WO2016045379A1 - 一种反射型显示装置 - Google Patents

一种反射型显示装置 Download PDF

Info

Publication number
WO2016045379A1
WO2016045379A1 PCT/CN2015/077482 CN2015077482W WO2016045379A1 WO 2016045379 A1 WO2016045379 A1 WO 2016045379A1 CN 2015077482 W CN2015077482 W CN 2015077482W WO 2016045379 A1 WO2016045379 A1 WO 2016045379A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
display device
selective reflection
reflective display
Prior art date
Application number
PCT/CN2015/077482
Other languages
English (en)
French (fr)
Inventor
左雄灿
张俊瑞
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/785,587 priority Critical patent/US9835901B2/en
Priority to EP15766378.2A priority patent/EP3200014B1/en
Publication of WO2016045379A1 publication Critical patent/WO2016045379A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133541Circular polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/05Function characteristic wavelength dependent
    • G02F2203/055Function characteristic wavelength dependent wavelength filtering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/09Function characteristic transflective
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/01Number of plates being 1
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/05Single plate on one side of the LC cell

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a reflective display device.
  • a liquid crystal display device is a commonly used display device.
  • the liquid crystal display device generally includes a backlight module, a lower polarizer, a display panel, and an upper polarizer.
  • the display panel includes an array substrate, a color filter substrate, and a liquid crystal therebetween. Molecular layer.
  • the backlight module provides light to the display panel, and the display panel displays the screen.
  • the light emitted by the backlight module sequentially passes through the lower polarizer, the array substrate, the liquid crystal molecular layer, the color filter substrate, and the upper polarizer, thereby reaching the human eye.
  • the inventors have found that the liquid crystal display device of the prior art needs to use a backlight module to provide light to the display panel during the display process, so that the liquid crystal display device is thick and heavy, and the energy consumption is high.
  • the technical problem to be solved by the present invention is to provide a reflective display device which is lighter in weight and lower in energy consumption.
  • an embodiment of the present invention provides a reflective display device, which adopts the following technical solutions:
  • a reflective display device includes a polarizer disposed in sequence, a light transmissive first substrate, a liquid crystal molecular layer, and a second substrate.
  • the reflective display device further includes: between the liquid crystal molecular layer and the second substrate A selective reflective layer that reflects light having a wavelength in a particular wavelength range.
  • the selective reflection layer comprises a first portion, a second portion and a third portion, the first portion reflecting light having a wavelength in a red light wavelength range, and the second portion reflecting a wavelength in a green light wavelength range Light, the third portion reflects light having a wavelength in the blue wavelength range.
  • the first portion, the second portion, and the third portion transmit light in a wavelength range that is not reflected, and the first portion, the second portion, and the third portion are electrically conductive Sex.
  • the material of the first portion is silver nanoparticles coated with a silver coating
  • the material of the second portion is titanium dioxide nanoparticles coated with a silver coating
  • the material of the third portion is coated. Silver coated silicon nanoparticles.
  • the reflective display device further includes a quarter wave plate between the polarizer and the first substrate, the selective reflection layer is located on the second substrate, the selectivity An insulating layer, a thin film transistor, a passivation layer, and a pixel electrode are sequentially disposed on the reflective layer, and the pixel electrode is connected to a drain of the thin film transistor through a via hole on the passivation layer.
  • the reflective display device further includes a quarter wave plate between the polarizer and the first substrate, and the second substrate is further provided with a thin film transistor and a passivation layer, A selective reflection layer is on the passivation layer, and the selective reflection layer is connected to a drain of the thin film transistor through a via hole on the passivation layer.
  • the selective reflection layer is located on the second substrate, and the selective reflection layer is provided with an insulating layer, and the insulating layer is provided with a thin film transistor, a common electrode, a passivation layer and a pixel electrode.
  • the pixel electrode is connected to the drain of the thin film transistor through a via hole on the passivation layer, and the common electrode and/or the pixel electrode has a slit thereon.
  • a common electrode, a thin film transistor and a passivation layer are further disposed on the second substrate, the selective reflection layer is located on the passivation layer, and the selective reflection layer passes through the passivation layer A via is connected to a drain of the thin film transistor, and a slit is disposed on the selective reflection layer and/or the common electrode.
  • a thin film transistor, a passivation layer and a pixel electrode are further disposed on the second substrate, and the pixel electrode is connected to a drain of the thin film transistor through a via hole on the passivation layer, the selectivity A slit is provided on the reflective layer and/or the pixel electrode.
  • a black matrix of a grid shape is disposed on one side of the first substrate adjacent to the liquid crystal molecular layer, and the black matrix covers a position where any two portions of the first portion, the second portion, and the third portion are joined.
  • the second substrate is transparent or opaque, and when the second substrate is transparent, an absorption layer is disposed on a side of the second substrate away from the liquid crystal molecular layer, and the absorption layer absorbs and transmits Light rays of the selective reflection layer and the second substrate.
  • Embodiments of the present invention provide a reflective display device including a polarizer disposed in sequence, a light transmissive first substrate, a liquid crystal molecular layer, and a second substrate, and the reflective display device further includes a liquid crystal molecular layer Selective reflection between the second substrate a layer, the selective reflection layer reflects light having a wavelength in a specific wavelength range, and the external light is sequentially irradiated onto the selective reflection layer through the polarizer, the first substrate and the liquid crystal molecular layer, and the selective reflection layer has a wavelength in a specific wavelength range. The light is reflected, and the reflected light is emitted through the liquid crystal layer, the first substrate, and the polarizer, thereby realizing color display.
  • the reflective display device in the embodiment of the present invention does not need to use the backlight module to provide light during the display process, and does not need the color film substrate and the second polarizer. Therefore, the reflective display device is light and thin. Low energy consumption.
  • FIG. 1 is a first schematic view of a reflective display device in accordance with an embodiment of the present invention
  • FIG. 2 is a second schematic view of a reflective display device according to an embodiment of the present invention.
  • FIG. 3 is a schematic view 3 of a reflective display device according to an embodiment of the present invention.
  • FIG. 4 is a schematic view 4 of a reflective display device according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram 5 of a reflective display device according to an embodiment of the present invention.
  • FIG. 6 is a schematic view 6 of a reflective display device according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram 1 showing a display principle of a reflective display device in a TN display mode according to an embodiment of the present invention
  • FIG. 8 is a second schematic diagram of a display principle of a reflective display device in a TN display mode according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram 1 showing a display principle of a reflective display device in an ECB display mode according to an embodiment of the present invention
  • FIG. 10 is a second schematic diagram of a display principle of a reflective display device in an ECB display mode according to an embodiment of the present invention.
  • Figure 11 is a schematic view 7 of a reflective display device in accordance with an embodiment of the present invention.
  • FIG. 12 is a schematic diagram 8 of a reflective display device according to an embodiment of the present invention.
  • Figure 13 is a schematic view IX of a reflective display device in accordance with an embodiment of the present invention.
  • an embodiment of the present invention provides a reflective display device, which is lighter in weight and lower in energy consumption.
  • the reflective display device includes a polarizer 1 , a transparent first substrate 2 , a liquid crystal molecular layer 3 , and a second substrate 4 , which are sequentially disposed, and the reflective display device further includes a liquid crystal molecule.
  • a selective reflection layer 5 between the layer 3 and the second substrate 4, the selective reflection layer 5 reflects light having a wavelength in a specific wavelength range.
  • the second substrate 4 in the embodiment of the present invention may be transparent or opaque.
  • the second substrate 4 is transparent, as shown in FIG. 2, the second substrate 4 is away from the liquid crystal molecular layer 3 on one side.
  • An absorbing layer 6 is provided, and the absorbing layer 6 absorbs light transmitted through the selective reflection layer 5 and the second substrate 4.
  • Embodiments of the present invention provide a reflective display device including a polarizer disposed in sequence, a light transmissive first substrate, a liquid crystal molecular layer, and a second substrate, and the reflective display device further includes a liquid crystal molecular layer And a selective reflection layer between the second substrate and the selective reflection layer for reflecting light having a wavelength in a specific wavelength range, wherein the external light is sequentially irradiated onto the selective reflection layer through the polarizer, the first substrate and the liquid crystal molecule layer, and the selective The reflective layer reflects light having a wavelength in a specific wavelength range, and the reflected light is emitted through the liquid crystal molecular layer, the first substrate, and the polarizer to realize color display, and the reflective type in the embodiment of the present invention is compared with the prior art.
  • the display device does not need to use the backlight module to provide light during the display process, and does not need the color film substrate and the second polarizer. Therefore, the reflective display device It is lighter and thinner and consumes less energy.
  • the reflective display device in the embodiment of the present invention can realize color display without using a color filter layer, and avoids light passing through the color filter layer. The resulting loss increases the utilization of light.
  • the reflective display device can only display one color, and when the selective reflection layer 5 includes a plurality of rays for reflecting light having different wavelengths In some cases, the reflective display device can realize color display.
  • the selective reflection layer 5 includes a first portion 51, a second portion 52, and a third portion 53, wherein the first portion 51 reflects a wavelength in a red wavelength range (622 to 760 nm).
  • the second portion 52 reflects light having a wavelength in the green wavelength range (492 to 577 nm), and the third portion 53 reflects light having a wavelength in the blue wavelength range (435 to 450 nm).
  • the first portion 51, the second portion 52, and the third portion 53 are capable of transmitting light in a wavelength range that is not reflected, and the first portion 51, the second portion 52, and the third portion 53 are electrically conductive.
  • the material of the first portion 51 is silver nanoparticles coated with a silver coating
  • the second portion 52 is made of titanium dioxide nanoparticles coated with a silver coating
  • the third portion 53 is coated with silver. Coated silicon nanoparticles.
  • SPR Surface Plasmon Resonance
  • the selective reflection layer 5 has a property of being transparent to light.
  • the silver-coated silver nanoparticles can reflect light having a wavelength in the blue wavelength range
  • the silver-coated titanium dioxide nanoparticles can reflect light having a wavelength in the green wavelength range, and are coated with silver.
  • the coated silicon nanoparticles are capable of reflecting light having a wavelength in the blue wavelength range.
  • the selective reflection layer 5 includes the first portion 51, the second portion 52, and the third portion 53, in order to prevent any two of the first portion 51, the second portion 52, and the third portion 53 of the selective reflection layer 5
  • a black matrix 7 having a grid shape is disposed on a side of the first substrate 2 adjacent to the liquid crystal molecular layer 3, and the black matrix 7 covers the first portion and the second portion. Part and the third part of any two parts Pick up location.
  • the display mode of the reflective display device having the above configuration may be a display mode such as TN, ECB, ADS, VA, IPS, or FFS.
  • embodiments of the present invention provide several possible specific structures of a reflective display device.
  • the reflective display device further includes a quarter wave plate 13 between the polarizer 1 and the first substrate 2. Further, the selective reflection layer 5 is located on the second substrate 4. On the selective reflection layer 5, an insulating layer 8, a thin film transistor 9, a passivation layer 10, and a pixel electrode 11 are sequentially disposed, wherein the pixel electrode 11 is connected to the drain of the thin film transistor 9 through a via hole on the passivation layer 10. A common electrode 12 is disposed on a side of the first substrate 2 adjacent to the liquid crystal molecule layer 3.
  • the first portion 51 of the selective reflection layer 5 is made of silver nanoparticles coated with a silver coating
  • the second portion 52 is made of a titanium coating coated with a silver coating
  • the third portion 53 When the material is a silicon nanoparticle coated with a silver coating, the selective reflection layer 5 has a property of transmitting light and is electrically conductive, and the selective reflection layer 5 can function as a pixel electrode.
  • the reflective display device further includes a quarter wave plate 13 between the polarizer 1 and the first substrate 2.
  • the second substrate 4 is further provided with a thin film transistor 9 And the passivation layer 10, the selective reflection layer 5 is located on the passivation layer 10, and the selective reflection layer 5 is connected to the drain of the thin film transistor 9 through a via hole on the passivation layer 10, and the first substrate 2 is adjacent to the liquid crystal molecule layer 3 One side is provided with a common electrode 12.
  • the long-axis direction of the liquid crystal molecules close to the first substrate 2 is parallel to the polarizing plate 1
  • the long-axis direction of the liquid crystal molecules adjacent to the second substrate 4 is aligned perpendicular to the transmission axis direction of the polarizer 1, and the display mode of the reflective display device having the first and second structures is the TN display mode.
  • liquid crystal molecules in the liquid crystal molecule layer 3 are arranged in a direction parallel to the direction of the electric field along the long axis.
  • the external light passes through the polarizer 1 (the direction of the transmission axis of the polarizer 1 in FIG.
  • the linearly polarized light passes through the quarter-wave plate 13 and becomes right-handed circularly polarized light; the polarization state of the right-handed circularly polarized light does not change after passing through the liquid crystal molecule layer 3,
  • the selective reflection layer 5 Reflecting light having a specific wavelength range therein; since the direction of propagation of the reflected light changes, the portion of the light becomes left-handed circularly polarized light; the polarization direction of the left-handed circularly polarized light does not change after passing through the liquid crystal molecule layer 3,
  • the left circularly polarized light passes through the quarter wave plate 13 and becomes linearly polarized light; at this time, the polarization direction of the linearly polarized light is perpendicular to the
  • the linearly polarized light having parallel directions of the transmission axis; the linearly polarized light passes through the quarter-wave plate 13 and becomes right-handed circularly polarized light; the right-handed circularly polarized light passes through the liquid crystal molecule layer 3 to become a polarization direction and a polarizer
  • the linearly polarized light of the first direction of the transmission axis is parallel.
  • the selective reflection layer 5 When the linearly polarized light is irradiated to the selective reflection layer 5, the selective reflection layer 5 reflects the light having a specific wavelength range therein; the reflected light is the polarization direction and the polarizer a linearly polarized light having a direction perpendicular to the direction of the transmission axis, and the linearly polarized light passes through the liquid crystal molecule layer 3 to become right-handed circularly polarized light; the right-handed circularly polarized light passes through the quarter-wave plate 13 and becomes a polarization direction and The linearly polarized light having the parallel direction of the transmission axis of the polarizer 1 can emit the polarizer 1, and the reflective display device realizes color display.
  • the long axes of all the liquid crystal molecules are 45° with respect to the transmission axis direction of the polarizer 1.
  • the display mode of the reflective display device is the ECB display mode.
  • liquid crystal molecules in the liquid crystal molecule layer 3 are arranged in a direction parallel to the direction of the electric field along the long axis.
  • the external light passes through the polarizer 1 (the light transmission axis direction of the polarizer 1 in FIG.
  • the linearly polarized light passes through the quarter-wave plate 13 and becomes right-handed circularly polarized light; the polarization state of the right-handed circularly polarized light does not change after passing through the liquid crystal molecule layer 3;
  • the selective reflection layer 5 reflects light having a specific wavelength range therein, and since the direction of propagation of the reflected light changes, the partial light becomes left-handed circularly polarized light.
  • the polarization direction does not change until the left circularly polarized light passes through
  • the quarter-wave plate 13 becomes linearly polarized light; the polarization direction of the linearly polarized light is perpendicular to the transmission axis direction of the polarizer 1, and the polarizer 1 cannot be emitted, and the reflective display device displays black.
  • the long axes of all the liquid crystal molecules in the liquid crystal layer 3 are at an angle of 45° to the direction of the transmission axis of the polarizer 1, and the liquid crystal layer 3
  • the adjustment of the light is equivalent to a quarter-wave plate with a slow axis angle of 135°.
  • the external light passes through the polarizer 1 (the light transmission axis direction of the polarizer 1 in FIG. 10 is 0°, and the slow axis angle of the quarter wave plate 13 is 135°), and then becomes the polarization direction and the polarizer 1 Linearly polarized light parallel to the direction of the transmission axis.
  • the linearly polarized light passes through the quarter-wave plate 13 and becomes right-handed circularly polarized light; the right-handed circularly polarized light passes through the liquid crystal molecular layer 3 and becomes linearly polarized with a polarization direction perpendicular to the transmission axis direction of the polarizer 1.
  • the selective reflection layer 5 When the linearly polarized light is irradiated to the selective reflection layer 5, the selective reflection layer 5 reflects light having a specific wavelength range therein, and the polarization direction of the reflected light is still perpendicular to the transmission axis direction of the polarizer 1;
  • the linearly polarized light passes through the liquid crystal molecular layer 3 and becomes right-handed circularly polarized light; the right-handed circularly polarized light passes through the quarter-wave plate 13 and becomes linearly polarized light whose polarization direction is parallel to the transmission axis direction of the polarizing plate 1.
  • the polarizer 1 can be emitted, and the reflective display device realizes color display.
  • the selective reflection layer 5 is disposed on the second substrate 4.
  • the selective reflection layer 5 is provided with an insulating layer 8, and the insulating layer 8 is provided with a thin film transistor 9, a common electrode 12, and passivation.
  • the layer 10 and the pixel electrode 11 are connected to the drain of the thin film transistor 9 through a via hole on the passivation layer 10, and the common electrode 12 and/or the pixel electrode 11 have a slit.
  • the first portion 51 of the selective reflection layer 5 is made of silver nanoparticles coated with a silver coating
  • the second portion 52 is made of titanium dioxide nanoparticles coated with a silver coating
  • the third portion 52 When the material is a silicon nanoparticle coated with a silver coating, the selective reflection layer 5 has a property of transmitting light and is electrically conductive, and the selective reflection layer 5 can function as a pixel electrode.
  • the second substrate 4 is further provided with a common electrode 12, a thin film transistor 9 and a passivation layer 10, the selective reflection layer 5 is on the passivation layer 10, and the selective reflection layer 5 is passivated.
  • the via holes on the layer 10 are connected to the drain of the thin film transistor 9, and the selective reflection layer 5 and/or the common electrode 12 are provided with slits.
  • the first portion 51 of the selective reflection layer 5 is made of silver nanoparticles coated with a silver coating
  • the second portion 52 is made of a titanium coated nanoparticle coated with a silver coating
  • the third portion 53 When the material is a silicon nanoparticle coated with a silver coating, the selective reflection layer 5 has a property of transmitting light and is electrically conductive, and the selective reflection layer 5 can function as a common electrode.
  • the second substrate 4 is further provided with a thin film transistor 9, a passivation layer 10 and a pixel electrode 11, and the pixel electrode 11 is connected to the drain of the thin film transistor 9 through a via hole on the passivation layer 10.
  • a slit is provided on the selective reflection layer 5 and/or the pixel electrode 11.
  • the display mode of the reflective display device having the third, fourth or fifth structure is the ADS display mode.
  • a specific structure of a reflective display device in a display mode of a display mode of VA, IPS, or FFS can be obtained by those skilled in the art based on the embodiments of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)

Abstract

一种反射型显示装置,涉及显示技术领域,该反射型显示装置较轻薄,能耗较低。该反射型显示装置包括依次设置的偏光片(1)、透光的第一基板(2)、液晶分子层(3)和第二基板(4),该反射型显示装置还包括位于所述液晶分子层(3)和所述第二基板(4)之间的选择性反射层(5),所述选择性反射层(5)反射波长在特定波长范围内的光线。

Description

一种反射型显示装置 技术领域
本发明涉及显示技术领域,尤其涉及一种反射型显示装置。
背景技术
液晶显示装置是一种常用的显示装置,液晶显示装置通常包括背光模组、下偏光片、显示面板和上偏光片等结构,显示面板包括阵列基板、彩膜基板以及位于二者之间的液晶分子层。
具体地,在液晶显示装置的显示过程中,背光模组为显示面板提供光线,显示面板显示画面。具体地,背光模组发射出的光线依次经过下偏光片、阵列基板、液晶分子层、彩膜基板和上偏光片,进而到达人眼。
发明人发现,现有技术中的液晶显示装置在显示过程中需要使用背光模组为显示面板提供光线,使得液晶显示装置较厚重,能耗高。
发明内容
本发明所要解决的技术问题在于提供一种反射型显示装置,该反射型显示装置较轻薄,能耗较低。
为解决上述技术问题,本发明实施例提供了一种反射型显示装置,采用如下技术方案:
一种反射型显示装置,包括依次设置的偏光片、透光的第一基板、液晶分子层和第二基板,反射型显示装置还包括:位于所述液晶分子层和所述第二基板之间的选择性反射层,所述选择性反射层反射波长在特定波长范围内的光线。
优选地,所述选择性反射层包括第一部分、第二部分和第三部分,所述第一部分反射波长在红光波长范围内的光线,所述第二部分反射波长在绿光波长范围内的光线,所述第三部分反射波长在蓝光波长范围内的光线。
优选地,所述第一部分、所述第二部分和所述第三部分透过未被反射的波长范围内的光线,且所述第一部分、所述第二部分和所述第三部分具有导电性。
优选地,所述第一部分的材质为包覆有银涂层的银纳米粒子,所述第二部分的材质为包覆有银涂层的二氧化钛纳米粒子,所述第三部分的材质为包覆有银涂层的硅纳米粒子。
优选地,所述反射型显示装置还包括位于所述偏光片与所述第一基板之间的四分之一波片,所述选择性反射层位于所述第二基板上,所述选择性反射层上依次设置有绝缘层、薄膜晶体管、钝化层和像素电极,所述像素电极通过所述钝化层上的过孔与所述薄膜晶体管的漏极连接。
优选地,所述反射型显示装置还包括位于所述偏光片与所述第一基板之间的四分之一波片,所述第二基板上还设置有薄膜晶体管和钝化层,所述选择性反射层位于所述钝化层上,所述选择性反射层通过所述钝化层上的过孔与所述薄膜晶体管的漏极连接。
优选地,所述选择性反射层位于所述第二基板上,所述选择性反射层上设置有绝缘层,所述绝缘层上设置有薄膜晶体管、公共电极、钝化层和像素电极,所述像素电极通过所述钝化层上的过孔与所述薄膜晶体管的漏极连接,所述公共电极和/或所述像素电极上有狭缝。
优选地,所述第二基板上还设置有公共电极、薄膜晶体管和钝化层,所述选择性反射层位于所述钝化层上,所述选择性反射层通过所述钝化层上的过孔与所述薄膜晶体管的漏极连接,所述选择性反射层和/或所述公共电极上设置有狭缝。
优选地,所述第二基板上还设置有薄膜晶体管、钝化层和像素电极,所述像素电极通过所述钝化层上的过孔与所述薄膜晶体管的漏极连接,所述选择性反射层和/或所述像素电极上设置有狭缝。
优选地,所述第一基板靠近所述液晶分子层的一面上设置有网格状的黑矩阵,黑矩阵覆盖所述第一部分、第二部分和第三部分任意两个部分衔接的位置。
优选地,所述第二基板透光或者不透光,所述第二基板透光时,所述第二基板远离所述液晶分子层的一面上设置有吸收层,所述吸收层吸收透过所述选择性反射层和所述第二基板的光线。
本发明实施例提供了一种反射型显示装置,该反射型显示装置包括依次设置的偏光片、透光的第一基板、液晶分子层和第二基板,反射型显示装置还包括位于液晶分子层和第二基板之间的选择性反射 层,选择性反射层反射波长在特定波长范围内的光线,外界光线依次经过偏光片、第一基板和液晶分子层照射至选择性反射层上,选择性反射层将波长在特定波长范围内的光线反射,反射后的光线经过液晶分子层、第一基板和偏光片射出,进而实现彩色显示。与现有技术相比,本发明实施例中的反射型显示装置在显示过程中无需使用背光模组提供光线,也无需彩膜基板和第二层偏光片,因此,反射型显示装置较轻薄,能耗较低。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例中的反射型显示装置的示意图一;
图2为本发明实施例中的反射型显示装置的示意图二;
图3为本发明实施例中的反射型显示装置的示意图三;
图4为本发明实施例中的反射型显示装置的示意图四;
图5为本发明实施例中的反射型显示装置的示意图五;
图6为本发明实施例中的反射型显示装置的示意图六;
图7为本发明实施例中的TN显示模式的反射型显示装置的显示原理示意图一;
图8为本发明实施例中的TN显示模式的反射型显示装置的显示原理示意图二;
图9为本发明实施例中的ECB显示模式的反射型显示装置的显示原理示意图一;
图10为本发明实施例中的ECB显示模式的反射型显示装置的显示原理示意图二;
图11为本发明实施例中的反射型显示装置的示意图七;
图12为本发明实施例中的反射型显示装置的示意图八;以及
图13为本发明实施例中的反射型显示装置的示意图九。
附图标记说明:
1-偏光片;        2-第一基板;       3-液晶分子层;
4-第二基板;      5-选择性反射层;   51-第一部分;
52-第二部分;     53-第三部分;      6-吸收层;
7-黑矩阵;        8-绝缘层;         9-薄膜晶体管;
10-钝化层;       11-像素电极;      12-公共电极;
13-四分之一波片。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为解决上述技术问题,本发明实施例提供了一种反射型显示装置,该反射型显示装置较轻薄,能耗较低。
具体地,如图1所示,该反射型显示装置包括依次设置的偏光片1、透光的第一基板2、液晶分子层3和第二基板4,该反射型显示装置还包括位于液晶分子层3和第二基板4之间的选择性反射层5,选择性反射层5反射波长在特定波长范围内的光线。
需要说明的是,本发明实施例中的第二基板4可以透光或者不透光,当第二基板4透光时,如图2所示,第二基板4远离液晶分子层3的一面上设置有吸收层6,吸收层6吸收透过选择性反射层5和第二基板4的光线。
本发明实施例提供了一种反射型显示装置,该反射型显示装置包括依次设置的偏光片、透光的第一基板、液晶分子层和第二基板,反射型显示装置还包括位于液晶分子层和第二基板之间的选择性反射层,选择性反射层反射波长在特定波长范围内的光线,外界光线依次经过偏光片、第一基板和液晶分子层照射至选择性反射层上,选择性反射层将波长在特定波长范围内的光线反射,反射后的光线经过液晶分子层、第一基板和偏光片射出,进而实现彩色显示,与现有技术相比,本发明实施例中的反射型显示装置在显示过程中无需使用背光模组提供光线,也无需彩膜基板和第二层偏光片,因此,反射型显示装 置较轻薄,能耗较低。
此外,由于选择性反射层5能够反射波长在特定波长范围内的光线,进而本发明实施例中的反射型显示装置无需使用彩色滤色层即可实现彩色显示,避免了光线经过彩色滤色层时造成的损耗,提高了光线的利用率。
进一步地,当整个选择性反射层5仅反射具有一种特定波长的光线时,反射型显示装置只能显示一种颜色,当选择性反射层5包括用以反射具有不同波长的光线的多个部分时,反射型显示装置可以实现彩色显示。如图3所示,本发明实施例中优选选择性反射层5包括第一部分51、第二部分52和第三部分53,其中,第一部分51反射波长在红光波长范围(622~760nm)内的光线,第二部分52反射波长在绿光波长范围(492~577nm)内的光线,第三部分53反射波长在蓝光波长范围(435~450nm)内的光线。
进一步地,第一部分51、第二部分52和第三部分53能够透过未被反射的波长范围内的光线,且第一部分51、第二部分52和第三部分53具有导电性。示例性地,第一部分51的材质为包覆有银涂层的银纳米粒子,第二部分52的材质为包覆有银涂层的二氧化钛纳米粒子,第三部分53的材质为包覆有银涂层的硅纳米粒子。光线照射到第一部分51、第二部分52或者第三部分53中的纳米粒子和银涂层的界面上时,会发生表面等离子体共振(Surface Plasmon Resonance,简称SPR),从而使得波长在特定波长范围内的光线被反射,其他波长的光线透过。此时,选择性反射层5具有透光导电的特性。具体地,包覆有银涂层的银纳米粒子能够反射波长在蓝光波长范围内的光线,包覆有银涂层的二氧化钛纳米粒子能够反射波长在绿光波长范围内的光线,包覆有银涂层的硅纳米粒子能够反射波长在蓝光波长范围内的光线。另外,也可以使同一部分同时包括具有不同尺寸的纳米粒子,进而使得同一部分能够反射在一定波长范围内的具有不同波长的光线。
此外,当选择性反射层5包括第一部分51、第二部分52和第三部分53时,为了防止选择性反射层5的第一部分51、第二部分52和第三部分53中任意两个部分衔接的位置串色,如图4所示,本发明实施例优选第一基板2靠近液晶分子层3的一面上设置有网格状的黑矩阵7,黑矩阵7覆盖所述第一部分、第二部分和第三部分任意两个部分衔 接的位置。
具有上述结构的反射型显示装置的显示模式可以为TN、ECB、ADS、VA、IPS、FFS等显示模式。
为了便于本领域技术人员理解,本发明实施例提供了反射型显示装置的几种可能的具体结构。
第一种,如图5所示,反射型显示装置包括还包括位于偏光片1和第一基板2之间的四分之一波片13,进一步地,选择性反射层5位于第二基板4上,选择性反射层5上依次设置有绝缘层8、薄膜晶体管9、钝化层10和像素电极11,其中,像素电极11通过钝化层10上的过孔与薄膜晶体管9的漏极连接,第一基板2靠近液晶分子层3的一面设置有公共电极12。
第二种,选择性反射层5的第一部分51的材质为包覆有银涂层的银纳米粒子,第二部分52的材质为包覆有银涂层的二氧化钛纳米粒子,第三部分53的材质为包覆有银涂层的硅纳米粒子时,选择性反射层5具有透光导电的特性,选择性反射层5可以兼具像素电极的功能。此时,如图6所示,反射型显示装置包括还包括位于偏光片1和第一基板2之间的四分之一波片13,进一步地,第二基板4上还设置有薄膜晶体管9和钝化层10,选择性反射层5位于钝化层10上,选择性反射层5通过钝化层10上的过孔与薄膜晶体管9的漏极连接,第一基板2靠近液晶分子层3的一面设置有公共电极12。
当具有第一种或者第二种结构的反射型显示装置中的液晶分子层3内的液晶分子扭曲排列时(即,靠近第一基板2的液晶分子的长轴方向平行于偏光片1的透光轴方向,靠近第二基板4的液晶分子的长轴方向垂直于偏光片1的透光轴方向排列),具有第一种和第二种结构的反射型显示装置的显示模式为TN显示模式。
示例性地,如图7所示,当像素电极11和公共电极12之间存在电场时,液晶分子层3内的液晶分子沿长轴平行于电场方向的方向排列。此时,外界光线经过偏光片1(图7中偏光片1的透光轴方向为45°,四分之一波片13的慢轴角度为0°)后变为偏振方向与偏光片1的透光轴方向平行的线偏振光;该线偏振光经过四分之一波片13后变为右旋圆偏振光;该右旋圆偏振光经过液晶分子层3后偏振状态不发生变化,该右旋圆偏振光照射至选择性反射层5时,选择性反射层5 将其中具有特定波长范围的光线反射;由于被反射的光线的传播方向发生变化,因此,该部分光线成为左旋圆偏振光;该左旋圆偏振光经过液晶分子层3后偏振方向不发生改变,该左旋圆偏振光经过四分之一波片13后变为线偏振光;此时,该线偏振光的偏振方向垂直于偏光片1的透光轴方向,无法射出偏光片1,反射型显示装置显示黑色。
如图8所示,当像素电极11和公共电极12之间无电场时,液晶分子层3内的液晶分子扭曲排列,液晶分子层3对光线的调节作用相当于一个慢轴角度为0°的四分之一波片。此时,外界光线经过偏光片1(图8中偏光片1的透光轴方向为45°,四分之一波片13的慢轴角度为0°)后变为偏振方向与偏光片1的透光轴方向平行的线偏振光;该线偏振光经过四分之一波片13后变为右旋圆偏振光;该右旋圆偏振光经过液晶分子层3后变为偏振方向与偏光片1的透光轴方向平行的线偏振光,该线偏振光照射至选择性反射层5时,选择性反射层5将其中具有特定波长范围的光线反射;被反射的光线为偏振方向与偏光片1的透光轴方向垂直的线偏振光,该线偏振光经过液晶分子层3后变为右旋圆偏振光;该右旋圆偏振光经过四分之一波片13后变为偏振方向与偏光片1的透光轴方向平行的线偏振光,能够射出偏光片1,反射型显示装置实现彩色显示。
当具有第一种或者第二种结构的反射型显示装置中的液晶分子层4内的所有液晶分子的初始取向相同,所有液晶分子的长轴均与偏光片1的透光轴方向呈45°角时,反射型显示装置的显示模式为ECB显示模式。
示例性地,如图9示,当像素电极11和公共电极12之间存在电场时,液晶分子层3内的液晶分子沿长轴平行于电场方向的方向排列。此时,外界光线经过偏光片1(图9中偏光片1的透光轴方向为0°,四分之一波片13的慢轴角度为135°)后变为偏振方向与偏光片1的透光轴方向平行的线偏振光;该线偏振光经过四分之一波片13后变为右旋圆偏振光;该右旋圆偏振光经过液晶分子层3后偏振状态不发生变化;该右旋圆偏振光照射至选择性反射层5时,选择性反射层5将其中具有特定波长范围的光线反射,由于被反射的光线的传播方向发生改变,因此,该部分光线成为左旋圆偏振光;该左旋圆偏振光经过液晶分子层3后偏振方向仍然不发生改变,直到该左旋圆偏振光经过 四分之一波片13后变为线偏振光;此线偏振光的偏振方向垂直于偏光片1的透光轴方向,无法射出偏光片1,反射型显示装置显示黑色。
如图10所示,当像素电极11和公共电极12之间无电场时,液晶分子层3内的所有液晶分子的长轴均与偏光片1的透光轴方向呈45°角,液晶分子层3对光线的调节作用相当于一个慢轴角度为135°的四分之一波片。此时,外界光线经过偏光片1(图10中偏光片1的透光轴方向为0°,四分之一波片13的慢轴角度为135°)后变为偏振方向与偏光片1的透光轴方向平行的线偏振光。该线偏振光经过四分之一波片13后变为右旋圆偏振光;该右旋圆偏振光经过液晶分子层3后变为偏振方向与偏光片1的透光轴方向垂直的线偏振光;该线偏振光照射至选择性反射层5时,选择性反射层5将其中具有特定波长范围的光线反射,被反射的光线的偏振方向仍与偏光片1的透光轴方向垂直;该线偏振光经过液晶分子层3后变为右旋圆偏振光;该右旋圆偏振光经过四分之一波片13后变为偏振方向与偏光片1的透光轴方向平行的线偏振光,能够射出偏光片1,反射型显示装置实现彩色显示。
第三种,如图11所示,选择性反射层5位于第二基板4上,选择性反射层5上设置有绝缘层8,绝缘层8上设置有薄膜晶体管9、公共电极12、钝化层10和像素电极11,像素电极11通过钝化层10上的过孔与薄膜晶体管9的漏极连接,公共电极12和/或像素电极11上有狭缝。
第四种,选择性反射层5的第一部分51的材质为包覆有银涂层的银纳米粒子,第二部分52的材质为包覆有银涂层的二氧化钛纳米粒子,第三部分52的材质为包覆有银涂层的硅纳米粒子时,选择性反射层5具有透光导电的特性,选择性反射层5可以兼具像素电极的功能。此时,如图12所示,第二基板4上还设置有公共电极12、薄膜晶体管9和钝化层10,选择性反射层5位于钝化层10上,选择性反射层5通过钝化层10上的过孔与薄膜晶体管9的漏极连接,选择性反射层5和/或公共电极12上设置有狭缝。
第五种,选择性反射层5的第一部分51的材质为包覆有银涂层的银纳米粒子,第二部分52的材质为包覆有银涂层的二氧化钛纳米粒子,第三部分53的材质为包覆有银涂层的硅纳米粒子时,选择性反射层5具有透光导电的特性,选择性反射层5可以兼具公共电极的功能。此 时,如图13所示,第二基板4上还设置有薄膜晶体管9、钝化层10和像素电极11,像素电极11通过钝化层10上的过孔与薄膜晶体管9的漏极连接,选择性反射层5和/或像素电极11上设置有狭缝。
具有第三种、第四种或者第五种结构的反射型显示装置的显示模式为ADS显示模式。
本领域技术人员在基于本发明实施例的基础上,可以获得显示模式为VA、IPS、FFS等显示模式的反射型显示装置的具体结构,本发明实施例不再一一赘述。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (11)

  1. 一种反射型显示装置,包括依次设置的偏光片、透光的第一基板、液晶分子层和第二基板,其特征在于,还包括:位于所述液晶分子层和所述第二基板之间的选择性反射层,所述选择性反射层反射波长在特定波长范围内的光线。
  2. 根据权利要求1所述的反射型显示装置,其特征在于,所述选择性反射层包括第一部分、第二部分和第三部分,所述第一部分反射波长在红光波长范围内的光线,所述第二部分反射波长在绿光波长范围内的光线,所述第三部分反射波长在蓝光波长范围内的光线。
  3. 根据权利要求2所述的反射型显示装置,其特征在在于,所述第一部分、所述第二部分和所述第三部分透过未被反射的波长范围内的光线,且所述第一部分、所述第二部分和所述第三部分具有导电性。
  4. 根据权利要求3所述的反射型显示装置,其特征在于,所述第一部分的材质为包覆有银涂层的银纳米粒子,所述第二部分的材质为包覆有银涂层的二氧化钛纳米粒子,所述第三部分的材质为包覆有银涂层的硅纳米粒子。
  5. 根据权利要求1-4任一项所述的反射型显示装置,其特征在于,还包括位于所述偏光片与所述第一基板之间的四分之一波片,所述选择性反射层位于所述第二基板上,所述选择性反射层上依次设置有绝缘层、薄膜晶体管、钝化层和像素电极,所述像素电极通过所述钝化层上的过孔与所述薄膜晶体管的漏极连接。
  6. 根据权利要求3所述的反射型显示装置,其特征在于,还包括位于所述偏光片与所述第一基板之间的四分之一波片,所述第二基板上还设置有薄膜晶体管和钝化层,所述选择性反射层位于所述钝化层上,所述选择性反射层通过所述钝化层上的过孔与所述薄膜晶体管的漏极连接。
  7. 根据权利要求1-4任一项所述的反射型显示装置,其特征在于,所述选择性反射层位于所述第二基板上,所述选择性反射层上设置有绝缘层,所述绝缘层上设置有薄膜晶体管、公共电极、钝化层和像素电极,所述像素电极通过所述钝化层上的过孔与所述薄膜晶体管的漏极连接,所述公共电极和/或所述像素电极上有狭缝。
  8. 根据权利要求3所述的反射型显示装置,其特征在于,所述第二基板上还设置有公共电极、薄膜晶体管和钝化层,所述选择性反射层位于所述钝化层上,所述选择性反射层通过所述钝化层上的过孔与所述薄膜晶体管的漏极连接,所述选择性反射层和/或所述公共电极上设置有狭缝。
  9. 根据权利要求1-4任一项所述的反射型显示装置,其特征在于,所述第二基板上还设置有薄膜晶体管、钝化层和像素电极,所述像素电极通过所述钝化层上的过孔与所述薄膜晶体管的漏极连接,所述选择性反射层和/或所述像素电极上设置有狭缝。
  10. 根据权利要求2-4任一项所述的反射型显示装置,其特征在于,所述第一基板靠近所述液晶分子层的一面上设置有网格状的黑矩阵,黑矩阵覆盖所述第一部分、第二部分和第三部分任意两个部分衔接的位置。
  11. 根据权利要求1所述的反射型显示装置,其特征在于,所述第二基板透光或者不透光,所述第二基板透光时,所述第二基板远离所述液晶分子层的一面上设置有吸收层,所述吸收层吸收透过所述选择性反射层和所述第二基板的光线。
PCT/CN2015/077482 2014-09-23 2015-04-27 一种反射型显示装置 WO2016045379A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/785,587 US9835901B2 (en) 2014-09-23 2015-04-27 Reflective type display device
EP15766378.2A EP3200014B1 (en) 2014-09-23 2015-04-27 Reflecting type display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410491877.5A CN104267528B (zh) 2014-09-23 2014-09-23 一种反射型显示装置
CN201410491877.5 2014-09-23

Publications (1)

Publication Number Publication Date
WO2016045379A1 true WO2016045379A1 (zh) 2016-03-31

Family

ID=52159061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077482 WO2016045379A1 (zh) 2014-09-23 2015-04-27 一种反射型显示装置

Country Status (4)

Country Link
US (1) US9835901B2 (zh)
EP (1) EP3200014B1 (zh)
CN (1) CN104267528B (zh)
WO (1) WO2016045379A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104267528B (zh) * 2014-09-23 2017-01-18 京东方科技集团股份有限公司 一种反射型显示装置
US20170082887A1 (en) * 2015-09-18 2017-03-23 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
CN105629580A (zh) * 2016-03-11 2016-06-01 武汉华星光电技术有限公司 一种液晶显示面板及装置
US10078243B2 (en) * 2016-06-03 2018-09-18 Semiconductor Energy Laboratory Co., Ltd. Display device
CN106154628B (zh) * 2016-08-30 2019-10-29 昆山龙腾光电有限公司 具有反射功能的液晶显示面板及液晶显示装置
CN108873445A (zh) * 2017-05-12 2018-11-23 京东方科技集团股份有限公司 显示基板、其制作方法及反射型液晶显示面板、显示装置
CN109031752B (zh) * 2017-06-16 2023-11-14 京东方科技集团股份有限公司 一种反射式液晶显示面板及显示装置
CN108254984B (zh) * 2018-01-31 2021-06-04 上海天马微电子有限公司 一种显示面板及显示装置
CN109283733A (zh) * 2018-11-09 2019-01-29 昆山龙腾光电有限公司 一种反射式显示面板、显示面板的制作方法及显示装置
CN109785748B (zh) * 2019-03-21 2021-05-14 京东方科技集团股份有限公司 一种显示面板及显示装置
CN110244489B (zh) * 2019-07-16 2022-09-23 京东方科技集团股份有限公司 一种显示基板及其制备方法、反射式显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231097A (ja) * 1999-02-09 2000-08-22 Seiko Epson Corp 液晶装置及び電子機器
CN1391130A (zh) * 2001-06-07 2003-01-15 精工爱普生株式会社 半透射半反射型电光装置以及电子装置
CN1482501A (zh) * 2002-08-14 2004-03-17 Lg.飞利浦Lcd有限公司 具有胆甾型液晶滤色器的反射型液晶显示设备及其制造方法
CN102654680A (zh) * 2011-12-15 2012-09-05 京东方科技集团股份有限公司 一种透反液晶显示器
CN203385963U (zh) * 2013-08-07 2014-01-08 亚世光电股份有限公司 一种白色背景彩色显示画面的液晶显示器
CN104267528A (zh) * 2014-09-23 2015-01-07 京东方科技集团股份有限公司 一种反射型显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3268858B2 (ja) * 1992-11-30 2002-03-25 三洋電機株式会社 液晶表示装置
KR100393389B1 (ko) * 2001-02-07 2003-07-31 엘지.필립스 엘시디 주식회사 콜레스테릭 액정 컬러필터를 이용한 반사형 액정표시장치
KR100394988B1 (ko) * 2001-02-14 2003-08-19 엘지.필립스 엘시디 주식회사 콜레스테릭 액정 컬러필터를 이용한 반사형 액정표시장치
KR100393390B1 (ko) * 2001-02-19 2003-07-31 엘지.필립스 엘시디 주식회사 반사형 액정 표시 장치
US20080106677A1 (en) * 2006-11-03 2008-05-08 United Microdisplay Optronics Corp. Electrode structure capable of reflecting color light and lcos panel
US9063353B2 (en) * 2012-12-13 2015-06-23 Sharp Laboratories Of America, Inc. Air stable, color tunable plasmonic structures for ultraviolet (UV) and visible wavelength applications
US8865274B2 (en) * 2010-04-02 2014-10-21 Samsung Display Co., Ltd. Liquid crystal display device, alignment film, and methods for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231097A (ja) * 1999-02-09 2000-08-22 Seiko Epson Corp 液晶装置及び電子機器
CN1391130A (zh) * 2001-06-07 2003-01-15 精工爱普生株式会社 半透射半反射型电光装置以及电子装置
CN1482501A (zh) * 2002-08-14 2004-03-17 Lg.飞利浦Lcd有限公司 具有胆甾型液晶滤色器的反射型液晶显示设备及其制造方法
CN102654680A (zh) * 2011-12-15 2012-09-05 京东方科技集团股份有限公司 一种透反液晶显示器
CN203385963U (zh) * 2013-08-07 2014-01-08 亚世光电股份有限公司 一种白色背景彩色显示画面的液晶显示器
CN104267528A (zh) * 2014-09-23 2015-01-07 京东方科技集团股份有限公司 一种反射型显示装置

Also Published As

Publication number Publication date
CN104267528B (zh) 2017-01-18
EP3200014B1 (en) 2021-01-20
EP3200014A1 (en) 2017-08-02
US20160291406A1 (en) 2016-10-06
EP3200014A4 (en) 2018-03-14
US9835901B2 (en) 2017-12-05
CN104267528A (zh) 2015-01-07

Similar Documents

Publication Publication Date Title
WO2016045379A1 (zh) 一种反射型显示装置
CN105093649B (zh) 防蓝光偏光板及液晶显示面板
US9323118B2 (en) Display device
US9857623B2 (en) Reflective flexible liquid crystal display
WO2016107084A1 (zh) 光学模组和反射型显示装置
US10802189B2 (en) Wire grid polarizer and display panel using the same
US9625761B2 (en) Polarizer and liquid crystal display including the same
CN102890362B (zh) 一种显示装置
TW200526998A (en) Mirror with built-in display
TWI544228B (zh) 光學模組及用於光學裝置之光學功能膜
WO2017049889A1 (zh) 显示装置
US10288954B2 (en) Display device
TW201033683A (en) Normally black transflective liquid crystal displays
JP2006309228A (ja) 表示装置
JP2005055902A (ja) 光学フィルムアセンブリと、これを有する液晶表示装置。
US20210333626A1 (en) Liquid crystal display device
WO2013127204A1 (zh) 液晶显示面板及其透反模式转换方法和显示装置
TWI506310B (zh) 液晶顯示裝置
US10274781B2 (en) Display device and controlling method
JP2006338005A5 (zh)
US11526053B2 (en) Optical assembly, liquid crystal display device, and electronic equipment
KR101085125B1 (ko) 반투과형 액정표시소자 및 그 제조방법
US10254582B2 (en) Liquid crystal display device
TW200521533A (en) Liquid crystal display device
US10598982B2 (en) Liquid crystal display screen

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2015766378

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015766378

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14785587

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15766378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE