also be used.
  • amidine compounds include 1- (o-tolyl) biguanide, 1-phenylguanidine, 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine, 1,5,7-triazabicyclo [4.4. .0] dec-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-ene, 1,8-diazabicyclo [5.4.0] -7- Although undecene (DBU) etc. can be mentioned, it is not restricted to these.
  • DBU undecene
  • amidines are solid at room temperature, but if there is a problem that they are difficult to disperse, use a means to disperse or dissolve in advance using a solvent or plasticizer suitable for each compound. Can do. Considering the working environment, a high boiling point solvent is preferable.
  • dibutyltin-based curing catalysts have a good balance of curability and adhesiveness and are most commonly used. In recent years, however, dibutyltin-based curing catalysts are concerned about adverse effects on the human body. In such cases, dioctyltin-based curing catalysts can be used.
  • dioctyltin-based curing catalyst dioctyltin dilaurate, dioctyltin bisacetylacetonate, and a reaction product of dioctyltin salt and ethyl silicate are industrially available and preferable.
  • a titanium catalyst as a non-tin catalyst has high activity, it is preferable in the case of industrial adhesives and electrical / electronic adhesives that require rapid curing.
  • diisopropoxytitanium bis (ethyl acetocetate) is particularly preferable because of excellent curability and storage stability of the blend.
  • This catalyst is sold under the trade name Tyzor PITA and is easily available and can be suitably used.
  • the blending amount is preferably 0.01 to 20 parts by weight with respect to 100 parts by weight of the total amount of the components (A) and (B). 0.05 to 15 parts by weight is more preferable, and 0.1 to 10 parts by weight is most preferable.
  • the blending amount of the curing catalyst is within this range, the curable composition has excellent curability, and has an appropriate curing time, and therefore has excellent workability.
  • the curable composition of the present invention may contain a plasticizer.
  • the plasticizer has a function of adjusting the viscosity and slump property of the curable composition, and a function of adjusting mechanical properties such as tensile strength and elongation property of the obtained cured product.
  • plasticizers include phthalates such as dibutyl phthalate, diheptyl phthalate, di (2-ethylhexyl) phthalate, diisodecyl phthalate, butyl benzyl phthalate; dioctyl adipate, dioctyl sebacate, dibutyl sebacate, diisodecyl succinate
  • Non-aromatic dibasic acid esters such as; aliphatic esters such as butyl oleate and methyl acetyl ricinolinate; phosphate esters such as tricresyl phosphate and tributyl phosphate; trimellitic acid esters; chlorinated paraffins Hydrocarbon oils such as alkyldiphenyl and partially hydrogenated terphenyl; process oils; epoxy plasticizers such as epoxidized soybean oil and epoxy benzyl stearate, polyethylene glycol, polypropylene glycol, Polyether polyol or
  • polypropylene glycol, di (2-ethylhexyl) phthalate, diisodecyl phthalate and the like are preferable from the viewpoints of compatibility with the components (A) and (B), mechanical properties, cost, and the like.
  • plasticizers may be blended alone or in combination of two or more. Further, a low molecular plasticizer and a high molecular plasticizer may be used in combination. These plasticizers can also be blended at the time of polymer production.
  • the blending amount is preferably 30 parts by weight or less, more preferably 20 parts by weight or less with respect to 100 parts by weight of the total amount of the components (A) and (B). Preferably, 10 parts by weight or less is particularly preferable. If the blending amount of the plasticizer exceeds 30 parts by weight, the strength and adhesiveness of the cured product tend to decrease.
  • a polymer plasticizer can be added.
  • the curable composition can maintain the initial characteristics over a long period of time. The effect of improving the drying property (also referred to as paintability) when an alkyd paint is applied to the cured product is exhibited.
  • the polymer plasticizer is not particularly limited, and vinyl polymers obtained by polymerizing vinyl monomers by various methods; esters of polyalkylene glycols such as diethylene glycol dibenzoate, triethylene glycol dibenzoate, and pentaerythritol ester.
  • Polyester plasticizers obtained from dibasic acids such as sebacic acid, adipic acid, azelaic acid and phthalic acid and dihydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol and dipropylene glycol; polystyrene and poly -Polystyrenes such as - ⁇ -methylstyrene; polybutadiene, polybutene, polyisobutylene, butadiene-acrylonitrile, polychloroprene and the like.
  • vinyl polymers are preferred because they have high compatibility with the components (A) and (B), and the resulting cured products have good weather resistance and heat resistance. More preferred are polymer and / or methacrylic polymers, and more preferred are acrylic polymers such as polyacrylic acid alkyl esters.
  • the method for producing the polyacrylic acid alkyl ester is not particularly limited, but a living radical polymerization method is preferable and an atom transfer radical polymerization method is more preferable because the molecular weight distribution is narrow and viscosity can be reduced.
  • a method of continuous bulk polymerization of an alkyl acrylate ester compound disclosed in JP-A-2001-207157 called SGO process under high temperature and high pressure is particularly preferable.
  • the number average molecular weight of the polymer plasticizer is preferably 500 to 15,000, more preferably 800 to 10,000, still more preferably 1,000 to 8,000, particularly preferably 1,000 to 5,000. 3,000 to 3,000 is most preferred. If the molecular weight of the polymer plasticizer is too low, the plasticizer will flow out from the cured product over time due to heat or rain, and the initial physical properties cannot be maintained over a long period of time, which may cause contamination due to dust adhesion. Yes, alkyd paintability tends to be inferior. On the other hand, if the molecular weight is too high, the viscosity of the curable composition tends to be high and workability tends to be poor.
  • the molecular weight distribution of the polymer plasticizer is not particularly limited, but is preferably narrow, less than 1.80, preferably 1.70 or less, more preferably 1.60 or less, further preferably 1.50 or less, and 1.40 or less. Is particularly preferred, with 1.30 or less being most preferred.
  • the number average molecular weight is measured by a terminal group analysis method in the case of a polyether polymer, and by the GPC method in the case of other polymers. Moreover, molecular weight distribution (Mw / Mn) is measured by GPC method (polystyrene conversion).
  • the polymer plasticizer may or may not have a reactive silicon group in the molecule, but when a polymer plasticizer having a reactive silicon group was added, the polymer plasticizer was incorporated into the curing reaction and obtained. This is preferable because migration of the plasticizer from the cured product can be prevented.
  • the number of reactive silicon groups is preferably 1 or less on average per molecule, and more preferably 0.8 or less.
  • plasticizer Only one type of polymer plasticizer may be added, or a plurality of types may be added in combination. Further, a low molecular plasticizer and a high molecular plasticizer may be used in combination. In addition, you may add these plasticizers at the time of manufacture of (A) and (B) component.
  • the amount of the polymer plasticizer added is preferably 30 parts by weight or less, more preferably 20 parts by weight or less, and particularly preferably 10 parts by weight or less with respect to 100 parts by weight of the total amount of the components (A) and (B). If it exceeds 30 parts by weight, the mechanical strength of the cured product tends to be insufficient.
  • Aminosilane can be added to the curable composition of the present invention.
  • Aminosilane is a compound having a reactive silicon group and amino group in the molecule, and is usually referred to as an adhesion-imparting agent.
  • various adherends that is, inorganic substrates such as glass, aluminum, stainless steel, zinc, copper, and mortar, and organic substrates such as vinyl chloride, acrylic, polyester, polyethylene, polypropylene, polycarbonate, etc. When used, it exhibits a significant adhesive improvement effect under non-primer conditions or primer treatment conditions. When used under non-primer conditions, the effect of improving adhesion to various adherends is particularly remarkable.
  • it is a compound that can function as a physical property modifier, an inorganic filler dispersibility improver, and the like.
  • the reactive silicon group of aminosilane include the groups already exemplified, but methoxy group, ethoxy group and the like are preferable from the viewpoint of hydrolysis rate.
  • the number of hydrolyzable groups is preferably 2 or more, particularly 3 or more.
  • aminosilane examples include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltriisopropoxysilane, ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropylmethyldiethoxysilane, ⁇ -(2-aminoethyl) aminopropyltrimethoxysilane, ⁇ - (2-aminoethyl) aminopropylmethyldimethoxysilane, ⁇ - (2-aminoethyl) aminopropyltriethoxysilane, ⁇ - (2-aminoethyl) amino Propylmethyldiethoxysilane, ⁇ - (2-aminoethyl) aminopropyltriisopropoxysilane, ⁇ - (2- (2-aminoethyl) aminoethyl) aminopropyltrimethoxysilane,
  • ⁇ -aminopropyltrimethoxysilane, ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane, and ⁇ - (2-aminoethyl) aminopropylmethyldimethoxysilane are used. preferable. Only one type of aminosilane may be used, or two or more types may be used in combination. It has been pointed out that ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane is irritating compared to other aminosilanes, and instead of reducing this aminosilane, ⁇ -aminopropyltrimethoxysilane should be used in combination. Can alleviate irritation.
  • the blending amount is preferably about 1 to 20 parts by weight with respect to 100 parts by weight of the total amount of components (A) and (B), and 2 to 10 parts by weight. Is more preferable. If the amount of aminosilane is less than 1 part by weight, sufficient adhesion may not be obtained. On the other hand, if the amount of aminosilane exceeds 20 parts by weight, the cured product becomes brittle and sufficient strength cannot be obtained, and the curing rate may be slow.
  • adhesion imparting agent other than aminosilane can be used in the curable composition of the present invention.
  • adhesion-imparting agents other than aminosilane include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ - (3,4-epoxy Epoxy group-containing silanes such as cyclohexyl) ethyltrimethoxysilane and ⁇ - (3,4-epoxycyclohexyl) ethyltriethoxysilane; ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopropyltriethoxysilane, ⁇ -isocyanatopropylmethyl Isocyanate group-containing silanes such as diethoxysilane, ⁇ -isocyanatopropylmethyldimeth
  • ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and ⁇ -glycidoxypropylmethyldimethoxysilane are preferred in order to ensure good adhesion.
  • the condensate which condensed the said silane partially can also be used.
  • amino-modified silyl polymers, silylated amino polymers, unsaturated aminosilane complexes, phenylamino long-chain alkylsilanes, aminosilylated silicones, silylated polyesters, and the like, which are derivatives obtained by modifying these, can also be used as an adhesion-imparting agent.
  • the adhesion-imparting agent includes various adherends, that is, inorganic substrates such as glass, aluminum, stainless steel, zinc, copper, and mortar, vinyl chloride, acrylic, polyester, polyethylene, polypropylene, When used for an organic base material such as polycarbonate, it exhibits a remarkable adhesive improvement effect under non-primer conditions or primer treatment conditions. When used under non-primer conditions, the effect of improving adhesion to various adherends is particularly remarkable.
  • the adhesion-imparting agent compounds other than the silane compounds listed above can also be used. Although it does not specifically limit as a specific example, For example, an epoxy resin, a phenol resin, sulfur, alkyl titanates, aromatic polyisocyanate etc. are mentioned. Only one type of adhesion promoter may be used, or two or more types may be used in combination. By adding these adhesion-imparting agents, the adhesion to the adherend can be improved.
  • the content thereof is preferably about 0.01 to 20 parts by weight with respect to 100 parts by weight of the total amount of the components (A) and (B). About 1 to 10 parts by weight is more preferable, and about 1 to 7 parts by weight is particularly preferable. If the content of the adhesion-imparting agent is less than this range, sufficient adhesion may not be obtained. On the other hand, if the content of the adhesion-imparting agent exceeds this range, practical deep curability may not be obtained.
  • the epoxy resin may reduce the catalytic activity depending on the addition amount, and therefore the addition amount of the epoxy resin is preferably small.
  • the amount of the epoxy resin used is preferably 5 parts by weight or less, more preferably 0.5 parts by weight or less, and substantially contains 100 parts by weight of the total amount of the components (A) and (B). It is particularly preferred not to.
  • antioxidant antioxidant agent
  • cured material can be improved.
  • antioxidant include hindered phenols, monophenols, bisphenols, and polyphenols, with hindered phenols being particularly preferred.
  • Tinuvin 622LD, Tinuvin 144, CHIMASSORB 944LD, CHIMASSORB 119FL (all of which are manufactured by BASF Japan Ltd.); MARK LA-57, MARK LA-62, MARK LA-67, MARK LA-63, MARK LA-68 (all above Also manufactured by ADEKA Corporation); hindered amines shown by Sanol LS-770, Sanol LS-765, Sanol LS-292, Sanol LS-2626, Sanol LS-1114, Sanol LS-744 (all of which are manufactured by Sankyo Corporation) A system light stabilizer can also be used. Specific examples of the antioxidant are also described in JP-A-4-283259 and JP-A-9-194731.
  • the content thereof is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the total amount of the components (A) and (B). 0.2 to 5 parts by weight is more preferable.
  • a light stabilizer can be used in the curable composition of the present invention.
  • Use of a light stabilizer can prevent photooxidation degradation of the cured product.
  • the light stabilizer include benzotriazole, hindered amine, and benzoate compounds, with hindered amines being particularly preferred. Specific examples of the light stabilizer are also described in JP-A-9-194731.
  • the amount used is preferably 0.1 to 10 parts by weight relative to 100 parts by weight of the total amount of components (A) and (B). 0.2 to 5 parts by weight is more preferable.
  • a tertiary amine is used as a hindered amine light stabilizer as described in JP-A-5-70531. It is preferable to use a contained hindered amine light stabilizer for improving the storage stability of the composition.
  • Tinuvin 622LD Tinuvin 144, CHIMASSORB 119FL (all of these are manufactured by BASF Japan Ltd.); MARK LA-57, LA-62, LA-67, LA-63 (all of which are stocks) Examples include Sanol LS-765, LS-292, LS-2626, LS-1114, LS-744 (all of which are manufactured by BASF Japan Ltd.).
  • An ultraviolet absorber can be used in the curable composition of the present invention.
  • the surface weather resistance of the cured product can be enhanced.
  • ultraviolet absorbers include benzophenone-based, benzotriazole-based, salicylate-based, substituted tolyl-based, and metal chelate-based compounds, and benzotriazole-based compounds are particularly preferable.
  • the amount used is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the total amount of components (A) and (B). 0.2 to 5 parts by weight is more preferable. It is preferable to use a phenol-based or hindered phenol-based antioxidant, a hindered amine-based light stabilizer, and a benzotriazole-based ultraviolet absorber in combination.
  • a filler can be added to the curable composition of the present invention.
  • Fillers include reinforcing silica such as fumed silica, precipitated silica, crystalline silica, fused silica, dolomite, anhydrous silicic acid, hydrous silicic acid, and carbon black; heavy calcium carbonate, colloidal calcium carbonate, magnesium carbonate Diatomaceous earth, calcined clay, clay, talc, titanium oxide, bentonite, organic bentonite, ferric oxide, aluminum fine powder, flint powder, zinc oxide, activated zinc white, shirasu balloon, glass microballoon, phenolic resin and vinylidene chloride Examples thereof include fillers such as resin powders such as resin organic microballoons, PVC powder, and PMMA powders; and fibrous fillers such as glass fibers and filaments.
  • the content thereof is 1 to 250 parts by weight with respect to 100 parts by weight of the total amount of components (A) and (B), and 10 to 200 parts by weight. Preferably there is.
  • fillers mainly fume silica, precipitated silica, crystalline silica, fused silica, dolomite, silicic anhydride, hydrous silicic acid and carbon black, surface treatment fine
  • a filler selected from calcium carbonate, calcined clay, clay, activated zinc white and the like is preferable, and it is preferable to use in a range of 1 to 200 parts by weight with respect to 100 parts by weight of the total amount of the components (A) and (B). Results are obtained.
  • calcium carbonate such as titanium oxide and heavy calcium carbonate, magnesium carbonate, talc, ferric oxide, zinc oxide, and shirasu balloon
  • the selected filler is used in the range of 5 to 200 parts by weight with respect to 100 parts by weight of the total amount of the components (A) and (B)
  • preferable results are obtained.
  • calcium carbonate has a greater effect of improving the breaking strength, breaking elongation, and adhesiveness of the cured product as the value of the specific surface area increases.
  • these fillers may be used alone or in combination of two or more.
  • the particle diameter of the surface-treated fine calcium carbonate is preferably 0.5 ⁇ m or less, and the surface treatment is preferably treated with a fatty acid or a fatty acid salt. Moreover, the particle size of calcium carbonate having a large particle size is preferably 1 ⁇ m or more, and an untreated surface can be used.
  • an organic balloon or an inorganic balloon In order to improve the workability (such as sharpness) of the curable composition and to make the surface of the cured product matt, it is preferable to add an organic balloon or an inorganic balloon. These fillers can be surface-treated, and may be used alone or in combination of two or more.
  • the particle size of the balloon is preferably 0.1 mm or less from the viewpoint of improving workability (such as sharpness), and preferably from 5 to 300 ⁇ m from the viewpoint of making the surface of the cured product matt.
  • the curable composition of the present invention is a sizing board, especially a ceramic sizing board, and the like because of the good chemical resistance of the cured product.
  • it is preferably used for an adhesive in which the adhesive remains as it is, but it is desirable that the design of the outer wall and the design of the sealing material are harmonized.
  • high-quality outer walls are used as outer walls due to the mixture of spatter coating, colored aggregates, and the like.
  • the cured product has an excellent curable composition that lasts for a long time because of its excellent chemical resistance.
  • the surface becomes sandy or sandstone-like rough, and when a scaly material is used, the surface becomes uneven.
  • preferred diameters, blending amounts, materials and the like of the scaly or granular substance are as follows.
  • the diameter is 0.1 mm or more, preferably about 0.1 to 5.0 mm, and those having an appropriate size are used according to the material and pattern of the outer wall. Those of about 0.2 to 5.0 mm or about 0.5 to 5.0 mm can also be used. In the case of a scaly substance, the thickness is about 1/10 to 1/5 of the diameter (about 0.01 to 1.00 mm).
  • the scale-like or granular substance is mixed in advance in the main sealing material and transported to the construction site as a sealing material, or mixed in the main sealing material at the construction site when used.
  • scaly or granular substance is blended with 100 parts by weight of the curable composition.
  • the blending amount is appropriately selected depending on the size of each scale-like or granular substance, the material of the outer wall, the pattern, and the like.
  • the scale-like or granular substance natural substances such as silica sand and mica, synthetic rubber, synthetic resin, and inorganic substances such as alumina are used. In order to enhance the designability when filling the joint, it is colored in an appropriate color according to the material and pattern of the outer wall.
  • a balloon preferably having an average particle size of 0.1 mm or more
  • the surface becomes sandy or sandstone-like, and the weight can be reduced.
  • Preferred diameters, blending amounts, materials, etc. of the balloon are as follows as described in JP-A-10-251618.
  • the balloon is a spherical filler with a hollow inside.
  • an inorganic or organic balloon or a combination of these balloons can be used. Specific examples include inorganic materials such as glass, shirasu, and silica, and organic materials such as phenolic resin, urea resin, polystyrene, and saran. A composite material and an organic material can be combined, or can be laminated to form a plurality of layers.
  • the balloons used may be the same balloon or a mixture of different types of balloons.
  • the balloon can be used by processing or coating the surface thereof, or can be used by treating the surface with various surface treatment agents. For example, an organic balloon may be coated with calcium carbonate, talc, titanium oxide or the like, or an inorganic balloon may be surface treated with an adhesion-imparting agent.
  • the balloon preferably has a particle size of 0.1 mm or more in order to obtain a surface having a sandy or sandstone texture. Those of about 0.2 to 5.0 mm or about 0.5 to 5.0 mm can also be used. When the amount is less than 0.1 mm, even when blended in a large amount, only the viscosity of the curable composition is increased, and a rough feeling may not be exhibited.
  • the blending amount of the balloon can be easily determined according to the desired degree of sanding tone or sandstone tone. In general, it is desirable to blend those having a particle size of 0.1 mm or more in a ratio of 5 to 25 vol% in volume concentration in the curable composition.
  • volume concentration of the balloon When the volume concentration of the balloon is less than 5 vol%, there is no feeling of roughness, and when it exceeds 25 vol%, the viscosity of the sealing material and the adhesive becomes high, the workability is poor, the modulus of the cured product is also high, and the sealing material and bonding The basic performance of the agent tends to be impaired.
  • the volume concentration with particularly preferable balance with the basic performance of the sealing material is 8 to 22 vol%.
  • the anti-slip agent as described in JP-A-2000-154368 and the surface of a cured product as described in JP-A-2001-164237 are matted to give an uneven state.
  • An amine compound for obtaining a state particularly a primary and / or secondary amine having a melting point of 35 ° C. or higher can be added.
  • balloons are disclosed in JP-A-2-129262, JP-A-4-8788, JP-A-4-173867, JP-A-5-1225, JP-A-7-113033, JP-A-9-53063, JP-A-10-10. -251618, JP-A No. 2000-154368, JP-A No. 2001-164237, and International Publication No. 97/05201.
  • the cured product can form irregularities on the surface to improve the design.
  • Preferred diameters, blending amounts, materials and the like of the cured sealant particles are as follows as described in JP-A No. 2001-115142.
  • the diameter is preferably 0.1 to 1 mm, more preferably about 0.2 to 0.5 mm.
  • the blending amount is preferably 5 to 100% by weight, more preferably 20 to 50% by weight in the curable composition.
  • the material include urethane resin, silicone, modified silicone, polysulfide rubber and the like, and are not limited as long as they are used for the sealing material, but a modified silicone-based sealing material is preferable.
  • silicate can be used for the curable composition of this invention.
  • This silicate acts as a cross-linking agent and has a function of improving the restorability, durability, and creep resistance of the cured product of the curable composition of the present invention. Furthermore, it has the effect of improving adhesiveness, water-resistant adhesiveness, and adhesive durability under high temperature and high humidity conditions.
  • the silicate tetraalkoxysilane or a partial hydrolysis condensate thereof can be used.
  • the amount used is 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the total amount of components (A) and (B).
  • silicate examples include, for example, tetramethoxysilane, tetraethoxysilane, ethoxytrimethoxysilane, dimethoxydiethoxysilane, methoxytriethoxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, tetra-n- Examples thereof include tetraalkoxysilanes (tetraalkyl silicates) such as butoxysilane, tetra-i-butoxysilane, and tetra-t-butoxysilane, and partial hydrolysis condensates thereof.
  • the partial hydrolysis-condensation product of tetraalkoxysilane is more preferable because the effect of improving the resilience, durability, and creep resistance is greater than that of tetraalkoxysilane.
  • Examples of the partially hydrolyzed condensate of tetraalkoxysilane include those obtained by adding water to tetraalkoxysilane and condensing it by subjecting it to partial hydrolysis.
  • a commercially available product can be used as the partially hydrolyzed condensate of the organosilicate compound.
  • Examples of such condensates include methyl silicate 51 and ethyl silicate 40 (both manufactured by Colcoat Co., Ltd.).
  • a tackifier resin can be added to the curable composition of the present invention. Although it does not specifically limit as tackifying resin, What is normally used regardless of solid and liquid at normal temperature can be used. Specific examples include styrene block copolymers, hydrogenated products thereof, phenol resins, modified phenol resins (for example, cashew oil modified phenol resin, tall oil modified phenol resin, etc.), terpene phenol resins, xylene-phenol resins, cyclohexane Pentadiene-phenol resin, coumarone indene resin, rosin resin, rosin ester resin, hydrogenated rosin ester resin, xylene resin, low molecular weight polystyrene resin, styrene copolymer resin, petroleum resin (for example, C5 hydrocarbon resin, C9) Hydrocarbon resin, C5C9 hydrocarbon copolymer resin, etc.), hydrogenated petroleum resin, terpene resin, DCPD resin petroleum resin and the like. These may be used alone
  • Styrene block copolymers and their hydrogenated products include styrene-butadiene-styrene block copolymers (SBS), styrene-isoprene-styrene block copolymers (SIS), and styrene-ethylenebutylene-styrene block copolymers.
  • SBS styrene-butadiene-styrene block copolymers
  • SIS styrene-isoprene-styrene block copolymers
  • SEBS styrene-ethylenebutylene-styrene block copolymer
  • SEPS styrene-ethylenepropylene-styrene block copolymer
  • SIBS styrene-isobutylene-styrene block copolymer
  • the tackifier resins may be used alone or in combination of two or more.
  • the content thereof is 5 to 1,000 parts by weight with respect to 100 parts by weight of the total amount of the components (A) and (B). It is preferably from ⁇ 100 parts by weight.
  • a solvent or a diluent can be added to the curable composition of the present invention.
  • the solvent or diluent is not particularly limited, and aliphatic hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, halogenated hydrocarbons, alcohols, esters, ketones, ethers, and the like can be used.
  • the boiling point of the solvent is preferably 150 ° C. or higher, more preferably 200 ° C. or higher, and more preferably 250 ° C. or higher because of the problem of air contamination when the curable composition is used indoors. Particularly preferred.
  • a solvent or a diluent may be used independently and may be used together 2 or more types.
  • the physical property modifier is not particularly limited, but examples thereof include alkylalkoxysilanes such as methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, and n-propyltrimethoxysilane; dimethyldiisopropenoxysilane, methyltriisopropenoxy Silanes, alkylisopropenoxysilanes such as ⁇ -glycidoxypropylmethyldiisopropenoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane, vinyldimethylmethoxy Silane, ⁇ -aminopropyltrimethoxysilane, N- ( ⁇ -aminoethyl) amino
  • the hardness when the curable composition of the present invention is cured can be increased, or conversely, the hardness can be decreased and elongation at break can be produced.
  • the physical property modifiers may be used alone or in combination of two or more.
  • a compound that generates a compound having a monovalent silanol group in the molecule by hydrolysis has an action of reducing the modulus of the cured product without deteriorating the stickiness of the surface of the cured product.
  • Particularly preferred are compounds that produce trimethylsilanol.
  • Examples of the compound that generates a compound having a monovalent silanol group in the molecule by hydrolysis include compounds described in JP-A-5-117521.
  • derivatives of alkyl alcohols such as hexanol, octanol, decanol, etc., which produce a silicon compound that produces R 3 SiOH such as trimethylsilanol by hydrolysis, trimethylol described in JP-A-11-241029
  • examples thereof include compounds that are derivatives of polyhydric alcohols having 3 or more hydroxy groups such as propane, glycerin, pentaerythritol, sorbitol and the like, and that generate silicon compounds that generate R 3 SiOH such as trimethylsilanol by hydrolysis.
  • the content thereof is 0.1 to 20 parts by weight with respect to 100 parts by weight of the total amount of (A) and (B).
  • the amount is preferably 5 to 10 parts by weight.
  • a thixotropic agent may be added to the curable composition of the present invention as necessary to prevent sagging and improve workability.
  • the anti-sagging agent is not particularly limited, and examples thereof include polyamide waxes; hydrogenated castor oil derivatives; metal soaps such as calcium stearate, aluminum stearate, and barium stearate. Further, when rubber powder having a particle diameter of 10 to 500 ⁇ m as described in JP-A-11-349916 or organic fiber as described in JP-A-2003-155389 is used, thixotropy is high. A curable composition having good workability can be obtained.
  • These thixotropic agents may be used alone or in combination of two or more.
  • the content thereof is 0.1 to 20 parts by weight with respect to 100 parts by weight of the total amount of the components (A) and (B).
  • a compound containing an epoxy group can be used.
  • the restorability of the cured product can be improved.
  • the compound containing an epoxy group include epoxidized unsaturated fats and oils, epoxidized unsaturated fatty acid esters, alicyclic epoxy compounds, epichlorohydrin derivatives and mixtures thereof.
  • the content thereof is 0.5 to 50 parts by weight with respect to 100 parts by weight of the total amount of the components (A) and (B). .
  • a phosphorus plasticizer such as ammonium polyphosphate and tricresyl phosphate
  • a flame retardant such as aluminum hydroxide, magnesium hydroxide, and thermally expandable graphite
  • a flame retardant may be used independently and may be used together 2 or more types.
  • the content thereof is 5 to 200 parts by weight with respect to 100 parts by weight of the total amount of the components (A) and (B), and 10 to 100 parts by weight. It is preferable that
  • additives may be added to the curable composition of the present invention as necessary for the purpose of adjusting various physical properties of the curable composition or the cured product.
  • additives include, for example, curability regulators, radical inhibitors, metal deactivators, ozone degradation inhibitors, phosphorus peroxide decomposers, lubricants, pigments, foaming agents, and anti-anticides. And fungicides.
  • curability regulators include, for example, curability regulators, radical inhibitors, metal deactivators, ozone degradation inhibitors, phosphorus peroxide decomposers, lubricants, pigments, foaming agents, and anti-anticides. And fungicides.
  • These various additives may be used alone or in combination of two or more.
  • Specific examples other than the specific examples of the additives listed in this specification include, for example, JP-B-4-69659, JP-B-7-108928, JP-A-63-254149, JP-A-62-2904, It is described in Japanese Laid
  • the curable composition of the present invention can also be prepared as a one-component type in which all the blended components are pre-blended and sealed and cured by moisture in the air after construction. It is also possible to prepare a two-component type in which components such as a plasticizer and water are blended and the compounding material and the polymer composition are mixed before use. From the viewpoint of workability, a one-component type is preferable.
  • the curable composition of the present invention is a one-component type
  • all the ingredients are pre-blended. Therefore, the water-containing ingredients are used after dehydration and drying, or by reducing the pressure during compounding and kneading. It is preferable to dehydrate.
  • the curable composition of the present invention is a two-component type, it is not necessary to add a curing catalyst to the main agent containing a polymer having a reactive silicon group, so even if some moisture is contained in the compounding agent. Although there is little concern about gelation, dehydration and drying are preferred when long-term storage stability is required.
  • heat drying method or vacuum dehydration method for solid materials such as powders, dehydration method using vacuum zeolite or activated zeolite, silica gel, quick lime, magnesium oxide for liquid materials
  • the method is preferred.
  • An alkoxysilane compound such as glycidoxypropyltrimethoxysilane may be added and reacted with water for dehydration.
  • an oxazolidine compound such as 3-ethyl-2-methyl-2- (3-methylbutyl) -1,3-oxazolidine may be blended and reacted with water for dehydration.
  • a small amount of an isocyanate compound may be blended to react with an isocyanate group and water for dehydration. Addition of an alkoxysilane compound, an oxazolidine compound, and an isocyanate compound improves storage stability.
  • the amount of silicon compound that can react with water such as dehydrating agent, especially vinyltrimethoxysilane is 0.1 to 20 parts by weight with respect to 100 parts by weight of the total amount of components (A) and (B), The amount is preferably 0.5 to 10 parts by weight.
  • the method for preparing the curable composition of the present invention is not particularly limited.
  • the above-described components are blended and kneaded using a mixer, roll, kneader or the like at room temperature or under heating, or a small amount of a suitable solvent is used. Ordinary methods such as dissolving and mixing the components may be employed.
  • the curable composition of the present invention is preferably in a liquid state at normal temperature (23 ° C.), and forms a three-dimensional network structure by the action of moisture when exposed to the atmosphere, to a solid having rubbery elasticity. And cured.
  • the curable composition of the present invention is a pressure-sensitive adhesive, a sealing material for buildings, ships, automobiles, roads, etc., an adhesive, a mold preparation, a vibration-proof material, a vibration-damping material, a sound-proof material, a foam material, a paint, and a spray material Can be used for etc. Since the cured product obtained by curing the curable composition of the present invention is excellent in flexibility and adhesiveness, among them, it can be used as a sealing material or an adhesive, particularly an adhesive that is not a hot melt adhesive. More preferred.
  • electrical and electronic parts materials such as solar cell backside sealing materials, electrical insulation materials such as insulation coating materials for electric wires and cables, elastic adhesives, contact type adhesives, spray type sealing materials, crack repair materials, and tiles
  • Adhesives powder paints, casting materials, medical rubber materials, medical adhesives, medical device sealing materials, food packaging materials, sealing materials for joints of exterior materials such as sizing boards, coating materials, primers, electromagnetic wave shielding
  • Conductive materials thermal conductive materials, hot melt materials, potting agents for electrical and electronic use, films, gaskets, various molding materials, and anti-rust / waterproof sealing materials for meshed glass and laminated glass end faces (cut parts)
  • It can be used for various applications such as liquid sealants used in automobile parts, electrical parts, various machine parts and the like.
  • the curable composition of the present invention includes an adhesive for interior panels, an adhesive for exterior panels, an adhesive for tiles, an adhesive for stonework, an adhesive for ceiling finishing, an adhesive for floor finishing, and an adhesive for wall finishing.
  • Synthesis Example 2 3 parts by weight of toluene is added to 100 parts by weight of a diol having an aromatic ring structure (trade name: BPX-55, manufactured by ADEKA, molecular weight 1104, OHV 2.53 mmol / g), and azeotropic dehydration is performed at 110 ° C. under reduced pressure for 1.5 hours. Went.
  • a diol having an aromatic ring structure trade name: BPX-55, manufactured by ADEKA, molecular weight 1104, OHV 2.53 mmol / g
  • Neostan U-360 manufactured by Nitto Kasei Co., Ltd.
  • a mercaptotin-based catalyst was added, and 3-isocyanatopropyltrimethoxysilane (manufactured by Momentive Performance Materials Co., Ltd.) Name: A-LINK35) 51.9 parts by weight were added and reacted.
  • the disappearance of the isocyanate group peak (2272 cm ⁇ 1 ) was confirmed by FT-IR, and the reaction was terminated to obtain an aromatic ring structure-containing organic polymer (B-1) having a trimethoxysilyl group.
  • Synthesis Example 4 In the same manner as in Synthesis Example 2 except that 100 parts by weight of BPX-21 (manufactured by ADEKA, molecular weight 640, OHV 5.06 mmol / g) was used instead of BPX-55 in Synthesis Example 2, the trimethoxysilyl group was An aromatic ring structure-containing organic polymer (B-3) was obtained.
  • BPX-21 manufactured by ADEKA, molecular weight 640, OHV 5.06 mmol / g
  • Synthesis Example 5 In the same manner as in Synthesis Example 2 except that 100 parts by weight of BPX-2000 (manufactured by ADEKA, molecular weight 2778, OHV 1.01 mmol / g) was used instead of BPX-55 in Synthesis Example 2, a trimethoxysilyl group was added. An aromatic ring structure-containing organic polymer (B-4) was obtained.
  • Synthesis Example 6 Trimethoxy in the same manner as in Synthesis Example 2 except that 100 parts by weight of AC006 (manufactured by Ito Oil Co., Ltd., aromatic-containing castor oil-based polyol, OHV 1.01 mmol / g) was used instead of BPX-55 in Synthesis Example 2.
  • An aromatic ring structure-containing organic polymer (B-5) having a silyl group was obtained.
  • Synthesis Example 7 Trimethoxy in the same manner as in Synthesis Example 2 except that 100 parts by weight of AC009 (produced by Ito Oil Co., Ltd., aromatic-containing castor oil-based polyol, OHV 3.91 mmol / g) was used instead of BPX-55 in Synthesis Example 2.
  • An aromatic ring structure-containing organic polymer (B-6) having a silyl group was obtained.
  • Example 1 90 parts by weight of the reactive silicon group-containing polyoxypropylene polymer (Polymer A-1) obtained in Synthesis Example 1 and the aromatic ring structure-containing organic polymer having the trimethoxysilyl group obtained in Synthesis Example 2 ( B-1) 10 parts by weight, surface-treated colloidal calcium carbonate (manufactured by Shiraishi Kogyo Co., Ltd., Shiruka CCR) as filler, vinyltrimethoxysilane (manufactured by Momentive Performance Materials, A-171) as dehydrating agent, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane (manufactured by Momentive Performance Materials, A-1120) as an adhesion-imparting agent, and dibutyltin diacetacetonate (Nitto Kasei Co., Ltd.) as a curing catalyst Manufactured by Neostan U220H) were mixed in a predetermined amount and kneaded colloidal
  • Example 2 The reactive silicon group-containing polyoxypropylene polymer (polymer A-1) in Example 1 was used in an amount of 60 parts by weight, and the aromatic ring structure-containing organic polymer (B-1) having a trimethoxysilyl group was used in an amount of 40 parts by weight. Except for this, a curable composition was obtained in the same manner as in Example 1.
  • Example 3 Instead of the aromatic ring structure-containing organic polymer (B-1) having a trimethoxysilyl group in Example 1, the aromatic ring structure-containing organic polymer having a trimethoxysilyl group obtained in Synthesis Example 3 (B-2) ) was used in the same manner as in Example 1 except that 10 parts by weight were used.
  • Example 4 instead of the aromatic ring structure-containing organic polymer (B-1) having a trimethoxysilyl group in Example 2, the aromatic ring structure-containing organic polymer having a trimethoxysilyl group obtained in Synthesis Example 3 (B-2) ) was used in the same manner as in Example 2 except that 40 parts by weight was used.
  • Example 5 Instead of the aromatic ring structure-containing organic polymer (B-1) having a trimethoxysilyl group in Example 1, the aromatic ring structure-containing organic polymer having a trimethoxysilyl group obtained in Synthesis Example 4 (B-3) ) was used in the same manner as in Example 1 except that 10 parts by weight were used.
  • Example 6 Instead of the aromatic ring structure-containing organic polymer (B-1) having a trimethoxysilyl group in Example 2, the aromatic ring structure-containing organic polymer having a trimethoxysilyl group obtained in Synthesis Example 4 (B-3) ) was used in the same manner as in Example 2 except that 40 parts by weight was used.
  • Example 7 Instead of the aromatic ring structure-containing organic polymer (B-1) having a trimethoxysilyl group in Example 1, the aromatic ring structure-containing organic polymer having a trimethoxysilyl group obtained in Synthesis Example 5 (B-4) ) was used in the same manner as in Example 1 except that 10 parts by weight were used.
  • Example 8 Instead of the aromatic ring structure-containing organic polymer (B-1) having a trimethoxysilyl group in Example 2, the aromatic ring structure-containing organic polymer having a trimethoxysilyl group obtained in Synthesis Example 5 (B-4) ) was used in the same manner as in Example 2 except that 40 parts by weight was used.
  • Example 9 Instead of the aromatic ring structure-containing organic polymer (B-1) having a trimethoxysilyl group in Example 1, the aromatic ring structure-containing organic polymer having a trimethoxysilyl group obtained in Synthesis Example 6 (B-5) ) was used in the same manner as in Example 1 except that 10 parts by weight were used.
  • Example 10 Instead of the aromatic ring structure-containing organic polymer (B-1) having a trimethoxysilyl group in Example 2, the aromatic ring structure-containing organic polymer having a trimethoxysilyl group obtained in Synthesis Example 6 (B-5) ) was used in the same manner as in Example 2 except that 40 parts by weight was used.
  • Example 11 Instead of the aromatic ring structure-containing organic polymer (B-1) having a trimethoxysilyl group in Example 1, the aromatic ring structure-containing organic polymer (B-6) having a trimethoxysilyl group obtained in Synthesis Example 7 was used. ) Was used in the same manner as in Example 1 except that 10 parts by weight were used.
  • Example 12 Instead of the aromatic ring structure-containing organic polymer (B-1) having a trimethoxysilyl group in Example 1, the aromatic ring structure-containing organic polymer (B-6) having a trimethoxysilyl group obtained in Synthesis Example 7 was used. ) Was used in the same manner as in Example 2 except that 40 parts by weight was used.
  • Table 1 shows the compounding ratios of the above Examples and Comparative Examples.
  • an H-type test piece was used as an adherend according to JIS5758, and was prepared without a primer.
  • a tensile test was conducted at a speed of 50 mm / min after aging for 7 days at room temperature and further for 7 days at 50 ° C. and immediately after being immersed in warm water at 50 ° C. for 7 days.
  • Table 1 the result in the case where the aromatic ring structure-containing organic polymer having a trimethoxysilyl group was not added is also shown.
  • CF and AF indicate cohesive failure and interfacial failure, respectively.
  • the cohesive failure is a case where, in a tensile test, a fractured portion is not a bonding surface with an adherend but a cured product portion when a test piece is broken.
  • Interfacial fracture is when the fracture location is an adhesive surface with the adherend.
  • MF indicates that the substrate has been destroyed (material failure) during the tensile test.
  • the fracture mode is cohesive fracture or interface fracture, the occupation ratio in the fracture area is shown after the initial of each fracture mode. For example, C100 is indicated when cohesive failure is 100%, and C50A50 is indicated when cohesive failure and interface failure occur 50% each.
  • Tb is a breaking strength, and it shows that adhesive strength is so high that this value is large.
  • Table 1 it can be seen that Examples 1 to 6 and 9 to 12 show better water-resistant adhesive strength than the comparative example.
  • BPX-2000 in which the reaction amount of propylene oxide with respect to 1 mol of bisphenol A as the component (B) was 30 mol or more was used, the above effect could not be obtained.
  • (Comparative Example 2) 70 parts by weight of a reactive silicon group-containing polyoxypropylene polymer (Polymer A-2) obtained in Synthesis Example 8 and an aromatic ring structure-containing organic polymer having a trimethoxysilyl group obtained in Synthesis Example 9 ( B-7) 30 parts by weight, 90 parts by weight of diisononyl phthalate as a plasticizer, 160 parts by weight of colloidal calcium carbonate (manufactured by Takehara Chemical Industries, NeolightSP) as a filler, 54 parts by weight of heavy calcium carbonate (manufactured by Maruo Calcium, LM2200) Parts, 5 parts by weight of titanium oxide (Ishihara Sangyo Co., Ltd., R820), 5 parts by weight of thixotropic agent (Arkema, craylarrac SL), 1 part by weight of UV absorber (manufactured by BASF, Tinuvin 770), light stabilizer 1 part by weight (manufactured by BASF, Tinuvin 326)
  • Example 13 Comparative Example 2 except that 30 parts by weight of the aromatic ring structure-containing organic polymer (B-1) obtained in Synthesis Example 2 was used instead of the aromatic ring structure-containing organic polymer (B-7) in Comparative Example 2. In the same manner as in Example 2, a one-component curable composition was prepared and evaluated.
  • Example 14 Comparative Example 2 except that 30 parts by weight of the aromatic ring structure-containing organic polymer (B-8) obtained in Synthesis Example 10 was used instead of the aromatic ring structure-containing organic polymer (B-7) in Comparative Example 2. In the same manner as in Example 2, a one-component curable composition was prepared and evaluated.
  • the curable composition of the present invention is a cured product that exhibits good adhesion even when cured after storage.
  • using a curable composition after being stored for 4 weeks at 50 ° C. in a sealed state in a cartridge using a mortar with an H-type test piece as an adherend according to JIS5758, a primer Made without.
  • the obtained test piece was subjected to a tensile test at a speed of 50 mm / min after aging for 7 days at room temperature and further for 7 days at 50 ° C., and further immersed in warm water at 50 ° C. for 7 days.
  • the viscosity in 10 rotations was measured before and after storage using a B type viscometer, and the viscosity change rate was measured. The results are shown in Table 2.
  • Example 13 has a higher adhesive strength after immersion in 50 ° C. warm water than Comparative Example 2
  • Example 14 has a higher adhesive strength maintenance ratio after immersion in 50 ° C. warm water than Comparative Example 2. I understood. The reason for this is that in Comparative Example 2, the rate of change in viscosity after storage is higher than in Examples 13 and 14, and the three-dimensional crosslinking proceeds, and the wettability with the adhesive interface is insufficient. It is done.

Abstract

The purpose of the present invention is to provide a curable composition which enables strong adhesion, without carrying out a primer treatment, to a metal, glass or coated surface, and especially to a porous base material such as mortar or stone, and in addition, the composition can minimize deterioration in adhesive properties when immersed in water and exhibits good storage stability. This curable composition is characterized by containing (A) a reactive silicon group-containing organic polymer (excluding component (B)) and (B) an organic polymer which has an aromatic ring structure and/or a hydrogenated aromatic ring structure, has a reactive silicon group at a terminal and has no hydroxyl group. Component (B) is preferably an alkylene oxide addition reaction product of a bisphenol compound.

Description

硬化性組成物およびその硬化物Curable composition and cured product thereof
本発明は、ケイ素原子に結合したヒドロキシ基または加水分解性基を有し、シロキサン結合を形成することにより架橋し得るケイ素含有基(以下、「反応性ケイ素基」ともいう)を有する有機重合体を含有する硬化性組成物に関する。 The present invention relates to an organic polymer having a silicon-containing group (hereinafter also referred to as “reactive silicon group”) having a hydroxy group or a hydrolyzable group bonded to a silicon atom and capable of crosslinking by forming a siloxane bond. It relates to the curable composition containing this.
分子中に少なくとも1個の反応性ケイ素基を有する有機重合体は、室温においても湿分による反応性ケイ素基の加水分解反応等を伴うシロキサン結合の形成によって架橋し、ゴム状の硬化物が得られるという性質を有することが知られている。反応性ケイ素基を有する有機重合体の中で、主鎖骨格がポリオキシアルキレン系重合体、ポリイソブチレン系重合体、(メタ)アクリル酸エステル系重合体からなる有機重合体は、既に工業的に生産され、シーリング材や接着剤の用途に広く使用されている(特許文献1)。 An organic polymer having at least one reactive silicon group in the molecule is crosslinked at room temperature by forming a siloxane bond accompanied by a hydrolysis reaction of the reactive silicon group by moisture, and a rubber-like cured product is obtained. It is known to have the property of being Among organic polymers having reactive silicon groups, organic polymers whose main chain skeleton is composed of a polyoxyalkylene polymer, a polyisobutylene polymer, and a (meth) acrylate polymer have already been industrially used. Produced and widely used for sealing materials and adhesives (Patent Document 1).
従来、硬化性組成物とりわけシーラント分野において、基材とシーラントとの十分な接着力を確保するために、プライマーを塗布する必要があった。このようなプライマーの塗布は、各種シーラントと各種基材に合った的確なプライマーの選択が必要であり、しかも煩雑な作業であるため、プライマー処理がなくても基材に強固に接着するシーラント性能が要求されてきた。これまで、シーラント自身に接着性を付与する技術につき種々検討され、例えば、アミノ基含有加水分解性シリコン化合物や、それとエポキシ化合物との反応物の添加が提案されている(例えば、特許文献1及び特許文献2等参照。)。しかしながら、これらの技術を用いても、被着体が多孔質基材である場合には、細孔を通って水が浸透しやすいため、特に水の浸漬を受けた場合には容易に界面から剥離を生じてしまうといった問題があった。 Conventionally, in the curable composition, particularly in the field of sealants, it has been necessary to apply a primer in order to ensure sufficient adhesion between the substrate and the sealant. The application of such a primer requires the selection of an appropriate primer suitable for various sealants and various base materials, and is a cumbersome operation, so the sealant performance to adhere firmly to the base material even without primer treatment Has been required. So far, various studies have been made on techniques for imparting adhesiveness to the sealant itself, and for example, addition of an amino group-containing hydrolyzable silicon compound or a reaction product thereof with an epoxy compound has been proposed (for example, Patent Document 1 and (See Patent Document 2 etc.). However, even if these techniques are used, when the adherend is a porous substrate, water easily permeates through the pores. There was a problem that peeling occurred.
上記のような耐水接着性を改善する方法の一つとして、有効成分としてシリコン変性エポキシ樹脂を添加する方法が提案されている(特許文献3)。しかしながら、該技術を用いても、水酸基又は加水分解性基の結合したケイ素原子含有基を有するオキシアルキレン重合体をベースポリマーとする硬化性組成物、例えばビスフェノールA-エピクロルヒドリン型エポキシ樹脂の変成物等を用いた場合には該オキシアルキレン重合体への相溶性が良くなく、十分な耐水接着性を得られないといった問題があった。 As one of methods for improving the water-resistant adhesion as described above, a method of adding a silicon-modified epoxy resin as an active ingredient has been proposed (Patent Document 3). However, even when this technique is used, a curable composition based on an oxyalkylene polymer having a silicon atom-containing group to which a hydroxyl group or a hydrolyzable group is bonded, such as a modified bisphenol A-epichlorohydrin type epoxy resin, etc. However, there was a problem that the compatibility with the oxyalkylene polymer was not good and sufficient water-resistant adhesion could not be obtained.
さらに、上記のような問題を改善する方法の一つとして、ポリアルキレングリコール骨格を有するグリシジルエーテル類と、エポキシ基と反応し得る官能基を有するシリコン化合物から得られたシリコン変性エポキシ樹脂を添加する方法が提案されている(特許文献4)。しかしながら、該技術の製法では、シリコン変性エポキシ樹脂は分子内に少なくても2つ以上の水酸基を有するため、硬化性組成物の貯蔵時にポリマーとのエステル交換が起こり硬化性を落とすため、硬化遅延が生じたり、逆に水酸基による偽架橋反応によって3次元架橋が進み、貯蔵後に増粘し接着性が低下するという課題があった。 Furthermore, as one of the methods for improving the above problems, a silicon-modified epoxy resin obtained from a glycidyl ether having a polyalkylene glycol skeleton and a silicon compound having a functional group capable of reacting with an epoxy group is added. A method has been proposed (Patent Document 4). However, in the production method of this technology, since the silicone-modified epoxy resin has at least two hydroxyl groups in the molecule, transesterification with the polymer occurs during storage of the curable composition, and the curability is lowered. In contrast, there is a problem that three-dimensional crosslinking proceeds due to a pseudo-crosslinking reaction with a hydroxyl group, and the viscosity increases after storage and adhesiveness decreases.
特開昭59-24771号公報JP 59-24771 A 特公昭62-35421号公報Japanese Patent Publication No.62-35421 特公昭62-28177号公報Japanese Patent Publication No.62-28177 特開2004-107652号公報JP 2004-107652 A
本発明の課題は、金属・ガラス・塗装面はもとより、特に、モルタル・石材のような多孔質基材に対して、プライマー処理無しでも強固に接着するだけではなく、浸水時においても接着性の劣化を最小限に抑えることが可能で、なおかつ貯蔵安定性も良好な硬化性組成物を提供することである。 The object of the present invention is not only to adhere firmly to a porous substrate such as mortar and stone, but also to a metal, glass and painted surface, not only with primer treatment, but also with adhesiveness even when immersed in water. An object of the present invention is to provide a curable composition capable of minimizing deterioration and having good storage stability.
本発明者らは、前記の問題を解決するために鋭意検討した結果、反応性ケイ素基含有有機重合体と、特定の構造を有する反応性ケイ素基含有有機重合体とをブレンドすることにより、貯蔵前後で硬化性などの諸物性を保ちつつ、硬化性組成物の強度、とりわけモルタルに対する浸水後の接着性が大幅に向上することを見出した。 As a result of intensive studies to solve the above problems, the present inventors have obtained a storage by blending a reactive silicon group-containing organic polymer and a reactive silicon group-containing organic polymer having a specific structure. It has been found that the strength of the curable composition, particularly the adhesiveness after immersion in mortar, is significantly improved while maintaining various physical properties such as curability before and after.
すなわち本発明は、
(I)(A)反応性ケイ素基含有有機重合体(下記(B)成分を除く)、及び、(B)芳香環構造および/または水添された芳香環構造を有し、末端に反応性ケイ素基を有し、水酸基を有さない有機重合体を含有することを特徴とする硬化性組成物、
(II)(B)成分がビスフェノール構造を有する 、(I)に記載の硬化性組成物、
(III)(A)成分100重量部に対し、(B)成分を3~100重量部含有する、(I)または(II)に記載の硬化性組成物、
(IV)(B)成分がビスフェノール類のアルキレンオキシド付加反応物を含有する、(I)~(III)のいずれか1項に記載の硬化性組成物、
(V)ビスフェノール類のアルキレンオキシド付加反応物が、ビスフェノールAとプロピレンオキシドとの付加反応物である、(IV)に記載の硬化性組成物、
(VI)ビスフェノールA1モルに対するプロピレンオキシドの反応量が2~30モルである、(V)に記載の硬化性組成物、
(VII)ビスフェノールA1モルに対するプロピレンオキシドの反応量が2~15モルである、(V)に記載の硬化性組成物、
(VIII)(A)成分の主鎖骨格がポリオキシアルキレン系重合体である、(I)~(VII)のいずれか1項に記載の硬化性組成物、
(IX)(B)成分が、加水分解性の官能基をケイ素原子上に有するケイ素化合物による変性物である、(I)~(VIII)のいずれか1項に記載の硬化性組成物、
(X)(B)成分が末端に下記一般式(6)または下記一般式(7)で表される構造を有する、(I)~(IX)のいずれか1項に記載の硬化性組成物、
-O-R-SiR 3-b  (6)
(一般式(6)中、Rは炭素数1~20の置換または非置換の2価の炭化水素基を表す。Rは炭素数1~20の置換または非置換の炭化水素基を表す。Xはそれぞれ独立に水酸基または加水分解性基を表す。bは0または1を表す。)
-W-R10-SiR11 3-c  (7)
(一般式(7)中、R10は炭素数1~20の置換または非置換の2価の炭化水素基を表す。R11は、炭素数1~20の置換または非置換の炭化水素基を表す。Xはそれぞれ独立に水酸基または加水分解性基を表す。cは0または1を表す。Wは-O-CO-N(R12)-、-N(R12)-CO-O-、-N(R12)-CO-N(R12)-、-N(R12)-CS-N(R12)-または-S-を表す。R12は、水素、または、ハロゲン置換されていてもよい炭素数1~18の炭化水素基を表す。)
(XI)(A)成分が、下記一般式(1)で表される反応性ケイ素基を有する、(I)~(X)のいずれか1項に記載の硬化性組成物、
-SiR 3-a  (1)
(一般式(1)中、Rは炭素数1~20の置換または非置換の炭化水素基を表す。Xはそれぞれ独立に水酸基または加水分解性基を表す。aは0または1を表す。)
(XII)(I)~(XI)のいずれか1項に記載の硬化性組成物を成分として含むシーリング材、
(XIII)(I)~(XI)のいずれか1項に記載の硬化性組成物を成分として含む接着剤、
(XIV)(I)~(XI)のいずれか1項に記載の硬化性組成物を硬化させて得られるコーティング材、
に関する。
That is, the present invention
(I) (A) Reactive silicon group-containing organic polymer (excluding component (B) below), and (B) Aromatic ring structure and / or hydrogenated aromatic ring structure, reactive at the terminal A curable composition comprising an organic polymer having a silicon group and no hydroxyl group;
(II) The curable composition according to (I), wherein the component (B) has a bisphenol structure,
(III) The curable composition according to (I) or (II), containing 3 to 100 parts by weight of component (B) with respect to 100 parts by weight of component (A),
(IV) The curable composition according to any one of (I) to (III), wherein the component (B) contains an alkylene oxide addition reaction product of bisphenols,
(V) The curable composition according to (IV), wherein the alkylene oxide addition reaction product of bisphenol is an addition reaction product of bisphenol A and propylene oxide,
(VI) The curable composition according to (V), wherein the reaction amount of propylene oxide with respect to 1 mol of bisphenol A is 2 to 30 mol,
(VII) The curable composition according to (V), wherein the reaction amount of propylene oxide with respect to 1 mol of bisphenol A is 2 to 15 mol,
(VIII) The curable composition according to any one of (I) to (VII), wherein the main chain skeleton of the component (A) is a polyoxyalkylene polymer,
(IX) The curable composition according to any one of (I) to (VIII), wherein the component (B) is a modified product of a silicon compound having a hydrolyzable functional group on a silicon atom,
(X) The curable composition according to any one of (I) to (IX), wherein the component (B) has a structure represented by the following general formula (6) or the following general formula (7) at the end. ,
—O—R 8 —SiR 9 b X 2 3-b (6)
(In the general formula (6), R 8 represents a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms. R 9 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms. X 2 each independently represents a hydroxyl group or a hydrolyzable group, and b represents 0 or 1.)
—W—R 10 —SiR 11 c X 3 3-c (7)
(In the general formula (7), R 10 represents a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms. R 11 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms. X 3 each independently represents a hydroxyl group or a hydrolyzable group, c represents 0 or 1, W represents —O—CO—N (R 12 ) —, —N (R 12 ) —CO—O—. , -N (R 12 ) -CO-N (R 12 )-, -N (R 12 ) -CS-N (R 12 )-or -S-, wherein R 12 is hydrogen or halogen-substituted Represents an optionally substituted hydrocarbon group having 1 to 18 carbon atoms.)
(XI) The curable composition according to any one of (I) to (X), wherein the component (A) has a reactive silicon group represented by the following general formula (1):
-SiR 1 a X 1 3-a (1)
(In the general formula (1), R 1 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms. X 1 independently represents a hydroxyl group or a hydrolyzable group. A represents 0 or 1. .)
(XII) a sealing material comprising as a component the curable composition according to any one of (I) to (XI),
(XIII) an adhesive comprising as a component the curable composition according to any one of (I) to (XI),
(XIV) A coating material obtained by curing the curable composition according to any one of (I) to (XI),
About.
本発明の硬化性組成物は、貯蔵前後で硬化性などの諸物性を保ちつつ、金属・ガラス・塗装面はもとより、特に、モルタル・石材のような多孔質基材に対して、プライマー処理無しでも強固に接着するだけではなく、浸水時においても接着性の劣化を最小限に抑えることが可能で、なおかつ貯蔵安定性も良好である。 The curable composition of the present invention is not primed for porous substrates such as mortars and stones, especially on metal, glass and painted surfaces, while maintaining various physical properties such as curability before and after storage. However, not only is it firmly bonded, but it is also possible to minimize the deterioration of the adhesiveness even during water immersion, and the storage stability is also good.
以下、本発明について詳しく説明する。
(A)反応性ケイ素基含有有機重合体(下記(B)成分を除く)(以下、(A)成分ともいう)としては特に制限はなく、例えば主鎖骨格として一般に知られているオキシアルキレン系重合体、(メタ)アクリル酸アルキルエステル系重合体、飽和炭化水素系重合体、ポリエステル系重合体等を有する有機重合体を使用することができる。その中でも低温特性、可とう性、その他成分への相溶性の良さから、オキシアルキレン系重合体が特に好ましく、以下の(A)成分の説明では、代表例としてオキシアルキレン系重合体を主鎖骨格とするものについて記述する。
The present invention will be described in detail below.
(A) Reactive silicon group-containing organic polymer (excluding the following component (B)) (hereinafter also referred to as the component (A)) is not particularly limited, and for example, an oxyalkylene type generally known as a main chain skeleton An organic polymer having a polymer, a (meth) acrylic acid alkyl ester polymer, a saturated hydrocarbon polymer, a polyester polymer, or the like can be used. Of these, oxyalkylene polymers are particularly preferred because of their low-temperature properties, flexibility, and compatibility with other components. In the following description of component (A), oxyalkylene polymers are used as main examples of main chain skeletons. Describe what to say.
反応性ケイ素基含有ポリオキシアルキレン系重合体は、下記一般式(1)で表される反応性ケイ素基を有する。
-SiR 3-a  (1)
(一般式(1)中、Rは炭素数1~20の置換または非置換の炭化水素基を表す。Xはそれぞれ独立に水酸基または加水分解性基を表す。aは0または1を表す。)
The reactive silicon group-containing polyoxyalkylene polymer has a reactive silicon group represented by the following general formula (1).
-SiR 1 a X 1 3-a (1)
(In the general formula (1), R 1 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms. X 1 independently represents a hydroxyl group or a hydrolyzable group. A represents 0 or 1. .)
一般式(1)中のRとしては、具体的には、例えばメチル基、エチル基等のアルキル基;シクロヘキシル基等のシクロアルキル基;フェニル基等のアリール基;ベンジル基等のアラルキル基や、R’がメチル基、フェニル基等である-OSi(R’)で示されるトリオルガノシロキシ基;フルオロメチル基、ジフルオロメチル基などのフルオロアルキル基;クロロメチル基、1-クロロエチル基などのクロロアルキル基;メトキシメチル基、エトキシメチル基、フェノキシメチル基、1-メトキシエチル基などのアルコキシアルキル基;アミノメチル基、N-メチルアミノメチル基、N,N-ジメチルアミノメチル基などのアミノアルキル基;アセトキシメチル基、メチルカルバメート基、2-シアノエチル基などがあげられる。これらの中では、原料の入手性からメチル基が好ましい。 Specific examples of R 1 in the general formula (1) include an alkyl group such as a methyl group or an ethyl group; a cycloalkyl group such as a cyclohexyl group; an aryl group such as a phenyl group; an aralkyl group such as a benzyl group; , R ′ is a methyl group, a phenyl group or the like; a triorganosiloxy group represented by —OSi (R ′) 3 ; a fluoroalkyl group such as a fluoromethyl group or a difluoromethyl group; a chloromethyl group or a 1-chloroethyl group Chloroalkyl group; alkoxyalkyl group such as methoxymethyl group, ethoxymethyl group, phenoxymethyl group and 1-methoxyethyl group; aminoalkyl group such as aminomethyl group, N-methylaminomethyl group and N, N-dimethylaminomethyl group Group: acetoxymethyl group, methyl carbamate group, 2-cyanoethyl group and the like. Among these, a methyl group is preferable in view of availability of raw materials.
一般式(1)中のXで表される加水分解性基としては、公知の加水分解性基があげられ、具体的には、例えば、水素、ハロゲン、アルコキシ基、アルケニルオキシ基、アリールオキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基などがあげられる。これらの中では、ハロゲン、アルコキシ基、アルケニルオキシ基、アシルオキシ基が活性が高いため好ましく、加水分解性が穏やかで取扱いやすいことからメトキシ基、エトキシ基などのアルコキシ基がより好ましく、メトキシ基、エトキシ基が特に好ましい。またエトキシ基やイソプロペノキシ基は、反応により脱離する化合物がそれぞれエタノール、アセトンであり、安全性の点で好ましい。 Examples of the hydrolyzable group represented by X 1 in the general formula (1) include known hydrolyzable groups. Specific examples include hydrogen, halogen, alkoxy group, alkenyloxy group, aryloxy group. Group, acyloxy group, ketoximate group, amino group, amide group, acid amide group, aminooxy group, mercapto group and the like. Among these, halogen, alkoxy group, alkenyloxy group, and acyloxy group are preferable because of their high activity, and alkoxy groups such as methoxy group and ethoxy group are more preferable because they are mildly hydrolyzable and easy to handle. The group is particularly preferred. In addition, the ethoxy group and the isopropenoxy group are preferably removed from the reaction by ethanol and acetone, respectively, from the viewpoint of safety.
一般式(1)で表わされる反応性ケイ素基としては、具体的には、トリメトキシシリル基、トリエトキシシリル基、トリス(2-プロペニルオキシ)シリル基、トリアセトキシシリル基、ジメトキシメチルシリル基、ジエトキシメチルシリル基、ジイソプロポキシメチルシリル基、(クロロメチル)ジメトキシシリル基、(メトキシメチル)ジメトキシシリル基、(メトキシメチル)ジエトキシシリル基、(エトキシメチル)ジメトキシシリル基が好ましい。これらの中では、ジメトキシメチルシリル基、トリメトキシシリル基が強度の高い硬化物が得られるため好ましい。 Specific examples of the reactive silicon group represented by the general formula (1) include a trimethoxysilyl group, a triethoxysilyl group, a tris (2-propenyloxy) silyl group, a triacetoxysilyl group, a dimethoxymethylsilyl group, A diethoxymethylsilyl group, diisopropoxymethylsilyl group, (chloromethyl) dimethoxysilyl group, (methoxymethyl) dimethoxysilyl group, (methoxymethyl) diethoxysilyl group, and (ethoxymethyl) dimethoxysilyl group are preferred. Among these, dimethoxymethylsilyl group and trimethoxysilyl group are preferable because a cured product having high strength can be obtained.
ポリオキシアルキレン系重合体は、比較的ガラス転移温度が低く、得られる硬化物が耐寒性に優れる。また、透湿性が高く1液型組成物にした場合に深部硬化性に優れ、更に接着性にも優れるといった特徴を有する。 The polyoxyalkylene polymer has a relatively low glass transition temperature, and the resulting cured product is excellent in cold resistance. In addition, when it is made into a one-component composition with high moisture permeability, it has a feature that it is excellent in deep part curability and further excellent in adhesiveness.
(A)成分の主鎖骨格としては具体的には、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシテトラメチレン、ポリオキシエチレン-ポリオキシプロピレン共重合体、ポリオキシプロピレン-ポリオキシブチレン共重合体等のポリオキシアルキレン系重合体などがあげられる。 Specific examples of the main chain skeleton of component (A) include polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, and polyoxypropylene-polyoxybutylene. Examples thereof include polyoxyalkylene polymers such as copolymers.
ポリオキシアルキレン系重合体の主鎖骨格は、1種類だけの繰り返し単位からなってもよいし、2種類以上の繰り返し単位からなってもよい。 The main chain skeleton of the polyoxyalkylene polymer may be composed of only one type of repeating unit, or may be composed of two or more types of repeating units.
特にシーラント、接着剤などに使用される場合には、オキシプロピレンの繰り返し単位を重合体主鎖骨格の50重量%以上、好ましくは80重量%以上有するポリオキシプロピレン系重合体から成るものが非晶質であることや比較的低粘度である点から好ましい。 In particular, when used in sealants, adhesives, etc., an amorphous material is a polyoxypropylene polymer having a repeating unit of oxypropylene of 50% by weight or more, preferably 80% by weight or more of the polymer main chain skeleton. From the viewpoint of quality and relatively low viscosity.
(A)成分の主鎖骨格は、発明の効果を損なわない範囲で、オキシアルキレン構造以外の重合体構造を有していてもよい。 The main chain skeleton of the component (A) may have a polymer structure other than the oxyalkylene structure as long as the effects of the invention are not impaired.
(A)成分の主鎖構造は、直鎖状であってもよいし、分岐鎖を有していてもよい。より高強度の硬化物を得たい場合には、分岐鎖を有することが好ましい。より高伸びの硬化物を得たい場合には、直鎖状であることが好ましい。(A)成分が分岐鎖を有する場合には、分岐鎖数は1~4個が好ましく、1個がより好ましい。 The main chain structure of component (A) may be linear or may have a branched chain. When it is desired to obtain a cured product with higher strength, it is preferable to have a branched chain. When it is desired to obtain a cured product having a higher elongation, it is preferably linear. When the component (A) has a branched chain, the number of branched chains is preferably 1 to 4, and more preferably 1.
ポリオキシアルキレン系重合体としては、開始剤の存在下、重合触媒を用いて、環状エーテル化合物の開環重合反応により得られるものが好ましい。 As the polyoxyalkylene polymer, those obtained by ring-opening polymerization reaction of a cyclic ether compound using a polymerization catalyst in the presence of an initiator are preferable.
環状エーテル化合物としては、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、テトラメチレンオキシド、テトラヒドロフランなどが挙げられる。これら環状エーテル化合物は1種のみでもよく、2種以上を組合せて用いてもよい。これら環状エーテル化合物のなかでは、非晶質で比較的低粘度なポリオキシアルキレン系重合体を得られることから、特にプロピレンオキシドを用いることが好ましい。 Examples of the cyclic ether compound include ethylene oxide, propylene oxide, butylene oxide, tetramethylene oxide, and tetrahydrofuran. These cyclic ether compounds may be used alone or in combination of two or more. Among these cyclic ether compounds, it is particularly preferable to use propylene oxide because an amorphous and relatively low viscosity polyoxyalkylene polymer can be obtained.
開始剤としては、具体的には、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサメチレングリコール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、グリセリン、トリメチロールメタン、トリメチロールプロパン、ペンタエリスリトール、ソルビトールなどのアルコール類;数平均分子量が300~4,000であって、ポリオキシプロピレンジオール、ポリオキシプロピレントリオール、ポリオキシエチレンジオール、ポリオキシエチレントリオールなどのポリオキシアルキレン系重合体などがあげられる。 Specific examples of the initiator include ethylene glycol, propylene glycol, butanediol, hexamethylene glycol, neopentyl glycol, diethylene glycol, dipropylene glycol, triethylene glycol, glycerin, trimethylolmethane, trimethylolpropane, pentaerythritol, Examples include alcohols such as sorbitol; polyoxyalkylene polymers such as polyoxypropylene diol, polyoxypropylene triol, polyoxyethylene diol, and polyoxyethylene triol having a number average molecular weight of 300 to 4,000. .
ポリオキシアルキレン系重合体の合成法としては、例えば、KOHのようなアルカリ触媒による重合法、特開昭61-215623号に示される有機アルミニウム化合物とポルフィリンとを反応させて得られる錯体のような遷移金属化合物-ポルフィリン錯体触媒による重合法、特公昭46-27250号、特公昭59-15336号、米国特許3278457号、米国特許3278458号、米国特許3278459号、米国特許3427256号、米国特許3427334号、米国特許3427335号等に示される複合金属シアン化物錯体触媒による重合法、特開平10-273512号に例示されるポリホスファゼン塩からなる触媒を用いる重合法、特開平11-060722号に例示されるホスファゼン化合物からなる触媒を用いる重合法等、があげられ、特に限定されるものではないが、製造コストや、分子量分布の狭い重合体が得られることなどの理由から、複合金属シアン化物錯体触媒による重合法がより好ましい。 Examples of the method for synthesizing a polyoxyalkylene polymer include a polymerization method using an alkali catalyst such as KOH, and a complex obtained by reacting an organoaluminum compound with porphyrin as disclosed in JP-A-61-215623. Polymerization method using transition metal compound-porphyrin complex catalyst, Japanese Patent Publication No. 46-27250, Japanese Patent Publication No. 59-15336, US Pat. No. 3,278,457, US Pat. No. 3,278,458, US Pat. No. 3,278,459, US Pat. Polymerization method using double metal cyanide complex catalyst as shown in US Pat. No. 3,427,335, polymerization method using polyphosphazene salt exemplified in JP-A-10-273512, phosphazene exemplified in JP-A-11-060722 Using a compound catalyst Polymerization method, can be mentioned, but not particularly limited, manufacturing cost and, because of such the polymer having a narrow molecular weight distribution is obtained, by the polymerization method is more preferred composite metal cyanide complex catalyst.
(A)成分の分子量分布(Mw/Mn)は特に限定されないが、狭いことが好ましく、2.0未満が好ましく、1.6以下がより好ましく、1.5以下がさらに好ましく、1.4以下が特に好ましい。 The molecular weight distribution (Mw / Mn) of the component (A) is not particularly limited, but is preferably narrow, preferably less than 2.0, more preferably 1.6 or less, further preferably 1.5 or less, and 1.4 or less. Is particularly preferred.
(A)成分の数平均分子量は、GPCによるポリスチレン換算で、下限は8,000以上が好ましく、9,000以上がより好ましく、10,000以上が特に好ましい。上限は、50,000以下が好ましく、35,000以下がより好ましく、30,000以下が特に好ましい。(A)成分の数平均分子量が小さいと粘度が低いため硬化性組成物を使用する際の作業性がよくなる。一方で、得られる硬化物が硬くなり、伸び特性が低下する傾向がある。分子量が大きすぎると、反応性ケイ素基濃度が低くなりすぎ、硬化速度が遅くなる可能性がある。また、粘度が高くなりすぎ、取扱いが困難となる傾向がある。 The number average molecular weight of the component (A) is in terms of polystyrene by GPC, and the lower limit is preferably 8,000 or more, more preferably 9,000 or more, and particularly preferably 10,000 or more. The upper limit is preferably 50,000 or less, more preferably 35,000 or less, and particularly preferably 30,000 or less. When the number average molecular weight of the component (A) is small, the viscosity is low and workability when using the curable composition is improved. On the other hand, the hardened | cured material obtained becomes hard and there exists a tendency for an elongation characteristic to fall. If the molecular weight is too large, the reactive silicon group concentration may be too low, and the curing rate may be slow. Also, the viscosity tends to be too high and handling tends to be difficult.
(A)成分の反応性ケイ素基の導入方法は特に限定されず、公知の方法を利用することができる。以下に導入方法を例示する。
(i)ヒドロシリル化:先ず、原料となる重合体(前駆重合体と記すこともある)に不飽和結合を導入し、この不飽和結合に対してヒドロシラン化合物をヒドロシリル化反応により付加させる方法である。不飽和結合の導入方法は任意の方法を利用できるが、例えば、水酸基などの官能基を有する前駆重合体に、この官能基に対して反応性を示す基および不飽和基を有する化合物を反応させ、不飽和基含有重合体を得る方法や、不飽和結合を有する重合性モノマーを共重合させる方法がある。
(ii)反応性基含有重合体(前駆重合体)とシランカップリング剤との反応:水酸基、アミノ基、不飽和結合などの反応性基を有する前駆重合体と、その反応性基と反応して結合を形成し得る基および反応性ケイ素基の両方を有する化合物(シランカップリング剤とも呼ばれる)とを反応させる方法である。前駆重合体の反応性基とシランカップリング剤の反応性基の組合せとしては、水酸基とイソシアネート基、水酸基とエポキシ基、アミノ基とイソシアネート基、アミノ基とチオイソシアネート基、アミノ基とエポキシ基、アミノ基とアクリル構造とのマイケル付加、カルボン酸基とエポキシ基、不飽和結合とメルカプト基などが挙げられるがこれらに限らない。
The method for introducing the reactive silicon group of the component (A) is not particularly limited, and a known method can be used. The introduction method is illustrated below.
(I) Hydrosilylation: First, an unsaturated bond is introduced into a raw material polymer (sometimes referred to as a precursor polymer), and a hydrosilane compound is added to the unsaturated bond by a hydrosilylation reaction. . Any method can be used for introducing the unsaturated bond. For example, a precursor polymer having a functional group such as a hydroxyl group is allowed to react with a compound having reactivity with this functional group and a compound having an unsaturated group. There are a method for obtaining an unsaturated group-containing polymer and a method for copolymerizing a polymerizable monomer having an unsaturated bond.
(Ii) Reaction of a reactive group-containing polymer (precursor polymer) with a silane coupling agent: reacting with the precursor polymer having a reactive group such as a hydroxyl group, an amino group, or an unsaturated bond, and the reactive group. And a compound having both a group capable of forming a bond and a reactive silicon group (also called a silane coupling agent). As a combination of the reactive group of the precursor polymer and the reactive group of the silane coupling agent, a hydroxyl group and an isocyanate group, a hydroxyl group and an epoxy group, an amino group and an isocyanate group, an amino group and a thioisocyanate group, an amino group and an epoxy group, Examples include, but are not limited to, Michael addition of amino group and acrylic structure, carboxylic acid group and epoxy group, unsaturated bond and mercapto group.
(i)の方法は、反応が簡便で、反応性ケイ素基の導入量の調整や、得られる反応性ケイ素基含有重合体の物性が安定であるため好ましい。(ii)の方法は反応の選択肢が多く、反応性ケイ素基導入率を高めることが容易で好ましい。 The method (i) is preferable because the reaction is simple, the adjustment of the amount of reactive silicon groups introduced, and the physical properties of the resulting reactive silicon group-containing polymer are stable. The method (ii) has many reaction options, and it is easy and preferable to increase the rate of introduction of reactive silicon groups.
(i)の方法で使用されるヒドロシラン化合物の一部を例示する。トリクロロシラン、ジクロロメチルシラン、ジクロロフェニルシラン、(メトキシメチル)ジクロロシランなどのハロゲン化シラン類;ジメトキシメチルシラン、ジエトキシメチルシラン、トリメトキシシラン、トリエトキシシラン、(クロロメチル)ジメトキシシラン、(メトキシメチル)ジメトキシシランなどのアルコキシシラン類;トリイソプロペニロキシシラン、(クロロメチル)ジイソプロペニロキシシラン、(メトキシメチル)ジイソプロペニロキシシランなどのイソプロペニロキシシラン類(脱アセトン型)などがあげられる。 A part of hydrosilane compound used by the method of (i) is illustrated. Halogenated silanes such as trichlorosilane, dichloromethylsilane, dichlorophenylsilane, (methoxymethyl) dichlorosilane; dimethoxymethylsilane, diethoxymethylsilane, trimethoxysilane, triethoxysilane, (chloromethyl) dimethoxysilane, (methoxymethyl) ) Alkoxysilanes such as dimethoxysilane; isopropenyloxysilanes (deacetone type) such as triisopropenyloxysilane, (chloromethyl) diisopropenyloxysilane, (methoxymethyl) diisopropenyloxysilane, etc. .
(ii)の方法で使用できるシランカップリング剤としては、不飽和結合と反応する、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルジメトキシメチルシラン、3-メルカプトプロピルトリエトキシシラン、メルカプトメチルトリエトキシシラン、メルカプトメチルジメトキシメチルシランなどのメルカプトシラン類;水酸基と反応する、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルジメトキシメチルシラン、3-イソシアネートプロピルトリエトキシシラン、イソシアネートメチルトリメトキシシラン、イソシアネートメチルトリエトキシシラン、イソシアネートメチルジメトキシメチルシランなどのイソシアネートシラン類;水酸基、アミノ基、カルボン酸基と反応する、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルジメトキシメチルシラン、3-グリシドキシプロピルトリエトキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、グリシドキシメチルジメトキシメチルシランなどのエポキシシラン類;イソシアネート基、チオイソシアネート基と反応する、3-アミノプロピルトリメトキシシラン、3-アミノプロピルジメトキシメチルシラン、3-アミノプロピルトリエトキシシラン、3-(2-アミノエチル)プロピルトリメトキシシラン、3-(2-アミノエチル)プロピルジメトキシメチルシラン、3-(2-アミノエチル)プロピルトリエトキシシラン、3-(N-エチルアミノ)-2-メチルプロピルトリメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-シクロヘキシルアミノメチルトリエトキシシラン、N-シクロヘキシルアミノメチルジエトキシメチルシラン、N-フェニルアミノメチルトリメトキシシラン、(2-アミノエチル)アミノメチルトリメトキシシラン、N,N'-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、ビス(3-(トリメトキシシリル)プロピル)アミンなどのアミノシラン類;3-ヒドロキシプロピルトリメトキシシラン、ヒドロキシメチルトリエトキシシランなどのヒドロキシアルキルシラン類などがあげられる。上記のシランカップリング剤は一例であり、類似の反応を利用または応用してシリル基を導入することができる。 Examples of the silane coupling agent that can be used in the method (ii) include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyldimethoxymethylsilane, 3-mercaptopropyltriethoxysilane, mercaptomethyltriethoxy, which react with an unsaturated bond. Mercaptosilanes such as silane and mercaptomethyldimethoxymethylsilane; 3-isocyanatepropyltrimethoxysilane, 3-isocyanatopropyldimethoxymethylsilane, 3-isocyanatopropyltriethoxysilane, isocyanatemethyltrimethoxysilane, isocyanatemethyl which react with hydroxyl groups Isocyanate silanes such as triethoxysilane and isocyanate methyldimethoxymethylsilane; reacts with hydroxyl, amino and carboxylic acid groups, 3- Lysidoxypropyltrimethoxysilane, 3-glycidoxypropyldimethoxymethylsilane, 3-glycidoxypropyltriethoxysilane, glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, glycidoxymethyldimethoxymethylsilane Epoxysilanes such as: 3-aminopropyltrimethoxysilane, 3-aminopropyldimethoxymethylsilane, 3-aminopropyltriethoxysilane, 3- (2-aminoethyl) propyltrimethyl, which react with isocyanate groups and thioisocyanate groups Methoxysilane, 3- (2-aminoethyl) propyldimethoxymethylsilane, 3- (2-aminoethyl) propyltriethoxysilane, 3- (N-ethylamino) -2-methylpropyltrimethoxysilane, 3 Ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-benzyl-3-aminopropyltrimethoxysilane, N-cyclohexylaminomethyltriethoxysilane, N-cyclohexyl Aminomethyldiethoxymethylsilane, N-phenylaminomethyltrimethoxysilane, (2-aminoethyl) aminomethyltrimethoxysilane, N, N′-bis [3- (trimethoxysilyl) propyl] ethylenediamine, bis (3- Aminosilanes such as (trimethoxysilyl) propyl) amine; hydroxyalkylsilanes such as 3-hydroxypropyltrimethoxysilane and hydroxymethyltriethoxysilane. The above silane coupling agent is an example, and a silyl group can be introduced by utilizing or applying a similar reaction.
(A)成分の主鎖骨格中には本発明の効果を大きく損なわない範囲でウレタン結合成分等の他の成分を含んでいてもよい。ウレタン結合成分としては特に限定されないが、イソシアネート基と活性水素基との反応により生成する基(以下、アミドセグメントともいう)を挙げることができる。 The main chain skeleton of the component (A) may contain other components such as a urethane bond component as long as the effects of the present invention are not significantly impaired. Although it does not specifically limit as a urethane bond component, The group (henceforth an amide segment) produced | generated by reaction with an isocyanate group and an active hydrogen group can be mentioned.
主鎖骨格にウレタン結合やエステル結合を含有する(A)成分を含む硬化性組成物を硬化させた硬化物は、水素結合の作用等により、高い硬度が得られたり、強度が向上するなどの効果が得られる場合がある。一方で、ウレタン結合は熱などにより開裂する可能性もある。そのような特性を本発明の硬化性組成物に付与する目的で、(A)成分にアミドセグメントを導入したり、敢えてアミドセグメントを排除することもできる。アミドセグメントを有するポリオキシアルキレン系重合体は、粘度が高くなる傾向がある。また、アミドセグメントを有するポリオキシアルキレン系重合体は、硬化性が向上する場合もある。 The cured product obtained by curing the curable composition containing the component (A) containing a urethane bond or an ester bond in the main chain skeleton can obtain high hardness or improve the strength due to the action of hydrogen bonds, etc. An effect may be obtained. On the other hand, the urethane bond may be cleaved by heat or the like. For the purpose of imparting such characteristics to the curable composition of the present invention, an amide segment can be introduced into the component (A) or the amide segment can be excluded. A polyoxyalkylene polymer having an amide segment tends to have a high viscosity. In addition, the polyoxyalkylene polymer having an amide segment may be improved in curability.
アミドセグメントは下記一般式(2):
-NR-C(=O)-  (2)
(一般式(2)中、Rは炭素数1~10の有機基または水素原子を表す)で表される基である。
The amide segment has the following general formula (2):
—NR 2 —C (═O) — (2)
(In general formula (2), R 2 represents an organic group having 1 to 10 carbon atoms or a hydrogen atom).
アミドセグメントとしては、具体的には、イソシアネート基とヒドロキシ基との反応、または、アミノ基とカーボネートとの反応により生成するウレタン基;イソシアネート基とアミノ基との反応により生成する尿素基;イソシアネート基とメルカプト基との反応により生成するチオウレタン基などを挙げることができる。また、本発明では、上記ウレタン基、尿素基、および、チオウレタン基中の活性水素が、更にイソシアネート基と反応して生成する基も、一般式(2)の基に含まれる。 Specifically, as the amide segment, a urethane group generated by a reaction between an isocyanate group and a hydroxy group or a reaction between an amino group and a carbonate; a urea group generated by a reaction between an isocyanate group and an amino group; an isocyanate group And a thiourethane group produced by the reaction of a mercapto group. In the present invention, groups generated by the reaction of the active hydrogen in the urethane group, urea group, and thiourethane group with an isocyanate group are also included in the group of the general formula (2).
アミドセグメントと反応性ケイ素基を有するポリオキシアルキレン系重合体の工業的に容易な製造方法を例示すると、末端に活性水素含有基を有するポリオキシアルキレン系重合体に、過剰のポリイソシアネート化合物を反応させて、ポリウレタン系主鎖の末端にイソシアネート基を有する重合体とした後、あるいは同時に、該イソシアネート基の全部または一部に下記一般式(3):
Z-R-SiR 3-a  (3)
(一般式(3)中、R、X、aは前記と同じ。Rは2価の有機基であり、より好ましくは炭素原子数1から20の炭化水素基である。Zは、ヒドロキシ基、カルボキシ基、メルカプト基およびアミノ基(1級または2級)から選ばれた活性水素含有基である)で表されるケイ素化合物のZ基を反応させる方法により製造されるものを挙げることができる。
An example of an industrially easy production method of a polyoxyalkylene polymer having an amide segment and a reactive silicon group is illustrated by reacting an excess polyisocyanate compound with a polyoxyalkylene polymer having an active hydrogen-containing group at the terminal. After making the polymer having an isocyanate group at the terminal of the polyurethane main chain, or at the same time, all or part of the isocyanate group has the following general formula (3):
ZR 3 —SiR 1 a X 3-a (3)
(In General Formula (3), R 1 , X, and a are the same as described above. R 3 is a divalent organic group, more preferably a hydrocarbon group having 1 to 20 carbon atoms. Z is a hydroxy group. Examples thereof include those produced by a method in which a Z group of a silicon compound represented by a group, a carboxy group, a mercapto group, and an amino group (primary or secondary) is selected, is reacted. it can.
また、末端に活性水素含有基を有するポリオキシアルキレン系重合体に下記一般式(4):
O=C=N-R-SiR 3-a  (4) 
(一般式(4)中、R、R、X、aは前記と同じ。)で表される反応性ケイ素基含有イソシアネート化合物を反応させることにより製造されるものを挙げることができる。
Further, the polyoxyalkylene polymer having an active hydrogen-containing group at the terminal is represented by the following general formula (4):
O = C = N—R 3 —SiR 1 a X 3-a (4)
(In general formula (4), R < 3 >, R < 1 >, X, a is the same as the above.) What is manufactured by making the reactive silicon group containing isocyanate compound represented by react can be mentioned.
一般式(3)で表されるケイ素化合物としては特に限定はないが、具体的に例示すると、γ-アミノプロピルジメトキシメチルシラン、γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルジメトキシメチルシラン、(N-フェニル)-γ-アミノプロピルトリメトキシシラン、N-エチルアミノイソブチルトリメトキシシラン等のアミノ基含有シラン類;γ-ヒドロキシプロピルトリメトキシシラン等のヒドロキシ基含有シラン類;γ-メルカプトプロピルトリメトキシシラン、メルカプトメチルトリエトキシシラン等のメルカプト基含有シラン類;等が挙げられる。また、特開平6-211879号(米国特許5364955号)、特開平10-53637号(米国特許5756751号)、特開平10-204144号(EP0831108)、特開2000-169544号、特開2000-169545号に記載されている様に、各種のα,β-不飽和カルボニル化合物と一級アミノ基含有シランとのMichael付加反応物、または、各種の(メタ)アクリロイル基含有シランと一級アミノ基含有化合物とのMichael付加反応物もまた、一般式(3)で表されるケイ素化合物として用いることができる。 The silicon compound represented by the general formula (3) is not particularly limited, but specific examples include γ-aminopropyldimethoxymethylsilane, γ-aminopropyltrimethoxysilane, N- (β-aminoethyl)- Amino such as γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropyldimethoxymethylsilane, (N-phenyl) -γ-aminopropyltrimethoxysilane, N-ethylaminoisobutyltrimethoxysilane Group-containing silanes; hydroxy group-containing silanes such as γ-hydroxypropyltrimethoxysilane; mercapto group-containing silanes such as γ-mercaptopropyltrimethoxysilane and mercaptomethyltriethoxysilane; Also, JP-A-6-2111879 (US Pat. No. 5,364,955), JP-A-10-53637 (US Pat. No. 5,757,751), JP-A-10-204144 (EP0831108), JP-A 2000-169544, JP-A 2000-169545. As described in the above, Michael addition reaction products of various α, β-unsaturated carbonyl compounds and primary amino group-containing silanes, or various (meth) acryloyl group-containing silanes and primary amino group-containing compounds, The Michael addition reaction product of can also be used as the silicon compound represented by the general formula (3).
一般式(4)で表される反応性ケイ素基含有イソシアネート化合物としては特に限定はないが、具体的に例示すると、γ-トリメトキシシリルプロピルイソシアネート、γ-トリエトキシシリルプロピルイソシアネート、γ-メチルジメトキシシリルプロピルイソシアネート、γ-メチルジエトキシシリルプロピルイソシアネート、γ-(メトキシメチル)ジメトキシシリルプロピルイソシアネート、トリメトキシシリルメチルイソシアネート、トリエトキシメチルシリルメチルイソシアネート、ジメトキシメチルシリルメチルイソシアネート、ジエトキシメチルシリルメチルイソシアネート、(メトキシメチル)ジメトキシシリルメチルイソシアネート等が挙げられる。 The reactive silicon group-containing isocyanate compound represented by the general formula (4) is not particularly limited, but specific examples include γ-trimethoxysilylpropyl isocyanate, γ-triethoxysilylpropyl isocyanate, γ-methyldimethoxy. Silylpropyl isocyanate, γ-methyldiethoxysilylpropyl isocyanate, γ- (methoxymethyl) dimethoxysilylpropyl isocyanate, trimethoxysilylmethyl isocyanate, triethoxymethylsilylmethyl isocyanate, dimethoxymethylsilylmethyl isocyanate, diethoxymethylsilylmethyl isocyanate, (Methoxymethyl) dimethoxysilylmethyl isocyanate and the like.
(A)成分が主鎖骨格中にアミドセグメントを含む場合、アミドセグメントの数は1分子あたり平均で、1~10個が好ましく、1.5~5個がより好ましく、2~3個がさらに好ましい。1個よりも少ない場合には、硬化性が十分ではない場合があり、10個よりも多い場合には、(A)成分が高粘度となり取り扱い難くなる可能性がある。 When component (A) contains an amide segment in the main chain skeleton, the average number of amide segments is preferably 1 to 10, more preferably 1.5 to 5, more preferably 2 to 3 per molecule. preferable. When the number is less than 1, the curability may not be sufficient. When the number is more than 10, the component (A) may have a high viscosity and may be difficult to handle.
硬化性組成物の粘度を低くしたり、作業性を改善することなどを目的とする場合、(A)成分は実質的にアミドセグメントを含まないことが好ましい。 When aiming at lowering the viscosity of the curable composition or improving workability, the component (A) preferably contains substantially no amide segment.
(A)成分は、1つの末端部位に平均して1個より多い反応性ケイ素基を含有していてもよい。通常上記(i)の方法で反応性ケイ素基を導入した場合には1つの末端部位に平均して1個以下に限定される。これに対し、前駆重合体に対し炭素-炭素不飽和結合を有するエポキシ化合物を反応させ、さらにアルコール末端を不飽和基に変性することにより、1つの末端部位に1個より多い反応性ケイ素を導入することが可能となる。 The component (A) may contain an average of more than one reactive silicon group at one terminal site. Usually, when a reactive silicon group is introduced by the above method (i), the number is limited to one or less on average in one terminal site. In contrast, the precursor polymer is reacted with an epoxy compound having a carbon-carbon unsaturated bond, and the alcohol terminal is modified to an unsaturated group, thereby introducing more than one reactive silicon at one terminal site. It becomes possible to do.
炭素-炭素不飽和結合を有するエポキシ化合物として具体的には、(メタ)アリルグリシジルエーテル、グリシジル(メタ)アクリレート、ブタジエンモノオキシド、1,4-シクロペンタジエンモノエポキシドが反応活性の点から好ましく、アリルグリシジルエーテルがより好ましい。なお、明細書および請求項において(メタ)アリルはアリルおよび/またはメタリルを表す。 Specific examples of the epoxy compound having a carbon-carbon unsaturated bond include (meth) allyl glycidyl ether, glycidyl (meth) acrylate, butadiene monoxide, and 1,4-cyclopentadiene monoepoxide. Glycidyl ether is more preferred. In the specification and claims, (meth) allyl represents allyl and / or methallyl.
炭素-炭素不飽和結合を有するエポキシ化合物の添加量は、ポリオキシアルキレン系重合体に対する炭素-炭素不飽和結合の導入量や反応性を考慮して任意の量を使用できる。特に、ポリオキシアルキレン系重合体に含有される水酸基に対するモル比が、下限は0.2以上であることが好ましく、0.5以上であることがより好ましい。上限は、5.0以下であることが好ましく、2.0以下であることがより好ましい。 The amount of the epoxy compound having a carbon-carbon unsaturated bond added may be any amount in consideration of the amount of carbon-carbon unsaturated bond introduced into the polyoxyalkylene polymer and the reactivity. In particular, the lower limit of the molar ratio of hydroxyl groups contained in the polyoxyalkylene polymer is preferably 0.2 or more, and more preferably 0.5 or more. The upper limit is preferably 5.0 or less, and more preferably 2.0 or less.
前駆重合体に対し炭素-炭素不飽和結合を有するエポキシ化合物を開環付加反応させる際の反応温度は、60℃以上、150℃以下であることが好ましく、110℃以上、140℃以下であることがより好ましい。低ければ反応が殆ど進行しないし、高すぎるとポリオキシアルキレン系重合体の主鎖が分解してしまう虞がある。 The reaction temperature for the ring-opening addition reaction of the epoxy compound having a carbon-carbon unsaturated bond to the precursor polymer is preferably 60 ° C. or higher and 150 ° C. or lower, and 110 ° C. or higher and 140 ° C. or lower. Is more preferable. If it is low, the reaction hardly proceeds, and if it is too high, the main chain of the polyoxyalkylene polymer may be decomposed.
上記方法により得られる反応性ケイ素基導入前の不飽和結合を有する重合体構造は、末端部位が下記一般式(5): The polymer structure having an unsaturated bond before introduction of the reactive silicon group obtained by the above method has a terminal site represented by the following general formula (5):
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(一般式(5)中、R,Rはそれぞれ独立に2価の有機基であり、隣接するそれぞれの炭素原子と結合する原子は、炭素、酸素、窒素のいずれかである。R,Rはそれぞれ独立に水素、または、炭素数1~10の炭化水素基を表す。nは1~10の整数を表す。)で表される構造を有する。 (In General Formula (5), R 4 and R 6 are each independently a divalent organic group, and the atom bonded to each adjacent carbon atom is any of carbon, oxygen, and nitrogen. R 5 , R 7 each independently represents hydrogen or a hydrocarbon group having 1 to 10 carbon atoms, and n represents an integer of 1 to 10).
(A)成分1分子中に含まれる反応性ケイ素基を有する末端構造は、平均して0.5個以上であることが好ましく、1.0個以上であることがより好ましく、1.1個以上であることがさらに好ましく、1.5個以上であることが最も好ましい。 (A) The terminal structure having a reactive silicon group contained in one molecule of component (A) is preferably 0.5 or more on average, more preferably 1.0 or more, and 1.1 More preferably, it is more preferably 1.5 or more.
(A)成分の反応性ケイ素基の1分子当たりの平均個数は、下限は、1.2個以上が好ましく、1.3個以上がより好ましく、1.5個以上が最も好ましい。上限は、6.0個以下が好ましく、5.5個以下がより好ましく、5.0個以下が最も好ましい。反応性ケイ素基数が1.2個未満の場合は高強度の硬化物が得られなくなる可能性があるため好ましくない。反応性ケイ素基数が6.0個を超える場合は高伸びの硬化物が得られなくなる可能性があるため好ましくない。 The lower limit of the average number of reactive silicon groups per component (A) is preferably 1.2 or more, more preferably 1.3 or more, and most preferably 1.5 or more. The upper limit is preferably 6.0 or less, more preferably 5.5 or less, and most preferably 5.0 or less. When the number of reactive silicon groups is less than 1.2, a cured product with high strength may not be obtained, which is not preferable. When the number of reactive silicon groups exceeds 6.0, it is not preferable because a cured product having a high elongation may not be obtained.
(A)成分の反応性ケイ素基の平均個数は、反応性ケイ素基が直接結合した炭素上のプロトンを高分解能H-NMR測定法により定量する方法により求めた平均個数と定義している。本発明における(A)成分中の反応性ケイ素基の平均個数の計算においては前駆重合体に対し、反応性ケイ素基を導入した際に、反応性ケイ素基が導入されなかった前駆重合体および副反応によって得られる、反応性ケイ素基が導入されていない重合体についても、同一の主鎖構造を有する(A)成分の一部とみなして、反応性ケイ素基の一分子中の平均個数を計算する際の母数(分子数)に含めて計算を行う。 The average number of reactive silicon groups in component (A) is defined as the average number determined by a method of quantifying protons on carbon directly bonded with reactive silicon groups by high resolution 1 H-NMR measurement. In the calculation of the average number of reactive silicon groups in the component (A) in the present invention, when the reactive silicon group is introduced into the precursor polymer, the precursor polymer and the secondary polymer in which no reactive silicon group is introduced. The average number of reactive silicon groups in a molecule is also calculated for the polymer obtained by the reaction, in which no reactive silicon group is introduced, as a part of the component (A) having the same main chain structure. The calculation is included in the population parameter (number of molecules).
本発明の硬化性組成物は、(B)芳香環構造および/または水添された芳香環構造を有し、末端に反応性ケイ素基を有し、水酸基を有さない重合体(以下、(B)成分ともいう)を含有する。(B)成分の芳香環構造および/または水添された芳香環構造としては、例えば、ビフェノール、メチレンビスフェノール(ビスフェノールF)、メチレンビス(オルトクレゾール)、エチリデンビスフェノール(ビスフェノールAD)、イソプロピリデンビスフェノール(ビスフェノールA)、イソプロピリデンビス(オルトクレゾール)、テトラブロモビスフェノールA、1,3-ビス(4-ヒドロキシクミルベンゼン)、1,4-ビス(4-ヒドロキシクミルベンゼン)、さらにこれらを水添した化合物等に由来する構造が挙げられる。これらの中では、接着性、及び原料入手性の観点から、ビスフェノール構造が好ましい。 The curable composition of the present invention comprises (B) a polymer having an aromatic ring structure and / or a hydrogenated aromatic ring structure, a reactive silicon group at the terminal, and no hydroxyl group (hereinafter referred to as ( B) also referred to as component). Examples of the aromatic ring structure and / or hydrogenated aromatic ring structure of component (B) include biphenol, methylene bisphenol (bisphenol F), methylene bis (orthocresol), ethylidene bisphenol (bisphenol AD), and isopropylidene bisphenol (bisphenol). A), isopropylidenebis (orthocresol), tetrabromobisphenol A, 1,3-bis (4-hydroxycumylbenzene), 1,4-bis (4-hydroxycumylbenzene), and these were hydrogenated Examples include structures derived from compounds and the like. Among these, a bisphenol structure is preferable from the viewpoints of adhesiveness and raw material availability.
これらの芳香環構造および/または水添された芳香環構造の中でもビスフェノールAに由来する構造を使用することが、硬化性組成物の強度、とりわけモルタルに対する浸水後の接着性が大幅に向上するため好ましい。 Among these aromatic ring structures and / or hydrogenated aromatic ring structures, the use of a structure derived from bisphenol A significantly improves the strength of the curable composition, particularly the adhesiveness after immersion in mortar. preferable.
また、(B)成分はビスフェノール類のアルキレンオキシ後付加反応物を含有していても良く、例えば、エチレンオキシド、プロピレンオキシド、ブチレンオキシド及びこれらの混合物と、ビスフェノール型のエポキシ樹脂との反応物が挙げられる。特にビスフェノールAとプロピレンオキシドとの付加反応物が好ましいが、これに特定されるものではない。 Further, the component (B) may contain an alkyleneoxy post-addition reaction product of bisphenols, and examples thereof include a reaction product of ethylene oxide, propylene oxide, butylene oxide and a mixture thereof with a bisphenol type epoxy resin. It is done. In particular, an addition reaction product of bisphenol A and propylene oxide is preferable, but not limited thereto.
また、(B)成分は、アルキレンオキシドに対するビスフェノール基の比率が高いほど、十分な接着性、とりわけ浸水後の接着性の劣化抑制に効果的である。具体的には、ビスフェノール1モルに対するプロピレンオキシドの反応量が2~30モルであることが好ましく、2~15モルであることが特に好ましい。 In addition, the higher the ratio of the bisphenol group to the alkylene oxide, the more effective the component (B) is in suppressing sufficient adhesiveness, in particular, deterioration of adhesiveness after water immersion. Specifically, the reaction amount of propylene oxide with respect to 1 mol of bisphenol is preferably 2 to 30 mol, and particularly preferably 2 to 15 mol.
本発明の硬化性組成物においては、耐水接着性の観点から、(B)成分が、加水分解性の官能基をケイ素原子上に有するケイ素化合物による変性物であることが好ましい。(B)成分が、加水分解性の官能基をケイ素原子上に有することで、硬化物中に架橋構造が形成され、長期に渡って良好な耐水接着性が発現すると考えられる。 In the curable composition of the present invention, the component (B) is preferably a modified product of a silicon compound having a hydrolyzable functional group on a silicon atom from the viewpoint of water-resistant adhesion. It is considered that the component (B) has a hydrolyzable functional group on the silicon atom, so that a crosslinked structure is formed in the cured product, and good water-resistant adhesion is developed over a long period of time.
(B)成分の反応性ケイ素基の導入方法は特に限定されず、公知の方法を利用することができる。以下に導入方法を例示する。
(i)ヒドロシリル化:先ず、原料となる重合体(前駆重合体と記すこともある)に不飽和結合を導入し、この不飽和結合に対してヒドロシラン化合物をヒドロシリル化反応により付加させる方法であり、末端に下記一般式(6)で表される構造を導入することができる。
-O-R-SiR 3-b  (6)
(一般式(6)中、Rは炭素数1~20の置換または非置換の2価の炭化水素基を表す。Rは炭素数1~20の置換または非置換の炭化水素基を表す。Xはそれぞれ独立に水酸基または加水分解性基を表す。bは0または1を表す。)
The method for introducing the reactive silicon group (B) is not particularly limited, and a known method can be used. The introduction method is illustrated below.
(I) Hydrosilylation: First, an unsaturated bond is introduced into a raw material polymer (sometimes referred to as a precursor polymer), and a hydrosilane compound is added to the unsaturated bond by a hydrosilylation reaction. The structure represented by the following general formula (6) can be introduced at the end.
—O—R 8 —SiR 9 b X 2 3-b (6)
(In the general formula (6), R 8 represents a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms. R 9 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms. X 2 each independently represents a hydroxyl group or a hydrolyzable group, and b represents 0 or 1.)
不飽和結合の導入方法は任意の方法を利用できるが、例えば、水酸基などの官能基を有する前駆重合体に、この官能基に対して反応性を示す基および不飽和基を有する化合物を反応させ、不飽和基含有重合体を得る方法や、不飽和結合を有する重合性モノマーを共重合させる方法がある。 Any method can be used for introducing the unsaturated bond. For example, a precursor polymer having a functional group such as a hydroxyl group is allowed to react with a compound having reactivity with this functional group and a compound having an unsaturated group. There are a method for obtaining an unsaturated group-containing polymer and a method for copolymerizing a polymerizable monomer having an unsaturated bond.
(ii)反応性基含有重合体(前駆重合体)とシランカップリング剤との反応:水酸基、アミノ基、不飽和結合などの反応性基を有する前駆重合体と、その反応性基と反応して結合を形成し得る基および反応性ケイ素基の両方を有する化合物(シランカップリング剤とも呼ばれる)とを反応させる方法である。前駆重合体の反応性基とシランカップリング剤の反応性基の組合せとしては、水酸基とイソシアネート基、アミノ基とイソシアネート基、アミノ基とチオイソシアネート基、アミノ基とアクリル構造とのマイケル付加、不飽和結合とメルカプト基などが挙げられるがこれらに限らない。 (Ii) Reaction of a reactive group-containing polymer (precursor polymer) with a silane coupling agent: reacting with the precursor polymer having a reactive group such as a hydroxyl group, an amino group, or an unsaturated bond, and the reactive group. And a compound having both a group capable of forming a bond and a reactive silicon group (also called a silane coupling agent). The combination of the reactive group of the precursor polymer and the reactive group of the silane coupling agent includes hydroxyl group and isocyanate group, amino group and isocyanate group, amino group and thioisocyanate group, Michael addition of amino group and acrylic structure, Examples include, but are not limited to, saturated bonds and mercapto groups.
(ii)の方法によって、(B)成分の末端に下記一般式(7)で表される構造を導入することができる。
-W-R10-SiR11 3-c  (7)
(一般式(7)中、R10は炭素数1~20の置換または非置換の2価の炭化水素基を表す。R11は、炭素数1~20の置換または非置換の炭化水素基を表す。Xはそれぞれ独立に水酸基または加水分解性基を表す。cは0または1を表す。Wは-O-CO-N(R12)-、-N(R12)-CO-O-、-N(R12)-CO-N(R12)-、-N(R12)-CS-N(R12)-または-S-を表す。R12は、水素、または、ハロゲン置換されていてもよい炭素数1~18の炭化水素基を表す。)
By the method (ii), the structure represented by the following general formula (7) can be introduced at the end of the component (B).
—W—R 10 —SiR 11 c X 3 3-c (7)
(In the general formula (7), R 10 represents a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms. R 11 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms. X 3 each independently represents a hydroxyl group or a hydrolyzable group, c represents 0 or 1, W represents —O—CO—N (R 12 ) —, —N (R 12 ) —CO—O—. , -N (R 12 ) -CO-N (R 12 )-, -N (R 12 ) -CS-N (R 12 )-or -S-, wherein R 12 is hydrogen or halogen-substituted Represents an optionally substituted hydrocarbon group having 1 to 18 carbon atoms.)
(i)の方法は、反応が簡便で、反応性ケイ素基の導入量の調整や、得られる反応性ケイ素基含有重合体の物性が安定であるため好ましい。(ii)の方法は反応の選択肢が多く、反応性ケイ素基導入率を高めることが容易で好ましい。 The method (i) is preferable because the reaction is simple, the adjustment of the amount of reactive silicon groups introduced, and the physical properties of the resulting reactive silicon group-containing polymer are stable. The method (ii) has many reaction options, and it is easy and preferable to increase the rate of introduction of reactive silicon groups.
(i)の方法で使用されるヒドロシラン化合物の一部を例示する。トリクロロシラン、ジクロロメチルシラン、ジクロロフェニルシラン、(メトキシメチル)ジクロロシランなどのハロゲン化シラン類;ジメトキシメチルシラン、ジエトキシメチルシラン、トリメトキシシラン、トリエトキシシラン、(クロロメチル)ジメトキシシラン、(メトキシメチル)ジメトキシシランなどのアルコキシシラン類;トリイソプロペニロキシシラン、(クロロメチル)ジイソプロペニロキシシラン、(メトキシメチル)ジイソプロペニロキシシランなどのイソプロペニロキシシラン類(脱アセトン型)などがあげられる。 A part of hydrosilane compound used by the method of (i) is illustrated. Halogenated silanes such as trichlorosilane, dichloromethylsilane, dichlorophenylsilane, (methoxymethyl) dichlorosilane; dimethoxymethylsilane, diethoxymethylsilane, trimethoxysilane, triethoxysilane, (chloromethyl) dimethoxysilane, (methoxymethyl) ) Alkoxysilanes such as dimethoxysilane; isopropenyloxysilanes (deacetone type) such as triisopropenyloxysilane, (chloromethyl) diisopropenyloxysilane, (methoxymethyl) diisopropenyloxysilane, etc. .
(ii)の方法で使用できるシランカップリング剤としては、不飽和結合と反応する、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルジメトキシメチルシラン、3-メルカプトプロピルトリエトキシシラン、メルカプトメチルトリエトキシシラン、メルカプトメチルジメトキシメチルシランなどのメルカプトシラン類;水酸基と反応する、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルジメトキシメチルシラン、3-イソシアネートプロピルトリエトキシシラン、イソシアネートメチルトリメトキシシラン、イソシアネートメチルトリエトキシシラン、イソシアネートメチルジメトキシメチルシランなどのイソシアネートシラン類;水酸基、アミノ基、カルボン酸基と反応する、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルジメトキシメチルシラン、3-グリシドキシプロピルトリエトキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、グリシドキシメチルジメトキシメチルシランなどのエポキシシラン類;イソシアネート基、チオイソシアネート基と反応する、3-アミノプロピルトリメトキシシラン、3-アミノプロピルジメトキシメチルシラン、3-アミノプロピルトリエトキシシラン、3-(2-アミノエチル)プロピルトリメトキシシラン、3-(2-アミノエチル)プロピルジメトキシメチルシラン、3-(2-アミノエチル)プロピルトリエトキシシラン、3-(N-エチルアミノ)-2-メチルプロピルトリメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-シクロヘキシルアミノメチルトリエトキシシラン、N-シクロヘキシルアミノメチルジエトキシメチルシラン、N-フェニルアミノメチルトリメトキシシラン、(2-アミノエチル)アミノメチルトリメトキシシラン、N,N'-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、ビス(3-(トリメトキシシリル)プロピル)アミンなどのアミノシラン類;3-ヒドロキシプロピルトリメトキシシラン、ヒドロキシメチルトリエトキシシランなどのヒドロキシアルキルシラン類などがあげられる。上記のシランカップリング剤は一例であり、類似の反応を利用または応用してシリル基を導入することができる。 Examples of the silane coupling agent that can be used in the method (ii) include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyldimethoxymethylsilane, 3-mercaptopropyltriethoxysilane, mercaptomethyltriethoxy, which react with an unsaturated bond. Mercaptosilanes such as silane and mercaptomethyldimethoxymethylsilane; 3-isocyanatepropyltrimethoxysilane, 3-isocyanatopropyldimethoxymethylsilane, 3-isocyanatopropyltriethoxysilane, isocyanatemethyltrimethoxysilane, isocyanatemethyl which react with hydroxyl groups Isocyanate silanes such as triethoxysilane and isocyanate methyldimethoxymethylsilane; reacts with hydroxyl, amino and carboxylic acid groups, 3- Lysidoxypropyltrimethoxysilane, 3-glycidoxypropyldimethoxymethylsilane, 3-glycidoxypropyltriethoxysilane, glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, glycidoxymethyldimethoxymethylsilane Epoxysilanes such as: 3-aminopropyltrimethoxysilane, 3-aminopropyldimethoxymethylsilane, 3-aminopropyltriethoxysilane, 3- (2-aminoethyl) propyltrimethyl, which react with isocyanate groups and thioisocyanate groups Methoxysilane, 3- (2-aminoethyl) propyldimethoxymethylsilane, 3- (2-aminoethyl) propyltriethoxysilane, 3- (N-ethylamino) -2-methylpropyltrimethoxysilane, 3 Ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-benzyl-3-aminopropyltrimethoxysilane, N-cyclohexylaminomethyltriethoxysilane, N-cyclohexyl Aminomethyldiethoxymethylsilane, N-phenylaminomethyltrimethoxysilane, (2-aminoethyl) aminomethyltrimethoxysilane, N, N′-bis [3- (trimethoxysilyl) propyl] ethylenediamine, bis (3- Aminosilanes such as (trimethoxysilyl) propyl) amine; hydroxyalkylsilanes such as 3-hydroxypropyltrimethoxysilane and hydroxymethyltriethoxysilane. The above silane coupling agent is an example, and a silyl group can be introduced by utilizing or applying a similar reaction.
(B)成分の反応性ケイ素基の1分子当たりの平均個数は、下限は、1.2個以上が好ましく、1.3個以上がより好ましく、1.5個以上が最も好ましい。上限は、6.0個以下が好ましく、5.5個以下がより好ましく、5.0個以下が最も好ましい。反応性ケイ素基数が1.2個未満の場合は高強度の硬化物が得られなくなる可能性があるため好ましくない。反応性ケイ素基数が6.0個を超える場合は高伸びの硬化物が得られなくなる可能性があるため好ましくない。 The lower limit of the average number of reactive silicon groups per component (B) is preferably 1.2 or more, more preferably 1.3 or more, and most preferably 1.5 or more. The upper limit is preferably 6.0 or less, more preferably 5.5 or less, and most preferably 5.0 or less. When the number of reactive silicon groups is less than 1.2, a cured product with high strength may not be obtained, which is not preferable. When the number of reactive silicon groups exceeds 6.0, it is not preferable because a cured product having a high elongation may not be obtained.
(B)成分の反応性ケイ素基の平均個数は、反応性ケイ素基が直接結合した炭素上のプロトンを高分解能H-NMR測定法により定量する方法により求めた平均個数と定義している。本発明における(B)成分中の反応性ケイ素基の平均個数の計算においては前駆重合体に対し、反応性ケイ素基を導入した際に、反応性ケイ素基が導入されなかった前駆重合体および副反応によって得られる、反応性ケイ素基が導入されていない重合体についても、同一の主鎖構造を有する(B)成分の一部とみなして、反応性ケイ素基の一分子中の平均個数を計算する際の母数(分子数)に含めて計算を行う。 The average number of reactive silicon groups in component (B) is defined as the average number obtained by a method of quantifying protons on carbon directly bonded with reactive silicon groups by high resolution 1 H-NMR measurement. In the calculation of the average number of reactive silicon groups in the component (B) in the present invention, when the reactive silicon group is introduced into the precursor polymer, the precursor polymer and the secondary polymer in which no reactive silicon group is introduced. The polymer obtained by the reaction and having no reactive silicon group introduced is also regarded as a part of the component (B) having the same main chain structure, and the average number of reactive silicon groups in one molecule is calculated. The calculation is included in the population parameter (number of molecules).
本発明の硬化性組成物において、(B)成分の含有量は、特に限定されないが、(A)成分100重量部に対して3~100重量部であることが好ましく、5~30重量部であることがより好ましい。(B)成分の含有量が3重量部未満であると、十分な耐水接着性が発現しないことがあり、100重量部を超えると、硬化物の脆性が極度に低下することがある。 In the curable composition of the present invention, the content of the component (B) is not particularly limited, but is preferably 3 to 100 parts by weight with respect to 100 parts by weight of the component (A), and 5 to 30 parts by weight. More preferably. When the content of the component (B) is less than 3 parts by weight, sufficient water-resistant adhesion may not be exhibited, and when it exceeds 100 parts by weight, the brittleness of the cured product may be extremely reduced.
本発明の硬化性組成物は、(A)成分と(B)成分のシラノール縮合触媒として硬化触媒を含有していても良い。硬化触媒の具体例としては、テトラブチルチタネート、テトラプロピルチタネート、チタンテトラキス(アセチルアセトナート)、ビス(アセチルアセトナート)ジイソプロポキシチタン、ジイソプロポキシチタンビス(エチルアセトセテート)などのチタン化合物;ジメチル錫ジアセテート、ジメチル錫ビス(アセチルアセトナート)、ジブチル錫ジラウレート、ジブチル錫マレエート、ジブチル錫フタレート、ジブチル錫ジオクタノエート、ジブチル錫ビス(2-エチルヘキサノエート)、ジブチル錫ビス(メチルマレエート)、ジブチル錫ビス(エチルマレエート)、ジブチル錫ビス(ブチルマレエート)、ジブチル錫ビス(オクチルマレエート)、ジブチル錫ビス(トリデシルマレエート)、ジブチル錫ビス(ベンジルマレエート)、ジブチル錫ジアセテート、ジオクチル錫ビス(エチルマレエート)、ジオクチル錫ビス(オクチルマレエート)、ジブチル錫ジメトキサイド、ジブチル錫ビス(ノニルフェノキサイド)、ジブテニル錫オキサイド、ジブチル錫オキサイド、ジブチル錫ビス(アセチルアセトナート)、ジブチル錫ビス(エチルアセトアセトナート)、ジブチル錫オキサイドとシリケート化合物との反応物、ジブチル錫オキサイドとフタル酸エステルとの反応物、ジオクチル錫ジラウレート、ジオクチル錫ジアセテート、ジオクチル錫ビス(アセチルアセトナート)等の4価の有機錫化合物;アルミニウムトリス(アセチルアセトナート)、アルミニウムトリス(エチルアセトアセテート)、ジイソプロポキシアルミニウムエチルアセトアセテートなどの有機アルミニウム化合物類;ジルコニウムテトラキス(アセチルアセトナート)などのジルコニウム化合物類が挙げられる。また、カルボン酸および/またはカルボン酸金属塩を硬化触媒として使用することもできる。また、国際公開第2008/078654号に記載されているようなアミジン化合物も使用できる。アミジン化合物の例として、1-(o-トリル)ビグアニド、1-フェニルグアニジン、1,2-ジメチル-1,4,5,6-テトラヒドロピリミジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)等を挙げることができるが、これらに限られるものではない。一部のアミジンは室温で固体のものもあるが、分散しにくいといった課題がある場合は、それぞれの化合物に適した溶剤や可塑剤等を用いてあらかじめ分散や溶解させておくという手段も使うことができる。作業環境を考えると、高沸点溶剤が好ましい。 The curable composition of this invention may contain the curing catalyst as a silanol condensation catalyst of (A) component and (B) component. Specific examples of the curing catalyst include titanium compounds such as tetrabutyl titanate, tetrapropyl titanate, titanium tetrakis (acetylacetonate), bis (acetylacetonato) diisopropoxytitanium, diisopropoxytitanium bis (ethylacetocetate); Dimethyltin diacetate, dimethyltin bis (acetylacetonate), dibutyltin dilaurate, dibutyltin maleate, dibutyltin phthalate, dibutyltin dioctanoate, dibutyltin bis (2-ethylhexanoate), dibutyltin bis (methylmaleate) , Dibutyltin bis (ethyl maleate), dibutyltin bis (butyl maleate), dibutyltin bis (octyl maleate), dibutyltin bis (tridecyl maleate), dibutyltin bis (benzyl maleate) Dibutyltin diacetate, dioctyltin bis (ethyl maleate), dioctyltin bis (octylmaleate), dibutyltin dimethoxide, dibutyltin bis (nonylphenoxide), dibutenyltin oxide, dibutyltin oxide, dibutyltin bis (acetylacetate) Natto), dibutyltin bis (ethylacetoacetonate), reaction product of dibutyltin oxide and silicate compound, reaction product of dibutyltin oxide and phthalate ester, dioctyltin dilaurate, dioctyltin diacetate, dioctyltin bis (acetyl) Tetravalent organotin compounds such as acetonate); organics such as aluminum tris (acetylacetonate), aluminum tris (ethylacetoacetate), diisopropoxyaluminum ethylacetoacetate Aluminum compounds; zirconium compounds such as zirconium tetrakis (acetylacetonate) and the like. Moreover, carboxylic acid and / or carboxylic acid metal salt can also be used as a curing catalyst. Moreover, an amidine compound as described in International Publication No. 2008/077864 can also be used. Examples of amidine compounds include 1- (o-tolyl) biguanide, 1-phenylguanidine, 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine, 1,5,7-triazabicyclo [4.4. .0] dec-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-ene, 1,8-diazabicyclo [5.4.0] -7- Although undecene (DBU) etc. can be mentioned, it is not restricted to these. Some amidines are solid at room temperature, but if there is a problem that they are difficult to disperse, use a means to disperse or dissolve in advance using a solvent or plasticizer suitable for each compound. Can do. Considering the working environment, a high boiling point solvent is preferable.
上記に挙げた硬化触媒のうち、ジブチル錫系硬化触媒は硬化性や接着性等のバランスが良好で、最も汎用に使用されている。しかし近年、ジブチル錫系硬化触媒は人体への悪影響が懸念されており、そのような場合はジオクチル錫系硬化触媒を使用することができる。ジオクチル錫系硬化触媒としては、ジオクチル錫ジラウレート、ジオクチル錫ビスアセチルアセトナートや、ジオクチル錫塩とケイ酸エチルとの反応物が工業的に入手可能であり好ましい。また非錫触媒としてチタン触媒は活性が高いことから、速硬化が求められる工業用接着剤や電気電子用接着剤の場合は好ましい。チタン触媒の中でも、ジイソプロポキシチタンビス(エチルアセトセテート)は硬化性と配合物の貯蔵安定性に優れることから特に好ましい。この触媒はTyzor PITAという商品名で販売されており入手も容易で好適に使用できる。 Of the curing catalysts listed above, dibutyltin-based curing catalysts have a good balance of curability and adhesiveness and are most commonly used. In recent years, however, dibutyltin-based curing catalysts are concerned about adverse effects on the human body. In such cases, dioctyltin-based curing catalysts can be used. As the dioctyltin-based curing catalyst, dioctyltin dilaurate, dioctyltin bisacetylacetonate, and a reaction product of dioctyltin salt and ethyl silicate are industrially available and preferable. Moreover, since a titanium catalyst as a non-tin catalyst has high activity, it is preferable in the case of industrial adhesives and electrical / electronic adhesives that require rapid curing. Among the titanium catalysts, diisopropoxytitanium bis (ethyl acetocetate) is particularly preferable because of excellent curability and storage stability of the blend. This catalyst is sold under the trade name Tyzor PITA and is easily available and can be suitably used.
本発明の硬化性組成物が硬化触媒を含有する場合、その配合量としては、(A)、(B)成分の合計量100重量部に対して、0.01~20重量部が好ましく、0.05~15重量部がより好ましく、0.1~10重量部が最も好ましい。硬化触媒の配合量がこの範囲であれば、硬化性組成物は優れた硬化性を有し、また適度な硬化時間を有するため作業性に優れたものとなる。 When the curable composition of the present invention contains a curing catalyst, the blending amount is preferably 0.01 to 20 parts by weight with respect to 100 parts by weight of the total amount of the components (A) and (B). 0.05 to 15 parts by weight is more preferable, and 0.1 to 10 parts by weight is most preferable. When the blending amount of the curing catalyst is within this range, the curable composition has excellent curability, and has an appropriate curing time, and therefore has excellent workability.
本発明の硬化性組成物は、可塑剤を含有していても良い。可塑剤は、硬化性組成物の粘度やスランプ性を調整する機能、得られる硬化物の引張り強度、伸び特性などの機械的な特性を調整する機能を有するものである。 The curable composition of the present invention may contain a plasticizer. The plasticizer has a function of adjusting the viscosity and slump property of the curable composition, and a function of adjusting mechanical properties such as tensile strength and elongation property of the obtained cured product.
可塑剤の具体例としては、ジブチルフタレート、ジヘプチルフタレート、ジ(2-エチルヘキシル)フタレート、ジイソデシルフタレート、ブチルベンジルフタレート等のフタル酸エステル類;ジオクチルアジペート、ジオクチルセバケート、ジブチルセバケート、コハク酸ジイソデシル等の非芳香族二塩基酸エステル類;オレイン酸ブチル、アセチルリシリノール酸メチル等の脂肪族エステル類;トリクレジルホスフェート、トリブチルホスフェート等のリン酸エステル類;トリメリット酸エステル類;塩素化パラフィン類;アルキルジフェニル、部分水添ターフェニル等の炭化水素系油;プロセスオイル類;エポキシ化大豆油、エポキシステアリン酸ベンジル等のエポキシ可塑剤、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルポリオールあるいはこれらポリエーテルポリオールの水酸基をエステル基、エーテル基などに変換した誘導体等のポリエーテル類等があげられる。 Specific examples of plasticizers include phthalates such as dibutyl phthalate, diheptyl phthalate, di (2-ethylhexyl) phthalate, diisodecyl phthalate, butyl benzyl phthalate; dioctyl adipate, dioctyl sebacate, dibutyl sebacate, diisodecyl succinate Non-aromatic dibasic acid esters such as; aliphatic esters such as butyl oleate and methyl acetyl ricinolinate; phosphate esters such as tricresyl phosphate and tributyl phosphate; trimellitic acid esters; chlorinated paraffins Hydrocarbon oils such as alkyldiphenyl and partially hydrogenated terphenyl; process oils; epoxy plasticizers such as epoxidized soybean oil and epoxy benzyl stearate, polyethylene glycol, polypropylene glycol, Polyether polyol or hydroxyl ester groups of these polyether polyols such as polytetramethylene glycol, polyethers such as derivatives obtained by converting such an ether group.
これらの中でも、(A)、(B)成分との相溶性、機械物性、コスト等の点から、ポリプロピレングリコールや、ジ(2-エチルヘキシル)フタレート、ジイソデシルフタレート等が好ましい。 Among these, polypropylene glycol, di (2-ethylhexyl) phthalate, diisodecyl phthalate and the like are preferable from the viewpoints of compatibility with the components (A) and (B), mechanical properties, cost, and the like.
これらの可塑剤は、1種類のみを配合してもよく、複数種を組み合わせて配合してもよい。また低分子可塑剤と高分子可塑剤を併用してもよい。なおこれら可塑剤は、重合体製造時に配合することも可能である。 These plasticizers may be blended alone or in combination of two or more. Further, a low molecular plasticizer and a high molecular plasticizer may be used in combination. These plasticizers can also be blended at the time of polymer production.
本発明の硬化性組成物が可塑剤を含有する場合、その配合量は、(A)、(B)成分の合計量100重量部に対して30重量部以下が好ましく、20重量部以下がより好ましく、10重量部以下が特に好ましい。可塑剤の配合量が30重量部を超えると硬化物の強度低下や接着性が低下する傾向がある。 When the curable composition of the present invention contains a plasticizer, the blending amount is preferably 30 parts by weight or less, more preferably 20 parts by weight or less with respect to 100 parts by weight of the total amount of the components (A) and (B). Preferably, 10 parts by weight or less is particularly preferable. If the blending amount of the plasticizer exceeds 30 parts by weight, the strength and adhesiveness of the cured product tend to decrease.
また、これらの可塑剤以外に、高分子可塑剤を添加することもできる。高分子可塑剤の添加により、重合体成分を分子中に含まない可塑剤である低分子可塑剤を添加した場合に比較して、硬化性組成物は、初期特性を長期にわたり維持できること、得られた硬化物にアルキド塗料を塗布した場合の乾燥性(塗装性ともいう)を改良できるなどの効果が発現する。 In addition to these plasticizers, a polymer plasticizer can be added. Compared with the addition of a low molecular weight plasticizer, which is a plasticizer that does not contain a polymer component in the molecule, the curable composition can maintain the initial characteristics over a long period of time. The effect of improving the drying property (also referred to as paintability) when an alkyd paint is applied to the cured product is exhibited.
高分子可塑剤としては、特に限定されず、ビニル系モノマーを種々の方法で重合して得られるビニル系重合体;ジエチレングリコールジベンゾエート、トリエチレングリコールジベンゾエート、ペンタエリスリトールエステル等のポリアルキレングリコールのエステル類;セバシン酸、アジピン酸、アゼライン酸、フタル酸等の2塩基酸とエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール等の2価アルコールから得られるポリエステル系可塑剤;ポリスチレンやポリ-α-メチルスチレン等のポリスチレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン-アクリロニトリル、ポリクロロプレン等が挙げられる。 The polymer plasticizer is not particularly limited, and vinyl polymers obtained by polymerizing vinyl monomers by various methods; esters of polyalkylene glycols such as diethylene glycol dibenzoate, triethylene glycol dibenzoate, and pentaerythritol ester. Polyester plasticizers obtained from dibasic acids such as sebacic acid, adipic acid, azelaic acid and phthalic acid and dihydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol and dipropylene glycol; polystyrene and poly -Polystyrenes such as -α-methylstyrene; polybutadiene, polybutene, polyisobutylene, butadiene-acrylonitrile, polychloroprene and the like.
これらの高分子可塑剤のなかでも、(A)、(B)成分との相溶性が高く、得られる硬化物の耐候性、耐熱性が良好なことからビニル系重合体が好ましく、この中でもアクリル系重合体および/又はメタクリル系重合体がより好ましく、ポリアクリル酸アルキルエステルなどのアクリル系重合体がさらに好ましい。 Among these polymer plasticizers, vinyl polymers are preferred because they have high compatibility with the components (A) and (B), and the resulting cured products have good weather resistance and heat resistance. More preferred are polymer and / or methacrylic polymers, and more preferred are acrylic polymers such as polyacrylic acid alkyl esters.
ポリアクリル酸アルキルエステルの製造方法としては、特に限定されないが、分子量分布が狭く、低粘度化が可能なことからリビングラジカル重合法が好ましく、原子移動ラジカル重合法がより好ましい。また、SGOプロセスと呼ばれる特開2001-207157号などに開示されているアクリル酸アルキルエステル系化合物を高温、高圧下で連続塊状重合する方法が特に好ましい。 The method for producing the polyacrylic acid alkyl ester is not particularly limited, but a living radical polymerization method is preferable and an atom transfer radical polymerization method is more preferable because the molecular weight distribution is narrow and viscosity can be reduced. A method of continuous bulk polymerization of an alkyl acrylate ester compound disclosed in JP-A-2001-207157 called SGO process under high temperature and high pressure is particularly preferable.
高分子可塑剤の数平均分子量は、500~15,000が好ましく、800~10,000がより好ましく、1,000~8,000がさらに好ましく、1,000~5,000が特に好ましく、1,000~3,000が最も好ましい。高分子可塑剤の分子量が低すぎると得られる硬化物から熱や降雨により可塑剤が経時的に流出し、初期の物性を長期にわたり維持できず、埃付着などによる汚染の原因となる可能性が有り、アルキド塗装性に劣る傾向がある。一方、分子量が高すぎると硬化性組成物の粘度が高くなり、作業性が悪くなる傾向がある。 The number average molecular weight of the polymer plasticizer is preferably 500 to 15,000, more preferably 800 to 10,000, still more preferably 1,000 to 8,000, particularly preferably 1,000 to 5,000. 3,000 to 3,000 is most preferred. If the molecular weight of the polymer plasticizer is too low, the plasticizer will flow out from the cured product over time due to heat or rain, and the initial physical properties cannot be maintained over a long period of time, which may cause contamination due to dust adhesion. Yes, alkyd paintability tends to be inferior. On the other hand, if the molecular weight is too high, the viscosity of the curable composition tends to be high and workability tends to be poor.
高分子可塑剤の分子量分布は特に限定されないが、狭いことが好ましく、1.80未満、1.70以下が好ましく、1.60以下がより好ましく、1.50以下がさらに好ましく、1.40以下が特に好ましく、1.30以下が最も好ましい。 The molecular weight distribution of the polymer plasticizer is not particularly limited, but is preferably narrow, less than 1.80, preferably 1.70 or less, more preferably 1.60 or less, further preferably 1.50 or less, and 1.40 or less. Is particularly preferred, with 1.30 or less being most preferred.
数平均分子量はポリエーテル系重合体の場合は末端基分析法で、その他の重合体の場合はGPC法で測定される。また、分子量分布(Mw/Mn)はGPC法(ポリスチレン換算)で測定される。 The number average molecular weight is measured by a terminal group analysis method in the case of a polyether polymer, and by the GPC method in the case of other polymers. Moreover, molecular weight distribution (Mw / Mn) is measured by GPC method (polystyrene conversion).
高分子可塑剤は、分子中に反応性ケイ素基の有無を問わないが、反応性ケイ素基を有する高分子可塑剤を添加した場合は、高分子可塑剤が硬化反応に取り込まれ、得られた硬化物からの可塑剤の移行を防止できることから好ましい。 The polymer plasticizer may or may not have a reactive silicon group in the molecule, but when a polymer plasticizer having a reactive silicon group was added, the polymer plasticizer was incorporated into the curing reaction and obtained. This is preferable because migration of the plasticizer from the cured product can be prevented.
反応性ケイ素基を有する高分子可塑剤を配合する場合、反応性ケイ素基の数は1分子あたり平均して1個以下であることが好ましく、0.8個以下であることがより好ましい。 When blending a polymeric plasticizer having a reactive silicon group, the number of reactive silicon groups is preferably 1 or less on average per molecule, and more preferably 0.8 or less.
高分子可塑剤は、1種類のみを添加してもよく、複数種を組み合わせて添加してもよい。また、低分子可塑剤と高分子可塑剤を併用してもよい。なおこれらの可塑剤は、(A)、(B)成分の製造時に添加してもよい。 Only one type of polymer plasticizer may be added, or a plurality of types may be added in combination. Further, a low molecular plasticizer and a high molecular plasticizer may be used in combination. In addition, you may add these plasticizers at the time of manufacture of (A) and (B) component.
高分子可塑剤の添加量は、(A)、(B)成分の合計量100重量部に対して30重量部以下が好ましく、20重量部以下がより好ましく、10重量部以下が特に好ましい。30重量部を超えると硬化物の機械強度が不足する傾向がある。 The amount of the polymer plasticizer added is preferably 30 parts by weight or less, more preferably 20 parts by weight or less, and particularly preferably 10 parts by weight or less with respect to 100 parts by weight of the total amount of the components (A) and (B). If it exceeds 30 parts by weight, the mechanical strength of the cured product tends to be insufficient.
本発明の硬化性組成物には、アミノシランを添加することができる。アミノシランとは、分子中に反応性ケイ素基とアミノ基を有する化合物であり、通常、接着付与剤と称される。これを使用することで、各種被着体、すなわち、ガラス、アルミニウム、ステンレス、亜鉛、銅、モルタルなどの無機基材や、塩化ビニル、アクリル、ポリエステル、ポリエチレン、ポリプロピレン、ポリカーボネートなどの有機基材に用いた場合、ノンプライマー条件またはプライマー処理条件下で、著しい接着性改善効果を示す。ノンプライマー条件下で使用した場合には、各種被着体に対する接着性を改善する効果が特に顕著である。他にも物性調整剤、無機充填材の分散性改良剤等として機能し得る化合物である。 Aminosilane can be added to the curable composition of the present invention. Aminosilane is a compound having a reactive silicon group and amino group in the molecule, and is usually referred to as an adhesion-imparting agent. By using this, various adherends, that is, inorganic substrates such as glass, aluminum, stainless steel, zinc, copper, and mortar, and organic substrates such as vinyl chloride, acrylic, polyester, polyethylene, polypropylene, polycarbonate, etc. When used, it exhibits a significant adhesive improvement effect under non-primer conditions or primer treatment conditions. When used under non-primer conditions, the effect of improving adhesion to various adherends is particularly remarkable. In addition, it is a compound that can function as a physical property modifier, an inorganic filler dispersibility improver, and the like.
アミノシランの反応性ケイ素基の具体的な例としては、既に例示した基を挙げることができるが、メトキシ基、エトキシ基等が加水分解速度の点から好ましい。加水分解性基の個数は、2個以上、特に3個以上が好ましい。 Specific examples of the reactive silicon group of aminosilane include the groups already exemplified, but methoxy group, ethoxy group and the like are preferable from the viewpoint of hydrolysis rate. The number of hydrolyzable groups is preferably 2 or more, particularly 3 or more.
アミノシランの具体例としては、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリイソプロポキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリイソプロポキシシラン、γ-(2-(2-アミノエチル)アミノエチル)アミノプロピルトリメトキシシラン、γ-(6-アミノヘキシル)アミノプロピルトリメトキシシラン、3-(N-エチルアミノ)-2-メチルプロピルトリメトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-ベンジル-γ-アミノプロピルトリメトキシシラン、N-ビニルベンジル-γ-アミノプロピルトリエトキシシラン、N-シクロヘキシルアミノメチルトリエトキシシラン、N-シクロヘキシルアミノメチルジエトキシメチルシラン、N-フェニルアミノメチルトリメトキシシラン、(2-アミノエチル)アミノメチルトリメトキシシラン、N,N’-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン等のアミノ基含有シラン類;N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン等のケチミン型シラン類を挙げることができる。 Specific examples of aminosilane include γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltriisopropoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane, γ -(2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, γ- (2-aminoethyl) aminopropyltriethoxysilane, γ- (2-aminoethyl) amino Propylmethyldiethoxysilane, γ- (2-aminoethyl) aminopropyltriisopropoxysilane, γ- (2- (2-aminoethyl) aminoethyl) aminopropyltrimethoxysilane, γ- (6-aminohexyl) amino Propyltrimethoxysilane 3- (N-ethylamino) -2-methylpropyltrimethoxysilane, γ-ureidopropyltrimethoxysilane, γ-ureidopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, N-benzyl-γ -Aminopropyltrimethoxysilane, N-vinylbenzyl-γ-aminopropyltriethoxysilane, N-cyclohexylaminomethyltriethoxysilane, N-cyclohexylaminomethyldiethoxymethylsilane, N-phenylaminomethyltrimethoxysilane, (2 -Aminoethyl) amino group-containing silanes such as aminomethyltrimethoxysilane, N, N'-bis [3- (trimethoxysilyl) propyl] ethylenediamine; N- (1,3-dimethylbutylidene) -3- ( Triethoxysilyl) -1- It may be mentioned ketimines type silanes such Ropan'amin.
これらのうち良好な接着性を確保するためには、γ-アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシランが好ましい。アミノシランは1種類のみ使用してもよいし、2種類以上を併用してもよい。γ-(2-アミノエチル)アミノプロピルトリメトキシシランは他のアミノシランに比べて刺激性があることが指摘されており、このアミノシランを減量する代わりに、γ-アミノプロピルトリメトキシシランを併用することで刺激性を緩和させることができる。 Among these, in order to ensure good adhesion, γ-aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, and γ- (2-aminoethyl) aminopropylmethyldimethoxysilane are used. preferable. Only one type of aminosilane may be used, or two or more types may be used in combination. It has been pointed out that γ- (2-aminoethyl) aminopropyltrimethoxysilane is irritating compared to other aminosilanes, and instead of reducing this aminosilane, γ-aminopropyltrimethoxysilane should be used in combination. Can alleviate irritation.
本発明の硬化性組成物がアミノシランを含有する場合、その配合量は、(A)、(B)成分の合計量100重量部に対して1~20重量部程度が好ましく、2~10重量部がより好ましい。アミノシランの配合量が1重量部未満であると十分な接着性が得られない場合がある。一方、アミノシランの配合量が20重量部を超えると、硬化物がもろくなって十分な強度が得られなくなり、また硬化速度が遅くなる場合がある。 When the curable composition of the present invention contains aminosilane, the blending amount is preferably about 1 to 20 parts by weight with respect to 100 parts by weight of the total amount of components (A) and (B), and 2 to 10 parts by weight. Is more preferable. If the amount of aminosilane is less than 1 part by weight, sufficient adhesion may not be obtained. On the other hand, if the amount of aminosilane exceeds 20 parts by weight, the cured product becomes brittle and sufficient strength cannot be obtained, and the curing rate may be slow.
本発明の硬化性組成物には、アミノシラン以外の接着付与剤を使用することができる。アミノシラン以外の接着付与剤の具体例としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ基含有シラン類;γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルメチルジエトキシシラン、γ-イソシアネートプロピルメチルジメトキシシラン、(イソシアネートメチル)トリメトキシシラン、(イソシアネートメチル)ジメトキシメチルシラン等のイソシアネート基含有シラン類;γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、メルカプトメチルトリエトキシシラン等のメルカプト基含有シラン類;β-カルボキシエチルトリエトキシシラン、β-カルボキシエチルフェニルビス(2-メトキシエトキシ)シラン、N-β-(カルボキシメチル)アミノエチル-γ-アミノプロピルトリメトキシシラン等のカルボキシシラン類;ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリロイルオキシプロピルメチルジメトキシシラン、γ-アクリロイルオキシプロピルメチルトリエトキシシラン等のビニル型不飽和基含有シラン類;γ-クロロプロピルトリメトキシシラン等のハロゲン含有シラン類;トリス(トリメトキシシリル)イソシアヌレート等のイソシアヌレートシラン類等を挙げることができる。 An adhesion imparting agent other than aminosilane can be used in the curable composition of the present invention. Specific examples of adhesion-imparting agents other than aminosilane include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, β- (3,4-epoxy Epoxy group-containing silanes such as cyclohexyl) ethyltrimethoxysilane and β- (3,4-epoxycyclohexyl) ethyltriethoxysilane; γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropyltriethoxysilane, γ-isocyanatopropylmethyl Isocyanate group-containing silanes such as diethoxysilane, γ-isocyanatopropylmethyldimethoxysilane, (isocyanatemethyl) trimethoxysilane, (isocyanatemethyl) dimethoxymethylsilane; γ-mercaptopropi Mercapto group-containing silanes such as trimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropylmethyldiethoxysilane, mercaptomethyltriethoxysilane; β-carboxyethyltriethoxysilane, Carboxysilanes such as β-carboxyethylphenylbis (2-methoxyethoxy) silane and N-β- (carboxymethyl) aminoethyl-γ-aminopropyltrimethoxysilane; vinyltrimethoxysilane, vinyltriethoxysilane, γ- Vinyl type unsaturated group-containing silanes such as methacryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyltriethoxysilane; halogen-containing γ-chloropropyltrimethoxysilane Orchids; can be exemplified tris isocyanurate silanes such as (trimethoxysilyl) isocyanurate.
これらのうち、良好な接着性を確保するためには、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシランが好ましい。 Of these, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, and γ-glycidoxypropylmethyldimethoxysilane are preferred in order to ensure good adhesion.
また、上記シラン類を部分的に縮合した縮合体も使用できる。さらに、これらを変性した誘導体である、アミノ変性シリルポリマー、シリル化アミノポリマー、不飽和アミノシラン錯体、フェニルアミノ長鎖アルキルシラン、アミノシリル化シリコーン、シリル化ポリエステル等も接着付与剤として用いることができる。 Moreover, the condensate which condensed the said silane partially can also be used. Furthermore, amino-modified silyl polymers, silylated amino polymers, unsaturated aminosilane complexes, phenylamino long-chain alkylsilanes, aminosilylated silicones, silylated polyesters, and the like, which are derivatives obtained by modifying these, can also be used as an adhesion-imparting agent.
本発明の硬化性組成物において、接着付与剤は、各種被着体、すなわち、ガラス、アルミニウム、ステンレス、亜鉛、銅、モルタルなどの無機基材や、塩化ビニル、アクリル、ポリエステル、ポリエチレン、ポリプロピレン、ポリカーボネートなどの有機基材に用いた場合、ノンプライマー条件またはプライマー処理条件下で、著しい接着性改善効果を示す。ノンプライマー条件下で使用した場合には、各種被着体に対する接着性を改善する効果が特に顕著である。接着付与剤としては上記に挙げたシラン化合物以外の化合物も用いることが出来る。具体例としては、特に限定されないが、例えば、エポキシ樹脂、フェノール樹脂、硫黄、アルキルチタネート類、芳香族ポリイソシアネート等が挙げられる。接着付与剤は1種類のみで使用しても良いし、2種類以上混合使用しても良い。これら接着性付与剤は添加することにより被着体に対する接着性を改善することができる。 In the curable composition of the present invention, the adhesion-imparting agent includes various adherends, that is, inorganic substrates such as glass, aluminum, stainless steel, zinc, copper, and mortar, vinyl chloride, acrylic, polyester, polyethylene, polypropylene, When used for an organic base material such as polycarbonate, it exhibits a remarkable adhesive improvement effect under non-primer conditions or primer treatment conditions. When used under non-primer conditions, the effect of improving adhesion to various adherends is particularly remarkable. As the adhesion-imparting agent, compounds other than the silane compounds listed above can also be used. Although it does not specifically limit as a specific example, For example, an epoxy resin, a phenol resin, sulfur, alkyl titanates, aromatic polyisocyanate etc. are mentioned. Only one type of adhesion promoter may be used, or two or more types may be used in combination. By adding these adhesion-imparting agents, the adhesion to the adherend can be improved.
本発明の硬化性組成物が接着付与剤を含有する場合、その含有量は、(A)、(B)成分の合計量100重量部に対し、0.01~20重量部程度が好ましく、0.1~10重量部程度がより好ましく、1~7重量部程度が特に好ましい。接着付与剤の含有量がこの範囲を下回ると、接着性が十分に得られない場合がある。一方、接着付与剤の含有量がこの範囲を上回ると実用的な深部硬化性が得られない場合がある。 When the curable composition of the present invention contains an adhesion-imparting agent, the content thereof is preferably about 0.01 to 20 parts by weight with respect to 100 parts by weight of the total amount of the components (A) and (B). About 1 to 10 parts by weight is more preferable, and about 1 to 7 parts by weight is particularly preferable. If the content of the adhesion-imparting agent is less than this range, sufficient adhesion may not be obtained. On the other hand, if the content of the adhesion-imparting agent exceeds this range, practical deep curability may not be obtained.
本発明の硬化性組成物がエポキシ樹脂を含有する場合、エポキシ樹脂は添加量に応じて触媒活性を低下させる場合があるため、エポキシ樹脂の添加量は少ないことが好ましい。エポキシ樹脂の使用量としては、(A)、(B)成分の合計量100重量部に対して、5重量部以下が好ましく、0.5重量部以下がより好ましく、実質的に、含有していないことが特に好ましい。 When the curable composition of the present invention contains an epoxy resin, the epoxy resin may reduce the catalytic activity depending on the addition amount, and therefore the addition amount of the epoxy resin is preferably small. The amount of the epoxy resin used is preferably 5 parts by weight or less, more preferably 0.5 parts by weight or less, and substantially contains 100 parts by weight of the total amount of the components (A) and (B). It is particularly preferred not to.
本発明の硬化性組成物には酸化防止剤(老化防止剤)を使用することができる。酸化防止剤を使用すると硬化物の耐熱性を高めることができる。酸化防止剤としてはヒンダードフェノール系、モノフェノール系、ビスフェノール系、ポリフェノール系が例示できるが、特にヒンダードフェノール系が好ましい。同様に、チヌビン622LD,チヌビン144,CHIMASSORB944LD,CHIMASSORB119FL(以上いずれもBASFジャパン株式会社製);MARK LA-57,MARK LA-62,MARK LA-67,MARK LA-63,MARK LA-68(以上いずれも株式会社ADEKA製);サノールLS-770,サノールLS-765,サノールLS-292,サノールLS-2626,サノールLS-1114,サノールLS-744(以上いずれも三共株式会社製)に示されたヒンダードアミン系光安定剤を使用することもできる。酸化防止剤の具体例は特開平4-283259号公報や特開平9-194731号公報にも記載されている。 An antioxidant (antiaging agent) can be used in the curable composition of the present invention. When antioxidant is used, the heat resistance of hardened | cured material can be improved. Examples of the antioxidant include hindered phenols, monophenols, bisphenols, and polyphenols, with hindered phenols being particularly preferred. Similarly, Tinuvin 622LD, Tinuvin 144, CHIMASSORB 944LD, CHIMASSORB 119FL (all of which are manufactured by BASF Japan Ltd.); MARK LA-57, MARK LA-62, MARK LA-67, MARK LA-63, MARK LA-68 (all above Also manufactured by ADEKA Corporation); hindered amines shown by Sanol LS-770, Sanol LS-765, Sanol LS-292, Sanol LS-2626, Sanol LS-1114, Sanol LS-744 (all of which are manufactured by Sankyo Corporation) A system light stabilizer can also be used. Specific examples of the antioxidant are also described in JP-A-4-283259 and JP-A-9-194731.
本発明の硬化性組成物が酸化防止剤を含有する場合、その含有量は、(A)、(B)成分の合計量100重量部に対して0.1~10重量部であることが好ましく、0.2~5重量部であることがより好ましい。 When the curable composition of the present invention contains an antioxidant, the content thereof is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the total amount of the components (A) and (B). 0.2 to 5 parts by weight is more preferable.
本発明の硬化性組成物には光安定剤を使用することができる。光安定剤を使用すると硬化物の光酸化劣化を防止できる。光安定剤としてベンゾトリアゾール系、ヒンダードアミン系、ベンゾエート系化合物等が例示できるが、特にヒンダードアミン系が好ましい。光安定剤の具体例は特開平9-194731号公報にも記載されている。 A light stabilizer can be used in the curable composition of the present invention. Use of a light stabilizer can prevent photooxidation degradation of the cured product. Examples of the light stabilizer include benzotriazole, hindered amine, and benzoate compounds, with hindered amines being particularly preferred. Specific examples of the light stabilizer are also described in JP-A-9-194731.
本発明の硬化性組成物が光安定剤を含有する場合、その使用量は、(A)、(B)成分の合計量100重量部に対して0.1~10重量部であることが好ましく、0.2~5重量部であることがより好ましい。 When the curable composition of the present invention contains a light stabilizer, the amount used is preferably 0.1 to 10 parts by weight relative to 100 parts by weight of the total amount of components (A) and (B). 0.2 to 5 parts by weight is more preferable.
本発明の硬化性組成物に光硬化性物質を併用する場合、特に不飽和アクリル系化合物を用いる場合、特開平5-70531号公報に記載されているようにヒンダードアミン系光安定剤として3級アミン含有ヒンダードアミン系光安定剤を用いるのが組成物の保存安定性改良のために好ましい。3級アミン含有ヒンダードアミン系光安定剤としてはチヌビン622LD,チヌビン144,CHIMASSORB119FL(以上いずれもBASFジャパン株式会社製);MARK LA-57,LA-62,LA-67,LA-63(以上いずれも株式会社ADEKA製);サノールLS-765,LS-292,LS-2626,LS-1114,LS-744(以上いずれもBASFジャパン株式会社製)などが例示できる。 When a photocurable substance is used in combination with the curable composition of the present invention, particularly when an unsaturated acrylic compound is used, a tertiary amine is used as a hindered amine light stabilizer as described in JP-A-5-70531. It is preferable to use a contained hindered amine light stabilizer for improving the storage stability of the composition. As tertiary amine-containing hindered amine light stabilizers, Tinuvin 622LD, Tinuvin 144, CHIMASSORB 119FL (all of these are manufactured by BASF Japan Ltd.); MARK LA-57, LA-62, LA-67, LA-63 (all of which are stocks) Examples include Sanol LS-765, LS-292, LS-2626, LS-1114, LS-744 (all of which are manufactured by BASF Japan Ltd.).
本発明の硬化性組成物には紫外線吸収剤を使用することができる。紫外線吸収剤を使用すると硬化物の表面耐候性を高めることができる。紫外線吸収剤としてはベンゾフェノン系、ベンゾトリアゾール系、サリシレート系、置換トリル系及び金属キレート系化合物等が例示できるが、特にベンゾトリアゾール系が好ましい。 An ultraviolet absorber can be used in the curable composition of the present invention. When the ultraviolet absorber is used, the surface weather resistance of the cured product can be enhanced. Examples of ultraviolet absorbers include benzophenone-based, benzotriazole-based, salicylate-based, substituted tolyl-based, and metal chelate-based compounds, and benzotriazole-based compounds are particularly preferable.
本発明の硬化性組成物が紫外線吸収剤を含有する場合、その使用量は、(A)、(B)成分の合計量100重量部に対して0.1~10重量部であることが好ましく、0.2~5重量部であることがより好ましい。フェノール系やヒンダードフェノール系酸化防止剤とヒンダードアミン系光安定剤とベンゾトリアゾール系紫外線吸収剤を併用することが好ましい。 When the curable composition of the present invention contains an ultraviolet absorber, the amount used is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the total amount of components (A) and (B). 0.2 to 5 parts by weight is more preferable. It is preferable to use a phenol-based or hindered phenol-based antioxidant, a hindered amine-based light stabilizer, and a benzotriazole-based ultraviolet absorber in combination.
本発明の硬化性組成物には充填剤を添加することができる。充填剤としては、フュームシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケイ酸、含水ケイ酸、およびカーボンブラックの如き補強性充填剤;重質炭酸カルシウム、膠質炭酸カルシウム、炭酸マグネシウム、ケイソウ土、焼成クレー、クレー、タルク、酸化チタン、ベントナイト、有機ベントナイト、酸化第二鉄、アルミニウム微粉末、フリント粉末、酸化亜鉛、活性亜鉛華、シラスバルーン、ガラスミクロバルーン、フェノール樹脂や塩化ビニリデン樹脂の有機ミクロバルーン、PVC粉末、PMMA粉末など樹脂粉末の如き充填剤;ガラス繊維およびフィラメントの如き繊維状充填剤等が挙げられる。 A filler can be added to the curable composition of the present invention. Fillers include reinforcing silica such as fumed silica, precipitated silica, crystalline silica, fused silica, dolomite, anhydrous silicic acid, hydrous silicic acid, and carbon black; heavy calcium carbonate, colloidal calcium carbonate, magnesium carbonate Diatomaceous earth, calcined clay, clay, talc, titanium oxide, bentonite, organic bentonite, ferric oxide, aluminum fine powder, flint powder, zinc oxide, activated zinc white, shirasu balloon, glass microballoon, phenolic resin and vinylidene chloride Examples thereof include fillers such as resin powders such as resin organic microballoons, PVC powder, and PMMA powders; and fibrous fillers such as glass fibers and filaments.
本発明の硬化性組成物が充填剤を含有する場合、その含有量は(A)、(B)成分の合計量100重量部に対して1~250重量部であり、10~200重量部であることが好ましい。 When the curable composition of the present invention contains a filler, the content thereof is 1 to 250 parts by weight with respect to 100 parts by weight of the total amount of components (A) and (B), and 10 to 200 parts by weight. Preferably there is.
これら充填剤の使用により強度の高い硬化物を得たい場合には、主にヒュームシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケイ酸、含水ケイ酸およびカーボンブラック、表面処理微細炭酸カルシウム、焼成クレー、クレー、および活性亜鉛華などから選ばれる充填剤が好ましく、(A)、(B)成分の合計量100重量部に対し、1~200重量部の範囲で使用すれば好ましい結果が得られる。また、低強度で破断伸びが大きい硬化物を得たい場合には、主に酸化チタン、重質炭酸カルシウムなどの炭酸カルシウム、炭酸マグネシウム、タルク、酸化第二鉄、酸化亜鉛、およびシラスバルーンなどから選ばれる充填剤を、(A)、(B)成分の合計量100重量部に対して5~200重量部の範囲で使用すれば好ましい結果が得られる。なお、一般的に炭酸カルシウムは、比表面積の値が大きいほど硬化物の破断強度、破断伸び、接着性の改善効果は大きくなる。もちろんこれら充填剤は1種類のみで使用してもよいし、2種類以上混合使用してもよい。炭酸カルシウムを使用する場合、表面処理微細炭酸カルシウムと重質炭酸カルシウムなどの粒径が大きい炭酸カルシウムを併用することが望ましい。表面処理微細炭酸カルシウムの粒径は0.5μm以下が好ましく、表面処理は脂肪酸や脂肪酸塩で処理されていることが好ましい。また、粒径が大きい炭酸カルシウムの粒径は1μm以上が好ましく表面処理されていないものを用いることができる。 When you want to obtain a hardened product with high strength by using these fillers, mainly fume silica, precipitated silica, crystalline silica, fused silica, dolomite, silicic anhydride, hydrous silicic acid and carbon black, surface treatment fine A filler selected from calcium carbonate, calcined clay, clay, activated zinc white and the like is preferable, and it is preferable to use in a range of 1 to 200 parts by weight with respect to 100 parts by weight of the total amount of the components (A) and (B). Results are obtained. If you want to obtain a cured product with low strength and high elongation at break, mainly from calcium carbonate such as titanium oxide and heavy calcium carbonate, magnesium carbonate, talc, ferric oxide, zinc oxide, and shirasu balloon When the selected filler is used in the range of 5 to 200 parts by weight with respect to 100 parts by weight of the total amount of the components (A) and (B), preferable results are obtained. In general, calcium carbonate has a greater effect of improving the breaking strength, breaking elongation, and adhesiveness of the cured product as the value of the specific surface area increases. Of course, these fillers may be used alone or in combination of two or more. When calcium carbonate is used, it is desirable to use a combination of surface treated fine calcium carbonate and heavy calcium carbonate such as heavy calcium carbonate. The particle diameter of the surface-treated fine calcium carbonate is preferably 0.5 μm or less, and the surface treatment is preferably treated with a fatty acid or a fatty acid salt. Moreover, the particle size of calcium carbonate having a large particle size is preferably 1 μm or more, and an untreated surface can be used.
硬化性組成物の作業性(キレなど)向上や硬化物表面を艶消し状にするためには、有機バルーン、無機バルーンの添加が好ましい。これらの充填剤は表面処理することもでき、1種類のみで使用しても良いし、2種類以上混合使用することもできる。バルーンの粒径は、作業性(キレなど)向上の観点からは0.1mm以下であることが好ましく、硬化物表面を艶消し状にする観点からは5~300μmであることが好ましい。 In order to improve the workability (such as sharpness) of the curable composition and to make the surface of the cured product matt, it is preferable to add an organic balloon or an inorganic balloon. These fillers can be surface-treated, and may be used alone or in combination of two or more. The particle size of the balloon is preferably 0.1 mm or less from the viewpoint of improving workability (such as sharpness), and preferably from 5 to 300 μm from the viewpoint of making the surface of the cured product matt.
本発明の硬化性組成物は硬化物の耐薬品性が良好であるなどの理由により、サイジングボード、特に窯業系サイジングボード、など住宅の外壁の目地や外壁タイルの接着剤、外壁タイルの接着剤であって目地に接着剤がそのまま残るものなどに好適に用いられるが、外壁の意匠とシーリング材の意匠が調和することが望ましい。特に、外壁としてスパッタ塗装、着色骨材などの混入により高級感のある外壁が用いられるようになっている。本発明の硬化性組成物に直径が0.1mm以上、好ましくは0.1~5.0mm程度の鱗片状または粒状の物質が配合されていると、硬化物はこのような高級感のある外壁と調和し、耐薬品性が優れるためこの硬化物の外観は長期にわたって持続するすぐれた硬化性組成物となる。粒状の物質を用いると砂まき調あるいは砂岩調のざらつき感がある表面となり、鱗片状物質を用いると鱗片状に起因する凹凸状の表面となる。 The curable composition of the present invention is a sizing board, especially a ceramic sizing board, and the like because of the good chemical resistance of the cured product. However, it is preferably used for an adhesive in which the adhesive remains as it is, but it is desirable that the design of the outer wall and the design of the sealing material are harmonized. In particular, high-quality outer walls are used as outer walls due to the mixture of spatter coating, colored aggregates, and the like. When a flaky or granular substance having a diameter of 0.1 mm or more, preferably about 0.1 to 5.0 mm is blended with the curable composition of the present invention, the cured product has such a high-grade outer wall. The cured product has an excellent curable composition that lasts for a long time because of its excellent chemical resistance. When a granular material is used, the surface becomes sandy or sandstone-like rough, and when a scaly material is used, the surface becomes uneven.
鱗片状または粒状の物質の好ましい直径、配合量、材料などは特開平9-53063号公報に記載されているように次の通りである。 As described in JP-A-9-53063, preferred diameters, blending amounts, materials and the like of the scaly or granular substance are as follows.
直径は0.1mm以上、好ましくは0.1~5.0mm程度であり、外壁の材質、模様等に合わせて適当な大きさのものが使用される。0.2~5.0mm程度や0.5~5.0mm程度のものも使用可能である。鱗片状の物質の場合には、厚さが直径の1/10から1/5程度の薄さ(0.01~1.00mm程度)とされる。鱗片状または粒状の物質は、シーリング主材内に予め混合されてシーリング材として施工現場に運搬されるか、使用に際して、施工現場にてシーリング主材内に混合される。 The diameter is 0.1 mm or more, preferably about 0.1 to 5.0 mm, and those having an appropriate size are used according to the material and pattern of the outer wall. Those of about 0.2 to 5.0 mm or about 0.5 to 5.0 mm can also be used. In the case of a scaly substance, the thickness is about 1/10 to 1/5 of the diameter (about 0.01 to 1.00 mm). The scale-like or granular substance is mixed in advance in the main sealing material and transported to the construction site as a sealing material, or mixed in the main sealing material at the construction site when used.
鱗片状または粒状の物質は、硬化性組成物100重量部に対して、1~200重量部程度が配合される。配合量は、個々の鱗片状または粒状の物質の大きさ、外壁の材質、模様等によって、適当に選定される。 About 1 to 200 parts by weight of the scaly or granular substance is blended with 100 parts by weight of the curable composition. The blending amount is appropriately selected depending on the size of each scale-like or granular substance, the material of the outer wall, the pattern, and the like.
鱗片状または粒状の物質としては、ケイ砂、マイカ等の天然物、合成ゴム、合成樹脂、アルミナ等の無機物が使用される。目地部に充填した際の意匠性を高めるために、外壁の材質、模様等に合わせて、適当な色に着色される。 As the scale-like or granular substance, natural substances such as silica sand and mica, synthetic rubber, synthetic resin, and inorganic substances such as alumina are used. In order to enhance the designability when filling the joint, it is colored in an appropriate color according to the material and pattern of the outer wall.
また、同様の目的でバルーン(好ましくは平均粒径が0.1mm以上のもの)を用いれば砂まき調あるいは砂岩調のざらつき感がある表面になり、かつ軽量化を図ることができる。バルーンの好ましい直径、配合量、材料などは特開平10-251618号公報に記載されているように次の通りである。 Further, if a balloon (preferably having an average particle size of 0.1 mm or more) is used for the same purpose, the surface becomes sandy or sandstone-like, and the weight can be reduced. Preferred diameters, blending amounts, materials, etc. of the balloon are as follows as described in JP-A-10-251618.
バルーンは、球状体充填剤で内部が中空のものである。このバルーンの材料としては、無機系の、あるいは有機系の、またはこれらを複合させるなどしたバルーンを使用することができる。具体例としては、ガラス、シラス、シリカなどの無機系の材料、および、フェノール樹脂、尿素樹脂、ポリスチレン、サランなどの有機系の材料があげられるが、これらのみに限定されるものではなく、無機系の材料と有機系の材料とを複合させたり、また、積層して複数層を形成させたりすることもできる。また、使用するバルーンは、同一のバルーンを使用しても、あるいは異種の材料のバルーンを複数種類混合して使用しても差し支えがない。さらに、バルーンは、その表面を加工ないしコーティングしたものを使用することもできるし、またその表面を各種の表面処理剤で処理したものを使用することもできる。例えば、有機系のバルーンを炭酸カルシウム、タルク、酸化チタンなどでコーティングしたり、無機系のバルーンを接着付与剤で表面処理することなどが挙げられる。 The balloon is a spherical filler with a hollow inside. As a material for this balloon, an inorganic or organic balloon or a combination of these balloons can be used. Specific examples include inorganic materials such as glass, shirasu, and silica, and organic materials such as phenolic resin, urea resin, polystyrene, and saran. A composite material and an organic material can be combined, or can be laminated to form a plurality of layers. The balloons used may be the same balloon or a mixture of different types of balloons. Furthermore, the balloon can be used by processing or coating the surface thereof, or can be used by treating the surface with various surface treatment agents. For example, an organic balloon may be coated with calcium carbonate, talc, titanium oxide or the like, or an inorganic balloon may be surface treated with an adhesion-imparting agent.
砂まき調あるいは砂岩調のざらつき感がある表面を得るには、バルーンは粒径が0.1mm以上であることが好ましい。0.2~5.0mm程度や0.5~5.0mm程度のものも使用可能である。0.1mm未満のものでは、多量に配合しても硬化性組成物の粘度を上昇させるだけで、ざらつき感が発揮されない場合がある。バルーンの配合量は目的とする砂まき調あるいは砂岩調のざらつき感の程度によって容易に定めることができる。通常、粒径が0.1mm以上のものを硬化性組成物中の容積濃度で5~25vol%の範囲となる割合で配合することが望ましい。バルーンの容積濃度が5vol%未満であるとざらつき感がなく、また25vol%を超えると、シーリング材や接着剤の粘度が高くなり作業性が悪く、硬化物のモジュラスも高くなり、シーリング材や接着剤の基本性能が損なわれる傾向にある。シーリング材の基本性能とのバランスが特に好ましい容積濃度は8~22vol%である。 The balloon preferably has a particle size of 0.1 mm or more in order to obtain a surface having a sandy or sandstone texture. Those of about 0.2 to 5.0 mm or about 0.5 to 5.0 mm can also be used. When the amount is less than 0.1 mm, even when blended in a large amount, only the viscosity of the curable composition is increased, and a rough feeling may not be exhibited. The blending amount of the balloon can be easily determined according to the desired degree of sanding tone or sandstone tone. In general, it is desirable to blend those having a particle size of 0.1 mm or more in a ratio of 5 to 25 vol% in volume concentration in the curable composition. When the volume concentration of the balloon is less than 5 vol%, there is no feeling of roughness, and when it exceeds 25 vol%, the viscosity of the sealing material and the adhesive becomes high, the workability is poor, the modulus of the cured product is also high, and the sealing material and bonding The basic performance of the agent tends to be impaired. The volume concentration with particularly preferable balance with the basic performance of the sealing material is 8 to 22 vol%.
バルーンを用いる際には特開2000-154368号公報に記載されているようなスリップ防止剤、特開2001-164237号公報に記載されているような硬化物の表面を凹凸状態に加えて艶消し状態にするためのアミン化合物、特に融点35℃以上の第1級および/または第2級アミンを添加することができる。 When a balloon is used, the anti-slip agent as described in JP-A-2000-154368 and the surface of a cured product as described in JP-A-2001-164237 are matted to give an uneven state. An amine compound for obtaining a state, particularly a primary and / or secondary amine having a melting point of 35 ° C. or higher can be added.
バルーンの具体例は特開平2-129262号、特開平4-8788号、特開平4-173867号、特開平5-1225号、特開平7-113073号、特開平9-53063号、特開平10-251618号、特開2000-154368号、特開2001-164237号、国際公開第97/05201号などの各公報に記載されている。 Specific examples of the balloons are disclosed in JP-A-2-129262, JP-A-4-8788, JP-A-4-173867, JP-A-5-1225, JP-A-7-113033, JP-A-9-53063, JP-A-10-10. -251618, JP-A No. 2000-154368, JP-A No. 2001-164237, and International Publication No. 97/05201.
本発明の硬化性組成物がシーリング材硬化物粒子を含む場合も硬化物は表面に凹凸を形成し意匠性を向上させることができる。シーリング材硬化物粒子の好ましい直径、配合量、材料などは特開2001-115142号公報に記載されているように次の通りである。 Even when the curable composition of the present invention contains sealing material cured particles, the cured product can form irregularities on the surface to improve the design. Preferred diameters, blending amounts, materials and the like of the cured sealant particles are as follows as described in JP-A No. 2001-115142.
直径は0.1~1mmが好ましく、0.2~0.5mm程度がより好ましい。配合量は硬化性組成物中5~100重量%が好ましく、20~50重量%がより好ましい。材料は、ウレタン樹脂、シリコーン、変成シリコーン、多硫化ゴム等を挙げることができシーリング材に用いられるものであれば限定されないが、変成シリコーン系のシーリング材が好ましい。 The diameter is preferably 0.1 to 1 mm, more preferably about 0.2 to 0.5 mm. The blending amount is preferably 5 to 100% by weight, more preferably 20 to 50% by weight in the curable composition. Examples of the material include urethane resin, silicone, modified silicone, polysulfide rubber and the like, and are not limited as long as they are used for the sealing material, but a modified silicone-based sealing material is preferable.
また、本発明の硬化性組成物には、シリケートを用いることができる。このシリケートは、架橋剤として作用し、本発明の硬化性組成物の硬化物の復元性、耐久性、および、耐クリープ性を改善する機能を有する。また更に、接着性および耐水接着性、高温高湿条件での接着耐久性を改善する効果も有する。シリケートとしてはテトラアルコキシシランまたはその部分加水分解縮合物が使用できる。シリケートを使用する場合、その使用量は(A)、(B)成分の合計量100重量部に対して0.1~20重量部であり、0.5~10重量部であることが好ましい。 Moreover, a silicate can be used for the curable composition of this invention. This silicate acts as a cross-linking agent and has a function of improving the restorability, durability, and creep resistance of the cured product of the curable composition of the present invention. Furthermore, it has the effect of improving adhesiveness, water-resistant adhesiveness, and adhesive durability under high temperature and high humidity conditions. As the silicate, tetraalkoxysilane or a partial hydrolysis condensate thereof can be used. When silicate is used, the amount used is 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the total amount of components (A) and (B).
シリケートの具体例としては、例えば、テトラメトキシシラン、テトラエトキシシラン、エトキシトリメトキシシラン、ジメトキシジエトキシシラン、メトキシトリエトキシシラン、テトラ-n-プロポキシシラン、テトラ-i-プロポキシシラン、テトラ-n-ブトキシシラン、テトラ-i-ブトキシシラン、テトラ-t-ブトキシシランなどのテトラアルコキシシラン(テトラアルキルシリケート)、および、それらの部分加水分解縮合物等があげられる。 Specific examples of the silicate include, for example, tetramethoxysilane, tetraethoxysilane, ethoxytrimethoxysilane, dimethoxydiethoxysilane, methoxytriethoxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, tetra-n- Examples thereof include tetraalkoxysilanes (tetraalkyl silicates) such as butoxysilane, tetra-i-butoxysilane, and tetra-t-butoxysilane, and partial hydrolysis condensates thereof.
テトラアルコキシシランの部分加水分解縮合物は、復元性、耐久性、および、耐クリープ性の改善効果がテトラアルコキシシランよりも大きい為により好ましい。 The partial hydrolysis-condensation product of tetraalkoxysilane is more preferable because the effect of improving the resilience, durability, and creep resistance is greater than that of tetraalkoxysilane.
テトラアルコキシシランの部分加水分解縮合物としては、例えば、通常の方法でテトラアルコキシシランに水を添加し、部分加水分解させて縮合させたものがあげられる。また、オルガノシリケート化合物の部分加水分解縮合物は、市販のものを用いることができる。このような縮合物としては、例えば、メチルシリケート51、エチルシリケート40(いずれもコルコート(株)製)等が挙げられる。 Examples of the partially hydrolyzed condensate of tetraalkoxysilane include those obtained by adding water to tetraalkoxysilane and condensing it by subjecting it to partial hydrolysis. A commercially available product can be used as the partially hydrolyzed condensate of the organosilicate compound. Examples of such condensates include methyl silicate 51 and ethyl silicate 40 (both manufactured by Colcoat Co., Ltd.).
本発明の硬化性組成物には粘着性付与樹脂を添加することができる。粘着性付与樹脂としては、特に限定されないが、常温で固体、液体を問わず通常使用されるものを使用することができる。具体例としては、スチレン系ブロック共重合体、その水素添加物、フェノール樹脂、変性フェノール樹脂(例えば、カシューオイル変性フェノール樹脂、トール油変性フェノール樹脂等)、テルペンフェノール樹脂、キシレン-フェノール樹脂、シクロペンタジエン-フェノール樹脂、クマロンインデン樹脂、ロジン系樹脂、ロジンエステル樹脂、水添ロジンエステル樹脂、キシレン樹脂、低分子量ポリスチレン系樹脂、スチレン共重合体樹脂、石油樹脂(例えば、C5炭化水素樹脂、C9炭化水素樹脂、C5C9炭化水素共重合樹脂等)、水添石油樹脂、テルペン系樹脂、DCPD樹脂石油樹脂等が挙げられる。これらは単独で用いても良く、2種以上を併用しても良い。 A tackifier resin can be added to the curable composition of the present invention. Although it does not specifically limit as tackifying resin, What is normally used regardless of solid and liquid at normal temperature can be used. Specific examples include styrene block copolymers, hydrogenated products thereof, phenol resins, modified phenol resins (for example, cashew oil modified phenol resin, tall oil modified phenol resin, etc.), terpene phenol resins, xylene-phenol resins, cyclohexane Pentadiene-phenol resin, coumarone indene resin, rosin resin, rosin ester resin, hydrogenated rosin ester resin, xylene resin, low molecular weight polystyrene resin, styrene copolymer resin, petroleum resin (for example, C5 hydrocarbon resin, C9) Hydrocarbon resin, C5C9 hydrocarbon copolymer resin, etc.), hydrogenated petroleum resin, terpene resin, DCPD resin petroleum resin and the like. These may be used alone or in combination of two or more.
スチレン系ブロック共重合体およびその水素添加物としては、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、スチレン-エチレンブチレン-スチレンブロック共重合体(SEBS)、スチレン-エチレンプロピレン-スチレンブロック共重合体(SEPS)、スチレン-イソブチレン-スチレンブロック共重合体(SIBS)等が挙げられる。粘着性付与樹脂は単独で用いてもよく、2種以上併用してもよい。 Styrene block copolymers and their hydrogenated products include styrene-butadiene-styrene block copolymers (SBS), styrene-isoprene-styrene block copolymers (SIS), and styrene-ethylenebutylene-styrene block copolymers. (SEBS), styrene-ethylenepropylene-styrene block copolymer (SEPS), styrene-isobutylene-styrene block copolymer (SIBS), and the like. The tackifier resins may be used alone or in combination of two or more.
本発明の硬化性組成物が粘着性付与樹脂を含有する場合、その含有量は(A)、(B)成分の合計量100重量部に対して、5~1,000重量部であり、10~100重量部であることが好ましい。 When the curable composition of the present invention contains a tackifying resin, the content thereof is 5 to 1,000 parts by weight with respect to 100 parts by weight of the total amount of the components (A) and (B). It is preferably from ˜100 parts by weight.
本発明の硬化性組成物には溶剤または希釈剤を添加することができる。溶剤または希釈剤としては、特に限定されないが、脂肪族炭化水素、芳香族炭化水素、脂環式炭化水素、ハロゲン化炭化水素、アルコール、エステル、ケトン、エーテル等を使用することができる。溶剤または希釈剤を使用する場合、硬化性組成物を屋内で使用した時の空気への汚染の問題から、溶剤の沸点は、150℃以上が好ましく、200℃以上がより好ましく、250℃以上が特に好ましい。溶剤または希釈剤は単独で用いてもよく、2種以上併用してもよい。 A solvent or a diluent can be added to the curable composition of the present invention. The solvent or diluent is not particularly limited, and aliphatic hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, halogenated hydrocarbons, alcohols, esters, ketones, ethers, and the like can be used. When using a solvent or diluent, the boiling point of the solvent is preferably 150 ° C. or higher, more preferably 200 ° C. or higher, and more preferably 250 ° C. or higher because of the problem of air contamination when the curable composition is used indoors. Particularly preferred. A solvent or a diluent may be used independently and may be used together 2 or more types.
本発明の硬化性組成物には、必要に応じて生成する硬化物の引張特性を調整する物性調整剤を添加しても良い。物性調整剤としては特に限定されないが、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、n-プロピルトリメトキシシラン等のアルキルアルコキシシラン類;ジメチルジイソプロペノキシシラン、メチルトリイソプロペノキシシラン、γ-グリシドキシプロピルメチルジイソプロペノキシシラン等のアルキルイソプロペノキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルジメチルメトキシシラン、γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン等の官能基を有するアルコキシシラン類;シリコーンワニス類;ポリシロキサン類等が挙げられる。物性調整剤を用いることにより、本発明の硬化性組成物を硬化させた時の硬度を上げたり、逆に硬度を下げ、破断伸びを出したりし得る。物性調整剤は単独で用いてもよく、2種以上併用してもよい。 You may add the physical property modifier which adjusts the tensile characteristic of the hardened | cured material produced | generated as needed to the curable composition of this invention. The physical property modifier is not particularly limited, but examples thereof include alkylalkoxysilanes such as methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, and n-propyltrimethoxysilane; dimethyldiisopropenoxysilane, methyltriisopropenoxy Silanes, alkylisopropenoxysilanes such as γ-glycidoxypropylmethyldiisopropenoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane, vinyldimethylmethoxy Silane, γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) aminopropylmethyldimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropylmethyldimethoxy Alkoxysilanes having a functional group such as a silane; silicone varnishes; polysiloxanes and the like. By using a physical property modifier, the hardness when the curable composition of the present invention is cured can be increased, or conversely, the hardness can be decreased and elongation at break can be produced. The physical property modifiers may be used alone or in combination of two or more.
特に、加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物は硬化物の表面のべたつきを悪化させずに硬化物のモジュラスを低下させる作用を有する。特にトリメチルシラノールを生成する化合物が好ましい。加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物としては、特開平5-117521号公報に記載されている化合物をあげることができる。また、ヘキサノール、オクタノール、デカノール等のアルキルアルコールの誘導体であって加水分解によりトリメチルシラノール等のRSiOHを生成するシリコン化合物を生成する化合物、特開平11-241029号公報に記載されているトリメチロールプロパン、グリセリン、ペンタエリスリトールあるいはソルビトール等のヒドロキシ基数が3以上の多価アルコールの誘導体であって加水分解によりトリメチルシラノールなどのRSiOHを生成するシリコン化合物を生成する化合物をあげることができる。 In particular, a compound that generates a compound having a monovalent silanol group in the molecule by hydrolysis has an action of reducing the modulus of the cured product without deteriorating the stickiness of the surface of the cured product. Particularly preferred are compounds that produce trimethylsilanol. Examples of the compound that generates a compound having a monovalent silanol group in the molecule by hydrolysis include compounds described in JP-A-5-117521. Further, derivatives of alkyl alcohols such as hexanol, octanol, decanol, etc., which produce a silicon compound that produces R 3 SiOH such as trimethylsilanol by hydrolysis, trimethylol described in JP-A-11-241029 Examples thereof include compounds that are derivatives of polyhydric alcohols having 3 or more hydroxy groups such as propane, glycerin, pentaerythritol, sorbitol and the like, and that generate silicon compounds that generate R 3 SiOH such as trimethylsilanol by hydrolysis.
本発明の硬化性組成物が物性調整剤を含有する場合、その含有量は、(A)、(B)の合計量100重量部に対して、0.1~20重量部であり、0.5~10重量部であることが好ましい。 When the curable composition of the present invention contains a physical property modifier, the content thereof is 0.1 to 20 parts by weight with respect to 100 parts by weight of the total amount of (A) and (B). The amount is preferably 5 to 10 parts by weight.
本発明の硬化性組成物には、必要に応じて垂れを防止し、作業性を良くするためにチクソ性付与剤(垂れ防止剤)を添加しても良い。垂れ防止剤としては特に限定されないが、例えば、ポリアミドワックス類;水添ヒマシ油誘導体類;ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム等の金属石鹸類等が挙げられる。また、特開平11-349916号公報に記載されているような粒子径10~500μmのゴム粉末や、特開2003-155389号公報に記載されているような有機質繊維を用いると、チクソ性が高く作業性の良好な硬化性組成物が得られる。これらチクソ性付与剤(垂れ防止剤)は単独で用いてもよく、2種以上併用してもよい。 A thixotropic agent (anti-sagging agent) may be added to the curable composition of the present invention as necessary to prevent sagging and improve workability. The anti-sagging agent is not particularly limited, and examples thereof include polyamide waxes; hydrogenated castor oil derivatives; metal soaps such as calcium stearate, aluminum stearate, and barium stearate. Further, when rubber powder having a particle diameter of 10 to 500 μm as described in JP-A-11-349916 or organic fiber as described in JP-A-2003-155389 is used, thixotropy is high. A curable composition having good workability can be obtained. These thixotropic agents (anti-sagging agents) may be used alone or in combination of two or more.
本発明の硬化性組成物がチクソ性付与剤を含有する場合、その含有量は、(A)、(B)成分の合計量100重量部に対して、0.1~20重量部である。 When the curable composition of the present invention contains a thixotropic agent, the content thereof is 0.1 to 20 parts by weight with respect to 100 parts by weight of the total amount of the components (A) and (B).
本発明の硬化性組成物においてはエポキシ基を含有する化合物を使用できる。エポキシ基を含有する化合物を使用すると硬化物の復元性を高めることができる。エポキシ基を含有する化合物としてはエポキシ化不飽和油脂類、エポキシ化不飽和脂肪酸エステル類、脂環式エポキシ化合物類、エピクロルヒドリン誘導体およびそれらの混合物等が例示できる。具体的には、エポキシ化大豆油、エポキシ化アマニ油、ビス(2-エチルヘキシル)-4,5-エポキシシクロヘキサン-1,2-ジカーボキシレート(E-PS)、エポキシオクチルステアレ-ト、エポキシブチルステアレ-ト等があげられる。これらのなかではE-PSが特に好ましい。 In the curable composition of the present invention, a compound containing an epoxy group can be used. When a compound containing an epoxy group is used, the restorability of the cured product can be improved. Examples of the compound containing an epoxy group include epoxidized unsaturated fats and oils, epoxidized unsaturated fatty acid esters, alicyclic epoxy compounds, epichlorohydrin derivatives and mixtures thereof. Specifically, epoxidized soybean oil, epoxidized linseed oil, bis (2-ethylhexyl) -4,5-epoxycyclohexane-1,2-dicarboxylate (E-PS), epoxy octyl stearate, Examples thereof include epoxy butyl stearate. Of these, E-PS is particularly preferred.
本発明の硬化性組成物がエポキシ基を含有する化合物を含有する場合、その含有量は、(A)、(B)成分の合計量100重量部に対して0.5~50重量部である。 When the curable composition of the present invention contains a compound containing an epoxy group, the content thereof is 0.5 to 50 parts by weight with respect to 100 parts by weight of the total amount of the components (A) and (B). .
本発明の硬化性組成物には、ポリリン酸アンモニウム、トリクレジルホスフェートなどのリン系可塑剤、水酸化アルミニウム、水酸化マグネシウム、および、熱膨張性黒鉛などの難燃剤を添加することができる。難燃剤は単独で用いてもよく、2種以上併用してもよい。 To the curable composition of the present invention, a phosphorus plasticizer such as ammonium polyphosphate and tricresyl phosphate, a flame retardant such as aluminum hydroxide, magnesium hydroxide, and thermally expandable graphite can be added. A flame retardant may be used independently and may be used together 2 or more types.
本発明の硬化性組成物が難燃剤を含有する場合、その含有量は、(A)、(B)成分の合計量100重量部に対して5~200重量部であり、10~100重量部であることが好ましい。 When the curable composition of the present invention contains a flame retardant, the content thereof is 5 to 200 parts by weight with respect to 100 parts by weight of the total amount of the components (A) and (B), and 10 to 100 parts by weight. It is preferable that
本発明の硬化性組成物には、硬化性組成物または硬化物の諸物性の調整を目的として、必要に応じて各種添加剤を添加してもよい。このような添加物の例としては、たとえば、硬化性調整剤、ラジカル禁止剤、金属不活性化剤、オゾン劣化防止剤、リン系過酸化物分解剤、滑剤、顔料、発泡剤、防蟻剤、防かび剤などがあげられる。これらの各種添加剤は単独で用いてもよく、2種類以上を併用してもよい。本明細書にあげた添加物の具体例以外の具体例は、たとえば、特公平4-69659号、特公平7-108928号、特開昭63-254149号、特開昭64-22904号、特開2001-72854号の各公報などに記載されている。 Various additives may be added to the curable composition of the present invention as necessary for the purpose of adjusting various physical properties of the curable composition or the cured product. Examples of such additives include, for example, curability regulators, radical inhibitors, metal deactivators, ozone degradation inhibitors, phosphorus peroxide decomposers, lubricants, pigments, foaming agents, and anti-anticides. And fungicides. These various additives may be used alone or in combination of two or more. Specific examples other than the specific examples of the additives listed in this specification include, for example, JP-B-4-69659, JP-B-7-108928, JP-A-63-254149, JP-A-62-2904, It is described in Japanese Laid-Open Patent Publication No. 2001-72854.
本発明の硬化性組成物は、すべての配合成分を予め配合密封保存し、施工後空気中の湿気により硬化する1成分型として調製することも可能であり、硬化剤として別途硬化触媒、充填材、可塑剤、水等の成分を配合しておき、該配合材と重合体組成物を使用前に混合する2成分型として調製することもできる。作業性の点からは、1成分型が好ましい。 The curable composition of the present invention can also be prepared as a one-component type in which all the blended components are pre-blended and sealed and cured by moisture in the air after construction. It is also possible to prepare a two-component type in which components such as a plasticizer and water are blended and the compounding material and the polymer composition are mixed before use. From the viewpoint of workability, a one-component type is preferable.
本発明の硬化性組成物が1成分型の場合、すべての配合成分が予め配合されるため、水分を含有する配合成分は予め脱水乾燥してから使用するか、また配合混練中に減圧などにより脱水するのが好ましい。本発明の硬化性組成物が2成分型の場合、反応性ケイ素基を有する重合体を含有する主剤に硬化触媒を配合する必要がないので配合剤中には若干の水分が含有されていてもゲル化の心配は少ないが、長期間の貯蔵安定性を必要とする場合には脱水乾燥するのが好ましい。脱水、乾燥方法としては粉状などの固状物の場合は加熱乾燥法または減圧脱水法、液状物の場合は減圧脱水法または合成ゼオライト、活性アルミナ、シリカゲル、生石灰、酸化マグネシウムなどを使用した脱水法が好適である。かかる脱水乾燥法に加えて、n-プロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、メチルシリケート、エチルシリケート、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリメトキシシランなどのアルコキシシラン化合物を添加し、水と反応させて脱水してもよい。また、3-エチル-2-メチル-2-(3-メチルブチル)-1,3-オキサゾリジンなどのオキサゾリジン化合物を配合して水と反応させて脱水してもよい。また、イソシアネート化合物を少量配合してイソシアネート基と水とを反応させて脱水してもよい。アルコキシシラン化合物やオキサゾリジン化合物、および、イソシアネート化合物の添加により、貯蔵安定性が向上する。 When the curable composition of the present invention is a one-component type, all the ingredients are pre-blended. Therefore, the water-containing ingredients are used after dehydration and drying, or by reducing the pressure during compounding and kneading. It is preferable to dehydrate. In the case where the curable composition of the present invention is a two-component type, it is not necessary to add a curing catalyst to the main agent containing a polymer having a reactive silicon group, so even if some moisture is contained in the compounding agent. Although there is little concern about gelation, dehydration and drying are preferred when long-term storage stability is required. For dehydration and drying methods, heat drying method or vacuum dehydration method for solid materials such as powders, dehydration method using vacuum zeolite or activated zeolite, silica gel, quick lime, magnesium oxide for liquid materials The method is preferred. In addition to the dehydration drying method, n-propyltrimethoxysilane, vinyltrimethoxysilane, vinylmethyldimethoxysilane, methyl silicate, ethyl silicate, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropylmethyldiethoxysilane, γ- An alkoxysilane compound such as glycidoxypropyltrimethoxysilane may be added and reacted with water for dehydration. Further, an oxazolidine compound such as 3-ethyl-2-methyl-2- (3-methylbutyl) -1,3-oxazolidine may be blended and reacted with water for dehydration. Alternatively, a small amount of an isocyanate compound may be blended to react with an isocyanate group and water for dehydration. Addition of an alkoxysilane compound, an oxazolidine compound, and an isocyanate compound improves storage stability.
脱水剤、特にビニルトリメトキシシランなどの水と反応し得るケイ素化合物の使用量は、(A)、(B)成分の合計量100重量部に対して、0.1~20重量部であり、0.5~10重量部であることが好ましい。 The amount of silicon compound that can react with water such as dehydrating agent, especially vinyltrimethoxysilane, is 0.1 to 20 parts by weight with respect to 100 parts by weight of the total amount of components (A) and (B), The amount is preferably 0.5 to 10 parts by weight.
本発明の硬化性組成物の調製法には特に限定はなく、例えば上述した成分を配合し、ミキサーやロールやニーダーなどを用いて常温または加熱下で混練したり、適した溶剤を少量使用して成分を溶解させ、混合したりするなどの通常の方法が採用されうる。 The method for preparing the curable composition of the present invention is not particularly limited. For example, the above-described components are blended and kneaded using a mixer, roll, kneader or the like at room temperature or under heating, or a small amount of a suitable solvent is used. Ordinary methods such as dissolving and mixing the components may be employed.
本発明の硬化性組成物は、好ましくは常温(23℃)で液状であり、大気中に暴露されると水分の作用により、三次元的に網状組織を形成し、ゴム状弾性を有する固体へと硬化する。 The curable composition of the present invention is preferably in a liquid state at normal temperature (23 ° C.), and forms a three-dimensional network structure by the action of moisture when exposed to the atmosphere, to a solid having rubbery elasticity. And cured.
本発明の硬化性組成物は、粘着剤、建造物・船舶・自動車・道路などのシーリング材、接着剤、型取剤、防振材、制振材、防音材、発泡材料、塗料、吹付材などに使用できる。本発明の硬化性組成物を硬化して得られる硬化物は、柔軟性および接着性に優れることから、これらの中でも、シーリング材または接着剤、特にホットメルト接着剤ではない接着剤として用いることがより好ましい。 The curable composition of the present invention is a pressure-sensitive adhesive, a sealing material for buildings, ships, automobiles, roads, etc., an adhesive, a mold preparation, a vibration-proof material, a vibration-damping material, a sound-proof material, a foam material, a paint, and a spray material Can be used for etc. Since the cured product obtained by curing the curable composition of the present invention is excellent in flexibility and adhesiveness, among them, it can be used as a sealing material or an adhesive, particularly an adhesive that is not a hot melt adhesive. More preferred.
また、太陽電池裏面封止材などの電気・電子部品材料、電線・ケーブル用絶縁被覆材などの電気絶縁材料、弾性接着剤、コンタクト型接着剤、スプレー型シール材、クラック補修材、タイル張り用接着剤、粉体塗料、注型材料、医療用ゴム材料、医療用粘着剤、医療機器シール材、食品包装材、サイジングボード等の外装材の目地用シーリング材、コーティング材、プライマー、電磁波遮蔽用導電性材料、熱伝導性材料、ホットメルト材料、電気電子用ポッティング剤、フィルム、ガスケット、各種成形材料、および、網入りガラスや合わせガラス端面(切断部)の防錆・防水用封止材、自動車部品、電機部品、各種機械部品などにおいて使用される液状シール剤等の様々な用途に利用可能である。更に、単独あるいはプライマーの助けを借りてガラス、磁器、木材、金属、樹脂成形物などの如き広範囲の基質に密着しうるので、種々のタイプの密封組成物および接着組成物としても使用可能である。また、本発明の硬化性組成物は、内装パネル用接着剤、外装パネル用接着剤、タイル張り用接着剤、石材張り用接着剤、天井仕上げ用接着剤、床仕上げ用接着剤、壁仕上げ用接着剤、車両パネル用接着剤、電気・電子・精密機器組立用接着剤、ダイレクトグレージング用シーリング材、複層ガラス用シーリング材、SSG工法用シーリング材、または、建築物のワーキングジョイント用シーリング材、アスファルトを併用した防水材としても使用可能である。 Also, electrical and electronic parts materials such as solar cell backside sealing materials, electrical insulation materials such as insulation coating materials for electric wires and cables, elastic adhesives, contact type adhesives, spray type sealing materials, crack repair materials, and tiles Adhesives, powder paints, casting materials, medical rubber materials, medical adhesives, medical device sealing materials, food packaging materials, sealing materials for joints of exterior materials such as sizing boards, coating materials, primers, electromagnetic wave shielding Conductive materials, thermal conductive materials, hot melt materials, potting agents for electrical and electronic use, films, gaskets, various molding materials, and anti-rust / waterproof sealing materials for meshed glass and laminated glass end faces (cut parts), It can be used for various applications such as liquid sealants used in automobile parts, electrical parts, various machine parts and the like. Furthermore, since it can adhere to a wide range of substrates such as glass, porcelain, wood, metal, resin molding, etc. alone or with the help of a primer, it can also be used as various types of sealing compositions and adhesive compositions. . Further, the curable composition of the present invention includes an adhesive for interior panels, an adhesive for exterior panels, an adhesive for tiles, an adhesive for stonework, an adhesive for ceiling finishing, an adhesive for floor finishing, and an adhesive for wall finishing. Adhesives, adhesives for vehicle panels, adhesives for electrical / electronic / precision equipment assembly, sealing materials for direct glazing, sealing materials for multi-layer glass, sealing materials for SSG construction methods, or sealing materials for building working joints, It can also be used as a waterproof material combined with asphalt.
つぎに実施例および比較例によって本発明を具体的に説明するが、本発明はこれに限定されるものではない。 Next, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
(合成例1)
分子量約3,000のポリオキシプロピレンジオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキシドの重合を行い、末端が水酸基である数平均分子量約15,000(送液システムとして東ソー社製HLC-8120GPCを用い、カラムは東ソー社製TSK-GEL Hタイプを用い、溶媒はTHFを用いて測定したポリスチレン換算分子量)の2官能ポリプロピレンオキシド重合体を得た。続いてこの水酸基末端ポリオキシプロピレンジオールの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、さらに3-クロロ-1-プロペンを添加して末端の水酸基をアリル基に変換した。次に得られたアリル基末端ポリオキシプロピレン100重量部に対して白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)36ppmを加え、撹拌しながら、ジメトキシメチルシラン1.8重量部をゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、末端がジメトキシメチルシシリル基であり1分子あたりのケイ素基が平均1.6個、数平均分子量が15,000である反応性ケイ素基含有ポリオキシプロピレン重合体(ポリマーA-1)を得た。
(Synthesis Example 1)
Polyoxypropylene diol having a molecular weight of about 3,000 is used as an initiator, propylene oxide is polymerized with a zinc hexacyanocobaltate glyme complex catalyst, and a number average molecular weight of about 15,000 having a terminal hydroxyl group (Tosoh Corporation as a liquid feeding system) A bifunctional polypropylene oxide polymer having a polystyrene equivalent molecular weight measured using TSK-GEL H type manufactured by Tosoh Corporation and a solvent using THF was obtained using HLC-8120GPC manufactured by Tosoh Corporation. Subsequently, a 1.2-fold equivalent NaOMe methanol solution was added to the hydroxyl group of the hydroxyl group-terminated polyoxypropylene diol to distill off the methanol, and further 3-chloro-1-propene was added to remove the terminal hydroxyl group. Converted to an allyl group. Next, 36 ppm of platinum divinyldisiloxane complex (3 wt% isopropanol solution in terms of platinum) was added to 100 parts by weight of the obtained allyl group-terminated polyoxypropylene, and 1.8 parts by weight of dimethoxymethylsilane was added while stirring. It was dripped slowly. After the mixed solution was reacted at 90 ° C. for 2 hours, unreacted dimethoxymethylsilane was distilled off under reduced pressure, whereby a terminal was a dimethoxymethylsilyl group and an average of 1.6 silicon groups per molecule. A reactive silicon group-containing polyoxypropylene polymer (polymer A-1) having a number average molecular weight of 15,000 was obtained.
(合成例2)
芳香環構造を有するジオール(ADEKA社製、商品名:BPX-55、分子量1104、OHV2.53mmol/g)100重量部にトルエン3重量部を加え、110℃減圧下で1.5時間共沸脱水を行った。90℃に温度を下げた後、メルカプト錫系触媒であるネオスタンU-360(日東化成(株)製)30ppmを添加し、3-イソシアネートプロピルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ社製、商品名:A-LINK35)51.9重量部を加え反応させた。FT-IRでイソシアネート基のピーク(2272cm-1)の消失を確認して反応を終了させ、トリメトキシシリル基を有する芳香環構造含有有機重合体(B-1)を得た。
(Synthesis Example 2)
3 parts by weight of toluene is added to 100 parts by weight of a diol having an aromatic ring structure (trade name: BPX-55, manufactured by ADEKA, molecular weight 1104, OHV 2.53 mmol / g), and azeotropic dehydration is performed at 110 ° C. under reduced pressure for 1.5 hours. Went. After the temperature was lowered to 90 ° C., 30 ppm of Neostan U-360 (manufactured by Nitto Kasei Co., Ltd.), a mercaptotin-based catalyst, was added, and 3-isocyanatopropyltrimethoxysilane (manufactured by Momentive Performance Materials Co., Ltd.) Name: A-LINK35) 51.9 parts by weight were added and reacted. The disappearance of the isocyanate group peak (2272 cm −1 ) was confirmed by FT-IR, and the reaction was terminated to obtain an aromatic ring structure-containing organic polymer (B-1) having a trimethoxysilyl group.
(合成例3)
合成例2におけるBPX-55の代わりに、BPX-33(ADEKA社製、分子量817、OHV3.48mmol/g)100重量部を使用したこと以外は合成例2と同様にして、トリメトキシシリル基を有する芳香環構造含有有機重合体(B-2)を得た。
(Synthesis Example 3)
A trimethoxysilyl group was synthesized in the same manner as in Synthesis Example 2 except that 100 parts by weight of BPX-33 (manufactured by ADEKA, molecular weight 817, OHV 3.48 mmol / g) was used instead of BPX-55 in Synthesis Example 2. An aromatic ring structure-containing organic polymer (B-2) was obtained.
(合成例4)
合成例2におけるBPX-55の代わりに、BPX-21(ADEKA社製、分子量640、OHV5.06mmol/g)100重量部を使用したこと以外は合成例2と同様にして、トリメトキシシリル基を有する芳香環構造含有有機重合体(B-3)を得た。
(Synthesis Example 4)
In the same manner as in Synthesis Example 2 except that 100 parts by weight of BPX-21 (manufactured by ADEKA, molecular weight 640, OHV 5.06 mmol / g) was used instead of BPX-55 in Synthesis Example 2, the trimethoxysilyl group was An aromatic ring structure-containing organic polymer (B-3) was obtained.
(合成例5)
合成例2におけるBPX-55の代わりに、BPX-2000(ADEKA社製、分子量2778、OHV1.01mmol/g)100重量部を使用したこと以外は合成例2と同様にして、トリメトキシシリル基を有する芳香環構造含有有機重合体(B-4)を得た。
(Synthesis Example 5)
In the same manner as in Synthesis Example 2 except that 100 parts by weight of BPX-2000 (manufactured by ADEKA, molecular weight 2778, OHV 1.01 mmol / g) was used instead of BPX-55 in Synthesis Example 2, a trimethoxysilyl group was added. An aromatic ring structure-containing organic polymer (B-4) was obtained.
(合成例6)
合成例2におけるBPX-55の代わりに、AC006(伊藤製油社製、芳香族含有ひまし油系ポリオール、OHV1.01mmol/g)100重量部を使用したこと以外は合成例2と同様にして、トリメトキシシリル基を有する芳香環構造含有有機重合体(B-5)を得た。
(Synthesis Example 6)
Trimethoxy in the same manner as in Synthesis Example 2 except that 100 parts by weight of AC006 (manufactured by Ito Oil Co., Ltd., aromatic-containing castor oil-based polyol, OHV 1.01 mmol / g) was used instead of BPX-55 in Synthesis Example 2. An aromatic ring structure-containing organic polymer (B-5) having a silyl group was obtained.
(合成例7)
合成例2におけるBPX-55の代わりに、AC009(伊藤製油社製、芳香族含有ひまし油系ポリオール、OHV3.91mmol/g)100重量部を使用したこと以外は合成例2と同様にして、トリメトキシシリル基を有する芳香環構造含有有機重合体(B-6)を得た。
(Synthesis Example 7)
Trimethoxy in the same manner as in Synthesis Example 2 except that 100 parts by weight of AC009 (produced by Ito Oil Co., Ltd., aromatic-containing castor oil-based polyol, OHV 3.91 mmol / g) was used instead of BPX-55 in Synthesis Example 2. An aromatic ring structure-containing organic polymer (B-6) having a silyl group was obtained.
(実施例1)
合成例1で得られた、反応性ケイ素基含有ポリオキシプロピレン系重合体(ポリマーA-1)90重量部、合成例2で得られたトリメトキシシリル基を有する芳香環構造含有有機重合体(B-1)10重量部、充填剤として、表面処理膠質炭酸カルシウム(白石工業社製、白艶華CCR)、脱水剤として、ビニルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ社製、A-171)、接着付与剤として、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ社製、A-1120)、硬化触媒として、ジブチル錫ジアセトアセトネート(日東化成社製、ネオスタンU220H)をそれぞれ所定量ずつ配合して混練し、硬化性組成物を得た。
(Example 1)
90 parts by weight of the reactive silicon group-containing polyoxypropylene polymer (Polymer A-1) obtained in Synthesis Example 1 and the aromatic ring structure-containing organic polymer having the trimethoxysilyl group obtained in Synthesis Example 2 ( B-1) 10 parts by weight, surface-treated colloidal calcium carbonate (manufactured by Shiraishi Kogyo Co., Ltd., Shiruka CCR) as filler, vinyltrimethoxysilane (manufactured by Momentive Performance Materials, A-171) as dehydrating agent, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane (manufactured by Momentive Performance Materials, A-1120) as an adhesion-imparting agent, and dibutyltin diacetacetonate (Nitto Kasei Co., Ltd.) as a curing catalyst Manufactured by Neostan U220H) were mixed in a predetermined amount and kneaded to obtain a curable composition.
(実施例2)
実施例1における反応性ケイ素基含有ポリオキシプロピレン系重合体(ポリマーA-1)を60重量部、トリメトキシシリル基を有する芳香環構造含有有機重合体(B-1)を40重量部使用したこと以外は、実施例1と同様にして硬化性組成物を得た。
(Example 2)
The reactive silicon group-containing polyoxypropylene polymer (polymer A-1) in Example 1 was used in an amount of 60 parts by weight, and the aromatic ring structure-containing organic polymer (B-1) having a trimethoxysilyl group was used in an amount of 40 parts by weight. Except for this, a curable composition was obtained in the same manner as in Example 1.
(実施例3)
実施例1におけるトリメトキシシリル基を有する芳香環構造含有有機重合体(B-1)の代わりに、合成例3で得られたトリメトキシシリル基を有する芳香環構造含有有機重合体(B-2)を10重量部使用したこと以外は、実施例1と同様にして硬化性組成物を得た。
(Example 3)
Instead of the aromatic ring structure-containing organic polymer (B-1) having a trimethoxysilyl group in Example 1, the aromatic ring structure-containing organic polymer having a trimethoxysilyl group obtained in Synthesis Example 3 (B-2) ) Was used in the same manner as in Example 1 except that 10 parts by weight were used.
(実施例4)
実施例2におけるトリメトキシシリル基を有する芳香環構造含有有機重合体(B-1)の代わりに、合成例3で得られたトリメトキシシリル基を有する芳香環構造含有有機重合体(B-2)を40重量部使用したこと以外は、実施例2と同様にして硬化性組成物を得た。
Example 4
Instead of the aromatic ring structure-containing organic polymer (B-1) having a trimethoxysilyl group in Example 2, the aromatic ring structure-containing organic polymer having a trimethoxysilyl group obtained in Synthesis Example 3 (B-2) ) Was used in the same manner as in Example 2 except that 40 parts by weight was used.
(実施例5)
実施例1におけるトリメトキシシリル基を有する芳香環構造含有有機重合体(B-1)の代わりに、合成例4で得られたトリメトキシシリル基を有する芳香環構造含有有機重合体(B-3)を10重量部使用したこと以外は、実施例1と同様にして硬化性組成物を得た。
(Example 5)
Instead of the aromatic ring structure-containing organic polymer (B-1) having a trimethoxysilyl group in Example 1, the aromatic ring structure-containing organic polymer having a trimethoxysilyl group obtained in Synthesis Example 4 (B-3) ) Was used in the same manner as in Example 1 except that 10 parts by weight were used.
(実施例6)
実施例2におけるトリメトキシシリル基を有する芳香環構造含有有機重合体(B-1)の代わりに、合成例4で得られたトリメトキシシリル基を有する芳香環構造含有有機重合体(B-3)を40重量部使用したこと以外は、実施例2と同様にして硬化性組成物を得た。
(Example 6)
Instead of the aromatic ring structure-containing organic polymer (B-1) having a trimethoxysilyl group in Example 2, the aromatic ring structure-containing organic polymer having a trimethoxysilyl group obtained in Synthesis Example 4 (B-3) ) Was used in the same manner as in Example 2 except that 40 parts by weight was used.
(実施例7)
実施例1におけるトリメトキシシリル基を有する芳香環構造含有有機重合体(B-1)の代わりに、合成例5で得られたトリメトキシシリル基を有する芳香環構造含有有機重合体(B-4)を10重量部使用したこと以外は、実施例1と同様にして硬化性組成物を得た。
(Example 7)
Instead of the aromatic ring structure-containing organic polymer (B-1) having a trimethoxysilyl group in Example 1, the aromatic ring structure-containing organic polymer having a trimethoxysilyl group obtained in Synthesis Example 5 (B-4) ) Was used in the same manner as in Example 1 except that 10 parts by weight were used.
(実施例8)
実施例2におけるトリメトキシシリル基を有する芳香環構造含有有機重合体(B-1)の代わりに、合成例5で得られたトリメトキシシリル基を有する芳香環構造含有有機重合体(B-4)を40重量部使用したこと以外は、実施例2と同様にして硬化性組成物を得た。
(Example 8)
Instead of the aromatic ring structure-containing organic polymer (B-1) having a trimethoxysilyl group in Example 2, the aromatic ring structure-containing organic polymer having a trimethoxysilyl group obtained in Synthesis Example 5 (B-4) ) Was used in the same manner as in Example 2 except that 40 parts by weight was used.
(実施例9)
実施例1におけるトリメトキシシリル基を有する芳香環構造含有有機重合体(B-1)の代わりに、合成例6で得られたトリメトキシシリル基を有する芳香環構造含有有機重合体(B-5)を10重量部使用したこと以外は、実施例1と同様にして硬化性組成物を得た。
Example 9
Instead of the aromatic ring structure-containing organic polymer (B-1) having a trimethoxysilyl group in Example 1, the aromatic ring structure-containing organic polymer having a trimethoxysilyl group obtained in Synthesis Example 6 (B-5) ) Was used in the same manner as in Example 1 except that 10 parts by weight were used.
(実施例10)
実施例2におけるトリメトキシシリル基を有する芳香環構造含有有機重合体(B-1)の代わりに、合成例6で得られたトリメトキシシリル基を有する芳香環構造含有有機重合体(B-5)を40重量部使用したこと以外は、実施例2と同様にして硬化性組成物を得た。
(Example 10)
Instead of the aromatic ring structure-containing organic polymer (B-1) having a trimethoxysilyl group in Example 2, the aromatic ring structure-containing organic polymer having a trimethoxysilyl group obtained in Synthesis Example 6 (B-5) ) Was used in the same manner as in Example 2 except that 40 parts by weight was used.
(実施例11)
実施例1におけるトリメトキシシリル基を有する芳香環構造含有有機重合体(B-1)の代わりに、合成例7で得られたトリメトキシシリル基を有する芳香環構造含有有機重合体(B-6)を10重量部使用したこと以外は、実施例1と同様にして硬化性組成物を得た。
(Example 11)
Instead of the aromatic ring structure-containing organic polymer (B-1) having a trimethoxysilyl group in Example 1, the aromatic ring structure-containing organic polymer (B-6) having a trimethoxysilyl group obtained in Synthesis Example 7 was used. ) Was used in the same manner as in Example 1 except that 10 parts by weight were used.
(実施例12)
実施例1におけるトリメトキシシリル基を有する芳香環構造含有有機重合体(B-1)の代わりに、合成例7で得られたトリメトキシシリル基を有する芳香環構造含有有機重合体(B-6)を40重量部使用したこと以外は、実施例2と同様にして硬化性組成物を得た。
Example 12
Instead of the aromatic ring structure-containing organic polymer (B-1) having a trimethoxysilyl group in Example 1, the aromatic ring structure-containing organic polymer (B-6) having a trimethoxysilyl group obtained in Synthesis Example 7 was used. ) Was used in the same manner as in Example 2 except that 40 parts by weight was used.
(比較例1)
実施例1におけるトリメトキシシリル基を有する芳香環構造含有有機重合体(B-1)を添加せずに、反応性ケイ素基含有ポリオキシプロピレン系重合体(ポリマーA-1)を100重量部使用したこと以外は、実施例1と同様にして硬化性組成物を得た。
(Comparative Example 1)
Using 100 parts by weight of the reactive silicon group-containing polyoxypropylene polymer (polymer A-1) without adding the aromatic ring structure-containing organic polymer (B-1) having a trimethoxysilyl group in Example 1 Except having done, it carried out similarly to Example 1, and obtained the curable composition.
以上の実施例及び比較例の配合比を表1に示す。 Table 1 shows the compounding ratios of the above Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
以上のようにして得られた硬化性組成物を用いて、JIS5758に準じてH型試験片を被着体としてモルタルを用い、プライマーなしで作製した。得られた試験片を用いて、室温で7日、さらに50℃で7日養生した後、及び、更に50℃温水に7日間浸漬した直後に、50mm/分の速度で引張試験を行った。結果を表1に示す。また、比較例として、トリメトキシシリル基を有する芳香環構造含有有機重合体を添加しなかった場合の結果も併せて示す。 Using the curable composition obtained as described above, an H-type test piece was used as an adherend according to JIS5758, and was prepared without a primer. Using the obtained test piece, a tensile test was conducted at a speed of 50 mm / min after aging for 7 days at room temperature and further for 7 days at 50 ° C. and immediately after being immersed in warm water at 50 ° C. for 7 days. The results are shown in Table 1. In addition, as a comparative example, the result in the case where the aromatic ring structure-containing organic polymer having a trimethoxysilyl group was not added is also shown.
表1において、CF、AFはそれぞれ凝集破壊(cohesive failure)、界面破壊(Adhesive failure)を示す。凝集破壊とは、引張試験において試験片の破断時に破断箇所が被着体との接着面ではなく硬化物部分である場合である。界面破壊とは、上記破断箇所が被着体との接着面である場合である。また、MFとは、引張試験時に基材破壊(material failure)してしまったことを示す。破壊モードが凝集破壊、界面破壊の場合にはそれぞれの破壊モードの頭文字の後に破断面積における占有割合を示している。たとえば、凝集破壊100%の場合にはC100と、凝集破壊と界面破壊が50%ずつ発生している場合にはC50A50と表記している。また、Tbは破断強度であり、この値が大きいほど接着強度が高いことを示す。表1に示したように、実施例1~6と9~12では、比較例に比べ良好な耐水接着強度を示していることがわかる。また、(B)成分の、ビスフェノールA1モルに対するプロピレンオキシドの反応量が30モル以上であるBPX-2000を使用した場合は、上記のような効果は得られなかった。 In Table 1, CF and AF indicate cohesive failure and interfacial failure, respectively. The cohesive failure is a case where, in a tensile test, a fractured portion is not a bonding surface with an adherend but a cured product portion when a test piece is broken. Interfacial fracture is when the fracture location is an adhesive surface with the adherend. In addition, MF indicates that the substrate has been destroyed (material failure) during the tensile test. When the fracture mode is cohesive fracture or interface fracture, the occupation ratio in the fracture area is shown after the initial of each fracture mode. For example, C100 is indicated when cohesive failure is 100%, and C50A50 is indicated when cohesive failure and interface failure occur 50% each. Moreover, Tb is a breaking strength, and it shows that adhesive strength is so high that this value is large. As shown in Table 1, it can be seen that Examples 1 to 6 and 9 to 12 show better water-resistant adhesive strength than the comparative example. In addition, when BPX-2000 in which the reaction amount of propylene oxide with respect to 1 mol of bisphenol A as the component (B) was 30 mol or more was used, the above effect could not be obtained.
(合成例8)
分子量約3,000のポリオキシプロピレンジオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキシドの重合を行い、末端が水酸基である数平均分子量約15,000(送液システムとして東ソー社製HLC-8120GPCを用い、カラムは東ソー社製TSK-GEL Hタイプを用い、溶媒はTHFを用いて測定したポリスチレン換算分子量)の2官能ポリプロピレンオキシド重合体を得た。続いてこの水酸基末端ポリオキシプロピレンジオールの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、さらに3-クロロ-1-プロペンを添加して末端の水酸基をアリル基に変換した。次に得られたアリル基末端ポリオキシプロピレン100重量部に対して白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)36ppmを加え、撹拌しながら、ジメトキシメチルシラン1.8重量部をゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、末端がジメトキシメチルシシリル基であり1分子あたりのケイ素基が平均1.6個、数平均分子量が28,000である反応性ケイ素基含有ポリオキシプロピレン重合体(ポリマーA-2)を得た。
(Synthesis Example 8)
Polyoxypropylene diol having a molecular weight of about 3,000 is used as an initiator, propylene oxide is polymerized with a zinc hexacyanocobaltate glyme complex catalyst, and a number average molecular weight of about 15,000 having a terminal hydroxyl group (Tosoh Corporation as a liquid feeding system) A bifunctional polypropylene oxide polymer having a polystyrene equivalent molecular weight measured using TSK-GEL H type manufactured by Tosoh Corporation and a solvent using THF was obtained using HLC-8120GPC manufactured by Tosoh Corporation. Subsequently, a 1.2-fold equivalent NaOMe methanol solution was added to the hydroxyl group of the hydroxyl group-terminated polyoxypropylene diol to distill off the methanol, and further 3-chloro-1-propene was added to remove the terminal hydroxyl group. Converted to an allyl group. Next, 36 ppm of platinum divinyldisiloxane complex (3 wt% isopropanol solution in terms of platinum) was added to 100 parts by weight of the obtained allyl group-terminated polyoxypropylene, and 1.8 parts by weight of dimethoxymethylsilane was added while stirring. It was dripped slowly. After the mixed solution was reacted at 90 ° C. for 2 hours, unreacted dimethoxymethylsilane was distilled off under reduced pressure, whereby a terminal was a dimethoxymethylsilyl group and an average of 1.6 silicon groups per molecule. A reactive silicon group-containing polyoxypropylene polymer (polymer A-2) having a number average molecular weight of 28,000 was obtained.
(合成例9)
ビスフェノールA型アルキレンオキサイド付加ジグリシジルエーテル(ADEKA社製、商品名:アデカレジンEP4000、分子量640)100重量部をナスフラスコに入れ、窒素気流下でアミノプロピルトリメトキシシラン112重量部を加えた。80℃に昇温し、そのまま1時間攪拌を続けた。NMRにより、エポキシ基が完全に消失したことを確認して、末端がトリメトキシシリル基であり、分子内に水酸基を有している芳香環構造含有有機化合物(B-7)を得た。芳香環構造含有有機重合体(B-7)は水酸基を有しているため、本発明の硬化性組成物に用いられる(B)成分には該当しない。
(Synthesis Example 9)
100 parts by weight of bisphenol A type alkylene oxide-added diglycidyl ether (manufactured by ADEKA, trade name: Adeka Resin EP4000, molecular weight 640) was placed in an eggplant flask, and 112 parts by weight of aminopropyltrimethoxysilane was added under a nitrogen stream. The temperature was raised to 80 ° C. and stirring was continued for 1 hour. By confirming the disappearance of the epoxy group by NMR, an aromatic ring structure-containing organic compound (B-7) having a terminal trimethoxysilyl group and having a hydroxyl group in the molecule was obtained. Since the aromatic ring structure-containing organic polymer (B-7) has a hydroxyl group, it does not correspond to the component (B) used in the curable composition of the present invention.
(合成例10)
BPX-33(ADEKA社製、分子量817、OHV3.48mmol/g)100重量部を反応容器に加え、続いてこの水酸基に対して1.1倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、さらに3-クロロ-1-プロペンを添加して末端の水酸基をアリル基に変換した。次に得られたアリル基末端ポリオキシプロピレン100重量部に対して白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロパノール溶液)100ppmを加え、撹拌しながら、ジメトキシメチルシラン23.2重量部をゆっくりと滴下した。その混合溶液を90℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、末端にジメトキシメチルシシリル基を有する芳香環構造含有有機重合体(B-8)を得た。
(Synthesis Example 10)
100 parts by weight of BPX-33 (manufactured by ADEKA, molecular weight 817, OHV 3.48 mmol / g) was added to the reaction vessel, and then a methanol solution of NaOMe 1.1 times equivalent to the hydroxyl group was added to distill methanol. Then, 3-chloro-1-propene was further added to convert the terminal hydroxyl group into an allyl group. Next, 100 ppm of platinum divinyldisiloxane complex (3 wt% isopropanol solution in terms of platinum) was added to 100 parts by weight of the obtained allyl group-terminated polyoxypropylene, and 23.2 parts by weight of dimethoxymethylsilane was added while stirring. It was dripped slowly. The mixed solution was reacted at 90 ° C. for 2 hours, and then unreacted dimethoxymethylsilane was distilled off under reduced pressure, whereby an aromatic ring structure-containing organic polymer having a dimethoxymethylsilyl group at the terminal (B-8) Got.
(比較例2)
合成例8で得られた、反応性ケイ素基含有ポリオキシプロピレン系重合体(ポリマーA-2)70重量部、合成例9で得られたトリメトキシシリル基を有する芳香環構造含有有機重合体(B-7)30重量部、可塑剤としてジイソノニルフタレート90重量部、充填剤として膠質炭酸カルシウム(竹原化学工業社製、NeolightSP)160重量部、重質炭酸カルシウム(丸尾カルシウム社製、LM2200)54重量部、酸化チタン(石原産業社製、R820)5重量部、チクソ性付与剤(Arkema社製、craylarrac SL)5重量部、紫外線吸収剤(BASF社製、チヌビン770)1重量部、光安定剤(BASF社製、チヌビン326)1重量部、脱水剤としてビニルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ社製、A-171)3重量部、接着付与剤として、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ社製、A-1120)3重量部、硬化触媒として、ジブチル錫ジアセトアセトネート(日東化成社製、ネオスタンU220H)0.5重量部をそれぞれ所定量ずつ配合して混練しカートリッジに充填し1液型硬化性組成物を得た。1液型硬化性組成物を50℃のオーブンに4週間貯蔵した。比較例2の硬化性組成物は4週間の貯蔵後に、目視で確認できるぐらいのダマが発生した。
(Comparative Example 2)
70 parts by weight of a reactive silicon group-containing polyoxypropylene polymer (Polymer A-2) obtained in Synthesis Example 8 and an aromatic ring structure-containing organic polymer having a trimethoxysilyl group obtained in Synthesis Example 9 ( B-7) 30 parts by weight, 90 parts by weight of diisononyl phthalate as a plasticizer, 160 parts by weight of colloidal calcium carbonate (manufactured by Takehara Chemical Industries, NeolightSP) as a filler, 54 parts by weight of heavy calcium carbonate (manufactured by Maruo Calcium, LM2200) Parts, 5 parts by weight of titanium oxide (Ishihara Sangyo Co., Ltd., R820), 5 parts by weight of thixotropic agent (Arkema, craylarrac SL), 1 part by weight of UV absorber (manufactured by BASF, Tinuvin 770), light stabilizer 1 part by weight (manufactured by BASF, Tinuvin 326), vinyltrimethoxysilane (momentive performance) as a dehydrating agent Mans Materials Co., Ltd., A-171) 3 parts by weight, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane (Momentive Performance Materials Co., A-1120) as an adhesion-imparting agent As a curing catalyst, 3 parts by weight, 0.5 parts by weight of dibutyltin diacetacetonate (Nitto Kasei Co., Ltd., Neostan U220H) is blended in a predetermined amount, kneaded and filled into a cartridge to prepare a one-pack curable composition. Obtained. The one-part curable composition was stored in an oven at 50 ° C. for 4 weeks. The curable composition of Comparative Example 2 was damped enough to be visually confirmed after storage for 4 weeks.
(実施例13)
比較例2における芳香環構造含有有機重合体(B-7)の代わりに、合成例2で得られた芳香環構造含有有機重合体(B-1)を30重量部使用したこと以外は、比較例2と同様にして1液型硬化性組成物を作製し評価を行った。
(Example 13)
Comparative Example 2 except that 30 parts by weight of the aromatic ring structure-containing organic polymer (B-1) obtained in Synthesis Example 2 was used instead of the aromatic ring structure-containing organic polymer (B-7) in Comparative Example 2. In the same manner as in Example 2, a one-component curable composition was prepared and evaluated.
(実施例14)
比較例2における芳香環構造含有有機重合体(B-7)の代わりに、合成例10で得られた芳香環構造含有有機重合体(B-8)を30重量部使用したこと以外は、比較例2と同様にして1液型硬化性組成物を作製し評価を行った。
(Example 14)
Comparative Example 2 except that 30 parts by weight of the aromatic ring structure-containing organic polymer (B-8) obtained in Synthesis Example 10 was used instead of the aromatic ring structure-containing organic polymer (B-7) in Comparative Example 2. In the same manner as in Example 2, a one-component curable composition was prepared and evaluated.
本発明の硬化性組成物は、貯蔵後に硬化させた場合も良好な接着性を示す硬化物となる。このことを検証する為に、カートリッジ内に密封した状態で50℃で4週間貯蔵した後の硬化性組成物を用いて、JIS5758に準じてH型試験片を被着体としてモルタルを用い、プライマーなしで作製した。得られた試験片を用いて、室温で7日、さらに50℃で7日養生した後、及び、更に50℃温水に7日間浸漬した後に50mm/分の速度で引張試験を行った。またB型粘度計を用いて10回転での粘度を貯蔵前後で測定し、粘度変化率を測定した。結果を表2に示す。 The curable composition of the present invention is a cured product that exhibits good adhesion even when cured after storage. In order to verify this, using a curable composition after being stored for 4 weeks at 50 ° C. in a sealed state in a cartridge, using a mortar with an H-type test piece as an adherend according to JIS5758, a primer Made without. The obtained test piece was subjected to a tensile test at a speed of 50 mm / min after aging for 7 days at room temperature and further for 7 days at 50 ° C., and further immersed in warm water at 50 ° C. for 7 days. Moreover, the viscosity in 10 rotations was measured before and after storage using a B type viscometer, and the viscosity change rate was measured. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
実施例13は比較例2と比較して50℃温水に浸漬した後の接着強度が高く、実施例14は比較例2と比較して50℃温水に浸漬した後の接着強度維持率が高いことが分かった。この要因としては、比較例2では実施例13、14と比べて、貯蔵後の粘度変化率が高く、3次元架橋が進行しており、接着界面との濡れ性が不十分であることが考えられる。 Example 13 has a higher adhesive strength after immersion in 50 ° C. warm water than Comparative Example 2, and Example 14 has a higher adhesive strength maintenance ratio after immersion in 50 ° C. warm water than Comparative Example 2. I understood. The reason for this is that in Comparative Example 2, the rate of change in viscosity after storage is higher than in Examples 13 and 14, and the three-dimensional crosslinking proceeds, and the wettability with the adhesive interface is insufficient. It is done.

Claims (14)

  1. (A)反応性ケイ素基含有有機重合体(下記(B)成分を除く)、及び、
    (B)芳香環構造および/または水添された芳香環構造を有し、末端に反応性ケイ素基を有し、水酸基を有さない有機重合体
    を含有することを特徴とする硬化性組成物。
    (A) Reactive silicon group-containing organic polymer (excluding the following component (B)), and
    (B) A curable composition comprising an organic polymer having an aromatic ring structure and / or a hydrogenated aromatic ring structure, having a reactive silicon group at a terminal and no hydroxyl group .
  2. (B)成分がビスフェノール構造を有する、請求項1に記載の硬化性組成物。 The curable composition according to claim 1, wherein the component (B) has a bisphenol structure.
  3. (A)成分100重量部に対し、(B)成分を3~100重量部含有する、請求項1または2に記載の硬化性組成物。 The curable composition according to claim 1 or 2, comprising 3 to 100 parts by weight of component (B) with respect to 100 parts by weight of component (A).
  4. (B)成分がビスフェノール類のアルキレンオキシド付加反応物を含有する、請求項1~3のいずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 3, wherein the component (B) contains an alkylene oxide addition reaction product of bisphenols.
  5. ビスフェノール類のアルキレンオキシド付加反応物が、ビスフェノールAとプロピレンオキシドとの付加反応物である、請求項4に記載の硬化性組成物。 The curable composition according to claim 4, wherein the alkylene oxide addition reaction product of bisphenol is an addition reaction product of bisphenol A and propylene oxide.
  6. ビスフェノールA1モルに対するプロピレンオキシドの反応量が2~30モルである、請求項5に記載の硬化性組成物。 The curable composition according to claim 5, wherein the reaction amount of propylene oxide with respect to 1 mol of bisphenol A is 2 to 30 mol.
  7. ビスフェノールA1モルに対するプロピレンオキシドの反応量が2~15モルである、請求項5に記載の硬化性組成物。 The curable composition according to claim 5, wherein the reaction amount of propylene oxide with respect to 1 mol of bisphenol A is 2 to 15 mol.
  8. (A)成分の主鎖骨格がポリオキシアルキレン系重合体である、請求項1~7のいずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 7, wherein the main chain skeleton of the component (A) is a polyoxyalkylene polymer.
  9. (B)成分が、加水分解性の官能基をケイ素原子上に有するケイ素化合物による変性物である、請求項1~8のいずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 8, wherein the component (B) is a modified product of a silicon compound having a hydrolyzable functional group on a silicon atom.
  10. (B)成分が末端に下記一般式(6)または下記一般式(7)で表される構造を有する、請求項1~9のいずれか1項に記載の硬化性組成物。
    -O-R-SiR 3-b  (6)
    (一般式(6)中、Rは炭素数1~20の置換または非置換の2価の炭化水素基を表す。Rは炭素数1~20の置換または非置換の炭化水素基を表す。Xはそれぞれ独立に水酸基または加水分解性基を表す。bは0または1を表す。)
    -W-R10-SiR11 3-c  (7)
    (一般式(7)中、R10は炭素数1~20の置換または非置換の2価の炭化水素基を表す。R11は、炭素数1~20の置換または非置換の炭化水素基を表す。Xはそれぞれ独立に水酸基または加水分解性基を表す。cは0または1を表す。Wは-O-CO-N(R12)-、-N(R12)-CO-O-、-N(R12)-CO-N(R12)-、-N(R12)-CS-N(R12)-または-S-を表す。R12は、水素、または、ハロゲン置換されていてもよい炭素数1~18の炭化水素基を表す。)
    The curable composition according to any one of claims 1 to 9, wherein the component (B) has a structure represented by the following general formula (6) or the following general formula (7) at a terminal.
    —O—R 8 —SiR 9 b X 2 3-b (6)
    (In the general formula (6), R 8 represents a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms. R 9 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms. X 2 each independently represents a hydroxyl group or a hydrolyzable group, and b represents 0 or 1.)
    —W—R 10 —SiR 11 c X 3 3-c (7)
    (In the general formula (7), R 10 represents a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms. R 11 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms. X 3 each independently represents a hydroxyl group or a hydrolyzable group, c represents 0 or 1, W represents —O—CO—N (R 12 ) —, —N (R 12 ) —CO—O—. , -N (R 12 ) -CO-N (R 12 )-, -N (R 12 ) -CS-N (R 12 )-or -S-, wherein R 12 is hydrogen or halogen-substituted Represents an optionally substituted hydrocarbon group having 1 to 18 carbon atoms.)
  11. (A)成分が、下記一般式(1)で表される反応性ケイ素基を有する、請求項1~10のいずれか1項に記載の硬化性組成物。
    -SiR 3-a  (1)
    (一般式(1)中、Rは炭素数1~20の置換または非置換の炭化水素基を表す。Xはそれぞれ独立に水酸基または加水分解性基を表す。aは0または1を表す。)
    The curable composition according to any one of claims 1 to 10, wherein the component (A) has a reactive silicon group represented by the following general formula (1).
    -SiR 1 a X 1 3-a (1)
    (In the general formula (1), R 1 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms. X 1 independently represents a hydroxyl group or a hydrolyzable group. A represents 0 or 1. .)
  12. 請求項1~11のいずれか1項に記載の硬化性組成物を成分として含むシーリング材。 A sealing material comprising the curable composition according to any one of claims 1 to 11 as a component.
  13. 請求項1~11のいずれか1項に記載の硬化性組成物を成分として含む接着剤。 An adhesive comprising the curable composition according to any one of claims 1 to 11 as a component.
  14. 請求項1~11のいずれか1項に記載の硬化性組成物を硬化させて得られるコーティング材。
     
    A coating material obtained by curing the curable composition according to any one of claims 1 to 11.
PCT/JP2015/076271 2014-09-26 2015-09-16 Curable composition and cured product thereof WO2016047519A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016550131A JP6716459B2 (en) 2014-09-26 2015-09-16 Curable composition and cured product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-197263 2014-09-26
JP2014197263 2014-09-26

Publications (1)

Publication Number Publication Date
WO2016047519A1 true WO2016047519A1 (en) 2016-03-31

Family

ID=55581046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076271 WO2016047519A1 (en) 2014-09-26 2015-09-16 Curable composition and cured product thereof

Country Status (2)

Country Link
JP (1) JP6716459B2 (en)
WO (1) WO2016047519A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019189863A (en) * 2018-04-20 2019-10-31 Agc株式会社 Curable composition and cured article
KR20230143653A (en) * 2022-04-05 2023-10-13 빌드켐 주식회사 Organic and inorganic hybrid grout compositon with high flow and high elasticity and grout construction method using the same
WO2023218890A1 (en) * 2022-05-13 2023-11-16 Agc株式会社 Composition, compound, surface treatment agent, article, and method for producing article

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052321A (en) * 2004-08-12 2006-02-23 Konishi Co Ltd New vinyl silane compound, curable resin using the same, and curable resin composition using the same
JP2006169348A (en) * 2004-12-15 2006-06-29 Konishi Co Ltd Curable resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052321A (en) * 2004-08-12 2006-02-23 Konishi Co Ltd New vinyl silane compound, curable resin using the same, and curable resin composition using the same
JP2006169348A (en) * 2004-12-15 2006-06-29 Konishi Co Ltd Curable resin composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019189863A (en) * 2018-04-20 2019-10-31 Agc株式会社 Curable composition and cured article
JP7342412B2 (en) 2018-04-20 2023-09-12 Agc株式会社 Curable composition and cured product
KR20230143653A (en) * 2022-04-05 2023-10-13 빌드켐 주식회사 Organic and inorganic hybrid grout compositon with high flow and high elasticity and grout construction method using the same
KR102650351B1 (en) 2022-04-05 2024-03-25 빌드켐 주식회사 Organic and inorganic hybrid grout compositon with high flow and high elasticity and grout construction method using the same
WO2023218890A1 (en) * 2022-05-13 2023-11-16 Agc株式会社 Composition, compound, surface treatment agent, article, and method for producing article

Also Published As

Publication number Publication date
JPWO2016047519A1 (en) 2017-08-17
JP6716459B2 (en) 2020-07-01

Similar Documents

Publication Publication Date Title
JP6275036B2 (en) POLYMER HAVING TERMINAL STRUCTURE HAVING MULTIPLE REACTIVE SILICON GROUPS, PROCESS FOR PRODUCING THE SAME AND USE
JP5002262B2 (en) Curable composition
EP2527406B1 (en) Curable composition
JP5284797B2 (en) Curable composition
JP6603582B2 (en) Curable composition
JP5785954B2 (en) Reactive plasticizer and curable composition containing the same
JP5953234B2 (en) Curable composition
EP2894199B1 (en) Curable composition
WO2008032539A1 (en) MOISTURE-CURABLE POLYMER HAVING SiF GROUP AND CURABLE COMPOSITION CONTAINING THE SAME
WO2015105122A1 (en) Curable composition
JP5883439B2 (en) Curable composition
WO2015080067A1 (en) Curable composition
JP2012057148A (en) Curable composition
JP6290785B2 (en) Moisture curable composition
JP5210685B2 (en) Method for producing reactive silicon group-containing organic polymer composition, method for adjusting fluidity, and joint structure using the organic polymer composition
JP6716459B2 (en) Curable composition and cured product thereof
JP5244413B2 (en) Composition comprising an organic polymer having a reactive silicon group
JP2018197329A (en) Room temperature-curable composition
WO2017138463A1 (en) Curable composition having improved water-resistant adhesiveness
JP5639442B2 (en) Curable composition
JP2014198791A (en) Curable composition
JP5564312B2 (en) Curable composition
JP2006348209A (en) Curable composition
JP2009120720A (en) Composition containing organic polymer having reactive silicone group
JP5232446B2 (en) Composition comprising an organic polymer having a reactive silicon group

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845453

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016550131

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15845453

Country of ref document: EP

Kind code of ref document: A1