WO2016047262A1 - Optical measurement system - Google Patents

Optical measurement system Download PDF

Info

Publication number
WO2016047262A1
WO2016047262A1 PCT/JP2015/071121 JP2015071121W WO2016047262A1 WO 2016047262 A1 WO2016047262 A1 WO 2016047262A1 JP 2015071121 W JP2015071121 W JP 2015071121W WO 2016047262 A1 WO2016047262 A1 WO 2016047262A1
Authority
WO
WIPO (PCT)
Prior art keywords
light receiving
receiving fiber
light
unit
optical
Prior art date
Application number
PCT/JP2015/071121
Other languages
French (fr)
Japanese (ja)
Inventor
誠悟 伊藤
健二 上村
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2016047262A1 publication Critical patent/WO2016047262A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor

Definitions

  • the present invention relates to an optical measurement system that measures optical characteristics of a living tissue.
  • an optical measuring device that irradiates a living tissue with illumination light and estimates the properties of the living tissue based on the measurement value of the detection light reflected or scattered from the living tissue.
  • the optical measurement device is used in combination with an endoscope for observing an organ such as a digestive organ.
  • the living tissue is irradiated from the illumination fiber of the measurement probe with low coherence white light with a short spatial coherence length, and scattered light incident at different angles is detected using a plurality of light receiving fibers
  • An optical measuring device using LEBS (Low-Coherence Enhanced Backscattering) that detects the properties of living tissue by measuring the intensity distribution of scattered light using a spectroscope provided for each light receiving fiber has been proposed (for example, see Patent Document 1).
  • an optical measurement device a technique in which light emitted from a plurality of light receiving fibers is received by a single imaging device, and the properties of a living tissue are detected based on the light reception results (for example, Patent Documents). 2).
  • each light emitted from the emission ends of a plurality of light receiving fibers is dispersed by a plurality of light separating elements such as a diffraction grating and a prism, and each light is prevented from overlapping on the light receiving surface of the image pickup element.
  • the property of the living tissue is detected with only one image sensor. Since the technique disclosed in Patent Document 2 does not require a spectroscope for each light receiving fiber, the apparatus configuration can be simplified and the manufacturing cost can be reduced as compared with the optical measurement apparatus disclosed in Patent Document 1.
  • Patent Document 2 in order to accurately associate each light received by the image sensor from which light-receiving fiber of the plurality of light-receiving fibers, the plurality of light-receiving fibers and the image sensor High positioning accuracy is required, and the configuration of the optical measuring device is complicated.
  • the present invention has been made in view of the above, and it is an object of the present invention to provide an optical measurement system capable of associating light received by an image sensor with light emitted from a light receiving fiber with a simple configuration.
  • an optical measurement system includes a measurement probe having emission ends of a plurality of optical fibers on an end surface, and emission from each emission end of the plurality of optical fibers.
  • An optical measurement system comprising: an optical measurement device that includes an imaging unit that receives and outputs an electric signal by performing photoelectric conversion upon receiving the received light, and the measurement probe is detachably attached thereto.
  • the arrangement pattern of the emission ends of the plurality of optical fibers on the end face is orthogonal to the end face and rotated only by n ⁇ 360 ° (n: integer) with respect to an axis passing through the center of gravity of the arrangement pattern. It is characterized by overlapping patterns.
  • the optical measurement system according to the present invention is the optical measurement system according to the present invention, wherein the recording unit for recording arrangement information about the arrangement of the emission ends of the plurality of optical fibers, the plurality of optical fibers, and the plurality of optical fibers are respectively And an estimation unit that estimates a correspondence relationship with a spot formed on the light receiving surface of the imaging unit based on the arrangement information.
  • the estimation unit calculates a distance between spots, and the plurality of optical fibers and a plurality of spots are calculated based on the distance and the arrangement information. It is characterized in that the correspondence relationship of is estimated.
  • the light received by the image sensor and the light emitted by the light receiving fiber can be associated with a simple configuration.
  • FIG. 1 is an external view showing a configuration of an optical measurement system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram schematically showing a functional configuration of the optical measurement system according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically illustrating the configuration of the light source unit, the connector unit, the imaging unit, and the base end portion of the measurement probe of the optical measurement device according to the embodiment of the present invention.
  • FIG. 4 is a plan view schematically showing the base end face of the measurement probe according to the embodiment of the present invention.
  • FIG. 5 is a diagram for explaining the arrangement of the light receiving fibers of the measurement probe according to the embodiment of the present invention.
  • FIG. 6 is a diagram illustrating an estimation process performed by the estimation unit of the optical measurement system according to the embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an estimation process performed by the estimation unit of the optical measurement system according to the embodiment of the present invention.
  • FIG. 8 is a diagram illustrating an estimation process performed by the estimation unit of the optical measurement system according to the embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a situation when the optical measurement system according to the embodiment of the present invention is used in an endoscope system.
  • FIG. 10 is a diagram for explaining the arrangement of the light receiving fibers of the measurement probe according to the first modification of the embodiment of the present invention.
  • FIG. 11 is a diagram for explaining the arrangement of the light receiving fibers of the measurement probe according to the second modification of the embodiment of the present invention.
  • FIG. 12 is a diagram illustrating the arrangement of the light receiving fibers of the measurement probe according to the third modification of the embodiment of the present invention.
  • FIG. 1 is an external view showing a configuration of an optical measurement system 1 according to an embodiment of the present invention.
  • FIG. 2 is a block diagram schematically showing a functional configuration of the optical measurement system 1 according to the embodiment of the present invention.
  • An optical measurement system 1 shown in FIGS. 1 and 2 performs an optical measurement on a measurement object such as a biological tissue that is a scatterer to detect the property (characteristic) of the measurement object, and an optical measurement system 2.
  • a display unit 3 for displaying the measurement result of the measuring device 2, an input unit 4 for receiving an input of an instruction signal for instructing the optical measuring device 2 to measure, and a detachable to the optical measuring device 2, and within the subject And a measurement probe 5 to be inserted.
  • the optical measurement device 2 includes a power supply unit 20, a light source unit 21, a connector unit 22, an imaging unit 23, an estimation unit 24, a recording unit 25, and a control unit 26.
  • the power supply unit 20 supplies power to each unit of the optical measurement device 2.
  • the light source unit 21 emits illumination light to the measurement probe 5 via the connector unit 22.
  • the light source unit 21 is a light emitting element 21a that is an incoherent light source such as a white LED (Light Emitting Diode), a condensing lens 21b that condenses light emitted from the light emitting element 21a, and transmits light in a predetermined wavelength band. It implement
  • the light source unit 21 emits incoherent light having at least one spectral component as illumination light to the measurement probe 5 via the connector unit 22.
  • the light emitting element 21a may be realized using an incoherent light source such as a xenon lamp, a tungsten lamp, and a halogen lamp. Further, one or a plurality of condenser lenses 21b are provided as necessary.
  • the connector unit 22 removably connects the measurement probe 5 to the optical measurement device 2.
  • the imaging unit 23 receives the return light of the illumination light reflected and / or scattered from the measurement object by the illumination light emitted from the tip of the measurement probe 5 and generates an electrical signal by performing photoelectric conversion, thereby generating a control unit. 26.
  • the imaging unit 23 is realized by using an imaging element such as a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • the estimation unit 24 includes a plurality of optical fibers based on an image (spot) projected on the light receiving surface of the imaging unit 23 by light emitted from the emission ends of the plurality of optical fibers of the measurement probe 5. Processing for estimating the correspondence with the spot is performed.
  • the recording unit 25 records various programs for operating the optical measuring device 2, various data used for the optical measuring device 2, and various parameters.
  • the recording unit 25 is realized using a volatile memory, a nonvolatile memory, or the like.
  • the recording unit 25 temporarily records information and data being processed by the optical measuring device 2. Further, the recording unit 25 records the measurement result of the optical measuring device 2 and the arrangement information related to the arrangement of the light receiving fiber. Note that the recording unit 25 may be configured using a memory card or the like mounted from the outside of the optical measurement device 2.
  • the control unit 26 controls the processing operation of each unit of the optical measuring device 2.
  • the control unit 26 is configured using a CPU (Central Processing Unit) or the like, and comprehensively controls the optical measurement device 2 by transferring instruction information and data to each unit of the optical measurement device 2.
  • the control unit 26 includes a calculation unit 261.
  • the calculation unit 261 performs a plurality of calculation processes based on the electrical signal input from the imaging unit 23, and determines the measurement object according to the correspondence between the plurality of optical fibers and each spot estimated by the estimation unit 24. A characteristic value related to the property is calculated.
  • the display unit 3 outputs various information of the optical measuring device 2. Specifically, the display unit 3 displays information input from the optical measurement device 2.
  • the display unit 3 is realized using a display panel such as liquid crystal or organic EL (Electro Luminescence), a speaker, and the like. Note that a touch panel that receives an input of a position signal corresponding to a contact position from the outside may be provided on the display screen of the display unit 3.
  • the input unit 4 receives an input of an instruction signal that instructs the optical measurement device 2 to perform measurement.
  • the input unit 4 is realized using an input interface such as a foot switch, a keyboard, and a mouse.
  • the measurement probe 5 is configured using at least a plurality of optical fibers.
  • the measurement probe 5 includes a plurality of illumination fibers (illumination channels) that emit illumination light to the measurement object, and a plurality of incident light beams reflected and / or scattered from the measurement object at different angles. And a light receiving fiber (light receiving channel).
  • the measurement probe 5 is supplied from the light source part 21 via the base end part 51 detachably connected to the connector part 22 of the optical measuring device 2, a flexible part 52 having flexibility, and the connector part 22. And a distal end portion 53 that emits illumination light and receives return light of illumination light from the measurement object.
  • the tip 53 is provided with a rod lens 54 that keeps the distance between the measurement object and the tip 53 constant.
  • FIG. 3 is a cross-sectional view schematically showing the structure of the light source portion 21, the connector portion 22, the imaging portion 23, and the base end portion 51 of the measurement probe 5.
  • the measurement probe 5 is a measurement target by propagating illumination light supplied from the light source unit 21 to the distal end portion 53 of the measurement probe 5 via a base end portion 51 detachably inserted into the connector portion 22 and the connector portion 22.
  • An illumination fiber 55 that emits illumination light to the object, and a first light receiving fiber in which return light of the illumination light reflected and / or scattered by the measurement object is incident from the distal end portion 53 at different angles and propagates to the proximal end portion 51.
  • the second light receiving fiber 56b, the third light receiving fiber 56c, and the fourth light receiving fiber 56d have a cylindrical shape, and the illumination fiber 55, the first light receiving fiber 56a, the second light receiving fiber 56b, the third light receiving fiber 56c, and the fourth light receiving fiber 56c. It has a holding portion 57 that holds the light receiving fiber 56d inside, and a pressing member 58 that has a substantially annular shape.
  • the base end portion 51 is detachably inserted into the connector portion 22.
  • the outer diameter R1 of the base end portion 51 is formed smaller than the outer diameter R2 of the holding portion 57.
  • a stepped portion 59 is formed between the base end portion 51 and the holding portion 57 by the outer diameters R1 and R2.
  • the base end portion 51 is formed with a groove portion 511 that is cut out in an annular shape toward the center side.
  • the pressing member 58 is attached to the groove portion 511 of the base end portion 51.
  • the pressing member 58 is realized using a C-ring spring or the like that can be elastically deformed in the radial direction.
  • the connector unit 22 includes a connector frame 221 provided on the housing 2 a of the optical measuring device 2 and a support member 222 that supports the light source unit 21 and the imaging unit 23.
  • the connector frame 221 has a substantially cylindrical shape.
  • the connector frame 221 has an insertion part 221a.
  • the insertion part 221 a holds the proximal end part 51 of the measurement probe 5.
  • the connector frame 221 is formed with a first groove portion 221b and a second groove portion 221c that are cut out in an annular shape from the inner periphery side to the outer periphery side of the insertion portion 221a. Further, the connector frame 221 is formed with an abutting portion 221d that is exposed from the outside of the housing 2a and that a part of the base end portion 51 of the measurement probe 5 abuts.
  • the abutting portion 221d makes the distance between the light receiving surface of the imaging unit 23 and the end surface of the measurement probe 5 constant when the base end portion 51 of the measurement probe 5 is inserted into the insertion portion 221a. Specifically, the abutting portion 221d is in contact with the stepped portion 59 when the proximal end portion 51 of the measurement probe 5 is inserted into the insertion portion 221a of the connector frame 221, so that the proximal end portion of the measurement probe 5 is contacted.
  • the first light receiving fiber 56a, the second light receiving fiber 56b, the third light receiving fiber 56c, and the fourth light receiving fiber 56d have light emitting ends T1 (light emitting surfaces) on the light receiving surface T2 (light receiving surface of the image sensor) of the imaging unit 23. It is located at a preset distance.
  • the support member 222 supports the light source unit 21 and the imaging unit 23. Specifically, the support member 222 supports the filter 21 c of the light source unit 21 and the imaging unit 23. In the support member 222, when the emission end T1 is accommodated in the second groove portion 221c of the connector frame 221, the emission end T1 and the light receiving surface T2 face each other, and light transmitted through the filter 21c enters the illumination fiber. In this manner, the connector frame 221 is fixed with screws 233 or the like.
  • FIG. 4 is a plan view schematically showing the base end surface of the measurement probe 5 according to the present embodiment.
  • FIG. 5 is a diagram for explaining the arrangement of the light receiving fibers of the measurement probe 5 according to the present embodiment. As shown in FIGS. 4 and 5, the first light receiving fiber 56a, the second light receiving fiber 56b, the third light receiving fiber 56c, and the fourth light receiving fiber 56d are arranged at different distances.
  • the arrangement pattern of the emission end (the arrangement pattern of the spots projected on the light receiving surface T2) according to the present embodiment is orthogonal to the end surface (emission end T1) of the measurement probe 5, and Center of gravity (or center)
  • the pattern overlaps only when rotated by n ⁇ 360 ° (n: integer) with respect to an axis passing through the center of gravity formed by connecting the centers of the fibers.
  • d6 is different from each other.
  • the distance between the fibers refers to the distance between the centers (centers 561a to 561c) of the fibers.
  • the recording unit 25 includes the arrangement of the first light receiving fiber 56a, the second light receiving fiber 56b, the third light receiving fiber 56c, and the fourth light receiving fiber 56d, the distance between the light receiving fibers, and the magnitude relationship and the maximum difference between the distances. It is recorded as arrangement information. Now, for example, when the distance between each of the first to fourth light receiving fibers is calculated, the difference between the closest distance and the farthest distance is defined as the “maximum difference”. In the present embodiment, it is assumed that the maximum difference between the first light receiving fibers 56a is the smallest. In this embodiment, the distances d1 to d6 will be described assuming that d1 ⁇ d2 ⁇ d3 ⁇ d6 ⁇ d4 ⁇ d5 holds.
  • FIG. 6 is a diagram illustrating an estimation process performed by the estimation unit 24 of the optical measurement system 1 according to the present embodiment, and schematically shows light irradiated from the light receiving fiber onto the light receiving surface T2 of the imaging unit 23.
  • FIG. 7 and 8 are diagrams illustrating the estimation process performed by the estimation unit 24 of the optical measurement system 1 according to the present embodiment, and schematically showing the arrangement of spots on the light receiving surface T2 of the imaging unit 23.
  • the light is emitted from the first light receiving fiber 56a, the second light receiving fiber 56b, the third light receiving fiber 56c, and the fourth light receiving fiber 56d (outgoing end T1) on the light receiving surface T2 of the imaging unit 23.
  • Light is irradiated to form spots P1 to P4.
  • the imaging unit 23 generates an electrical signal by photoelectrically converting the amount of light received by the formed spots P1 to P4 by each pixel.
  • the electrical signal generated by the imaging unit 23 is output to the control unit 26, and the first light receiving fiber 56a, the second light receiving fiber 56b, the third light receiving fiber 56c, the fourth light receiving fiber 56d, and the spots P1 to P4 by the estimating unit 24.
  • the calculation process of the characteristic value by the calculation unit 261 is performed.
  • the estimation unit 24 obtains a pixel value (luminance) based on the electrical signal generated by the imaging unit 23, extracts pixels having a predetermined value or more, and calculates spot regions corresponding to the spots P1 to P4, respectively. To do. Specifically, the estimation unit 24 calculates spot regions P11 to P14 as shown in FIG. 7 according to the pixel value and the pixel coordinates.
  • the estimation unit 24 extracts the largest pixel value for each of the spot areas P11 to P14, and sets the pixel position of the pixel value as the center position. For example, the estimation unit 24 sets the pixel position having the largest pixel value in the spot region P11 as the center position G11. Similarly, the estimation unit 24 sets the center positions G12 to G14 for the spot regions P12 to P14 (see FIG. 7). When there are a plurality of largest pixel values, the center between the pixel values may be set as the center position, or a pixel position close to the center of the spot area may be set as the center position. Further, the center of gravity position of each spot area may be used.
  • the estimation unit 24 calculates the distance between the center positions G11 to G14 when the center positions G11 to G14 are set. Specifically, the estimation unit 24 calculates the distance d11 between the center position G11 and the center position G12, the distance d12 between the center position G11 and the center position G13, and the distance between the center position G11 and the center position G14. A distance d13 between the center position G12 and the center position G13, a distance d15 between the center position G12 and the center position G14, a distance d16 between the center position G13 and the center position G14, Is calculated.
  • the estimation unit 24 calculates the maximum difference in distance from other center positions for each of the calculated distances d11 to d16. For example, for the center position G11, the estimation unit 24 sets the difference between the smallest distance and the largest distance among the distances d11 to d13 as the maximum difference. Similarly, the maximum difference is calculated for the center positions G12 to G14.
  • the estimation unit 24 compares the calculated maximum difference with the maximum difference recorded in the recording unit 25, and associates the spot region with the smallest maximum difference with the light receiving fiber. Specifically, when the center position having the smallest maximum difference among the maximum differences is the center position G11, the estimation unit 24 refers to the maximum difference of the recording unit 25 and the center position G11 and the first light receiving fiber. 56a is associated. That is, the spot region P11 and the first light receiving fiber 56a are associated with each other by the estimation unit 24.
  • the estimating unit 24 associates the center positions G12 to G14 with the second light receiving fiber 56b to the fourth light receiving fiber 56d.
  • the estimation unit 24 associates the center positions G12 to G14 with the second light receiving fiber 56b to the fourth light receiving fiber 56d based on the calculated distances d12 to d14 and the magnitude relationship of the recorded distances. .
  • the estimation unit 24 refers to the recording unit 25 and determines that d12 and d1 having the smallest distance correspond to each other.
  • the center position G12 and the second light receiving fiber 56b are associated with each other.
  • the estimation unit 24 determines that d14 and d3 having the largest distance correspond to each other, and associates the center position G14 with the fourth light receiving fiber 56d. Further, the estimating unit 24 determines that the distances d13 and d2 correspond to each other, and associates the center position G13 with the third light receiving fiber 56c.
  • the spot region P11 and the first light receiving fiber 56a, the spot region P12 and the second light receiving fiber 56b, the spot region P13 and the third light receiving fiber 56c, the spot region P14 and the fourth light receiving fiber 56d are associated with each other. Then, the correspondence between the spot and the light receiving fiber is estimated.
  • the calculation unit 261 calculates the light amount of the calculated spot (for example, an added value of a plurality of pixel values corresponding to the spot area), and the light receiving fiber. Are output in association with each other. As a result, it is possible to reliably associate each spot received by the light receiving surface T2 with the light receiving fiber corresponding to each spot and output the characteristic value.
  • the proximal end portion 51 is inserted into the insertion portion 221a, if the rattling or rotation occurs between the proximal end portion 51 and the insertion portion 221a and the position of the light receiving fiber with respect to the light receiving surface T2 deviates from the previous position. Even so, it is possible to reliably associate the spot with the light receiving fiber.
  • the optical measurement system 1 configured as described above has a measurement probe via a processing tool channel 101 a provided in an endoscope apparatus 101 (endoscope scope) of the endoscope system 100. 5 is inserted, the illumination fiber 55 emits illumination light to the measurement object, and each of the first light reception fiber 56a, the second light reception fiber 56b, the third light reception fiber 56c, and the fourth light reception fiber 56d is reflected by the measurement object. And / or the returned light of the scattered illumination light is received by the distal end portion 53 via the rod lens 54 and emitted from the emission end T1 to each light receiving surface T2 of the imaging unit 23.
  • the calculation unit 261 calculates the characteristic value of the property of the measurement object based on the measurement result of each light receiving surface T2 of the imaging unit 23, and according to the correspondence between the spot and the light receiving fiber estimated by the estimation unit 24.
  • the characteristic value and the light receiving fiber are output in association with each other.
  • the pressing member 58 is inserted with the same diameter as the insertion portion 221 a of the connector frame 221 and compressed toward the center side. Thereafter, when the pressing member 58 reaches the first groove portion 221b of the connector frame 221, the pressing member 58 extends in the radial direction. At this time, the pressing member 58 extends in the radial direction while the pressing member 58 and the corner portion of the first groove 221b are in contact with each other, so that the pressing member 58 moves to the imaging unit 23 side.
  • the pressing member 58 Since the pressing member 58 is attached to the groove portion 511, when the pressing member 58 moves to the imaging unit 23 side, the proximal end portion 51 is pushed in a direction approaching the imaging unit 23, and the stepped portion 59 is brought into contact with the abutting portion 221d. The base end part 51 will be moved to the position where it abuts. As a result, the base end portion 51 is attached to the connector portion 22. As a result, the user can attach the measurement probe 5 to the optical measurement device 2 with a single operation.
  • the four light receiving fibers are arranged at different distances on the end surface of the measurement probe 5, and the estimation unit 24 determines the distance between each spot on the light receiving surface T 2 and the recording unit 25. Since the correspondence between the spot and the light receiving fiber is estimated based on the recorded information regarding the arrangement of the light receiving fiber, the correspondence between the light received by the image sensor and the light emitted from the light receiving fiber is associated. Can be performed with a simple configuration.
  • the spectroscope or the positioning mechanism can be simplified and the cost can be reduced.
  • the center position of each spot is obtained and the spot and the light receiving fiber are associated with each other based on the distance between the center positions.
  • the pattern matching is based on the image.
  • the spot and the light receiving fiber may be associated with each other. Examples of the pattern matching include known matching methods such as template matching.
  • FIG. 10 is a diagram for explaining the arrangement of the light receiving fibers of the measurement probe according to the first modification of the embodiment of the present invention.
  • the first modification has three light receiving fibers.
  • the three light receiving fibers (first light receiving fiber 501a, second light receiving fiber 501b, and third light receiving fiber 501c) according to the first modification are centered on the centers of the end faces of the respective light receiving fibers.
  • the estimation unit 24 associates the third light receiving fiber 501c with the spot from the relationship of distance, and based on the positional relationship between the spot that has been associated and another spot, By associating the other spot with the first light receiving fiber 501a and the second light receiving fiber 501b, a process for estimating the correspondence between the spot and the light receiving fiber is performed.
  • the above-described estimation process can be performed as long as at least one center-to-center distance is different from other distances.
  • FIG. 11 is a diagram for explaining the arrangement of the light receiving fibers of the measurement probe according to the second modification of the embodiment of the present invention.
  • the second modification as in the above-described embodiment, there are four light receiving fibers.
  • the four light receiving fibers (first light receiving fiber 511a, second light receiving fiber 511b, third light receiving fiber 511c, and fourth light receiving fiber 511d) according to the second modification are arranged on the end faces of the respective light receiving fibers.
  • the estimating unit 24 associates the second light receiving fiber 511b with the spot based on the distance relationship, and based on the positional relationship between the spot where the association is performed and the other spot, By associating the other spot with the first light receiving fiber 511a, the third light receiving fiber 511c, and the fourth light receiving fiber 511d, the process of estimating the correspondence between the spot and the light receiving fiber is performed.
  • FIG. 12 is a diagram illustrating the arrangement of the light receiving fibers of the measurement probe according to the third modification of the embodiment of the present invention.
  • the third modification five light receiving fibers are provided.
  • the five light receiving fibers first light receiving fiber 521a, second light receiving fiber 521b, third light receiving fiber 521c, fourth light receiving fiber 521d, and fifth light receiving fiber 521e according to Modification 3 are as shown in FIG.
  • the centers of the end faces of the respective light receiving fibers are the centers 522a to 522e, respectively, the distance between adjacent centers, that is, the distance between the centers 522a and 522b is d41, and the distance between the centers 522b and 522c is d42,
  • the distance between the center 522c and the center 522d is d43 and the distance between the center 522d and the center 522e is d44, the relationship d44 ⁇ d41 ⁇ d42 ⁇ d43 is established.
  • the estimation unit 24 obtains, for example, two spots that are the minimum distance from the relationship between the distances between adjacent centers, and the spot located at the end according to the positional relationship with other spots. Is associated with the spot as the fifth light receiving fiber 521e, and the other spot and the first light receiving fiber 521a and the second light receiving fiber 521b By performing the association, the correlation between the spot and the light receiving fiber is estimated.
  • the arrangement pattern of the emission ends of the plurality of optical fibers is the end face of the measurement probe 5 (the emission pattern). If the pattern overlaps only when rotated by n ⁇ 360 ° (n: integer) with respect to an axis that is orthogonal to the end T1) and passes through the center of gravity (or the center) of the arrangement pattern, the estimation unit 24 determines the distance between the spots. The distance can be calculated, and the correspondence between the spot and the light receiving fiber can be estimated based on the calculated distance.
  • the optical measurement system according to the present invention is useful for associating the light received by the image sensor with the light emitted from the light receiving fiber with a simple configuration.

Abstract

This optical measurement system is an optical measurement system provided with: a measurement probe having the emission ends of multiple optical fibers on an end face; and an optical measurement device, which has an imaging unit for receiving light emitted from the respective emission ends of the multiple optical fibers and generating and outputting electric signals by performing photoelectric conversion and on which the measurement probe is detachably mounted. The arrangement pattern of the emission ends of the multiple optical fibers on the end face is a pattern that is orthogonal to said end face and only overlaps itself when rotated n × 360° (n: integer) with respect to an axis passing through the center of gravity of said arrangement pattern.

Description

光学測定システムOptical measurement system
 本発明は、生体組織の光学特性を測定する光学測定システムに関する。 The present invention relates to an optical measurement system that measures optical characteristics of a living tissue.
 近年、生体組織に照明光を照射し、生体組織から反射または散乱された検出光の測定値に基づいて、生体組織の性状を推定する光学測定装置が知られている。光学測定装置は、消化器等の臓器を観察する内視鏡と組み合わせて使用されている。このような光学測定装置として、空間コヒーレンス長の短い低コヒーレントの白色光を測定プローブの照明ファイバから生体組織に照射し、互いに異なる角度で入射する散乱光を複数の受光ファイバを用いて検出し、受光ファイバ毎に設けられた分光器を用いて散乱光の強度分布を測定することによって、生体組織の性状を検出するLEBS(Low-Coherence Enhanced Backscattering)を用いた光学測定装置が提案されている(例えば、特許文献1を参照)。 In recent years, an optical measuring device that irradiates a living tissue with illumination light and estimates the properties of the living tissue based on the measurement value of the detection light reflected or scattered from the living tissue is known. The optical measurement device is used in combination with an endoscope for observing an organ such as a digestive organ. As such an optical measurement device, the living tissue is irradiated from the illumination fiber of the measurement probe with low coherence white light with a short spatial coherence length, and scattered light incident at different angles is detected using a plurality of light receiving fibers, An optical measuring device using LEBS (Low-Coherence Enhanced Backscattering) that detects the properties of living tissue by measuring the intensity distribution of scattered light using a spectroscope provided for each light receiving fiber has been proposed ( For example, see Patent Document 1).
 また、光学測定装置として、複数の受光ファイバから出射された光を一つの撮像素子で受光し、この受光結果に基づいて、生体組織の性状を検出する技術が知られている(例えば、特許文献2を参照)。この技術では、複数の受光ファイバの出射端から出射された各々の光を、回折格子およびプリズム等の複数の分光素子で分光し、各々の光が撮像素子の受光面で重なることを防止することで、一つの撮像素子のみで生体組織の性状を検出する。特許文献2が開示する技術は、受光ファイバ毎に分光器を設ける必要がないため、特許文献1が開示する光学測定装置と比して装置構成の簡素化や製造コストを削減することができる。 Also, as an optical measurement device, a technique is known in which light emitted from a plurality of light receiving fibers is received by a single imaging device, and the properties of a living tissue are detected based on the light reception results (for example, Patent Documents). 2). In this technique, each light emitted from the emission ends of a plurality of light receiving fibers is dispersed by a plurality of light separating elements such as a diffraction grating and a prism, and each light is prevented from overlapping on the light receiving surface of the image pickup element. Thus, the property of the living tissue is detected with only one image sensor. Since the technique disclosed in Patent Document 2 does not require a spectroscope for each light receiving fiber, the apparatus configuration can be simplified and the manufacturing cost can be reduced as compared with the optical measurement apparatus disclosed in Patent Document 1.
特許第5049415号公報Japanese Patent No. 5049415 特開2011-5235号公報JP 2011-5235 A
 しかしながら、上述した特許文献2では、撮像素子が受光した各々の光が、複数の受光ファイバのうちのどの受光ファイバから出射された光であるかを正確に対応付けるため、複数の受光ファイバと撮像素子との間で高い位置決め精度が要求され、光学測定装置の構成が複雑になるという問題があった。 However, in Patent Document 2 described above, in order to accurately associate each light received by the image sensor from which light-receiving fiber of the plurality of light-receiving fibers, the plurality of light-receiving fibers and the image sensor High positioning accuracy is required, and the configuration of the optical measuring device is complicated.
 本発明は、上記に鑑みてなされたものであって、撮像素子が受光した光と受光ファイバが出射した光との対応付けを簡易な構成で行うことができる光学測定システムを提供することを目的とする。 The present invention has been made in view of the above, and it is an object of the present invention to provide an optical measurement system capable of associating light received by an image sensor with light emitted from a light receiving fiber with a simple configuration. And
 上述した課題を解決し、目的を達成するために、本発明にかかる光学測定システムは、複数の光ファイバの出射端を端面に有する測定プローブと、前記複数の光ファイバの各々の出射端から出射された光を受光して光電変換を行うことにより電気信号を生成して出力する撮像部を有し、前記測定プローブが着脱自在に装着される光学測定装置と、を備えた光学測定システムであって、前記端面における前記複数の光ファイバの出射端の配置パターンは、該端面と直交するとともに、該配置パターンの重心を通過する軸に対してn×360°(n:整数)回転した場合のみ重なるパターンであることを特徴とする。 In order to solve the above-described problems and achieve the object, an optical measurement system according to the present invention includes a measurement probe having emission ends of a plurality of optical fibers on an end surface, and emission from each emission end of the plurality of optical fibers. An optical measurement system comprising: an optical measurement device that includes an imaging unit that receives and outputs an electric signal by performing photoelectric conversion upon receiving the received light, and the measurement probe is detachably attached thereto. In addition, the arrangement pattern of the emission ends of the plurality of optical fibers on the end face is orthogonal to the end face and rotated only by n × 360 ° (n: integer) with respect to an axis passing through the center of gravity of the arrangement pattern. It is characterized by overlapping patterns.
 また、本発明にかかる光学測定システムは、上記発明において、前記複数の光ファイバの出射端のなす配置に関する配置情報を記録する記録部と、前記複数の光ファイバと、該複数の光ファイバがそれぞれ前記撮像部の受光面上に形成するスポットとの対応関係を、前記配置情報をもとに推定する推定部と、をさらに備えたことを特徴とする。 The optical measurement system according to the present invention is the optical measurement system according to the present invention, wherein the recording unit for recording arrangement information about the arrangement of the emission ends of the plurality of optical fibers, the plurality of optical fibers, and the plurality of optical fibers are respectively And an estimation unit that estimates a correspondence relationship with a spot formed on the light receiving surface of the imaging unit based on the arrangement information.
 また、本発明にかかる光学測定システムは、上記発明において、前記推定部は、スポット間の距離をそれぞれ算出し、該距離と前記配置情報とをもとに前記複数の光ファイバと複数のスポットとの対応関係を推定することを特徴とする。 Further, in the optical measurement system according to the present invention, in the above invention, the estimation unit calculates a distance between spots, and the plurality of optical fibers and a plurality of spots are calculated based on the distance and the arrangement information. It is characterized in that the correspondence relationship of is estimated.
 本発明によれば、撮像素子が受光した光と受光ファイバが出射した光との対応付けを簡易な構成で行うことができるという効果を奏する。 According to the present invention, there is an effect that the light received by the image sensor and the light emitted by the light receiving fiber can be associated with a simple configuration.
図1は、本発明の実施の形態にかかる光学測定システムの構成を示す外観図である。FIG. 1 is an external view showing a configuration of an optical measurement system according to an embodiment of the present invention. 図2は、本発明の実施の形態にかかる光学測定システムの機能構成を模式的に示すブロック図である。FIG. 2 is a block diagram schematically showing a functional configuration of the optical measurement system according to the embodiment of the present invention. 図3は、本発明の実施の形態にかかる光学測定装置の光源部、コネクタ部、撮像部および測定プローブの基端部の構成を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically illustrating the configuration of the light source unit, the connector unit, the imaging unit, and the base end portion of the measurement probe of the optical measurement device according to the embodiment of the present invention. 図4は、本発明の実施の形態にかかる測定プローブの基端面を模式的に示す平面図である。FIG. 4 is a plan view schematically showing the base end face of the measurement probe according to the embodiment of the present invention. 図5は、本発明の実施の形態にかかる測定プローブの受光ファイバの配置を説明する図である。FIG. 5 is a diagram for explaining the arrangement of the light receiving fibers of the measurement probe according to the embodiment of the present invention. 図6は、本発明の実施の形態にかかる光学測定システムの推定部が行う推定処理を説明する図である。FIG. 6 is a diagram illustrating an estimation process performed by the estimation unit of the optical measurement system according to the embodiment of the present invention. 図7は、本発明の実施の形態にかかる光学測定システムの推定部が行う推定処理を説明する図である。FIG. 7 is a diagram illustrating an estimation process performed by the estimation unit of the optical measurement system according to the embodiment of the present invention. 図8は、本発明の実施の形態にかかる光学測定システムの推定部が行う推定処理を説明する図である。FIG. 8 is a diagram illustrating an estimation process performed by the estimation unit of the optical measurement system according to the embodiment of the present invention. 図9は、本発明の実施の形態にかかる光学測定システムを内視鏡システムで使用する際の状況を示す図である。FIG. 9 is a diagram illustrating a situation when the optical measurement system according to the embodiment of the present invention is used in an endoscope system. 図10は、本発明の実施の形態の変形例1にかかる測定プローブの受光ファイバの配置を説明する図である。FIG. 10 is a diagram for explaining the arrangement of the light receiving fibers of the measurement probe according to the first modification of the embodiment of the present invention. 図11は、本発明の実施の形態の変形例2にかかる測定プローブの受光ファイバの配置を説明する図である。FIG. 11 is a diagram for explaining the arrangement of the light receiving fibers of the measurement probe according to the second modification of the embodiment of the present invention. 図12は、本発明の実施の形態の変形例3にかかる測定プローブの受光ファイバの配置を説明する図である。FIG. 12 is a diagram illustrating the arrangement of the light receiving fibers of the measurement probe according to the third modification of the embodiment of the present invention.
 以下、図面を参照して、本発明を実施するための形態(以下、「実施の形態」という)について説明する。また、図面の記載において、同一の部分には同一の符号を付して説明する。また、図面は、模式的なものであり、各部材の厚みと幅との関係、各部材の比率等は、現実と異なることに留意する必要がある。また、図面の相互感においても、互いの寸法の関係や比率が異なる部分が含まれる。なお、本実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as “embodiments”) will be described with reference to the drawings. In the description of the drawings, the same portions are denoted by the same reference numerals for description. Further, the drawings are schematic, and it is necessary to note that the relationship between the thickness and width of each member, the ratio of each member, and the like are different from actual ones. In addition, the mutual feeling of the drawings also includes portions having different dimensional relationships and ratios. Note that the present invention is not limited to the present embodiment.
(実施の形態)
 図1は、本発明の実施の形態にかかる光学測定システム1の構成を示す外観図である。図2は、本発明の実施の形態にかかる光学測定システム1の機能構成を模式的に示すブロック図である。
(Embodiment)
FIG. 1 is an external view showing a configuration of an optical measurement system 1 according to an embodiment of the present invention. FIG. 2 is a block diagram schematically showing a functional configuration of the optical measurement system 1 according to the embodiment of the present invention.
 図1および図2に示す光学測定システム1は、散乱体である生体組織等の測定対象物に対して光学測定を行って測定対象物の性状(特性)を検出する光学測定装置2と、光学測定装置2の測定結果を表示する表示部3と、光学測定装置2に測定を指示する指示信号の入力を受け付ける入力部4と、光学測定装置2に対して着脱自在であり、被検体内に挿入される測定プローブ5と、を備える。 An optical measurement system 1 shown in FIGS. 1 and 2 performs an optical measurement on a measurement object such as a biological tissue that is a scatterer to detect the property (characteristic) of the measurement object, and an optical measurement system 2. A display unit 3 for displaying the measurement result of the measuring device 2, an input unit 4 for receiving an input of an instruction signal for instructing the optical measuring device 2 to measure, and a detachable to the optical measuring device 2, and within the subject And a measurement probe 5 to be inserted.
 まず、光学測定装置2の構成について説明する。光学測定装置2は、電源部20と、光源部21と、コネクタ部22と、撮像部23と、推定部24と、記録部25と、制御部26と、を備える。電源部20は、光学測定装置2の各部に電力を供給する。 First, the configuration of the optical measuring device 2 will be described. The optical measurement device 2 includes a power supply unit 20, a light source unit 21, a connector unit 22, an imaging unit 23, an estimation unit 24, a recording unit 25, and a control unit 26. The power supply unit 20 supplies power to each unit of the optical measurement device 2.
 光源部21は、コネクタ部22を介して測定プローブ5に照明光を出射する。光源部21は、白色LED(Light Emitting Diode)のようなインコヒーレント光源である発光素子21aと、発光素子21aが出射した光を集光する集光レンズ21bと、所定の波長帯域の光を透過するフィルタ21cと、を用いて実現される(図3参照)。このようなレンズとしては、たとえば集光レンズやコリメートレンズ等をあげることができる。光源部21は、コネクタ部22を介して少なくとも一つのスペクトル成分を有するインコヒーレント光を照明光として測定プローブ5へ出射する。なお、発光素子21aは、キセノンランプ、タングステンランプおよびハロゲンランプのようなインコヒーレント光源を用いて実現してもよい。また、集光レンズ21bは、必要に応じて一または複数設けられる。 The light source unit 21 emits illumination light to the measurement probe 5 via the connector unit 22. The light source unit 21 is a light emitting element 21a that is an incoherent light source such as a white LED (Light Emitting Diode), a condensing lens 21b that condenses light emitted from the light emitting element 21a, and transmits light in a predetermined wavelength band. It implement | achieves using the filter 21c which carries out (refer FIG. 3). Examples of such a lens include a condensing lens and a collimating lens. The light source unit 21 emits incoherent light having at least one spectral component as illumination light to the measurement probe 5 via the connector unit 22. The light emitting element 21a may be realized using an incoherent light source such as a xenon lamp, a tungsten lamp, and a halogen lamp. Further, one or a plurality of condenser lenses 21b are provided as necessary.
 コネクタ部22は、測定プローブ5を光学測定装置2に着脱自在に接続する。 The connector unit 22 removably connects the measurement probe 5 to the optical measurement device 2.
 撮像部23は、測定プローブ5の先端から出射された照明光が測定対象物で反射および/または散乱した照明光の戻り光を受光して光電変換を行うことによって電気信号を生成して制御部26へ出力する。撮像部23は、CCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等の撮像素子を用いて実現される。 The imaging unit 23 receives the return light of the illumination light reflected and / or scattered from the measurement object by the illumination light emitted from the tip of the measurement probe 5 and generates an electrical signal by performing photoelectric conversion, thereby generating a control unit. 26. The imaging unit 23 is realized by using an imaging element such as a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
 推定部24は、測定プローブ5の複数の光ファイバの出射端の各々から出射される光によって撮像部23の受光面に投影される像(スポット)をもとに、複数の光ファイバと、各スポットとの対応関係の推定処理を行う。 The estimation unit 24 includes a plurality of optical fibers based on an image (spot) projected on the light receiving surface of the imaging unit 23 by light emitted from the emission ends of the plurality of optical fibers of the measurement probe 5. Processing for estimating the correspondence with the spot is performed.
 記録部25は、光学測定装置2を動作させるための各種プログラム、光学測定装置2に使用される各種データや各種パラメータを記録する。記録部25は、揮発性メモリおよび不揮発性メモリ等を用いて実現される。記録部25は、光学測定装置2の処理中の情報やデータを一時的に記録する。さらに、記録部25は、光学測定装置2の測定結果や、受光ファイバの配置にかかる配置情報を記録する。なお、記録部25を、光学測定装置2の外部から装着されるメモリカード等を用いて構成してもよい。 The recording unit 25 records various programs for operating the optical measuring device 2, various data used for the optical measuring device 2, and various parameters. The recording unit 25 is realized using a volatile memory, a nonvolatile memory, or the like. The recording unit 25 temporarily records information and data being processed by the optical measuring device 2. Further, the recording unit 25 records the measurement result of the optical measuring device 2 and the arrangement information related to the arrangement of the light receiving fiber. Note that the recording unit 25 may be configured using a memory card or the like mounted from the outside of the optical measurement device 2.
 制御部26は、光学測定装置2の各部の処理動作を制御する。制御部26は、CPU(Central Processing Unit)等を用いて構成され、光学測定装置2の各部に対する指示情報やデータの転送等を行うことによって、光学測定装置2を統括的に制御する。制御部26は、演算部261を有する。 The control unit 26 controls the processing operation of each unit of the optical measuring device 2. The control unit 26 is configured using a CPU (Central Processing Unit) or the like, and comprehensively controls the optical measurement device 2 by transferring instruction information and data to each unit of the optical measurement device 2. The control unit 26 includes a calculation unit 261.
 演算部261は、撮像部23から入力される電気信号に基づいて、複数の演算処理を行い、推定部24が推定した、複数の光ファイバと各スポットとの対応関係に応じて測定対象物の性状に関する特性値を算出する。 The calculation unit 261 performs a plurality of calculation processes based on the electrical signal input from the imaging unit 23, and determines the measurement object according to the correspondence between the plurality of optical fibers and each spot estimated by the estimation unit 24. A characteristic value related to the property is calculated.
 表示部3は、光学測定装置2の各種情報を出力する。具体的には、表示部3は、光学測定装置2から入力される情報を表示する。表示部3は、液晶または有機EL(Electro Luminescence)等の表示パネルおよびスピーカ等を用いて実現される。なお、表示部3の表示画面上に、外部からの接触位置に応じた位置信号の入力を受け付けるタッチパネルを設けてもよい。 The display unit 3 outputs various information of the optical measuring device 2. Specifically, the display unit 3 displays information input from the optical measurement device 2. The display unit 3 is realized using a display panel such as liquid crystal or organic EL (Electro Luminescence), a speaker, and the like. Note that a touch panel that receives an input of a position signal corresponding to a contact position from the outside may be provided on the display screen of the display unit 3.
 入力部4は、光学測定装置2に測定を指示する指示信号の入力を受け付ける。入力部4は、例えばフットスイッチ、キーボードおよびマウス等の入力インターフェースを用いて実現される。 The input unit 4 receives an input of an instruction signal that instructs the optical measurement device 2 to perform measurement. The input unit 4 is realized using an input interface such as a foot switch, a keyboard, and a mouse.
 測定プローブ5は、少なくとも複数の光ファイバを用いて構成される。具体的には、測定プローブ5は、測定対象物に照明光を射出する照明ファイバ(照明チャンネル)と、測定対象物で反射および/または散乱した照明光の戻り光が異なる角度で入射する複数の受光ファイバ(受光チャンネル)と、を用いて実現される。測定プローブ5は、光学測定装置2のコネクタ部22に着脱自在に接続される基端部51と、可撓性を有する可撓部52と、コネクタ部22を介して光源部21から供給された照明光を出射するとともに、測定対象物からの照明光の戻り光を受光する先端部53と、を備える。また、先端部53には、測定対象物と先端部53との距離を一定に維持するロッドレンズ54が設けられている。 The measurement probe 5 is configured using at least a plurality of optical fibers. Specifically, the measurement probe 5 includes a plurality of illumination fibers (illumination channels) that emit illumination light to the measurement object, and a plurality of incident light beams reflected and / or scattered from the measurement object at different angles. And a light receiving fiber (light receiving channel). The measurement probe 5 is supplied from the light source part 21 via the base end part 51 detachably connected to the connector part 22 of the optical measuring device 2, a flexible part 52 having flexibility, and the connector part 22. And a distal end portion 53 that emits illumination light and receives return light of illumination light from the measurement object. Further, the tip 53 is provided with a rod lens 54 that keeps the distance between the measurement object and the tip 53 constant.
 ここで、上述した光源部21、コネクタ部22、撮像部23、推定部24および測定プローブ5の基端部51の詳細な構成について説明する。図3は、光源部21、コネクタ部22、撮像部23および測定プローブ5の基端部51の構造を模式的に示す断面図である。 Here, the detailed configuration of the light source unit 21, the connector unit 22, the imaging unit 23, the estimation unit 24, and the proximal end portion 51 of the measurement probe 5 described above will be described. FIG. 3 is a cross-sectional view schematically showing the structure of the light source portion 21, the connector portion 22, the imaging portion 23, and the base end portion 51 of the measurement probe 5.
 まず、測定プローブ5について説明する。測定プローブ5は、コネクタ部22に着脱自在に挿入される基端部51と、コネクタ部22を介して光源部21から供給された照明光を測定プローブ5の先端部53に伝播して測定対象物に照明光を出射する照明ファイバ55と、測定対象物で反射および/または散乱した照明光の戻り光が互いに異なる角度で先端部53から入射して基端部51へ伝播する第1受光ファイバ56a、第2受光ファイバ56b、第3受光ファイバ56cおよび第4受光ファイバ56dと、円柱状をなし、照明ファイバ55、第1受光ファイバ56a、第2受光ファイバ56b、第3受光ファイバ56cおよび第4受光ファイバ56dを内部で保持する保持部57と、略円環状をなす押圧部材58と、を有する。 First, the measurement probe 5 will be described. The measurement probe 5 is a measurement target by propagating illumination light supplied from the light source unit 21 to the distal end portion 53 of the measurement probe 5 via a base end portion 51 detachably inserted into the connector portion 22 and the connector portion 22. An illumination fiber 55 that emits illumination light to the object, and a first light receiving fiber in which return light of the illumination light reflected and / or scattered by the measurement object is incident from the distal end portion 53 at different angles and propagates to the proximal end portion 51. 56a, the second light receiving fiber 56b, the third light receiving fiber 56c, and the fourth light receiving fiber 56d have a cylindrical shape, and the illumination fiber 55, the first light receiving fiber 56a, the second light receiving fiber 56b, the third light receiving fiber 56c, and the fourth light receiving fiber 56c. It has a holding portion 57 that holds the light receiving fiber 56d inside, and a pressing member 58 that has a substantially annular shape.
 基端部51は、コネクタ部22に着脱自在に挿入される。基端部51の外周の径R1は、保持部57の外周の径R2よりも小さく形成される。外周の径R1,R2によって、基端部51と保持部57との間には、段部59が形成される。基端部51には、中心側に向けて円環状に切り欠かれた溝部511が形成されている。 The base end portion 51 is detachably inserted into the connector portion 22. The outer diameter R1 of the base end portion 51 is formed smaller than the outer diameter R2 of the holding portion 57. A stepped portion 59 is formed between the base end portion 51 and the holding portion 57 by the outer diameters R1 and R2. The base end portion 51 is formed with a groove portion 511 that is cut out in an annular shape toward the center side.
 押圧部材58は、基端部51の溝部511に取り付けられている。押圧部材58は、径方向に弾性変形可能なCリングバネ等を用いて実現される。 The pressing member 58 is attached to the groove portion 511 of the base end portion 51. The pressing member 58 is realized using a C-ring spring or the like that can be elastically deformed in the radial direction.
 つぎに、コネクタ部22について説明する。コネクタ部22は、光学測定装置2の筐体2aに設けられたコネクタフレーム221と、光源部21および撮像部23を支持する支持部材222と、を有する。 Next, the connector part 22 will be described. The connector unit 22 includes a connector frame 221 provided on the housing 2 a of the optical measuring device 2 and a support member 222 that supports the light source unit 21 and the imaging unit 23.
 コネクタフレーム221は、略筒状をなす。コネクタフレーム221は、挿入部221aを有する。挿入部221aは、測定プローブ5の基端部51を保持する。コネクタフレーム221には、挿入部221aの内周側から外周側に向けて円環状にそれぞれ切り欠かれた第1溝部221bおよび第2溝部221cが形成されている。また、コネクタフレーム221には、筐体2aの外部から露出し、測定プローブ5の基端部51の一部が突き当たる突当部221dが形成されている。 The connector frame 221 has a substantially cylindrical shape. The connector frame 221 has an insertion part 221a. The insertion part 221 a holds the proximal end part 51 of the measurement probe 5. The connector frame 221 is formed with a first groove portion 221b and a second groove portion 221c that are cut out in an annular shape from the inner periphery side to the outer periphery side of the insertion portion 221a. Further, the connector frame 221 is formed with an abutting portion 221d that is exposed from the outside of the housing 2a and that a part of the base end portion 51 of the measurement probe 5 abuts.
 突当部221dは、測定プローブ5の基端部51が挿入部221aに挿入された際に、撮像部23の受光面と測定プローブ5の端面との距離を一定にする。具体的には、突当部221dは、測定プローブ5の基端部51がコネクタフレーム221の挿入部221aに挿入された際に、段部59に当接することにより、測定プローブ5の基端部51の第1受光ファイバ56a、第2受光ファイバ56b、第3受光ファイバ56cおよび第4受光ファイバ56dの出射端T1(出射面)が、撮像部23の受光面T2(イメージセンサの受光面)に対して予め設定された距離に位置する。 The abutting portion 221d makes the distance between the light receiving surface of the imaging unit 23 and the end surface of the measurement probe 5 constant when the base end portion 51 of the measurement probe 5 is inserted into the insertion portion 221a. Specifically, the abutting portion 221d is in contact with the stepped portion 59 when the proximal end portion 51 of the measurement probe 5 is inserted into the insertion portion 221a of the connector frame 221, so that the proximal end portion of the measurement probe 5 is contacted. The first light receiving fiber 56a, the second light receiving fiber 56b, the third light receiving fiber 56c, and the fourth light receiving fiber 56d have light emitting ends T1 (light emitting surfaces) on the light receiving surface T2 (light receiving surface of the image sensor) of the imaging unit 23. It is located at a preset distance.
 支持部材222は、光源部21および撮像部23を支持する。具体的には、支持部材222は、光源部21のフィルタ21cと、撮像部23とを支持する。支持部材222は、コネクタフレーム221の第2溝部221c内に出射端T1が収容された際に、該出射端T1と受光面T2とが対向し、フィルタ21cを透過した光が照明ファイバに入射するようにビス233等によってコネクタフレーム221に固定される。 The support member 222 supports the light source unit 21 and the imaging unit 23. Specifically, the support member 222 supports the filter 21 c of the light source unit 21 and the imaging unit 23. In the support member 222, when the emission end T1 is accommodated in the second groove portion 221c of the connector frame 221, the emission end T1 and the light receiving surface T2 face each other, and light transmitted through the filter 21c enters the illumination fiber. In this manner, the connector frame 221 is fixed with screws 233 or the like.
 続いて、出射端T1における第1受光ファイバ56a、第2受光ファイバ56b、第3受光ファイバ56cおよび第4受光ファイバ56dの配置(配置パターン)について図4を参照して説明する。図4は、本実施の形態にかかる測定プローブ5の基端面を模式的に示す平面図である。図5は、本実施の形態にかかる測定プローブ5の受光ファイバの配置を説明する図である。図4,5に示すように、第1受光ファイバ56a、第2受光ファイバ56b、第3受光ファイバ56cおよび第4受光ファイバ56dは、各々が異なる距離となるように配置されている。換言すれば、本実施の形態にかかる出射端の配置パターン(受光面T2上に投影されるスポットの配置パターン)は、測定プローブ5の端面(出射端T1)と直交するとともに、該配置パターンの重心(または中心)例えば、各ファイバの中心同士を結んでなる形状の重心を通過する軸に対してn×360°(n:整数)回転した場合のみ重なるパターンとなっている。 Subsequently, the arrangement (arrangement pattern) of the first light receiving fiber 56a, the second light receiving fiber 56b, the third light receiving fiber 56c, and the fourth light receiving fiber 56d at the emission end T1 will be described with reference to FIG. FIG. 4 is a plan view schematically showing the base end surface of the measurement probe 5 according to the present embodiment. FIG. 5 is a diagram for explaining the arrangement of the light receiving fibers of the measurement probe 5 according to the present embodiment. As shown in FIGS. 4 and 5, the first light receiving fiber 56a, the second light receiving fiber 56b, the third light receiving fiber 56c, and the fourth light receiving fiber 56d are arranged at different distances. In other words, the arrangement pattern of the emission end (the arrangement pattern of the spots projected on the light receiving surface T2) according to the present embodiment is orthogonal to the end surface (emission end T1) of the measurement probe 5, and Center of gravity (or center) For example, the pattern overlaps only when rotated by n × 360 ° (n: integer) with respect to an axis passing through the center of gravity formed by connecting the centers of the fibers.
 具体的には、第1受光ファイバ56aと第2受光ファイバ56bとの距離d1、第1受光ファイバ56aと第3受光ファイバ56cとの距離d2、第1受光ファイバ56aと第4受光ファイバ56dとの距離d3、第2受光ファイバ56bと第3受光ファイバ56cとの距離d4、第2受光ファイバ56bと第4受光ファイバ56dとの距離d5、および第3受光ファイバ56cと第4受光ファイバ56dとの距離d6が互いに異なっている。なお、本実施の形態では、各ファイバ間の距離とは、各ファイバの中心(中心561a~561c)間の距離のことをいう。記録部25には、第1受光ファイバ56a、第2受光ファイバ56b、第3受光ファイバ56cおよび第4受光ファイバ56dの配置、各受光ファイバ間の距離、および各距離の大小関係や最大差などが配置情報として記録されている。いま例えば、第1~第4受光ファイバの各々の間の距離を計算したときに、最も近い距離と最も遠い距離との差を「最大差」とする。本実施の形態では、第1受光ファイバ56aの最大差が最も小さいものとする。また、本実施の形態では、距離d1~d6について、d1<d2<d3<d6<d4<d5が成り立つものとして説明する。 Specifically, the distance d1 between the first light receiving fiber 56a and the second light receiving fiber 56b, the distance d2 between the first light receiving fiber 56a and the third light receiving fiber 56c, and the distance between the first light receiving fiber 56a and the fourth light receiving fiber 56d. The distance d3, the distance d4 between the second light receiving fiber 56b and the third light receiving fiber 56c, the distance d5 between the second light receiving fiber 56b and the fourth light receiving fiber 56d, and the distance between the third light receiving fiber 56c and the fourth light receiving fiber 56d. d6 is different from each other. In the present embodiment, the distance between the fibers refers to the distance between the centers (centers 561a to 561c) of the fibers. The recording unit 25 includes the arrangement of the first light receiving fiber 56a, the second light receiving fiber 56b, the third light receiving fiber 56c, and the fourth light receiving fiber 56d, the distance between the light receiving fibers, and the magnitude relationship and the maximum difference between the distances. It is recorded as arrangement information. Now, for example, when the distance between each of the first to fourth light receiving fibers is calculated, the difference between the closest distance and the farthest distance is defined as the “maximum difference”. In the present embodiment, it is assumed that the maximum difference between the first light receiving fibers 56a is the smallest. In this embodiment, the distances d1 to d6 will be described assuming that d1 <d2 <d3 <d6 <d4 <d5 holds.
 次に、第1受光ファイバ56a、第2受光ファイバ56b、第3受光ファイバ56cおよび第4の受光ファイバ56dから出射された光が撮像部23の受光面T2上に照射されて形成されるスポットと、各受光ファイバとの対応付けについて、図6~8を参照して説明する。図6は、本実施の形態にかかる光学測定システム1の推定部24が行う推定処理を説明する図であって、撮像部23の受光面T2に受光ファイバから照射された光を模式的に示す図である。図7,8は、本実施の形態にかかる光学測定システム1の推定部24が行う推定処理を説明する図であって、撮像部23の受光面T2上のスポットの配置を模式的に示す図である。 Next, a spot formed by irradiating the light receiving surface T2 of the imaging unit 23 with light emitted from the first light receiving fiber 56a, the second light receiving fiber 56b, the third light receiving fiber 56c, and the fourth light receiving fiber 56d; The association with each light receiving fiber will be described with reference to FIGS. FIG. 6 is a diagram illustrating an estimation process performed by the estimation unit 24 of the optical measurement system 1 according to the present embodiment, and schematically shows light irradiated from the light receiving fiber onto the light receiving surface T2 of the imaging unit 23. FIG. 7 and 8 are diagrams illustrating the estimation process performed by the estimation unit 24 of the optical measurement system 1 according to the present embodiment, and schematically showing the arrangement of spots on the light receiving surface T2 of the imaging unit 23. FIG. It is.
 図6に示すように、撮像部23の受光面T2上には、第1受光ファイバ56a、第2受光ファイバ56b、第3受光ファイバ56cおよび第4受光ファイバ56d(出射端T1)から出射された光が照射され、スポットP1~P4が形成される。撮像部23は、形成されたスポットP1~P4の受光量を各画素が光電変換することによって電気信号を生成する。撮像部23により生成された電気信号は、制御部26に出力され、推定部24による第1受光ファイバ56a、第2受光ファイバ56b、第3受光ファイバ56cおよび第4受光ファイバ56dとスポットP1~P4との対応関係の推定処理、および演算部261による特性値の演算処理が行われる。 As shown in FIG. 6, the light is emitted from the first light receiving fiber 56a, the second light receiving fiber 56b, the third light receiving fiber 56c, and the fourth light receiving fiber 56d (outgoing end T1) on the light receiving surface T2 of the imaging unit 23. Light is irradiated to form spots P1 to P4. The imaging unit 23 generates an electrical signal by photoelectrically converting the amount of light received by the formed spots P1 to P4 by each pixel. The electrical signal generated by the imaging unit 23 is output to the control unit 26, and the first light receiving fiber 56a, the second light receiving fiber 56b, the third light receiving fiber 56c, the fourth light receiving fiber 56d, and the spots P1 to P4 by the estimating unit 24. And the calculation process of the characteristic value by the calculation unit 261 is performed.
 推定部24は、撮像部23が生成した電気信号に基づいて画素値(輝度)を求めた後、所定の値以上を有する画素を抽出して、スポットP1~P4に相当するスポット領域をそれぞれ算出する。具体的には、推定部24は、画素値と画素の座標とに応じて、図7に示すようなスポット領域P11~P14を算出する。 The estimation unit 24 obtains a pixel value (luminance) based on the electrical signal generated by the imaging unit 23, extracts pixels having a predetermined value or more, and calculates spot regions corresponding to the spots P1 to P4, respectively. To do. Specifically, the estimation unit 24 calculates spot regions P11 to P14 as shown in FIG. 7 according to the pixel value and the pixel coordinates.
 その後、推定部24は、各スポット領域P11~P14について、最も大きい画素値を抽出し、該画素値の画素位置を中心位置に設定する。例えば、推定部24は、スポット領域P11において最も画素値の大きい画素位置を中心位置G11に設定する。同様に、推定部24は、スポット領域P12~P14について、中心位置G12~G14を設定する(図7参照)。なお、最も大きい画素値が複数存在する場合は、各画素値間の中央を中心位置として設定してもよいし、スポット領域の中心に近い画素位置を中心位置として設定してもよい。また、各スポット領域の重心位置を中心位置とするものであってもよい。 Thereafter, the estimation unit 24 extracts the largest pixel value for each of the spot areas P11 to P14, and sets the pixel position of the pixel value as the center position. For example, the estimation unit 24 sets the pixel position having the largest pixel value in the spot region P11 as the center position G11. Similarly, the estimation unit 24 sets the center positions G12 to G14 for the spot regions P12 to P14 (see FIG. 7). When there are a plurality of largest pixel values, the center between the pixel values may be set as the center position, or a pixel position close to the center of the spot area may be set as the center position. Further, the center of gravity position of each spot area may be used.
 推定部24は、中心位置G11~G14を設定すると、各中心位置G11~G14間の距離を算出する。具体的には、推定部24は、中心位置G11と中心位置G12との間の距離d11と、中心位置G11と中心位置G13との間の距離d12と、中心位置G11と中心位置G14との間の距離d13と、中心位置G12と中心位置G13との間の距離d14と、中心位置G12と中心位置G14との間の距離d15と、中心位置G13と中心位置G14との間の距離d16と、を算出する。 The estimation unit 24 calculates the distance between the center positions G11 to G14 when the center positions G11 to G14 are set. Specifically, the estimation unit 24 calculates the distance d11 between the center position G11 and the center position G12, the distance d12 between the center position G11 and the center position G13, and the distance between the center position G11 and the center position G14. A distance d13 between the center position G12 and the center position G13, a distance d15 between the center position G12 and the center position G14, a distance d16 between the center position G13 and the center position G14, Is calculated.
 推定部24は、算出した距離d11~d16について、中心位置ごとに、他の中心位置との距離の最大差を算出する。例えば、推定部24は、中心位置G11について、距離d11~d13のうち最も小さい距離と最も大きい距離との差を最大差とする。同様に、中心位置G12~G14について最大差を算出する。 The estimation unit 24 calculates the maximum difference in distance from other center positions for each of the calculated distances d11 to d16. For example, for the center position G11, the estimation unit 24 sets the difference between the smallest distance and the largest distance among the distances d11 to d13 as the maximum difference. Similarly, the maximum difference is calculated for the center positions G12 to G14.
 推定部24は、算出した最大差と、記録部25に記録されている最大差を比較して、最も小さい最大差のスポット領域と受光ファイバとを対応付けする。具体的には、推定部24は、最大差のうち、最も小さい最大差を有する中心位置が中心位置G11である場合、記録部25の最大差を参照して、中心位置G11と第1受光ファイバ56aとを対応付ける。すなわち、スポット領域P11と、第1受光ファイバ56aとが推定部24により対応付けられる。 The estimation unit 24 compares the calculated maximum difference with the maximum difference recorded in the recording unit 25, and associates the spot region with the smallest maximum difference with the light receiving fiber. Specifically, when the center position having the smallest maximum difference among the maximum differences is the center position G11, the estimation unit 24 refers to the maximum difference of the recording unit 25 and the center position G11 and the first light receiving fiber. 56a is associated. That is, the spot region P11 and the first light receiving fiber 56a are associated with each other by the estimation unit 24.
 推定部24は、中心位置G11と第1受光ファイバ56aとが対応付けられると、中心位置G12~G14と、第2受光ファイバ56b~第4受光ファイバ56dとの対応付けを行う。推定部24は、算出した距離d12~d14と、記録されている距離の大小関係とをもとに、中心位置G12~G14と、第2受光ファイバ56b~第4受光ファイバ56dとを対応付けする。具体的には、距離d12~d14の大小関係がd12<d13<d14である場合、推定部24は、記録部25を参照して最も距離の小さいd12とd1とが対応するものと判断し、中心位置G12と第2受光ファイバ56bとを対応付ける。また、推定部24は、最も距離の大きいd14とd3とが対応するものと判断し、中心位置G14と第4受光ファイバ56dとを対応付ける。さらに、推定部24は、距離d13とd2とが対応するものと判断し、中心位置G13と第3受光ファイバ56cとを対応付ける。 When the center position G11 and the first light receiving fiber 56a are associated with each other, the estimating unit 24 associates the center positions G12 to G14 with the second light receiving fiber 56b to the fourth light receiving fiber 56d. The estimation unit 24 associates the center positions G12 to G14 with the second light receiving fiber 56b to the fourth light receiving fiber 56d based on the calculated distances d12 to d14 and the magnitude relationship of the recorded distances. . Specifically, when the magnitude relationship between the distances d12 to d14 is d12 <d13 <d14, the estimation unit 24 refers to the recording unit 25 and determines that d12 and d1 having the smallest distance correspond to each other. The center position G12 and the second light receiving fiber 56b are associated with each other. In addition, the estimation unit 24 determines that d14 and d3 having the largest distance correspond to each other, and associates the center position G14 with the fourth light receiving fiber 56d. Further, the estimating unit 24 determines that the distances d13 and d2 correspond to each other, and associates the center position G13 with the third light receiving fiber 56c.
 これらの対応付け処理により、スポット領域P11および第1受光ファイバ56a、スポット領域P12および第2受光ファイバ56b、スポット領域P13および第3受光ファイバ56c、スポット領域P14および第4受光ファイバ56dがそれぞれ対応付けられ、スポットと受光ファイバとの対応関係が推定される。 By the association processing, the spot region P11 and the first light receiving fiber 56a, the spot region P12 and the second light receiving fiber 56b, the spot region P13 and the third light receiving fiber 56c, the spot region P14 and the fourth light receiving fiber 56d are associated with each other. Then, the correspondence between the spot and the light receiving fiber is estimated.
 演算部261は、推定部24によって推定されたスポットと受光ファイバとの対応関係をもとに、算出したスポットの光量(例えば、スポット領域に応じた複数の画素値の加算値)と、受光ファイバとを対応付けて出力する。これにより、受光面T2で受光した各スポットと、各スポットに対応する受光ファイバとを確実に対応付けて特性値を出力することができる。基端部51が挿入部221aに挿入された際、仮に、基端部51と挿入部221aとの間でガタツキや回転が生じ、受光面T2に対する受光ファイバの位置が前回の位置からずれた場合であっても、スポットと受光ファイバとを確実に対応付けることができる。 Based on the correspondence between the spot estimated by the estimation unit 24 and the light receiving fiber, the calculation unit 261 calculates the light amount of the calculated spot (for example, an added value of a plurality of pixel values corresponding to the spot area), and the light receiving fiber. Are output in association with each other. As a result, it is possible to reliably associate each spot received by the light receiving surface T2 with the light receiving fiber corresponding to each spot and output the characteristic value. When the proximal end portion 51 is inserted into the insertion portion 221a, if the rattling or rotation occurs between the proximal end portion 51 and the insertion portion 221a and the position of the light receiving fiber with respect to the light receiving surface T2 deviates from the previous position. Even so, it is possible to reliably associate the spot with the light receiving fiber.
 上述のように構成された光学測定システム1は、図9に示すように、内視鏡システム100の内視鏡装置101(内視鏡スコープ)に設けられた処理具チャンネル101aを介して測定プローブ5が挿入され、照明ファイバ55が測定対象物に照明光を出射し、第1受光ファイバ56a、第2受光ファイバ56b、第3受光ファイバ56cおよび第4受光ファイバ56dの各々が測定対象物で反射および/または散乱した照明光の戻り光を、ロッドレンズ54を介して先端部53で受光して撮像部23の各受光面T2に出射端T1から出射する。その後、演算部261は、撮像部23の各受光面T2の測定結果に基づいて、測定対象物の性状の特性値を演算し、推定部24が推定したスポットと受光ファイバの対応関係に応じて、特性値と受光ファイバとを対応付けて出力する。 As shown in FIG. 9, the optical measurement system 1 configured as described above has a measurement probe via a processing tool channel 101 a provided in an endoscope apparatus 101 (endoscope scope) of the endoscope system 100. 5 is inserted, the illumination fiber 55 emits illumination light to the measurement object, and each of the first light reception fiber 56a, the second light reception fiber 56b, the third light reception fiber 56c, and the fourth light reception fiber 56d is reflected by the measurement object. And / or the returned light of the scattered illumination light is received by the distal end portion 53 via the rod lens 54 and emitted from the emission end T1 to each light receiving surface T2 of the imaging unit 23. Thereafter, the calculation unit 261 calculates the characteristic value of the property of the measurement object based on the measurement result of each light receiving surface T2 of the imaging unit 23, and according to the correspondence between the spot and the light receiving fiber estimated by the estimation unit 24. The characteristic value and the light receiving fiber are output in association with each other.
 また、コネクタ部22に測定プローブ5の基端部51が挿入された際に、押圧部材58がコネクタフレーム221の挿入部221aと同じ径となって中心側に圧縮した状態で挿入される。その後、押圧部材58は、コネクタフレーム221の第1溝部221bに到達した場合、径方向に向けて伸張する。このとき押圧部材58は、押圧部材58と第1溝部221bの角部とが接触しながら径方向に伸張するため、押圧部材58は撮像部23側に移動することになる。押圧部材58は溝部511に取り付けられているため、押圧部材58が撮像部23側に移動すると基端部51を撮像部23に近づく方向に押すことになり、段部59が突当部221dに突き当たる位置まで基端部51を移動させることとなる。これにより、基端部51は、コネクタ部22に対して装着される。この結果、ユーザは、1回の操作で測定プローブ5を光学測定装置2に装着させることができる。 Further, when the proximal end portion 51 of the measurement probe 5 is inserted into the connector portion 22, the pressing member 58 is inserted with the same diameter as the insertion portion 221 a of the connector frame 221 and compressed toward the center side. Thereafter, when the pressing member 58 reaches the first groove portion 221b of the connector frame 221, the pressing member 58 extends in the radial direction. At this time, the pressing member 58 extends in the radial direction while the pressing member 58 and the corner portion of the first groove 221b are in contact with each other, so that the pressing member 58 moves to the imaging unit 23 side. Since the pressing member 58 is attached to the groove portion 511, when the pressing member 58 moves to the imaging unit 23 side, the proximal end portion 51 is pushed in a direction approaching the imaging unit 23, and the stepped portion 59 is brought into contact with the abutting portion 221d. The base end part 51 will be moved to the position where it abuts. As a result, the base end portion 51 is attached to the connector portion 22. As a result, the user can attach the measurement probe 5 to the optical measurement device 2 with a single operation.
 以上説明した本発明の実施の形態によれば、測定プローブ5の端面において四つの受光ファイバが互いに異なる距離で配置され、推定部24が、受光面T2における各スポットの距離と、記録部25に記録されている受光ファイバの配置にかかる情報とをもとに、スポットと受光ファイバとの対応関係を推定するようにしたので、撮像素子が受光した光と受光ファイバが出射した光との対応付けを簡易な構成で行うことができる。 According to the embodiment of the present invention described above, the four light receiving fibers are arranged at different distances on the end surface of the measurement probe 5, and the estimation unit 24 determines the distance between each spot on the light receiving surface T 2 and the recording unit 25. Since the correspondence between the spot and the light receiving fiber is estimated based on the recorded information regarding the arrangement of the light receiving fiber, the correspondence between the light received by the image sensor and the light emitted from the light receiving fiber is associated. Can be performed with a simple configuration.
 また、本実施の形態によれば、基端部51と挿入部221aとの間の高い位置決め精度を要さずにスポットと受光ファイバとの対応関係を推定可能であるため、分光器や位置決め機構を設ける構成と比して、構成を簡略化し、コストを削減することができる。 Further, according to the present embodiment, since the correspondence relationship between the spot and the light receiving fiber can be estimated without requiring high positioning accuracy between the base end portion 51 and the insertion portion 221a, the spectroscope or the positioning mechanism. As compared with the configuration in which the configuration is provided, the configuration can be simplified and the cost can be reduced.
 なお、上述した実施の形態では、各スポットの中心位置を求め、各中心位置間の距離をもとにスポットと受光ファイバとの対応付けを行うものとして説明したが、画像をもとにパターンマッチングしてスポットと受光ファイバとの対応付けを行うものであってもよい。パターンマッチングとしては、テンプレートマッチングなど公知のマッチング法が挙げられる。 In the above-described embodiment, the center position of each spot is obtained and the spot and the light receiving fiber are associated with each other based on the distance between the center positions. However, the pattern matching is based on the image. Thus, the spot and the light receiving fiber may be associated with each other. Examples of the pattern matching include known matching methods such as template matching.
(実施の形態の変形例1)
 図10は、本発明の実施の形態の変形例1にかかる測定プローブの受光ファイバの配置を説明する図である。上述した実施の形態では、四つの受光ファイバを用いるものとして説明したが、本変形例1では、三つの受光ファイバを有する。本変形例1にかかる三つの受光ファイバ(第1受光ファイバ501a、第2受光ファイバ501bおよび第3受光ファイバ501c)は、図10に示すように、各受光ファイバの端面の中心をそれぞれ中心502a~502cとし、中心502aと中心502bとの間の距離をd21、中心502aと中心502cとの間の距離をd22、中心502bと中心502cとの間の距離をd23とすると、d23<d21=d22の関係が成り立つ。
(Modification 1 of embodiment)
FIG. 10 is a diagram for explaining the arrangement of the light receiving fibers of the measurement probe according to the first modification of the embodiment of the present invention. In the above-described embodiment, it has been described that four light receiving fibers are used. However, the first modification has three light receiving fibers. As shown in FIG. 10, the three light receiving fibers (first light receiving fiber 501a, second light receiving fiber 501b, and third light receiving fiber 501c) according to the first modification are centered on the centers of the end faces of the respective light receiving fibers. When the distance between the center 502a and the center 502b is d21, the distance between the center 502a and the center 502c is d22, and the distance between the center 502b and the center 502c is d23, d23 <d21 = d22. A relationship is established.
 変形例1の配置では、推定部24は、例えば、距離の関係から第3受光ファイバ501cとスポットとの対応付けを行い、対応付けを行ったスポットと他のスポットとの位置関係に基づいて、該他のスポットと第1受光ファイバ501aおよび第2受光ファイバ501bとの対応付けを行うことで、スポットと受光ファイバとの対応関係の推定処理を行う。このように、三つの受光ファイバからなる配置では、少なくとも一つの中心間距離が、他の距離と異なるものであれば、上述した推定処理を行うことが可能である。 In the arrangement of Modification 1, for example, the estimation unit 24 associates the third light receiving fiber 501c with the spot from the relationship of distance, and based on the positional relationship between the spot that has been associated and another spot, By associating the other spot with the first light receiving fiber 501a and the second light receiving fiber 501b, a process for estimating the correspondence between the spot and the light receiving fiber is performed. As described above, in the arrangement including the three light receiving fibers, the above-described estimation process can be performed as long as at least one center-to-center distance is different from other distances.
(実施の形態の変形例2)
 図11は、本発明の実施の形態の変形例2にかかる測定プローブの受光ファイバの配置を説明する図である。本変形例2では、上述した実施の形態と同様、四つの受光ファイバを有する。本変形例2にかかる四つの受光ファイバ(第1受光ファイバ511a、第2受光ファイバ511b、第3受光ファイバ511cおよび第4受光ファイバ511d)は、図11に示すように、各受光ファイバの端面の中心をそれぞれ中心512a~512dとし、中心512aと中心512bとの間の距離をd31、中心512bと中心512cとの間の距離をd32、中心512cと中心512dとの間の距離をd33、中心512aと中心512dとの間の距離をd34とすると、d31=d32<d33<d34の関係が成り立つ。
(Modification 2 of embodiment)
FIG. 11 is a diagram for explaining the arrangement of the light receiving fibers of the measurement probe according to the second modification of the embodiment of the present invention. In the second modification, as in the above-described embodiment, there are four light receiving fibers. As shown in FIG. 11, the four light receiving fibers (first light receiving fiber 511a, second light receiving fiber 511b, third light receiving fiber 511c, and fourth light receiving fiber 511d) according to the second modification are arranged on the end faces of the respective light receiving fibers. The centers are the respective centers 512a to 512d, the distance between the centers 512a and 512b is d31, the distance between the centers 512b and 512c is d32, the distance between the centers 512c and 512d is d33, and the center 512a. If the distance between the center and 512d is d34, the relationship d31 = d32 <d33 <d34 holds.
 変形例2の配置では、推定部24は、例えば、距離の関係から第2受光ファイバ511bとスポットとの対応付けを行い、対応付けを行ったスポットと他のスポットとの位置関係に基づいて、該他のスポットと第1受光ファイバ511a、第3受光ファイバ511cおよび第4受光ファイバ511dとの対応付けを行うことで、スポットと受光ファイバとの対応関係の推定処理を行う。 In the arrangement of the modified example 2, for example, the estimating unit 24 associates the second light receiving fiber 511b with the spot based on the distance relationship, and based on the positional relationship between the spot where the association is performed and the other spot, By associating the other spot with the first light receiving fiber 511a, the third light receiving fiber 511c, and the fourth light receiving fiber 511d, the process of estimating the correspondence between the spot and the light receiving fiber is performed.
(実施の形態の変形例3)
 図12は、本発明の実施の形態の変形例3にかかる測定プローブの受光ファイバの配置を説明する図である。上述した実施の形態では、四つの受光ファイバを用いるものとして説明したが、本変形例3では、五つの受光ファイバを有する。本変形例3にかかる五つの受光ファイバ(第1受光ファイバ521a、第2受光ファイバ521b、第3受光ファイバ521c、第4受光ファイバ521dおよび第5受光ファイバ521e)は、図12に示すように、各受光ファイバの端面の中心をそれぞれ中心522a~522eとし、隣接する中心同士の距離、すなわち、中心522aと中心522bとの間の距離をd41、中心522bと中心522cとの間の距離をd42、中心522cと中心522dとの間の距離をd43、中心522dと中心522eとの間の距離をd44とすると、d44<d41<d42<d43の関係が成り立つ。
(Modification 3 of embodiment)
FIG. 12 is a diagram illustrating the arrangement of the light receiving fibers of the measurement probe according to the third modification of the embodiment of the present invention. In the above-described embodiment, it has been described that four light receiving fibers are used. However, in the third modification, five light receiving fibers are provided. As shown in FIG. 12, the five light receiving fibers (first light receiving fiber 521a, second light receiving fiber 521b, third light receiving fiber 521c, fourth light receiving fiber 521d, and fifth light receiving fiber 521e) according to Modification 3 are as shown in FIG. The centers of the end faces of the respective light receiving fibers are the centers 522a to 522e, respectively, the distance between adjacent centers, that is, the distance between the centers 522a and 522b is d41, and the distance between the centers 522b and 522c is d42, When the distance between the center 522c and the center 522d is d43 and the distance between the center 522d and the center 522e is d44, the relationship d44 <d41 <d42 <d43 is established.
 変形例3の配置では、推定部24は、例えば、隣接する中心同士の距離の関係から最小距離となる二つのスポットを求め、他のスポットとの位置関係に応じて、端部に位置するスポットを第5受光ファイバ521eとしてスポットとの対応付けを行い、対応付けを行ったスポットと他のスポットとの位置関係に基づいて、該他のスポットと第1受光ファイバ521aおよび第2受光ファイバ521bとの対応付けを行うことで、スポットと受光ファイバとの対応関係の推定処理を行う。 In the arrangement of the modification example 3, the estimation unit 24 obtains, for example, two spots that are the minimum distance from the relationship between the distances between adjacent centers, and the spot located at the end according to the positional relationship with other spots. Is associated with the spot as the fifth light receiving fiber 521e, and the other spot and the first light receiving fiber 521a and the second light receiving fiber 521b By performing the association, the correlation between the spot and the light receiving fiber is estimated.
 上述した実施の形態および変形例1~3にかかる配置のほか、複数の光ファイバの出射端の配置パターン(受光面T2上に投影されるスポットの配置パターン)が、測定プローブ5の端面(出射端T1)と直交するとともに、該配置パターンの重心(または中心)を通過する軸に対してn×360°(n:整数)回転した場合のみ重なるパターンであれば、推定部24によりスポット間の距離を算出し、該算出した距離をもとにスポットと受光ファイバとの対応関係の推定処理を行うことができる。 In addition to the arrangement according to the above-described embodiment and the first to third modifications, the arrangement pattern of the emission ends of the plurality of optical fibers (the arrangement pattern of the spots projected on the light receiving surface T2) is the end face of the measurement probe 5 (the emission pattern). If the pattern overlaps only when rotated by n × 360 ° (n: integer) with respect to an axis that is orthogonal to the end T1) and passes through the center of gravity (or the center) of the arrangement pattern, the estimation unit 24 determines the distance between the spots. The distance can be calculated, and the correspondence between the spot and the light receiving fiber can be estimated based on the calculated distance.
 以上のように、本発明にかかる光学測定システムは、撮像素子が受光した光と受光ファイバが出射した光との対応付けを簡易な構成で行うのに有用である。 As described above, the optical measurement system according to the present invention is useful for associating the light received by the image sensor with the light emitted from the light receiving fiber with a simple configuration.
 1 光学測定システム
 2 光学測定装置
 3 表示部
 4 入力部
 5 測定プローブ
 20 電源部
 21 光源部
 22 コネクタ部
 23 撮像部
 24 推定部
 25 記録部
 26 制御部
 51 基端部
 52 可撓部
 53 先端部
 54 ロッドレンズ
 55 照明ファイバ
 56a 第1受光ファイバ
 56b 第2受光ファイバ
 56c 第3受光ファイバ
 56d 第4受光ファイバ
 57 保持部
 58 押圧部材
 221 コネクタフレーム
 222 支持部材
 233 ビス
 261 演算部
DESCRIPTION OF SYMBOLS 1 Optical measurement system 2 Optical measurement apparatus 3 Display part 4 Input part 5 Measurement probe 20 Power supply part 21 Light source part 22 Connector part 23 Imaging part 24 Estimation part 25 Recording part 26 Control part 51 Base end part 52 Flexible part 53 Front end part 54 Rod lens 55 Illumination fiber 56a 1st light receiving fiber 56b 2nd light receiving fiber 56c 3rd light receiving fiber 56d 4th light receiving fiber 57 Holding part 58 Press member 221 Connector frame 222 Support member 233 Screw 261 Calculation part

Claims (3)

  1.  複数の光ファイバの出射端を端面に有する測定プローブと、前記複数の光ファイバの各々の出射端から出射された光を受光して光電変換を行うことにより電気信号を生成して出力する撮像部を有し、前記測定プローブが着脱自在に装着される光学測定装置と、を備えた光学測定システムであって、
     前記端面における前記複数の光ファイバの出射端の配置パターンは、該端面と直交するとともに、該配置パターンの重心を通過する軸に対してn×360°(n:整数)回転した場合のみ重なるパターンであることを特徴とする光学測定システム。
    A measurement probe having the emission ends of a plurality of optical fibers on the end surface, and an imaging unit that generates and outputs an electrical signal by receiving light emitted from the emission ends of each of the plurality of optical fibers and performing photoelectric conversion And an optical measurement system on which the measurement probe is detachably mounted, and an optical measurement system comprising:
    The arrangement pattern of the output ends of the plurality of optical fibers on the end face is a pattern that is orthogonal to the end face and overlaps only when rotated by n × 360 ° (n: integer) with respect to an axis passing through the center of gravity of the arrangement pattern. An optical measurement system.
  2.  前記複数の光ファイバの出射端のなす配置に関する配置情報を記録する記録部と、
     前記複数の光ファイバと、該複数の光ファイバがそれぞれ前記撮像部の受光面上に形成するスポットとの対応関係を、前記配置情報をもとに推定する推定部と、
     をさらに備えたことを特徴とする請求項1に記載の光学測定システム。
    A recording unit for recording arrangement information related to the arrangement of the emission ends of the plurality of optical fibers;
    An estimation unit that estimates a correspondence relationship between the plurality of optical fibers and spots formed on the light receiving surface of the imaging unit by the plurality of optical fibers based on the arrangement information;
    The optical measurement system according to claim 1, further comprising:
  3.  前記推定部は、スポット間の距離をそれぞれ算出し、該距離と前記配置情報とをもとに前記複数の光ファイバと複数のスポットとの対応関係を推定することを特徴とする請求項2に記載の光学測定システム。 3. The estimation unit according to claim 2, wherein each of the estimation units calculates a distance between the spots, and estimates a correspondence relationship between the plurality of optical fibers and the plurality of spots based on the distance and the arrangement information. The optical measurement system described.
PCT/JP2015/071121 2014-09-24 2015-07-24 Optical measurement system WO2016047262A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462054700P 2014-09-24 2014-09-24
US62/054,700 2014-09-24

Publications (1)

Publication Number Publication Date
WO2016047262A1 true WO2016047262A1 (en) 2016-03-31

Family

ID=55580796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071121 WO2016047262A1 (en) 2014-09-24 2015-07-24 Optical measurement system

Country Status (1)

Country Link
WO (1) WO2016047262A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969703A (en) * 1982-10-14 1984-04-20 Sumitomo Electric Ind Ltd Multicored plastic optical fiber and its production
JP2009063419A (en) * 2007-09-06 2009-03-26 Reitetsukusu:Kk Surface inspection device
WO2013133340A1 (en) * 2012-03-07 2013-09-12 オリンパス株式会社 Optical measurement device and method for associating fiber bundle
WO2013140689A1 (en) * 2012-03-22 2013-09-26 オリンパスメディカルシステムズ株式会社 Measurement probe, bio-optical measurement apparatus and bio-optical measurement system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969703A (en) * 1982-10-14 1984-04-20 Sumitomo Electric Ind Ltd Multicored plastic optical fiber and its production
JP2009063419A (en) * 2007-09-06 2009-03-26 Reitetsukusu:Kk Surface inspection device
WO2013133340A1 (en) * 2012-03-07 2013-09-12 オリンパス株式会社 Optical measurement device and method for associating fiber bundle
WO2013140689A1 (en) * 2012-03-22 2013-09-26 オリンパスメディカルシステムズ株式会社 Measurement probe, bio-optical measurement apparatus and bio-optical measurement system

Similar Documents

Publication Publication Date Title
US10383549B2 (en) Intraoral three-dimensional measuring device, intraoral three-dimensional measuring method, and intraoral three-dimensional measurement result display method
US8803056B2 (en) Light source apparatus having a light emission intensity detection section receives both of a leak light and a light emitted from the light source and reflected by an optical element
EP3513704B1 (en) Endoscope system
US9788732B2 (en) Optical measuring device and fiber bundle association method
US20090306479A1 (en) Variable spectroscopy element, spectroscopy apparatus, and endoscope system
JPWO2016056459A1 (en) Light source device and method of operating light source device
US10149599B2 (en) Processing apparatus
JPWO2013154061A1 (en) Optical measuring apparatus and endoscope system
JPWO2018055933A1 (en) Measurement support apparatus, endoscope system, processor of endoscope system, and measurement support method
JP6738465B2 (en) Endoscope system
WO2016047262A1 (en) Optical measurement system
US20170055840A1 (en) Measurement probe and optical measurement system
WO2014045581A1 (en) Optical measurement device and probe system
US20160331216A1 (en) Endoscope device
US20220378284A1 (en) Endoscope light source device and light quantity adjusting method
WO2013005547A1 (en) Optical measurement device
US20210228065A1 (en) Medical control apparatus and medical observation system
JP7341145B2 (en) Device that images the skin
JP5763285B1 (en) Optical measuring device
US20210393118A1 (en) Light source apparatus for endoscope
WO2013133341A1 (en) Optical measuring device
US20160089032A1 (en) Probe assembly and end cover
JP6549021B2 (en) Endoscope system and operation method of measurement apparatus
JP2023020888A (en) Chromatic range sensor system
JP2012044349A (en) Imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15844553

Country of ref document: EP

Kind code of ref document: A1