WO2016045618A2 - 自动行走设备及其路径规划方法 - Google Patents
自动行走设备及其路径规划方法 Download PDFInfo
- Publication number
- WO2016045618A2 WO2016045618A2 PCT/CN2015/090755 CN2015090755W WO2016045618A2 WO 2016045618 A2 WO2016045618 A2 WO 2016045618A2 CN 2015090755 W CN2015090755 W CN 2015090755W WO 2016045618 A2 WO2016045618 A2 WO 2016045618A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sub
- area
- path
- walking
- boundary
- Prior art date
Links
Images
Definitions
- the invention relates to a path planning method for planning a walking path of an automatic walking device.
- the invention also relates to an automatic walking device that performs the above path planning method.
- the automatic walking equipment can realize automatic work without manual operation, such as automatic lawn mower or automatic vacuum cleaner, which liberates the user from daily work such as mowing or dust removal, and brings great convenience to the user.
- the existing automatic walking equipment generally walks and works in a working area in a random manner.
- the walking manner of the path makes the automatic walking equipment rarely appear in a certain area in the working area, or often appears in a certain area.
- the quality of work in different areas of the work area is different. If the same work quality is required, it takes longer working time. Therefore, the work speed of such an automatic walking equipment is low.
- a path planning method capable of traversing the entire working area and having no overlapping of the walking paths, and an automatic walking device for executing the path planning method are proposed.
- the invention provides a path planning method capable of improving the working efficiency of an automatic walking device.
- the technical solution of the present invention is: a path planning method for an automatic walking device, the path planning method planning a walking path of an automatic walking device in a working area, the path planning method comprising: a) storing characterization The boundary information of the boundary of the work area; b) planning the travel path of the automatic walking device based on the boundary information, and the automatic walking device walking along the walking path traverses the area defined by the boundary information.
- step b further comprises the following steps:
- the set of the connection lines is a minimum spanning tree.
- each of the connecting lines is assigned a weight according to the distance from the center point of the connecting line to the boundary.
- each of the connecting lines is first weighted according to the length of the boundary parallel to the connecting line, and then each of the connecting lines is assigned a weight according to the distance from the center point to the boundary of the connecting line.
- the working head of the automatic walking device has a working width, and in step b1), the width of the sub-region is related to the working width of the working head.
- the width of the sub-area is 1-2 times the working width of the working head of the automatic walking device.
- the sub-regions are square.
- each sub-area has four adjacent sub-areas of upper, lower, left and right.
- the present invention also provides an automatic walking device for performing the above path planning method, comprising: a working head, executing preset working content; a storage module storing boundary information representing a boundary of the working area; a path planning module, planning an automatic walking device
- the walking path, the autonomous walking device walking along the walking path traverses the area defined by the boundary information.
- the automatic walking device further includes: a sub-area dividing module, receiving boundary information transmitted by the storage module, sub-area dividing the area defined by the boundary information, and generating a plurality of sub-areas; the main control module receiving the sub-area dividing module Information, confirming the adjacent sub-areas of each sub-area and the center point of each sub-area, the center point of the sub-area and the center point of its adjacent sub-area may communicate with each other through a connecting line, and generate a connecting line connecting all the central points
- the path planning module receives the information transmitted by the main control module, and plans a walking path of the automatic walking device according to the set of the connecting lines, and the walking paths have no overlap.
- the set of the connection lines is a minimum spanning tree.
- the main control module further comprises a weight assignment component, the weight assignment component assigning a weight to each connection line.
- the weight distribution component assigns a weight to the connection line according to the distance from the center point of the connection line to the boundary.
- the weight assigning component first assigns a weight to each connecting line according to the length of the boundary parallel to the connecting line, and then assigns a weight to each connecting line according to the distance from the center point to the boundary connected to the connecting line.
- the working head has a working width
- the width of the sub-area is related to the working width of the working head.
- the width of the sub-area is 1-2 times the working width of the working head.
- the sub-regions are square.
- the main control module confirms that each sub-area has four adjacent sub-areas of up, down, left and right.
- the present invention also provides a path planning method capable of improving the working efficiency of the automatic walking device, the path planning method planning a walking path of the automatic walking device in the working area, comprising: a) storing a map of the working area, The map includes boundary information characterizing a boundary of the work area; b) dividing the work area into a plurality of sub-areas based on the map; c) generating a travel path that passes through all of the sub-areas.
- the path planning method and the automatic walking device of the invention can enable the automatic walking device to achieve full coverage in the entire working area, and the walking paths have no overlap, thereby improving the working efficiency of the automatic walking device in the working area.
- Figure 1 is a schematic illustration of the automated working system of the present invention.
- FIG. 2 is a circuit block diagram of the autonomous vehicle shown in FIG. 1.
- FIG. 3 is a schematic diagram showing the result of sub-area division of the area defined by the boundary information by the automatic walking device.
- FIG. 4 is a schematic diagram of a first preferred embodiment of an automatic walking device generating a minimum spanning tree.
- FIG. 5 is a schematic diagram of a second preferred embodiment of an automatic walking device generating a minimum spanning tree.
- Figure 6 is a walking path of the autonomous walking device according to a minimum spanning tree plan.
- Figure 7 is a flow chart showing the operation of the automatic walking device.
- the automatic working system shown in Fig. 1 comprises a working area 2, a boundary 3 defining a working area 2, and an autonomous walking device 1 located in the working area 2.
- the boundary 3 is a peripheral contour of the preset working area 2, and may be a boundary formed by a natural marker, such as a boundary line between grass and non-grass, or a boundary formed by an artificial logo, such as a boundary line disposed on the ground. It can also be any given virtual boundary, such as the boundary of a particular small area within a large work area.
- the automatic walking device 1 includes a working head, a storage module 5, a sub-area dividing module 7, a main control module 9, and a path planning module 11.
- the work head performs the preset work content. For example, when the automatic walking device 1 is a lawn mower, the working head is a cutting component, and the mowing work is performed; when the automatic walking device 1 is a vacuum cleaner, the working head is a vacuuming member, and the vacuuming work is performed.
- the storage module 5 stores boundary information indicating the boundary 3 of the working area 2; the sub-area dividing module 7 receives the boundary information transmitted by the storage module 5, divides the area defined by the boundary information into sub-areas 13, and generates a plurality of sub-areas 13, The adjacent sub-areas 13 of each sub-area 13 and the center point 15 of each sub-area 13 are confirmed.
- the center points 15 of the adjacent sub-areas 13 can be connected to each other through the connecting line 17; the main control module 9 receives the sub-area dividing module 7
- the information is generated to generate a set of connecting lines 17 connecting all the central points 15; the path planning module 11 plans a walking path of the automatic walking device, and the automatic walking device walking along the walking path traverses the area defined by the boundary information; specifically, the path
- the planning module 11 receives the information transmitted by the main control module 9, and plans the walking path 19 of the automatic walking device 1 according to the set of the connecting lines 17, the walking paths 19 are not overlapped, and the automatic walking device 1 walking along the traveling path 19 traverses the entire working area 2.
- the traveling path 19 is a trajectory formed by the central axis of the working head when the automatic traveling apparatus 1 travels in accordance with the traveling path 19.
- the absence of overlap of the travel path 19 means that there is no overlap or intersection between the travel paths 19.
- the storage module 5 stores a map of the work area, the map includes boundary information characterizing the boundary of the work area 2, preferably coordinate information, which facilitates the sub-area division module 7 to identify the area defined by the boundary information, thereby working based on the map
- the area is divided into sub-areas 13.
- the source of the coordinate information may be the coordinate information of the boundary 3 that has been obtained by other devices, or may be obtained by the position sensor when the autonomous walking device 1 walks along the boundary 3, or may be transmitted according to other devices.
- the picture information is analyzed to obtain the coordinate information of the boundary 3.
- the sub-area dividing module 7 receives the boundary information transmitted by the storage module 5, divides the sub-area 13 by the area defined by the boundary information, generates a plurality of sub-areas 13, and confirms the center point 15 of each sub-area 13.
- Sub-region 13 can be of any regular shape.
- the width of the sub-region 13 is related to the working width of the working head.
- the working width of the working head is the working size in the vertical direction with the running direction of the automatic walking device 1 when the working head is in operation.
- the working width of the working head is the cutting diameter of the working head; when the automatic walking device 1 is a vacuum cleaner,
- the working width of the working head is the length of the suction port.
- the sub-region 13 is a square having the same length and width.
- the result of sub-area 13 division of the area defined by the boundary information is as shown in FIG.
- the side length of the square that is, the length of the single connecting line 17, is 1 to 2 times the working width of the working head of the automatic traveling apparatus 1.
- each sub-region 13 has 8 adjacent squares in physical position, and logically, the sub-region dividing module 7 can consider that each sub-region 13 has only upper and lower,
- the four adjacent sub-regions 13 of the left and right sides may also be considered to have eight adjacent sub-regions 13 of up, down, left, right, upper left, upper right, lower left, and lower right.
- the sub-area dividing module 7 logically confirms the adjacent sub-areas 13 of each sub-area 13 such that only the center points 15 of the logically adjacent sub-areas 13 can communicate with each other through the connecting line 17, and the logically non-adjacent sub-
- the center points 15 of the regions 13 may not communicate with each other through the connecting wires 17, and even if they are adjacent in physical position, the center points 15 thereof may not communicate with each other through the connecting wires 17.
- the sub-region 13 is other special shapes such as a triangle
- the sub-regions 13 adjacent to each other in the physical position are any other number, such as 12, 6, etc., at this time, logically
- the adjacent sub-area 13 can be arbitrarily set according to the demand of the walking angle of the autonomous traveling apparatus 1.
- the main control module 9 receives the information transmitted by the sub-area dividing module 7 and generates a set of connecting lines 17 that connect all the center points 15.
- the set of connection lines 17 may be a minimum spanning tree or a traveler path.
- the minimum spanning tree means that all the center points 15 in the figure are connected to each other through a minimum of connecting lines 17.
- the traveling salesman path refers to the shortest path that is traversed once per center point 15 and finally returns to the starting point.
- the main control module 9 further includes a weight assignment component 10.
- the weight assignment component 10 functions to assign weights to each of the connection lines 17 during the generation of the minimum spanning tree and the traveling salesman path. It should be pointed out here that the method of assigning weights is different, and the shape of the minimum spanning tree or traveler path obtained is different. Here, the method of generating the "octopus"-shaped minimum spanning tree and the "fishbone"-shaped minimum spanning tree is typically taken as an example to introduce two methods of weight distribution.
- the weight assigning component 10 weights the connecting lines 17 connecting the two center points 15 according to the distance from the center point 15 to the boundary 3. Then, the main control module 9 determines that the most central center point 15 in the area defined by the boundary information is the origin, and the connection line 17 that finds the smallest weight is connected to the other center point 15 until all the center points 15 are connected, thereby obtaining the minimum spanning tree. When the weights of the plurality of connecting lines 17 are the same, the connecting line 17 is selected in accordance with a preset rule. When it is found that a connection line 17 has connected a certain center point 15 to the origin, the other weights are discarded. Connection line 17 to avoid the appearance of loops. According to this rule, the minimum spanning tree connecting all the center points 15 in Fig. 3 is as shown in Fig. 4.
- the weight assigning unit 10 assigns a weight to each of the connecting lines 17 in accordance with the length of the boundary 3 parallel to the connecting line 17. Subsequently, the main control module 9 selects the connection line 17 which is smaller in weight and which is perpendicular to the longitudinal direction of the boundary 3. The weight distribution component 10 then assigns a weight to the connection line 17 parallel to the length direction of the boundary 3 in accordance with the second method.
- the second weight distribution method is to assign weights according to the distance from the center point 15 to the boundary 3 to which the connection line 17 is connected. Thereby, the main control module 9 selects the connecting line 17 which is far from the boundary 3 among the connecting lines 17 which are parallel to the longitudinal direction of the boundary 3. Finally, a minimum spanning tree as shown in FIG. 5 is generated.
- the minimum spanning tree can also be generated by the Kruskell algorithm or the Prim algorithm.
- the method of constructing a path of approximate optimal solution from the distance matrix can be solved by the path construction method, or a feasible way can be given by the way improvement method, and then improved, until The method can not be improved, and the starting method can be generated by the synthetic heuristic method first, and then the method of seeking the best solution can be solved by using the path improvement method.
- the path planning module 11 receives the information of the minimum spanning tree transmitted by the main control module 9, and plans the walking path 19 of the automatic walking device 1 along the boundary 3 of the minimum spanning tree, and the traveling path 19 passes through all the sub-areas.
- the planning results are shown in Figure 6.
- the length of the side of the square is preferably 1 to 2 of the working width of the working head of the autonomous traveling apparatus 1. Times. More preferably, the side length of the square is preferably 1.5 times the working width of the working head of the automatic walking apparatus 1.
- This design enables the automatic walking device 1 to walk and work according to the path shown in FIG. 6, and the area covered by the working head has a partial redundancy design only in the common area of two adjacent paths, ensuring that the working head can be entirely Work area 2 is fully covered without causing excessive rework on the same area.
- each of the regions having the spacing L is planned to have two mutual The sub-travel paths 19a and 19b are parallel and traveling in opposite directions, and therefore the sum of the widths of the working heads of the autonomous traveling apparatus 1 traveling along the two sub-traveling paths 19a and 19b is 2A.
- L 1.5A and 1.5A ⁇ 2A, so the autonomous walking apparatus 1 traveling along the two sub-traveling paths 19a and 19b covers the entire sub-area 13. Since the autonomous walking apparatus 1 can travel along the sub-traveling paths 19a and 19b to cover the sub-area 13, the autonomous walking apparatus 1 walks along the traveling path 19, and coverage of the entire working area can be achieved.
- step S0 Initializing the autonomous walking device 1.
- step S2 acquiring boundary information of the work area 2 to which the automatic walking device 1 is to be operated.
- the manner of obtaining may be that the coordinate information of the boundary 3 that has been obtained is transmitted by another device, or may be obtained by the position sensor when the autonomous walking device 1 walks one circle along the boundary 3, or may be a picture transmitted according to other devices.
- the information is analyzed to obtain the coordinate information of the boundary 3.
- the subsequent step is based on the boundary information to plan the walking path of the automatic walking device, and the automatic walking device walking along the walking path traverses the region defined by the boundary information, as follows.
- sub-area 13 is divided on the area defined by the boundary information, and a plurality of sub-areas 13 are generated.
- the sub-region 13 may have any regular shape, and preferably, the sub-region 13 is a square having the same length and width. More preferably, the width of the sub-area 13 is related to the working width of the working head of the autonomous vehicle 1. Most preferably, the width of the sub-area 13 is one to two times the working width of the working head of the autonomous vehicle 1, with 1.5 times being a preferred solution.
- step S6 the adjacent sub-areas 13 of each sub-area 13 and the center point 15 of each sub-area 13 are determined.
- the significance of determining the adjacent sub-regions 13 is that the center points 15 of the adjacent sub-regions 13 can communicate with each other through the connecting line 17, and the center points 15 of the non-adjacent sub-regions 13 cannot communicate with each other through the connecting line 17.
- each sub-region 13 has eight adjacent sub-regions 13 at physical positions, but logically, each sub-region 13 can be considered to have only upper, lower, and left
- the right four adjacent sub-regions 13 may also be considered as having eight adjacent sub-regions 13 of up, down, left, right, upper left, upper right, lower left, and lower right.
- the connecting line 17 of the center point 15 of the communicating sub-region 13 is a horizontal straight line, and the traveling path 19 based thereon is also horizontal and vertical.
- step S8 according to the result of step S6, a set of connection lines 17 connecting all the center points 15 is generated.
- the set of connection lines 17 may be a minimum spanning tree or a traveler path.
- the specific generation method refer to the section explaining the structure of the automatic traveling apparatus 1 as described above.
- step S10 the traveling path 19 of the automatic traveling device 1 is planned according to the set of the connecting lines 17, and the traveling path 19 is not overlapped, and the automatic walking device 1 traveling along the traveling path 19 traverses the area defined by the boundary information.
- the set of connection lines 17 is the minimum spanning tree
- the travel path 19 is the path of the envelope minimum spanning tree.
- the walking path 19 is a traveling salesman path.
Landscapes
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Manipulator (AREA)
- Harvester Elements (AREA)
Abstract
本发明提供一种路径规划方法及执行该路径规划方法的自动行走设备。所述路径规划方法根据自动行走设备的工作区域的边界信息规划自动行走设备在工作区域内的行走路径,所述路径规划方法包括:a)存储所述工作区域的边界信息;b)对由边界信息限定的区域进行子区域划分,生成若干个子区域;c)确认每个子区域的相邻子区域及每个子区域的中心点,子区域的中心点与其相邻子区域的中心点可以通过连接线相互连通;d)生成将所有中心点连通的连接线的集合;e)根据所述连接线的集合规划自动行走设备的行走路径,所述行走路径无重叠,沿所述路径行走的自动行走设备遍历边界信息限定的区域。如此能够提高自动行走设备的工作效率。
Description
本发明涉及一种对自动行走设备的行走路径进行规划的路径规划方法。
本发明还涉及一种执行上述路径规划方法的自动行走设备。
自动行走设备无需人工操作便可以实现自动工作,比如自动割草机或自动吸尘器,实现了将用户从割草或清除灰尘等日常劳作中解放出来,给用户带来了极大的便利。
现有的自动行走设备一般是按照随机的方式在工作区域内行走并工作,此种路径行走方式使得自动行走设备在工作区域内的某一个区域极少出现,或在某一个区域内经常出现,导致工作区域内各区域的工作质量不同,若要达到相同的工作质量,需要更长的工作时间,因此,此种自动行走设备的工作效率低。为提高自动行走设备的工作效率,需提出一种能使自动行走设备遍历整个工作区域且行走路径无重叠的路径规划方法,及执行该路径规划方法的自动行走设备。
发明内容
本发明提供一种能够提升自动行走设备的工作效率的路径规划方法。
为实现上述目的,本发明的技术方案是:一种自动行走设备的路径规划方法,所述路径规划方法规划自动行走设备在工作区域内的行走路径,所述路径规划方法包括:a)存储表征所述工作区域的边界的边界信息;b)基于所述边界信息规划自动行走设备的行走路径,沿所述行走路径行走的自动行走设备遍历边界信息限定的区域。
优选的,步骤b进一步包括以下步骤:
b1)划分由边界信息限定的区域为若干个子区域;
b2)确认每个子区域的中心点,相邻的两个子区域的中心点可以通过连接线相互连通;
b3)生成将所有中心点连通的连接线的集合;
b4)根据所述连接线的集合规划自动行走设备的行走路径,所述行走路径无重叠。
优选的,所述连接线的集合为最小生成树。
优选的,根据连接线连接的中心点至边界的距离为每条连接线分配权重。
优选的,先根据与连接线平行的边界的长度对每条连接线分配权重,然后根据与该连接线连接的中心点至边界的距离对每条连接线分配权重。
优选的,自动行走设备的工作头具有工作宽度,步骤b1)中,所述子区域的宽度与工作头的工作宽度相关。
优选的,所述子区域的宽度是自动行走设备的工作头的工作宽度的1~2倍。
优选的,所述子区域为正方形。
优选的,步骤b2)中,确认每个子区域具有上、下、左、右四个相邻子区域。
本发明还提供一种执行上述路径规划方法的自动行走设备,包括:工作头,执行预设工作内容;存储模块,存储表征所述工作区域的边界的边界信息;路径规划模块,规划自动行走设备的行走路径,沿所述行走路径行走的自动行走设备遍历边界信息限定的区域。
优选的,自动行走设备还包括:子区域划分模块,接收存储模块传递的边界信息,对由边界信息限定的区域进行子区域划分,生成若干个子区域;主控模块,接收子区域划分模块传递的信息,确认每个子区域的相邻子区域及每个子区域的中心点,子区域的中心点与其相邻子区域的中心点可以通过连接线相互连通,并生成将所有中心点连通的连接线的集合;所述路径规划模块接收主控模块传递的信息,根据所述连接线的集合规划自动行走设备的行走路径,所述行走路径无重叠。
优选的,所述连接线的集合为最小生成树。
优选的,主控模块进一步包括权重分配组件,所述权重分配组件为每一条连接线分配权重。
优选的,权重分配组件根据连接线连接的中心点至边界的距离对该连接线分配权重。
优选的,权重分配组件先根据与连接线平行的边界的长度对每条连接线分配权重,然后根据与该连接线连接的中心点至边界的距离对每条连接线分配权重。
优选的,所述工作头具有工作宽度,所述子区域的宽度与工作头的工作宽度相关。
优选的,所述子区域的宽度是工作头的工作宽度的1~2倍。
优选的,所述子区域为正方形。
优选的,主控模块确认每个子区域具有上、下、左、右四个相邻子区域。
本发明还提供一种能够提升自动行走设备的工作效率的路径规划方法,所述路径规划方法规划自动行走设备在工作区域内的行走路径,包括:a)存储所述工作区域的地图,所述地图包括表征所述工作区域的边界的边界信息;b)基于所述地图将工作区域划分为若干个子区域;c)生成行走路径,所述行走路径经过所有所述子区域。
与现有技术相比,本发明的路径规划方法及自动行走设备能够使自动行走设备在整个工作区域内实现全覆盖,且行走路径无重叠,从而提高自动行走设备在工作区域内的工作效率。
下面结合附图和实施方式对本发明作进一步说明。
图1是本发明自动工作系统的示意图。
图2是图1所示的自动行走设备的电路框图。
图3是自动行走设备对边界信息限定的区域进行子区域划分的结果示意图。
图4是自动行走设备生成最小生成树的第一种较佳实施方式的示意图。
图5是自动行走设备生成最小生成树的第二种较佳实施方式的示意图。
图6是自动行走设备根据最小生成树规划的行走路径。
图7是图自动行走设备的工作流程图。
其中,
1 自动行走设备 11 路径规划模块
2 工作区域 13 子区域
3 边界 15 中心点
5 存储模块 17 连接线
7 子区域划分模块 19 行走路径
9 主控模块 19a,19b 子行走路径
10 权重分配组件
如图1所示的自动工作系统包括工作区域2,限定工作区域2的边界3,以及位于工作区域2内的自动行走设备1。
边界3为预先设定的工作区域2的外围轮廓,可以是自然标识形成的边界,如草地与非草地之间的交界线,也可以是人为标识形成的边界,如设置在地面的边界线,还可以是任意给定的虚拟边界,如一个大的工作区域内的一个特定的小区域的边界。
如图2所示,自动行走设备1包括工作头、存储模块5、子区域划分模块7、主控模块9以及路径规划模块11。工作头执行预设工作内容。举例说明,当自动行走设备1为割草机时,工作头为切割部件,执行割草工作;当自动行走设备1为吸尘器时,工作头为吸尘部件,执行吸尘工作。存储模块5,存储表征工作区域2的边界3的边界信息;子区域划分模块7,接收存储模块5传递的边界信息,对由边界信息限定的区域进行子区域13划分,生成若干个子区域13,确认每个子区域13的相邻子区域13及每个子区域13的中心点15,相邻子区域13的中心点15可以通过连接线17相互连通;主控模块9,接收子区域划分模块7传递的信息,生成连通所有中心点15的连接线17的集合;路径规划模块11,规划自动行走设备的行走路径,沿所述行走路径行走的自动行走设备遍历边界信息限定的区域;具体的,路径规划模块11接收主控模块9传递的信息,根据连接线17的集合规划自动行走设备1的行走路径19,行走路径19无重叠,沿行走路径19行走的自动行走设备1遍历整个工作区域2。行走路径19为自动行走设备1按照行走路径19行走时,其工作头的中心轴线所形成的轨迹。行走路径19无重叠指行走路径19之间无重合或交叉。
存储模块5存储所述工作区域的地图,地图包括表征工作区域2的边界的边界信息,优选为坐标信息,这有利于子区域划分模块7识别出由边界信息限定的区域,从而基于地图对工作区域进行子区域13划分。坐标信息的来源可以是由其他设备将已经获得的边界3的坐标信息传输进来的,也可以是自动行走设备1沿边界3行走一圈时通过位置传感器获得的,还可以是根据其他设备传送的图片信息进行分析获得边界3的坐标信息。
子区域划分模块7,接收存储模块5传递的边界信息,对由边界信息限定的区域进行子区域13划分,生成若干个子区域13,并确认每个子区域13的中心点15。子区域13可以为任意规则的形状。优选的,子区域13的宽度与工作头的工作宽度相关。工作头的工作宽度为工作头工作时其在与自动行走设备1的行走方向的垂直方向上的加工尺寸。举例说明,当自动行走设备1为割草机时,工作头的工作宽度为工作头的切割直径;当自动行走设备1为吸尘器时,
工作头的工作宽度为吸尘口的长度。优选的,子区域13为长度与宽度相同的正方形。当子区域13为正方形时,对边界信息限定的区域进行子区域13划分的结果如图3所示。优选的,正方形的边长,即单条连接线17的长度,是自动行走设备1的工作头的工作宽度的1~2倍。
图3中,在子区域13为正方形的情况下,每个子区域13在物理位置上有8个相邻正方形,在逻辑上,子区域划分模块7可以认为每个子区域13仅有上、下、左、右4个相邻子区域13,也可以认为每个子区域13有上、下、左、右、左上、右上、左下、右下8个相邻子区域13。子区域划分模块7在逻辑上确认每个子区域13的相邻子区域13,使得只有逻辑上相邻的子区域13的中心点15可以通过连接线17相互连通,而逻辑上非相邻的子区域13的中心点15之间不可以通过连接线17相互连通,即使其在物理位置上相邻,其中心点15也不可以通过连接线17相互连通。在此需要说明的是,当子区域13为三角形等其他特殊形状时,其物理位置上相邻的子区域13为任意其他个数,如12个、6个等,此时,在逻辑上相邻的子区域13可以根据自动行走设备1行走角度的需求任意设定。
主控模块9接收子区域划分模块7传递的信息,生成连通所有中心点15的连接线17的集合。连接线17的集合可以是最小生成树,还可以是旅行商路径。最小生成树是指通过最少的连接线17将图中所有的中心点15相互连通。旅行商路径是指每个中心点15遍历一次,最后返回到起点的最短路径。
主控模块9还进一步包括权重分配组件10。权重分配组件10的作用为在最小生成树及旅行商路径的生成过程中,对每条连接线17分配权重。在此需要指出的是,分配权重的方法不同,获得的最小生成树或旅行商路径的形状不同。在此,典型地以生成“八爪鱼”形最小生成树和“鱼刺”形最小生成树为例,分别介绍两种权重分配的方法。
以“八爪鱼”形最小生成树为例。首先,权重分配组件10根据中心点15到边界3的距离对连接两个中心点15的连接线17进行权重分配。然后,主控模块9确定边界信息限定的区域中最中心的中心点15为原点,寻找权重最小的连接线17连通其他中心点15,直到将所有中心点15连通,从而获得最小生成树。当数条连接线17的权重相同时,按照预设的规则对连接线17进行选择。当发现已有一条连接线17将某一中心点15与原点连接时,舍弃其他权重相同
的连接线17,以避免环路的出现。根据该规则,将图3中所有中心点15连通的最小生成树如图4所示。
以“鱼刺”形最小生成树为例。首先,权重分配组件10根据与连接线17平行的边界3的长度对每条连接线17分配权重。随后,主控模块9从中选出权重较小的与边界3的长度方向垂直的连接线17。然后权重分配组件10再对与边界3的长度方向平行的连接线17按照第二种方法分配权重。该第二权重分配方法为,根据连接线17连接的中心点15至边界3的距离分配权重。由此,主控模块9在与边界3的长度方向平行的连接线17中,选出离边界3较远的连接线17。最后生成如图5所示的最小生成树。
本领域技术人员可以理解的是,还可以通过克鲁斯卡尔算法生或普里姆算法生成最小生成树。
在旅行商路径生成的过程中,可以通过途程建构法从距离矩阵中产生一个近似最佳解的途径的方法进行求解,也可以通过途程改善法先给定一个可行途程,然后进行改善,一直到不能改善为止的方法进行求解,还可以通过合成启发法先由途程建构法产生起始途程,然后再使用途程改善法去寻求最佳解的方法进行求解。
以下以“八爪鱼”形最小生成树为例对路径规划进行说明。路径规划模块11,接收主控模块9传递的最小生成树的信息,沿最小生成树的边界3规划自动行走设备1的行走路径19,行走路径19经过所有子区域。规划结果如图6所示。
在以最小生成树为连通所有中心点15的连接线17的集合的方案下,正方形的边长,即单条连接线17的长度,优选为自动行走设备1的工作头的工作宽度的1~2倍。更为优选的是,正方形的边长优选为自动行走设备1的工作头的工作宽度的1.5倍。此种设计使得自动行走设备1根据图6所示的路径行走并工作时,工作头覆盖的区域仅在两个相邻路径的公共区域有部分冗余量的设计,保证了工作头可以对整个工作区域2进行全覆盖,同时又不会导致对同一个区域有过多的重复工作。具体的,假设工作头的工作宽度W=A,正方形的边长B=L。由于正方形的边长为工作头的工作宽度的1.5倍,因此L=1.5A。由于子区域13的宽度即正方形的边长为L,因此两个相邻子区域13的中心点之间的距离为L。由于连接线17连接的是两个相邻子区域13的中心点,因此连接线17的长度为L。另外,由图6可知,每个间距为L的区域,均规划了两个相互
平行且行走方向相反的子行走路径19a和19b,因此沿该两个子行走路径19a和19b行走的自动行走设备1的工作头加工的宽度之和为2A。由前述可知,L=1.5A,而1.5A<2A,因此沿该两个子行走路径19a和19b行走的自动行走设备1覆盖了整个子区域13。由于自动行走设备1沿子行走路径19a和19b行走可以覆盖子区域13,则自动行走设备1沿行走路径19行走,就可以实现对整个工作区域的覆盖。
以下结合图7对自动行走设备1的工作流程进行说明。
进入步骤S0:对自动行走设备1进行初始化。
随后进入步骤S2:获取自动行走设备1即将工作的工作区域2的边界信息。获取的方式可以是由其他设备将已经获得的边界3的坐标信息传输进来的,也可以是自动行走设备1沿边界3行走一圈时通过位置传感器获得的,还可以是根据其他设备传送的图片信息进行分析获得边界3的坐标信息。
随后的步骤基于所述边界信息规划自动行走设备的行走路径,沿所述行走路径行走的自动行走设备遍历边界信息限定的区域,具体如下。
随后进入步骤S4:对由边界信息限定的区域进行子区域13划分,生成若干个子区域13。子区域13可以为任意规则的形状,优选的,子区域13为长度与宽度相同的正方形。更为优选的,子区域13的宽度与自动行走设备1的工作头的工作宽度相关。最为优选的是,子区域13的宽度为自动行走设备1的工作头的工作宽度的1~2倍,其中1.5倍为优选方案。
随后进入步骤S6:确定每个子区域13的相邻子区域13及每个子区域13的中心点15。确定相邻子区域13的意义在于,相邻的子区域13的中心点15可以通过连接线17相互连通,而非相邻的子区域13的中心点15不能通过连接线17相互连通。如前所述,当子区域13为正方形时,在物理位置上,每个子区域13有8个相邻的子区域13,但在逻辑上,可以认为每个子区域13仅有上、下、左、右4个相邻子区域13,也可以认为每个子区域13有上、下、左、右、左上、右上、左下、右下8个相邻子区域13。当确定每个子区域13有4个相邻的子区域13时,连通子区域13的中心点15的连接线17为横平竖直的直线,以此为基础的行走路径19也为横平竖直的直线;当确定每个子区域13有8个相邻的子区域13时,连通子区域13的中心点15的连接线17包含横平竖直的直线以及倾斜的直线,以此为基础的行走路径19也既包含横平竖直的直线也包含倾斜的直线。在此可以根据设计者的需要自由选择确定确定每个子区域13
的相邻子区域13的个数。
随后进入步骤S8:根据步骤S6的结果,生成连通所有中心点15的连接线17的集合。连接线17的集合可以是最小生成树,还可以是旅行商路径。具体生成方法参见前述对自动行走设备1的结构进行说明的部分。
随后进入步骤S10:根据连接线17的集合规划自动行走设备1的行走路径19,行走路径19无重叠,沿行走路径19行走的自动行走设备1遍历边界信息限定的区域。当连接线17的集合为最小生成树时,行走路径19为包络最小生成树的路径。当连接线17的集合为旅行商路径时,行走路径19即为旅行商路径。
上述路径规划步骤也可简化的表述为:
a)存储所述工作区域的地图,所述地图包括表征所述工作区域的边界的边界信息;
b)基于所述地图将工作区域划分为若干个子区域;
c)生成行走路径,所述行走路径经过所有所述子区域。本领域技术人员可以想到的是,本发明还可以有其他的实现方式,但只要其采用的技术精髓与本发明相同或相近似,或者任何基于本发明作出的变化和替换都在本发明的保护范围之内。
Claims (20)
- 一种自动行走设备的路径规划方法,所述路径规划方法规划自动行走设备在工作区域内的行走路径,其特征在于,所述路径规划方法包括:a)存储表征所述工作区域的边界的边界信息;b)基于所述边界信息规划自动行走设备的行走路径,沿所述行走路径行走的自动行走设备遍历边界信息限定的区域。
- 根据权利要求1所述的路径规划方法,其特征在于:步骤b)进一步包括以下步骤:b1)划分由边界信息限定的区域为若干个子区域;b2)确认每个子区域的中心点,相邻的两个子区域的中心点可以通过连接线相互连通;b3)生成将所有中心点连通的连接线的集合;b4)根据所述连接线的集合规划自动行走设备的行走路径,所述行走路径无重叠。
- 根据权利要求2所述的路径规划方法,其特征在于,所述连接线的集合为最小生成树。
- 根据权利要求3所述的路径规划方法,其特征在于,根据连接线连接的中心点至边界的距离为每条连接线分配权重。
- 根据权利要求3所述的路径规划方法,其特征在于,先根据与连接线平行的边界的长度对每条连接线分配权重,然后根据与该连接线连接的中心点至边界的距离对每条连接线分配权重。
- 根据权利要求2所述的路径规划方法,其特征在于,自动行走设备的工作头具有工作宽度,步骤b1)中,所述子区域的宽度与工作头的工作宽度相关。
- 根据权利要求6所述的路径规划方法,其特征在于,所述子区域的宽度是工作头的工作宽度的1~2倍。
- 根据权利要求2所述的路径规划方法,其特征在于,所述子区域为正方形。
- 根据权利要求2所述的路径规划方法,其特征在于,步骤b2)中,确认每个子区域具有上、下、左、右四个相邻子区域。
- 一种自动行走设备,规划其在工作区域内的行走路径,其特征在于,所述自动行走设备包括,工作头,执行预设工作内容;存储模块,存储表征所述工作区域的边界的边界信息;路径规划模块,规划自动行走设备的行走路径,沿所述行走路径行走的自动行走设备遍历边界信息限定的区域。
- 根据权利要求10所述的自动行走设备,其特征在于,还包括:子区域划分模块,接收存储模块传递的边界信息,对由边界信息限定的区域进行子区域划分,生成若干个子区域;主控模块,接收子区域划分模块传递的信息,确认每个子区域的相邻子区域及每个子区域的中心点,子区域的中心点与其相邻子区域的中心点可以通过连接线相互连通,并生成将所有中心点连通的连接线的集合;所述路径规划模块接收主控模块传递的信息,根据所述连接线的集合规划自动行走设备的行走路径,所述行走路径无重叠。
- 根据权利要求11所述的自动行走设备,其特征在于,所述连接线的集合为最小生成树。
- 根据权利要求12所述的自动行走设备,其特征在于,主控模块进一步包括权重分配组件,所述权重分配组件为每一条连接线分配权重。
- 根据权利要求13所述的自动行走设备,其特征在于,权重分配组件根据连接线连接的中心点至边界的距离对该连接线分配权重。
- 根据权利要求13所述的自动行走设备,其特征在于,权重分配组件先根据与连接线平行的边界的长度对每条连接线分配权重,然后根据与该连接线连接的中心点至边界的距离对每条连接线分配权重。
- 根据权利要求11所述的自动行走设备,其特征在于,所述工作头具有工作宽度,所述子区域的宽度与工作头的工作宽度相关。
- 根据权利要求16所述的自动行走设备,其特征在于,所述子区域的宽度是工作头的工作宽度的1~2倍。
- 根据权利要求11所述的自动行走设备,其特征在于,所述子区域为正方形。
- 根据权利要求11所述的自动行走设备,其特征在于,主控模块确认每个子区域具有上、下、左、右四个相邻子区域。
- 一种自动行走设备的路径规划方法,所述路径规划方法规划自动行走设备在工作区域内的行走路径,其特征在于,所述路径规划方法包括:a)存储所述工作区域的地图,所述地图包括表征所述工作区域的边界的边界信息;b)基于所述地图将工作区域划分为若干个子区域;c)生成行走路径,所述行走路径经过所有所述子区域。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410498733.2A CN105511458B (zh) | 2014-09-25 | 2014-09-25 | 自动行走设备及其路径规划方法 |
CN201410498733.2 | 2014-09-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2016045618A2 true WO2016045618A2 (zh) | 2016-03-31 |
WO2016045618A3 WO2016045618A3 (zh) | 2016-05-19 |
Family
ID=55582181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/090755 WO2016045618A2 (zh) | 2014-09-25 | 2015-09-25 | 自动行走设备及其路径规划方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105511458B (zh) |
WO (1) | WO2016045618A2 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109408892A (zh) * | 2018-09-25 | 2019-03-01 | 嘉兴倚韦电子科技有限公司 | 集成电路半定制物理设计贯穿信号线自动规划方法 |
CN111912393A (zh) * | 2020-08-19 | 2020-11-10 | 西北工业大学太仓长三角研究院 | 基于水面移动机器人的水文环境监测方法 |
CN112965485A (zh) * | 2021-02-03 | 2021-06-15 | 武汉科技大学 | 一种基于二次区域划分的机器人全覆盖路径规划方法 |
CN115014362A (zh) * | 2022-08-09 | 2022-09-06 | 之江实验室 | 一种基于合成单元的牛耕式全覆盖路径规划方法和装置 |
CN115113616A (zh) * | 2021-03-08 | 2022-09-27 | 广东博智林机器人有限公司 | 一种路径规划方法 |
CN117109596A (zh) * | 2023-10-23 | 2023-11-24 | 深圳市普渡科技有限公司 | 自移动设备及其覆盖路径规划方法、装置和存储介质 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107493797B (zh) * | 2016-06-14 | 2020-03-27 | 苏州宝时得电动工具有限公司 | 位置识别系统 |
CN107974995B (zh) * | 2016-10-24 | 2020-04-14 | 苏州宝时得电动工具有限公司 | 自移动设备路径规划方法和系统 |
CN108227705B (zh) * | 2016-12-15 | 2021-06-11 | 苏州宝时得电动工具有限公司 | 自移动设备的回归方法、自移动设备、存储介质和服务器 |
JP6894970B2 (ja) | 2017-04-20 | 2021-06-30 | エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd | 飛行経路確定方法、情報処理装置、プログラム及び記録媒体 |
CN109984689B (zh) * | 2017-12-29 | 2021-09-17 | 速感科技(北京)有限公司 | 一种清洁机器人及清洁机器人的路径优化方法 |
CN111123905B (zh) * | 2018-10-31 | 2022-08-26 | 苏州科瓴精密机械科技有限公司 | 行走机器人的控制方法及系统 |
CN110018686A (zh) * | 2019-03-26 | 2019-07-16 | 宁波大叶园林设备股份有限公司 | 一种智能割草机的路径规划方法 |
CN111752300B (zh) * | 2019-12-30 | 2022-08-16 | 广州极飞科技股份有限公司 | 无人机航线规划方法、装置、系统及计算机可读存储介质 |
CN113469398A (zh) * | 2020-03-31 | 2021-10-01 | 广东博智林机器人有限公司 | 一种路径规划方法、装置、电子设备及存储介质 |
CN112806894B (zh) * | 2021-01-20 | 2022-06-21 | 湖南城市学院 | 一种玻璃幕墙清洁方法及仿生机器人 |
CN113156936A (zh) * | 2021-01-27 | 2021-07-23 | 宁波工程学院 | 爬壁清洁机器人的路径规划算法 |
CN114303581B (zh) * | 2021-12-06 | 2023-07-18 | 深圳市杉川机器人有限公司 | 一种智能割草机、行走路径规划方法、装置及存储介质 |
CN115250720B (zh) * | 2022-07-12 | 2024-07-30 | 深圳库犸科技有限公司 | 割草方法、装置、割草机器人以及存储介质 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1287722C (zh) * | 2002-06-21 | 2006-12-06 | 泰怡凯电器(苏州)有限公司 | 自动吸尘器的可清扫区域和障碍物区域的识别方法 |
US20100114338A1 (en) * | 2008-10-31 | 2010-05-06 | Gm Global Technology Operations, Inc. | Multi-goal path planning of welding robots with automatic sequencing |
KR101524020B1 (ko) * | 2009-03-06 | 2015-05-29 | 엘지전자 주식회사 | 로봇 청소기의 점진적 지도 작성 및 위치 보정 방법 |
US8224516B2 (en) * | 2009-12-17 | 2012-07-17 | Deere & Company | System and method for area coverage using sector decomposition |
KR101566207B1 (ko) * | 2011-06-28 | 2015-11-13 | 삼성전자 주식회사 | 로봇 청소기 및 그 제어방법 |
KR101887055B1 (ko) * | 2011-11-14 | 2018-09-11 | 삼성전자주식회사 | 로봇 청소기 및 그 제어 방법 |
CN104065580A (zh) * | 2013-10-21 | 2014-09-24 | 桂林电子科技大学 | M2m网络拓扑控制方法及系统 |
CN103837154B (zh) * | 2014-03-14 | 2017-01-04 | 北京工商大学 | 路径规划的方法及系统 |
CN103955222B (zh) * | 2014-05-05 | 2016-05-11 | 无锡普智联科高新技术有限公司 | 一种基于多障碍物环境的移动机器人路径规划方法 |
-
2014
- 2014-09-25 CN CN201410498733.2A patent/CN105511458B/zh active Active
-
2015
- 2015-09-25 WO PCT/CN2015/090755 patent/WO2016045618A2/zh active Application Filing
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109408892A (zh) * | 2018-09-25 | 2019-03-01 | 嘉兴倚韦电子科技有限公司 | 集成电路半定制物理设计贯穿信号线自动规划方法 |
CN109408892B (zh) * | 2018-09-25 | 2023-04-07 | 嘉兴倚韦电子科技有限公司 | 集成电路半定制物理设计贯穿信号线自动规划方法 |
CN111912393A (zh) * | 2020-08-19 | 2020-11-10 | 西北工业大学太仓长三角研究院 | 基于水面移动机器人的水文环境监测方法 |
CN112965485A (zh) * | 2021-02-03 | 2021-06-15 | 武汉科技大学 | 一种基于二次区域划分的机器人全覆盖路径规划方法 |
CN112965485B (zh) * | 2021-02-03 | 2022-10-04 | 武汉科技大学 | 一种基于二次区域划分的机器人全覆盖路径规划方法 |
CN115113616A (zh) * | 2021-03-08 | 2022-09-27 | 广东博智林机器人有限公司 | 一种路径规划方法 |
CN115014362A (zh) * | 2022-08-09 | 2022-09-06 | 之江实验室 | 一种基于合成单元的牛耕式全覆盖路径规划方法和装置 |
CN117109596A (zh) * | 2023-10-23 | 2023-11-24 | 深圳市普渡科技有限公司 | 自移动设备及其覆盖路径规划方法、装置和存储介质 |
CN117109596B (zh) * | 2023-10-23 | 2024-02-20 | 深圳市普渡科技有限公司 | 自移动设备及其覆盖路径规划方法、装置和存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN105511458B (zh) | 2019-06-28 |
WO2016045618A3 (zh) | 2016-05-19 |
CN105511458A (zh) | 2016-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016045618A2 (zh) | 自动行走设备及其路径规划方法 | |
US11334082B2 (en) | Autonomous machine navigation and training using vision system | |
CN107860387B (zh) | 植保无人机作业航线规划方法及植保无人机 | |
US11385067B2 (en) | Route planning method for mobile vehicle | |
JP7220285B2 (ja) | 経路計画 | |
JP5667731B1 (ja) | 圃場ガイダンスシステム及び圃場ガイダンス方法並びにソフトウェア及びソフトウェアを格納した記憶媒体 | |
JP4298917B2 (ja) | 面作業用のモービルユニットの経路計画方法 | |
CN109528090A (zh) | 一种机器人的区域遍历方法和芯片以及清洁机器人 | |
CN109363585A (zh) | 分区遍历方法、清扫方法及其扫地机器人 | |
WO2018006454A1 (zh) | 一种无人机的飞行路径规划、控制方法及系统 | |
CN103017757B (zh) | 工程机械入场路径规划方法和路径规划装置 | |
WO2021051278A1 (zh) | 地表特征识别方法、设备、无人机及计算机可读存储介质 | |
JP6031491B2 (ja) | 圃場ガイダンスシステム及び圃場ガイダンス方法並びにソフトウェア及びソフトウェアを格納した記憶媒体 | |
CN106774394B (zh) | 农用植保无人机喷施过程中单障碍、小障碍下的避障方法及无人机 | |
CN104615138A (zh) | 一种划分移动机器人室内区域动态覆盖方法及其装置 | |
JP2017060524A (ja) | 圃場ガイダンスシステム及び圃場ガイダンス方法並びにソフトウェア及びソフトウェアを格納した記憶媒体 | |
Zhang et al. | Maximum likelihood path planning for fast aerial maneuvers and collision avoidance | |
US20160195875A1 (en) | Autonomous mobile robot and method for operating the same | |
CN112015186A (zh) | 一种具有社会属性的机器人路径规划方法、装置和机器人 | |
EP4386508A2 (en) | Autonomous machine navigation using reflections from subsurface objects | |
JP6088104B2 (ja) | 圃場ガイダンスシステム及び圃場ガイダンス方法並びにソフトウェア及びソフトウェアを格納した記憶媒体 | |
CN111061270B (zh) | 一种全面覆盖方法、系统及作业机器人 | |
CN113064407A (zh) | 全区域覆盖的清扫方法、装置、清扫机器人及存储装置 | |
CN114754777A (zh) | 一种基于地理坐标系的无人割草车的全路径覆盖规划方法 | |
CN108871289A (zh) | 一种基于无人机的环绕航测方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase in: |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15844749 Country of ref document: EP Kind code of ref document: A2 |