WO2016045388A1 - 自适应窄带干扰消除方法和装置 - Google Patents

自适应窄带干扰消除方法和装置 Download PDF

Info

Publication number
WO2016045388A1
WO2016045388A1 PCT/CN2015/078532 CN2015078532W WO2016045388A1 WO 2016045388 A1 WO2016045388 A1 WO 2016045388A1 CN 2015078532 W CN2015078532 W CN 2015078532W WO 2016045388 A1 WO2016045388 A1 WO 2016045388A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
time domain
interference cancellation
subcarriers
channel type
Prior art date
Application number
PCT/CN2015/078532
Other languages
English (en)
French (fr)
Inventor
陈曦
邹志强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15843122.1A priority Critical patent/EP3182661A4/en
Publication of WO2016045388A1 publication Critical patent/WO2016045388A1/zh
Priority to US15/466,368 priority patent/US10270626B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/265Fourier transform demodulators, e.g. fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • H04B1/1036Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal with automatic suppression of narrow band noise or interference, e.g. by using tuneable notch filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03159Arrangements for removing intersymbol interference operating in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0222Estimation of channel variability, e.g. coherence bandwidth, coherence time, fading frequency

Definitions

  • Embodiments of the present invention relate to communication technologies, and in particular, to an adaptive narrowband interference cancellation method and apparatus.
  • the prior art eliminates interference by filtering. Specifically, according to whether the input signal has narrowband interference and its narrowband interference feature, the preset filter coefficient table is queried to obtain a corresponding filter coefficient, and then the obtained filter is obtained according to the obtained filter. The coefficient configures the time domain digital notch filter, and finally filters the narrowband interference through the configured time domain digital notch filter.
  • this method requires a large amount of preset filter coefficients to be stored for various system bandwidths and interference distributions, since the passband and stopband of the filter are adjusted accordingly as the system bandwidth and interference distribution change. Higher degrees, less flexibility, and less easy to implement.
  • the embodiments of the present invention provide an adaptive narrowband interference cancellation method and apparatus to solve the problem that the existing narrowband interference method has high complexity, low flexibility, and is not easy to implement.
  • an embodiment of the present invention provides a receiving apparatus, including:
  • a channel type determining module configured to measure a delay spread of the multipath channel experienced by the received time domain signal, and determine a channel type of the multipath channel according to the measurement result
  • a weighting coefficient selection module configured to select a weighting coefficient according to the channel type
  • a time domain windowing processing module configured to perform time domain windowing processing on the time domain signal according to the weighting coefficient
  • the frequency domain interference cancellation processing module is configured to perform frequency domain interference cancellation processing on the signal outputted by the time domain windowing according to the weighting coefficient to eliminate narrowband interference of the time domain signal.
  • the channel type determining module is configured to perform a measurement delay on a delay extension of a multipath channel experienced by the time domain signal. Expanding the measured value; determining the channel type according to a comparison result of the delay extended measurement value and the delay extended preset value.
  • the channel type determining module is configured to determine whether the time delay extension measurement value is smaller than the first time Extending the preset value; if the delay spread measurement value is smaller than the first delay spread preset value, the channel type is an extended walk model A EPA; if the delay spread measurement value is greater than or equal to If the first delay spreads the preset value, and the delay spread measurement value is smaller than the second delay spread preset value, the channel type is an extended vehicle model A EVA; if the delay spread measurement value The channel type is an extended typical city model ETU, which is greater than or equal to the first delay extension preset value, and the delay extension measurement value is greater than or equal to the second delay extension preset value.
  • the weighting coefficient selection module is specifically configured to be used according to Selecting, by the channel type, the weighting coefficient that matches the channel type from a preset channel parameter configuration table, where the weighting coefficient includes a time domain window length, a time domain windowing coefficient, a maximum interference canceling carrier number, and interference Estimate the weighting factor.
  • the time domain windowing processing module is specifically configured to use the time domain window length and the time The domain windowing coefficient performs the time domain windowing process on the time domain signal, and the time domain windowing process includes a windowing process and a cyclic prefix CP combining process.
  • the method further includes:
  • a fast Fourier transform FFT module is configured to perform FFT acquisition of a frequency domain signal on the signal processed by the time domain windowing.
  • the frequency domain interference cancellation processing module includes:
  • a narrowband interference power calculation unit configured to determine a center frequency point position of the narrowband interference; and calculate a power of the narrowband interference according to the center frequency point position and the frequency domain signal;
  • an interference cancellation unit configured to determine, according to the maximum interference cancellation carrier number and the power of the narrowband interference, a number of subcarriers that need to perform interference cancellation; according to the weighting coefficient and the required interference cancellation
  • the number of carriers calculates the interference on the subcarriers that need to perform interference cancellation; the interference on the subcarriers that perform interference cancellation according to the need, and the frequency domain signal corresponding to the subcarriers that need to perform interference cancellation Interference cancellation is performed to eliminate narrowband interference of the time domain signal.
  • the narrowband interference power calculation unit is configured to accumulate Q by using the center frequency point location as a center
  • the power of the frequency domain signal corresponding to the subcarriers acquires the power of the narrowband interference
  • Q is determined by the narrowband interference bandwidth and the subcarrier spacing, and Q is a natural number.
  • the interference cancellation unit is specifically configured to use the preset subcarrier number mapping table. Querying a power level matched with the power of the narrowband interference, and determining, according to the power level and the maximum number of interference canceling subcarriers, the number of subcarriers that need to perform interference cancellation.
  • the interference cancellation unit is specifically configured to use the center frequency Selecting M subcarriers as the observation sample point, and calculating the interference on the subcarriers that need to perform interference cancellation according to the observation sample point, the weighting coefficient, and the number of subcarriers that need to perform interference cancellation.
  • M is a natural number.
  • the narrowband interference power calculation unit is specifically configured to use the control signaling Determine the center frequency point location.
  • the method further includes:
  • the interference frequency point searching module is configured to determine the center frequency point position by traversing all subcarriers corresponding to the frequency domain signal.
  • an adaptive narrowband interference suppression method including:
  • the performing the delay extension of the multipath channel experienced by the received time domain signal, and determining the channel type according to the measurement result includes:
  • the channel type is determined according to a comparison result of the delay spread measurement value and the delay spread preset value.
  • the determining, according to the comparison result of the delay extension measurement value and the delay extension preset value, Channel type including:
  • the channel type is an extended walk model A EPA;
  • the channel type is an extended vehicle Model A EVA
  • the channel type is Extend the typical urban model ETU.
  • any one of the first to the second possible implementation manners of the second aspect, in a third possible implementation manner of the second aspect, the selecting a weighting coefficient according to the channel type, includes:
  • the weighting coefficient that matches the channel type from a preset channel parameter configuration table, where the weighting coefficient includes a time domain window length, a time domain windowing coefficient, a maximum interference cancellation carrier number, and Interference estimation weighting factor.
  • the performing time domain windowing processing on the time domain signal according to the weighting coefficient includes:
  • Performing the time domain windowing process on the time domain signal according to the time domain window length and the time domain windowing coefficient, and the time domain windowing process includes a windowing process and a cyclic prefix CP combining process.
  • the outputting by the time domain windowing process according to the weighting coefficient Before the signal is subjected to frequency domain interference cancellation processing to eliminate narrowband interference of the time domain signal the method further includes:
  • a fast Fourier transform FFT is performed on the signal subjected to the time domain windowing to obtain a frequency domain signal.
  • the performing, by the weighting coefficient, performing frequency domain on a signal output by the time domain windowing process Interference cancellation processing to eliminate narrowband interference of the time domain signal including:
  • the calculating the power of the narrowband interference according to the center frequency location and the frequency domain signal includes:
  • the power of the narrowband interference is obtained by the power, Q is determined by the narrowband interference bandwidth and the subcarrier spacing, and Q is a natural number.
  • the power of the maximum interference cancellation carrier number and the narrowband interference Determine the number of subcarriers that need to be interference canceled, including:
  • the performing interference cancellation according to the weighting coefficient and the requirement calculates the interference on the subcarriers that need to perform interference cancellation, including:
  • M is a natural number.
  • the determining a center frequency point position of the narrowband interference includes:
  • the center frequency point location is determined based on control signaling.
  • the determining a center frequency point position of the narrowband interference includes:
  • the center frequency point position is determined by traversing all subcarriers corresponding to the frequency domain signal.
  • the method and device for adaptive narrow-band interference cancellation according to the embodiment of the invention perform real-time detection on the intensity of the narrowband interference, and select the correlation weighting coefficient of the interference cancellation according to the intensity thereof, so as to implement time domain windowing processing and frequency domain interference on the received signal.
  • the cancellation processing solves the problem that the existing narrowband interference method has high complexity, low flexibility, and is not easy to implement.
  • FIG. 1 is a schematic structural view of an embodiment of a receiving device according to the present invention.
  • FIG. 2 is a schematic structural view of another embodiment of a receiving device according to the present invention.
  • FIG. 3 is a schematic flowchart of determining a channel type
  • FIG. 4 is a schematic structural view of still another embodiment of a receiving device according to the present invention.
  • FIG. 5 is a flowchart of an embodiment of an adaptive narrowband interference suppression method according to the present invention.
  • FIG. 6 is a flow chart of another embodiment of an adaptive narrowband interference suppression method of the present invention.
  • the apparatus of this embodiment may include: a channel type determining module 11, a weighting coefficient selecting module 12, a time domain windowing processing module 13, and a frequency.
  • the domain interference cancellation processing module 14 is configured to measure a delay spread of the multipath channel experienced by the received time domain signal, and determine a channel type of the multipath channel according to the measurement result.
  • a weighting coefficient selection module 12 configured to select a weighting coefficient according to the channel type
  • a time domain windowing processing module 13 configured to perform time domain windowing processing on the time domain signal according to the weighting coefficient
  • the processing module 14 is configured to perform frequency domain interference cancellation processing on the signal output by the time domain windowing process according to the weighting coefficient to eliminate narrowband interference of the time domain signal.
  • the channel type determining module 11 of the receiving device measures the delay spread according to the received signal, and the base station transmits a pulse signal, and the received signal includes not only the pulse signal but also the time delay signal.
  • the phenomenon that the path effect spreads the pulse width of the received signal is called delay spread, and the delay spread is the difference between the maximum transmission delay and the minimum transmission delay in the multipath channel.
  • the channel type determining module 11 determines the wireless channel based on the measurement result.
  • Types for example, in LTE, channel types include Extended Pedestrian A (EPA), Extended Vehicular A (EVA), Extended Typical Urban (ETU) ), the delay spread corresponding to each channel type is different.
  • the weighting coefficient selection module 12 adaptively selects different weighting coefficients according to the channel type, where the weighting coefficients are correlation coefficients required for signal interference processing corresponding to the channel type. By adaptively selecting the optimal time domain window length according to the channel type, the best effect of suppressing narrowband interference can be achieved without avoiding the introduction of Inter Symbol Interference (ISI).
  • the time domain windowing processing module 13 performs interference cancellation processing on the received signal in the time domain before performing fast Fourier transform (FFT) on the received signal, by windowing the received signal and The Cyclic Prefix (CP) is combined to reduce side-lobe leakage of narrow-band interference to achieve interference suppression.
  • FFT fast Fourier transform
  • CP Cyclic Prefix
  • the frequency domain interference cancellation processing module 14 performs frequency domain interference cancellation processing on the signal output by the time domain windowing processing module 13 according to the weighting coefficient after performing FFT on the received signal, that is, according to the interference sent or detected by the high layer.
  • Frequency position calculate the total power of the subcarriers near the interference frequency, and then estimate the intensity of the narrowband interference.
  • the unmodulated subcarriers near the interference frequency are selected as the observation samples, and the weighted coefficients are used to weight the accumulated samples.
  • the narrowband interference is constructed to leak to the modulated subcarrier position near the interference frequency point, and finally the cancellation of the interference is completed. Since the receiving device performs interference cancellation processing only on the main lobe of the interference and a part of the subcarriers under the near side lobes, it is not necessary to process the full bandwidth, so that the complexity and power consumption of the interference cancellation are significantly reduced.
  • the device of the invention detects the intensity of the narrowband interference in real time, selects the correlation weighting coefficient of the interference cancellation according to the intensity, and implements the time domain windowing processing and the frequency domain interference cancellation processing on the received signal to solve the existing
  • the narrowband interference method is more complex, less flexible, and less prone to problems.
  • the apparatus of this embodiment may include: a channel type determining module 21, a weighting coefficient selecting module 22, and a time domain windowing processing module 23,
  • the FFT module 24 and the frequency domain interference cancellation processing module 25, the frequency domain interference cancellation processing module 25 may further include a narrowband interference power calculation unit 251 and an interference cancellation unit 252.
  • FIG. 3 is a schematic flowchart of determining a channel type. As shown in FIG. 3, the channel type determining module 21 starts a delay spread measurement acquisition delay extension measurement value of a multipath channel experienced by a received time domain signal (step 1).
  • the channel type determining module 21 starts a delay spread measurement acquisition delay extension measurement value of a multipath channel experienced by a received time domain signal (step 1).
  • step 2 Determining whether the delay extension measurement value is smaller than the first delay extension preset value (step 2); if the delay extension measurement value is smaller than the first delay extension preset value, the channel type is EPA (step 3); If the extended extension measurement value is greater than or equal to the first delay extension preset value, it is determined whether the delay extension measurement value is smaller than the second delay extension preset value (step 4); if the delay extension measurement value is greater than or equal to the first time If the delay extension measurement value is less than the second delay extension preset value, the channel type is EVA (step 5); if the delay extension measurement value is greater than or equal to the first delay extension preset value, And the delay extension measurement value is greater than or equal to the second delay extension preset value, and the channel type is ETU (step 6).
  • the preset value of the first delay extension is smaller than the preset value of the second delay extension, and may be set according to actual requirements, or may be set according to two systems of spectrum multiplexing, which are not specifically limited herein.
  • the weighting coefficient selection module 22 selects the weighting coefficient that matches the channel type from the preset channel parameter configuration table according to the channel type, and the weighting coefficient includes a time domain window length and time. Domain windowing coefficient, maximum interference canceling carrier number, and interference estimation weighting coefficient.
  • the relationship between the channel type and the time domain window length W is: the larger the delay spread corresponding to the channel type, the shorter the selected time domain window length W, and the smaller the delay spread corresponding to the channel type is selected. The longer the time domain window W is.
  • the relationship between the channel type and the maximum interference canceler carrier number K max is: the larger the delay spread corresponding to the channel type, the larger the selected K max , the smaller the delay spread corresponding to the channel type, and the selected K max The smaller it is.
  • Table 1 is an example of a preset channel parameter configuration representation, and the weighting coefficient selection module 22 selects a weighting coefficient that matches the channel type from Table 1 according to the channel type.
  • the time domain window length W 3 ⁇ W 2 ⁇ W 1 ⁇ P, P is the CP length, and the maximum interference canceling carrier number K 1max ⁇ K 2max ⁇ K 3max .
  • the time domain windowing processing module 23 performs the time domain windowing process on the time domain signal according to the time domain window length and the time domain windowing coefficient, and the time domain windowing process includes windowing processing and looping.
  • the prefix CP is merged.
  • the narrowband interference power calculation unit 251 determines a center frequency point position of the narrowband interference; calculates a power of the narrowband interference according to the center frequency point position and the frequency domain signal.
  • the interference cancellation unit 252 determines, according to the maximum interference cancellation carrier number and the power of the narrowband interference, the number of subcarriers that need to perform interference cancellation; and according to the weighting coefficient and the number of subcarriers that need to perform interference cancellation Calculating interference on the subcarriers that need to perform interference cancellation; performing the The interference on the subcarriers of the cancellation cancellation and the frequency domain signal corresponding to the subcarriers that need to perform interference cancellation are subjected to interference cancellation to eliminate narrowband interference of the time domain signal.
  • the narrowband interference power calculation unit 251 obtains the power of the narrowband interference by accumulating the power of the frequency domain signal corresponding to the Q subcarriers centering on the center frequency point position, and Q is determined by the narrowband interference bandwidth and the subcarrier spacing, and Q is a natural number.
  • the interference cancellation unit 252 queries the preset subcarrier number mapping table for the power level matched with the power of the narrowband interference, and determines the number of subcarriers that need to perform interference cancellation according to the power level and the maximum interference cancellation subcarrier number.
  • Table 2 is an example of a preset subcarrier number mapping representation.
  • the interference cancellation unit 252 takes M/2 subcarriers as the observation sample point with the center frequency point position n c of the narrowband interference as the center, and according to the M observation samples, the weighting coefficient, and the number of subcarriers that need to perform interference cancellation.
  • the interference cancellation is performed, the interference cancellation is performed only on the number of subcarriers K that need to perform interference cancellation, and the remaining subcarriers are not cancelled.
  • the device of the invention detects the intensity of the narrowband interference in real time, selects the correlation weighting coefficient of the interference cancellation according to the intensity, and implements the time domain windowing processing and the frequency domain interference cancellation processing on the received signal to solve the existing
  • the narrowband interference method is more complex, less flexible, and less prone to problems.
  • the apparatus of this embodiment may include: a channel type determining module 31, a weighting coefficient selecting module 32, and a time domain windowing processing module 33.
  • the FFT module 34, the frequency domain interference cancellation processing module 35, and the interference frequency point search module 36, the frequency domain interference cancellation processing module 35 may further include a narrowband interference power calculation unit 351 and an interference cancellation unit 352.
  • the difference between this embodiment and the embodiment shown in FIG. 2 is that the center frequency position of the narrowband interference is not indicated by the upper layer through the control signaling, but is searched by the interference frequency search module 36.
  • the interference frequency search module 36 determines the center frequency point position by traversing all the subcarriers corresponding to the frequency domain signal, and can be completed by any prior art, such as peak search, threshold decision and the like. Further, before performing the interference frequency point search, the mode of each subcarrier can be smoothed in the frequency domain or the time domain to remove the influence of noise, thereby improving the accuracy of the search result.
  • the narrowband interference condition is detected according to the set threshold value, and the threshold value is greater than the presence of narrowband interference, otherwise there is no narrowband interference, and the intermediate point of the data point between the two points where the threshold value and the spectrum signal intersect is centered.
  • the frequency position is n c .
  • some a priori information can be utilized, taking GSM and LTE multiplexed spectrum as an example. Since the frequency position and interval of GSM (usually a minimum of 200 kHz) are relatively fixed, interference is performed. Frequency search can be searched every 200kHz, which greatly reduces the search range and search complexity.
  • FIG. 5 is a flowchart of an embodiment of an adaptive narrowband interference suppression method according to the present invention. As shown in FIG. 5, the method in this embodiment may include:
  • Step 101 Measure a delay spread of a multipath channel experienced by the received time domain signal, and determine a channel type of the multipath channel according to the measurement result;
  • the executor of this embodiment may be a receiving device suitable for OFDM, and the receiving device may adopt the device structure shown in any of the device embodiments of FIG. 1, FIG. 2, and FIG.
  • the signal received by the receiving device is a time domain signal, and the delay spread of the multipath channel experienced by it is measured to determine its channel type.
  • Step 102 Select a weighting coefficient according to the channel type.
  • the weighting coefficient is a correlation coefficient required for signal interference processing corresponding to the channel type.
  • the receiving device adaptively selects an optimal time domain window length according to the channel type, and can achieve the best effect of suppressing narrowband interference without avoiding the introduction of ISI.
  • Step 103 Perform time domain windowing on the time domain signal according to the weighting coefficient.
  • the time domain windowing process is an interference cancellation process performed by the receiving device on the received signal in the time domain before the FFT is performed on the received signal, and windowing and CP combining of the received signal are performed to reduce the sidelobe leakage of the narrowband interference to suppress the interference. the goal of.
  • Step 104 Perform frequency domain interference cancellation processing on the signal outputted by the time domain windowing process according to the weighting coefficient to eliminate narrowband interference of the time domain signal.
  • the receiving device After performing FFT on the received signal, the receiving device performs frequency domain interference cancellation processing on the signal outputted by the window processing according to the weighting coefficient, that is, calculating the interference frequency point according to the position of the interference frequency point sent or detected by the high layer.
  • the total power of the subcarriers is used to estimate the strength of the narrowband interference.
  • the unmodulated subcarriers near the interference frequency are selected as observation samples, and the weighted coefficients are used to weight the accumulated samples to reconstruct the narrowband interference leakage to the interference frequency.
  • the interference at the modulated subcarrier position is nearby, and the cancellation of the interference is finally completed. Since the receiving device performs interference cancellation processing only on the main lobe of the interference and a part of the subcarriers under the near side lobes, it is not necessary to process the full bandwidth, so that the complexity and power consumption of the interference cancellation are significantly reduced.
  • the strength of the narrowband interference is detected in real time, and the strength is selected according to its strength.
  • the correlation weighting coefficient of the interference cancellation is implemented to implement time domain windowing processing and frequency domain interference cancellation processing on the received signal, and the existing narrowband interference method has a high complexity, low flexibility, and is not easy to implement.
  • FIG. 6 is a flowchart of another embodiment of an adaptive narrowband interference suppression method according to the present invention. As shown in FIG. 6, the method in this embodiment may include:
  • Step 201 Perform measurement on the delay spread of the multipath channel experienced by the received time domain signal to obtain a delay extension measurement value.
  • the executor of this embodiment may be a receiving device suitable for Orthogonal Frequency Division Multiplexing (OFDM), and the receiving device may adopt any device embodiment of FIG. 1 , FIG. 2 and FIG. 4 .
  • Step 202 Determine, according to a comparison result of the delay extension measurement value and a delay extension preset value, the channel type.
  • the specific implementation method may be: determining whether the delay extension measurement value is smaller than a first delay extension preset value; if the delay extension measurement value is smaller than the first delay extension preset value, the channel The type is the extended walk model A EPA; if the delay spread measurement value is greater than or equal to the first delay spread preset value, and the delay spread measurement value is smaller than the second delay spread preset value, The channel type is an extended vehicle model A EVA; if the delay spread measurement value is greater than or equal to the first delay spread preset value, and the delay spread measurement value is greater than or equal to the second time If the extension is extended, the channel type is an extended typical city model ETU.
  • Step 203 Select, according to the channel type, the weighting coefficient that matches the channel type from a preset channel parameter configuration table, where the weighting coefficient includes a time domain window length, a time domain windowing coefficient, and a maximum interference canceller. Carrier number and interference estimation weighting factor;
  • Step 204 Perform the time domain windowing process on the time domain signal according to the time domain window length and the time domain windowing coefficient, where the time domain windowing process includes windowing processing and cyclic prefix CP combining processing. ;
  • Step 205 Perform FFT to acquire a frequency domain signal by using the time domain windowed signal.
  • Step 206 Determine a center frequency position of the narrowband interference
  • the receiving device may determine the location of the center frequency point according to the control signaling, and may also pass the All the subcarriers corresponding to the frequency domain signal are determined to determine the center frequency point position.
  • Step 207 Calculate power of the narrowband interference according to the center frequency location and the frequency domain signal.
  • the specific implementation method may be: collecting the power of the frequency domain signal corresponding to the Q subcarriers by using the center frequency point position as a center, and determining the power of the narrowband interference by using a narrowband interference bandwidth and a subcarrier spacing.
  • Step 208 Determine, according to the maximum interference cancellation carrier number and the power of the narrowband interference, a number of subcarriers that need to perform interference cancellation;
  • the specific implementation method may be: querying, by using a preset subcarrier number mapping table, a power level that matches the power of the narrowband interference, and determining, according to the power level and the maximum interference cancellation carrier number, the interference required. The number of subcarriers that are cancelled.
  • Step 209 Calculate interference on the subcarriers that need to perform interference cancellation according to the weighting coefficient and the number of subcarriers that need to perform interference cancellation;
  • the specific implementation method may be: selecting M subcarriers as the observation sample centering on the center frequency point position, and calculating the number of subcarriers according to the observation sample point, the weighting coefficient, and the interference cancellation required. The interference on the subcarriers that need to perform interference cancellation.
  • Step 210 Perform interference cancellation according to the interference on the subcarrier that needs to perform interference cancellation, and perform interference cancellation on the frequency domain signal corresponding to the subcarrier that needs to perform interference cancellation, to eliminate the narrowband of the time domain signal. interference.
  • the strength of the narrowband interference is detected in real time, and the correlation weighting coefficient of the interference cancellation is selected according to the intensity, so that the time domain windowing processing and the frequency domain interference cancellation processing of the received signal are implemented, and the existing narrowband is solved.
  • Interference methods are more complex, less flexible, and less prone to problems.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Noise Elimination (AREA)

Abstract

本发明实施例提供一种自适应窄带干扰消除方法和装置。本发明接收装置,包括:信道类型确定模块,用于对接收的时域信号所经历的多径信道的时延扩展进行测量,并根据测量结果确定信道类型;加权系数选择模块,用于根据所述信道类型选择加权系数;时域加窗处理模块,用于根据所述加权系数对所述时域信号进行时域加窗处理;频域干扰对消处理模块,用于根据所述加权系数,对经所述时域加窗处理输出的信号进行频域干扰对消处理,以消除所述时域信号的窄带干扰。本发明实施例解决现有的窄带干扰方法复杂度较高,灵活性较低,不易于实现的问题。

Description

自适应窄带干扰消除方法和装置 技术领域
本发明实施例涉及通信技术,尤其涉及一种自适应窄带干扰消除方法和装置。
背景技术
随着通信业务的日益增长需求,频谱资源在全球范围内变得越来越紧张,各运营商很难获得新的频谱或者可获得的频谱很有限,在这种情况下,复用当前的2G和3G频谱,已成为各运营商竞争的一个重要手段,业界称之为频谱重整(Spectrum Refarming)。两种制式的通信系统进行频谱重整,必然会造成彼此之间的干扰。
现有技术通过滤波的方式消除干扰,具体地,先根据输入信号是否存在窄带干扰,及其窄带干扰特征,查询预置的滤波器系数表获取对应的滤波器系数,再根据获取到的滤波器系数配置时域数字陷波滤波器,最后通过配置好的时域数字陷波滤波器滤除窄带干扰。
但是,这种方法由于滤波器的通带和阻带随着系统带宽和干扰分布的变化要相应地调整,因此需要针对各种系统带宽和干扰分布的情况存储大量的预置滤波器系数,复杂度较高,灵活性较低,不易于实现。
发明内容
本发明实施例提供一种自适应窄带干扰消除方法和装置,以解决现有的窄带干扰方法复杂度较高,灵活性较低,不易于实现的问题。
第一方面,本发明实施例提供一种接收装置,包括:
信道类型确定模块,用于对接收的时域信号所经历的多径信道的时延扩展进行测量,并根据测量结果确定所述多径信道的信道类型;
加权系数选择模块,用于根据所述信道类型选择加权系数;
时域加窗处理模块,用于根据所述加权系数对所述时域信号进行时域加窗处理;
频域干扰对消处理模块,用于根据所述加权系数,对经所述时域加窗处理输出的信号进行频域干扰对消处理,以消除所述时域信号的窄带干扰。
结合第一方面,在第一方面的第一种可能的实现方式中,所述信道类型确定模块,具体用于对所述时域信号所经历的多径信道的时延扩展进行测量获取时延扩展测量值;根据所述时延扩展测量值与时延扩展预设值的比较结果确定所述信道类型。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述信道类型确定模块,具体用于判断所述时延扩展测量值是否小于第一时延扩展预设值;若所述时延扩展测量值小于所述第一时延扩展预设值,则所述信道类型为扩展步行模型A EPA;若所述时延扩展测量值大于或等于所述第一时延扩展预设值,且所述时延扩展测量值小于所述第二时延扩展预设值,则所述信道类型为扩展车辆模型A EVA;若所述时延扩展测量值大于或等于所述第一时延扩展预设值,且所述时延扩展测量值大于或等于所述第二时延扩展预设值,则所述信道类型为扩展典型城市模型ETU。
结合第一方面、第一方面的第一种至第二种中任一种可能的实现方式,在第一方面的第三种可能的实现方式中,所述加权系数选择模块,具体用于根据所述信道类型从预设信道参数配置表中选择与所述信道类型匹配的所述加权系数,所述加权系数包括时域窗长、时域加窗系数、最大干扰对消子载波数以及干扰估计加权系数。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,所述时域加窗处理模块,具体用于根据所述时域窗长和所述时域加窗系数对所述时域信号进行所述时域加窗处理,所述时域加窗处理包括加窗处理和循环前缀CP合并处理。
结合第一方面的第三种或第四种可能的实现方式,在第一方面的第五种可能的实现方式中,还包括:
快速傅里叶变换FFT模块,用于对经过所述时域加窗处理后的信号进行FFT获取频域信号。
结合第一方面的第五种可能的实现方式,在第一方面的第六种可能 的实现方式中,所述频域干扰对消处理模块,包括:
窄带干扰功率计算单元,用于确定窄带干扰的中心频点位置;根据所述中心频点位置和所述频域信号计算窄带干扰的功率;
干扰对消单元,用于根据所述最大干扰对消子载波数和所述窄带干扰的功率确定需要进行干扰对消的子载波数;根据所述加权系数和所述需要进行干扰对消的子载波数计算所述需要进行干扰对消的子载波上的干扰;根据所述需要进行干扰对消的子载波上的干扰,以及所述需要进行干扰对消的子载波对应的所述频域信号进行干扰对消,以消除所述时域信号的窄带干扰。
结合第一方面的第六种可能的实现方式,在第一方面的第七种可能的实现方式中,所述窄带干扰功率计算单元,具体用于以所述中心频点位置为中心,累加Q个子载波对应的所述频域信号的功率获取所述窄带干扰的功率,Q由窄带干扰带宽和子载波间隔确定,Q为自然数。
结合第一方面的第六种或第七种可能的实现方式,在第一方面的第八种可能的实现方式中,所述干扰对消单元,具体用于从预设子载波数映射表中查询与所述窄带干扰的功率匹配的功率等级,根据所述功率等级和所述最大干扰对消子载波数确定所述需要进行干扰对消的子载波数。
结合第一方面的第六种至第八种中任一种可能的实现方式,在第一方面的第九种可能的实现方式中,所述干扰对消单元,具体用于以所述中心频点位置为中心选取M个子载波作为观测样点,根据所述观测样点、所述加权系数和所述需要进行干扰对消的子载波数计算所述需要进行干扰对消的子载波上的干扰,M为自然数。
结合第一方面的第六种至第九种中任一种可能的实现方式,在第一方面的第十种可能的实现方式中,所述窄带干扰功率计算单元,具体用于根据控制信令确定所述中心频点位置。
结合第一方面的第六种至第九种中任一种可能的实现方式,在第一方面的第十一种可能的实现方式中,还包括:
干扰频点搜索模块,用于通过遍历所述频域信号对应的所有子载波确定所述中心频点位置。
第二方面,本发明实施例提供一种自适应窄带干扰抑制方法,包括:
对接收的时域信号所经历的多径信道的时延扩展进行测量,并根据测量结果确定所述多径信道的信道类型;
根据所述信道类型选择加权系数;
根据所述加权系数对所述时域信号进行时域加窗处理;
根据所述加权系数,对经所述时域加窗处理输出的信号进行频域干扰对消处理,以消除所述时域信号的窄带干扰。
结合第二方面,在第二方面的第一种可能的实现方式中,所述对接收的时域信号所经历的多径信道的时延扩展进行测量,并根据测量结果确定信道类型,包括:
对所述时域信号所经历的多径信道的时延扩展进行测量获取时延扩展测量值;
根据所述时延扩展测量值与时延扩展预设值的比较结果确定所述信道类型。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述根据所述时延扩展测量值与时延扩展预设值的比较结果确定所述信道类型,包括:
判断所述时延扩展测量值是否小于第一时延扩展预设值;
若所述时延扩展测量值小于所述第一时延扩展预设值,则所述信道类型为扩展步行模型A EPA;
若所述时延扩展测量值大于或等于所述第一时延扩展预设值,且所述时延扩展测量值小于所述第二时延扩展预设值,则所述信道类型为扩展车辆模型A EVA;
若所述时延扩展测量值大于或等于所述第一时延扩展预设值,且所述时延扩展测量值大于或等于所述第二时延扩展预设值,则所述信道类型为扩展典型城市模型ETU。
结合第二方面、第二方面的第一种至第二种中任一种可能的实现方式,在第二方面的第三种可能的实现方式中,所述根据所述信道类型选择加权系数,包括:
根据所述信道类型从预设信道参数配置表中选择与所述信道类型匹配的所述加权系数,所述加权系数包括时域窗长、时域加窗系数、最大干扰对消子载波数以及干扰估计加权系数。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,所述根据所述加权系数对所述时域信号进行时域加窗处理,包括:
根据所述时域窗长和所述时域加窗系数对所述时域信号进行所述时域加窗处理,所述时域加窗处理包括加窗处理和循环前缀CP合并处理。
结合第二方面的第三种或第四种可能的实现方式,在第二方面的第五种可能的实现方式中,所述根据所述加权系数,对经所述时域加窗处理输出的信号进行频域干扰对消处理,以消除所述时域信号的窄带干扰之前,还包括:
对经过所述时域加窗处理后的信号进行快速傅里叶变换FFT获取频域信号。
结合第二方面的第五种可能的实现方式,在第二方面的第六种可能的实现方式中,所述根据所述加权系数,对经所述时域加窗处理输出的信号进行频域干扰对消处理,以消除所述时域信号的窄带干扰,包括:
确定窄带干扰的中心频点位置;
根据所述中心频点位置和所述频域信号计算窄带干扰的功率;
根据所述最大干扰对消子载波数和所述窄带干扰的功率确定需要进行干扰对消的子载波数;
根据所述加权系数和所述需要进行干扰对消的子载波数计算所述需要进行干扰对消的子载波上的干扰;
根据所述需要进行干扰对消的子载波上的干扰,以及所述需要进行干扰对消的子载波对应的所述频域信号进行干扰对消,以消除所述时域信号的窄带干扰。
结合第二方面的第六种可能的实现方式,在第二方面的第七种可能的实现方式中,所述根据所述中心频点位置和所述频域信号计算窄带干扰的功率,包括:
以所述中心频点位置为中心,累加Q个子载波对应的所述频域信号 的功率获取所述窄带干扰的功率,Q由窄带干扰带宽和子载波间隔确定,Q为自然数。
结合第二方面的第六种或第七种可能的实现方式,在第二方面的第八种可能的实现方式中,所述根据所述最大干扰对消子载波数和所述窄带干扰的功率确定需要进行干扰对消的子载波数,包括:
从预设子载波数映射表中查询与所述窄带干扰的功率匹配的功率等级,根据所述功率等级和所述最大干扰对消子载波数确定所述需要进行干扰对消的子载波数。
结合第二方面的第六种至第八种中任一种可能的实现方式,在第二方面的第九种可能的实现方式中,所述根据所述加权系数和所述需要进行干扰对消的子载波数计算所述需要进行干扰对消的子载波上的干扰,包括:
以所述中心频点位置为中心选取M个子载波作为观测样点,根据所述观测样点、所述加权系数和所述需要进行干扰对消的子载波数计算所述需要进行干扰对消的子载波上的干扰,M为自然数。
结合第二方面的第六种至第九种中任一种可能的实现方式,在第二方面的第十种可能的实现方式中,所述确定窄带干扰的中心频点位置,包括:
根据控制信令确定所述中心频点位置。
结合第二方面的第六种至第九种中任一种可能的实现方式,在第二方面的第十一种可能的实现方式中,所述确定窄带干扰的中心频点位置,包括:
通过遍历所述频域信号对应的所有子载波确定所述中心频点位置。
本发明实施例自适应窄带干扰消除方法和装置,通过对窄带干扰的强度进行实时检测,根据其强度选择进行干扰对消的相关加权系数,实现对接收信号进行时域加窗处理和频域干扰对消处理,解决现有的窄带干扰方法复杂度较高,灵活性较低,不易于实现的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将 对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明接收装置的一个实施例的结构示意图;
图2为本发明接收装置的另一个实施例的结构示意图;
图3为确定信道类型的一个流程示意图;
图4为本发明接收装置的又一个实施例的结构示意图;
图5为本发明自适应窄带干扰抑制方法的一个实施例的流程图;
图6为本发明自适应窄带干扰抑制方法的另一个实施例的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明接收装置的一个实施例的结构示意图,如图1所示,本实施例的装置可以包括:信道类型确定模块11、加权系数选择模块12、时域加窗处理模块13以及频域干扰对消处理模块14,其中,信道类型确定模块11,用于对接收的时域信号所经历的多径信道的时延扩展进行测量,并根据测量结果确定所述多径信道的信道类型;加权系数选择模块12,用于根据所述信道类型选择加权系数;时域加窗处理模块13,用于根据所述加权系数对所述时域信号进行时域加窗处理;频域干扰对消处理模块14,用于根据所述加权系数,对经所述时域加窗处理输出的信号进行频域干扰对消处理,以消除所述时域信号的窄带干扰。
在本发明中,接收装置的信道类型确定模块11根据接收到的信号测量其时延扩展,基站发送一个脉冲信号,则接收信号中不仅含有该脉冲信号,还包含有时延信号,这种由于多径效应使接收信号脉冲宽度扩展的现象,称为时延扩展,时延扩展即为多径信道中最大传输时延和最小传输时延的差值。然后信道类型确定模块11根据测量结果确定无线信道 类型,例如在LTE中,信道类型包括扩展步行模型A(Extended Pedestrian A,简称:EPA)、扩展车辆模型A(Extended Vehicular A,简称:EVA)、扩展典型城市模型(Extended Typical Urban,简称:ETU),每种信道类型对应的时延扩展不同。加权系数选择模块12根据信道类型自适应地选择不同的加权系数,这里的加权系数是与信道类型对应的、进行信号干扰处理需要的相关系数。根据信道类型自适应选择最优的时域窗长,能够在避免引入符号间干扰(Inter Symbol Interference,简称:ISI)的前提下达到最好的抑制窄带干扰的效果。时域加窗处理模块13是在对接收信号进行快速傅里叶变换(Fast Fourier Transformation,简称:FFT)前对时域上的接收信号进行的干扰消除处理,通过对接收信号的进行加窗和循环前缀(Cyclic Prefix,简称:CP)合并,降低窄带干扰的旁瓣泄漏以达到抑制干扰的目的。频域干扰对消处理模块14是在对接收信号进行FFT之后,根据加权系数,对时域加窗处理模块13输出的信号进行频域干扰对消处理,即根据高层下发或者检测到的干扰频点位置,计算干扰频点附近的子载波的总功率,再估算窄带干扰的强度,同时选取干扰频点附近的未调制子载波作为观测样点,利用加权系数对观测样点进行加权累加重构出窄带干扰泄漏到干扰频点附近已调制子载波位置上的干扰,最后完成干扰的对消。由于接收装置只对干扰的主瓣和近端旁瓣下的部分子载波进行干扰对消处理,不需要对全带宽进行处理,使得干扰消除的复杂度和功耗显著降低。
本发明的装置,通过对窄带干扰的强度进行实时检测,根据其强度选择进行干扰对消的相关加权系数,实现对接收信号进行时域加窗处理和频域干扰对消处理,解决现有的窄带干扰方法复杂度较高,灵活性较低,不易于实现的问题。
图2为本发明接收装置的另一个实施例的结构示意图,如图2所示,本实施例的装置可以包括:信道类型确定模块21、加权系数选择模块22、时域加窗处理模块23、FFT模块24以及频域干扰对消处理模块25,所述频域干扰对消处理模块25还可以包括窄带干扰功率计算单元251和干扰对消单元252。
信道类型确定模块21对所述时域信号所经历的多径信道的时延扩展 进行测量获取时延扩展测量值;根据所述时延扩展测量值与时延扩展预设值的比较结果确定所述信道类型。
以全球移动通信系统(Global System for Mobile Communication,简称:GSM)和长期演进(Long Term Evolution,简称:LTE)两种制式进行频谱复用为例,在LTE系统中消除GMS系统的窄带干扰。图3为确定信道类型的一个流程示意图,如图3所示,信道类型确定模块21启动对接收的时域信号所经历的多径信道的时延扩展测量获取时延扩展测量值(步骤1),判断时延扩展测量值是否小于第一时延扩展预设值(步骤2);若时延扩展测量值小于第一时延扩展预设值,则信道类型为EPA(步骤3);若时延扩展测量值大于或等于第一时延扩展预设值,则判断时延扩展测量值是否小于第二时延扩展预设值(步骤4);若时延扩展测量值大于或等于第一时延扩展预设值,且时延扩展测量值小于第二时延扩展预设值,则信道类型为EVA(步骤5);若时延扩展测量值大于或等于第一时延扩展预设值,且时延扩展测量值大于或等于第二时延扩展预设值,则信道类型为ETU(步骤6)。第一时延扩展预设值小于第二时延扩展预设值,可以根据实际需求进行设定,也可以根据进行频谱复用的两种制式的系统进行设定,此处不做具体限定。
在完成信道类型的确定后,加权系数选择模块22根据所述信道类型从预设信道参数配置表中选择与所述信道类型匹配的所述加权系数,所述加权系数包括时域窗长、时域加窗系数、最大干扰对消子载波数以及干扰估计加权系数。
具体来讲,信道类型和时域窗长W的关系为:信道类型对应的时延扩展越大,所选的时域窗长W要越短,信道类型对应的时延扩展越小,所选的时域窗长W要越长。信道类型和最大干扰对消子载波数Kmax的关系为:信道类型对应的时延扩展越大,所选的Kmax要越大,信道类型对应的时延扩展越小,所选的Kmax要越小。表1为预设信道参数配置表示例,加权系数选择模块22根据信道类型从表1中选择与信道类型匹配的加权系数。在表1中,时域窗长W3<W2<W1<P,P为CP长度,最大干扰对消子载波数K1max<K2max<K3max。若确定的信道类型为EPA信道,则令加权系数中的时域窗长W=W1,时域加窗系数w(n)=w1(n),最大干扰对消 子载波数Kmax=K1max,干扰估计加权系数H(i,j)=H1(i,j),其中0≤i<K1max,0≤j<M;若确定的信道类型为EVA信道,则令加权系数中的时域窗长W=W2,时域加窗系数w(n)=w2(n),最大干扰对消子载波数Kmax=K2max,干扰估计加权系数H(i,j)=H2(i,j),其中0≤i<K2max,0≤j<M;若确定的信道类型为ETU信道,则令加权系数中的时域窗长W=W3,时域加窗系数w(n)=w3(n),最大干扰对消子载波数Kmax=K3max,干扰估计加权系数H(i,j)=H3(i,j),其中0≤i<K3max,0≤j<M。M为观测样点的取点个数。
表1
Figure PCTCN2015078532-appb-000001
时域加窗处理模块23根据所述时域窗长和所述时域加窗系数对所述时域信号进行所述时域加窗处理,所述时域加窗处理包括加窗处理和循环前缀CP合并处理。
假设接收信号为y(n),n=0,…,N+P-1,其中P为CP长度,N为FFT点数,时域加窗处理模块23处理后的信号为z(n),n=0,…,N-1,其中,z(n)的前N-W个样点为z(n)=y(n+P),n=0,…,N-W-1,后W个样点为z(n)=w(n+W-N)×y(n+P-N)+(1-w(n+W-N))×y(n+P),n=N-W,…,N-1。
FFT模块24对经过所述时域加窗处理后的信号进行FFT获取频域信号。对信号z(n),n=0,…,N-1进行FFT后,获取到第n个样点的频域信号
Figure PCTCN2015078532-appb-000002
窄带干扰功率计算单元251确定窄带干扰的中心频点位置;根据所述中心频点位置和所述频域信号计算窄带干扰的功率。干扰对消单元252根据所述最大干扰对消子载波数和所述窄带干扰的功率确定需要进行干扰对消的子载波数;根据所述加权系数和所述需要进行干扰对消的子载波数计算所述需要进行干扰对消的子载波上的干扰;根据所述需要进行干 扰对消的子载波上的干扰,以及所述需要进行干扰对消的子载波对应的所述频域信号进行干扰对消,以消除所述时域信号的窄带干扰。
具体来讲,窄带干扰功率计算单元251以中心频点位置为中心,累加Q个子载波对应的频域信号的功率获取窄带干扰的功率,Q由窄带干扰带宽和子载波间隔确定,Q为自然数。干扰对消单元252从预设子载波数映射表中查询与窄带干扰的功率匹配的功率等级,根据功率等级和最大干扰对消子载波数确定需要进行干扰对消的子载波数。以中心频点位置为中心选取M个子载波作为观测样点,根据观测样点、干扰估计加权系数和需要进行干扰对消的子载波数计算需要进行干扰对消的子载波上的干扰,M为自然数。根据需要进行干扰对消的子载波上的干扰,以及需要进行干扰对消的子载波对应的频域信号进行干扰对消,以消除时域信号的窄带干扰。
窄带干扰功率计算单元251根据高层的控制信令确定中心频点位置对应的子载波序号为nc,例如在GSM和LTE复用频谱的场景下,接收装置从BSC获取当前GSM系统的上行占用频点,通过计算得到该上行占用频点对应的LTE的子载波位置nc。窄带干扰功率计算单元251计算以nc为中心左右各取Q/2个子载波对应的频域信号的功率的总和,即窄带干扰的功率
Figure PCTCN2015078532-appb-000003
在GSM和LTE复用频谱的场景下,Q=200kHz/15kHz≈13。表2为预设子载波数映射表示例,干扰对消单元252首先初始化输出信号ZIC(k)=Z(k),k=0,…,N-1,再根据窄带干扰的功率Pinterf(nc),通过查表2确定匹配的功率等级,再确定需要进行干扰对消的子载波数K,如表2所示,根据窄带干扰的功率的大小分成D+1个功率等级,不同的功率等级对应不同的需要进行干扰对消的子载波数K,K值与窄带干扰的功率Pinterf(nc)的关系为,Pinterf(nc)越大,需要进行干扰对消的子载波数K越大,Pinterf(nc)越小,需要进行干扰对消的子载波数K越小。在进行干扰对消时,只对窄带干扰附近的K各子载波进行对消,其余的子载波不进行对消。然后干扰对消单元252以窄带干扰的中心频点位置nc为中心左右各取M/2个子载波作为观测样点,根据M个观测样点、加权系数和需要进行干扰对消的子载波数K计算需要进行干扰对消的子载波上的干扰,
Figure PCTCN2015078532-appb-000004
k=nc-K/2,…,nc+K/2-1。干扰对消单元252最后在对应的样点位置上完 成干扰对消ZIC(k)=ZIC(k)-I(k),k=nc-K/2,…,nc+K/2-1。在进行干扰对消时,只在需要进行干扰对消的子载波数K上进行干扰对消,其余的子载波不进行对消。
表2
窄带干扰的功率Pinterf(nc) 需要进行干扰对消的子载波数K
<P1 0
[P1,P2) Kmax/D
[P2,P3) 2Kmax/D
…… ……
[PD-1,PD) (D-1)Kmax/D
≥PD Kmax
需要说明的是,若接收信号的带宽范围内存在多个窄带干扰,则对每个窄带干扰重复以上过程,直至完成所有干扰的对消处理。
本发明的装置,通过对窄带干扰的强度进行实时检测,根据其强度选择进行干扰对消的相关加权系数,实现对接收信号进行时域加窗处理和频域干扰对消处理,解决现有的窄带干扰方法复杂度较高,灵活性较低,不易于实现的问题。
图4为本发明接收装置的又一个实施例的结构示意图,如图3所示,本实施例的装置可以包括:信道类型确定模块31、加权系数选择模块32、时域加窗处理模块33、FFT模块34、频域干扰对消处理模块35以及干扰频点搜索模块36,所述频域干扰对消处理模块35还可以包括窄带干扰功率计算单元351和干扰对消单元352。
本实施例和图2所示实施例的区别之处在于窄带干扰的中心频点位置不是由高层通过控制信令指示的,而是通过干扰频点搜索模块36搜索得到。干扰频点搜索模块36通过遍历频域信号对应的所有子载波确定中心频点位置,可以通过任一现有技术来完成,如峰值搜索,门限判决等技术。进一步的,在进行干扰频点搜索前,还可以对每个子载波的模进行频域或者时域的平滑滤波,去除噪声的影响,从而提高搜索结果的准确性。然后根据设定的门限值检测窄带干扰情况,大于门限值为存在窄带干扰,否则为不存在窄带干扰,由门限值与频谱信号交叉的两个点之间数据点的中间点作为中心频点位置nc。为减小搜索范围和搜索复杂度,可以利用一些先验信息,以GSM和LTE复用频谱为例,由于GSM的频 点位置和间隔(通常情况下最小为200kHz)相对固定,因此在进行干扰频点搜索的时候可以每隔200kHz进行搜索,从而大大降低搜索范围和搜索复杂度。
图5为本发明自适应窄带干扰抑制方法的一个实施例的流程图,如图5所示,本实施例的方法可以包括:
步骤101、对接收的时域信号所经历的多径信道的时延扩展进行测量,并根据测量结果确定所述多径信道的信道类型;
本实施例的执行主体可以是一种适用于OFDM的接收装置,该接收装置可以采用图1、图2、图4任一装置实施例所示的装置结构。接收装置接收的信号是时域信号,对其经历的多径信道的时延扩展进行测量,确定其信道类型。
步骤102、根据所述信道类型选择加权系数;
加权系数是与信道类型对应的、进行信号干扰处理需要的相关系数。接收装置根据信道类型自适应选择最优的时域窗长,能够在避免引入ISI的前提下达到最好的抑制窄带干扰的效果。
步骤103、根据所述加权系数对所述时域信号进行时域加窗处理;
时域加窗处理是接收装置对接收信号进行FFT前对时域上的接收信号进行的干扰消除处理,通过对接收信号的进行加窗和CP合并,降低窄带干扰的旁瓣泄漏以达到抑制干扰的目的。
步骤104、根据所述加权系数,对经所述时域加窗处理输出的信号进行频域干扰对消处理,以消除所述时域信号的窄带干扰。
对接收信号进行FFT之后,接收装置根据加权系数,对经时域加窗处理输出的信号进行频域干扰对消处理,即根据高层下发或者检测到的干扰频点位置,计算干扰频点附近的子载波的总功率,再估算窄带干扰的强度,同时选取干扰频点附近的未调制子载波作为观测样点,利用加权系数对观测样点进行加权累加重构出窄带干扰泄漏到干扰频点附近已调制子载波位置上的干扰,最后完成干扰的对消。由于接收装置只对干扰的主瓣和近端旁瓣下的部分子载波进行干扰对消处理,不需要对全带宽进行处理,使得干扰消除的复杂度和功耗显著降低。
本实施例,通过对窄带干扰的强度进行实时检测,根据其强度选择 进行干扰对消的相关加权系数,实现对接收信号进行时域加窗处理和频域干扰对消处理,解决现有的窄带干扰方法复杂度较高,灵活性较低,不易于实现的问题。
图6为本发明自适应窄带干扰抑制方法的另一个实施例的流程图,如图6所示,本实施例的方法可以包括:
步骤201、对接收的时域信号所经历的多径信道的时延扩展进行测量获取时延扩展测量值;
本实施例的执行主体可以是一种适用于正交频分复用(Orthogonal Frequency Division Multiplexing,简称:OFDM)的接收装置,该接收装置可以采用图1、图2、图4任一装置实施例所示的装置结构。
步骤202、根据所述时延扩展测量值与时延扩展预设值的比较结果确定所述信道类型;
具体的实现方法可以是:判断所述时延扩展测量值是否小于第一时延扩展预设值;若所述时延扩展测量值小于所述第一时延扩展预设值,则所述信道类型为扩展步行模型A EPA;若所述时延扩展测量值大于或等于所述第一时延扩展预设值,且所述时延扩展测量值小于所述第二时延扩展预设值,则所述信道类型为扩展车辆模型A EVA;若所述时延扩展测量值大于或等于所述第一时延扩展预设值,且所述时延扩展测量值大于或等于所述第二时延扩展预设值,则所述信道类型为扩展典型城市模型ETU。
步骤203、根据所述信道类型从预设信道参数配置表中选择与所述信道类型匹配的所述加权系数,所述加权系数包括时域窗长、时域加窗系数、最大干扰对消子载波数以及干扰估计加权系数;
步骤204、根据所述时域窗长和所述时域加窗系数对所述时域信号进行所述时域加窗处理,所述时域加窗处理包括加窗处理和循环前缀CP合并处理;
步骤205、对经过所述时域加窗处理后的信号进行FFT获取频域信号;
步骤206、确定窄带干扰的中心频点位置;
接收装置可以根据控制信令确定所述中心频点位置,还可以通过遍 历所述频域信号对应的所有子载波确定所述中心频点位置。
步骤207、根据所述中心频点位置和所述频域信号计算窄带干扰的功率;
具体的实现方法可以是:以所述中心频点位置为中心,累加Q个子载波对应的所述频域信号的功率获取所述窄带干扰的功率,Q由窄带干扰带宽和子载波间隔确定。
步骤208、根据所述最大干扰对消子载波数和所述窄带干扰的功率确定需要进行干扰对消的子载波数;
具体的实现方法可以是:从预设子载波数映射表中查询与所述窄带干扰的功率匹配的功率等级,根据所述功率等级和所述最大干扰对消子载波数确定所述需要进行干扰对消的子载波数。
步骤209、根据所述加权系数和所述需要进行干扰对消的子载波数计算所述需要进行干扰对消的子载波上的干扰;
具体的实现方法可以是:以所述中心频点位置为中心选取M个子载波作为观测样点,根据所述观测样点、所述加权系数和所述需要进行干扰对消的子载波数计算所述需要进行干扰对消的子载波上的干扰。
步骤210、根据所述需要进行干扰对消的子载波上的干扰,以及所述需要进行干扰对消的子载波对应的所述频域信号进行干扰对消,以消除所述时域信号的窄带干扰。
本实施例,通过对窄带干扰的强度进行实时检测,根据其强度选择进行干扰对消的相关加权系数,实现对接收信号进行时域加窗处理和频域干扰对消处理,解决现有的窄带干扰方法复杂度较高,灵活性较低,不易于实现的问题。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领 域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (24)

  1. 一种接收装置,其特征在于,包括:
    信道类型确定模块,用于对接收的时域信号所经历的多径信道的时延扩展进行测量,并根据测量结果确定所述多径信道的信道类型;
    加权系数选择模块,用于根据所述信道类型选择加权系数;
    时域加窗处理模块,用于根据所述加权系数对所述时域信号进行时域加窗处理;
    频域干扰对消处理模块,用于根据所述加权系数,对经所述时域加窗处理输出的信号进行频域干扰对消处理,以消除所述时域信号的窄带干扰。
  2. 根据权利要求1所述的装置,其特征在于,所述信道类型确定模块,具体用于对所述时域信号所经历的多径信道的时延扩展进行测量获取时延扩展测量值;根据所述时延扩展测量值与时延扩展预设值的比较结果确定所述信道类型。
  3. 根据权利要求2所述的装置,其特征在于,所述信道类型确定模块,具体用于判断所述时延扩展测量值是否小于第一时延扩展预设值;若所述时延扩展测量值小于所述第一时延扩展预设值,则所述信道类型为扩展步行模型A EPA;若所述时延扩展测量值大于或等于所述第一时延扩展预设值,且所述时延扩展测量值小于所述第二时延扩展预设值,则所述信道类型为扩展车辆模型A EVA;若所述时延扩展测量值大于或等于所述第一时延扩展预设值,且所述时延扩展测量值大于或等于所述第二时延扩展预设值,则所述信道类型为扩展典型城市模型ETU。
  4. 根据权利要求1~3中任一项所述的装置,其特征在于,所述加权系数选择模块,具体用于根据所述信道类型从预设信道参数配置表中选择与所述信道类型匹配的所述加权系数,所述加权系数包括时域窗长、时域加窗系数、最大干扰对消子载波数以及干扰估计加权系数。
  5. 根据权利要求4所述的装置,其特征在于,所述时域加窗处理模块,具体用于根据所述时域窗长和所述时域加窗系数对所述时域信号进行所述时域加窗处理,所述时域加窗处理包括加窗处理和循环前缀CP合并处理。
  6. 根据权利要求4或5所述的装置,其特征在于,还包括:
    快速傅里叶变换FFT模块,用于对经过所述时域加窗处理后的信号进行FFT获取频域信号。
  7. 根据权利要求6所述的装置,其特征在于,所述频域干扰对消处理模块,包括:
    窄带干扰功率计算单元,用于确定窄带干扰的中心频点位置;根据所述中心频点位置和所述频域信号计算窄带干扰的功率;
    干扰对消单元,用于根据所述最大干扰对消子载波数和所述窄带干扰的功率确定需要进行干扰对消的子载波数;根据所述加权系数和所述需要进行干扰对消的子载波数计算所述需要进行干扰对消的子载波上的干扰;根据所述需要进行干扰对消的子载波上的干扰,以及所述需要进行干扰对消的子载波对应的所述频域信号进行干扰对消,以消除所述时域信号的窄带干扰。
  8. 根据权利要求7所述的装置,其特征在于,所述窄带干扰功率计算单元,具体用于以所述中心频点位置为中心,累加Q个子载波对应的所述频域信号的功率获取所述窄带干扰的功率,Q由窄带干扰带宽和子载波间隔确定,Q为自然数。
  9. 根据权利要求7或8所述的装置,其特征在于,所述干扰对消单元,具体用于从预设子载波数映射表中查询与所述窄带干扰的功率匹配的功率等级,根据所述功率等级和所述最大干扰对消子载波数确定所述需要进行干扰对消的子载波数。
  10. 根据权利要求7~9中任一项所述的装置,其特征在于,所述干扰对消单元,具体用于以所述中心频点位置为中心选取M个子载波作为观测样点,根据所述观测样点、所述加权系数和所述需要进行干扰对消的子载波数计算所述需要进行干扰对消的子载波上的干扰,M为自然数。
  11. 根据权利要求7~10中任一项所述的装置,其特征在于,所述窄带干扰功率计算单元,具体用于根据控制信令确定所述中心频点位置。
  12. 根据权利要求7~10中任一项所述的装置,其特征在于,还包括:
    干扰频点搜索模块,用于通过遍历所述频域信号对应的所有子载波 确定所述中心频点位置。
  13. 一种自适应窄带干扰抑制方法,其特征在于,包括:
    对接收的时域信号所经历的多径信道的时延扩展进行测量,并根据测量结果确定所述多径信道的信道类型;
    根据所述信道类型选择加权系数;
    根据所述加权系数对所述时域信号进行时域加窗处理;
    根据所述加权系数,对经所述时域加窗处理输出的信号进行频域干扰对消处理,以消除所述时域信号的窄带干扰。
  14. 根据权利要求13所述的方法,其特征在于,所述对接收的时域信号所经历的多径信道的时延扩展进行测量,并根据测量结果确定信道类型,包括:
    对所述时域信号所经历的多径信道的时延扩展进行测量获取时延扩展测量值;
    根据所述时延扩展测量值与时延扩展预设值的比较结果确定所述信道类型。
  15. 根据权利要求14所述的方法,其特征在于,所述根据所述时延扩展测量值与时延扩展预设值的比较结果确定所述信道类型,包括:
    判断所述时延扩展测量值是否小于第一时延扩展预设值;
    若所述时延扩展测量值小于所述第一时延扩展预设值,则所述信道类型为扩展步行模型A EPA;
    若所述时延扩展测量值大于或等于所述第一时延扩展预设值,且所述时延扩展测量值小于所述第二时延扩展预设值,则所述信道类型为扩展车辆模型A EVA;
    若所述时延扩展测量值大于或等于所述第一时延扩展预设值,且所述时延扩展测量值大于或等于所述第二时延扩展预设值,则所述信道类型为扩展典型城市模型ETU。
  16. 根据权利要求13~15中任一项所述的方法,其特征在于,所述根据所述信道类型选择加权系数,包括:
    根据所述信道类型从预设信道参数配置表中选择与所述信道类型匹配的所述加权系数,所述加权系数包括时域窗长、时域加窗系数、最大 干扰对消子载波数以及干扰估计加权系数。
  17. 根据权利要求16所述的方法,其特征在于,所述根据所述加权系数对所述时域信号进行时域加窗处理,包括:
    根据所述时域窗长和所述时域加窗系数对所述时域信号进行所述时域加窗处理,所述时域加窗处理包括加窗处理和循环前缀CP合并处理。
  18. 根据权利要求16或17所述的方法,其特征在于,所述根据所述加权系数,对经所述时域加窗处理输出的信号进行频域干扰对消处理,以消除所述时域信号的窄带干扰之前,还包括:
    对经过所述时域加窗处理后的信号进行快速傅里叶变换FFT获取频域信号。
  19. 根据权利要求18所述的方法,其特征在于,所述根据所述加权系数,对经所述时域加窗处理输出的信号进行频域干扰对消处理,以消除所述时域信号的窄带干扰,包括:
    确定窄带干扰的中心频点位置;
    根据所述中心频点位置和所述频域信号计算窄带干扰的功率;
    根据所述最大干扰对消子载波数和所述窄带干扰的功率确定需要进行干扰对消的子载波数;
    根据所述加权系数和所述需要进行干扰对消的子载波数计算所述需要进行干扰对消的子载波上的干扰;
    根据所述需要进行干扰对消的子载波上的干扰,以及所述需要进行干扰对消的子载波对应的所述频域信号进行干扰对消,以消除所述时域信号的窄带干扰。
  20. 根据所述19所述的方法,其特征在于,所述根据所述中心频点位置和所述频域信号计算窄带干扰的功率,包括:
    以所述中心频点位置为中心,累加Q个子载波对应的所述频域信号的功率获取所述窄带干扰的功率,Q由窄带干扰带宽和子载波间隔确定,Q为自然数。
  21. 根据所述19或20所述的方法,其特征在于,所述根据所述最大干扰对消子载波数和所述窄带干扰的功率确定需要进行干扰对消的子载波数,包括:
    从预设子载波数映射表中查询与所述窄带干扰的功率匹配的功率等级,根据所述功率等级和所述最大干扰对消子载波数确定所述需要进行干扰对消的子载波数。
  22. 根据所述19~21中任一项所述的方法,其特征在于,所述根据所述加权系数和所述需要进行干扰对消的子载波数计算所述需要进行干扰对消的子载波上的干扰,包括:
    以所述中心频点位置为中心选取M个子载波作为观测样点,根据所述观测样点、所述加权系数和所述需要进行干扰对消的子载波数计算所述需要进行干扰对消的子载波上的干扰,M为自然数。
  23. 根据权利要求19~22中任一项所述的方法,其特征在于,所述确定窄带干扰的中心频点位置,包括:
    根据控制信令确定所述中心频点位置。
  24. 根据权利要求19~22中任一项所述的方法,其特征在于,所述确定窄带干扰的中心频点位置,包括:
    通过遍历所述频域信号对应的所有子载波确定所述中心频点位置。
PCT/CN2015/078532 2014-09-23 2015-05-08 自适应窄带干扰消除方法和装置 WO2016045388A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15843122.1A EP3182661A4 (en) 2014-09-23 2015-05-08 Self-adaptive narrow band interference cancellation method and apparatus
US15/466,368 US10270626B2 (en) 2014-09-23 2017-03-22 Adaptive narrowband interference cancellation method, and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410489628.2A CN105516032B (zh) 2014-09-23 2014-09-23 自适应窄带干扰消除方法和装置
CN201410489628.2 2014-09-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/466,368 Continuation US10270626B2 (en) 2014-09-23 2017-03-22 Adaptive narrowband interference cancellation method, and apparatus

Publications (1)

Publication Number Publication Date
WO2016045388A1 true WO2016045388A1 (zh) 2016-03-31

Family

ID=55580244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078532 WO2016045388A1 (zh) 2014-09-23 2015-05-08 自适应窄带干扰消除方法和装置

Country Status (4)

Country Link
US (1) US10270626B2 (zh)
EP (1) EP3182661A4 (zh)
CN (1) CN105516032B (zh)
WO (1) WO2016045388A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106656887A (zh) * 2016-10-19 2017-05-10 清华大学 一种信号中心频点和带宽的估算方法
CN113595587A (zh) * 2021-08-16 2021-11-02 中国电子科技集团公司第五十四研究所 一种用于变换域干扰抑制的自适应幅度恢复系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9866411B1 (en) * 2016-10-21 2018-01-09 Samsung Electronics Co., Ltd Apparatus and method for single antenna interference cancellation (SAIC) enhancement
CN110149636B (zh) * 2018-02-13 2021-08-13 上海华为技术有限公司 信号接收方法、装置及设备
CN109150246B (zh) * 2018-09-13 2021-06-22 北京四季豆信息技术有限公司 一种窄带干扰噪声的检测方法、装置及集成电路
CN109639376B (zh) * 2018-11-29 2021-10-29 中国科学院上海微系统与信息技术研究所 一种电力无线专网系统的频谱扫描方法
CN112511479B (zh) * 2019-09-16 2023-05-09 宇通客车股份有限公司 一种载波通信方法
CN112804177B (zh) * 2019-11-14 2024-01-09 深圳市中兴微电子技术有限公司 Ofdm时域加窗方法及装置
US10812133B1 (en) 2020-01-08 2020-10-20 Rockwell Collins, Inc. System and method for robust interference detection
CN111585932B (zh) * 2020-03-25 2021-03-19 北京瀚诺半导体科技有限公司 一种适用于宽带ofdm系统的动态窄带干扰规避方法、装置、存储介质及终端
CN112020154B (zh) * 2020-09-02 2023-01-31 广东省新一代通信与网络创新研究院 一种无线网络的随机接入方法及系统
CN113341381B (zh) * 2021-03-12 2024-04-16 中国人民解放军空军预警学院 一种全自动抗雷达副瓣干扰系统
US20230199818A1 (en) * 2021-12-20 2023-06-22 Qualcomm Incorporated Active interference cancellation for sidelink communications
CN114362837B (zh) * 2022-01-10 2023-12-29 中国电子科技集团公司第五十四研究所 一种扩频卫星信号窄带干扰自适应消除装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1909383A (zh) * 2006-08-09 2007-02-07 华为技术有限公司 一种窄带干扰抑制方法及其装置
CN101136654A (zh) * 2007-06-06 2008-03-05 中兴通讯股份有限公司 一种消除通信系统中窄带干扰的方法及装置
CN101204057A (zh) * 2005-04-21 2008-06-18 艾利森电话股份有限公司 时域加窗和载波间干扰消除
WO2011134099A1 (en) * 2010-04-26 2011-11-03 Nokia Siemens Networks Oy Dynamic frequency refarming

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6014412A (en) * 1996-04-19 2000-01-11 Amati Communications Corporation Digital radio frequency interference canceller
US7023937B2 (en) * 2001-03-01 2006-04-04 Texas Instruments Incorporated Receiver window design for multicarrier communication systems
US7796716B2 (en) * 2006-08-17 2010-09-14 Texas Instruments Incorporated Eliminating narrowband interference in a receiver
US8009750B2 (en) 2007-12-21 2011-08-30 Qualcomm, Incorporated Receiver window shaping in OFDM to mitigate narrowband interference
CN106134517B (zh) * 2009-12-08 2014-01-22 北京遥测技术研究所 直接序列扩频接收机窄带干扰抑制装置和方法
US8254510B2 (en) * 2009-12-23 2012-08-28 Industrial Technology Research Institute Apparatus and method for inter-carrier interference cancellation
US8385387B2 (en) * 2010-05-20 2013-02-26 Harris Corporation Time dependent equalization of frequency domain spread orthogonal frequency division multiplexing using decision feedback equalization
CN103368876A (zh) * 2012-03-31 2013-10-23 富士通株式会社 信道估计方法和设备
US9509416B2 (en) 2012-09-20 2016-11-29 Broadcom Corporation Interference cancellation within OFDM communications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101204057A (zh) * 2005-04-21 2008-06-18 艾利森电话股份有限公司 时域加窗和载波间干扰消除
CN1909383A (zh) * 2006-08-09 2007-02-07 华为技术有限公司 一种窄带干扰抑制方法及其装置
CN101136654A (zh) * 2007-06-06 2008-03-05 中兴通讯股份有限公司 一种消除通信系统中窄带干扰的方法及装置
WO2011134099A1 (en) * 2010-04-26 2011-11-03 Nokia Siemens Networks Oy Dynamic frequency refarming

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3182661A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106656887A (zh) * 2016-10-19 2017-05-10 清华大学 一种信号中心频点和带宽的估算方法
CN106656887B (zh) * 2016-10-19 2019-08-09 清华大学 一种信号中心频点和带宽的估算方法
CN113595587A (zh) * 2021-08-16 2021-11-02 中国电子科技集团公司第五十四研究所 一种用于变换域干扰抑制的自适应幅度恢复系统

Also Published As

Publication number Publication date
EP3182661A4 (en) 2017-09-27
CN105516032A (zh) 2016-04-20
EP3182661A1 (en) 2017-06-21
US20170195143A1 (en) 2017-07-06
US10270626B2 (en) 2019-04-23
CN105516032B (zh) 2018-11-16

Similar Documents

Publication Publication Date Title
WO2016045388A1 (zh) 自适应窄带干扰消除方法和装置
US9118401B1 (en) Method of adaptive interference mitigation in wide band spectrum
TWI422193B (zh) 通道估測裝置與方法
CN110445733B (zh) 自适应信道去噪方法及自适应信道去噪装置
CN105791194B (zh) 一种可抗窄带干扰的同步方法及其系统
CN110149656B (zh) 无线信号覆盖测试方法及装置
JP5360205B2 (ja) 移動通信端末におけるドップラー拡散評価装置及び方法
US9647719B2 (en) Method, system, and apparatus for spectrum sensing of radar signals
TWI493210B (zh) A method and apparatus for testing the speed of a terminal movement
CN113447893B (zh) 一种雷达脉冲信号频谱自动检测方法、系统及介质
US20090092041A1 (en) Apparatus and Method for Performing a Scan Procedure and Mobile Station Comprising the Same
US9374245B2 (en) Observation of the true channel from band-limited frequency domain observations
CN106464420B (zh) 估计基带自干扰信道响应的方法和装置
CN115865109A (zh) 多接收天线的干扰抑制合并方法、装置及介质、接收终端
KR20110082902A (ko) 무선 접속 시스템에서 캐리어대 잡음비의 추정 방법 및 기지국 장치
US20110310945A1 (en) Radio communication apparatus and radio communication method
US20170187564A1 (en) Delay span classification for ofdm systems using selective filtering in the frequency domain
CN112995078B (zh) 一种ofdma上行链路的频偏补偿算法
EP2695344B1 (en) Source detection by spectrum sensing
CN103701736A (zh) Lte系统中的干扰抑制方法及装置
CN103391266B (zh) 一种频域信道响应的获取方法和设备
JP2011049937A (ja) キャリア間干渉除去装置及びキャリア間干渉除去方法
CN105207962B (zh) 一种高频率精度的干扰信号搜索方法
CN110636019A (zh) 用于窄带载波聚合系统的信道估计方法及装置、存储介质、终端
KR101542296B1 (ko) Ofdm 통신 시스템을 위한 채널 추정 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843122

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015843122

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015843122

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE