WO2016047362A1 - Coating material, pattern formation method, and electronic device and method for manufacturing same - Google Patents

Coating material, pattern formation method, and electronic device and method for manufacturing same Download PDF

Info

Publication number
WO2016047362A1
WO2016047362A1 PCT/JP2015/074271 JP2015074271W WO2016047362A1 WO 2016047362 A1 WO2016047362 A1 WO 2016047362A1 JP 2015074271 W JP2015074271 W JP 2015074271W WO 2016047362 A1 WO2016047362 A1 WO 2016047362A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
pattern
coating material
droplet ejection
electronic device
Prior art date
Application number
PCT/JP2015/074271
Other languages
French (fr)
Japanese (ja)
Inventor
梅田 賢一
文彦 望月
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020177007932A priority Critical patent/KR101981408B1/en
Priority to JP2016550061A priority patent/JP6385449B2/en
Publication of WO2016047362A1 publication Critical patent/WO2016047362A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/36Inkjet printing inks based on non-aqueous solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/16Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/461Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/469Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After-treatment of these layers
    • H01L21/471Inorganic layers
    • H01L21/473Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present invention relates to a coating material, a pattern forming method, and a method for manufacturing an electronic device, and more particularly, a coating material capable of obtaining a good cross-sectional pattern in which a coffee stain shape does not occur in an inkjet process related to the printed electronics field, and the coating material
  • the present invention relates to a pattern forming method using the ink as an inkjet ink and a method for manufacturing an electronic device having a functional layer formed by a pattern formed using the pattern forming method.
  • the cause of the coffee stain shape is generally the occurrence of Marangoni convection due to the concentration dependence of the surface tension.
  • the surface tension at the end of the droplet which tends to increase in concentration due to drying, increases.
  • a gradient of surface tension is generated in the droplet, and the entire liquid is wet and spread so as to be drawn toward the end. For this reason, the solute concentrates at the end portion, resulting in a pattern shape in which the edge rises (see Patent Document 1).
  • the wiring pattern disclosed in Patent Document 1 is formed of a conductive liquid on a high surface energy portion that has been changed from the low surface energy portion by applying energy to the wettability changing layer and has improved wettability with respect to the liquid.
  • the planar view shape of the conductive pattern layer is a rectangular wiring shape having rounded end portions with chamfered corners.
  • the edge of the wiring pattern having a rectangular shape in plan view of the conductive pattern layer is rounded so that the edge rises at the sharp corner of the end of the wiring shape having a rectangular shape in plan view.
  • the edge of the rectangular wiring shape in the plan view has an edge even if it is round, the edge swells even if it is low, preventing the edge swell itself. There is a problem that it cannot be done.
  • solutions used in general coating processes such as spin coating and slit coating often use a solution configuration in which the relationship between the surface tension and the concentration is proportional. In particular, when a solution configuration of “wetting” is used, the rise of the edge portion is an unavoidable problem.
  • the present invention is used in the field of printed electronics in view of the above-described problems and problems of the prior art, and a coating material capable of obtaining a good cross-sectional pattern by suppressing the rising of the edge of the pattern. It is an object of the present invention to provide a pattern forming method used, and a method for manufacturing an electronic device manufactured using a pattern formed using the pattern forming method.
  • the coating material according to the first aspect of the present invention is a coating material for forming a pattern having the highest point of droplet ejection within a region within 20% from the center of droplet ejection, and includes a raw material and a solubility parameter.
  • Two types of solvents A and B which are good solvents having an SP value of 20.3 MPa 1/2 or less, are configured, and the solvent A has a higher surface tension and a higher vapor pressure than the solvent B.
  • the volume content is 20% or more and 50% or less.
  • the solvent A has a surface tension of 1.17 times or higher and a vapor pressure of 1.57 times or higher than the solvent B. Further, the surface tension of solvent A at 20 ° C. is 27 mN / m or more and the vapor pressure is 1.1 kPa or more, and the surface tension of solvent B at 20 ° C. is 23 mN / m or less and 0.7 kPa or less. preferable. Moreover, it is preferable that the solvent A is contained 35% or more and 50% or less as a solvent volume content. Moreover, it is preferable that the raw material is comprised with the silazane compound. Moreover, it is preferable that it is an inkjet coating material.
  • the pattern forming method according to the second aspect of the present invention uses the coating material according to the first aspect to form a pattern having the highest point of droplet ejection within an area within 20% from the center of droplet ejection. It is characterized by forming.
  • a pattern having the highest point of droplet ejection within a region within 20% of the center of droplet ejection passes through the center of the droplet ejection within 20% from the center of droplet ejection, and has edges on both sides of this center.
  • a pattern having the maximum value of the cross-sectional profile of droplet ejection is preferable.
  • it is preferable that the edge part of the both sides of the cross-sectional profile of a droplet is rounded.
  • the electronic device manufacturing method according to the third aspect of the present invention is characterized in that at least one layer of the electronic device is manufactured by the pattern forming method according to the second aspect of the present invention.
  • at least one layer of the electronic device is at least one of an insulating layer, a protective layer, and an interlayer insulating layer.
  • the electronic device is preferably a thin film transistor.
  • the edge of a pattern is used in the field of printed electronics, and a solvent of a solution is composed of two or more components, and the relationship between the surface tension and the concentration dependency at the time of droplet drying is made inversely proportional.
  • Coating material capable of obtaining a good cross-sectional pattern by suppressing the swell of the substrate, a pattern forming method using the coating material, and a method for manufacturing an electronic device manufactured using the pattern formed using the pattern forming method Can be provided.
  • FIG. 1 It is sectional drawing which shows typically an example of the pattern of the droplet formation formed in the pan formation method using the coating material which concerns on this invention. It is a cross-sectional schematic diagram of one Example of the transistor which is one Embodiment of the electronic device manufactured by this invention method.
  • (A), (B) and (C) are schematic diagrams showing an ink jet droplet pattern image formed using the coating material of Example 1, a graph showing a cross-sectional profile of this droplet pattern image, and
  • Example 1 4 is a drawing-substituting photograph of a spin coat film formed by using the coating material.
  • (A), (B), and (C) are schematic diagrams showing an ink jet droplet pattern image formed using the coating material of Comparative Example 1, a graph showing a cross-sectional profile of this droplet pattern image, and Comparative Example 1 4 is a drawing-substituting photograph of a spin coat film formed by using the coating material.
  • the coating material according to the present invention is for forming a pattern having the highest point of droplet ejection within a region within 20% from the center of droplet ejection.
  • the raw material and the solubility parameter SP value are 20.3 MPa 1/2.
  • 2 types of solvents A and B which are the following good solvents, the solvent A has a higher surface tension and a higher vapor pressure than the solvent B, and the solvent volume content is 20% or more and 50 % Or less.
  • the coating material according to the present invention is a liquid coating material used to form a predetermined pattern constituting the functional layer when a functional layer such as an electronic device such as a thin film transistor is laminated.
  • An inkjet coating material is preferable.
  • the electronic device is not particularly limited as long as it is an electronic device to which the printed electronics technology is applied.
  • a thin film transistor, a solar cell, an RFID, a temperature monitor, a gas sensor, a biological sensor, a pressure sensor, an infrared ray A sensor, organic EL illumination, a display device, etc. can be mentioned.
  • the functional film is not particularly limited as long as it is a functional film constituting at least one layer of an electronic device or the like, and examples thereof include an insulating layer, a protective layer, an interlayer insulating layer, a gas barrier layer, and an optical thin film. .
  • FIG. 1 is a cross-sectional view schematically showing an example of the pattern shape of droplet ejection formed by the pattern forming method of the present invention using the coating material of the present invention.
  • the droplets 10 formed in the present invention are formed by convex patterns formed on the substrate 12, preferably ink droplets that are deposited on the substrate 12 by inkjet. Has a convex pattern.
  • the upper surface of the pattern of the droplet ejection 10 is within a region 20 within 20% of the center of the droplet ejection 10 when the center 14 of the droplet ejection 10 is taken in the direction perpendicular to the bottom surface of the droplet ejection 10, that is, the surface of the substrate 12.
  • the pattern of the droplet ejection 10 is as follows: a cross-sectional profile 18 obtained by cutting the droplet ejection 10 through a plane perpendicular to the bottom surface, that is, the surface of the substrate 12.
  • the convex pattern shape having the highest point in the region 20 within 20% from the center of the droplet ejection 10 is preferable.
  • the shape of the pattern may be any profile, and the edge 16 may be square, but is rounded, for example, existing on both sides of the center 14 of the droplet 10. It is preferable to have a curved surface shape that is convex upward from both edges 16 of the droplet 10 toward its center 14, and the upper surface of the convex pattern of the droplet ejection 10 and the cross-sectional profile 18 are as shown in the example shown in FIG. In the center 14, which has a curved surface shape convex upward from the edge 16 of the droplet 10 existing on both sides of the center 14 toward the center 14, and within the region 20 within 20% of the center 14 of the droplet 10. Having the highest score The most preferred.
  • the pattern of the droplet ejection 10 is not particularly limited, but is preferably a pattern formed by an ink jet method. However, any pattern may be used as long as it is a pattern by an ink jet method. It may be a circular pattern of a single ink droplet ejected from an inkjet nozzle, or may be a linear pattern, or a plurality of inks ejected from a plurality of inkjet nozzles It may be a closed curve pattern such as a circle or an ellipse formed by droplets, or may be a linear pattern.
  • the method of cutting the cross section of the droplet ejection in the present invention can be applied to any pattern of droplet ejection, for example, in a closed curve pattern or a linear pattern, that is, through the center of the droplet ejection.
  • Any cross section may be used as long as it is cut by a plane perpendicular to the bottom surface. That is, the droplet ejection profile may be a profile in any cross section.
  • the cross-sectional profile in this invention can be measured using the optical interference type surface roughness meter Veeco Wyko apparatus. It can detect by measuring the cross section obtained by the light interference method of a white LED and a green LED (535 nm) light source.
  • the coating material for forming the droplet ejection pattern as described above needs to be composed of two solvents A and B having different surface tension and vapor pressure as the solvent of the solution.
  • the two types of solvent A and solvent B are good solvents that easily dissolve the raw material of the coating material, and have a solubility parameter (SP value) of 20.3 MPa 1/2 or less, preferably 14.1 to 20 .3 or less solvent.
  • SP value solubility parameter
  • the reason why the SP values of the two types of solvent A and solvent B are limited to 20.3 MPa 1/2 or less is that if the SP value is more than 20.3 MPa 1/2 , the solubility decreases. Because.
  • solvents examples include aliphatic hydrocarbons such as pentane (14.3), hexane (14.9), heptane (15.1), octane (15.6), and dodecane (16.2), Cycloaliphatic hydrocarbons such as methylcyclohexane (16.0), cyclohexane (16.8), and cyclopentane (17.8), cumene (16.8), propylbenzene (17.6), ethylbenzene (18.
  • aliphatic hydrocarbons such as pentane (14.3), hexane (14.9), heptane (15.1), octane (15.6), and dodecane (16.2)
  • Cycloaliphatic hydrocarbons such as methylcyclohexane (16.0), cyclohexane (16.8), and cyclopentane (17.8), cumene (16.8), propylbenzene (17.6), ethylbenzene (18.
  • the SP value of such an organic solvent is determined, for example, by the method described in “Polymer Handbook”, 4th edition, pages VII-675 to VII-711 [in particular, the formula (B3) on page 676 and (B8) ) Formula].
  • the values shown in Table 1 (page VII-683) and Table 7 to Table 8 (pages VII-688 to VII-711) of the document can be adopted.
  • the SP value when the organic solvent is a mixed solvent of a plurality of solvents can be determined by a known method.
  • the SP value of the mixed solvent can be obtained as the sum of products of the SP value of each solvent and the volume fraction, assuming that additivity is established.
  • the good solvent is a solvent that easily dissolves the raw material to be a solute, preferably a solvent that is mixed infinitely with the raw material over the entire range of common temperature, for example, the SP value of the liquid of the raw material A solvent having a difference from the SP value of 10 MPa 1/2 or less is preferred.
  • solvent A and solvent B having different surface tension and vapor pressure from among the good solvents having the SP value as described above.
  • one solvent for example, solvent A
  • the solvent A preferably has a surface tension of 1.17 times or higher and a vapor pressure of 1.57 times or higher than the solvent B, more preferably a surface tension of 1.25 times or higher.
  • the vapor pressure is preferably 1.8 times higher.
  • the surface tension of the solvent A at 20 ° C.
  • the vapor pressure is 1.1 kPa or more
  • the surface tension of the solvent B at 20 ° C. is 23 mN / m or less and 0.7 kPa or less. It is more preferable.
  • the upper limit values of the ratio of the surface tension and the vapor pressure of the solvent A to the solvent B are not particularly limited, but are preferably 6 times or less and 10 times or less, respectively.
  • the upper limits of the surface tension and vapor pressure at 20 ° C. of the solvent A are not particularly limited, but are more preferably, for example, 90 mN / m or less and 100 kPa or less, respectively.
  • the lower limit values of the surface tension and vapor pressure at 20 ° C. of the solvent B are not particularly limited, but are more preferably, for example, 15 mN / m or more and 0.1 kPa or more, respectively.
  • the surface tension of the solution is a weighted average that takes into account the component composition ratio.
  • the edge portion dries faster than the central portion of the droplet ejection, and as a result, the density rises at the edge portion and the surface tension increases. Therefore, the relationship between the surface tension and the concentration dependency is proportional. As a result, it seems that the edge portion of the droplet ejection rises and the coffee stain phenomenon cannot be suppressed.
  • the volatilization rate of each solvent varies depending on the vapor pressure. For this reason, in the drying process, when the influence of the effect of the solvent A having a high surface tension and a high volatility increases, the concentration dependence relationship of the surface tension is in an inversely proportional form. That is, since the drying of the droplet is faster at the edge portion than at the central portion of the droplet, the concentration of the solution is high in the edge portion solution, but the solvent A having a high surface tension and high volatility Since the solvent evaporates faster than the solvent B having low tension and low volatility, the ratio of the solvent A decreases in the solvent at the edge portion, and the ratio of the solvent B having low surface tension and low volatility increases.
  • the surface tension of the solvent is lower in the edge portion than in the central portion. Therefore, the surface tension is reduced at the edge of the droplet where the concentration is high, and the surface tension is increased at the center of the droplet. As a result, the rise of the edge portion can be suppressed, and the coffee stain phenomenon can be suppressed.
  • the highest point of droplet ejection is within an area within 20% from the center of droplet ejection, and the coffee stain phenomenon can be suppressed.
  • the ratios of the surface tension and vapor pressure of the solvent A to the solvent B, the values of the surface tension and vapor pressure of the solvent A, and the values of the surface tension and vapor pressure of the solvent B are limited to the predetermined ranges described above. This is because the relationship of the concentration dependence of the surface tension of the solution in the droplet ejection is preferable to make it an inversely proportional relationship appropriate for suppressing the bulge of the edge portion.
  • the solvent A having a high surface tension and a high vapor pressure is 20% or more as a solvent volume content in the solution. It is necessary to contain 50% or less. The reason is that if the solvent volume content of the solvent A having a high surface tension and a high vapor pressure is within the range of 20% to 50%, as shown in FIG.
  • the pattern of the droplet ejection 10 having the highest point in the region within% and having the pattern shape defined by the present invention can be formed, and the coffee stain phenomenon can be suppressed.
  • the solvent volume content of the solvent A having a high surface tension and a high vapor pressure is preferably 35% or more and 50% or less. In this case, not only has the highest point within an area within 20% of the center 14 of the droplet ejection 10, but also the edge 16 portion can form a rounded convex droplet ejection pattern.
  • the raw material of the coating material according to the present invention is not particularly limited as long as the droplet ejection pan can be formed, but for forming a predetermined droplet ejection pattern constituting a functional layer of an electronic device such as a thin film transistor. More preferably, for example, a silazane compound, polystyrene, polycarbonate, polyethylene and the like can be mentioned.
  • a silazane compound is a compound having a silicon-nitrogen bond (—SiN—) in its structure, and is a silicon oxide film (hereinafter also referred to as an SiO 2 film) serving as a functional film such as an insulating layer, a protective layer, or an interlayer insulating layer.
  • a silicon oxynitride film hereinafter also referred to as SiON film
  • SiN film silicon nitride film
  • Such SiO 2 film, SiON film, and SiN film can be suitably used for various applications. Examples thereof include a gate insulating film, an interlayer insulating film, a gas barrier film, and an optical thin film of a transistor.
  • the silazane compound may be a low molecular compound or a high molecular compound (a polymer having a predetermined repeating unit).
  • low molecular weight silazane compounds include hexamethyldisilazane, hexaphenyldisilazane, dimethylaminotrimethylsilane, trisilazane, cyclotrisilazane, 1,1,3,3,5,5-hexamethylcyclotrisilazane, and the like. It is done.
  • the type of the high molecular weight silazane compound (polysilazane compound) is not particularly limited. For example, it is a compound having a main skeleton composed of units represented by the following general formula (1) described in JP-A-8-112879. Preferably there is.
  • R 1 , R 2 , and R 3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group. .
  • the polysilazane is preferably perhydropolysilazane (hereinafter, also referred to as “PHPS”) in which all of R 1 , R 2 , and R 3 are hydrogen atoms from the viewpoint of better insulating properties.
  • PHPS perhydropolysilazane
  • Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on a 6-membered ring and an 8-membered ring. Its molecular weight is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), and can be a liquid or solid substance (depending on the molecular weight). As the perhydropolysilazane, a commercially available product may be used.
  • Examples of the commercially available product include AQUAMICA NN120, NN120-20, NN110, NAX120, NAX120-20, NAX110, NL120A, NL120-20, NL110A, NL150A, NP110, NP140 (made by AZ Electronic Materials Co., Ltd.) etc. are mentioned.
  • polysilazane examples include silicon alkoxide addition polysilazane obtained by reacting polysilazane represented by the above general formula with silicon alkoxide (for example, JP-A-5-238827), and glycidol addition obtained by reacting glycidol.
  • Polysilazane for example, JP-A-6-122852
  • alcohol-added polysilazane for example, JP-A-6-240208
  • metal carboxylate obtained by reacting a metal carboxylate
  • Polysilazane for example, JP-A-6-299118
  • acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex
  • metal fine particles are added.
  • Obtained metal fine particle Polysilazane e.g., JP-A-7-196986 JP
  • the molecular weight of the polysilazane compound is not particularly limited, but for example, those having a polystyrene-reduced average molecular weight in the range of 1,000 to 20,000 are preferred, and those having a molecular weight in the range of 1,000 to 10,000 are more preferred. These polysilazane compounds can be used in combination of two or more.
  • the mass ratio of the silazane compound and the solvent (solvent A and solvent B) (mass of silazane compound / mass of solvent (solvent A and solvent B)) in the coating material of the present invention is not particularly limited, and the functional film to be formed
  • the optimum mass ratio is appropriately selected according to the thickness of the (coating film), but is preferably 0.01 to 0.50, more preferably 0.05 to 0.20, from the viewpoint of excellent droplet ejection properties.
  • the coating material of this invention can also contain another additive component as needed. Examples of such components include viscosity modifiers and crosslinking accelerators.
  • the coating material of the present invention is basically configured as described above.
  • the pattern forming method of the present invention uses the above-described coating material of the present invention to form a pattern having the highest point of droplet ejection within a region 20 within 20% from the center of the droplet ejection 10 as shown in FIG. Is the method.
  • a solvent A which is a good solvent for the raw material and has a high surface tension and a high vapor pressure
  • a solvent B which is both low are used as the solvent.
  • the formed droplet ejection pattern can form a pattern having the highest point of droplet ejection within a region 20 within 20% from the center of the droplet ejection 10 as shown in FIG.
  • the method for ejecting the coating material of the present invention is not particularly limited, but by using an inkjet method, for example, droplets of the coating material of the present invention are ejected from the inkjet nozzle onto the substrate 12 to form droplets 10. As long as it can be formed, any method may be used.
  • the pattern of the droplet ejection 10 formed in the present invention is a pattern having the highest point of droplet ejection within the region 20 within 20% from the center of the droplet ejection 10, one or more inkjet nozzles are used.
  • the pattern may be a closed-curve pattern such as a circle or an ellipse formed by one or more ink droplets ejected from or a linear pattern.
  • a droplet of the coating material of the present invention is ejected from an inkjet nozzle to form a pattern of droplets 10 on the substrate 12
  • a plurality of inkjet nozzles are provided on the fixed substrate 12.
  • the attached carriage may be moved, the substrate 12 may be intermittently conveyed and the carriage may be moved, or the carriage 12 may be fixed and the substrate 12 may be conveyed.
  • the substrate on which the coating material of the present invention is ejected to form a droplet ejection pattern, its shape, structure, and size are not particularly limited and can be appropriately selected depending on the purpose.
  • the structure of the substrate may be a single layer structure or a laminated structure.
  • the material of the substrate is not particularly limited, and for example, an inorganic material such as glass, alumina, YSZ (yttrium stabilized zirconium), a resin material, a composite material thereof, or the like can be used. Among these, a resin substrate or a composite material thereof is preferable from the viewpoint of light weight and flexibility.
  • the thickness of the pattern 10 of the droplets 10 after pattern formation is efficient in, for example, ultraviolet irradiation and / or heat treatment so as to be suitable for post-processing applied to the pattern of droplets 10 formed on the substrate 12. It is preferable to be thin so that it can be cured (converted). For this reason, the thickness of the droplet ejection pattern is preferably 1.0 ⁇ m or less, and more preferably 0.5 ⁇ m or less. On the other hand, although there is no lower limit to the thickness of the droplet ejection pattern, it is preferably 0.05 ⁇ m or more, and more preferably 0.1 ⁇ m or more from the viewpoint of film formability.
  • a flexible substrate is used as the substrate and a coating material containing a silazane compound is used as the coating material of the present invention, it is converted into a SiO 2 film, a SiON film, or a SiN film after the droplet ejection pattern is formed by the coating material of the present invention.
  • a droplet ejection pattern of the coating material of the present invention may be formed on both surfaces of the substrate.
  • the pattern forming method of the present invention is basically configured as described above.
  • the method for producing an electronic device of the present invention is a method for producing at least one layer constituting an electronic device as a functional film by a droplet ejection pattern formed by using the above-described pattern forming method of the present invention.
  • a thin film transistor is a typical example as an electronic device
  • a gate insulating film of a thin film transistor is a typical example as a functional film
  • a SiON film formed from the coating material of the present invention using a silazane compound as a raw material is formed as a gate oxide film.
  • An example will be described as a representative example, but the present invention is of course not limited thereto.
  • FIG. 2 is a schematic cross-sectional view of one example of a thin film transistor which is one embodiment of the electronic device of the present invention.
  • the thin film transistor 50 includes a substrate 52, a gate electrode 54 disposed on the substrate 52, a gate insulating film 56 disposed on the gate electrode 54, and an oxide semiconductor disposed on the gate insulating film 56.
  • the layer 58 includes at least a source electrode 60 and a drain electrode 62 disposed on the oxide semiconductor layer 58.
  • the gate insulating film 56 is formed by using the coating material of the present invention containing two types of solvents that use a silazane compound as a raw material, are good solvents for the raw material, and have different surface tension and vapor pressure. It is formed of a SiON film having a droplet ejection pattern formed by the method.
  • the thin film transistor 50 is a bottom-gate thin film transistor.
  • the SiON film according to the present invention may be applied to the gate insulating film of the top gate type thin film transistor.
  • the gate insulating film 56 is disposed adjacent to the oxide semiconductor layer 58 and the SiON film is used, the interface characteristics with the oxide semiconductor layer 58 are further improved, and the performance as a thin film transistor is further improved.
  • the surface that has been subjected to the oxidation step is preferably disposed on the oxide semiconductor layer 58 side.
  • FIG. 2 an embodiment of an oxide thin film transistor using an oxide semiconductor layer is described in detail.
  • the SiON film according to the present invention is used as a gate insulating film of an organic thin film transistor using an organic semiconductor layer containing an organic semiconductor material. Can also be suitably used.
  • the gate electrode 54 is formed on the substrate 52 by a known method, for example, by vacuum deposition or sputtering of an electrode material. Form.
  • a conversion process is performed, and the SiON film is gate-insulated.
  • the film 56 is formed.
  • an oxide semiconductor layer 58 is formed over the gate insulating film 56 by a known method, and the patterned source electrode separated in the same manner as the gate electrode 54 over the formed oxide semiconductor layer 58. 60 and the drain electrode 62 are formed.
  • the thin film transistor 50 can be manufactured by the method of the present invention.
  • the substrate, gate electrode, gate insulating film, oxide semiconductor layer, source electrode, and drain electrode will be described in detail.
  • the substrate plays a role of supporting a gate electrode, a source electrode, a drain electrode, and the like, which will be described later.
  • substrate is not restrict
  • the material of the gate electrode examples include gold (Au), silver, aluminum, copper, chromium, nickel, cobalt, titanium, platinum, magnesium, calcium, barium, sodium, and other metals; In 2 O 3 , SnO 2 , ITO Conductive oxides such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polydiacetylene; semiconductors such as silicon, germanium, and gallium arsenide; and carbon materials such as fullerene, carbon nanotube, and graphite. Especially, it is preferable that it is a metal, and it is more preferable that they are silver and aluminum.
  • the thickness of the gate electrode is not particularly limited, but is preferably 10 nm to 1000 nm, and more preferably 50 nm to 500 nm.
  • a method for forming the gate electrode is not particularly limited, and examples thereof include a method of vacuum depositing or sputtering an electrode material on a substrate, a method of applying or printing an electrode forming composition, and the like.
  • examples of the patterning method include a photolithography method; a printing method such as ink jet printing, screen printing, offset printing, letterpress printing; and a mask vapor deposition method.
  • the gate insulating film is formed from the above-described SiO 2 film, SiON film, or SiN film.
  • the coating material of the present invention containing two types of solvents that use a silazane compound as a raw material is a good solvent for the raw material, and has different surface tension and vapor pressure.
  • the droplet ejection pattern is subjected to a conversion process after drying or without drying.
  • a conversion treatment is performed by irradiating ultraviolet rays and / or heating the droplet ejection pattern (applying a heat treatment). By performing such treatment, conversion from the silazane compound to a desired SiON film or SiN film proceeds. In this way, a SiON film or a SiN film having a pattern shape with no rising edge can be formed as a gate insulating film.
  • a conversion treatment is performed by irradiating ultraviolet rays and / or heating the droplet ejection pattern (applying a heat treatment). By carrying out such a treatment, conversion from the silazane compound to a desired SiO 2 film proceeds. In this way, a SiO 2 film having a pattern shape with no edge rise can be formed as a gate insulating film.
  • the thickness of the gate insulating film is not particularly limited, but is preferably 70 to 1000 nm.
  • FIG. 2 shows a mode in which the gate insulating film is a SiON film, but the mode is not limited to this mode.
  • the mode is not limited to this mode.
  • a laminated insulating film in which a SiON film and another gate insulating film are laminated may be used as long as it has a droplet ejection pattern shape.
  • the portion in contact with the oxide semiconductor layer is preferably the SiON film of the present invention.
  • the other gate insulating film include a polymer insulating film containing a polymer as an insulating material.
  • polyethylene polyethylene
  • PP polypropylene
  • PTFE polytetrafluoroethylene
  • PVC polyvinyl chloride
  • PVA polyvinyl alcohol
  • PVP polyvinyl phenol
  • PVP polyvinyl pyrrolidone
  • PS polystyrene
  • PMMA polymethyl methacrylate
  • PAN polyacrylonitrile
  • PC polycarbonate
  • PET poly (ethylene terephthalate)
  • PPS polyphenylene sulfide
  • PI polyimide
  • BCB benzocyclobutene
  • CyPe polycyclopentene
  • PI polysilsesquioxane
  • the oxide semiconductor layer functions as an active layer (channel).
  • one or more of indium (In), gallium (Ga), tin (Sn), and zinc (Zn) are used. It consists of an oxide of a mixture. Examples of such an oxide include indium gallium zinc oxide (IGZO, InGaZnO).
  • indium gallium zinc oxide In—Al—Zn—O, In—Sn—Zn—O, In—Zn—O, In—Sn—O, Zn—O, Sn—O, etc. May be used.
  • the thickness of the oxide semiconductor layer is not particularly limited, but is preferably 5 to 300 nm.
  • a method for forming the oxide semiconductor layer is not particularly limited, and a known method can be employed. For example, spin coating, ink jet, dispenser, screen printing, letterpress printing or intaglio printing can be used. Further, a vapor phase method such as a sputtering method or a vapor deposition method may be employed.
  • ⁇ Source electrode, drain electrode> Specific examples of the material of the source electrode and the drain electrode are the same as those of the gate electrode described above.
  • a method for forming the source electrode and the drain electrode is not particularly limited. For example, a method of vacuum-depositing or sputtering an electrode material on a substrate on which a gate electrode, a gate insulating film, and an oxide semiconductor layer are formed; The method of apply
  • a specific example of the patterning method is the same as that of the gate electrode described above.
  • the channel length of the source electrode and the drain electrode is not particularly limited, but is preferably 0.01 to 1000 ⁇ m.
  • the channel width of the source electrode and the drain electrode is not particularly limited, but is preferably 0.01 to 5000 ⁇ m.
  • the electronic device manufacturing method of the present invention is basically configured as described above.
  • Example I First, a polysilazane solution (120 series: dibutyl ether solvent and 110 series: xylene solvent) manufactured by AZ-EM was used as a raw material, and various solvents were mixed as solvent A and solvent B at a volume ratio of 1: 1. A mixed solution of ⁇ 2 and Comparative Examples 1-8 was obtained. These mixed solutions of Examples 1 and 2 and Comparative Examples 1 to 8 are shown in Table 1. The values of vapor pressure and surface tension shown in Table 1 are values at 20 ° C.
  • Examples 1 and 2 and Comparative Examples 1 to 8 were ejected using an inkjet apparatus DMP2830 manufactured by FUJIFILM DIMATIX, and the pattern shape of the ejected droplets, that is, the cross-sectional profile was confirmed.
  • the cross-sectional profile was confirmed by measuring the optical interference image with Wyko manufactured by Veeco. The case where the maximum value was obtained in an area within 20% from the central portion of the droplet ejection pattern was evaluated as A, and the case where the maximum value was taken in an area other than 20% from the central portion was evaluated as B.
  • the results are shown in Table 1.
  • Example II Next, in the combination of the raw material of Example 1, the solvent A and the solvent B, the wettability of the spin coat film and the ink jet pattern are obtained by changing the volume content of toluene as the solvent A and dibutyl ether as the solvent B. Changes in the pattern shape of the image, especially its edge shape, were confirmed. The wettability of the spin coat film was evaluated in the same manner as in Example I.
  • the pattern shape of the ink jet pattern image is AA when the maximum value in the cross-sectional profile is in the central portion (within 20% of the center) of the droplet ejection pattern and the edge portion is rounded, and the center of the droplet ejection pattern.
  • the mixed solutions of Examples 21 to 22 and Comparative Examples 21 to 22 are shown in Table 3.
  • the values of vapor pressure and surface tension shown in Table 3 are values at 20 ° C.
  • Example 21 to 22 The obtained mixed solutions of Examples 21 to 22 and Comparative Examples 21 to 22 were spin-coated on a silicon substrate, thereby confirming wettability. Evaluation of the wettability of the spin coat film was performed in the same manner as in Example I. The results are shown in Table 3. As is apparent from the results shown in Table 3, when the solvent B is dibutyl ether, the solvent A is toluene and chlorobenzene, the surface tension ratio between the solvent A and the solvent B is 1.17 or more, and the vapor pressure ratio is 1. In Examples 21 and 22, which were 57 or more, it was confirmed that the spin coat film had an unfavorable B evaluation.
  • Example I the mixed solution of Examples 21 to 22 and Comparative Examples 21 to 22 was ejected using an inkjet apparatus DMP2830 manufactured by FUJIFILM DIMATIX, and the pattern shape of the ejected droplets, that is, the cross-sectional profile was obtained. confirmed.
  • the cross-sectional profile was confirmed by measuring the optical interference image with Wyko manufactured by Veeco. Evaluation of the pattern shape (cross-sectional profile) of droplet ejection was performed in the same manner as in Example I.
  • the results are shown in Table 3.
  • Table 3 As is apparent from the results shown in Table 3, in Examples 21 to 22, which are solution structures in which a film was not formed well by spin coating, the highest value was obtained in the region of 20% from the center in the formed ink jet pattern image. It was confirmed that a good A evaluation cross-sectional profile having a smooth convex shape from the edge toward the center was obtained.

Abstract

 The coating material according to the present invention is for forming a pattern in which the highest point of a droplet is in a region within 20% from the center of the droplet, the coating material containing two types of solvents A and B which are good solvents having a solubility parameter SP value of 20.3 MPa1/2 or lower with respect to a raw material, the solvent A having higher surface tension and higher vapor pressure than the solvent B, and the volume content of solvent being 20% to 50%. The pattern formation method according to the present invention comprises forming the abovementioned pattern using the coating material. The method for manufacturing an electronic device according to the present invention comprises fabricating at least one layer of an electronic device from a pattern deposited using the pattern formation method.

Description

塗布材料、パターン形成方法および電子デバイスのその製造方法Coating material, pattern forming method and method for manufacturing electronic device
 本発明は、塗布材料、パターン形成方法および電子デバイスのその製造方法に係り、詳しくは、プリンテッドエレクトロニクス分野に関するインクジェットプロセスにおいてコーヒーステイン形状が生じない良好な断面パターンが得られる塗布材料、この塗布材料をインクジェット用インクとして用いたパターン形成方法、およびこのパターン形成方法を用いて成膜されたパターンによって作製された機能層を有する電子デバイスの製造方法に関する。 The present invention relates to a coating material, a pattern forming method, and a method for manufacturing an electronic device, and more particularly, a coating material capable of obtaining a good cross-sectional pattern in which a coffee stain shape does not occur in an inkjet process related to the printed electronics field, and the coating material The present invention relates to a pattern forming method using the ink as an inkjet ink and a method for manufacturing an electronic device having a functional layer formed by a pattern formed using the pattern forming method.
 近年、液体プロセスなどの画期的な省資源・省エネルギ技術により、トランジスタなど電子デバイスやエネルギデバイスを作製する研究開発がさまざまな研究機関で加速されている。これらの技術は、「プリンテッドエレクトロニクス」と総称されており、次世代の半導体作製プロセス技術として大きな期待を集めている。
 プロセスとしてインクジェットを用いた際に、エッジ部分に「コーヒーステイン」と呼ばれる現象、即ち配線や電極の周囲や端が盛り上がってしまう現象がある。これらは電極に限った話ではなく、半導体材料や絶縁材料においてもこのような形状が出てしまうことは電子デバイスにおける信頼性の関係上好ましくない。
In recent years, research and development for producing electronic devices such as transistors and energy devices have been accelerated by various research institutes by innovative resource-saving and energy-saving technologies such as liquid processes. These technologies are collectively referred to as “printed electronics” and are highly expected as next-generation semiconductor fabrication process technologies.
When ink jet is used as a process, there is a phenomenon called “coffee stain” at the edge portion, that is, a phenomenon in which the periphery and edges of wiring and electrodes are raised. These are not limited to electrodes, and it is not preferable in terms of reliability in an electronic device that such a shape appears even in a semiconductor material or an insulating material.
 コーヒーステイン形状の発生要因としては、一般的に表面張力の濃度依存性に由来するマランゴニ対流の発生が原因であるといわれている。一般的な溶液では、表面張力の関係と濃度が比例する関係にあるため、乾燥による濃度上昇が起き易い液滴の端部の表面張力が増大する。これにより、液滴内で表面張力の勾配が発生し、液全体が端部に引き寄せられるように濡れ広がる。そのため、端部に溶質が集中し、エッジが盛り上がるパターン形状となる(特許文献1参照)。 It is said that the cause of the coffee stain shape is generally the occurrence of Marangoni convection due to the concentration dependence of the surface tension. In a general solution, since the relationship between the surface tension and the concentration is proportional, the surface tension at the end of the droplet, which tends to increase in concentration due to drying, increases. As a result, a gradient of surface tension is generated in the droplet, and the entire liquid is wet and spread so as to be drawn toward the end. For this reason, the solute concentrates at the end portion, resulting in a pattern shape in which the edge rises (see Patent Document 1).
 このため、特許文献1に開示の配線パターンでは、濡れ性変化層へのエネルギの付与により低表面エネルギ部から変化して液体に対する濡れ性が向上した高表面エネルギ部上に導電性液体により形成された導電パターン層の平面視形状を、角部に面取りが施されたラウンド形状の端部を持つ矩形の配線形状としている。
 こうして、特許文献1に開示の技術では、配線パターンの形成プロセスにおいて、蒸発速度が遅いパターン中央から蒸発速度が速いパターン周辺部に塗布されたインクの流れが発生してインクが濡れ広がるとき、導電パターン層の平面視矩形の配線形状の端部における蒸発速度がより高い角部、特に尖った直角の角部のインクが流れて、特に、角部の膜厚が厚くなり、角部に凸状の膜厚ピーク(凸状隆起)、いわゆる「盛り上がり」が形成されることを防止している。
For this reason, the wiring pattern disclosed in Patent Document 1 is formed of a conductive liquid on a high surface energy portion that has been changed from the low surface energy portion by applying energy to the wettability changing layer and has improved wettability with respect to the liquid. The planar view shape of the conductive pattern layer is a rectangular wiring shape having rounded end portions with chamfered corners.
Thus, in the technique disclosed in Patent Document 1, in the wiring pattern formation process, when the flow of ink applied from the center of the pattern having a low evaporation rate to the periphery of the pattern having a high evaporation rate occurs, The ink at the corners with a higher evaporation rate, especially sharp corners, flows at the edges of the rectangular wiring shape in plan view of the pattern layer, and in particular, the corners become thicker and convex at the corners. Film thickness peak (convex bulge), so-called “swell” is prevented from being formed.
特開2008-066567号公報JP 2008-066567 A
 しかしながら、特許文献1に開示の技術は、導電パターン層の平面視矩形の配線形状の端部をラウンド形状にすることにより、平面視矩形の配線形状の端部の尖った角部におけるエッジの盛り上がりの集中を防止できるが、この平面視矩形の配線形状には、ラウンド形状であってもエッジは存在しているため、低くてもエッジの盛り上がりは発生しており、エッジの盛り上がり自体を防止することができないという課題がある。
 また、プリンテッドエレクトロニクス分野において、スピンコートやスリットコート等の一般的な塗布プロセスで用いられる溶液は、表面張力の関係と濃度が比例する関係にある溶液構成を用いられてことが多いため、一般的に「濡れる」という溶液構成を用いた場合、エッジ部分の盛り上がりは避けられない課題となる。
However, in the technique disclosed in Patent Document 1, the edge of the wiring pattern having a rectangular shape in plan view of the conductive pattern layer is rounded so that the edge rises at the sharp corner of the end of the wiring shape having a rectangular shape in plan view. Although the edge of the rectangular wiring shape in the plan view has an edge even if it is round, the edge swells even if it is low, preventing the edge swell itself. There is a problem that it cannot be done.
In the printed electronics field, solutions used in general coating processes such as spin coating and slit coating often use a solution configuration in which the relationship between the surface tension and the concentration is proportional. In particular, when a solution configuration of “wetting” is used, the rise of the edge portion is an unavoidable problem.
 また、以上のような課題を解決するために、表面張力と濃度依存性の関係を出来るだけ少なくするように界面活性剤等が添加されるケースがあるが、このような場合、界面活性剤自身が電気物性に影響を及ぼしてしまう懸念があるという問題があるため、プリンテッドエレクトロニクス分野において、塗布材料に添加剤を加えることは好ましくない。
さらに、このようなエッジの盛り上がり形状を制御するために、塗布プロセスを工夫することによって解決している例もあるが、必然的に工程の増加や複雑化を招くという問題があり、工程削減が求められている関係上、出来る限り新たなプロセスを付与しないことが好ましい。
In addition, in order to solve the above problems, there are cases where surfactants are added so as to reduce the relationship between surface tension and concentration dependence as much as possible, but in such cases, the surfactant itself However, in the printed electronics field, it is not preferable to add an additive to the coating material.
Furthermore, in order to control the rising shape of the edge, there are examples that have been solved by devising the coating process. In view of the required relationship, it is preferable not to add a new process as much as possible.
 本発明は、上記従来技術の問題や課題の実情に鑑みて、プリンテッドエレクトロニクス分野において用いられ、パターンのエッジの盛り上がりを抑制させて良好な断面パターンを得ることができる塗布材料、この塗布材料を用いたパターン形成方法、およびこのパターン形成方法を用いて成膜されたパターンによって作製された電子デバイスの製造方法を提供することを目的とする。 The present invention is used in the field of printed electronics in view of the above-described problems and problems of the prior art, and a coating material capable of obtaining a good cross-sectional pattern by suppressing the rising of the edge of the pattern. It is an object of the present invention to provide a pattern forming method used, and a method for manufacturing an electronic device manufactured using a pattern formed using the pattern forming method.
 本発明者らは、上記目的を達成するために、鋭意研究を重ねた結果、塗布材料の溶液の溶媒を2成分以上で構成して、液滴乾燥時の表面張力と濃度依存の関係を反比例の関係にさせることにより、エッジ部分の盛り上がりを抑制させて良好な断面パターンを得ることができることを知見し、本発明を完成するに至ったものである。
 すなわち、本発明の第1の態様に係る塗布材料は、打滴の中心から20%以内の領域内に打滴の最高点を有するパターンを形成するための塗布材料であって、原料と溶解度パラメータSP値が20.3MPa1/2以下の良溶媒である2種類の溶媒A、及びBとを含有して構成され、溶媒Aが、溶媒Bよりも表面張力が高くかつ蒸気圧が高く、溶媒体積含有率として20%以上50%以下含有されていることを特徴とする。
In order to achieve the above object, the present inventors have conducted intensive research, and as a result, the solvent of the coating material solution is composed of two or more components, and the relationship between the surface tension and the concentration dependency upon drying the droplet is inversely proportional. Thus, the inventors have found that a favorable cross-sectional pattern can be obtained by suppressing the rise of the edge portion, and the present invention has been completed.
That is, the coating material according to the first aspect of the present invention is a coating material for forming a pattern having the highest point of droplet ejection within a region within 20% from the center of droplet ejection, and includes a raw material and a solubility parameter. Two types of solvents A and B, which are good solvents having an SP value of 20.3 MPa 1/2 or less, are configured, and the solvent A has a higher surface tension and a higher vapor pressure than the solvent B. The volume content is 20% or more and 50% or less.
 ここで、溶媒Aが、溶媒Bよりも、表面張力が1.17倍以上高く、かつ蒸気圧が1.57倍以上高いことが好ましい。
 また、溶媒Aの20℃における表面張力が27mN/m以上、かつ蒸気圧が1.1kPa以上であり、溶媒Bの20℃における表面張力が23mN/m以下、かつ0.7kPa以下であることが好ましい。
 また、溶媒Aが、溶媒体積含有率として35%以上50%以下含有されていることが好ましい。
 また、原料が、シラザン化合物で構成されていることが好ましい。
 また、インクジェット用塗布材料であることが好ましい。
Here, it is preferable that the solvent A has a surface tension of 1.17 times or higher and a vapor pressure of 1.57 times or higher than the solvent B.
Further, the surface tension of solvent A at 20 ° C. is 27 mN / m or more and the vapor pressure is 1.1 kPa or more, and the surface tension of solvent B at 20 ° C. is 23 mN / m or less and 0.7 kPa or less. preferable.
Moreover, it is preferable that the solvent A is contained 35% or more and 50% or less as a solvent volume content.
Moreover, it is preferable that the raw material is comprised with the silazane compound.
Moreover, it is preferable that it is an inkjet coating material.
 また、本発明の第2の態様に係るパターン形成方法は、上記第1の態様に係る塗布材料を用いて、打滴の中心から20%以内の領域内に打滴の最高点を有するパターンを形成することを特徴とする。
 ここで、打滴の中心から20%以内の領域内に打滴の最高点を有するパターンが、打滴の中心から20%以内において、打滴の中心を通り、この中心の両側にエッジを有する打滴の断面プロファイルの最大値を有するパターンであることが好ましい。
 また、打滴の断面プロファイルの両側のエッジの部分が丸まっていることが好ましい。
Further, the pattern forming method according to the second aspect of the present invention uses the coating material according to the first aspect to form a pattern having the highest point of droplet ejection within an area within 20% from the center of droplet ejection. It is characterized by forming.
Here, a pattern having the highest point of droplet ejection within a region within 20% of the center of droplet ejection passes through the center of the droplet ejection within 20% from the center of droplet ejection, and has edges on both sides of this center. A pattern having the maximum value of the cross-sectional profile of droplet ejection is preferable.
Moreover, it is preferable that the edge part of the both sides of the cross-sectional profile of a droplet is rounded.
 本発明の第3の態様に係る電子デバイスの製造方法は、電子デバイスの少なくとも一層が、本発明の第2の態様に係るパターン形成方法により作製されることを特徴とする。
 ここで、電子デバイスの少なくとも一層が、絶縁層、保護層、層間絶縁層の内の少なくとも一層であることが好ましい。
 また、電子デバイスが、薄膜トランジスタであることが好ましい。
The electronic device manufacturing method according to the third aspect of the present invention is characterized in that at least one layer of the electronic device is manufactured by the pattern forming method according to the second aspect of the present invention.
Here, it is preferable that at least one layer of the electronic device is at least one of an insulating layer, a protective layer, and an interlayer insulating layer.
The electronic device is preferably a thin film transistor.
 本発明によれば、プリンテッドエレクトロニクス分野において用いられ、溶液の溶媒を2成分以上で構成させて、液滴乾燥時の表面張力と濃度依存の関係を反比例の関係にさせることで、パターンのエッジの盛り上がりを抑制させて良好な断面パターンを得ることができる塗布材料、この塗布材料を用いたパターン形成方法、およびこのパターン形成方法を用いて成膜されたパターンによって作製された電子デバイスの製造方法を提供することができる。 According to the present invention, the edge of a pattern is used in the field of printed electronics, and a solvent of a solution is composed of two or more components, and the relationship between the surface tension and the concentration dependency at the time of droplet drying is made inversely proportional. Coating material capable of obtaining a good cross-sectional pattern by suppressing the swell of the substrate, a pattern forming method using the coating material, and a method for manufacturing an electronic device manufactured using the pattern formed using the pattern forming method Can be provided.
本発明に係る塗布材料を用いたパーン形成方法において形成される打滴のパターンの一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the pattern of the droplet formation formed in the pan formation method using the coating material which concerns on this invention. 本発明法によって製造される電子デバイスの一実施形態であるトランジスタの一実施例の断面模式図である。It is a cross-sectional schematic diagram of one Example of the transistor which is one Embodiment of the electronic device manufactured by this invention method. (A)、(B)および(C)は、実施例1の塗布材料を用いて形成されたインクジェット打滴パターン像を示す模式図、この打滴パターン像の断面プロファイルを示すグラフおよび実施例1の塗布材料を用いて形成されたスピンコート膜の図面代用写真である。(A), (B) and (C) are schematic diagrams showing an ink jet droplet pattern image formed using the coating material of Example 1, a graph showing a cross-sectional profile of this droplet pattern image, and Example 1 4 is a drawing-substituting photograph of a spin coat film formed by using the coating material. (A)、(B)および(C)は、比較例1の塗布材料を用いて形成されたインクジェット打滴パターン像を示す模式図、この打滴パターン像の断面プロファイルを示すグラフおよび比較例1の塗布材料を用いて形成されたスピンコート膜の図面代用写真である。(A), (B), and (C) are schematic diagrams showing an ink jet droplet pattern image formed using the coating material of Comparative Example 1, a graph showing a cross-sectional profile of this droplet pattern image, and Comparative Example 1 4 is a drawing-substituting photograph of a spin coat film formed by using the coating material.
 以下に、本発明に係る塗布材料、パターン形成方法および電子デバイスのその製造方法をその好適実施形態に基づいて添付の図面を参照して詳細に説明する。 Hereinafter, a coating material, a pattern forming method, and a method for manufacturing an electronic device according to the present invention will be described in detail based on preferred embodiments with reference to the accompanying drawings.
(塗布材料)
 本発明に係る塗布材料は、打滴の中心から20%以内の領域内に打滴の最高点を有するパターンを形成するためのもので、原料と、溶解度パラメータSP値が20.3MPa1/2以下の良溶媒である2種類の溶媒A、及びBと、を含有して構成され、溶媒Aが、溶媒Bよりも表面張力が高くかつ蒸気圧が高く、溶媒体積含有率として20%以上50%以下含有されていることを特徴とする。
 本発明に係る塗布材料は、プリンテッドエレクトロニクス分野において、薄膜トランジスタなど電子デバイス等の機能層を積層する際に、この機能層を構成する所定のパターンを形成するのに用いられる液状の塗布材料、特に、インクジェット用塗布材料であることが好ましい。
(Coating material)
The coating material according to the present invention is for forming a pattern having the highest point of droplet ejection within a region within 20% from the center of droplet ejection. The raw material and the solubility parameter SP value are 20.3 MPa 1/2. 2 types of solvents A and B which are the following good solvents, the solvent A has a higher surface tension and a higher vapor pressure than the solvent B, and the solvent volume content is 20% or more and 50 % Or less.
In the printed electronics field, the coating material according to the present invention is a liquid coating material used to form a predetermined pattern constituting the functional layer when a functional layer such as an electronic device such as a thin film transistor is laminated. An inkjet coating material is preferable.
 なお、本発明において、電子デバイスは、プリンテッドエレクトロニクス技術が適用される電子デバイスであれば、特に限定されないが、例えば、薄膜トランジスタ、太陽電池、RFID、温度モニタ、ガスセンサ、生体センサ、圧力センサ、赤外線センサ、有機EL照明、表示デバイス等を挙げることができる。
 また、機能膜としては、電子デバイス等の少なくとも一層を構成する機能膜であれば、特に限定されないが、例えば、絶縁層、保護層、層間絶縁層、ガスバリア層、光学薄膜等を挙げることができる。
In the present invention, the electronic device is not particularly limited as long as it is an electronic device to which the printed electronics technology is applied. For example, a thin film transistor, a solar cell, an RFID, a temperature monitor, a gas sensor, a biological sensor, a pressure sensor, an infrared ray A sensor, organic EL illumination, a display device, etc. can be mentioned.
The functional film is not particularly limited as long as it is a functional film constituting at least one layer of an electronic device or the like, and examples thereof include an insulating layer, a protective layer, an interlayer insulating layer, a gas barrier layer, and an optical thin film. .
(打滴パターン)
 まず、本発明に係る塗布材料によって形成される打滴のパターンについて、図1を参照して説明する。
 図1は、本発明の塗布材料を用いた本発明のパターン形成方法によって形成される打滴のパターン形状の一例を模式的に示す断面図である。
 図1に示すように、本発明において形成される打滴10は、基板12上に形成された凸状のパターン、好ましくは、インクジェットによって基板12上に打滴されたインク液滴によって形成された凸状のパターンを有する。この打滴10のパターンの上面は、打滴10の底面、即ち基板12の表面に垂直な方向に打滴10の中心14を取る時、打滴10の中心から20%以内の領域20内に最高点を有する凸状のパターン形状である。
(Drip pattern)
First, a pattern of droplet ejection formed by the coating material according to the present invention will be described with reference to FIG.
FIG. 1 is a cross-sectional view schematically showing an example of the pattern shape of droplet ejection formed by the pattern forming method of the present invention using the coating material of the present invention.
As shown in FIG. 1, the droplets 10 formed in the present invention are formed by convex patterns formed on the substrate 12, preferably ink droplets that are deposited on the substrate 12 by inkjet. Has a convex pattern. The upper surface of the pattern of the droplet ejection 10 is within a region 20 within 20% of the center of the droplet ejection 10 when the center 14 of the droplet ejection 10 is taken in the direction perpendicular to the bottom surface of the droplet ejection 10, that is, the surface of the substrate 12. A convex pattern shape having the highest point.
 具体的には、打滴10のパターンは、図1に示すように、この打滴10を、その中心16を通り、その底面、即ち基板12の表面に垂直な平面で切った断面プロファイル18において、打滴10の中心から20%以内の領域20内に最高点を有する凸状のパターン形状であることが好ましい。
 なお、本発明においては、打滴10のパターンの上面、例えば、打滴10の断面プロファイル18は、打滴10の中心から20%以内の領域20内に最高点を有していれば、どのようなパターン形状であっても、どのようなプロファイルであっても良く、エッジ16の部分が、角張っていても良いが、丸まっている、例えば、打滴10の中心14の両側に存在する打滴10の両エッジ16からその中心14に向かって上に凸の曲面形状を有することが好ましく、図1に示す例のように、打滴10の凸状のパターンの上面、及び断面プロファイル18が、中心14の両側に存在する打滴10のエッジ16からその中心14に向かって上に凸の曲面形状を有し、打滴10の中心14から20%以内の領域20内である中心14に最高点を有することが最も好ましい。
Specifically, as shown in FIG. 1, the pattern of the droplet ejection 10 is as follows: a cross-sectional profile 18 obtained by cutting the droplet ejection 10 through a plane perpendicular to the bottom surface, that is, the surface of the substrate 12. The convex pattern shape having the highest point in the region 20 within 20% from the center of the droplet ejection 10 is preferable.
In the present invention, any upper surface of the pattern of the droplet ejection 10, for example, the cross-sectional profile 18 of the droplet ejection 10, as long as it has the highest point in the region 20 within 20% from the center of the droplet ejection 10, The shape of the pattern may be any profile, and the edge 16 may be square, but is rounded, for example, existing on both sides of the center 14 of the droplet 10. It is preferable to have a curved surface shape that is convex upward from both edges 16 of the droplet 10 toward its center 14, and the upper surface of the convex pattern of the droplet ejection 10 and the cross-sectional profile 18 are as shown in the example shown in FIG. In the center 14, which has a curved surface shape convex upward from the edge 16 of the droplet 10 existing on both sides of the center 14 toward the center 14, and within the region 20 within 20% of the center 14 of the droplet 10. Having the highest score The most preferred.
 ここで、打滴10のパターンは、特に制限的ではないが、インクジェット方式によって形成されるパターンであることが好ましいが、インクジェット方式によるパターンであればどのようなものでも良く、例えば、1本のインクジェットノズルから吐出された単一のインク液滴による円状のパターンであっても良く、また、線状のパターンであっても良いし、また、複数本のインクジェットノズルから吐出された複数のインク液滴によって形成された円状又は楕円状等の閉曲線状のパターンであっても良く、また、線状のパターンであっても良い。
 また、本発明における打滴の断面の切り方は、打滴のどのようなパターンにおいても、例えば、閉曲線状のパターンにおいても、線状のパターンにおいても、即ち、打滴の中心を通り、その底面に垂直な平面で切るものであれば、どのような断面であっても良い。即ち、打滴のプロファイルは、どのような断面におけるプロファイルであっても良い。
 尚、本発明における断面プロファイルは光干渉型表面粗さ計Veeco社製Wykoの装置を用いて測定することが可能である。白色LED及び緑色LED(535nm)光源の光干渉法で得られた断面を測定することにより、検出することができる。
Here, the pattern of the droplet ejection 10 is not particularly limited, but is preferably a pattern formed by an ink jet method. However, any pattern may be used as long as it is a pattern by an ink jet method. It may be a circular pattern of a single ink droplet ejected from an inkjet nozzle, or may be a linear pattern, or a plurality of inks ejected from a plurality of inkjet nozzles It may be a closed curve pattern such as a circle or an ellipse formed by droplets, or may be a linear pattern.
Further, the method of cutting the cross section of the droplet ejection in the present invention can be applied to any pattern of droplet ejection, for example, in a closed curve pattern or a linear pattern, that is, through the center of the droplet ejection. Any cross section may be used as long as it is cut by a plane perpendicular to the bottom surface. That is, the droplet ejection profile may be a profile in any cross section.
In addition, the cross-sectional profile in this invention can be measured using the optical interference type surface roughness meter Veeco Wyko apparatus. It can detect by measuring the cross section obtained by the light interference method of a white LED and a green LED (535 nm) light source.
(溶媒)
 本発明においては、以上のような打滴パターンを形成するための塗布材料は、その溶液の溶媒を表面張力及び蒸気圧が異なる2種類の溶媒A及び溶媒Bで構成する必要がある。
 2種類の溶媒A及び溶媒Bは、塗布材料の原料を溶解しやすい良溶媒であり、溶解度パラメータ(SP値)が20.3MPa1/2以下の溶媒であり、好ましくは、14.1以上20.3以下の溶媒である。
 ここで、2種類の溶媒A及び溶媒BのSP値を、20.3MPa1/2以下に限定する理由は、SP値が20.3MPa1/2超であると、溶解性が低下してしまうからである。
(solvent)
In the present invention, the coating material for forming the droplet ejection pattern as described above needs to be composed of two solvents A and B having different surface tension and vapor pressure as the solvent of the solution.
The two types of solvent A and solvent B are good solvents that easily dissolve the raw material of the coating material, and have a solubility parameter (SP value) of 20.3 MPa 1/2 or less, preferably 14.1 to 20 .3 or less solvent.
Here, the reason why the SP values of the two types of solvent A and solvent B are limited to 20.3 MPa 1/2 or less is that if the SP value is more than 20.3 MPa 1/2 , the solubility decreases. Because.
 このような溶媒としては、例えばペンタン(14.3)、ヘキサン(14.9)、ヘプタン(15.1)、オクタン(15.6)、およびドデカン(16.2)等の脂肪族炭化水素、メチルシクロヘキサン(16.0)、シクロヘキサン(16.8)、およびシクロペンタン(17.8)等の脂環式炭化水素、クメン(16.8)、プロピルベンゼン(17.6)、エチルベンゼン(18.0)、p-キシレン(18.0)、メシチレン(18.0)、トルエン(18.2)、およびベンゼン(18.8)等の芳香族炭化水素、塩化イソブチル(16.6)、塩化イソプロピル(16.6)、1-クロロプロパン(17.4)、クロロホルム(19.0)、およびクロロベンゼン(19.4)等のハロゲン化炭化水素、ジイソプロピルエーテル(14.1)、ジエチルエーテル(15.1)、ジブチルエーテル(16.0)、ジプロピルエーテル(16.0)、およびエチレングリコールジメチルエーテル(17.0)等のエーテル、アセトン(20.3)、MEK9.3、シクロヘキサノン(20.3)、ジイソブチルケトン(16.0)、メチルイソブチルケトン(17.2)、及びジエチルケトン(18.0)等のケトン、並びにこれらの有機溶媒の2以上の混合溶媒を挙げることができる。なお、上記有機溶媒名の後の括弧内の数字はSP値(単位:MPa1/2)を示す。 Examples of such solvents include aliphatic hydrocarbons such as pentane (14.3), hexane (14.9), heptane (15.1), octane (15.6), and dodecane (16.2), Cycloaliphatic hydrocarbons such as methylcyclohexane (16.0), cyclohexane (16.8), and cyclopentane (17.8), cumene (16.8), propylbenzene (17.6), ethylbenzene (18. 0), p-xylene (18.0), mesitylene (18.0), toluene (18.2), aromatic hydrocarbons such as benzene (18.8), isobutyl chloride (16.6), isopropyl chloride (16.6), halogenated hydrocarbons such as 1-chloropropane (17.4), chloroform (19.0), and chlorobenzene (19.4), diisopropyl ether (14.1), diethyl ether (15.1), dibutyl ether (16.0), dipropyl ether (16.0), and ethers such as ethylene glycol dimethyl ether (17.0), acetone (20.3) , MEK 9.3, cyclohexanone (20.3), diisobutyl ketone (16.0), methyl isobutyl ketone (17.2), and ketones such as diethyl ketone (18.0), and two or more of these organic solvents A mixed solvent can be mentioned. The number in parentheses after the organic solvent name indicates the SP value (unit: MPa 1/2 ).
 このような有機溶媒のSP値は、例えば、「ポリマーハンドブック(Polymer Handbook)」、第4版VII-675頁~VII-711頁に記載の方法[特に、676頁の(B3)式及び(B8)式]により求めることができる。また、有機溶媒のSP値として、該文献の表1(VII-683頁)、表7~表8(VII-688頁~VII-711頁)の値を採用できる。有機溶媒が複数の溶媒の混合溶媒である場合のSP値は、公知の方法により求めることができる。例えば、混合溶媒のSP値は、加成性が成立するとして、各溶媒のSP値と体積分率との積の総和として求めることができる。 The SP value of such an organic solvent is determined, for example, by the method described in “Polymer Handbook”, 4th edition, pages VII-675 to VII-711 [in particular, the formula (B3) on page 676 and (B8) ) Formula]. As the SP value of the organic solvent, the values shown in Table 1 (page VII-683) and Table 7 to Table 8 (pages VII-688 to VII-711) of the document can be adopted. The SP value when the organic solvent is a mixed solvent of a plurality of solvents can be determined by a known method. For example, the SP value of the mixed solvent can be obtained as the sum of products of the SP value of each solvent and the volume fraction, assuming that additivity is established.
 本発明において、良溶媒とは、溶質となる原料を溶解し易い溶媒、好ましくは、常識的な温度の全範囲にわたって、原料と無制限に混合する溶媒であり、例えば、原料の液体のSP値とそのSP値との差が10MPa1/2以下である溶媒が好ましい。 In the present invention, the good solvent is a solvent that easily dissolves the raw material to be a solute, preferably a solvent that is mixed infinitely with the raw material over the entire range of common temperature, for example, the SP value of the liquid of the raw material A solvent having a difference from the SP value of 10 MPa 1/2 or less is preferred.
 本発明においては、上記のようなSP値を持つ良溶媒の中から、表面張力および蒸気圧が異なる2種の溶媒Aと溶媒Bとを用いる必要がある。
 このような2種類の溶媒A及び溶媒Bにおいて、一方の溶媒である、例えば溶媒Aが、他方の溶媒である、例えば溶媒Bよりも、表面張力が高くかつ蒸気圧が高い必要がある。なお、溶媒Aが、溶媒Bよりも、表面張力が1.17倍以上高く、かつ蒸気圧が1.57倍以上高いことが好ましく、より好ましくは、表面張力が1.25倍以上高く、かつ蒸気圧が1.8倍以上高いことが良い。また、さらに、溶媒Aの20℃における表面張力が27mN/m以上、かつ蒸気圧が1.1kPa以上であり、溶媒Bの20℃における表面張力が23mN/m以下、かつ0.7kPa以下であることがより好ましい。
In the present invention, it is necessary to use two types of solvent A and solvent B having different surface tension and vapor pressure from among the good solvents having the SP value as described above.
In such two types of solvent A and solvent B, one solvent, for example, solvent A, needs to have higher surface tension and higher vapor pressure than the other solvent, for example, solvent B. The solvent A preferably has a surface tension of 1.17 times or higher and a vapor pressure of 1.57 times or higher than the solvent B, more preferably a surface tension of 1.25 times or higher. The vapor pressure is preferably 1.8 times higher. Furthermore, the surface tension of the solvent A at 20 ° C. is 27 mN / m or more and the vapor pressure is 1.1 kPa or more, and the surface tension of the solvent B at 20 ° C. is 23 mN / m or less and 0.7 kPa or less. It is more preferable.
 なお、溶媒Bに対する溶媒Aの表面張力および蒸気圧の比率の上限値は、特に制限的ではないが、それぞれ、例えば、6倍以下および10倍以下であることが好ましい。
 また、溶媒Aの20℃における表面張力および蒸気圧の上限値は、特に制限的ではないが、それぞれ、例えば、90mN/m以下および100kPa以下であることがより好ましい。また、溶媒Bの20℃における表面張力および蒸気圧の下限値も、特に制限的ではないが、それぞれ、例えば、15mN/m以上および0.1kPa以上であることがより好ましい。
The upper limit values of the ratio of the surface tension and the vapor pressure of the solvent A to the solvent B are not particularly limited, but are preferably 6 times or less and 10 times or less, respectively.
The upper limits of the surface tension and vapor pressure at 20 ° C. of the solvent A are not particularly limited, but are more preferably, for example, 90 mN / m or less and 100 kPa or less, respectively. Further, the lower limit values of the surface tension and vapor pressure at 20 ° C. of the solvent B are not particularly limited, but are more preferably, for example, 15 mN / m or more and 0.1 kPa or more, respectively.
 また、本発明では、塗布材料の溶液の溶媒として、主溶媒、例えば溶媒Bに加えて、表面張力が高くかつ蒸気圧の高い溶媒Aを溶液に添加する必要がある。その理由は、以下の通りである。
 2成分以上の溶媒を用いた場合、溶液の表面張力は、その成分構成比を加味した加重平均となり、全ての溶媒が同じ揮発速度で乾燥していった場合には、従来技術と同様に、打滴の中央部分よりエッジ部分が早く乾燥し、その結果、エッジ部分において濃度上昇が生じ、表面張力が増大するため、表面張力と濃度依存性の関係は比例する。その結果、打滴のエッジ部分が盛り上がり、コーヒーステイン現象を抑制することができなくなるものと思われる。
In the present invention, it is necessary to add a solvent A having a high surface tension and a high vapor pressure to the solution in addition to the main solvent, for example, the solvent B, as a solvent for the solution of the coating material. The reason is as follows.
When two or more components are used, the surface tension of the solution is a weighted average that takes into account the component composition ratio. When all the solvents are dried at the same volatilization rate, as in the prior art, The edge portion dries faster than the central portion of the droplet ejection, and as a result, the density rises at the edge portion and the surface tension increases. Therefore, the relationship between the surface tension and the concentration dependency is proportional. As a result, it seems that the edge portion of the droplet ejection rises and the coffee stain phenomenon cannot be suppressed.
 しかしながら、各々の溶媒の揮発速度は蒸気圧が違うことにより異なる場合がほとんどである。
 このため、乾燥過程において、表面張力が高くかつ揮発性の高い溶媒Aの効果の影響が大きくなった場合には、表面張力の濃度依存性の関係は反比例の形になる。即ち、打滴の乾燥は打滴の中央部分よりエッジ部分の方が早いことから、エッジ部分の溶液において、溶液の濃度は高くなるが、表面張力が高くかつ揮発性の高い溶媒Aが、表面張力が低くかつ揮発性の低い溶媒Bよりも早く蒸発していくので、エッジ部分の溶媒では、溶媒Aの割合が下がり、表面張力が低くかつ揮発性の低い溶媒Bの割合が高くなる。その結果、エッジ部分では、中央部分に比べて溶媒の表面張力は低くなる。そのため、濃度が高くなる液滴端部において表面張力が小さくなり、液滴中央部において表面張力が大きくなる。これによってエッジ部分の盛り上がりを抑制し、コーヒーステイン現象を抑制することが可能となる。
However, in most cases, the volatilization rate of each solvent varies depending on the vapor pressure.
For this reason, in the drying process, when the influence of the effect of the solvent A having a high surface tension and a high volatility increases, the concentration dependence relationship of the surface tension is in an inversely proportional form. That is, since the drying of the droplet is faster at the edge portion than at the central portion of the droplet, the concentration of the solution is high in the edge portion solution, but the solvent A having a high surface tension and high volatility Since the solvent evaporates faster than the solvent B having low tension and low volatility, the ratio of the solvent A decreases in the solvent at the edge portion, and the ratio of the solvent B having low surface tension and low volatility increases. As a result, the surface tension of the solvent is lower in the edge portion than in the central portion. Therefore, the surface tension is reduced at the edge of the droplet where the concentration is high, and the surface tension is increased at the center of the droplet. As a result, the rise of the edge portion can be suppressed, and the coffee stain phenomenon can be suppressed.
 その結果、本発明の塗布溶液を用いて形成したパターンでは、図1に示すように、
打滴の中心から20%以内の領域内に打滴の最高点を有することになり、コーヒーステイン現象を抑制できるようになる。
 また、溶媒Bに対する溶媒Aの表面張力および蒸気圧の比率、並びに溶媒Aの表面張力および蒸気圧の値および溶媒Bの表面張力および蒸気圧の値を上述した所定範囲に限定する理由は、上述したような、打滴内の溶液の表面張力の濃度依存性の関係を、エッジ部分の盛り上がりを抑制するのに適切な反比例の関係にするのに好ましいからである。
As a result, in the pattern formed using the coating solution of the present invention, as shown in FIG.
The highest point of droplet ejection is within an area within 20% from the center of droplet ejection, and the coffee stain phenomenon can be suppressed.
The ratios of the surface tension and vapor pressure of the solvent A to the solvent B, the values of the surface tension and vapor pressure of the solvent A, and the values of the surface tension and vapor pressure of the solvent B are limited to the predetermined ranges described above. This is because the relationship of the concentration dependence of the surface tension of the solution in the droplet ejection is preferable to make it an inversely proportional relationship appropriate for suppressing the bulge of the edge portion.
 また、本発明では、塗布材料の溶液の溶媒として2種類の溶媒Aおよび溶媒Bを用いる場合に、表面張力が高くかつ蒸気圧の高い溶媒Aが、溶液中における溶媒体積含有率として20%以上50%以下含有されている必要がある。
 その理由は、表面張力が高くかつ蒸気圧の高い溶媒Aの溶媒体積含有率が20%~50%の範囲内に入っていれば、図1に示すように、打滴10の中心14から20%以内の領域内に最高点を有する、本発明で規定されるパターン形状を持つ打滴10のパターンを形成でき、コーヒーステイン現象を抑制できるが、20%未満、または50%超では、コーヒーステイン現象を抑制できず、本発明で規定されるパターン形状を持つ打滴パターンを形成できなくなるからである。
 なお、本発明では、表面張力が高くかつ蒸気圧の高い溶媒Aの溶媒体積含有率は、35%以上50%以下含有されていることが好ましい。この場合には、打滴10の中心14から20%以内の領域内に最高点を有するのみならず、エッジ16の部分も丸みを帯びた凸状の打滴パターンを形成することができる。
In the present invention, when two types of solvent A and solvent B are used as the solvent of the coating material solution, the solvent A having a high surface tension and a high vapor pressure is 20% or more as a solvent volume content in the solution. It is necessary to contain 50% or less.
The reason is that if the solvent volume content of the solvent A having a high surface tension and a high vapor pressure is within the range of 20% to 50%, as shown in FIG. The pattern of the droplet ejection 10 having the highest point in the region within% and having the pattern shape defined by the present invention can be formed, and the coffee stain phenomenon can be suppressed. However, if it is less than 20% or more than 50%, the coffee stain This is because the phenomenon cannot be suppressed and a droplet ejection pattern having the pattern shape defined in the present invention cannot be formed.
In the present invention, the solvent volume content of the solvent A having a high surface tension and a high vapor pressure is preferably 35% or more and 50% or less. In this case, not only has the highest point within an area within 20% of the center 14 of the droplet ejection 10, but also the edge 16 portion can form a rounded convex droplet ejection pattern.
(原料)
 本発明に係る塗布材料の原料としては、打滴パーンを形成できれば特に制限的ではないが、薄膜トランジスタなど電子デバイス等の機能層を構成する所定の打滴パターンを形成するためのものであるのが好ましく、より好ましくは、例えば、シラザン化合物、ポリスチレン、ポリカーボネート、ポリエチレン等を挙げることができる。
(material)
The raw material of the coating material according to the present invention is not particularly limited as long as the droplet ejection pan can be formed, but for forming a predetermined droplet ejection pattern constituting a functional layer of an electronic device such as a thin film transistor. More preferably, for example, a silazane compound, polystyrene, polycarbonate, polyethylene and the like can be mentioned.
(シラザン化合物)
 シラザン化合物とは、その構造内にケイ素と窒素の結合(-SiN-)をもった化合物であり、絶縁層、保護層、層間絶縁層等の機能膜となるシリコンオキサイド膜(以下SiO膜ともいう)やシリコンオキシナイトライド膜(以下、SiON膜ともいう)やシリコンナイトライド膜(以下SiN膜ともいう)を形成する際の出発原料となる化合物である。
 なお、このようなSiO膜、SiON膜、SiN膜は、種々の用途に好適に用いることができる。例えば、トランジスタのゲート絶縁膜、層間絶縁膜、ガスバリア膜、光学薄膜などが挙げられる。
(Silazane compound)
A silazane compound is a compound having a silicon-nitrogen bond (—SiN—) in its structure, and is a silicon oxide film (hereinafter also referred to as an SiO 2 film) serving as a functional film such as an insulating layer, a protective layer, or an interlayer insulating layer. And a silicon oxynitride film (hereinafter also referred to as SiON film) and a silicon nitride film (hereinafter also referred to as SiN film).
Such SiO 2 film, SiON film, and SiN film can be suitably used for various applications. Examples thereof include a gate insulating film, an interlayer insulating film, a gas barrier film, and an optical thin film of a transistor.
 シラザン化合物としては、低分子化合物でも高分子化合物(所定の繰り返し単位を有するポリマー)であってもよい。低分子系のシラザン化合物としては、ヘキサメチルジシラザン、ヘキサフェニルジシラザン、ジメチルアミノトリメチルシラン、トリシラザン、シクロトリシラザン、1,1,3,3,5,5-ヘキサメテルシクロトリシラザンなどが挙げられる。
 高分子系のシラザン化合物(ポリシラザン化合物)の種類は特に制限されないが、例えば、特開平8-112879号公報に記載の下記の一般式(1)で表される単位からなる主骨格を有する化合物であることが好ましい。
The silazane compound may be a low molecular compound or a high molecular compound (a polymer having a predetermined repeating unit). Examples of low molecular weight silazane compounds include hexamethyldisilazane, hexaphenyldisilazane, dimethylaminotrimethylsilane, trisilazane, cyclotrisilazane, 1,1,3,3,5,5-hexamethylcyclotrisilazane, and the like. It is done.
The type of the high molecular weight silazane compound (polysilazane compound) is not particularly limited. For example, it is a compound having a main skeleton composed of units represented by the following general formula (1) described in JP-A-8-112879. Preferably there is.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記一般式において、R1、R2、およびR3は、それぞれ独立して、水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基、またはアルコキシ基を表す。 In the above general formula, R 1 , R 2 , and R 3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group. .
 ポリシラザンとしては、絶縁特性がより優れる点で、R1、R2、およびR3のすべてが水素原子であるパーヒドロポリシラザン(以下、「PHPS」とも称する)であることが好ましい。 The polysilazane is preferably perhydropolysilazane (hereinafter, also referred to as “PHPS”) in which all of R 1 , R 2 , and R 3 are hydrogen atoms from the viewpoint of better insulating properties.
 パーヒドロポリシラザンは、直鎖構造と6員環および8員環を中心とする環構造が存在する構造と推定されている。その分子量は数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)であり、液体または固体の物質でありうる(分子量によって異なる)。当該パーヒドロポリシラザンは、市販品を使用してもよく、当該市販品としては、アクアミカNN120、NN120-20、NN110、NAX120、NAX120-20、NAX110、NL120A、NL120-20、NL110A、NL150A、NP110、NP140(AZエレクトロニックマテリアルズ株式会社製)等が挙げられる。 Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on a 6-membered ring and an 8-membered ring. Its molecular weight is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), and can be a liquid or solid substance (depending on the molecular weight). As the perhydropolysilazane, a commercially available product may be used. Examples of the commercially available product include AQUAMICA NN120, NN120-20, NN110, NAX120, NAX120-20, NAX110, NL120A, NL120-20, NL110A, NL150A, NP110, NP140 (made by AZ Electronic Materials Co., Ltd.) etc. are mentioned.
 ポリシラザンの別の例としては、上記一般式で表されるポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(例えば、特開平5-238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(例えば、特開平6-122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(例えば、特開平6-240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(例えば、特開平6-299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(例えば、特開平6-306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(例えば、特開平7-196986号公報)等が挙げられる。 Other examples of polysilazane include silicon alkoxide addition polysilazane obtained by reacting polysilazane represented by the above general formula with silicon alkoxide (for example, JP-A-5-238827), and glycidol addition obtained by reacting glycidol. Polysilazane (for example, JP-A-6-122852), alcohol-added polysilazane (for example, JP-A-6-240208) obtained by reacting an alcohol, metal carboxylate obtained by reacting a metal carboxylate Polysilazane (for example, JP-A-6-299118), acetylacetonate complex-added polysilazane (for example, JP-A-6-306329) obtained by reacting a metal-containing acetylacetonate complex, metal fine particles are added. Obtained metal fine particle Polysilazane (e.g., JP-A-7-196986 JP), and the like.
 ポリシラザン化合物の分子量は特に限定されないが、例えば、ポリスチレン換算平均分子量が1,000~20,000の範囲にあるものが好ましく、1,000~10,000の範囲にあるものがより好ましい。これらのポリシラザン化合物は2種類以上を組み合わせて用いることもできる。 The molecular weight of the polysilazane compound is not particularly limited, but for example, those having a polystyrene-reduced average molecular weight in the range of 1,000 to 20,000 are preferred, and those having a molecular weight in the range of 1,000 to 10,000 are more preferred. These polysilazane compounds can be used in combination of two or more.
 本発明の塗布材料中におけるシラザン化合物と溶媒(溶媒Aおよび溶媒B)との質量比(シラザン化合物の質量/溶媒(溶媒Aおよび溶媒B)の質量)は特に制限されず、形成される機能膜(塗膜)の厚みに応じて適宜最適な質量比が選択されるが、打滴性に優れる点で、0.01~0.50が好ましく、0.05~0.20がより好ましい。
 本発明の塗布材料は、必要に応じてその他の添加剤成分を含有することもできる。そのような成分として、例えば、粘度調整剤、架橋促進剤等が挙げられる。
 本発明の塗布材料は、基本的に以上のように構成される。
The mass ratio of the silazane compound and the solvent (solvent A and solvent B) (mass of silazane compound / mass of solvent (solvent A and solvent B)) in the coating material of the present invention is not particularly limited, and the functional film to be formed The optimum mass ratio is appropriately selected according to the thickness of the (coating film), but is preferably 0.01 to 0.50, more preferably 0.05 to 0.20, from the viewpoint of excellent droplet ejection properties.
The coating material of this invention can also contain another additive component as needed. Examples of such components include viscosity modifiers and crosslinking accelerators.
The coating material of the present invention is basically configured as described above.
(パターン形成方法)
 本発明のパターン形成方法は、上述した本発明の塗布材料を用いて、図1に示すような打滴10の中心から20%以内の領域20内に打滴の最高点を有するパターンを形成する方法である。
 本発明のパターン形成方法においては、溶媒として、原料に対して良溶媒であり、かつ表面張力および蒸気圧が共に高い溶媒Aと、共に低い溶媒Bの2種類の溶媒を用いているので、形成された打滴パターンは、図1に示すような打滴10の中心から20%以内の領域20内に打滴の最高点を有するパターンを形成することができる。
 本発明の塗布材料の打滴の方法は、特に制限的ではないが、インクジェット方式を用いることにより、例えば、インクジェットノズルから本発明の塗布材料の液滴を基板12上に吐出して打滴10を形成できれば、いかなる方法で有っても良い。
(Pattern formation method)
The pattern forming method of the present invention uses the above-described coating material of the present invention to form a pattern having the highest point of droplet ejection within a region 20 within 20% from the center of the droplet ejection 10 as shown in FIG. Is the method.
In the pattern forming method of the present invention, since two types of solvents, a solvent A which is a good solvent for the raw material and has a high surface tension and a high vapor pressure, and a solvent B which is both low are used as the solvent. The formed droplet ejection pattern can form a pattern having the highest point of droplet ejection within a region 20 within 20% from the center of the droplet ejection 10 as shown in FIG.
The method for ejecting the coating material of the present invention is not particularly limited, but by using an inkjet method, for example, droplets of the coating material of the present invention are ejected from the inkjet nozzle onto the substrate 12 to form droplets 10. As long as it can be formed, any method may be used.
 上述したように、本発明において形成される打滴10のパターンは、打滴10の中心から20%以内の領域20内に打滴の最高点を有するパターンであれば、1本以上のインクジェットノズルから吐出された1以上のインク液滴によって形成された円状又は楕円状等の閉曲線状のパターンであっても良いし、線状のパターンであっても良い。
 また、本発明において、インクジェットノズルから本発明の塗布材料の液滴を吐出して基板12上に打滴10のパターンを形成する際には、固定された基板12に対して複数のインクジェットノズルを取り付けたキャリッジを移動させても良いし、基板12を間欠搬送させると共にキャリッジを移動させても良いし、キャリッジを固定しておき、基板12を搬送させても良い。
As described above, if the pattern of the droplet ejection 10 formed in the present invention is a pattern having the highest point of droplet ejection within the region 20 within 20% from the center of the droplet ejection 10, one or more inkjet nozzles are used. The pattern may be a closed-curve pattern such as a circle or an ellipse formed by one or more ink droplets ejected from or a linear pattern.
Further, in the present invention, when a droplet of the coating material of the present invention is ejected from an inkjet nozzle to form a pattern of droplets 10 on the substrate 12, a plurality of inkjet nozzles are provided on the fixed substrate 12. The attached carriage may be moved, the substrate 12 may be intermittently conveyed and the carriage may be moved, or the carriage 12 may be fixed and the substrate 12 may be conveyed.
 本発明の塗布材料が打滴されて打滴のパターンが形成される基板、その形状、構造、大きさには、特に制限的ではなく、目的に応じて適宜選択することができる。基板の構造は単層構造であってもよいし、積層構造であってもよい。
 基板の材質としては特に限定はなく、例えば、ガラス、アルミナ、YSZ(イットリウム安定化ジルコニウム)等の無機材料、樹脂材料や、その複合材料等を用いることができる。中でも、軽量である点、可撓性を有する点から樹脂基板やその複合材料が好ましい。
The substrate on which the coating material of the present invention is ejected to form a droplet ejection pattern, its shape, structure, and size are not particularly limited and can be appropriately selected depending on the purpose. The structure of the substrate may be a single layer structure or a laminated structure.
The material of the substrate is not particularly limited, and for example, an inorganic material such as glass, alumina, YSZ (yttrium stabilized zirconium), a resin material, a composite material thereof, or the like can be used. Among these, a resin substrate or a composite material thereof is preferable from the viewpoint of light weight and flexibility.
 パターン形成後の打滴10のパターンの厚さは、基板12上に形成された打滴10のパターンに施される後処理に適するように、例えば紫外線照射および/または加熱処理の際に効率的に硬化(転化)できるように薄いことが好ましい。このために、打滴パターンの厚さは1.0μm以下が好ましく、0.5μm以下がより好ましい。一方、打滴パターンの厚さに下限はないが、成膜性の点から、0.05μm以上が好ましく、0.1μm以上がより好ましい。
 また、基板として可撓性基板を用い、本発明の塗布材料としてシラザン化合物を含む塗布材料を用いる際は、本発明の塗布材料による打滴パターン形成後にSiO膜、SiON膜、SiN膜へ転化する際に発生する体積収縮による基板の反りを抑制するために、基板の両面に本発明の塗布材料の打滴パターンを形成してもよい。
 本発明のパターン形成方法は、基本的に以上のように構成される。
The thickness of the pattern 10 of the droplets 10 after pattern formation is efficient in, for example, ultraviolet irradiation and / or heat treatment so as to be suitable for post-processing applied to the pattern of droplets 10 formed on the substrate 12. It is preferable to be thin so that it can be cured (converted). For this reason, the thickness of the droplet ejection pattern is preferably 1.0 μm or less, and more preferably 0.5 μm or less. On the other hand, although there is no lower limit to the thickness of the droplet ejection pattern, it is preferably 0.05 μm or more, and more preferably 0.1 μm or more from the viewpoint of film formability.
In addition, when a flexible substrate is used as the substrate and a coating material containing a silazane compound is used as the coating material of the present invention, it is converted into a SiO 2 film, a SiON film, or a SiN film after the droplet ejection pattern is formed by the coating material of the present invention. In order to suppress warpage of the substrate due to volume shrinkage that occurs during the process, a droplet ejection pattern of the coating material of the present invention may be formed on both surfaces of the substrate.
The pattern forming method of the present invention is basically configured as described above.
(電子デバイスの製造方法)
 本発明の電子デバイスの製造方法は、電子デバイスを構成する少なくとも1層を、上述した本発明のパターン形成方法を用いて形成された打滴パターンによって機能膜として作製する方法である。
 以下では、電子デバイスとして、薄膜トランジスタを代表例とし、機能膜として薄膜トランジスタのゲート絶縁膜を代表例とし、ゲート酸化膜としてシラザン化合物を原料とする本発明の塗布材料によって形成されるSiON膜を形成する例を代表例として説明するが、本発明はこれに限定されないのは、勿論である。
(Electronic device manufacturing method)
The method for producing an electronic device of the present invention is a method for producing at least one layer constituting an electronic device as a functional film by a droplet ejection pattern formed by using the above-described pattern forming method of the present invention.
In the following, a thin film transistor is a typical example as an electronic device, a gate insulating film of a thin film transistor is a typical example as a functional film, and a SiON film formed from the coating material of the present invention using a silazane compound as a raw material is formed as a gate oxide film. An example will be described as a representative example, but the present invention is of course not limited thereto.
 図2は、本発明の電子デバイスの1実施形態である薄膜トランジスタの一実施例の断面模式図である。
 図2において、薄膜トランジスタ50は、基板52と、基板52上に配置されたゲート電極54と、ゲート電極54上に配置されたゲート絶縁膜56と、ゲート絶縁膜56上に配置された酸化物半導体層58と、酸化物半導体層58上に配置されたソース電極60およびドレイン電極62とを少なくとも備える。
 このゲート絶縁膜56は、シラザン化合物を原料とし、原料に対して良溶媒であり、かつ表面張力および蒸気圧が共に異なる2種類の溶媒を含む本発明の塗布材料を用いて本発明のパターン形成方法によって形成された打滴パターンを持つSiON膜で形成されたものである。
FIG. 2 is a schematic cross-sectional view of one example of a thin film transistor which is one embodiment of the electronic device of the present invention.
In FIG. 2, the thin film transistor 50 includes a substrate 52, a gate electrode 54 disposed on the substrate 52, a gate insulating film 56 disposed on the gate electrode 54, and an oxide semiconductor disposed on the gate insulating film 56. The layer 58 includes at least a source electrode 60 and a drain electrode 62 disposed on the oxide semiconductor layer 58.
The gate insulating film 56 is formed by using the coating material of the present invention containing two types of solvents that use a silazane compound as a raw material, are good solvents for the raw material, and have different surface tension and vapor pressure. It is formed of a SiON film having a droplet ejection pattern formed by the method.
 薄膜トランジスタ50は、ボトムゲート型の薄膜トランジスタである。以下では、ボトムゲート型の薄膜トランジスタについてのみ詳述するが、トップゲート型の薄膜トランジスタのゲート絶縁膜に本発明法によるSiON膜を適用してもよい。ゲート絶縁膜56は酸化物半導体層58に隣接して配置され、SiON膜を使用すれば、酸化物半導体層58との界面特性がより向上し、薄膜トランジスタとしての性能がより向上する。
 なお、酸化工程が施されたSiON膜を使用する場合は、酸化工程が施された表面を酸化物半導体層58側に配置することが好ましい。
 また、図2においては、酸化物半導体層を用いた酸化物薄膜トランジスタの態様について詳述するが、本発明法によるSiON膜は有機半導体材料を含む有機半導体層を用いた有機薄膜トランジスタのゲート絶縁膜としても好適に使用できる。
The thin film transistor 50 is a bottom-gate thin film transistor. Hereinafter, only the bottom gate type thin film transistor will be described in detail, but the SiON film according to the present invention may be applied to the gate insulating film of the top gate type thin film transistor. When the gate insulating film 56 is disposed adjacent to the oxide semiconductor layer 58 and the SiON film is used, the interface characteristics with the oxide semiconductor layer 58 are further improved, and the performance as a thin film transistor is further improved.
Note that in the case of using the SiON film that has been subjected to the oxidation step, the surface that has been subjected to the oxidation step is preferably disposed on the oxide semiconductor layer 58 side.
In FIG. 2, an embodiment of an oxide thin film transistor using an oxide semiconductor layer is described in detail. The SiON film according to the present invention is used as a gate insulating film of an organic thin film transistor using an organic semiconductor layer containing an organic semiconductor material. Can also be suitably used.
 本発明法による電子デバイスとして薄膜トランジスタ50を製造する際には、図1に示すように、まず、基板52上に、公知の方法により、例えば電極材料を真空蒸着またはスパッタする等により、ゲート電極54を形成する。
 次に、形成されたゲート電極54上に、本発明の塗布材料を用いて本発明のパターン形成方法によってエッジの盛り上がりのない打滴パターンを形成した後、転化処理を行い、SiON膜をゲート絶縁膜56として形成する。
 その後、ゲート絶縁膜56上に、公知の方法により酸化物半導体層58を形成し、形成された酸化物半導体層58上にそれぞれゲート電極54と同様にして、パターン化されて分離されたソース電極60およびドレイン電極62を形成する。
 こうして、本発明法によって薄膜トランジスタ50を製造することができる。
 以下、基板、ゲート電極、ゲート絶縁膜、酸化物半導体層、ソース電極、ドレイン電極について詳述する。
When the thin film transistor 50 is manufactured as an electronic device according to the present invention, as shown in FIG. 1, first, the gate electrode 54 is formed on the substrate 52 by a known method, for example, by vacuum deposition or sputtering of an electrode material. Form.
Next, on the formed gate electrode 54, after forming a droplet ejection pattern with no edge swell by the pattern forming method of the present invention using the coating material of the present invention, a conversion process is performed, and the SiON film is gate-insulated. The film 56 is formed.
After that, an oxide semiconductor layer 58 is formed over the gate insulating film 56 by a known method, and the patterned source electrode separated in the same manner as the gate electrode 54 over the formed oxide semiconductor layer 58. 60 and the drain electrode 62 are formed.
Thus, the thin film transistor 50 can be manufactured by the method of the present invention.
Hereinafter, the substrate, gate electrode, gate insulating film, oxide semiconductor layer, source electrode, and drain electrode will be described in detail.
<基板>
 基板は、後述するゲート電極、ソース電極、およびドレイン電極などを支持する役割を果たす。基板の種類は特に制限されず、上述した基板なども挙げられる。
<Board>
The substrate plays a role of supporting a gate electrode, a source electrode, a drain electrode, and the like, which will be described later. The kind in particular of board | substrate is not restrict | limited, The board | substrate etc. which were mentioned above are mentioned.
<ゲート電極>
 ゲート電極の材料としては、例えば、金(Au)、銀、アルミニウム、銅、クロム、ニッケル、コバルト、チタン、白金、マグネシウム、カルシウム、バリウム、ナトリウム等の金属;In、SnO、ITO等の導電性の酸化物;ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリジアセチレン等の導電性高分子;シリコン、ゲルマニウム、ガリウム砒素等の半導体;フラーレン、カーボンナノチューブ、グラファイト等の炭素材料などが挙げられる。なかでも、金属であることが好ましく、銀、アルミニウムであることがより好ましい。
 ゲート電極の厚みは特に制限されないが、10nm以上1000nm以下が好ましく、50nm以上500nm以下がより好ましい。
 ゲート電極を形成する方法は特に制限されないが、例えば、基板上に、電極材料を真空蒸着またはスパッタする方法、電極形成用組成物を塗布または印刷する方法などが挙げられる。また、電極をパターニングする場合、パターニングする方法としては、例えば、フォトリソグラフィー法;インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法;マスク蒸着法などが挙げられる。
<Gate electrode>
Examples of the material of the gate electrode include gold (Au), silver, aluminum, copper, chromium, nickel, cobalt, titanium, platinum, magnesium, calcium, barium, sodium, and other metals; In 2 O 3 , SnO 2 , ITO Conductive oxides such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polydiacetylene; semiconductors such as silicon, germanium, and gallium arsenide; and carbon materials such as fullerene, carbon nanotube, and graphite. Especially, it is preferable that it is a metal, and it is more preferable that they are silver and aluminum.
The thickness of the gate electrode is not particularly limited, but is preferably 10 nm to 1000 nm, and more preferably 50 nm to 500 nm.
A method for forming the gate electrode is not particularly limited, and examples thereof include a method of vacuum depositing or sputtering an electrode material on a substrate, a method of applying or printing an electrode forming composition, and the like. In the case of patterning the electrode, examples of the patterning method include a photolithography method; a printing method such as ink jet printing, screen printing, offset printing, letterpress printing; and a mask vapor deposition method.
<ゲート絶縁膜>
 ゲート絶縁膜は、上述したSiO膜、SiON膜、SiN膜より形成される。
 ここで、絶縁膜を形成する際には、シラザン化合物を原料とし、原料に対して良溶媒であり、かつ表面張力および蒸気圧が共に異なる2種類の溶媒を含む本発明の塗布材料を用いて本発明のパターン形成方法によってエッジの盛り上がりのない打滴パターンを形成した後、形成された打滴パターンを、乾燥後、若しくは乾燥することなく、打滴パターンに対して、転化処理を施す。
 非酸化性雰囲気下にて、紫外線を照射する、および/または、打滴パターンを加熱する(加熱処理を施す)転化処理(転化工程)を行う。このような処理を実施することにより、シラザン化合物から所望のSiON膜、SiN膜への転化が進行する。こうして、エッジの盛り上がりのないパターン形状を持つSiON膜、SiN膜をゲート絶縁膜として形成することができる。
 酸化性雰囲気下にて、紫外線を照射する、および/または、打滴パターンを加熱する(加熱処理を施す)転化処理(転化工程)を行う。このような処理を実施することにより、シラザン化合物から所望のSiO膜への転化が進行する。こうして、エッジの盛り上がりのないパターン形状を持つSiO膜をゲート絶縁膜として形成することができる。
 ゲート絶縁膜の膜厚は、特に制限されないが、70~1000nmであることが好ましい。
<Gate insulation film>
The gate insulating film is formed from the above-described SiO 2 film, SiON film, or SiN film.
Here, when the insulating film is formed, the coating material of the present invention containing two types of solvents that use a silazane compound as a raw material, is a good solvent for the raw material, and has different surface tension and vapor pressure. After forming a droplet ejection pattern with no edge rise by the pattern forming method of the present invention, the droplet ejection pattern is subjected to a conversion process after drying or without drying.
In a non-oxidizing atmosphere, a conversion treatment (conversion step) is performed by irradiating ultraviolet rays and / or heating the droplet ejection pattern (applying a heat treatment). By performing such treatment, conversion from the silazane compound to a desired SiON film or SiN film proceeds. In this way, a SiON film or a SiN film having a pattern shape with no rising edge can be formed as a gate insulating film.
In an oxidizing atmosphere, a conversion treatment (conversion step) is performed by irradiating ultraviolet rays and / or heating the droplet ejection pattern (applying a heat treatment). By carrying out such a treatment, conversion from the silazane compound to a desired SiO 2 film proceeds. In this way, a SiO 2 film having a pattern shape with no edge rise can be formed as a gate insulating film.
The thickness of the gate insulating film is not particularly limited, but is preferably 70 to 1000 nm.
 なお、図2においては、ゲート絶縁膜がSiON膜である態様を示すが、その態様には限定されず、例えば、本発明の塗布材料を用いて本発明のパターン形成方法によってエッジの盛り上がりのない打滴パターン形状を持つものであれば、SiON膜と他のゲート絶縁膜とを積層した積層絶縁膜であってもよい。その場合、酸化物半導体層と接している部分が本発明のSiON膜であることが好ましい。
 上記他のゲート絶縁膜としては、例えば、絶縁材料としてポリマーを含むポリマー絶縁膜が挙げられる。例として、ビニル系高分子、スチレン系高分子、アクリル系高分子、エポキシ系高分子、エステル系高分子、フェノール系高分子、イミド系高分子、および、シクロアルケン(Cycloalkene)で構成されたポリマーからなる群から選択される少なくとも一つのポリマーを含むポリマー絶縁膜であることが好ましい。
FIG. 2 shows a mode in which the gate insulating film is a SiON film, but the mode is not limited to this mode. For example, there is no rise of the edge by the pattern forming method of the present invention using the coating material of the present invention. A laminated insulating film in which a SiON film and another gate insulating film are laminated may be used as long as it has a droplet ejection pattern shape. In that case, the portion in contact with the oxide semiconductor layer is preferably the SiON film of the present invention.
Examples of the other gate insulating film include a polymer insulating film containing a polymer as an insulating material. Examples include polymers composed of vinyl polymers, styrene polymers, acrylic polymers, epoxy polymers, ester polymers, phenol polymers, imide polymers, and cycloalkenes. A polymer insulating film containing at least one polymer selected from the group consisting of:
 更に詳細には、ポリマー絶縁膜としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリテトラフルオロエチレン(PTFE)、ポリビニルクロライド(PVC)、ポリビニルアルコール(PVA)、ポリビニルフェノール(PVP)、ポリビニルピロリドン、ポリスチレン(PS)、ポリアクリルレート、ポリメタクリル酸メチル(PMMA)、ポリアクリロニトリル(PAN)、ポリカーボネート(PC)、ポリテレフタル酸エチレン(PET)、パリレン、ポリフェニレンスルフィド(PPS)、ポリイミド(PI)、ポリベンゾシクロブテン(BCB)、ポリシクロペンテン(CyPe)、および、ポリシルセスキオキサンからなる群から選択される少なくとも一つのポリマーを含むポリマー絶縁膜であることも好ましい。 More specifically, as the polymer insulating film, polyethylene (PE), polypropylene (PP), polytetrafluoroethylene (PTFE), polyvinyl chloride (PVC), polyvinyl alcohol (PVA), polyvinyl phenol (PVP), polyvinyl pyrrolidone, Polystyrene (PS), polyacrylate, polymethyl methacrylate (PMMA), polyacrylonitrile (PAN), polycarbonate (PC), poly (ethylene terephthalate) (PET), parylene, polyphenylene sulfide (PPS), polyimide (PI), poly A polymer insulating film containing at least one polymer selected from the group consisting of benzocyclobutene (BCB), polycyclopentene (CyPe), and polysilsesquioxane is also preferable.
<酸化物半導体層>
 酸化物半導体層は、活性層(チャネル)として機能するものであり、例えば、インジウム(In)、ガリウム(Ga)、スズ(Sn)および亜鉛(Zn)等のうちの1種または2種以上の混合物の酸化物よりなる。このような酸化物としては、例えば、酸化インジウムガリウム亜鉛(IGZO,InGaZnO)が挙げられる。酸化インジウムガリウム亜鉛以外にも、In-Al-Zn-O系、In-Sn-Zn-O系、In-Zn-O系、In-Sn-O系、Zn-O系、Sn-O系などを用いてもよい。
 酸化物半導体層の厚みは、特に制限されないが、5~300nmが好ましい。
 酸化物半導体層を形成する方法は特に制限されず、公知の方法を採用できる。例えば、スピンコート、インクジェット、ディスペンサー、スクリーン印刷、凸版印刷または凹版印刷等を用いることができる。また、スパッタ法や、蒸着法などの気相法を採用することもできる。
<Oxide semiconductor layer>
The oxide semiconductor layer functions as an active layer (channel). For example, one or more of indium (In), gallium (Ga), tin (Sn), and zinc (Zn) are used. It consists of an oxide of a mixture. Examples of such an oxide include indium gallium zinc oxide (IGZO, InGaZnO). In addition to indium gallium zinc oxide, In—Al—Zn—O, In—Sn—Zn—O, In—Zn—O, In—Sn—O, Zn—O, Sn—O, etc. May be used.
The thickness of the oxide semiconductor layer is not particularly limited, but is preferably 5 to 300 nm.
A method for forming the oxide semiconductor layer is not particularly limited, and a known method can be employed. For example, spin coating, ink jet, dispenser, screen printing, letterpress printing or intaglio printing can be used. Further, a vapor phase method such as a sputtering method or a vapor deposition method may be employed.
<ソース電極、ドレイン電極>
 ソース電極およびドレイン電極の材料の具体例は、上述したゲート電極と同じである。
 ソース電極およびドレイン電極を形成する方法は特に制限されないが、例えば、ゲート電極とゲート絶縁膜と酸化物半導体層とが形成された基板上に、電極材料を真空蒸着またはスパッタする方法、電極形成用組成物を塗布または印刷する方法などが挙げられる。パターニング方法の具体例は、上述したゲート電極と同じである。
 ソース電極およびドレイン電極のチャネル長は特に制限されないが、0.01~1000μmであることが好ましい。
 ソース電極およびドレイン電極のチャネル幅は特に制限されないが、0.01~5000μmであることが好ましい。
 本発明の電子デバイスの製造方法は、基本的に以上のように構成される。
<Source electrode, drain electrode>
Specific examples of the material of the source electrode and the drain electrode are the same as those of the gate electrode described above.
A method for forming the source electrode and the drain electrode is not particularly limited. For example, a method of vacuum-depositing or sputtering an electrode material on a substrate on which a gate electrode, a gate insulating film, and an oxide semiconductor layer are formed; The method of apply | coating or printing a composition etc. are mentioned. A specific example of the patterning method is the same as that of the gate electrode described above.
The channel length of the source electrode and the drain electrode is not particularly limited, but is preferably 0.01 to 1000 μm.
The channel width of the source electrode and the drain electrode is not particularly limited, but is preferably 0.01 to 5000 μm.
The electronic device manufacturing method of the present invention is basically configured as described above.
 以下、実施例により、本発明について具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these.
(実施例I)
 まず、AZ-EM社製ポリシラザン溶液(120シリーズ:ジブチルエーテル溶媒及び110シリーズ:キシレン溶媒)を原料として用い、各種溶媒を溶媒Aおよび溶媒Bとして体積比1:1で混合させて、実施例1~2及び比較例1~8の混合溶液を得た。これらの実施例1~2及び比較例1~8の混合溶液を表1に示す。表1に示す蒸気圧、表面張力の値は、20℃における値である。
Example I
First, a polysilazane solution (120 series: dibutyl ether solvent and 110 series: xylene solvent) manufactured by AZ-EM was used as a raw material, and various solvents were mixed as solvent A and solvent B at a volume ratio of 1: 1. A mixed solution of ˜2 and Comparative Examples 1-8 was obtained. These mixed solutions of Examples 1 and 2 and Comparative Examples 1 to 8 are shown in Table 1. The values of vapor pressure and surface tension shown in Table 1 are values at 20 ° C.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 得られた実施例1~2及び比較例1~8の混合溶液をシリコン基板上にスピンコートすることで、濡れ性の確認を実施した。
 むらなく均一に塗布されている場合をA、塗布表面にむらがある場合をBと評価した。その結果を表1に示す。
 表1に示す結果から明らかなように、溶媒Bがジブチルエーテルの時に、溶媒Aがそれぞれトルエン、クロロベンゼンであり、溶媒Aと溶媒Bとの表面張力比が1.17以上、蒸気圧比が1.57以上である実施例1および2において、図3(C)に示すようにスピンコート膜が良好でないB評価であることが確認された。
 一方、溶媒Bがジブチルエーテル、キシレンの時に、溶媒Aと溶媒Bとの表面張力比が1.17未満である溶媒Aを用いた比較例1~4及び7~8、並びに溶媒Aと溶媒Bとの蒸気圧比が1.57未満である溶媒Aを用いた比較例1及び5~6、したがって、比較例1~8において、図4(C)に示すように、スピンコート膜が良好なA評価であることが確認された。
The obtained mixed solutions of Examples 1 and 2 and Comparative Examples 1 to 8 were spin-coated on a silicon substrate, thereby confirming wettability.
The case where the coating was uniformly applied was evaluated as A, and the case where the coating surface was uneven was evaluated as B. The results are shown in Table 1.
As is apparent from the results shown in Table 1, when the solvent B is dibutyl ether, the solvent A is toluene and chlorobenzene, the surface tension ratio between the solvent A and the solvent B is 1.17 or more, and the vapor pressure ratio is 1. In Examples 1 and 2 which were 57 or more, it was confirmed that the B coating evaluation was not good as shown in FIG. 3C.
On the other hand, when the solvent B is dibutyl ether or xylene, Comparative Examples 1 to 4 and 7 to 8 using the solvent A having a surface tension ratio of the solvent A and the solvent B of less than 1.17, and the solvent A and the solvent B In Comparative Examples 1 and 5-6 using the solvent A having a vapor pressure ratio of less than 1.57, and in Comparative Examples 1-8, as shown in FIG. It was confirmed to be an evaluation.
 また、FUJIFILM DIMATIX社製インクジェット装置DMP2830を用いて、実施例1~2及び比較例1~8の混合溶液を吐出し、吐出された打滴のパターン形状、即ち断面プロファイルを確認した。なお、断面プロファイルは、Veeco社製Wykoにて光干渉像を測定することで確認した。
 打滴パターンの中央部から20%以内の領域において最大値をとる場合をA、中央部から20%以外の領域において最大値をとる場合をBと評価した。その結果を表1に示す。
 表1に示す結果から明らかなように、スピンコートにおいて膜が良好に形成されなかった溶液構成である実施例1~2において、図3(A)および(B)に示すように、形成されたインクジェットパターン像において、中心から20%の領域において最高値を持ち、エッジから中心に向かって滑らかな凸状の良好なA評価の断面プロファイルが得られることが確認された。
Further, the mixed solutions of Examples 1 and 2 and Comparative Examples 1 to 8 were ejected using an inkjet apparatus DMP2830 manufactured by FUJIFILM DIMATIX, and the pattern shape of the ejected droplets, that is, the cross-sectional profile was confirmed. The cross-sectional profile was confirmed by measuring the optical interference image with Wyko manufactured by Veeco.
The case where the maximum value was obtained in an area within 20% from the central portion of the droplet ejection pattern was evaluated as A, and the case where the maximum value was taken in an area other than 20% from the central portion was evaluated as B. The results are shown in Table 1.
As is apparent from the results shown in Table 1, in Examples 1 and 2 in which the film was not formed satisfactorily by spin coating, it was formed as shown in FIGS. 3 (A) and 3 (B). In the ink jet pattern image, it was confirmed that a good A evaluation cross-sectional profile having a maximum value in a region 20% from the center and a smooth convex shape from the edge toward the center was obtained.
 一方、スピンコート膜が良好であった比較例1~8において、図4(A)および(B)に示すように、形成されたインクジェットパターン像において、エッジにおいてコーヒーステイン現象の発生による盛り上がりのある問題のあるB評価の断面プロファイルが得られることが確認された。
 表1の結果から、実施例1及び2の濡れ広がらない溶液構成が良好な断面プロファイルを有するインクジェットパターン形成に適しているということが確認された。
On the other hand, in Comparative Examples 1 to 8 in which the spin coat film was good, as shown in FIGS. 4A and 4B, the formed inkjet pattern image has a rise due to the occurrence of the coffee stain phenomenon at the edge. It was confirmed that a problematic B evaluation cross-sectional profile was obtained.
From the results in Table 1, it was confirmed that the solution configurations of Examples 1 and 2 that did not spread out were suitable for forming an inkjet pattern having a good cross-sectional profile.
(実施例II)
 次に、実施例1の原料、溶媒Aおよび溶媒Bの組み合わせにおいて、溶媒Aであるトルエンと溶媒Bであるジブチルエーテルとの体積含有率を変化させることで、スピンコート膜の濡れ性およびインクジェットパターン像のパターン形状、特にそのエッジ形状の変化を確認した。
 スピンコート膜の濡れ性の評価は、実施例Iと同様に評価した。
 また、インクジェットパターン像のパターン形状は、断面プロファイルにおける最大値が、打滴パターンの中央部分(中心から20%の領域内)にあり、エッジ部分が丸まっている場合をAA、打滴パターンの中央部分にあり、エッジ部分が角ばっている場合をA、打滴パターンのエッジ部分にある場合をBと評価した。なお、断面プロファイルは、Veeco社製Wykoにて光干渉像を測定することで確認した。
 その結果を表2に示す。
Example II
Next, in the combination of the raw material of Example 1, the solvent A and the solvent B, the wettability of the spin coat film and the ink jet pattern are obtained by changing the volume content of toluene as the solvent A and dibutyl ether as the solvent B. Changes in the pattern shape of the image, especially its edge shape, were confirmed.
The wettability of the spin coat film was evaluated in the same manner as in Example I.
In addition, the pattern shape of the ink jet pattern image is AA when the maximum value in the cross-sectional profile is in the central portion (within 20% of the center) of the droplet ejection pattern and the edge portion is rounded, and the center of the droplet ejection pattern. The case where the edge portion was square and the edge portion was square was evaluated as A, and the case where the edge portion was at the edge portion of the droplet ejection pattern was evaluated as B. The cross-sectional profile was confirmed by measuring the optical interference image with Wyko manufactured by Veeco.
The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2に示す結果から明らかなように、溶媒Aであるトルエンの体積含有率が20%以上~50%以下の領域に入る実施例11~17において、むらのない良好なスピンコート膜が形成されずB評価であり、パターン形状は、打滴パターンの中央部分(中心から20%の領域内)にプロファイルの最大値をとり、コーヒーステイン現象を抑制できるA又はAA評価であることを確認できた。
 一方、溶媒Aであるトルエンの体積含有率が50%超の比較例11および20%未満の比較例12~15では、むらのない良好なスピンコート膜が形成できてA評価であり、パターン形状は、打滴パターンの中央部分(中心から20%の領域内)にプロファイルの最大値をとることができず、コーヒーステイン現象を抑制できていないB評価であることを確認できた。
 また、特に、溶媒Aであるトルエンの体積含有率が35%以上~50%以下の領域に入る実施例11~14において、パターン形状は、打滴パターンの中央部分(中心から20%の領域内)にプロファイルの最大値を取ると共に、エッジ部分も丸みを帯びており、良好な形状を得られるAA評価であるということが確認された。
As is clear from the results shown in Table 2, in Examples 11 to 17 where the volume content of toluene as the solvent A falls within the range of 20% to 50%, a good spin coat film with no unevenness is formed. It was confirmed that the pattern shape was A or AA evaluation which can suppress the coffee stain phenomenon by taking the maximum value of the profile at the central part (in the region 20% from the center) of the droplet ejection pattern. .
On the other hand, in Comparative Example 11 in which the volume content of toluene as the solvent A is more than 50% and Comparative Examples 12 to 15 in which the volume content is less than 20%, a good spin coat film having no unevenness can be formed, which is evaluated as A. Was not able to take the maximum value of the profile in the central portion of the droplet ejection pattern (in the region 20% from the center), and it was confirmed that the B evaluation did not suppress the coffee stain phenomenon.
In particular, in Examples 11 to 14 where the volume content of toluene as the solvent A falls within the range of 35% to 50%, the pattern shape is the central portion of the droplet ejection pattern (in the region of 20% from the center). ), The maximum value of the profile is taken, and the edge portion is also rounded, confirming that the AA evaluation can obtain a good shape.
(実施例III)
 次に、和光純薬製ポリスチレン(Mw=300)を原料として用い、各種溶媒を溶媒Aおよび溶媒Bとして体積比1:1で混合させて、実施例21~22及び比較例21~22の混合溶液を得た。これらの実施例21~22及び比較例21~22の混合溶液を表3に示す。表3に示す蒸気圧、表面張力の値は、20℃における値である。
(Example III)
Next, using Wako Pure Chemicals polystyrene (Mw = 300) as a raw material and mixing various solvents as solvent A and solvent B at a volume ratio of 1: 1, mixing Examples 21-22 and Comparative Examples 21-22 A solution was obtained. The mixed solutions of Examples 21 to 22 and Comparative Examples 21 to 22 are shown in Table 3. The values of vapor pressure and surface tension shown in Table 3 are values at 20 ° C.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 得られた実施例21~22及び比較例21~22の混合溶液をシリコン基板上にスピンコートすることで、濡れ性の確認を実施した。
 スピンコート膜の濡れ性の評価は、実施例Iと同様に行った。その結果を表3に示す。
 表3に示す結果から明らかなように、溶媒Bがジブチルエーテルの時に、溶媒Aがそれぞれトルエン、クロロベンゼンであり、溶媒Aと溶媒Bとの表面張力比が1.17以上、蒸気圧比が1.57以上である実施例21および22において、スピンコート膜が良好でないB評価であることが確認された。
 一方、溶媒Aがトルエンの時に、溶媒Aと溶媒Bとの表面張力比が1.17未満である溶媒Bを用いた比較例21~22、並びに溶媒Aと溶媒Bとの蒸気圧比が1.57未満である溶媒Bを用いた比較例21、したがって、比較例21~22において、スピンコート膜が良好なA評価であることが確認された。
The obtained mixed solutions of Examples 21 to 22 and Comparative Examples 21 to 22 were spin-coated on a silicon substrate, thereby confirming wettability.
Evaluation of the wettability of the spin coat film was performed in the same manner as in Example I. The results are shown in Table 3.
As is apparent from the results shown in Table 3, when the solvent B is dibutyl ether, the solvent A is toluene and chlorobenzene, the surface tension ratio between the solvent A and the solvent B is 1.17 or more, and the vapor pressure ratio is 1. In Examples 21 and 22, which were 57 or more, it was confirmed that the spin coat film had an unfavorable B evaluation.
On the other hand, when the solvent A is toluene, Comparative Examples 21 to 22 using the solvent B having a surface tension ratio of the solvent A and the solvent B of less than 1.17, and the vapor pressure ratio of the solvent A and the solvent B are 1. In Comparative Example 21 using Solvent B that is less than 57, and therefore in Comparative Examples 21 to 22, it was confirmed that the spin coat film had a good A evaluation.
 また、実施例Iと同様に、FUJIFILM DIMATIX社製インクジェット装置DMP2830を用いて実施例21~22及び比較例21~22の混合溶液を吐出し、吐出された打滴のパターン形状、即ち断面プロファイルを確認した。なお、断面プロファイルは、Veeco社製Wykoにて光干渉像を測定することで確認した。
 打滴のパターン形状(断面プロファイル)の評価は、実施例Iと同様におこなった。その結果を表3に示す。
 表3に示す結果から明らかなように、スピンコートにおいて膜が良好に形成されなかった溶液構成である実施例21~22において、形成されたインクジェットパターン像において、中心から20%の領域において最高値を持ち、エッジから中心に向かって滑らかな凸状の良好なA評価の断面プロファイルが得られることが確認された。
Similarly to Example I, the mixed solution of Examples 21 to 22 and Comparative Examples 21 to 22 was ejected using an inkjet apparatus DMP2830 manufactured by FUJIFILM DIMATIX, and the pattern shape of the ejected droplets, that is, the cross-sectional profile was obtained. confirmed. The cross-sectional profile was confirmed by measuring the optical interference image with Wyko manufactured by Veeco.
Evaluation of the pattern shape (cross-sectional profile) of droplet ejection was performed in the same manner as in Example I. The results are shown in Table 3.
As is apparent from the results shown in Table 3, in Examples 21 to 22, which are solution structures in which a film was not formed well by spin coating, the highest value was obtained in the region of 20% from the center in the formed ink jet pattern image. It was confirmed that a good A evaluation cross-sectional profile having a smooth convex shape from the edge toward the center was obtained.
 一方、スピンコート膜が良好であった比較例21~22において、形成されたインクジェットパターン像において、エッジにおいてコーヒーステイン現象の発生による盛り上がりのある問題のあるB評価の断面プロファイルが得られることが確認された。
 表3の結果から、実施例21及び22の濡れ広がらない溶液構成が良好な断面プロファイルを有するインクジェットパターン形成に適しているということが確認された。
 以上の結果から、本発明の効果は明らかである。
On the other hand, in Comparative Examples 21 to 22 in which the spin coat film was good, it was confirmed that a B profile cross-sectional profile having a problem of bulging due to the occurrence of the coffee stain phenomenon at the edge was obtained in the formed inkjet pattern image. It was done.
From the results in Table 3, it was confirmed that the solution configurations of Examples 21 and 22 that did not spread out were suitable for forming an inkjet pattern having a good cross-sectional profile.
From the above results, the effect of the present invention is clear.
 10 打滴
 12 基板
 14 中心
 16 エッジ
 18 断面プロファイル
 20 中心から20%以内の領域
 50 薄膜トランジスタ
 52 基板
 54 ゲート電極
 56 ゲート絶縁膜
 58 酸化物半導体層
 60 ソース電極
 62 ドレイン電極
DESCRIPTION OF SYMBOLS 10 Droplet 12 Substrate 14 Center 16 Edge 18 Cross-sectional profile 20 Area within 20% from center 50 Thin film transistor 52 Substrate 54 Gate electrode 56 Gate insulating film 58 Oxide semiconductor layer 60 Source electrode 62 Drain electrode

Claims (12)

  1.  打滴の中心から20%以内の領域内に打滴の最高点を有するパターンを形成するための塗布材料であって、
     原料と、溶解度パラメータSP値が20.3MPa1/2以下の良溶媒である2種類の溶媒A、及びBと、を含有して構成され、
     溶媒Aが、溶媒Bよりも表面張力が高くかつ蒸気圧が高く、溶媒体積含有率として20%以上50%以下含有されていることを特徴とする塗布材料。
    A coating material for forming a pattern having the highest point of droplet ejection within an area within 20% of the center of droplet ejection,
    A raw material and two kinds of solvents A and B, which are good solvents having a solubility parameter SP value of 20.3 MPa 1/2 or less,
    A coating material, wherein the solvent A has a higher surface tension and a higher vapor pressure than the solvent B, and is contained in a solvent volume content of 20% to 50%.
  2.  溶媒Aが、溶媒Bよりも、表面張力が1.17倍以上高く、かつ蒸気圧が1.57倍以上高い請求項1に記載の塗布材料。 The coating material according to claim 1, wherein the solvent A has a surface tension of 1.17 times or more and a vapor pressure of 1.57 times or more higher than the solvent B.
  3.  溶媒Aの20℃における表面張力が27mN/m以上、かつ蒸気圧が1.1kPa以上であり、
     溶媒Bの20℃における表面張力が23mN/m以下、かつ0.7kPa以下である請求項1又は2に記載の塗布材料。
    The surface tension of the solvent A at 20 ° C. is 27 mN / m or more and the vapor pressure is 1.1 kPa or more,
    The coating material according to claim 1 or 2, wherein the surface tension of the solvent B at 20 ° C is 23 mN / m or less and 0.7 kPa or less.
  4.  溶媒Aが、溶媒体積含有率として35%以上50%以下含有されている請求項1~3のいずれか1項に記載の塗布材料。 The coating material according to any one of claims 1 to 3, wherein the solvent A is contained in a solvent volume content of 35% to 50%.
  5.  原料が、シラザン化合物で構成されている請求項1~4のいずれか1項に記載の塗布材料。 The coating material according to any one of claims 1 to 4, wherein the raw material is composed of a silazane compound.
  6.  インクジェット用塗布材料である請求項1~5のいずれか1項に記載の塗布材料。 6. The coating material according to claim 1, which is an inkjet coating material.
  7.  請求項1~6のいずれか1項に記載の塗布材料を用いて、打滴の中心から20%以内の領域内に打滴の最高点を有するパターンを形成することを特徴とするパターン形成方法。 A pattern forming method comprising forming a pattern having the highest point of droplet ejection within a region within 20% from the center of droplet ejection, using the coating material according to any one of claims 1 to 6. .
  8.  打滴の中心から20%以内の領域内に打滴の最高点を有するパターンが、打滴の中心から20%以内において、打滴の中心を通り、この中心の両側にエッジを有する打滴の断面プロファイルの最大値を有するパターンである請求項7に記載のパターン形成方法。 A pattern having the highest point of droplet ejection within an area within 20% of the center of droplet ejection passes through the center of the droplet ejection within 20% of the center of droplet ejection and has an edge on both sides of this center. The pattern forming method according to claim 7, wherein the pattern has a maximum value of a cross-sectional profile.
  9.  打滴の断面プロファイルの両側のエッジの部分が丸まっている請求項8に記載のパターン形成方法。 The pattern forming method according to claim 8, wherein the edge portions on both sides of the cross-sectional profile of the droplet ejection are rounded.
  10.  電子デバイスの製造方法であって、
     電子デバイスの少なくとも一層が、請求項7~9のいずれか1項に記載のパターン形成方法により作製されることを特徴とする電子デバイスの製造方法。
    An electronic device manufacturing method comprising:
    10. A method of manufacturing an electronic device, wherein at least one layer of the electronic device is manufactured by the pattern forming method according to claim 7.
  11.  電子デバイスの少なくとも一層が、絶縁層、保護層、層間絶縁層の内の少なくとも一層である請求項10に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to claim 10, wherein at least one layer of the electronic device is at least one of an insulating layer, a protective layer, and an interlayer insulating layer.
  12.  前記電子デバイスが、薄膜トランジスタである請求項10又は11に記載の電子デバイスの製造方法。 The method of manufacturing an electronic device according to claim 10 or 11, wherein the electronic device is a thin film transistor.
PCT/JP2015/074271 2014-09-26 2015-08-27 Coating material, pattern formation method, and electronic device and method for manufacturing same WO2016047362A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177007932A KR101981408B1 (en) 2014-09-26 2015-08-27 Coating material, pattern formation method, and electronic device and method for manufacturing same
JP2016550061A JP6385449B2 (en) 2014-09-26 2015-08-27 INKJET COATING MATERIAL, INKJET PATTERN FORMING METHOD, AND ELECTRONIC DEVICE MANUFACTURING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014197000 2014-09-26
JP2014-197000 2014-09-26

Publications (1)

Publication Number Publication Date
WO2016047362A1 true WO2016047362A1 (en) 2016-03-31

Family

ID=55580891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074271 WO2016047362A1 (en) 2014-09-26 2015-08-27 Coating material, pattern formation method, and electronic device and method for manufacturing same

Country Status (4)

Country Link
JP (1) JP6385449B2 (en)
KR (1) KR101981408B1 (en)
TW (1) TWI664675B (en)
WO (1) WO2016047362A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031040A (en) * 2015-07-31 2017-02-09 三星エスディアイ株式会社Samsung SDI Co., Ltd. Silica film forming composition, method for producing silica film and silica film
JP2020111651A (en) * 2019-01-09 2020-07-27 凸版印刷株式会社 Coating agent, printed matter and production method of printed matter
WO2021124802A1 (en) * 2019-12-17 2021-06-24 コニカミノルタ株式会社 Ink composition for forming electronic device sealing layer, method for forming electronic device sealing layer, and electronic device sealing layer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09125006A (en) * 1995-10-30 1997-05-13 Tokyo Ohka Kogyo Co Ltd Polysilazane coating liquid and formation of ceramic coating layer using the same
JPH1191039A (en) * 1997-09-19 1999-04-06 Teijin Ltd Medical mold-releasing film
JP2000208774A (en) * 1999-01-18 2000-07-28 Seiko Epson Corp Thin-film transistor, photoelectric device, and their manufacture
WO2000059044A1 (en) * 1999-03-30 2000-10-05 Seiko Epson Corporation Method of manufacturing solar cell
WO2001044371A1 (en) * 1999-12-16 2001-06-21 Asahi Glass Company, Limited Polysilazane composition and coated molded article having cured object obtained therefrom
JP2006328220A (en) * 2005-05-26 2006-12-07 Toyota Industries Corp Coating composition, method for preparing coating composition, method for producing transparent protective film using coating composition and organic glass having transparent protective film
JP2010180301A (en) * 2009-02-04 2010-08-19 Canon Chemicals Inc Modified polysilazane and coating liquid
JP2014051637A (en) * 2012-09-10 2014-03-20 Tokyo Institute Of Technology Silica composite material, coating composition, and method for producing silica composite membrane

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279134A (en) * 2000-03-31 2001-10-10 Seiko Epson Corp Delivery composition and method for manufacturing functional membrane
JP2008066567A (en) 2006-09-08 2008-03-21 Ricoh Co Ltd Wiring pattern, electronic element using it, organic semiconductor element, laminating wiring pattern and laminating wiring substrate
JP5480510B2 (en) * 2008-03-31 2014-04-23 住友化学株式会社 Organic semiconductor composition, organic thin film, and organic thin film element comprising the same
EP2911002B1 (en) * 2012-10-17 2019-07-17 Mitsubishi Gas Chemical Company, Inc. Resist composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09125006A (en) * 1995-10-30 1997-05-13 Tokyo Ohka Kogyo Co Ltd Polysilazane coating liquid and formation of ceramic coating layer using the same
JPH1191039A (en) * 1997-09-19 1999-04-06 Teijin Ltd Medical mold-releasing film
JP2000208774A (en) * 1999-01-18 2000-07-28 Seiko Epson Corp Thin-film transistor, photoelectric device, and their manufacture
WO2000059044A1 (en) * 1999-03-30 2000-10-05 Seiko Epson Corporation Method of manufacturing solar cell
WO2001044371A1 (en) * 1999-12-16 2001-06-21 Asahi Glass Company, Limited Polysilazane composition and coated molded article having cured object obtained therefrom
JP2006328220A (en) * 2005-05-26 2006-12-07 Toyota Industries Corp Coating composition, method for preparing coating composition, method for producing transparent protective film using coating composition and organic glass having transparent protective film
JP2010180301A (en) * 2009-02-04 2010-08-19 Canon Chemicals Inc Modified polysilazane and coating liquid
JP2014051637A (en) * 2012-09-10 2014-03-20 Tokyo Institute Of Technology Silica composite material, coating composition, and method for producing silica composite membrane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031040A (en) * 2015-07-31 2017-02-09 三星エスディアイ株式会社Samsung SDI Co., Ltd. Silica film forming composition, method for producing silica film and silica film
JP2020111651A (en) * 2019-01-09 2020-07-27 凸版印刷株式会社 Coating agent, printed matter and production method of printed matter
WO2021124802A1 (en) * 2019-12-17 2021-06-24 コニカミノルタ株式会社 Ink composition for forming electronic device sealing layer, method for forming electronic device sealing layer, and electronic device sealing layer
JP7439837B2 (en) 2019-12-17 2024-02-28 コニカミノルタ株式会社 Ink composition for forming an electronic device sealing layer and method for forming an electronic device sealing layer

Also Published As

Publication number Publication date
TWI664675B (en) 2019-07-01
KR101981408B1 (en) 2019-05-22
JPWO2016047362A1 (en) 2017-07-06
KR20170045287A (en) 2017-04-26
TW201612975A (en) 2016-04-01
JP6385449B2 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
JP6385449B2 (en) INKJET COATING MATERIAL, INKJET PATTERN FORMING METHOD, AND ELECTRONIC DEVICE MANUFACTURING METHOD
CN108987449B (en) Pixel defining layer, manufacturing method thereof and display substrate
JP6252017B2 (en) Organic semiconductor layer forming solution, organic semiconductor layer, and organic thin film transistor
Can et al. High‐viscosity copper paste patterning and application to thin‐film transistors using electrohydrodynamic jet printing
WO2014206016A1 (en) Pixel definition layer and manufacturing method therefor, display substrate and display device
JP6393936B2 (en) THIN FILM TRANSISTOR, TRANSISTOR ARRAY, THIN FILM TRANSISTOR MANUFACTURING METHOD, AND TRANSISTOR ARRAY MANUFACTURING METHOD
JP2010147206A (en) Thin-film transistor and method for manufacturing the same
Lee et al. Optimized ink-jet printing condition for stable and reproducible performance of organic thin film transistor
JP6393937B2 (en) Thin film transistor manufacturing method, thin film transistor, and transistor array
JP2006196851A (en) Thin-film transistor and method of manufacturing the same
KR20160011244A (en) Method of manufacturing multi-layered thin films, multi-layered thin films, method of manufacturing organic thin film transistor including the same, and organic thin film transistor
JP5870502B2 (en) Organic semiconductor device and manufacturing method thereof
JP2010118445A (en) Thin-film transistor, and method of manufacturing the same
JP6578645B2 (en) Organic semiconductor layer forming solution, organic semiconductor layer, and organic thin film transistor
WO2015119001A1 (en) Silicon oxynitride film, method for producing same and transistor
JP2010103203A (en) Thin-film transistor and method of manufacturing the same
JP5103982B2 (en) Method for manufacturing organic semiconductor element
JP2006237197A (en) Method of manufacturing thin-film transistor
JP2009026900A (en) Laminate structure, electronic element, manufacturing methods thereof, and display device
JP2016115728A (en) Method of manufacturing organic transistor, and organic transistor
Kim et al. Characterization of 6, 13-bis (triisopropylsilylethynyl) pentacene organic thin film transistors fabricated using pattern-induced confined structure
JP6369098B2 (en) Thin film transistor manufacturing method
JP7028443B2 (en) Method of forming a functional pattern thin film and functional ink used for it
JP2017098489A (en) Organic semiconductor layer forming solution, organic semiconductor layer, and organic thin-film transistor
JP2008205144A (en) Pattern forming method and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844563

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016550061

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177007932

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15844563

Country of ref document: EP

Kind code of ref document: A1