WO2016045638A1 - Wireless access - Google Patents

Wireless access Download PDF

Info

Publication number
WO2016045638A1
WO2016045638A1 PCT/CN2015/090896 CN2015090896W WO2016045638A1 WO 2016045638 A1 WO2016045638 A1 WO 2016045638A1 CN 2015090896 W CN2015090896 W CN 2015090896W WO 2016045638 A1 WO2016045638 A1 WO 2016045638A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
cable
convergence
root node
access device
Prior art date
Application number
PCT/CN2015/090896
Other languages
French (fr)
Inventor
Zhe JI
Haitao Zhang
Guoxiang XU
Original Assignee
Hangzhou H3C Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou H3C Technologies Co., Ltd. filed Critical Hangzhou H3C Technologies Co., Ltd.
Publication of WO2016045638A1 publication Critical patent/WO2016045638A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • a wireless access device is an Access Point (AP) including a central processing unit, memory, broadband processing unit and transceiver all in the same device. These components may for example be provided on the same circuit board. We refer to this as an all-in-one structure.
  • Figure 1 is a schematic diagram illustrating structure of an access device in accordance with various examples of the present disclosure
  • FIG. 2 is a schematic diagram illustrating structure of a Radio Frequency (RF) module in figure 1 in accordance with various examples of the present disclosure
  • Figure 3 and figure 4 are schematic diagrams illustrating how the access device in figure 1 works
  • Figure 5 is a schematic diagram illustrating structure of another access device in accordance with various examples of the present disclosure.
  • Figure 6 and figure 7 are schematic diagrams illustrating how to implement the access device.
  • Figure 8 is a schematic diagram illustrating structure of a control apparatus in accordance with various examples of the present disclosure.
  • the present disclosure is described by referring mainly to example (s) thereof.
  • numerous specific details are set forth in order to provide a thorough understanding of the present disclosure. It will be readily apparent however, that the present disclosure may be practiced without limitation to these specific details. In other instances, some methods and structures have not been described in detail so as not to unnecessarily obscure the present disclosure.
  • the term “includes” means includes but not limited to, the term “including” means including but not limited to.
  • the term “based on” means based at least in part on.
  • the terms “a” and “an” are intended to denote at least one of a particular element.
  • a wireless local area network When a wireless local area network (WLAN) is to be deployed in a building including a plurality of small rooms, such as a dormitory or hotel etc., then a single access point (AP) may be provided in a corridor to serve the rooms in the corridor. However, this may result in poor signal quality in the rooms and a slow speed of network access.
  • Another approach is to provide an AP in each room, but this is expensive.
  • Still another approach is to deploy an AP in the corridor and extend it to each room using power splitters and radio frequency (RF) cables. However, this is relatively complicated to deploy, has relatively high cost and may provide limited bandwidth to each room.
  • RF radio frequency
  • a wireless access device which comprises a control apparatus and a remote apparatus including a central processing unit and a remote apparatus including a radio frequency module.
  • FIG. 1 is a schematic diagram illustrating structure of an access device in accordance with various examples of the present disclosure.
  • the access device 10 may include: a control apparatus 11 and a remote apparatus 12.
  • the control apparatus 11 and the remote apparatus 12 may be located at separate circuit boards.
  • the access device 10 may include one or multiple remote apparatuses 12.
  • the number of the remote apparatus 12 may be more than one.
  • the control apparatus 11 may include a CPU 111 and a convergence root node 112.
  • the control apparatus 11 may further include: a storage 113 and a peripheral interface 114, which may connect to the CPU 111.
  • the storage 113 may include a non-transitory storage, such as a Random Access Memory (RAM) .
  • RAM Random Access Memory
  • the remote apparatus 12 may include: an RF module 121 and an antenna 122.
  • the RF module 121 may include: a Base Band Processor (BBP) 121a and an RF transceiver 121b.
  • BBP Base Band Processor
  • the RF module 121 in the remote apparatus 12 may connect to the convergence root node 112 in the control apparatus 11 via a cable 13 and connect to the CPU 111 in the control apparatus 11 via the cable 13 and the convergence root node 112.
  • a convergence root node may be a part of the control apparatus and used to couple the control apparatus to the multiple remote apparatuses.
  • the convergence root node may be a multi-port hub or a switch.
  • the RF module 121 may couple to the convergence root node 112 via a wireless mode, such as Wireless Fidelity (Wifi) .
  • a wireless mode such as Wireless Fidelity (Wifi) .
  • the remote apparatus 12 may be deployed in a location, which may be close to the control apparatus 11 or may be deployed in a location, which may be far away from the control apparatus.
  • the multiple remote apparatuses 12 may be deployed and spatially distributed according to the scenario requirements.
  • the deployment location of the remote apparatus 12 in the access device 10 is not significantly constrained by the location of the control apparatus 11. Therefore, the remote apparatus 12 may be deployed in a suitable location to flexibly adapt to various scenarios.
  • the control apparatus 11 may be deployed in a passageway or corridor.
  • the access device 10 may include multiple remote apparatuses 12 and the multiple remote apparatuses may be respectively deployed in the multiple rooms.
  • the quality of the signal in the multiple rooms may be respectively guaranteed by the multiple remote apparatuses 12 in the access device 10. Therefore, in one example of the present disclosure, the quality of the signal in the multiple rooms may be ensured to be of a reasonably high quality.
  • the CPU 111 may be configured to manage and drive the RF module 121 in the remote apparatus 12. Accordingly, the RF module 121 may interact with the CPU 111 in a control plane and data plane.
  • control packets 30 may be transmitted between the CPU 111 and the RF module 121 via the cable 13 between the convergence root node 112 and the RF module 121.
  • the control packets 30 may include packets, which may be sent from the CPU 111 to the RF module 121 and used to configure the RF module 121.
  • the control packets 30 may further include packets, which may be sent from the RF module 121 to the CPU 111 to report a state of the RF module 121.
  • traffic packets 40 may be transmitted between the CPU 111 and the RF module 121 via the cable 13.
  • the traffic packets 40 may be various kinds of packets received or sent out by the RF module 121 via a wireless mode.
  • Figure 1 may give an example in which both the number of the RF module 121 and antenna 122 is one. However, in other examples of the present disclosure, the number of the RF module 121 and antenna 122 may be more than one.
  • FIG. 5 is a schematic diagram illustrating structure of another access device in accordance with various examples of the present disclosure.
  • the access device 50 may include: a control apparatus 51 and a remote apparatus 52.
  • the control apparatus 51 and remote apparatuses 52 may be installed on separate circuit boards, e.g. one circuit board for each control apparatus and each remote apparatus.
  • the control apparatus may have an external casing and each remote apparatus may have an external casing, so that each is a modular device which may be connected together to deploy the access device.
  • the access device 50 may include one or multiple remote apparatuses 52.
  • Figure 5 may describe an example in which the access device 50 may include multiple remote apparatuses 52.
  • the control apparatus 51 may include: a CPU 511 and a convergence root node 512.
  • the control apparatus 51 may further include: a storage 513 and a peripheral interface 514, which may connect to the CPU 511.
  • the storage 513 may include a non-transitory storage, such as a Random Access Memory (RAM) .
  • RAM Random Access Memory
  • the remote apparatus 52 may include multiple RF modules 521 and antennas 522, the number of which may be the same as that of the RF modules 521.
  • the structure of the RF modules 521 may be the same as or similar to that of the RF module 121 in figure 1.
  • the frequencies used by the multiple RF modules 521 may not be the same frequency.
  • the remote apparatus 52 may further include a convergence leaf node 523.
  • the convergence leaf node may be a part of a remote apparatus and used to couple the multiple RF modules in the remote apparatus to the control apparatus.
  • the convergence leaf node may be a multi-port hub or a switch.
  • the multiple RF modules 521 in the remote apparatus 52 may connect to the convergence leaf node 523.
  • the convergence leaf node 523 may connect to the convergence root node 512 in the control apparatus 51 via the cable 53. That is, the convergence leaf node 523 may be connected between the cable 53 and the multiple RF modules 521, so that the multiple RF modules 521 may connect to the CPU 511 via the cable 53 and the convergence root node 512.
  • the interaction between the CPU 511 and each RF module 521 in the remote apparatus 52 may be the same as or similar to that in access device 10 in figure 1. That is, the interaction between the CPU 511 and each RF module 521 in the remote apparatus 52 may be the same as or similar to the interaction shown in figure 3 and figure 4.
  • the type of an interface of the cable 13 may be the same as that of the convergence root node 112 and may be different from that of the RF module 121.
  • the types of the interfaces of the cable 13, the convergence root node 112 and RF module 121 may be the same.
  • the type of an interface of the cable 53 may be the same as that of the convergence root node 512 and may be different from the type of the interface of the RF module 521.
  • the types of the interfaces of the cable 53, convergence root node 512 and RF module 521 may be the same.
  • the access device 60 may include: a control apparatus 61 and at least one remote apparatus 62.
  • the control apparatus 61 and the remote apparatuses 62 may be located at different circuit boards.
  • a convergence root node may be an Ethernet switching chip 612.
  • the Ethernet switching chip 612 may connect to a CPU 611 and a cable 63.
  • the control apparatus 61 may further include a non-transitory storage 613, an RAM 614 and a peripheral interface 615, which may connect to the CPU 611.
  • the type of interface used by the RF module 621 to connect to the Ethernet switching chip 612 may be a Peripheral Component Interconnect Express (PCIE) interface.
  • PCIE Peripheral Component Interconnect Express
  • the type of the interface of the cable 63 may be an Ethernet interface, which may be the same as that of the Ethernet switching chip 612 and may be different from that of the RF module 621.
  • the remote apparatus 62 may further include a peripheral interface 623 and a packet transceiver 624.
  • the type of the interface of the peripheral interface 623 may be the same as that of the interface of the cable 63. That is, the type of the interface of the peripheral interface 623 may be an Ethernet interface.
  • the peripheral interface 623 may connect to the cable 63.
  • the packet transceiver 624 may be connected between the peripheral interface 623 and RF modules 621 and may be used to perform conversion between the Ethernet interface and PCIE interface.
  • the packet transceiver 624 may support two types of interfaces, i.e. the Ethernet interface and PCIE interface.
  • the packet transceiver 624 may perform the conversion between the two types of interfaces via a frame format conversion, encapsulation or de-capsulation mode.
  • a control packet 610a in an Ethernet frame format may be transmitted between the packet transceiver 624 and CPU 611 via the peripheral interface 623, cable 63 and Ethernet switching chip 612.
  • a control packet 610b in a PCIE frame format may be transmitted between the packet transceiver 624 and RF modules 621.
  • the control packet 610a in the Ethernet frame format and the control packet 610b in the PCIE frame format may be converted by the packet transceiver 624.
  • a traffic packet 620a in the Ethernet frame format may be transmitted between the packet transceiver 624 and CPU 611 via the peripheral interface 623, cable 63 and Ethernet switching chip 612.
  • a traffic packet 620b in the PCIE frame format may be transmitted between the packet transceiver 624 and RF modules 621.
  • the traffic packet 620a in the Ethernet frame format and the traffic packet 620b in the PCIE frame format may be converted in the packet transceiver 624.
  • the remote apparatus 62 may include multiple RF modules 621 and multiple antennas 622.
  • the peripheral interface 623 and packet transceiver 624 not only may be used to perform packet transmission and receiving and interface type conversion in the control plane and data plane, but also may execute the operation performed by the convergence leaf node. That is, the access device 60 shown in figure 6 may include the convergence leaf node.
  • the convergence leaf node may include the peripheral interface 623 and the packet transceiver 624.
  • the peripheral interface 623 and packet transceiver 624 may not execute the operation of the convergence leaf node. Since the type of interfaces of the cable 63 and Ethernet switching chip 612 may be different from the type of the interface of the RF module 621, the peripheral interface 623 and packet transceiver 624 may still be set in the remote apparatus 62.
  • a control apparatus 71 of an access device 70 may include a CPU 711.
  • a convergence root node of the control apparatus 71 may include a Universal Serial Bus (USB) hub 712.
  • the USB hub 712 may connect to the CPU 711 and a cable 73.
  • the control apparatus 71 may further include a non-transitory storage 713, RAM 714 and a peripheral interface 715, which may connect to the CPU 711.
  • the type of interface between the RF module 721 and USB hub 712 may be the USB interface matching the USB hub 712.
  • the type of the interface of the cable 73 may be the USB interface matching with the USB hub 712 and RF module 721.
  • the remote apparatus 72 show in figure 7 may include multiple RF modules 721 and multiple antennas 722.
  • the remote apparatus 72 may further include a convergence leaf node.
  • the convergence leaf node may be a USB hub 723 between the cable 73 and the multiple RF modules 721.
  • a control packet 710 in the USB format may be transmitted between the USB hub 723 and CPU 711 via the cable 73 and USB hub 712 and may be transmitted between the USB hub 723 and RF modules 721.
  • the format of the control packet 710 in the USB format may not be converted by the USB hub 723.
  • a traffic packet 720 in the USB format may be transmitted between the USB hub 723 and CPU 711 via the cable 73 and USB hub 712 and may be transmitted between the USB hub 723 and RF modules 721.
  • the format of the traffic packet 720 in the USB format may not be converted by the USB hub 723.
  • the remote apparatus 72 may include one RF module 721 and one antenna 722.
  • the remote apparatus 72 may not include the convergence leaf node including the USB hub 723.
  • Figure 8 is a schematic diagram illustrating structure of a control apparatus in accordance with various examples of the present disclosure.
  • the control apparatus may include: a CPU 801 and a non-transitory storage 802.
  • the non-transitory storage 802 may be configured to store machine readable instructions.
  • the CPU 801 may communicate with the non-transitory storage 802 to read and execute the machine readable instructions on the non-transitory storage 802, to

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Selective Calling Equipment (AREA)

Abstract

A wireless access device may be provided. The wireless access device may include: a control apparatus and at least one remote apparatus. The control apparatus may include: a CPU and a convergence root node. The remote apparatus may include: an RF module and an antenna. The control apparatus and remote apparatus are located at separate circuit boards and the RF module may couple to the convergence root node.

Description

WIRELESS ACCESS
This application claims the benefit of priority from Chinese Patent Application, No. 201410502181.8, entitled “Access Device” and filed on September 26, 2014, the entire content of which is hereby incorporated by reference.
BACKGROUND
One example of a wireless access device is an Access Point (AP) including a central processing unit, memory, broadband processing unit and transceiver all in the same device. These components may for example be provided on the same circuit board. We refer to this as an all-in-one structure. BRIEF DESCRIPTION OF THE DRAWING
Figure 1 is a schematic diagram illustrating structure of an access device in accordance with various examples of the present disclosure;
Figure 2 is a schematic diagram illustrating structure of a Radio Frequency (RF) module in figure 1 in accordance with various examples of the present disclosure;
Figure 3 and figure 4 are schematic diagrams illustrating how the access device in figure 1 works;
Figure 5 is a schematic diagram illustrating structure of another access device in accordance with various examples of the present disclosure; and
Figure 6 and figure 7 are schematic diagrams illustrating how to implement the access device; and
Figure 8 is a schematic diagram illustrating structure of a control apparatus in accordance with various examples of the present disclosure.
DETAILED DESCRIPTION
For simplicity and illustrative purposes, the present disclosure is described by referring mainly to example (s) thereof. In the following description, numerous  specific details are set forth in order to provide a thorough understanding of the present disclosure. It will be readily apparent however, that the present disclosure may be practiced without limitation to these specific details. In other instances, some methods and structures have not been described in detail so as not to unnecessarily obscure the present disclosure. As used throughout the present disclosure, the term “includes” means includes but not limited to, the term “including” means including but not limited to. The term “based on” means based at least in part on. In addition, the terms “a” and “an” are intended to denote at least one of a particular element.
When a wireless local area network (WLAN) is to be deployed in a building including a plurality of small rooms, such as a dormitory or hotel etc., then a single access point (AP) may be provided in a corridor to serve the rooms in the corridor. However, this may result in poor signal quality in the rooms and a slow speed of network access. Another approach is to provide an AP in each room, but this is expensive. Still another approach is to deploy an AP in the corridor and extend it to each room using power splitters and radio frequency (RF) cables. However, this is relatively complicated to deploy, has relatively high cost and may provide limited bandwidth to each room.
Accordingly the present disclosure proposes a wireless access device which comprises a control apparatus and a remote apparatus including a central processing unit and a remote apparatus including a radio frequency module.
Figure 1 is a schematic diagram illustrating structure of an access device in accordance with various examples of the present disclosure. As shown in figure 1, the access device 10 may include: a control apparatus 11 and a remote apparatus 12. The control apparatus 11 and the remote apparatus 12 may be located at separate circuit boards.
In an example of the present disclosure, the access device 10 may include one or multiple remote apparatuses 12. For example, in figure 1, the number of the remote apparatus 12 may be more than one.
The control apparatus 11 may include a CPU 111 and a convergence root node 112. The control apparatus 11 may further include: a storage 113 and a peripheral interface 114, which may connect to the CPU 111. The storage 113 may include a non-transitory storage, such as a Random Access Memory (RAM) .
The remote apparatus 12 may include: an RF module 121 and an antenna 122. As shown in figure 2, the RF module 121 may include: a Base Band Processor (BBP) 121a and an RF transceiver 121b.
The RF module 121 in the remote apparatus 12 may connect to the convergence root node 112 in the control apparatus 11 via a cable 13 and connect to the CPU 111 in the control apparatus 11 via the cable 13 and the convergence root node 112. A convergence root node may be a part of the control apparatus and used to couple the control apparatus to the multiple remote apparatuses. For instance, the convergence root node may be a multi-port hub or a switch.
In another example of the present disclosure, the RF module 121 may couple to the convergence root node 112 via a wireless mode, such as Wireless Fidelity (Wifi) .
Based on the above structure, the remote apparatus 12 may be deployed in a location, which may be close to the control apparatus 11 or may be deployed in a location, which may be far away from the control apparatus. When there is more than one remote apparatus 12, the multiple remote apparatuses 12 may be deployed and spatially distributed according to the scenario requirements.
In an example, the deployment location of the remote apparatus 12 in the access device 10 is not significantly constrained by the location of the control apparatus 11. Therefore, the remote apparatus 12 may be deployed in a suitable location to flexibly adapt to various scenarios.
For instance, in a scenario including multiple rooms, the control apparatus 11 may be deployed in a passageway or corridor. The access device 10 may include multiple remote apparatuses 12 and the multiple remote apparatuses may be respectively deployed in the multiple rooms. The quality of the signal in the multiple rooms may be respectively guaranteed by the multiple remote apparatuses 12 in the access device 10. Therefore, in one example of the present disclosure, the quality of the signal in the multiple rooms may be ensured to be of a reasonably high quality. With the technical solution of the present disclosure, it is not necessary for the user to deploy an all-in-one access device in each room in order to guarantee the quality of  the signal in the multiple rooms. Further, in some examples a reasonable quality of signal may be achieved with less cost hardware and greater ease of deployment.
The CPU 111 may be configured to manage and drive the RF module 121 in the remote apparatus 12. Accordingly, the RF module 121 may interact with the CPU 111 in a control plane and data plane.
In the control plane, referring to figure 3, control packets 30 may be transmitted between the CPU 111 and the RF module 121 via the cable 13 between the convergence root node 112 and the RF module 121. For instance, the control packets 30 may include packets, which may be sent from the CPU 111 to the RF module 121 and used to configure the RF module 121. The control packets 30 may further include packets, which may be sent from the RF module 121 to the CPU 111 to report a state of the RF module 121.
In the data plane, referring to figure 4, traffic packets 40 may be transmitted between the CPU 111 and the RF module 121 via the cable 13. For instance, the traffic packets 40 may be various kinds of packets received or sent out by the RF module 121 via a wireless mode.
Figure 1 may give an example in which both the number of the RF module 121 and antenna 122 is one. However, in other examples of the present disclosure, the number of the RF module 121 and antenna 122 may be more than one.
Figure 5 is a schematic diagram illustrating structure of another access device in accordance with various examples of the present disclosure. Referring to figure 5, the access device 50 may include: a control apparatus 51 and a remote apparatus 52. The control apparatus 51 and remote apparatuses 52 may be installed on separate circuit boards, e.g. one circuit board for each control apparatus and each remote apparatus. In an example, the control apparatus may have an external casing and each remote apparatus may have an external casing, so that each is a modular device which may be connected together to deploy the access device.
In an example of the present disclosure, the access device 50 may include one or multiple remote apparatuses 52. Figure 5 may describe an example in which the  access device 50 may include multiple remote apparatuses 52.
The control apparatus 51 may include: a CPU 511 and a convergence root node 512. The control apparatus 51 may further include: a storage 513 and a peripheral interface 514, which may connect to the CPU 511. The storage 513 may include a non-transitory storage, such as a Random Access Memory (RAM) .
The remote apparatus 52 may include multiple RF modules 521 and antennas 522, the number of which may be the same as that of the RF modules 521. The structure of the RF modules 521 may be the same as or similar to that of the RF module 121 in figure 1. The frequencies used by the multiple RF modules 521 may not be the same frequency.
The remote apparatus 52 may further include a convergence leaf node 523.
The convergence leaf node may be a part of a remote apparatus and used to couple the multiple RF modules in the remote apparatus to the control apparatus. For instance the convergence leaf node may be a multi-port hub or a switch.
The multiple RF modules 521 in the remote apparatus 52 may connect to the convergence leaf node 523. The convergence leaf node 523 may connect to the convergence root node 512 in the control apparatus 51 via the cable 53. That is, the convergence leaf node 523 may be connected between the cable 53 and the multiple RF modules 521, so that the multiple RF modules 521 may connect to the CPU 511 via the cable 53 and the convergence root node 512.
As for the access device 50 in figure 5, the interaction between the CPU 511 and each RF module 521 in the remote apparatus 52 may be the same as or similar to that in access device 10 in figure 1. That is, the interaction between the CPU 511 and each RF module 521 in the remote apparatus 52 may be the same as or similar to the interaction shown in figure 3 and figure 4.
In the access device 10 in figure 1, the type of an interface of the cable 13 may be the same as that of the convergence root node 112 and may be different from that of the RF module 121. Alternatively, the types of the interfaces of the cable 13, the convergence root node 112 and RF module 121 may be the same. In the access  device 50 in figure 5, the type of an interface of the cable 53 may be the same as that of the convergence root node 512 and may be different from the type of the interface of the RF module 521. Alternatively, the types of the interfaces of the cable 53, convergence root node 512 and RF module 521 may be the same.
Figures 6 and 7 may be described hereinafter to describe the above scenarios.
Referring to figure 6, the access device 60 may include: a control apparatus 61 and at least one remote apparatus 62. The control apparatus 61 and the remote apparatuses 62 may be located at different circuit boards.
In the control apparatus 61 in the access device 60, a convergence root node may be an Ethernet switching chip 612. The Ethernet switching chip 612 may connect to a CPU 611 and a cable 63. The control apparatus 61 may further include a non-transitory storage 613, an RAM 614 and a peripheral interface 615, which may connect to the CPU 611.
In each remote apparatus 62 in the access device 60, the type of interface used by the RF module 621 to connect to the Ethernet switching chip 612 may be a Peripheral Component Interconnect Express (PCIE) interface. The type of the interface of the cable 63 may be an Ethernet interface, which may be the same as that of the Ethernet switching chip 612 and may be different from that of the RF module 621.
Besides the RF modules 621 and the antennas 622, the remote apparatus 62 may further include a peripheral interface 623 and a packet transceiver 624. The type of the interface of the peripheral interface 623 may be the same as that of the interface of the cable 63. That is, the type of the interface of the peripheral interface 623 may be an Ethernet interface. The peripheral interface 623 may connect to the cable 63. The packet transceiver 624 may be connected between the peripheral interface 623 and RF modules 621 and may be used to perform conversion between the Ethernet interface and PCIE interface.
For instance, the packet transceiver 624 may support two types of interfaces, i.e. the Ethernet interface and PCIE interface. The packet transceiver 624 may perform  the conversion between the two types of interfaces via a frame format conversion, encapsulation or de-capsulation mode.
As for the control plane, a control packet 610a in an Ethernet frame format may be transmitted between the packet transceiver 624 and CPU 611 via the peripheral interface 623, cable 63 and Ethernet switching chip 612. A control packet 610b in a PCIE frame format may be transmitted between the packet transceiver 624 and RF modules 621. The control packet 610a in the Ethernet frame format and the control packet 610b in the PCIE frame format may be converted by the packet transceiver 624.
As for the data plane, a traffic packet 620a in the Ethernet frame format may be transmitted between the packet transceiver 624 and CPU 611 via the peripheral interface 623, cable 63 and Ethernet switching chip 612. A traffic packet 620b in the PCIE frame format may be transmitted between the packet transceiver 624 and RF modules 621. The traffic packet 620a in the Ethernet frame format and the traffic packet 620b in the PCIE frame format may be converted in the packet transceiver 624.
In figure 6, the remote apparatus 62 may include multiple RF modules 621 and multiple antennas 622. The peripheral interface 623 and packet transceiver 624 not only may be used to perform packet transmission and receiving and interface type conversion in the control plane and data plane, but also may execute the operation performed by the convergence leaf node. That is, the access device 60 shown in figure 6 may include the convergence leaf node. The convergence leaf node may include the peripheral interface 623 and the packet transceiver 624.
If the remote apparatus 62 includes one RF module 621 and one antenna 622, the peripheral interface 623 and packet transceiver 624 may not execute the operation of the convergence leaf node. Since the type of interfaces of the cable 63 and Ethernet switching chip 612 may be different from the type of the interface of the RF module 621, the peripheral interface 623 and packet transceiver 624 may still be set in the remote apparatus 62.
Referring to figure 7, a control apparatus 71 of an access device 70 may include a CPU 711. A convergence root node of the control apparatus 71 may include  a Universal Serial Bus (USB) hub 712. The USB hub 712 may connect to the CPU 711 and a cable 73. The control apparatus 71 may further include a non-transitory storage 713, RAM 714 and a peripheral interface 715, which may connect to the CPU 711. In a remote apparatus 72 of the access device 70, the type of interface between the RF module 721 and USB hub 712 may be the USB interface matching the USB hub 712. The type of the interface of the cable 73 may be the USB interface matching with the USB hub 712 and RF module 721.
The remote apparatus 72 show in figure 7 may include multiple RF modules 721 and multiple antennas 722. The remote apparatus 72 may further include a convergence leaf node. The convergence leaf node may be a USB hub 723 between the cable 73 and the multiple RF modules 721.
As for the control plane, a control packet 710 in the USB format may be transmitted between the USB hub 723 and CPU 711 via the cable 73 and USB hub 712 and may be transmitted between the USB hub 723 and RF modules 721. The format of the control packet 710 in the USB format may not be converted by the USB hub 723.
As for the data plane, a traffic packet 720 in the USB format may be transmitted between the USB hub 723 and CPU 711 via the cable 73 and USB hub 712 and may be transmitted between the USB hub 723 and RF modules 721. The format of the traffic packet 720 in the USB format may not be converted by the USB hub 723.
The remote apparatus 72 may include one RF module 721 and one antenna 722. The remote apparatus 72 may not include the convergence leaf node including the USB hub 723.
Figure 8 is a schematic diagram illustrating structure of a control apparatus in accordance with various examples of the present disclosure.
The control apparatus may include: a CPU 801 and a non-transitory storage 802.
The non-transitory storage 802 may be configured to store machine readable  instructions.
The CPU 801 may communicate with the non-transitory storage 802 to read and execute the machine readable instructions on the non-transitory storage 802, to
send a first control packet to or receive a second control packet from an RF module on at least one remote apparatus, which may be located on a separate circuit board, via a cable between the control apparatus and the at least one remote apparatus;
send a first traffic packet to or receive a second traffic packet from the RF module on the at least one remote apparatus via the cable.

Claims (15)

  1. A wireless access device, comprising: a control apparatus and at least one remote apparatus; wherein
    the control apparatus comprises: a Central Processing Unit (CPU) and a convergence root node;
    the remote apparatus comprises: a Radio Frequency (RF) module and an antenna;
    the control apparatus and remote apparatus are located on separate circuit boards and the RF module is coupled to the convergence root node.
  2. The wireless access device according to claim 1, wherein
    the CPU is to send a first control packet to the RF module via a cable between the convergence root node and the RF module;
    the RF module is to send a second control packet to the CPU via the cable between the convergence root node and the RF module.
  3. The wireless access device according to claim 1, wherein
    the CPU is to send a first traffic packet to the RF module via a cable between the convergence root node and the RF module; and
    the RF module is to send a second traffic packet to the CPU via the cable between the convergence root node and the RF module.
  4. The wireless access device according to claim 1, wherein the RF module comprises: a Base Band Processor (BBP) and an RF transceiver.
  5. The wireless access device according to claim 1, wherein the RF module is connected to the convergence root node via a cable;
    wherein the remote apparatus includes multiple RF modules and a convergence leaf node between the cable and the multiple RF modules.
  6. The wireless access device according to claim 1, wherein frequencies of the multiple RF modules are not a same frequency.
  7. The wireless access device according to claim 1, wherein the RF module is connected to the convergence root node via a cable;
    type of an interface of the cable is same as type of an interface of the convergence root node and different from type of an interface of the RF module;
    the remote apparatus further comprises: a peripheral interface and a packet transceiver;
    type of an interface of the peripheral interface is same as the type of the interface of the cable;
    the peripheral interface is to connect to the cable;
    the packet transceiver is to connect to the peripheral interface and the RF module and is to convert type of an interface.
  8. The wireless access device according to claim 7, wherein the packet transceiver receives a control packet transmitted between the CPU and the RF module via the peripheral interface and the cable.
  9. The wireless access device according to claim 7, wherein the packet transceiver is to receive a traffic packet transmitted between the CPU and RF module via the peripheral interface and cable.
  10. The wireless access device according to claim 7, wherein when the remote apparatus comprises multiple RF modules, the remote apparatus comprises: a convergence leaf node between the cable and the multiple RF modules and the convergence leaf node comprises: the peripheral interface and the packet transceiver.
  11. The wireless access device according to claim 1, wherein the RF module is connected to the convergence root node via a cable;
    types of interfaces of the cable, convergence root node and RF module are same.
  12. The wireless access device according to claim 11, wherein when the remote apparatus comprises multiple RF modules, the remote apparatus further comprises: a convergence leaf node between the cable and the multiple RF modules.
  13. A control apparatus, comprising: a Central Processing Unit (CPU) and a convergence root node;
    wherein the convergence root node has a port that is to connect to a Radio Frequency (RF) module on at least one remote apparatus which is located on a separate circuit board;
    the CPU is to send a first control packet to or receive a second control packet from the RF module on the at least one remote apparatus via a cable between the convergence root node and the at least one remote apparatus;
    the CPU is to send a first traffic packet to or receive a second traffic packet from the RF module on the at least one remote apparatus via the cable between the convergence root node and the at least one remote apparatus.
  14. A remote apparatus, comprising: a Radio Frequency (RF) module and an antenna;
    the RF module has a port that is to connect to a convergence root node on a control apparatus, which is located on a separate circuit board;
    the RF module is to send a first control packet to or receive a second control packet from a Central Processing Unit (CPU) on the control apparatus via a cable between the RF module and the convergence root node on the control apparatus; and
    the RF module is to send a first traffic packet to or receive a second traffic packet from the CPU on the control apparatus via the cable between the RF module and the convergence root node on the control apparatus.
  15. The remote apparatus according to claim 14, wherein the remote apparatus includes multiple RF modules and a convergence leaf node between the cable and the multiple RF modules.
PCT/CN2015/090896 2014-09-26 2015-09-28 Wireless access WO2016045638A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410502181.8A CN105517203A (en) 2014-09-26 2014-09-26 Access device
CN201410502181.8 2014-09-26

Publications (1)

Publication Number Publication Date
WO2016045638A1 true WO2016045638A1 (en) 2016-03-31

Family

ID=55580343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090896 WO2016045638A1 (en) 2014-09-26 2015-09-28 Wireless access

Country Status (2)

Country Link
CN (1) CN105517203A (en)
WO (1) WO2016045638A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101425947A (en) * 2007-10-30 2009-05-06 英飞凌科技股份公司 System and method for providing a versatile RF and analog front-end for wireless and wired networks
US7706805B2 (en) * 2006-08-31 2010-04-27 Cisco Technology, Inc. Delivery of time-sensitive data in a wireless network
CN101909346A (en) * 2010-07-29 2010-12-08 中国电信股份有限公司 DHCP (Dynamic Host Configuration Protocol) broadcasting method and wireless access controller
CN103517446A (en) * 2012-06-20 2014-01-15 中兴通讯股份有限公司 Access controller (AC), wireless local area network system and wireless access method based on system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1486035A (en) * 2002-09-28 2004-03-31 深圳市中兴通讯股份有限公司 Wirless accessing device
CN101159933B (en) * 2005-05-19 2010-09-08 华为技术有限公司 Split type base station system and networking method and base band unit thereof
CN102665237B (en) * 2012-04-24 2014-09-10 北京邮电大学 Simulative Ir interface protocol conformance testing device and interoperability testing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7706805B2 (en) * 2006-08-31 2010-04-27 Cisco Technology, Inc. Delivery of time-sensitive data in a wireless network
CN101425947A (en) * 2007-10-30 2009-05-06 英飞凌科技股份公司 System and method for providing a versatile RF and analog front-end for wireless and wired networks
CN101909346A (en) * 2010-07-29 2010-12-08 中国电信股份有限公司 DHCP (Dynamic Host Configuration Protocol) broadcasting method and wireless access controller
CN103517446A (en) * 2012-06-20 2014-01-15 中兴通讯股份有限公司 Access controller (AC), wireless local area network system and wireless access method based on system

Also Published As

Publication number Publication date
CN105517203A (en) 2016-04-20

Similar Documents

Publication Publication Date Title
ES2964760T3 (en) Transition method and device for enabling data communication on a wireless network
US9178635B2 (en) Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US20180278523A1 (en) Gigabit Router
US9961563B2 (en) Small cell base station system, and related devices and data processing methods
US10178012B2 (en) Systems and methods for a sounding frame in an IEEE 802.11ax compliant network
WO2022031588A1 (en) Universal digital card (udc) for use as digital donor card or digital distribution card
US10693243B2 (en) Single band dual concurrent network device
CN104125597A (en) System and method for realizing integration testing of wireless throughput of network devices
US20240121038A1 (en) Carrier configuration method and system for distributed antenna system, processing device, and chip
CN106330324B (en) Control method and device
US10734738B2 (en) Single band dual concurrent network device
US11388091B2 (en) Small form factor pluggable unit with wireless capabilities and methods, systems and devices utilizing same
WO2016177415A1 (en) A wireless sfp module
WO2016045638A1 (en) Wireless access
US9799942B2 (en) Multi-band active antenna
EP3868172B1 (en) Docking stations to wirelessly access edge compute resources
EP2858168A1 (en) Microwave communication device and microwave communication system
KR101740932B1 (en) Wireless Communication System for Basement Station Baseband Signal Processing based on Multi-core DSP of DU/RU Separated Type Structure
CN105703983A (en) Communication system
WO2016066139A1 (en) Wireless access
CN210166685U (en) All-in-one machine based on pluggable router
WO2014121835A1 (en) Maintenance connectivity in advanced telecommunications computing architecture system
WO2016021226A1 (en) Wireless supplementary connection device
Joakim CloudMAC Frame Prioritization: QoS and routing of IEEE802. 11 frames in a Opendaylight controlled network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15845034

Country of ref document: EP

Kind code of ref document: A1