WO2016045130A1 - 上行功率控制方法和装置 - Google Patents

上行功率控制方法和装置 Download PDF

Info

Publication number
WO2016045130A1
WO2016045130A1 PCT/CN2014/087700 CN2014087700W WO2016045130A1 WO 2016045130 A1 WO2016045130 A1 WO 2016045130A1 CN 2014087700 W CN2014087700 W CN 2014087700W WO 2016045130 A1 WO2016045130 A1 WO 2016045130A1
Authority
WO
WIPO (PCT)
Prior art keywords
power control
pusch
control parameter
pucch
power
Prior art date
Application number
PCT/CN2014/087700
Other languages
English (en)
French (fr)
Inventor
刘建琴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201810595077.6A priority Critical patent/CN108924919B/zh
Priority to CN202011462699.5A priority patent/CN112533272A/zh
Priority to CN201480035736.0A priority patent/CN105745975B/zh
Priority to CN201810594911.XA priority patent/CN108811064B/zh
Priority to PCT/CN2014/087700 priority patent/WO2016045130A1/zh
Priority to EP20155513.3A priority patent/EP3764703B1/en
Priority to EP14902786.4A priority patent/EP3190839B1/en
Publication of WO2016045130A1 publication Critical patent/WO2016045130A1/zh
Priority to US15/471,817 priority patent/US10869277B2/en
Priority to US16/117,410 priority patent/US10917854B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/327Received signal code power [RSCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to an uplink power control method and apparatus.
  • Multi-antenna Multiple Input Multiple Output (MIMO) technology has been widely used in wireless communication systems to improve system capacity and ensure cell coverage, such as the Long Term Evolution (LTE) system.
  • DMRS Demodulation Reference Signal
  • LTE-A LTE Advanced Evolution
  • LTE-A LTE Advanced Evolution
  • FIG. 1A is a schematic diagram of a two-dimensional antenna configuration.
  • the current Rel-12 standard introduces a three-dimensional distribution of user equipments while introducing a two-dimensional antenna configuration, that is, user equipment can be distributed vertically in a high-rise building such as 1 to 8 layers, in addition to being distributed in a horizontal plane, per user.
  • the position coordinates of the device include both horizontal and vertical directions.
  • the height of the user equipment is assumed to be 1.5 meters and the height of each floor is 3 meters, the height of the user equipment of the 1st to 8th floors ranges from 1.5 meters to 22.5 meters. In the presence of higher buildings (such as 20 to 30 storeys), the maximum floor user equipment can reach 88.5 meters.
  • the path loss and the user on each link of the base station and the user equipment UE are The height of the device is proportional, so that the path loss of the highest floor user equipment and the 1st floor or ground user equipment differ by tens of dB.
  • the large-scale fading on the link between the base station and the user equipment includes shadow fading, penetration loss, and antenna gain in addition to the path loss term.
  • the difference between the above-mentioned items of the 1st floor user equipment and the highest floor user equipment is far less than the difference caused by the path loss.
  • 1B is a large-scale fading distribution diagram of an 8-story user equipment and a 1-story user equipment in a 3D UMi scenario.
  • a 1-story user equipment is served by a pre-coded beam directed to a 12-degree downtilt angle, and 8 The user equipment on the floor is serviced by a precoding beam pointing to a -6 degree uptilt angle.
  • the minimum large-scale fading value of the 8-story user equipment and the 1-story user equipment differs by about 10-20 dB.
  • a problem in the prior art is that the uplink power control mechanism in the current LTE standard is based on a mechanism for compensating for large-scale fading, and the power control parameters and adjustment values related to the large-scale fading are both cell-level. Large-scale fading compensation and corresponding power control for different users or user groups in a cell cannot be implemented. Therefore, there is an inaccuracy in using the current uplink power control method for a new 3D scenario.
  • the embodiment of the invention provides an uplink power control method and device, which overcomes the problem that the current uplink power control method is inaccurate for the 3D new scenario in the prior art.
  • an embodiment of the present invention provides an uplink power control method, including:
  • the power control parameter is used by the user equipment UE to control its transmit power on the serving cell.
  • the power control parameter corresponding to the configured measurement pilot includes: a power control parameter configuration of a UE that receives the same measurement pilot configuration the same.
  • the power control parameter includes: a target received power of the UE, a path loss compensation factor, and a transmission format compensation item.
  • the UE controls the physical uplink sharing according to the power control parameter
  • the total transmit power on the channel PUSCH satisfies:
  • the UE At the transmission time i, the UE has only PUSCH transmission in the serving cell c and does not have the physical uplink control channel PUCCH transmission at the same time.
  • the UE At transmission time i, the UE has both PUSCH transmission and PUCCH in the serving cell c. Transmission
  • P CMAX,c (i) is the maximum transmit power of the UE on the serving cell c; and M PUSCH,c (i) is the number of resource blocks of the PUSCH scheduled by the UE at the transmission time i, and the unit is a physical resource.
  • P O_PUSCH,c,k (j) includes P O_NOMINAL_PUSCH,c,k (j) and P O_UE_PUSCH,c,k (j), which are used to indicate the target received power of the UE, and are semi-statically configured by the upper layer RRC signaling.
  • P O_NOMINAL_PUSCH,c,k (j) is the power control parameter corresponding to the kth set of measurement pilots, and the value range of k An integer from 1 to M, where M is the total number of different measurement pilots configured in the serving cell;
  • ⁇ c,k (j) represents the path loss compensation factor parameter in the power control parameter corresponding to the kth set of measurement pilots.
  • PL c is a path loss measurement value of the terminal receiving power RSRP based on the reference signal
  • Is a power adjustment value for different modulation and coding modes where when the UE receives the configured measurement pilot as the kth set of measurement pilots in the serving cell, K s,k is the kth set of measurement pilots corresponding to Power control parameters, semi-statically configured by higher layer RRC signaling; a parameter configured for a higher layer; the BPRE is calculated from the number of bits carried by the UE data and the number of resource units RE allocated for the UE data;
  • f c (i) is the closed-loop power adjustment amount, which is the feedback value quantified by the receiving end based on the received or measured error.
  • the UE controls that the total transmit power on the physical uplink control channel PUCCH is satisfied.
  • the total transmit power of the UE in the serving cell c is:
  • P 0_PUCCH,k includes P O_NOMINAL_PUCCH,k and P O_UE_PUCCH,k .
  • P O_NOMINAL_PUCCH,k represents the kth set of measurements.
  • the power control parameter corresponding to the pilot is semi-statically configured by RRC signaling;
  • ⁇ F_PUCCH (F) is a power control adjustment parameter related to the PUCCH format, which is determined by high-level configuration parameters;
  • h(n CQI , n HARQ , n SR ) is a variable related to PUCCH transmission information
  • ⁇ TxD (F') is a parameter related to the number of antenna ports transmitting PUCCH and the PUCCH transmission mode
  • g(i) is the closed-loop power control adjustment value, which is determined by the power control command word sent by the network device.
  • the UE controls that a total transmit power of the sounding reference signal SRS meets:
  • the total transmit power of the sounding reference signal SRS of the UE in the serving cell c is:
  • P O_PUSCH,c,k (j) includes P O_NOMINAL_PUSCH,c,k (j) and P O_UE_PUSCH,c,k (j), which are used to indicate the target received power of the UE, and are semi-statically configured by the upper layer RRC signaling.
  • P O_NOMINAL_PUSCH,c,k (j) is a power control parameter corresponding to the kth set of measurement pilots, k
  • the value ranges from 1 to M, where M is the total number of different measurement pilots configured in the serving cell;
  • ⁇ c,k (j) represents the path loss compensation factor parameter in the power control parameter corresponding to the kth set of measurement pilots.
  • P SRS_OFFSET,c (m) represents an offset value of the PUSCH transmit power and the SRS transmit power caused by different modulation and coding modes
  • M SRS,c represents the SRS transmission bandwidth of the UE.
  • an uplink power control method including:
  • the user equipment UE receives the configuration information of the user-specific power control parameter sent by the network device;
  • the power control parameter configured by the network device includes: the target receiving power of the UE, and the path loss compensation Factor and transport format compensation;
  • the UE controls its transmit power on the serving cell according to the power control parameter.
  • the UE controls, according to the power control parameter, that the total transmit power on the physical uplink shared channel PUSCH meets:
  • the UE At the transmission time i, the UE has only PUSCH transmission in the serving cell c and does not have the physical uplink control channel PUCCH transmission at the same time.
  • the UE At the transmission time i, the UE has both PUSCH transmission and PUCCH transmission in the serving cell c, then
  • P CMAX,c (i) is the maximum transmit power of the UE on the serving cell c; and M PUSCH,c (i) is the number of resource blocks of the PUSCH scheduled by the UE at the transmission time i, and the unit is a physical resource.
  • P O_PUSCH,c (j) includes P O_NOMINAL_PUSCH,c (j) and P O_UE_PUSCH,c (j), which are used to indicate the target received power of the UE, and are semi-statically configured by higher layer RRC signaling, where P O_NOMINAL_PUSCH,c (j) Is the UE-specific power control parameter, semi-statically configured by RRC signaling;
  • ⁇ c (j) represents a path loss compensation factor parameter in the UE-specific power control parameter, and is semi-statically configured by higher layer RRC signaling;
  • PL c is a path loss measurement value of the terminal receiving power RSRP based on the reference signal
  • K s is a specific power control parameter of the UE, and is semi-statically configured by high-layer RRC signaling; a parameter configured for a higher layer; the BPRE is calculated from the number of bits carried by the UE data and the number of resource units RE allocated for the UE data;
  • f c (i) is the closed-loop power adjustment amount, which is the feedback value quantified by the receiving end based on the received or measured error.
  • the UE controls the physical uplink control channel according to the power control parameter
  • the total transmit power on the PUCCH satisfies:
  • the total transmit power of the UE in the serving cell c is:
  • P 0_PUCCH includes P O_NOMINAL_PUCCH and P O_UE_PUCCH , and P O_NOMINAL_PUCCH indicates the UE-specific power control parameter, which is semi-statically configured by RRC signaling;
  • ⁇ F_PUCCH (F) is a power control adjustment parameter related to the PUCCH format, which is determined by high-level configuration parameters;
  • h(n CQI , n HARQ , n SR ) is a variable related to PUCCH transmission information
  • ⁇ TxD (F') is a parameter related to the number of antenna ports transmitting PUCCH and the PUCCH transmission mode
  • g(i) is the closed-loop power control adjustment value, which is determined by the power control command word sent by the network device.
  • the UE controls the total transmit power of the sounding reference signal SRS to be:
  • the total transmit power of the sounding reference signal SRS of the UE in the serving cell c is:
  • P O_PUSCH,c (j) includes P O_NOMINAL_PUSCH,c (j) and P O_UE_PUSCH,c (j), which are used to indicate the target received power of the UE, and are semi-statically configured by the upper layer RRC signaling, where P O_NOMINAL_PUSCH,c ( j) is the UE-specific power control parameter, semi-statically configured by RRC signaling;
  • ⁇ c (j) represents a path loss compensation factor parameter in the user-specific power control parameter, and is semi-statically configured by higher layer RRC signaling;
  • P SRS_OFFSET,c (m) represents an offset value of the PUSCH transmit power and the SRS transmit power caused by different modulation and coding modes
  • M SRS,c represents the SRS transmission bandwidth of the UE.
  • an uplink power control method including:
  • the network device sends the configured measurement pilot to the user equipment UE, where the measurement pilot corresponds to one precoding matrix information;
  • the network device sends the configured power control parameter to the user equipment UE, where the power control parameter corresponds to the configured measurement pilot; the power control parameter is used by the user equipment UE to control its transmit power on the serving cell.
  • the power control parameter corresponding to the configured measurement pilot includes: a power control parameter configuration of a UE that receives the same measurement pilot configuration the same.
  • the power control parameter includes: a target received power of the UE, a path loss compensation factor, and a transmission format compensation item.
  • the UE controls the physical uplink sharing according to the power control parameter
  • the total transmit power on the channel PUSCH satisfies:
  • the UE At the transmission time i, the UE has only PUSCH transmission in the serving cell c and does not have the physical uplink control channel PUCCH transmission at the same time.
  • the UE At the transmission time i, the UE has both PUSCH transmission and PUCCH transmission in the serving cell c, then
  • P CMAX,c (i) is the maximum transmit power of the UE on the serving cell c; and M PUSCH,c (i) is the number of resource blocks of the PUSCH scheduled by the UE at the transmission time i, and the unit is a physical resource.
  • P O_PUSCH,c,k (j) includes P O_NOMINAL_PUSCH,c,k (j) and P O_UE_PUSCH,c,k (j), which are used to indicate the target received power of the UE, and are semi-statically configured by the upper layer RRC signaling.
  • P O_NOMINAL_PUSCH,c,k (j) is the power control parameter corresponding to the kth set of measurement pilots, and the value range of k An integer from 1 to M, where M is the total number of different measurement pilots configured in the serving cell;
  • ⁇ c,k (j) represents the path loss compensation factor parameter in the power control parameter corresponding to the kth set of measurement pilots.
  • PL c is a path loss measurement value of the terminal receiving power RSRP based on the reference signal
  • Is a power adjustment value for different modulation and coding modes where when the UE receives the configured measurement pilot as the kth set of measurement pilots in the serving cell, K s,k is the kth set of measurement pilots corresponding to Power control parameters, semi-statically configured by higher layer RRC signaling; a parameter configured for a higher layer; the BPRE is calculated from the number of bits carried by the UE data and the number of resource units RE allocated for the UE data;
  • f c (i) is the closed-loop power adjustment amount, which is the feedback value quantified by the receiving end based on the received or measured error.
  • the UE controls that the total transmit power on the physical uplink control channel PUCCH is satisfied.
  • the total transmit power of the UE in the serving cell c is:
  • P 0_PUCCH,k includes P O_NOMINAL_PUCCH,k and P O_UE_PUCCH,k , when the UE receives the configured measurement pilot as the kth set of measurement pilots in the serving cell, P O_NOMINAL_PUCCH,k represents the kth set of measurements
  • the power control parameter corresponding to the pilot is semi-statically configured by RRC signaling;
  • ⁇ F_PUCCH (F) is a power control adjustment parameter related to the PUCCH format, which is determined by high-level configuration parameters;
  • h(n CQI , n HARQ , n SR ) is a variable related to PUCCH transmission information
  • ⁇ TxD (F') is a parameter related to the number of antenna ports transmitting PUCCH and the PUCCH transmission mode
  • g(i) is the closed-loop power control adjustment value, which is determined by the power control command word sent by the network device.
  • the UE controls that a total transmit power of the sounding reference signal SRS meets:
  • the total transmit power of the sounding reference signal SRS of the UE in the serving cell c is:
  • P O_PUSCH,c,k (j) includes P O_NOMINAL_PUSCH,c,k (j) and P O_UE_PUSCH,c,k (j), which are used to indicate the target received power of the UE, and are semi-statically configured by the upper layer RRC signaling.
  • P O_NOMINAL_PUSCH,c,k (j) is a power control parameter corresponding to the kth set of measurement pilots, k
  • the value ranges from 1 to M, where M is the total number of different measurement pilots configured in the serving cell;
  • ⁇ c,k (j) represents the path loss compensation factor parameter in the power control parameter corresponding to the kth set of measurement pilots.
  • P SRS_OFFSET,c (m) represents an offset value of the PUSCH transmit power and the SRS transmit power caused by different modulation and coding modes
  • M SRS,c represents the SRS transmission bandwidth of the UE.
  • an uplink power control method including:
  • the network device sends configuration information of the UE-specific power control parameter to the user equipment UE; the power control parameters configured by the network device include: target receiving power of the UE, a path loss compensation factor, and a transmission format compensation item; the power control The parameter is used by the UE to control its transmit power on the serving cell according to the power control parameter.
  • the UE controls, according to the power control parameter, that the total transmit power on the physical uplink shared channel PUSCH meets:
  • the UE At the transmission time i, the UE has only PUSCH transmission in the serving cell c and no PUCCH transmission at the same time,
  • the UE At the transmission time i, the UE has both PUSCH transmission and PUCCH transmission in the serving cell c, then
  • P CMAX,c (i) is the maximum transmit power of the UE on the serving cell c; and M PUSCH,c (i) is the number of resource blocks of the PUSCH scheduled by the UE at the transmission time i, and the unit is a physical resource.
  • P O_PUSCH,c (j) includes P O_NOMINAL_PUSCH,c (j) and P O_UE_PUSCH,c (j), which are used to indicate the target received power of the UE, and are semi-statically configured by higher layer RRC signaling, where P O_NOMINAL_PUSCH,c (j) Is the UE-specific power control parameter, semi-statically configured by RRC signaling;
  • ⁇ c (j) represents a path loss compensation factor parameter in the UE-specific power control parameter, and is semi-statically configured by higher layer RRC signaling;
  • PL c is a path loss measurement value of the terminal receiving power RSRP based on the reference signal
  • K s is a specific power control parameter of the UE, and is semi-statically configured by high-layer RRC signaling; a parameter configured for a higher layer; the BPRE is calculated from the number of bits carried by the UE data and the number of resource units RE allocated for the UE data;
  • f c (i) is the closed-loop power adjustment amount, which is the feedback value quantified by the receiving end based on the received or measured error.
  • the UE controls that the total transmit power on the physical uplink control channel PUCCH is satisfied.
  • the total transmit power of the UE in the serving cell c is:
  • P 0_PUCCH includes P O_NOMINAL_PUCCH and P O_UE_PUCCH , and P O_NOMINAL_PUCCH indicates the UE-specific power control parameter, which is semi-statically configured by RRC signaling;
  • ⁇ F_PUCCH (F) is a power control adjustment parameter related to the PUCCH format, which is determined by high-level configuration parameters;
  • h(n CQI , n HARQ , n SR ) is a variable related to PUCCH transmission information
  • ⁇ TxD (F') is a parameter related to the number of antenna ports transmitting PUCCH and the PUCCH transmission mode
  • g(i) is the closed-loop power control adjustment value, which is determined by the power control command word sent by the network device.
  • the UE controls the total transmit power of the sounding reference signal SRS to satisfy:
  • the total transmit power of the sounding reference signal SRS of the UE in the serving cell c is:
  • P O_PUSCH,c (j) includes P O_NOMINAL_PUSCH,c (j) and P O_UE_PUSCH,c (j), which are used to indicate the target received power of the UE, and are semi-statically configured by the upper layer RRC signaling, where P O_NOMINAL_PUSCH,c ( j) is the UE-specific power control parameter, semi-statically configured by RRC signaling;
  • ⁇ c (j) represents a path loss compensation factor parameter in the user-specific power control parameter, and is semi-statically configured by higher layer RRC signaling;
  • P SRS_OFFSET,c (m) represents an offset value of the PUSCH transmit power and the SRS transmit power caused by different modulation and coding modes
  • M SRS,c represents the SRS transmission bandwidth of the UE.
  • a fifth aspect of the present invention provides a user equipment (UE), including:
  • a receiving module configured to receive a measurement pilot configured by the network device, where the measurement pilot corresponds to a precoding matrix information
  • the receiving module is further configured to receive a power control parameter configured by the network device, where the power control parameter is corresponding to the configured measurement pilot; and the power control parameter is used by the user equipment UE to control its transmission on the serving cell. power.
  • the power control parameter corresponding to the configured measurement pilot includes: a power control parameter configuration of a UE that receives the same measurement pilot configuration the same.
  • the power control parameter includes: a target received power of the UE, a path loss compensation factor, and a transmission format compensation item.
  • the method further includes:
  • a control module configured to control, according to the power control parameter, that the total transmit power of the UE on the physical uplink shared channel PUSCH meets:
  • the UE At the transmission time i, the UE has only PUSCH transmission in the serving cell c and does not have the physical uplink control channel PUCCH transmission at the same time.
  • the UE At the transmission time i, the UE has both PUSCH transmission and PUCCH transmission in the serving cell c, then
  • P CMAX,c (i) is the maximum transmit power of the UE on the serving cell c; and M PUSCH,c (i) is the number of resource blocks of the PUSCH scheduled by the UE at the transmission time i, and the unit is a physical resource.
  • P O_PUSCH,c,k (j) includes P O_NOMINAL_PUSCH,c,k (j) and P O_UE_PUSCH,c,k (j), which are used to indicate the target received power of the UE, and are semi-statically configured by the upper layer RRC signaling.
  • P O_NOMINAL_PUSCH,c,k (j) is the power control parameter corresponding to the kth set of measurement pilots, and the value range of k An integer from 1 to M, where M is the total number of different measurement pilots configured in the serving cell;
  • ⁇ c,k (j) represents the path loss compensation factor parameter in the power control parameter corresponding to the kth set of measurement pilots.
  • PL c is a path loss measurement value of the terminal receiving power RSRP based on the reference signal
  • Is a power adjustment value for different modulation and coding modes where when the UE receives the configured measurement pilot as the kth set of measurement pilots in the serving cell, K s,k is the kth set of measurement pilots corresponding to Power control parameters, semi-statically configured by higher layer RRC signaling; a parameter configured for a higher layer; the BPRE is calculated from the number of bits carried by the UE data and the number of resource units RE allocated for the UE data;
  • f c (i) is the closed-loop power adjustment amount, which is the feedback value quantified by the receiving end based on the received or measured error.
  • control module is further configured to control, according to the power control parameter, the physical uplink control channel of the UE The total transmit power on the PUCCH satisfies:
  • the total transmit power of the UE in the serving cell c is:
  • P 0_PUCCH,k includes P O_NOMINAL_PUCCH,k and P O_UE_PUCCH,k , when the UE receives the configured measurement pilot as the kth set of measurement pilots in the serving cell, P O_NOMINAL_PUCCH,k represents the kth set of measurements
  • the power control parameter corresponding to the pilot is semi-statically configured by RRC signaling;
  • ⁇ F_PUCCH (F) is a power control adjustment parameter related to the PUCCH format, which is determined by high-level configuration parameters;
  • h(n CQI , n HARQ , n SR ) is a variable related to PUCCH transmission information
  • ⁇ TxD (F') is a parameter related to the number of antenna ports transmitting PUCCH and the PUCCH transmission mode
  • g(i) is the closed-loop power control adjustment value, which is determined by the power control command word sent by the network device.
  • control module is further configured to control the sounding reference signal SRS according to the power control parameter
  • the total transmit power is:
  • the total transmit power of the sounding reference signal SRS of the UE in the serving cell c is:
  • P O_PUSCH,c,k (j) includes P O_NOMINAL_PUSCH,c,k (j) and P O_UE_PUSCH,c,k (j), which are used to indicate the target received power of the UE, and are semi-statically configured by the upper layer RRC signaling.
  • P O_NOMINAL_PUSCH,c,k (j) is a power control parameter corresponding to the kth set of measurement pilots, k
  • the value ranges from 1 to M, where M is the total number of different measurement pilots configured in the serving cell;
  • ⁇ c,k (j) represents the path loss compensation factor parameter in the power control parameter corresponding to the kth set of measurement pilots.
  • P SRS_OFFSET,c (m) represents an offset value of the PUSCH transmit power and the SRS transmit power caused by different modulation and coding modes
  • M SRS,c represents the SRS transmission bandwidth of the UE.
  • an embodiment of the present invention provides a user equipment UE, including:
  • a receiving module configured to receive configuration information of a user-specific power control parameter sent by the network device;
  • the power control parameter configured by the network device includes: a target receiving power, a path loss compensation factor, and a transmission format compensation item of the UE;
  • a control module configured to control, according to the power control parameter, a transmit power of the UE on a serving cell.
  • control module is configured to control, according to the power control parameter, that a total transmit power of the UE on a physical uplink shared channel PUSCH meets:
  • the UE At the transmission time i, the UE has only PUSCH transmission in the serving cell c and does not have the physical uplink control channel PUCCH transmission at the same time.
  • the UE At the transmission time i, the UE has both PUSCH transmission and PUCCH transmission in the serving cell c, then
  • P CMAX,c (i) is the maximum transmit power of the UE on the serving cell c; and M PUSCH,c (i) is the number of resource blocks of the PUSCH scheduled by the UE at the transmission time i, and the unit is a physical resource.
  • P O_PUSCH,c (j) includes P O_NOMINAL_PUSCH,c (j) and P O_UE_PUSCH,c (j), which are used to indicate the target received power of the UE, and are semi-statically configured by higher layer RRC signaling, where P O_NOMINAL_PUSCH,c,k ( j) is the UE-specific power control parameter, semi-statically configured by RRC signaling;
  • ⁇ c (j) represents a path loss compensation factor parameter in the UE-specific power control parameter, and is semi-statically configured by higher layer RRC signaling;
  • PL c is a path loss measurement value of the terminal receiving power RSRP based on the reference signal
  • K s is a specific power control parameter of the UE, and is semi-statically configured by high-layer RRC signaling; a parameter configured for a higher layer; the BPRE is calculated from the number of bits carried by the UE data and the number of resource units RE allocated for the UE data;
  • f c (i) is the closed-loop power adjustment amount, which is the feedback value quantified by the receiving end based on the received or measured error.
  • control module is configured to control the UE to be in a physical uplink control channel according to the power control parameter.
  • the total transmit power on the PUCCH satisfies:
  • the total transmit power of the UE in the serving cell c is:
  • P 0_PUCCH includes P O_NOMINAL_PUCCH and P O_UE_PUCCH , and P O_NOMINAL_PUCCH indicates the UE-specific power control parameter, which is semi-statically configured by RRC signaling;
  • ⁇ F_PUCCH (F) is a power control adjustment parameter related to the PUCCH format, which is determined by high-level configuration parameters;
  • h(n CQI , n HARQ , n SR ) is a variable related to PUCCH transmission information
  • ⁇ TxD (F') is a parameter related to the number of antenna ports transmitting PUCCH and the PUCCH transmission mode
  • g(i) is the closed-loop power control adjustment value, which is determined by the power control command word sent by the network device.
  • control module is configured to control the sounding reference signal SRS according to the power control parameter.
  • the transmission power meets:
  • the total transmit power of the sounding reference signal SRS of the UE in the serving cell c is:
  • P O_PUSCH,c (j) includes P O_NOMINAL_PUSCH, c (j) and P O_UE_PUSCH,c,k (j), which are used to indicate the target received power of the UE, and are semi-statically configured by the upper layer RRC signaling, where P O_NOMINAL_PUSCH, c (j) is the UE-specific power control parameter, semi-statically configured by RRC signaling;
  • ⁇ c (j) represents a path loss compensation factor parameter in the user-specific power control parameter, and is semi-statically configured by higher layer RRC signaling;
  • P SRS_OFFSET,c (m) represents an offset value of the PUSCH transmit power and the SRS transmit power caused by different modulation and coding modes
  • M SRS,c represents the SRS transmission bandwidth of the UE.
  • the seventh aspect of the present invention provides a network device, including:
  • a sending module configured to send, to the user equipment UE, the configured measurement pilot, where the measurement pilot corresponds to one precoding matrix information
  • the sending module is further configured to send the configured power control parameter to the user equipment UE, where the power control parameter is corresponding to the configured measurement pilot; the power control parameter is used by the user equipment UE to control the serving cell. Transmit power.
  • the power control parameter corresponding to the configured measurement pilot includes: a power control parameter configuration of a UE that receives the same measurement pilot configuration the same.
  • the power control parameter includes: a target received power of the UE, a path loss compensation factor, and a transmission format compensation item.
  • the eighth aspect of the present invention provides a network device, including:
  • a sending module configured to send, to the user equipment UE, configuration information of a user-specific power control parameter;
  • the power control parameter configured by the network device includes: a target receiving power of the UE, a path loss compensation factor, and a transmission format compensation item;
  • the power control parameter is used by the UE to control its transmit power on a serving cell according to the power control parameter.
  • a ninth aspect, the embodiment of the present invention provides a user equipment UE, including:
  • processors and a memory the memory storing execution instructions
  • the processor communicating with the memory when the user device is in operation, the processor executing the execution instruction to cause the user device to perform The method of any of the aspects of the invention.
  • the tenth aspect of the present invention provides a network device, including:
  • a processor and a memory the memory storing execution instructions, the processor communicating with the memory when the network device is in operation, the processor executing the execution instruction to cause the user device to perform The method of any of the third aspect and the fourth aspect.
  • the uplink power control method and device of the embodiment of the present invention by receiving a measurement pilot configured by a network device, the measurement pilot corresponding to a precoding matrix information; receiving power control parameters configured by the network device, the power control parameter and the configured The measurement pilot is corresponding to; the power control parameter is used by the user equipment UE to control the transmit power of the user on the serving cell; or the user equipment UE receives the configuration information of the user-specific power control parameter sent by the network device;
  • the power control parameters configured by the device include: a target received power of the UE, a path loss compensation factor, and a transmission format compensation item; and the UE controls its transmit power on the serving cell according to the power control parameter, and implements the
  • the uplink power control mechanism for compensating the scale fading, the power control parameters and the adjustment values related to the large-scale fading are all at the user equipment group or the user equipment level, which improves the accuracy of the uplink power control, and solves the problem to overcome the prior art.
  • the current uplink power control method is
  • 1A is a schematic diagram of a two-dimensional antenna configuration
  • FIG. 1B is a large-scale fading distribution diagram of an 8-story user equipment and a 1-story user equipment in a 3D UMi scenario
  • Embodiment 1 of an uplink power control method according to the present invention
  • Embodiment 3 is a flowchart of Embodiment 3 of an uplink power control method according to the present invention.
  • Embodiment 4 is a flowchart of Embodiment 4 of an uplink power control method according to the present invention.
  • FIG. 5 is a schematic structural diagram of Embodiment 1 of a user equipment UE according to the present invention.
  • FIG. 6 is a schematic structural diagram of Embodiment 1 of a network device according to the present invention.
  • FIG. 7 is a schematic structural diagram of Embodiment 2 of a user equipment UE according to the present invention.
  • FIG. 8 is a schematic structural diagram of Embodiment 2 of a network device according to the present invention.
  • FIG. 2 is a flowchart of Embodiment 1 of an uplink power control method according to the present invention.
  • the executor of this embodiment may be a user equipment.
  • the solution in this embodiment is applied between the network device and the user equipment to perform uplink power control.
  • the method in this embodiment may include:
  • Step 201 Receive a measurement pilot configured by the network device, where the measurement pilot corresponds to a precoding matrix information.
  • Step 202 Receive a power control parameter configured by the network device, where the power control parameter corresponds to the configured measurement pilot; and the power control parameter is used by the user equipment UE to control the transmit power of the serving cell.
  • the user equipment UE receives the measurement pilot configured by the network device, where the measurement pilot corresponds to one precoding matrix information, and receives a power control parameter configured by the network device, where the power control parameter corresponds to the measurement pilot.
  • the UE controls its transmit power on the serving cell according to the power control parameter.
  • the power control parameter is corresponding to the configured measurement pilot, and the power control parameter configuration of the UE that receives the same measurement pilot configuration is the same.
  • the power control parameter includes: a target received power of the UE, a path loss compensation factor, and a transmission format compensation item.
  • the power control parameter may be sent by the base station by using a multicast wireless network temporary authentication RNTI or a user-specific RNTI.
  • the embodiments of the present invention have different large-scale fading characteristics for different user equipment groups in a 3D new scene or a high frequency, and can perform user equipment packet power control for each cell, that is, each cell is further divided into several virtual a cell, wherein each "virtual cell" corresponds to a group of user equipments. For example, all the user equipments on the 1st floor or the ground in the community are a group. The user equipment corresponds to a set of measurement pilot configurations that point to the beam 12 degrees, and all the user equipments located on the 8th floor are a group. The user equipments of this group correspond to a set of measurement pilot configurations that point to the beam -6 degrees.
  • Each "virtual cell” has independent "cell” level large-scale power control parameters.
  • the "cell” level large scale power control parameters refer to all large scale related cell specific power control parameters in the power control mechanism.
  • the uplink power control method and device of the embodiment of the present invention by receiving a measurement pilot configured by a network device, the measurement pilot corresponding to a precoding matrix information; receiving power control parameters configured by the network device, the power control parameter and the configured The measurement pilot is corresponding to; the power control parameter is used by the user equipment UE to control its transmit power on the serving cell, and implements an uplink power control mechanism based on compensation for large-scale fading, the large-scale fading-related power
  • the control parameters and the adjustment values are all at the user equipment group level, that is, corresponding to different measurement pilots, different power control parameters, improving the accuracy of the uplink power control, and solving the current uplink power control for the 3D new scene in the prior art. There are inaccuracies in the method.
  • the UE controls the total transmit power on the physical uplink shared channel PUSCH according to the power control parameter to satisfy:
  • the UE At the transmission time i, the UE has only PUSCH transmission in the serving cell c and does not have the physical uplink control channel PUCCH transmission at the same time.
  • the UE At the transmission time i, the UE has both PUSCH transmission and PUCCH transmission in the serving cell c, then
  • P CMAX,c (i) is the maximum transmit power of the UE on the serving cell c; and M PUSCH,c (i) is the number of resource blocks of the PUSCH scheduled by the UE at the transmission time i, and the unit is a physical resource.
  • P O_PUSCH,c,k (j) includes P O_NOMINAL_PUSCH,c,k (j) and P O_UE_PUSCH,c,k (j), which are used to indicate the target received power of the UE, and are semi-statically configured by the upper layer RRC signaling.
  • P O_NOMINAL_PUSCH,c,k (j) is the power control parameter corresponding to the kth set of measurement pilots, and the value range of k An integer from 1 to M, where M is the total number of different measurement pilots configured in the serving cell; P O_UE_PUSCH,c,k (j) is the same as P O_UE_PUSCH,c (j) in the 3GPP protocol;
  • ⁇ c,k (j) represents the path loss compensation factor parameter in the power control parameter corresponding to the kth set of measurement pilots.
  • PL c is a path loss measurement value of the terminal based on Reference Signal Received Power (RSRP);
  • RSRP Reference Signal Received Power
  • Is a power adjustment value for different modulation and coding modes where when the UE receives the configured measurement pilot as the kth set of measurement pilots in the serving cell, K s,k is the kth set of measurement pilots corresponding to Power control parameters, semi-statically configured by higher layer RRC signaling; a parameter configured for a higher layer; the BPRE is calculated from the number of bits carried by the UE data and the number of resource units RE allocated for the UE data;
  • f c (i) is the closed-loop power adjustment amount, which is the feedback value quantified by the receiving end based on the received or measured error.
  • the UE controls the total transmit power on the Physical Uplink Shared Channel (PUSCH) according to the power control parameter to satisfy the following formula:
  • the UE At the transmission time i, the UE has only PUSCH transmission in the serving cell c and no PUCCH transmission at the same time,
  • the UE At the transmission time i, the UE has both PUSCH transmission and PUCCH transmission in the serving cell c, then
  • P O_PUSCH,c,k (j) in the above formula includes P O_NOMINAL_PUSCH,c,k (j) and P O_UE_PUSCH,c,k (j), which are used to indicate the target received power of the UE, by the upper layer RRC signaling.
  • P O_NOMINAL_PUSCH,c,k (j) is the power control parameter corresponding to the kth set of measurement pilots.
  • the value of k ranges from 1 to M, where M is the total number of different measurement pilots configured in the serving cell; that is, the user equipment parameters P O_PUSCH,c,k (j for different measurement pilot configurations) )different.
  • ⁇ c,k (j) represents the path loss compensation factor parameter in the power control parameter corresponding to the kth set of measurement pilots.
  • the variable j is related to the scheduling and authorization mode of the PUSCH.
  • the value of P O_PUSCH,c,k (j) is determined by the parameters of the higher-level configuration of the corresponding serving cell c corresponding to the value of j.
  • Is a power adjustment value for different modulation and coding modes where when the UE receives the configured measurement pilot as the kth set of measurement pilots in the serving cell, K s,k is the kth set of measurement pilots corresponding to Power control parameters, semi-statically configured by higher layer RRC signaling; a parameter configured for the higher layer; the BPRE is calculated from the number of bits carried by the UE data and the number of resource units RE allocated for the UE data; that is, the user equipment parameters ⁇ TF,c,k (i) for different measurement pilot configurations )different.
  • P PUCCH (i) The definition of P PUCCH (i) is the same as defined in the 3GPP protocol.
  • the UE controls, according to the power control parameter, its total transmit power on a Physical Uplink Control Channel (PUCCH) to satisfy:
  • PUCCH Physical Uplink Control Channel
  • the total transmit power of the UE in the serving cell c is:
  • P 0_PUCCH,k includes P O_NOMINAL_PUCCH,k and P O_UE_PUCCH,k , when the UE receives the configured measurement pilot as the kth set of measurement pilots in the serving cell, P O_NOMINAL_PUCCH,k represents the kth set of measurements
  • the power control parameter corresponding to the pilot is semi-statically configured by RRC signaling;
  • ⁇ F_PUCCH (F) is a power control adjustment parameter related to the PUCCH format, which is determined by high-level configuration parameters;
  • h(n CQI , n HARQ , n SR ) is a variable related to PUCCH transmission information
  • ⁇ TxD (F') is a parameter related to the number of antenna ports transmitting PUCCH and the PUCCH transmission mode
  • g(i) is the closed-loop power control adjustment value, which is determined by the power control command word sent by the network device.
  • the UE controls its total transmit power on the physical uplink control channel PUCCH according to the power control parameter to satisfy the following formula:
  • the total transmit power of the UE in the serving cell c is:
  • P 0_PUCCH,k includes P O_NOMINAL_PUCCH,k and P O_UE_PUCCH,k , when the UE receives the configured measurement pilot as the kth set of measurement pilots in the serving cell, P O_NOMINAL_PUCCH,k represents the kth set of measurements
  • the power control parameters corresponding to the pilots are semi-statically configured by RRC signaling; that is, the user equipment parameters P 0_PUCCH,k for different measurement pilot configurations are different.
  • P 0_PUCCH,k is the same as the meaning of P 0_PUCCH in the 3GPP protocol
  • the meaning of P O_NOMINAL_PUCCH,k is the same as the meaning of P O_NOMINAL_PUCCH in the 3GPP protocol
  • the meaning of P O_UE_PUCCH,k is the same as the meaning of P O_UE_PUCCH in the 3GPP protocol.
  • the UE controls, according to the power control parameter, that a total transmit power of the sounding reference signal SRS meets:
  • the total transmit power of the sounding reference signal SRS of the UE in the serving cell c is:
  • P O_PUSCH,c,k (j) includes P O_NOMINAL_PUSCH,c,k (j) and P O_UE_PUSCH,c,k (j), which are used to indicate the target received power of the UE, and are semi-statically configured by the upper layer RRC signaling.
  • P O_NOMINAL_PUSCH,c,k (j) is a power control parameter corresponding to the kth set of measurement pilots, k
  • the value ranges from 1 to M, where M is the total number of different measurement pilots configured in the serving cell;
  • ⁇ c,k (j) represents the path loss compensation factor parameter in the power control parameter corresponding to the kth set of measurement pilots.
  • P SRS_OFFSET,c (m) represents an offset value of the PUSCH transmit power and the SRS transmit power caused by different modulation and coding modes
  • M SRS,c represents the SRS transmission bandwidth of the UE.
  • the UE controls the total transmit power of the sounding reference signal SRS according to the power control parameter to satisfy:
  • the total transmit power of the sounding reference signal SRS of the UE in the serving cell c is:
  • P O_PUSCH,c,k (j) includes P O_NOMINAL_PUSCH,c,k (j) and P O_UE_PUSCH,c,k (j), which are used to indicate the target received power of the UE, and are semi-statically configured by the upper layer RRC signaling.
  • P O_NOMINAL_PUSCH,c,k (j) is a power control parameter corresponding to the kth set of measurement pilots, k
  • M is the total number of different measurement pilots configured in the serving cell; that is, the user equipment parameters P O_PUSCH,c,k (j) are different for different measurement pilot configurations.
  • ⁇ c,k (j) represents the path loss compensation factor parameter in the power control parameter corresponding to the kth set of measurement pilots.
  • m in the above formula is specified in the 3GPP protocol, and m is related to the trigger type of the SRS transmission.
  • m is related to the trigger type of the SRS transmission.
  • Each of the above sets of measurement pilots corresponds to a precoding matrix (one beam corresponding to a certain direction and width), and different configured measurement pilots have different precoding matrices.
  • the base station height is less than the height of the high-rise user.
  • the base station configures a set of measurement pilots that point to a downtilt angle of 12 degrees for the user of the lower floor (ie, corresponds to a precoding matrix pointing to 12 degrees).
  • a high-floor user above the base station height configures a set of measurement pilots that point to an up-tilt angle of -6 degrees (ie, a precoding matrix that points to -6 degrees).
  • a possible implementation for user equipment grouping may be a natural set of user equipments configured with the same set of measurement pilots, such as all user configurations configured with a 12-degree downward measurement pilot. Prepared as a group. All user equipments configured with pilots pointing up to the -6 degree measurement are grouped.
  • cell-specific parameters in the transmit power of other uplink channels and signals can be similarly extended to measurement pilot configuration specific or user.
  • Device group specific parameters such as PUCCH, SRS, and Physical Random Access Channel (PRACH).
  • FIG. 3 is a flowchart of Embodiment 3 of an uplink power control method according to the present invention.
  • the executor of this embodiment may be a user equipment.
  • the solution in this embodiment is applied between the network device and the user equipment to perform uplink power control.
  • the method in this embodiment may include:
  • Step 301 The user equipment UE receives configuration information of a user-specific power control parameter sent by the network device.
  • the power control parameters configured by the network device include: a target receiving power, a path loss compensation factor, and a transmission format compensation item of the UE.
  • Step 302 The UE controls its transmit power on the serving cell according to the power control parameter.
  • the user equipment UE receives the configuration information of the user-specific power control parameter sent by the network device; the power control parameter configured by the network device includes: the target receiving power of the UE, the path loss compensation factor, and the transmission format compensation item.
  • the UE controls its transmit power on the serving cell according to the power control parameter.
  • each user equipment may also have independent "cell" level large-scale power control parameters, that is, user-specific power. Control parameters.
  • the "cell” level large scale power control parameters refer to all large scale related cell specific power control parameters in the power control mechanism.
  • the UE controls, according to the power control parameter, that the total transmit power on the physical uplink shared channel PUSCH meets:
  • the UE At the transmission time i, the UE has only PUSCH transmission in the serving cell c and does not have the physical uplink control channel PUCCH transmission at the same time.
  • the UE At the transmission time i, the UE has both PUSCH transmission and PUCCH transmission in the serving cell c, then
  • P CMAX,c (i) is the maximum transmit power of the UE on the serving cell c; and M PUSCH,c (i) is the number of resource blocks of the PUSCH scheduled by the UE at the transmission time i, and the unit is a physical resource.
  • P O_PUSCH,c (j) includes P O_NOMINAL_PUSCH,c (j) and P O_UE_PUSCH,c (j), which are used to indicate the target received power of the UE, and are semi-statically configured by higher layer RRC signaling, where P O_NOMINAL_PUSCH,c (j) Is the UE-specific power control parameter, semi-statically configured by RRC signaling;
  • ⁇ c (j) represents a path loss compensation factor parameter in the UE-specific power control parameter, and is semi-statically configured by higher layer RRC signaling;
  • PL c is a path loss measurement value of the terminal receiving power RSRP based on the reference signal
  • K s is a specific power control parameter of the UE, and is semi-statically configured by high-layer RRC signaling; a parameter configured for a higher layer; the BPRE is calculated from the number of bits carried by the UE data and the number of resource units RE allocated for the UE data;
  • f c (i) is the closed-loop power adjustment amount, which is the feedback value quantified by the receiving end based on the received or measured error.
  • the UE controls its total transmit power on the physical uplink shared channel PUSCH according to the power control parameter to satisfy the following formula:
  • the UE At the transmission time i, the UE has only PUSCH transmission in the serving cell c and no PUCCH transmission at the same time,
  • the UE At the transmission time i, the UE has both PUSCH transmission and PUCCH transmission in the serving cell c, then
  • the UE's target received power P O_PUSCH,c (j), the path loss compensation factor ⁇ c (j), and the transmission format compensation term ⁇ TF,c (i) are user-specific power control parameters, ie, for different user equipments. Different parameter values;
  • P O_PUSCH,c (j) includes P O_NOMINAL_PUSCH,c (j) and P O_UE_PUSCH,c (j), which are used to indicate the target received power of the UE, and are semi-statically configured by higher layer RRC signaling, where P O_NOMINAL_PUSCH,c (j) Is the UE-specific power control parameter, semi-statically configured by RRC signaling;
  • ⁇ c (j) represents a path loss compensation factor parameter in the UE-specific power control parameter, and is semi-statically configured by higher layer RRC signaling;
  • K s is a specific power control parameter of the UE, and is semi-statically configured by high-layer RRC signaling; a parameter configured for a higher layer; the BPRE is calculated from the number of bits carried by the UE data and the number of resource units RE allocated for the UE data;
  • the UE controls, according to the power control parameter, that the total transmit power on the physical uplink control channel PUCCH meets:
  • the total transmit power of the UE in the serving cell c is:
  • P 0_PUCCH includes P O_NOMINAL_PUCCH and P O_UE_PUCCH , and P O_NOMINAL_PUCCH indicates the UE-specific power control parameter, which is semi-statically configured by RRC signaling;
  • ⁇ F_PUCCH (F) is a power control adjustment parameter related to the PUCCH format, which is determined by high-level configuration parameters;
  • h(n CQI , n HARQ , n SR ) is a variable related to PUCCH transmission information
  • ⁇ TxD (F') is a parameter related to the number of antenna ports transmitting PUCCH and the PUCCH transmission mode
  • g(i) is the closed-loop power control adjustment value, which is determined by the power control command word sent by the network device.
  • the UE controls, according to the power control parameter, that the total transmit power on the physical uplink control channel PUCCH meets:
  • the total transmit power of the UE in the serving cell c is:
  • the P 0_PUCCH is a user-specific power control parameter, including P O_NOMINAL_PUCCH and P O_UE_PUCCH , and P O_NOMINAL_PUCCH indicates the UE-specific power control parameter, which is semi-statically configured by RRC signaling, that is, different values for different user equipment parameters.
  • the UE controls, according to the power control parameter, that the total transmit power of the sounding reference signal SRS is:
  • the total transmit power of the sounding reference signal SRS of the UE in the serving cell c is:
  • P O_PUSCH,c (j) includes P O_NOMINAL_PUSCH,c (j) and P O_UE_PUSCH,c (j), which are used to indicate the target received power of the UE, and are semi-statically configured by the upper layer RRC signaling, where P O_NOMINAL_PUSCH,c ( j) is the UE-specific power control parameter, semi-statically configured by RRC signaling;
  • ⁇ c (j) represents a path loss compensation factor parameter in the user-specific power control parameter, and is semi-statically configured by higher layer RRC signaling;
  • P SRS_OFFSET,c (m) represents an offset value of the PUSCH transmit power and the SRS transmit power caused by different modulation and coding modes
  • M SRS,c represents the SRS transmission bandwidth of the UE.
  • the UE controls the total transmit power of the sounding reference signal SRS according to the power control parameter to satisfy:
  • the total transmit power of the sounding reference signal SRS of the UE in the serving cell c is:
  • the UE target receiving power P O_PUSCH,c (j) and the path loss compensation factor ⁇ c (j) are user-specific power control parameters, that is, different values for different user equipment parameters;
  • P O_PUSCH,c (j) includes P O_NOMINAL_PUSCH,c (j) and P O_UE_PUSCH,c (j), which are used to indicate the target received power of the UE, and are semi-statically configured by higher layer RRC signaling, where P O_NOMINAL_PUSCH,c (j) Is the UE-specific power control parameter, semi-statically configured by RRC signaling;
  • ⁇ c (j) represents a path loss compensation factor parameter in the user-specific power control parameter, which is semi-statically configured by higher layer RRC signaling.
  • An uplink power control method and apparatus receiving a network device by using a user equipment UE
  • the configuration information of the user-specific power control parameter is sent;
  • the power control parameter configured by the network device includes: a target received power of the UE, a path loss compensation factor, and a transmission format compensation item; and the UE controls the parameter according to the power Controlling the transmit power of the serving cell, and implementing an uplink power control mechanism based on the compensation of the large-scale fading, the power control parameters and the adjustment values related to the large-scale fading are all at the user equipment level, that is, corresponding to different users.
  • the power control parameters of the device may be different, and the accuracy of the uplink power control is improved, and the problem that the current uplink power control method is used for the 3D new scenario in the prior art is overcome.
  • FIG. 4 is a flowchart of Embodiment 4 of an uplink power control method according to the present invention.
  • the executor of this embodiment may be a network device.
  • the solution in this embodiment is applied between the network device and the user equipment to perform uplink power control.
  • the method in this embodiment may include:
  • Step 401 The network device sends the configured measurement pilot to the user equipment UE, where the measurement pilot corresponds to one precoding matrix information.
  • Step 402 The network device sends the configured power control parameter to the user equipment UE, where the power control parameter corresponds to the configured measurement pilot, and the power control parameter is used by the user equipment UE to control its transmit power on the serving cell. .
  • the network device sends the configured measurement pilot to the user equipment UE, where the measurement pilot corresponds to one precoding matrix information, and sends the configured power control parameter to the user equipment UE, where the power control parameter and the configured device
  • the measurement pilot corresponds to; the power control parameter is used by the user equipment UE to control its transmit power on the serving cell.
  • the power control parameter is corresponding to the configured measurement pilot, and the power control parameter configuration of the UE that receives the same measurement pilot configuration is the same.
  • the power control parameter includes: a target received power of the UE, a path loss compensation factor, and a transmission format compensation item.
  • the UE controls, according to the power control parameter, that the total transmit power on the physical uplink shared channel PUSCH meets:
  • the UE At the transmission time i, the UE has only PUSCH transmission in the serving cell c and no PUCCH transmission at the same time,
  • the UE At the transmission time i, the UE has both PUSCH transmission and PUCCH transmission in the serving cell c, then
  • P CMAX,c (i) is the maximum transmit power of the UE on the serving cell c; and M PUSCH,c (i) is the number of resource blocks of the PUSCH scheduled by the UE at the transmission time i, and the unit is a physical resource.
  • P O_PUSCH,c,k (j) includes P O_NOMINAL_PUSCH,c,k (j) and P O_UE_PUSCH,c,k (j), which are used to indicate the target received power of the UE, and are semi-statically configured by the upper layer RRC signaling.
  • P O_NOMINAL_PUSCH,c,k (j) is the power control parameter corresponding to the kth set of measurement pilots, and the value range of k An integer from 1 to M, where M is the total number of different measurement pilots configured in the serving cell;
  • ⁇ c,k (j) represents the path loss compensation factor parameter in the power control parameter corresponding to the kth set of measurement pilots.
  • PL c is a path loss measurement value of the terminal receiving power RSRP based on the reference signal
  • Is a power adjustment value for different modulation and coding modes where when the UE receives the configured measurement pilot as the kth set of measurement pilots in the serving cell, K s,k is the kth set of measurement pilots corresponding to Power control parameters, semi-statically configured by higher layer RRC signaling; a parameter configured for a higher layer; the BPRE is calculated from the number of bits carried by the UE data and the number of resource units RE allocated for the UE data;
  • f c (i) is the closed-loop power adjustment amount, which is the feedback value quantified by the receiving end based on the received or measured error.
  • the UE controls, according to the power control parameter, that the total transmit power on the physical uplink control channel PUCCH meets:
  • the total transmit power of the UE in the serving cell c is:
  • P 0_PUCCH,k includes P O_NOMINAL_PUCCH,k and P O_UE_PUCCH,k .
  • P O_NOMINAL_PUCCH,k represents the kth set of measurements.
  • the power control parameter corresponding to the pilot is semi-statically configured by RRC signaling;
  • ⁇ F_PUCCH (F) is a power control adjustment parameter related to the PUCCH format, which is determined by high-level configuration parameters;
  • h(n CQI , n HARQ , n SR ) is a variable related to PUCCH transmission information
  • ⁇ TxD (F') is a parameter related to the number of antenna ports transmitting PUCCH and the PUCCH transmission mode
  • g(i) is the closed-loop power control adjustment value, which is determined by the power control command word sent by the network device.
  • the UE controls, according to the power control parameter, that a total transmit power of the sounding reference signal SRS meets:
  • the total transmit power of the sounding reference signal SRS of the UE in the serving cell c is:
  • P O_PUSCH,c,k (j) includes P O_NOMINAL_PUSCH,c,k (j) and P O_UE_PUSCH,c,k (j), which are used to indicate the target received power of the UE, and are semi-statically configured by the upper layer RRC signaling.
  • P O_NOMINAL_PUSCH,c,k (j) is a power control parameter corresponding to the kth set of measurement pilots, k
  • the value ranges from 1 to M, where M is the total number of different measurement pilots configured in the serving cell;
  • ⁇ c,k (j) represents the path loss compensation factor parameter in the power control parameter corresponding to the kth set of measurement pilots.
  • P SRS_OFFSET,c (m) represents an offset value of the PUSCH transmit power and the SRS transmit power caused by different modulation and coding modes
  • M SRS,c represents the SRS transmission bandwidth of the UE.
  • the executor of the embodiment may be a network device, and the solution in this embodiment is applied between the network device and the user equipment to perform uplink power control.
  • the method of this embodiment may include:
  • the network device sends configuration information of the UE-specific power control parameter to the user equipment UE;
  • the power control parameters configured by the network device include: a target received power of the UE, a path loss compensation factor, and a transmission format compensation item; the power control parameter is used by the UE to control the serving cell according to the power control parameter. Transmit power.
  • the UE controls, according to the power control parameter, that the total transmit power on the physical uplink shared channel PUSCH meets:
  • the UE At the transmission time i, the UE has only PUSCH transmission in the serving cell c and no PUCCH transmission at the same time,
  • the UE At the transmission time i, the UE has both PUSCH transmission and PUCCH transmission in the serving cell c, then
  • P CMAX,c (i) is the maximum transmit power of the UE on the serving cell c; and M PUSCH,c (i) is the number of resource blocks of the PUSCH scheduled by the UE at the transmission time i, and the unit is a physical resource.
  • P O_PUSCH,c (j) includes P O_NOMINAL_PUSCH,c (j) and P O_UE_PUSCH,c (j), which are used to indicate the target received power of the UE, and are semi-statically configured by higher layer RRC signaling, where P O_NOMINAL_PUSCH,c (j) Is the UE-specific power control parameter, semi-statically configured by RRC signaling;
  • ⁇ c (j) represents a path loss compensation factor parameter in the UE-specific power control parameter, and is semi-statically configured by higher layer RRC signaling;
  • PL c is a path loss measurement value of the terminal receiving power RSRP based on the reference signal
  • K s is a specific power control parameter of the UE, and is semi-statically configured by high-layer RRC signaling; a parameter configured for a higher layer; the BPRE is calculated from the number of bits carried by the UE data and the number of resource units RE allocated for the UE data;
  • f c (i) is the closed-loop power adjustment amount, which is the feedback value quantified by the receiving end based on the received or measured error.
  • the UE controls the physical uplink control channel according to the power control parameter.
  • the total transmit power on the PUCCH satisfies:
  • the total transmit power of the UE in the serving cell c is:
  • P 0_PUCCH includes P O_NOMINAL_PUCCH and P O_UE_PUCCH , and P O_NOMINAL_PUCCH indicates the UE-specific power control parameter, which is semi-statically configured by RRC signaling;
  • ⁇ F_PUCCH (F) is a power control adjustment parameter related to the PUCCH format, which is determined by high-level configuration parameters;
  • h(n CQI , n HARQ , n SR ) is a variable related to PUCCH transmission information
  • ⁇ TxD (F') is a parameter related to the number of antenna ports transmitting PUCCH and the PUCCH transmission mode
  • g(i) is the closed-loop power control adjustment value, which is determined by the power control command word sent by the network device.
  • the UE controls, according to the power control parameter, that the total transmit power of the sounding reference signal SRS is:
  • the total transmit power of the sounding reference signal SRS of the UE in the serving cell c is:
  • P O_PUSCH,c (j) includes P O_NOMINAL_PUSCH,c (j) and P O_UE_PUSCH,c (j), which are used to indicate the target received power of the UE, and are semi-statically configured by the upper layer RRC signaling, where P O_NOMINAL_PUSCH,c ( j) is the UE-specific power control parameter, semi-statically configured by RRC signaling;
  • ⁇ c (j) represents a path loss compensation factor parameter in the user-specific power control parameter, and is semi-statically configured by higher layer RRC signaling;
  • P SRS_OFFSET,c (m) represents an offset value of the PUSCH transmit power and the SRS transmit power caused by different modulation and coding modes
  • M SRS,c represents the SRS transmission bandwidth of the UE.
  • FIG. 5 is a schematic structural diagram of Embodiment 1 of a user equipment UE according to the present invention.
  • the user equipment UE in this embodiment may include: a receiving module 501, where the receiving module 501 is configured to receive a measurement pilot configured by the network device, where the measurement pilot corresponds to a precoding matrix information;
  • the receiving module 501 is further configured to receive a power control parameter configured by the network device, where the power control parameter is corresponding to the configured measurement pilot; and the power control parameter is used by the user equipment UE to control the serving cell. Transmit power.
  • the receiving module 501 of the user equipment UE receives the measurement pilot configured by the network device, the measurement pilot corresponds to one precoding matrix information, and receives power control parameters configured by the network device, the power control parameter and the measurement
  • the pilot corresponding to the power control parameter controls the transmit power of the UE on the serving cell according to the power control parameter.
  • the power control parameter is corresponding to the configured measurement pilot, and the power control parameter configuration of the UE that receives the same measurement pilot configuration is the same.
  • the power control parameter includes: a target received power of the UE, a path loss compensation factor, and a transmission format compensation item.
  • the user equipment UE of this embodiment further includes:
  • the control module 502 is configured to control, according to the power control parameter, that the total transmit power of the UE on the physical uplink shared channel PUSCH meets:
  • the UE At the transmission time i, the UE has only PUSCH transmission in the serving cell c and no PUCCH transmission at the same time,
  • the UE At the transmission time i, the UE has both PUSCH transmission and PUCCH transmission in the serving cell c, then
  • P CMAX,c (i) is the maximum transmit power of the UE on the serving cell c; and M PUSCH,c (i) is the number of resource blocks of the PUSCH scheduled by the UE at the transmission time i, and the unit is a physical resource.
  • P O_PUSCH,c,k (j) includes P O_NOMINAL_PUSCH,c,k (j) and P O_UE_PUSCH,c,k (j), which are used to indicate the target received power of the UE, and are semi-statically configured by the upper layer RRC signaling.
  • P O_NOMINAL_PUSCH,c,k (j) is the power control parameter corresponding to the kth set of measurement pilots, and the value range of k An integer from 1 to M, where M is the total number of different measurement pilots configured in the serving cell;
  • ⁇ c,k (j) represents the path loss compensation factor parameter in the power control parameter corresponding to the kth set of measurement pilots.
  • PL c is a path loss measurement value of the terminal receiving power RSRP based on the reference signal
  • Is a power adjustment value for different modulation and coding modes where when the UE receives the configured measurement pilot as the kth set of measurement pilots in the serving cell, K s,k is the kth set of measurement pilots corresponding to Power control parameters, semi-statically configured by higher layer RRC signaling; a parameter configured for a higher layer; the BPRE is calculated from the number of bits carried by the UE data and the number of resource units RE allocated for the UE data;
  • f c (i) is the closed-loop power adjustment amount, which is the feedback value quantified by the receiving end based on the received or measured error.
  • control module 502 is further configured to: according to the power control parameter, control, that the total transmit power of the UE on the physical uplink control channel PUCCH meets:
  • the total transmit power of the UE in the serving cell c is:
  • P 0_PUCCH,k includes P O_NOMINAL_PUCCH,k and P O_UE_PUCCH,k , when the UE receives the configured measurement pilot as the kth set of measurement pilots in the serving cell, P O_NOMINAL_PUCCH,k represents the kth set of measurements
  • the power control parameter corresponding to the pilot is semi-statically configured by RRC signaling;
  • ⁇ F_PUCCH (F) is a power control adjustment parameter related to the PUCCH format, which is determined by high-level configuration parameters;
  • h(n CQI , n HARQ , n SR ) is a variable related to PUCCH transmission information
  • ⁇ TxD (F') is a parameter related to the number of antenna ports transmitting PUCCH and the PUCCH transmission mode
  • g(i) is the closed-loop power control adjustment value, which is determined by the power control command word sent by the network device.
  • control module 502 is further configured to control, according to the power control parameter, that a total transmit power of the sounding reference signal SRS meets:
  • the total transmit power of the sounding reference signal SRS of the UE in the serving cell c is:
  • P O_PUSCH,c,k (j) includes P O_NOMINAL_PUSCH,c,k (j) and P O_UE_PUSCH,c,k (j), which are used to indicate the target received power of the UE, and are semi-statically configured by the upper layer RRC signaling.
  • P O_NOMINAL_PUSCH,c,k (j) is a power control parameter corresponding to the kth set of measurement pilots, k
  • the value ranges from 1 to M, where M is the total number of different measurement pilots configured in the serving cell;
  • ⁇ c,k (j) represents the path loss compensation factor parameter in the power control parameter corresponding to the kth set of measurement pilots.
  • P SRS_OFFSET,c (m) represents an offset value of the PUSCH transmit power and the SRS transmit power caused by different modulation and coding modes
  • M SRS,c represents the SRS transmission bandwidth of the UE.
  • the user equipment UE in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 2, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the user equipment UE of the present embodiment is based on the structure of the user equipment UE shown in FIG. 5, in this embodiment, the receiving module 501 is configured to receive the user-specific information sent by the network device.
  • the configuration information of the power control parameter; the power control parameter configured by the network device includes: a target receiving power of the UE, a path loss compensation factor, and a transmission format compensation item;
  • the control module 502 is configured to control, according to the power control parameter, a transmit power of the UE on a serving cell.
  • the receiving module 501 of the user equipment UE receives the configuration information of the user-specific power control parameter sent by the network device;
  • the power control parameter configured by the network device includes: the target receiving power of the UE, the path loss compensation factor, and The transmission format compensation item;
  • the control module 502 of the user equipment controls the transmission power of the UE on the serving cell according to the power control parameter.
  • control module 502 is specifically configured to control, according to the power control parameter, that the total transmit power of the UE on the physical uplink shared channel PUSCH meets:
  • the UE At the transmission time i, the UE has only PUSCH transmission in the serving cell c and no PUCCH transmission at the same time,
  • the UE At the transmission time i, the UE has both PUSCH transmission and PUCCH transmission in the serving cell c, then
  • P CMAX,c (i) is the maximum transmit power of the UE on the serving cell c; and M PUSCH,c (i) is the number of resource blocks of the PUSCH scheduled by the UE at the transmission time i, and the unit is a physical resource.
  • P O_PUSCH,c (j) includes P O_NOMINAL_PUSCH,c (j) and P O_UE_PUSCH,c (j), which are used to indicate the target received power of the UE, and are semi-statically configured by higher layer RRC signaling, where P O_NOMINAL_PUSCH,c (j) Is the UE-specific power control parameter, semi-statically configured by RRC signaling;
  • ⁇ c (j) represents a path loss compensation factor parameter in the UE-specific power control parameter, and is semi-statically configured by higher layer RRC signaling;
  • PL c is a path loss measurement value of the terminal receiving power RSRP based on the reference signal
  • K s is a specific power control parameter of the UE, and is semi-statically configured by high-layer RRC signaling; a parameter configured for a higher layer; the BPRE is calculated from the number of bits carried by the UE data and the number of resource units RE allocated for the UE data;
  • f c (i) is the closed-loop power adjustment amount, which is the feedback value quantified by the receiving end based on the received or measured error.
  • control module 502 is specifically configured to control, according to the power control parameter, that the total transmit power of the UE on the physical uplink control channel PUCCH meets:
  • the total transmit power of the UE in the serving cell c is:
  • P 0_PUCCH includes P O_NOMINAL_PUCCH and P O_UE_PUCCH , and P O_NOMINAL_PUCCH indicates the UE-specific power control parameter, which is semi-statically configured by RRC signaling;
  • ⁇ F_PUCCH (F) is a power control adjustment parameter related to the PUCCH format, which is determined by high-level configuration parameters;
  • h(n CQI , n HARQ , n SR ) is a variable related to PUCCH transmission information
  • ⁇ TxD (F') is a parameter related to the number of antenna ports transmitting PUCCH and the PUCCH transmission mode
  • g(i) is the closed-loop power control adjustment value, which is determined by the power control command word sent by the network device.
  • control module 502 is specifically configured to control, according to the power control parameter, that the total transmit power of the sounding reference signal SRS is:
  • the total transmit power of the sounding reference signal SRS of the UE in the serving cell c is:
  • P O_PUSCH,c (j) includes P O_NOMINAL_PUSCH,c (j) and P O_UE_PUSCH,c (j), which are used to indicate the target received power of the UE, and are semi-statically configured by the upper layer RRC signaling, where P O_NOMINAL_PUSCH,c ( j) is the UE-specific power control parameter, semi-statically configured by RRC signaling;
  • ⁇ c (j) represents a path loss compensation factor parameter in the user-specific power control parameter, and is semi-statically configured by higher layer RRC signaling;
  • P SRS_OFFSET,c (m) represents an offset value of the PUSCH transmit power and the SRS transmit power caused by different modulation and coding modes
  • M SRS,c represents the SRS transmission bandwidth of the UE.
  • the user equipment UE in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 3, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 6 is a schematic structural diagram of Embodiment 1 of a network device according to the present invention.
  • the network device in this embodiment may include: a sending module 601, where the sending module 601 is configured to send a configured measurement guide to the user equipment UE. Frequency, the measurement pilot corresponds to a precoding matrix information;
  • the sending module 601 is further configured to send, to the user equipment UE, the configured power control parameter, where the power control parameter is corresponding to the configured measurement pilot; and the power control parameter is used by the user equipment UE to control the serving cell.
  • the power control parameter is corresponding to the configured measurement pilot, and the power control parameter configuration of the UE that receives the same measurement pilot configuration is the same.
  • the power control parameter includes: a target received power of the UE, a path loss compensation factor, and a transmission format compensation item.
  • the network device of this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 4, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the network device in this embodiment is based on the network device structure shown in FIG. 6.
  • the sending module 601 is further configured to send user-specific power control to the user equipment UE.
  • the configuration information of the parameter; the power control parameter configured by the network device includes: a target received power of the UE, a path loss compensation factor, and a transmission format compensation item; the power control parameter is used by the UE according to the power control parameter Control its transmit power on the serving cell.
  • the network device in this embodiment may be used to implement the technical solution in the fifth embodiment of the method, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 7 is a schematic structural diagram of Embodiment 2 of a user equipment UE according to the present invention.
  • the user equipment UE70 provided in this embodiment includes a processor 701 and a memory 702.
  • User equipment UE70 may also include a receiver 703.
  • Receiver 703 can be coupled to processor 701.
  • the receiver 704 is configured to receive data or information, and the memory 702 stores execution instructions.
  • the processor 701 communicates with the memory 702, and the processor 701 calls an execution instruction in the memory 702 for executing the program.
  • the technical solution of the uplink power control method provided by any one of the first to third embodiments of the present invention is similar to the technical solution, and details are not described herein again.
  • FIG. 8 is a schematic structural diagram of Embodiment 2 of a network device according to the present invention.
  • the network device 80 provided in this embodiment includes a processor 801 and a memory 802.
  • Network device 80 may also include a transmitter 803.
  • Transmitter 803 can be coupled to processor 801.
  • the transmitter 803 is configured to transmit data or information
  • the memory 802 stores execution instructions
  • the processor 801 communicates with the memory 802, and the processor 801 calls an execution instruction in the memory 802 for executing the program.
  • the technical solutions of the uplink power control method provided by any of the fourth and fifth embodiments of the present invention are similar in implementation principles and technical effects, and are not described herein again.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit or module is only a logical function division.
  • there may be another division manner for example, multiple units or modules may be used. Combine or can be integrated into another system System, or some features can be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or module, and may be electrical, mechanical or otherwise.
  • the modules described as separate components may or may not be physically separated.
  • the components displayed as modules may or may not be physical modules, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种上行功率控制方法和装置。本发明上行功率控制方法,包括:接收网络设备配置的测量导频,所述测量导频对应一个预编码矩阵信息;接收网络设备配置的功率控制参数,所述功率控制参数与配置的所述测量导频对应;所述功率控制参数用于用户设备UE控制其在服务小区上的发射功率。本发明实施例提高了上行功率控制的准确性。

Description

上行功率控制方法和装置 技术领域
本发明实施例涉及通信技术,尤其涉及一种上行功率控制方法和装置。
背景技术
多天线多输入多输出(Multiple Input Multiple Output,简称MIMO)技术已经被广泛地应用在无线通信系统中来提高系统容量和保证小区的覆盖,如长期演进(Long Term Evolution,简称LTE)系统的下行采用了基于多天线的发送分集,开环/闭环的空分复用和基于解调参考信号(Demodulation Reference Signal,简称DMRS)的多流传输,其中基于DMRS的多流传输是LTE高级演进(LTE-Advanced,简称LTE-A)系统以及后续系统的主要传输模式。为了进一步提高多天线系统的性能,版本Rel-12标准中正在研究二维的天线配置,即天线同时放在水平和垂直方向上,从而可以同时进行水平和垂直方向上的波束赋形,被称为三维波束赋形,图1A为二维天线配置的示意图。
此外,当前Rel-12标准在引入二维天线配置的同时还引入用户设备的三维分布,即用户设备除了可以在水平面分布外,还可以在垂直向如1到8层的高楼内分布,每用户设备的位置坐标既包括水平向也包括垂直向。当假定用户设备高度为1.5米,每楼层高度为3米时,1到8层的用户设备高度范围从1.5米到22.5米。在存在更高楼(如楼高为20到30层)的场景下,最高楼层的用户设备高度可达88.5米。而在Rel-12标准研究的3D城市宏蜂窝(Urban Macro,简称UMa)和3D城市微蜂窝(Urban Micro,简称UMi)场景下,基站和用户设备UE的每条链路上的路径损耗与用户设备高度成正比,从而最高楼层用户设备和1层或地面用户设备的路径损耗相差几十个dB。基站和用户设备链路上的大尺度衰落除路径损耗项外还包括阴影衰落,穿透损耗,天线增益等项。但1层楼用户设备和最高楼层用户设备在上述这些项上的差别远没有路径损耗带来的差值大。图1B为3D UMi场景下的8层楼用户设备和1层楼用户设备的大尺度衰落分布图,图1B中1层楼用户设备被一个指向12度的下倾角的预编码波束服务,而8层楼的用户设备被一个指向-6度的上倾角的预编码波束服务,从图 1B中可看到8层楼用户设备和1层楼用户设备的最小大尺度衰落值相差10-20dB左右。
现有技术中存在的问题是,当前LTE标准中的上行功率控制机制是一种基于对大尺度衰落进行补偿的机制,所述大尺度衰落相关的功率控制参数和调整值均为小区级别的,无法实现对小区内不同用户或用户组的大尺度衰落补偿和相应的功率控制,因此针对3D新场景使用当前上行功率控制方法存在不准确的问题。
发明内容
本发明实施例提供一种上行功率控制方法和装置,以克服现有技术中针对3D新场景使用当前上行功率控制方法存在不准确的问题。
第一方面,本发明实施例提供一种上行功率控制方法,包括:
接收网络设备配置的测量导频,所述测量导频对应一个预编码矩阵信息;
接收网络设备配置的功率控制参数,所述功率控制参数与配置的所述测量导频对应;所述功率控制参数用于用户设备UE控制其在服务小区上的发射功率。
结合第一方面,在第一方面的第一种可能的实现方式中,所述功率控制参数与配置的所述测量导频对应,包括:接收到相同测量导频配置的UE的功率控制参数配置相同。
结合第一方面,在第一方面的第二种可能的实现方式中,所述功率控制参数包括:所述UE的目标接收功率,路损补偿因子和传输格式补偿项。
结合第一方面、或第一方面的第一、第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述UE根据所述功率控制参数控制其在物理上行共享信道PUSCH上的总发射功率满足:
在传输时刻i,所述UE在服务小区c只有PUSCH的传输而同时没有物理上行控制信道PUCCH的传输,则
Figure PCTCN2014087700-appb-000001
或,
在传输时刻i,所述UE在服务小区c既有PUSCH的传输同时又有PUCCH 的传输,则
Figure PCTCN2014087700-appb-000002
其中,PCMAX,c(i)为所述UE在服务小区c上的最大发射功率;而MPUSCH,c(i)为所述UE在传输时刻i的PUSCH调度资源块数目,单位为物理资源块PRB;i为大于等于0的整数;c为大于等于0的整数;
PO_PUSCH,c,k(j)包括PO_NOMINAL_PUSCH,c,k(j)和PO_UE_PUSCH,c,k(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,当所述UE接收到的测量导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUSCH,c,k(j)是第k套测量导频对应的功率控制参数,k的取值范围为从1到M的整数,其中M为所述服务小区内配置的不同测量导频总数;
当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,αc,k(j)表示第k套测量导频对应的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
PLc是终端基于参考信号接收功率RSRP的路损测量值;
Figure PCTCN2014087700-appb-000003
是对不同的调制编码方式的功率调整值,其中,当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,Ks,k是第k套测量导频对应的功率控制参数,由高层RRC信令半静态配置;
Figure PCTCN2014087700-appb-000004
为高层配置的参数;BPRE由UE数据承载的比特数量以及为所述UE数据分配的资源单元RE数计算得来;
fc(i)是闭环功率调整量,是接收端根据接收或测量的误差量化出来的反馈值。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,所述UE根据所述功率控制参数控制其在物理上行控制信道PUCCH上的总发射功率满足:
在传输时刻i,所述UE在服务小区c的总发射功率为:
Figure PCTCN2014087700-appb-000005
其中,P0_PUCCH,k包括PO_NOMINAL_PUCCH,k和PO_UE_PUCCH,k,当UE接收到配置的测量 导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUCCH,k表示第k套测量导频对应的功率控制参数,由RRC信令半静态配置;
ΔF_PUCCH(F)为与PUCCH格式相关的功率控制调整参数,由高层配置参数决定;
h(nCQI,nHARQ,nSR)为与PUCCH传输信息相关的变量;
ΔTxD(F')为与发送PUCCH的天线端口数和PUCCH传输模式相关的参数;
g(i)为闭环功率控制调整值,由网络设备发送的功控命令字决定。
结合第一方面的第三、第四种可能的实现方式,在第一方面的第五种可能的实现方式中,所述UE根据所述功率控制参数控制探测参考信号SRS的总发射功率满足:
在传输时刻i,所述UE在服务小区c的探测参考信号SRS的总发射功率为:
Figure PCTCN2014087700-appb-000006
其中,PO_PUSCH,c,k(j)包括PO_NOMINAL_PUSCH,c,k(j)和PO_UE_PUSCH,c,k(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中,当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUSCH,c,k(j)是第k套测量导频对应的功率控制参数,k的取值范围为从1到M的整数,其中M为所述服务小区内配置的不同测量导频总数;
当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,αc,k(j)表示第k套测量导频对应的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
PSRS_OFFSET,c(m)表示由调制编码方式不同带来的PUSCH发射功率与SRS发射功率的偏置值;
MSRS,c表示所述UE的SRS传输带宽。
第二方面,本发明实施例提供一种上行功率控制方法,包括:
用户设备UE接收网络设备发送的用户特定的功率控制参数的配置信息;所述网络设备配置的功率控制参数包括:所述UE的目标接收功率,路损补偿 因子和传输格式补偿项;
所述UE根据所述功率控制参数控制其在服务小区上的发射功率。
结合第二方面,在第二方面的第一种可能的实现方式中,所述UE根据所述功率控制参数控制其在物理上行共享信道PUSCH上的总发射功率满足:
在传输时刻i,所述UE在服务小区c只有PUSCH的传输而同时没有物理上行控制信道PUCCH的传输,则
Figure PCTCN2014087700-appb-000007
或,
在传输时刻i,所述UE在服务小区c既有PUSCH的传输同时又有PUCCH的传输,则
Figure PCTCN2014087700-appb-000008
其中,PCMAX,c(i)为所述UE在服务小区c上的最大发射功率;而MPUSCH,c(i)为所述UE在传输时刻i的PUSCH调度资源块数目,单位为物理资源块PRB;i为大于等于0的整数;c为大于等于0的整数;
PO_PUSCH,c(j)包括PO_NOMINAL_PUSCH,c(j)和PO_UE_PUSCH,c(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中PO_NOMINAL_PUSCH,c(j)是所述UE特定的功率控制参数,由RRC信令半静态配置;
αc(j)表示所述UE特定的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
PLc是终端基于参考信号接收功率RSRP的路损测量值;
Figure PCTCN2014087700-appb-000009
是对不同的调制编码方式的功率调整值,其中,Ks是所述UE特定的功率控制参数,由高层RRC信令半静态配置;
Figure PCTCN2014087700-appb-000010
为高层配置的参数;BPRE由UE数据承载的比特数量以及为所述UE数据分配的资源单元RE数计算得来;
fc(i)是闭环功率调整量,是接收端根据接收或测量的误差量化出来的反馈值。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述UE根据所述功率控制参数控制其在物理上行控制信道 PUCCH上的总发射功率满足:
在传输时刻i,所述UE在服务小区c的总发射功率为:
Figure PCTCN2014087700-appb-000011
其中,P0_PUCCH包括PO_NOMINAL_PUCCH和PO_UE_PUCCH,PO_NOMINAL_PUCCH表示所述UE特定的功率控制参数,由RRC信令半静态配置;
ΔF_PUCCH(F)为与PUCCH格式相关的功率控制调整参数,由高层配置参数决定;
h(nCQI,nHARQ,nSR)为与PUCCH传输信息相关的变量;
ΔTxD(F')为与发送PUCCH的天线端口数和PUCCH传输模式相关的参数;
g(i)为闭环功率控制调整值,由网络设备发送的功控命令字决定。
结合第一方面的第一、第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述UE根据所述功率控制参数控制探测参考信号SRS总发射功率满足:
在传输时刻i,所述UE在服务小区c的探测参考信号SRS的总发射功率为:
Figure PCTCN2014087700-appb-000012
其中,PO_PUSCH,c(j)包括PO_NOMINAL_PUSCH,c(j)和PO_UE_PUSCH,c(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中PO_NOMINAL_PUSCH,c(j)是所述UE特定的功率控制参数,由RRC信令半静态配置;
αc(j)表示所述用户特定的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
PSRS_OFFSET,c(m)表示由调制编码方式不同带来的PUSCH发射功率与SRS发射功率的偏置值;
MSRS,c表示所述UE的SRS传输带宽。
第三方面,本发明实施例提供一种上行功率控制方法,包括:
网络设备向用户设备UE发送配置的测量导频,所述测量导频对应一个预编码矩阵信息;
网络设备向用户设备UE发送配置的功率控制参数,所述功率控制参数与配置的所述测量导频对应;所述功率控制参数用于用户设备UE控制其在服务小区上的发射功率。
结合第三方面,在第三方面的第一种可能的实现方式中,所述功率控制参数与配置的所述测量导频对应,包括:接收到相同测量导频配置的UE的功率控制参数配置相同。
结合第三方面,在第三方面的第二种可能的实现方式中,所述功率控制参数包括:所述UE的目标接收功率,路损补偿因子和传输格式补偿项。
结合第三方面、或第三方面的第一、第二种可能的实现方式,在第三方面的第三种可能的实现方式中,所述UE根据所述功率控制参数控制其在物理上行共享信道PUSCH上的总发射功率满足:
在传输时刻i,所述UE在服务小区c只有PUSCH的传输而同时没有物理上行控制信道PUCCH的传输,则
Figure PCTCN2014087700-appb-000013
或,
在传输时刻i,所述UE在服务小区c既有PUSCH的传输同时又有PUCCH的传输,则
Figure PCTCN2014087700-appb-000014
其中,PCMAX,c(i)为所述UE在服务小区c上的最大发射功率;而MPUSCH,c(i)为所述UE在传输时刻i的PUSCH调度资源块数目,单位为物理资源块PRB;i为大于等于0的整数;c为大于等于0的整数;
PO_PUSCH,c,k(j)包括PO_NOMINAL_PUSCH,c,k(j)和PO_UE_PUSCH,c,k(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,当所述UE接收到的测量导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUSCH,c,k(j)是第k套测量导频对应的功率控制参数,k的取值范围为从1到M的整数,其中M为所述服务小区内配置的不同测量导频总数;
当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,αc,k(j)表示第k套测量导频对应的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
PLc是终端基于参考信号接收功率RSRP的路损测量值;
Figure PCTCN2014087700-appb-000015
是对不同的调制编码方式的功率调整值,其中,当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,Ks,k是第k套测量导频对应的功率控制参数,由高层RRC信令半静态配置;
Figure PCTCN2014087700-appb-000016
为高层配置的参数;BPRE由UE数据承载的比特数量以及为所述UE数据分配的资源单元RE数计算得来;
fc(i)是闭环功率调整量,是接收端根据接收或测量的误差量化出来的反馈值。
结合第三方面的第三种可能的实现方式,在第三方面的第四种可能的实现方式中,所述UE根据所述功率控制参数控制其在物理上行控制信道PUCCH上的总发射功率满足:
在传输时刻i,所述UE在服务小区c的总发射功率为:
Figure PCTCN2014087700-appb-000017
其中,P0_PUCCH,k包括PO_NOMINAL_PUCCH,k和PO_UE_PUCCH,k,当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUCCH,k表示第k套测量导频对应的功率控制参数,由RRC信令半静态配置;
ΔF_PUCCH(F)为与PUCCH格式相关的功率控制调整参数,由高层配置参数决定;
h(nCQI,nHARQ,nSR)为与PUCCH传输信息相关的变量;
ΔTxD(F')为与发送PUCCH的天线端口数和PUCCH传输模式相关的参数;
g(i)为闭环功率控制调整值,由网络设备发送的功控命令字决定。
结合第三方面的第三、第四种可能的实现方式,在第三方面的第五种可能的实现方式中,所述UE根据所述功率控制参数控制探测参考信号SRS的总发射功率满足:
在传输时刻i,所述UE在服务小区c的探测参考信号SRS的总发射功率为:
Figure PCTCN2014087700-appb-000018
其中,PO_PUSCH,c,k(j)包括PO_NOMINAL_PUSCH,c,k(j)和PO_UE_PUSCH,c,k(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中,当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUSCH,c,k(j)是第k套测量导频对应的功率控制参数,k的取值范围为从1到M的整数,其中M为所述服务小区内配置的不同测量导频总数;
当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,αc,k(j)表示第k套测量导频对应的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
PSRS_OFFSET,c(m)表示由调制编码方式不同带来的PUSCH发射功率与SRS发射功率的偏置值;
MSRS,c表示所述UE的SRS传输带宽。
第四方面,本发明实施例提供一种上行功率控制方法,包括:
网络设备向用户设备UE发送UE特定的功率控制参数的配置信息;所述网络设备配置的功率控制参数包括:所述UE的目标接收功率,路损补偿因子和传输格式补偿项;所述功率控制参数用于所述UE根据所述功率控制参数控制其在服务小区上的发射功率。
结合第四方面,在第四方面的第一种可能的实现方式中,所述UE根据所述功率控制参数控制其在物理上行共享信道PUSCH上的总发射功率满足:
在传输时刻i,所述UE在服务小区c只有PUSCH的传输而同时没有PUCCH的传输,则
Figure PCTCN2014087700-appb-000019
或,
在传输时刻i,所述UE在服务小区c既有PUSCH的传输同时又有PUCCH的传输,则
Figure PCTCN2014087700-appb-000020
其中,PCMAX,c(i)为所述UE在服务小区c上的最大发射功率;而MPUSCH,c(i)为所述UE在传输时刻i的PUSCH调度资源块数目,单位为物理资源块PRB;i为大于等于0的整数;c为大于等于0的整数;
PO_PUSCH,c(j)包括PO_NOMINAL_PUSCH,c(j)和PO_UE_PUSCH,c(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中PO_NOMINAL_PUSCH,c(j)是所述UE特定的功率控制参数,由RRC信令半静态配置;
αc(j)表示所述UE特定的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
PLc是终端基于参考信号接收功率RSRP的路损测量值;
Figure PCTCN2014087700-appb-000021
是对不同的调制编码方式的功率调整值,其中,Ks是所述UE特定的功率控制参数,由高层RRC信令半静态配置;
Figure PCTCN2014087700-appb-000022
为高层配置的参数;BPRE由UE数据承载的比特数量以及为所述UE数据分配的资源单元RE数计算得来;
fc(i)是闭环功率调整量,是接收端根据接收或测量的误差量化出来的反馈值。
结合第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,所述UE根据所述功率控制参数控制其在物理上行控制信道PUCCH上的总发射功率满足:
在传输时刻i,所述UE在服务小区c的总发射功率为:
Figure PCTCN2014087700-appb-000023
其中,P0_PUCCH包括PO_NOMINAL_PUCCH和PO_UE_PUCCH,PO_NOMINAL_PUCCH表示所述UE特定的功率控制参数,由RRC信令半静态配置;
ΔF_PUCCH(F)为与PUCCH格式相关的功率控制调整参数,由高层配置参数决定;
h(nCQI,nHARQ,nSR)为与PUCCH传输信息相关的变量;
ΔTxD(F')为与发送PUCCH的天线端口数和PUCCH传输模式相关的参数;
g(i)为闭环功率控制调整值,由网络设备发送的功控命令字决定。
结合第四方面的第一、第二种可能的实现方式,在第四方面的第三种可能的实现方式中,所述UE根据所述功率控制参数控制探测参考信号SRS总发射功率满足:
在传输时刻i,所述UE在服务小区c的探测参考信号SRS的总发射功率为:
Figure PCTCN2014087700-appb-000024
其中,PO_PUSCH,c(j)包括PO_NOMINAL_PUSCH,c(j)和PO_UE_PUSCH,c(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中PO_NOMINAL_PUSCH,c(j)是所述UE特定的功率控制参数,由RRC信令半静态配置;
αc(j)表示所述用户特定的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
PSRS_OFFSET,c(m)表示由调制编码方式不同带来的PUSCH发射功率与SRS发射功率的偏置值;
MSRS,c表示所述UE的SRS传输带宽。
第五方面,本发明实施例提供一种用户设备UE,包括:
接收模块,用于接收网络设备配置的测量导频,所述测量导频对应一个预编码矩阵信息;
所述接收模块,还用于接收网络设备配置的功率控制参数,所述功率控制参数与配置的所述测量导频对应;所述功率控制参数用于用户设备UE控制其在服务小区上的发射功率。
结合第五方面,在第五方面的第一种可能的实现方式中,所述功率控制参数与配置的所述测量导频对应,包括:接收到相同测量导频配置的UE的功率控制参数配置相同。
结合第五方面,在第五方面的第二种可能的实现方式中,所述功率控制参数包括:所述UE的目标接收功率,路损补偿因子和传输格式补偿项。
结合第五方面、或第五方面的第一、第二种可能的实现方式,在第五方面的第三种可能的实现方式中,还包括:
控制模块,用于根据所述功率控制参数控制所述UE在物理上行共享信道PUSCH上的总发射功率满足:
在传输时刻i,所述UE在服务小区c只有PUSCH的传输而同时没有物理上行控制信道PUCCH的传输,则
Figure PCTCN2014087700-appb-000025
或,
在传输时刻i,所述UE在服务小区c既有PUSCH的传输同时又有PUCCH的传输,则
Figure PCTCN2014087700-appb-000026
其中,PCMAX,c(i)为所述UE在服务小区c上的最大发射功率;而MPUSCH,c(i)为所述UE在传输时刻i的PUSCH调度资源块数目,单位为物理资源块PRB;i为大于等于0的整数;c为大于等于0的整数;
PO_PUSCH,c,k(j)包括PO_NOMINAL_PUSCH,c,k(j)和PO_UE_PUSCH,c,k(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,当所述UE接收到的测量导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUSCH,c,k(j)是第k套测量导频对应的功率控制参数,k的取值范围为从1到M的整数,其中M为所述服务小区内配置的不同测量导频总数;
当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,αc,k(j)表示第k套测量导频对应的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
PLc是终端基于参考信号接收功率RSRP的路损测量值;
Figure PCTCN2014087700-appb-000027
是对不同的调制编码方式的功率调整值,其中,当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,Ks,k是第k套测量导频对应的功率控制参数,由高层RRC信令半静态配置;
Figure PCTCN2014087700-appb-000028
为高层配置的参数;BPRE由UE数据承载的比特数量以及为所述 UE数据分配的资源单元RE数计算得来;
fc(i)是闭环功率调整量,是接收端根据接收或测量的误差量化出来的反馈值。
结合第五方面的第三种可能的实现方式,在第五方面的第四种可能的实现方式中,所述控制模块,还用于根据所述功率控制参数控制所述UE在物理上行控制信道PUCCH上的总发射功率满足:
在传输时刻i,所述UE在服务小区c的总发射功率为:
Figure PCTCN2014087700-appb-000029
其中,P0_PUCCH,k包括PO_NOMINAL_PUCCH,k和PO_UE_PUCCH,k,当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUCCH,k表示第k套测量导频对应的功率控制参数,由RRC信令半静态配置;
ΔF_PUCCH(F)为与PUCCH格式相关的功率控制调整参数,由高层配置参数决定;
h(nCQI,nHARQ,nSR)为与PUCCH传输信息相关的变量;
ΔTxD(F')为与发送PUCCH的天线端口数和PUCCH传输模式相关的参数;
g(i)为闭环功率控制调整值,由网络设备发送的功控命令字决定。
结合第五方面的第三、第四种可能的实现方式,在第五方面的第五种可能的实现方式中,所述控制模块,还用于根据所述功率控制参数控制探测参考信号SRS的总发射功率满足:
在传输时刻i,所述UE在服务小区c的探测参考信号SRS的总发射功率为:
Figure PCTCN2014087700-appb-000030
其中,PO_PUSCH,c,k(j)包括PO_NOMINAL_PUSCH,c,k(j)和PO_UE_PUSCH,c,k(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中,当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUSCH,c,k(j)是第k套测量导频对应的功率控制参数,k的取值范围为从1到M的整数,其中M为 所述服务小区内配置的不同测量导频总数;
当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,αc,k(j)表示第k套测量导频对应的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
PSRS_OFFSET,c(m)表示由调制编码方式不同带来的PUSCH发射功率与SRS发射功率的偏置值;
MSRS,c表示所述UE的SRS传输带宽。
第六方面,本发明实施例提供一种用户设备UE,包括:
接收模块,用于接收网络设备发送的用户特定的功率控制参数的配置信息;所述网络设备配置的功率控制参数包括:所述UE的目标接收功率,路损补偿因子和传输格式补偿项;
控制模块,用于根据所述功率控制参数控制所述UE在服务小区上的发射功率。
结合第六方面,在第六方面的第一种可能的实现方式中,所述控制模块,具体用于根据所述功率控制参数控制所述UE在物理上行共享信道PUSCH上的总发射功率满足:
在传输时刻i,所述UE在服务小区c只有PUSCH的传输而同时没有物理上行控制信道PUCCH的传输,则
Figure PCTCN2014087700-appb-000031
或,
在传输时刻i,所述UE在服务小区c既有PUSCH的传输同时又有PUCCH的传输,则
Figure PCTCN2014087700-appb-000032
其中,PCMAX,c(i)为所述UE在服务小区c上的最大发射功率;而MPUSCH,c(i)为所述UE在传输时刻i的PUSCH调度资源块数目,单位为物理资源块PRB;i为大于等于0的整数;c为大于等于0的整数;
PO_PUSCH,c(j)包括PO_NOMINAL_PUSCH,c(j)和PO_UE_PUSCH,c(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中PO_NOMINAL_PUSCH,c,k(j)是所述UE特定 的功率控制参数,由RRC信令半静态配置;
αc(j)表示所述UE特定的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
PLc是终端基于参考信号接收功率RSRP的路损测量值;
Figure PCTCN2014087700-appb-000033
是对不同的调制编码方式的功率调整值,其中,Ks是所述UE特定的功率控制参数,由高层RRC信令半静态配置;
Figure PCTCN2014087700-appb-000034
为高层配置的参数;BPRE由UE数据承载的比特数量以及为所述UE数据分配的资源单元RE数计算得来;
fc(i)是闭环功率调整量,是接收端根据接收或测量的误差量化出来的反馈值。
结合第六方面的第一种可能的实现方式,在第六方面的第二种可能的实现方式中,所述控制模块,具体用于根据所述功率控制参数控制所述UE在物理上行控制信道PUCCH上的总发射功率满足:
在传输时刻i,所述UE在服务小区c的总发射功率为:
Figure PCTCN2014087700-appb-000035
其中,P0_PUCCH包括PO_NOMINAL_PUCCH和PO_UE_PUCCH,PO_NOMINAL_PUCCH表示所述UE特定的功率控制参数,由RRC信令半静态配置;
ΔF_PUCCH(F)为与PUCCH格式相关的功率控制调整参数,由高层配置参数决定;
h(nCQI,nHARQ,nSR)为与PUCCH传输信息相关的变量;
ΔTxD(F')为与发送PUCCH的天线端口数和PUCCH传输模式相关的参数;
g(i)为闭环功率控制调整值,由网络设备发送的功控命令字决定。
结合第六方面的第一、第二种可能的实现方式,在第六方面的第三种可能的实现方式中,所述控制模块,具体用于根据所述功率控制参数控制探测参考信号SRS总发射功率满足:
在传输时刻i,所述UE在服务小区c的探测参考信号SRS的总发射功率为:
Figure PCTCN2014087700-appb-000036
其中,PO_PUSCH,c(j)包括PO_NOMINAL_PUSCH,c(j)和PO_UE_PUSCH,c,k(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中PO_NOMINAL_PUSCH,c(j)是所述UE特定的功率控制参数,由RRC信令半静态配置;
αc(j)表示所述用户特定的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
PSRS_OFFSET,c(m)表示由调制编码方式不同带来的PUSCH发射功率与SRS发射功率的偏置值;
MSRS,c表示所述UE的SRS传输带宽。
第七方面,本发明实施例提供一种网络设备,包括:
发送模块,用于向用户设备UE发送配置的测量导频,所述测量导频对应一个预编码矩阵信息;
所述发送模块,还用于向用户设备UE发送配置的功率控制参数,所述功率控制参数与配置的所述测量导频对应;所述功率控制参数用于用户设备UE控制其在服务小区上的发射功率。
结合第七方面,在第七方面的第一种可能的实现方式中,所述功率控制参数与配置的所述测量导频对应,包括:接收到相同测量导频配置的UE的功率控制参数配置相同。
结合第七方面,在第七方面的第二种可能的实现方式中,所述功率控制参数包括:所述UE的目标接收功率,路损补偿因子和传输格式补偿项。
第八方面,本发明实施例提供一种网络设备,包括:
发送模块,用于向用户设备UE发送用户特定的功率控制参数的配置信息;所述网络设备配置的功率控制参数包括:所述UE的目标接收功率,路损补偿因子和传输格式补偿项;所述功率控制参数用于所述UE根据所述功率控制参数控制其在服务小区上的发射功率。
第九方面,本发明实施例提供一种用户设备UE,包括:
包括处理器和存储器,所述存储器存储执行指令,当所述用户设备运行时,所述处理器与所述存储器之间通信,所述处理器执行所述执行指令使得所述用户设备执行如第一方面及第二方面中任一项所述的方法。
第十方面,本发明实施例提供一种网络设备,包括:
包括处理器和存储器,所述存储器存储执行指令,当所述网络设备运行时,所述处理器与所述存储器之间通信,所述处理器执行所述执行指令使得所述用户设备执行如第三方面及第四方面中任一项所述的方法。
本发明实施例上行功率控制方法和装置,通过接收网络设备配置的测量导频,所述测量导频对应一个预编码矩阵信息;接收网络设备配置的功率控制参数,所述功率控制参数与配置的所述测量导频对应;所述功率控制参数用于用户设备UE控制其在服务小区上的发射功率;或者,用户设备UE接收网络设备发送的用户特定的功率控制参数的配置信息;所述网络设备配置的功率控制参数包括:所述UE的目标接收功率,路损补偿因子和传输格式补偿项;所述UE根据所述功率控制参数控制其在服务小区上的发射功率,实现了基于对大尺度衰落进行补偿的上行功率控制机制,所述大尺度衰落相关的功率控制参数和调整值均为用户设备组或用户设备级别的,提高了上行功率控制的准确性,解决了以克服现有技术中针对3D新场景使用当前上行功率控制方法存在不准确的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1A为二维天线配置的示意图;
图1B为3D UMi场景下的8层楼用户设备和1层楼用户设备的大尺度衰落分布图;
图2为本发明上行功率控制方法实施例一的流程图;
图3为本发明上行功率控制方法实施例三的流程图;
图4为本发明上行功率控制方法实施例四的流程图;
图5为本发明用户设备UE实施例一的结构示意图;
图6为本发明网络设备实施例一的结构示意图;
图7为本发明用户设备UE实施例二的结构示意图;
图8为本发明网络设备实施例二的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图2为本发明上行功率控制方法实施例一的流程图。本实施例的执行主体可以为用户设备,本实施例的方案应用在网络设备和用户设备之间,进行上行功率控制。如图2所示,本实施例的方法可以包括:
步骤201、接收网络设备配置的测量导频,测量导频对应一个预编码矩阵信息。
步骤202、接收网络设备配置的功率控制参数,功率控制参数与配置的测量导频对应;功率控制参数用于用户设备UE控制其在服务小区上的发射功率。
具体来说,用户设备UE接收网络设备配置的测量导频,所述测量导频对应一个预编码矩阵信息,并且接收网络设备配置的功率控制参数,所述功率控制参数与所述测量导频对应,UE根据所述功率控制参数控制其在服务小区上的发射功率。
可选地,所述功率控制参数与配置的所述测量导频对应,包括:接收到相同测量导频配置的UE的功率控制参数配置相同。
可选地,所述功率控制参数包括:所述UE的目标接收功率,路损补偿因子和传输格式补偿项。
其中,上述功率控制参数可以是基站用组播的无线网络临时鉴定RNTI或用户特定的RNTI方式下发下来的。
本发明实施例针对3D新场景或高频下每小区的不同用户设备组有不同大尺度衰落的特点,可以进行每小区的用户设备分组功率控制,即相当于每小区进一步被分成几个“虚拟小区”,其中,每个“虚拟小区”对应一组用户设备。如小区内所有位于1层楼或地面的用户设备为一组,此组用 户设备对应一套指向波束12度的测量导频配置,而所有位于8层楼的用户设备为一组,此组用户设备对应一套指向波束-6度的测量导频配置。因此一套测量导频配置下的用户可归为一组,对应一个“虚拟小区”。每个“虚拟小区”有独立的“小区”级大尺度功率控制参数。所述“小区”级大尺度功率控制参数指的是功率控制机制中所有大尺度相关的小区特定功率控制参数。
本发明实施例上行功率控制方法和装置,通过接收网络设备配置的测量导频,所述测量导频对应一个预编码矩阵信息;接收网络设备配置的功率控制参数,所述功率控制参数与配置的所述测量导频对应;所述功率控制参数用于用户设备UE控制其在服务小区上的发射功率,实现了基于对大尺度衰落进行补偿的上行功率控制机制,所述大尺度衰落相关的功率控制参数和调整值均为用户设备组级别的,即对应不同的测量导频,功率控制参数不同,提高了上行功率控制的准确性,解决了现有技术中针对3D新场景使用当前上行功率控制方法存在不准确的问题。
下面采用具体的实施例,对图2所示方法实施例的技术方案进行详细说明。
在本发明上行功率控制方法实施例二中,所述UE根据所述功率控制参数控制其在物理上行共享信道PUSCH上的总发射功率满足:
在传输时刻i,所述UE在服务小区c只有PUSCH的传输而同时没有物理上行控制信道PUCCH的传输,则
Figure PCTCN2014087700-appb-000037
或,
在传输时刻i,所述UE在服务小区c既有PUSCH的传输同时又有PUCCH的传输,则
Figure PCTCN2014087700-appb-000038
其中,PCMAX,c(i)为所述UE在服务小区c上的最大发射功率;而MPUSCH,c(i)为所述UE在传输时刻i的PUSCH调度资源块数目,单位为物理资源块PRB;i为大于等于0的整数;c为大于等于0的整数;
PO_PUSCH,c,k(j)包括PO_NOMINAL_PUSCH,c,k(j)和PO_UE_PUSCH,c,k(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,当所述UE接收到的测量导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUSCH,c,k(j)是第k套测量导频对应的功率控制参数,k的取值范围为从1到M的整数,其中M为所述服务小区内配置的不同测量导频总数;PO_UE_PUSCH,c,k(j)与3GPP协议中的PO_UE_PUSCH,c(j)定义相同;
当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,αc,k(j)表示第k套测量导频对应的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
PLc是终端基于参考信号接收功率(Reference Signal Received Power,简称RSRP)的路损测量值;
Figure PCTCN2014087700-appb-000039
是对不同的调制编码方式的功率调整值,其中,当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,Ks,k是第k套测量导频对应的功率控制参数,由高层RRC信令半静态配置;
Figure PCTCN2014087700-appb-000040
为高层配置的参数;BPRE由UE数据承载的比特数量以及为所述UE数据分配的资源单元RE数计算得来;
fc(i)是闭环功率调整量,是接收端根据接收或测量的误差量化出来的反馈值。
具体来说,所述UE根据所述功率控制参数控制其在物理上行共享信道(Physical Uplink Shared Channel,简称PUSCH)上的总发射功率满足如下公式:
在传输时刻i,所述UE在服务小区c只有PUSCH的传输而同时没有PUCCH的传输,则
Figure PCTCN2014087700-appb-000041
或,
在传输时刻i,所述UE在服务小区c既有PUSCH的传输同时又有PUCCH的传输,则
Figure PCTCN2014087700-appb-000042
其中,上述公式中的PO_PUSCH,c,k(j)包括PO_NOMINAL_PUSCH,c,k(j)和PO_UE_PUSCH,c,k(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,当所述UE接收到的测量导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUSCH,c,k(j)是第k套测量导频对应的功率控制参数,k的取值范围为从1到M的整数,其中M为所述服务小区内配置的不同测量导频总数;即对于不同的测量导频配置的用户设备参数PO_PUSCH,c,k(j)不同。
当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,αc,k(j)表示第k套测量导频对应的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;即对于不同的测量导频配置的用户设备参数αc,k(j)不同。
其中,变量j与PUSCH的调度授权方式有关,当PUSCH传输是通过半静态调度授权,j=0,当PUSCH传输是通过动态调度授权,j=1,当PUSCH传输是通过随机接入应答授权,j=2。PO_PUSCH,c,k(j)的取值由不同的j的取值下对应的服务小区c高层配置的参数决定。
Figure PCTCN2014087700-appb-000043
是对不同的调制编码方式的功率调整值,其中,当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,Ks,k是第k套测量导频对应的功率控制参数,由高层RRC信令半静态配置;
Figure PCTCN2014087700-appb-000044
为高层配置的参数;BPRE由UE数据承载的比特数量以及为所述UE数据分配的资源单元RE数计算得来;即对于不同的测量导频配置的用户设备参数ΔTF,c,k(i)不同。
PPUCCH(i)的定义与3GPP协议中的定义相同。
可选地,所述UE根据所述功率控制参数控制其在物理上行控制信道(Physical Uplink Control Channel,简称PUCCH)上的总发射功率满足:
在传输时刻i,所述UE在服务小区c的总发射功率为:
Figure PCTCN2014087700-appb-000045
其中,P0_PUCCH,k包括PO_NOMINAL_PUCCH,k和PO_UE_PUCCH,k,当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUCCH,k表示第k套测量导频对应的功率控制参数,由RRC信令半静态配置;
ΔF_PUCCH(F)为与PUCCH格式相关的功率控制调整参数,由高层配置参数决 定;
h(nCQI,nHARQ,nSR)为与PUCCH传输信息相关的变量;
ΔTxD(F')为与发送PUCCH的天线端口数和PUCCH传输模式相关的参数;
g(i)为闭环功率控制调整值,由网络设备发送的功控命令字决定。
具体来说,所述UE根据所述功率控制参数控制其在物理上行控制信道PUCCH上的总发射功率满足如下公式:
在传输时刻i,所述UE在服务小区c的总发射功率为:
Figure PCTCN2014087700-appb-000046
其中,P0_PUCCH,k包括PO_NOMINAL_PUCCH,k和PO_UE_PUCCH,k,当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUCCH,k表示第k套测量导频对应的功率控制参数,由RRC信令半静态配置;即对于不同的测量导频配置的用户设备参数P0_PUCCH,k不同。P0_PUCCH,k的含义与3GPP协议中的P0_PUCCH含义相同,PO_NOMINAL_PUCCH,k的含义与3GPP协议中的PO_NOMINAL_PUCCH含义相同,PO_UE_PUCCH,k的含义与3GPP协议中的PO_UE_PUCCH含义相同。
可选地,所述UE根据所述功率控制参数控制探测参考信号SRS的总发射功率满足:
在传输时刻i,所述UE在服务小区c的探测参考信号SRS的总发射功率为:
Figure PCTCN2014087700-appb-000047
其中,PO_PUSCH,c,k(j)包括PO_NOMINAL_PUSCH,c,k(j)和PO_UE_PUSCH,c,k(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中,当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUSCH,c,k(j)是第k套测量导频对应的功率控制参数,k的取值范围为从1到M的整数,其中M为所述服务小区内配置的不同测量导频总数;
当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,αc,k(j)表示第k套测量导频对应的功率控制参数中的路损补偿因子参数,由高 层RRC信令半静态配置;
PSRS_OFFSET,c(m)表示由调制编码方式不同带来的PUSCH发射功率与SRS发射功率的偏置值;
MSRS,c表示所述UE的SRS传输带宽。
具体来说,所述UE根据所述功率控制参数控制探测参考信号SRS的总发射功率满足:
在传输时刻i,所述UE在服务小区c的探测参考信号SRS的总发射功率为:
Figure PCTCN2014087700-appb-000048
其中,PO_PUSCH,c,k(j)包括PO_NOMINAL_PUSCH,c,k(j)和PO_UE_PUSCH,c,k(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中,当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUSCH,c,k(j)是第k套测量导频对应的功率控制参数,k的取值范围为从1到M的整数,其中M为所述服务小区内配置的不同测量导频总数;即对于不同的测量导频配置的用户设备参数PO_PUSCH,c,k(j)不同。
当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,αc,k(j)表示第k套测量导频对应的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;即对于不同的测量导频配置的用户设备参数αc,k(j)不同。
上述公式中的m在3GPP协议中规定,m与SRS传输的触发类型有关,当触发类型为0时m=0,当触发类型为1时m=1。
上述每套测量导频的配置对应一个预编码矩阵(对应某个方向和宽度的一个波束),不同配置的测量导频有不同的预编码矩阵。如在3D UMi场景下,基站高度小于高楼用户的高度,此时基站为低层楼的用户配置一套指向下倾角12度的测量导频(即对应一个指向12度的预编码矩阵),而为高于基站高度的高楼层用户配置一套指向上倾角-6度的测量导频(即对应一个指向-6度的预编码矩阵)。
对于用户设备分组一种可能的实施方式可以为配置了相同套测量导频的用户设备自然为一组,如上述所有配置了指向下倾角12度测量导频的用户设 备为一组。而所有配置了指向上倾角-6度测量导频的用户设备为一组。
不失一般性,PUCCH,SRS及物理随机接入信道(PhysicalRandom Access Channel,简称PRACH)等其他上行信道和信号的发射功率中的小区特定参数均可同理扩展为测量导频配置特定的或用户设备组特定的参数。
图3为本发明上行功率控制方法实施例三的流程图。本实施例的执行主体可以为用户设备,本实施例的方案应用在网络设备和用户设备之间,进行上行功率控制。如图3所示,本实施例的方法可以包括:
步骤301、用户设备UE接收网络设备发送的用户特定的功率控制参数的配置信息;所述网络设备配置的功率控制参数包括:所述UE的目标接收功率,路损补偿因子和传输格式补偿项。
步骤302、所述UE根据所述功率控制参数控制其在服务小区上的发射功率。
具体来说,用户设备UE接收网络设备发送的用户特定的功率控制参数的配置信息;所述网络设备配置的功率控制参数包括:所述UE的目标接收功率,路损补偿因子和传输格式补偿项;UE根据所述功率控制参数控制其在服务小区上的发射功率。
为实现3D新场景或高频下每小区不同用户设备组的大尺度功率控制参数设置,进一步地,每个用户设备也可以有独立的“小区”级大尺度功率控制参数,即用户特定的功率控制参数。所述“小区”级大尺度功率控制参数指的是功率控制机制中所有大尺度相关的小区特定功率控制参数。
可选地,所述UE根据所述功率控制参数控制其在物理上行共享信道PUSCH上的总发射功率满足:
在传输时刻i,所述UE在服务小区c只有PUSCH的传输而同时没有物理上行控制信道PUCCH的传输,则
Figure PCTCN2014087700-appb-000049
或,
在传输时刻i,所述UE在服务小区c既有PUSCH的传输同时又有PUCCH的传输,则
Figure PCTCN2014087700-appb-000050
其中,PCMAX,c(i)为所述UE在服务小区c上的最大发射功率;而MPUSCH,c(i)为所述UE在传输时刻i的PUSCH调度资源块数目,单位为物理资源块PRB;i为大于等于0的整数;c为大于等于0的整数;
PO_PUSCH,c(j)包括PO_NOMINAL_PUSCH,c(j)和PO_UE_PUSCH,c(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中PO_NOMINAL_PUSCH,c(j)是所述UE特定的功率控制参数,由RRC信令半静态配置;
αc(j)表示所述UE特定的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
PLc是终端基于参考信号接收功率RSRP的路损测量值;
Figure PCTCN2014087700-appb-000051
是对不同的调制编码方式的功率调整值,其中,Ks是所述UE特定的功率控制参数,由高层RRC信令半静态配置;
Figure PCTCN2014087700-appb-000052
为高层配置的参数;BPRE由UE数据承载的比特数量以及为所述UE数据分配的资源单元RE数计算得来;
fc(i)是闭环功率调整量,是接收端根据接收或测量的误差量化出来的反馈值。
具体来说,所述UE根据所述功率控制参数控制其在物理上行共享信道PUSCH上的总发射功率满足如下公式:
在传输时刻i,所述UE在服务小区c只有PUSCH的传输而同时没有PUCCH的传输,则
Figure PCTCN2014087700-appb-000053
或,
在传输时刻i,所述UE在服务小区c既有PUSCH的传输同时又有PUCCH的传输,则
Figure PCTCN2014087700-appb-000054
其中,UE的目标接收功率PO_PUSCH,c(j)、路损补偿因子αc(j)和传输格式补偿项ΔTF,c(i)为用户特定的功率控制参数,即对于不同的用户设备参数值不同;
PO_PUSCH,c(j)包括PO_NOMINAL_PUSCH,c(j)和PO_UE_PUSCH,c(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中PO_NOMINAL_PUSCH,c(j)是所述UE特定 的功率控制参数,由RRC信令半静态配置;
αc(j)表示所述UE特定的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
Figure PCTCN2014087700-appb-000055
是对不同的调制编码方式的功率调整值,其中,Ks是所述UE特定的功率控制参数,由高层RRC信令半静态配置;
Figure PCTCN2014087700-appb-000056
为高层配置的参数;BPRE由UE数据承载的比特数量以及为所述UE数据分配的资源单元RE数计算得来;
可选地,所述UE根据所述功率控制参数控制其在物理上行控制信道PUCCH上的总发射功率满足:
在传输时刻i,所述UE在服务小区c的总发射功率为:
Figure PCTCN2014087700-appb-000057
其中,P0_PUCCH包括PO_NOMINAL_PUCCH和PO_UE_PUCCH,PO_NOMINAL_PUCCH表示所述UE特定的功率控制参数,由RRC信令半静态配置;
ΔF_PUCCH(F)为与PUCCH格式相关的功率控制调整参数,由高层配置参数决定;
h(nCQI,nHARQ,nSR)为与PUCCH传输信息相关的变量;
ΔTxD(F')为与发送PUCCH的天线端口数和PUCCH传输模式相关的参数;
g(i)为闭环功率控制调整值,由网络设备发送的功控命令字决定。
具体来说,所述UE根据所述功率控制参数控制其在物理上行控制信道PUCCH上的总发射功率满足:
在传输时刻i,所述UE在服务小区c的总发射功率为:
Figure PCTCN2014087700-appb-000058
其中,P0_PUCCH为用户特定的功率控制参数,包括PO_NOMINAL_PUCCH和PO_UE_PUCCH,PO_NOMINAL_PUCCH表示所述UE特定的功率控制参数,由RRC信令半静态配置,即对于不同的用户设备参数值不同。
可选地,所述UE根据所述功率控制参数控制探测参考信号SRS总发射功率满足:
在传输时刻i,所述UE在服务小区c的探测参考信号SRS的总发射功率为:
Figure PCTCN2014087700-appb-000059
其中,PO_PUSCH,c(j)包括PO_NOMINAL_PUSCH,c(j)和PO_UE_PUSCH,c(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中PO_NOMINAL_PUSCH,c(j)是所述UE特定的功率控制参数,由RRC信令半静态配置;
αc(j)表示所述用户特定的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
PSRS_OFFSET,c(m)表示由调制编码方式不同带来的PUSCH发射功率与SRS发射功率的偏置值;
MSRS,c表示所述UE的SRS传输带宽。
具体来说,所述UE根据所述功率控制参数控制探测参考信号SRS总发射功率满足:
在传输时刻i,所述UE在服务小区c的探测参考信号SRS的总发射功率为:
Figure PCTCN2014087700-appb-000060
其中,UE目标接收功率PO_PUSCH,c(j)和路损补偿因子αc(j)为用户特定的功率控制参数,即对于不同的用户设备参数值不同;
PO_PUSCH,c(j)包括PO_NOMINAL_PUSCH,c(j)和PO_UE_PUSCH,c(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中PO_NOMINAL_PUSCH,c(j)是所述UE特定的功率控制参数,由RRC信令半静态配置;
αc(j)表示所述用户特定的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置。
本发明实施例上行功率控制方法和装置,通过用户设备UE接收网络设备 发送的用户特定的功率控制参数的配置信息;所述网络设备配置的功率控制参数包括:所述UE的目标接收功率,路损补偿因子和传输格式补偿项;所述UE根据所述功率控制参数控制其在服务小区上的发射功率,实现了基于对大尺度衰落进行补偿的上行功率控制机制,所述大尺度衰落相关的功率控制参数和调整值均为用户设备级别的,即对应不同的用户设备,功率控制参数可以不同,提高了上行功率控制的准确性,解决了以克服现有技术中针对3D新场景使用当前上行功率控制方法存在不准确的问题。
图4为本发明上行功率控制方法实施例四的流程图。本实施例的执行主体可以为网络设备,本实施例的方案应用在网络设备和用户设备之间,进行上行功率控制。如图4所示,本实施例的方法可以包括:
步骤401、网络设备向用户设备UE发送配置的测量导频,所述测量导频对应一个预编码矩阵信息。
步骤402、网络设备向用户设备UE发送配置的功率控制参数,所述功率控制参数与配置的所述测量导频对应;所述功率控制参数用于用户设备UE控制其在服务小区上的发射功率。
具体来说,网络设备向用户设备UE发送配置的测量导频,所述测量导频对应一个预编码矩阵信息;并向用户设备UE发送配置的功率控制参数,所述功率控制参数与配置的所述测量导频对应;所述功率控制参数用于用户设备UE控制其在服务小区上的发射功率。
可选地,所述功率控制参数与配置的所述测量导频对应,包括:接收到相同测量导频配置的UE的功率控制参数配置相同。
可选地,所述功率控制参数包括:所述UE的目标接收功率,路损补偿因子和传输格式补偿项。
可选地,所述UE根据所述功率控制参数控制其在物理上行共享信道PUSCH上的总发射功率满足:
在传输时刻i,所述UE在服务小区c只有PUSCH的传输而同时没有PUCCH的传输,则
Figure PCTCN2014087700-appb-000061
或,
在传输时刻i,所述UE在服务小区c既有PUSCH的传输同时又有PUCCH的传输,则
Figure PCTCN2014087700-appb-000062
其中,PCMAX,c(i)为所述UE在服务小区c上的最大发射功率;而MPUSCH,c(i)为所述UE在传输时刻i的PUSCH调度资源块数目,单位为物理资源块PRB;i为大于等于0的整数;c为大于等于0的整数;
PO_PUSCH,c,k(j)包括PO_NOMINAL_PUSCH,c,k(j)和PO_UE_PUSCH,c,k(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,当所述UE接收到的测量导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUSCH,c,k(j)是第k套测量导频对应的功率控制参数,k的取值范围为从1到M的整数,其中M为所述服务小区内配置的不同测量导频总数;
当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,αc,k(j)表示第k套测量导频对应的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
PLc是终端基于参考信号接收功率RSRP的路损测量值;
Figure PCTCN2014087700-appb-000063
是对不同的调制编码方式的功率调整值,其中,当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,Ks,k是第k套测量导频对应的功率控制参数,由高层RRC信令半静态配置;
Figure PCTCN2014087700-appb-000064
为高层配置的参数;BPRE由UE数据承载的比特数量以及为所述UE数据分配的资源单元RE数计算得来;
fc(i)是闭环功率调整量,是接收端根据接收或测量的误差量化出来的反馈值。
可选地,所述UE根据所述功率控制参数控制其在物理上行控制信道PUCCH上的总发射功率满足:
在传输时刻i,所述UE在服务小区c的总发射功率为:
Figure PCTCN2014087700-appb-000065
其中,P0_PUCCH,k包括PO_NOMINAL_PUCCH,k和PO_UE_PUCCH,k,当UE接收到配置的测量 导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUCCH,k表示第k套测量导频对应的功率控制参数,由RRC信令半静态配置;
ΔF_PUCCH(F)为与PUCCH格式相关的功率控制调整参数,由高层配置参数决定;
h(nCQI,nHARQ,nSR)为与PUCCH传输信息相关的变量;
ΔTxD(F')为与发送PUCCH的天线端口数和PUCCH传输模式相关的参数;
g(i)为闭环功率控制调整值,由网络设备发送的功控命令字决定。
可选地,所述UE根据所述功率控制参数控制探测参考信号SRS的总发射功率满足:
在传输时刻i,所述UE在服务小区c的探测参考信号SRS的总发射功率为:
Figure PCTCN2014087700-appb-000066
其中,PO_PUSCH,c,k(j)包括PO_NOMINAL_PUSCH,c,k(j)和PO_UE_PUSCH,c,k(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中,当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUSCH,c,k(j)是第k套测量导频对应的功率控制参数,k的取值范围为从1到M的整数,其中M为所述服务小区内配置的不同测量导频总数;
当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,αc,k(j)表示第k套测量导频对应的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
PSRS_OFFSET,c(m)表示由调制编码方式不同带来的PUSCH发射功率与SRS发射功率的偏置值;
MSRS,c表示所述UE的SRS传输带宽。
在本发明上行功率控制方法实施例五中,实施例的执行主体可以为网络设备,本实施例的方案应用在网络设备和用户设备之间,进行上行功率控制。本实施例的方法可以包括:
网络设备向用户设备UE发送UE特定的功率控制参数的配置信息;所述 网络设备配置的功率控制参数包括:所述UE的目标接收功率,路损补偿因子和传输格式补偿项;所述功率控制参数用于所述UE根据所述功率控制参数控制其在服务小区上的发射功率。
可选地,所述UE根据所述功率控制参数控制其在物理上行共享信道PUSCH上的总发射功率满足:
在传输时刻i,所述UE在服务小区c只有PUSCH的传输而同时没有PUCCH的传输,则
Figure PCTCN2014087700-appb-000067
或,
在传输时刻i,所述UE在服务小区c既有PUSCH的传输同时又有PUCCH的传输,则
Figure PCTCN2014087700-appb-000068
其中,PCMAX,c(i)为所述UE在服务小区c上的最大发射功率;而MPUSCH,c(i)为所述UE在传输时刻i的PUSCH调度资源块数目,单位为物理资源块PRB;i为大于等于0的整数;c为大于等于0的整数;
PO_PUSCH,c(j)包括PO_NOMINAL_PUSCH,c(j)和PO_UE_PUSCH,c(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中PO_NOMINAL_PUSCH,c(j)是所述UE特定的功率控制参数,由RRC信令半静态配置;
αc(j)表示所述UE特定的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
PLc是终端基于参考信号接收功率RSRP的路损测量值;
Figure PCTCN2014087700-appb-000069
是对不同的调制编码方式的功率调整值,其中,Ks是所述UE特定的功率控制参数,由高层RRC信令半静态配置;
Figure PCTCN2014087700-appb-000070
为高层配置的参数;BPRE由UE数据承载的比特数量以及为所述UE数据分配的资源单元RE数计算得来;
fc(i)是闭环功率调整量,是接收端根据接收或测量的误差量化出来的反馈值。
可选地,所述UE根据所述功率控制参数控制其在物理上行控制信道 PUCCH上的总发射功率满足:
在传输时刻i,所述UE在服务小区c的总发射功率为:
Figure PCTCN2014087700-appb-000071
其中,P0_PUCCH包括PO_NOMINAL_PUCCH和PO_UE_PUCCH,PO_NOMINAL_PUCCH表示所述UE特定的功率控制参数,由RRC信令半静态配置;
ΔF_PUCCH(F)为与PUCCH格式相关的功率控制调整参数,由高层配置参数决定;
h(nCQI,nHARQ,nSR)为与PUCCH传输信息相关的变量;
ΔTxD(F')为与发送PUCCH的天线端口数和PUCCH传输模式相关的参数;
g(i)为闭环功率控制调整值,由网络设备发送的功控命令字决定。
可选地,所述UE根据所述功率控制参数控制探测参考信号SRS总发射功率满足:
在传输时刻i,所述UE在服务小区c的探测参考信号SRS的总发射功率为:
Figure PCTCN2014087700-appb-000072
其中,PO_PUSCH,c(j)包括PO_NOMINAL_PUSCH,c(j)和PO_UE_PUSCH,c(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中PO_NOMINAL_PUSCH,c(j)是所述UE特定的功率控制参数,由RRC信令半静态配置;
αc(j)表示所述用户特定的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
PSRS_OFFSET,c(m)表示由调制编码方式不同带来的PUSCH发射功率与SRS发射功率的偏置值;
MSRS,c表示所述UE的SRS传输带宽。
图5为本发明用户设备UE实施例一的结构示意图,如图5所示,本实施例的用户设备UE可以包括:接收模块501,其中,接收模块501,用于接收 网络设备配置的测量导频,所述测量导频对应一个预编码矩阵信息;
所述接收模块501,还用于接收网络设备配置的功率控制参数,所述功率控制参数与配置的所述测量导频对应;所述功率控制参数用于用户设备UE控制其在服务小区上的发射功率。
具体地,用户设备UE的接收模块501接收网络设备配置的测量导频,所述测量导频对应一个预编码矩阵信息,并且接收网络设备配置的功率控制参数,所述功率控制参数与所述测量导频对应,所述功率控制参数用UE根据所述功率控制参数控制其在服务小区上的发射功率。
可选地,所述功率控制参数与配置的所述测量导频对应,包括:接收到相同测量导频配置的UE的功率控制参数配置相同。
可选地,所述功率控制参数包括:所述UE的目标接收功率,路损补偿因子和传输格式补偿项。
可选地,本实施例的用户设备UE,还包括:
控制模块502,用于根据所述功率控制参数控制所述UE在物理上行共享信道PUSCH上的总发射功率满足:
在传输时刻i,所述UE在服务小区c只有PUSCH的传输而同时没有PUCCH的传输,则
Figure PCTCN2014087700-appb-000073
或,
在传输时刻i,所述UE在服务小区c既有PUSCH的传输同时又有PUCCH的传输,则
Figure PCTCN2014087700-appb-000074
其中,PCMAX,c(i)为所述UE在服务小区c上的最大发射功率;而MPUSCH,c(i)为所述UE在传输时刻i的PUSCH调度资源块数目,单位为物理资源块PRB;i为大于等于0的整数;c为大于等于0的整数;
PO_PUSCH,c,k(j)包括PO_NOMINAL_PUSCH,c,k(j)和PO_UE_PUSCH,c,k(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,当所述UE接收到的测量导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUSCH,c,k(j)是第k套测量导频对应的 功率控制参数,k的取值范围为从1到M的整数,其中M为所述服务小区内配置的不同测量导频总数;
当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,αc,k(j)表示第k套测量导频对应的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
PLc是终端基于参考信号接收功率RSRP的路损测量值;
Figure PCTCN2014087700-appb-000075
是对不同的调制编码方式的功率调整值,其中,当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,Ks,k是第k套测量导频对应的功率控制参数,由高层RRC信令半静态配置;
Figure PCTCN2014087700-appb-000076
为高层配置的参数;BPRE由UE数据承载的比特数量以及为所述UE数据分配的资源单元RE数计算得来;
fc(i)是闭环功率调整量,是接收端根据接收或测量的误差量化出来的反馈值。
可选地,所述控制模块502,还用于根据所述功率控制参数控制所述UE在物理上行控制信道PUCCH上的总发射功率满足:
在传输时刻i,所述UE在服务小区c的总发射功率为:
Figure PCTCN2014087700-appb-000077
其中,P0_PUCCH,k包括PO_NOMINAL_PUCCH,k和PO_UE_PUCCH,k,当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUCCH,k表示第k套测量导频对应的功率控制参数,由RRC信令半静态配置;
ΔF_PUCCH(F)为与PUCCH格式相关的功率控制调整参数,由高层配置参数决定;
h(nCQI,nHARQ,nSR)为与PUCCH传输信息相关的变量;
ΔTxD(F')为与发送PUCCH的天线端口数和PUCCH传输模式相关的参数;
g(i)为闭环功率控制调整值,由网络设备发送的功控命令字决定。
可选地,所述控制模块502,还用于根据所述功率控制参数控制探测参考信号SRS的总发射功率满足:
在传输时刻i,所述UE在服务小区c的探测参考信号SRS的总发射功率为:
Figure PCTCN2014087700-appb-000078
其中,PO_PUSCH,c,k(j)包括PO_NOMINAL_PUSCH,c,k(j)和PO_UE_PUSCH,c,k(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中,当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUSCH,c,k(j)是第k套测量导频对应的功率控制参数,k的取值范围为从1到M的整数,其中M为所述服务小区内配置的不同测量导频总数;
当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,αc,k(j)表示第k套测量导频对应的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
PSRS_OFFSET,c(m)表示由调制编码方式不同带来的PUSCH发射功率与SRS发射功率的偏置值;
MSRS,c表示所述UE的SRS传输带宽。
本实施例的用户设备UE,可以用于执行图2所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
在本发明用户设备UE实施例二中,本实施例的用户设备UE在图5所示用户设备UE结构的基础上,本实施例中,接收模块501,用于接收网络设备发送的用户特定的功率控制参数的配置信息;所述网络设备配置的功率控制参数包括:所述UE的目标接收功率,路损补偿因子和传输格式补偿项;
控制模块502,用于根据所述功率控制参数控制所述UE在服务小区上的发射功率。
具体来说,用户设备UE的接收模块501接收网络设备发送的用户特定的功率控制参数的配置信息;所述网络设备配置的功率控制参数包括:所述UE的目标接收功率,路损补偿因子和传输格式补偿项;用户设备的控制模块502根据所述功率控制参数控制所述UE在服务小区上的发射功率。
可选地,所述控制模块502,具体用于根据所述功率控制参数控制所述UE在物理上行共享信道PUSCH上的总发射功率满足:
在传输时刻i,所述UE在服务小区c只有PUSCH的传输而同时没有PUCCH的传输,则
Figure PCTCN2014087700-appb-000079
或,
在传输时刻i,所述UE在服务小区c既有PUSCH的传输同时又有PUCCH的传输,则
Figure PCTCN2014087700-appb-000080
其中,PCMAX,c(i)为所述UE在服务小区c上的最大发射功率;而MPUSCH,c(i)为所述UE在传输时刻i的PUSCH调度资源块数目,单位为物理资源块PRB;i为大于等于0的整数;c为大于等于0的整数;
PO_PUSCH,c(j)包括PO_NOMINAL_PUSCH,c(j)和PO_UE_PUSCH,c(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中PO_NOMINAL_PUSCH,c(j)是所述UE特定的功率控制参数,由RRC信令半静态配置;
αc(j)表示所述UE特定的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
PLc是终端基于参考信号接收功率RSRP的路损测量值;
Figure PCTCN2014087700-appb-000081
是对不同的调制编码方式的功率调整值,其中,Ks是所述UE特定的功率控制参数,由高层RRC信令半静态配置;
Figure PCTCN2014087700-appb-000082
为高层配置的参数;BPRE由UE数据承载的比特数量以及为所述UE数据分配的资源单元RE数计算得来;
fc(i)是闭环功率调整量,是接收端根据接收或测量的误差量化出来的反馈值。
可选地,所述控制模块502,具体用于根据所述功率控制参数控制所述UE在物理上行控制信道PUCCH上的总发射功率满足:
在传输时刻i,所述UE在服务小区c的总发射功率为:
Figure PCTCN2014087700-appb-000083
其中,P0_PUCCH包括PO_NOMINAL_PUCCH和PO_UE_PUCCH,PO_NOMINAL_PUCCH表示所述UE 特定的功率控制参数,由RRC信令半静态配置;
ΔF_PUCCH(F)为与PUCCH格式相关的功率控制调整参数,由高层配置参数决定;
h(nCQI,nHARQ,nSR)为与PUCCH传输信息相关的变量;
ΔTxD(F')为与发送PUCCH的天线端口数和PUCCH传输模式相关的参数;
g(i)为闭环功率控制调整值,由网络设备发送的功控命令字决定。
可选地,所述控制模块502,具体用于根据所述功率控制参数控制探测参考信号SRS总发射功率满足:
在传输时刻i,所述UE在服务小区c的探测参考信号SRS的总发射功率为:
Figure PCTCN2014087700-appb-000084
其中,PO_PUSCH,c(j)包括PO_NOMINAL_PUSCH,c(j)和PO_UE_PUSCH,c(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中PO_NOMINAL_PUSCH,c(j)是所述UE特定的功率控制参数,由RRC信令半静态配置;
αc(j)表示所述用户特定的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
PSRS_OFFSET,c(m)表示由调制编码方式不同带来的PUSCH发射功率与SRS发射功率的偏置值;
MSRS,c表示所述UE的SRS传输带宽。
本实施例的用户设备UE,可以用于执行图3所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图6为本发明网络设备实施例一的结构示意图,如图6所示,本实施例的网络设备可以包括:发送模块601,其中,发送模块601,用于向用户设备UE发送配置的测量导频,所述测量导频对应一个预编码矩阵信息;
所述发送模块601,还用于向用户设备UE发送配置的功率控制参数,所述功率控制参数与配置的所述测量导频对应;所述功率控制参数用于用户设备UE控制其在服务小区上的发射功率。
可选地,所述功率控制参数与配置的所述测量导频对应,包括:接收到相同测量导频配置的UE的功率控制参数配置相同。
可选地,所述功率控制参数包括:所述UE的目标接收功率,路损补偿因子和传输格式补偿项。
本实施例的网络设备,可以用于执行图4所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
在本发明网络设备实施例二中,本实施例的网络设备在图6所示网络设备结构的基础上,本实施例中,发送模601,还用于向用户设备UE发送用户特定的功率控制参数的配置信息;所述网络设备配置的功率控制参数包括:所述UE的目标接收功率,路损补偿因子和传输格式补偿项;所述功率控制参数用于所述UE根据所述功率控制参数控制其在服务小区上的发射功率。
本实施例的网络设备,可以用于执行方法实施例五的技术方案,其实现原理和技术效果类似,此处不再赘述。
图7为本发明用户设备UE实施例二的结构示意图。如图7所示,本实施例提供的用户设备UE70包括处理器701和存储器702。用户设备UE70还可以包括接收器703。接收器703可以和处理器701相连。其中,接收器704用于接收数据或信息,存储器702存储执行指令,当用户设备UE70运行时,处理器701与存储器702之间通信,处理器701调用存储器702中的执行指令,用于执行本发明实施例一~三任一所提供的上行功率控制方法的技术方案,其实现原理和技术效果类似,此处不再赘述。
图8为本发明网络设备实施例二的结构示意图。如图8所示,本实施例提供的网络设备80包括处理器801和存储器802。网络设备80还可以包括发射器803。发射器803可以和处理器801相连。其中,发射器803用于发射数据或信息,存储器802存储执行指令,当网络设备80运行时,处理器801与存储器802之间通信,处理器801调用存储器802中的执行指令,用于执行本发明实施例四、五任一所提供的上行功率控制方法的技术方案,其实现原理和技术效果类似,此处不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元或模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或模块可以结合或者可以集成到另一个系 统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,设备或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (36)

  1. 一种上行功率控制方法,其特征在于,包括:
    接收网络设备配置的测量导频,所述测量导频对应一个预编码矩阵信息;
    接收网络设备配置的功率控制参数,所述功率控制参数与配置的所述测量导频对应;所述功率控制参数用于用户设备UE控制其在服务小区上的发射功率。
  2. 根据权利要求1所述的方法,其特征在于,所述功率控制参数与配置的所述测量导频对应,包括:接收到相同测量导频配置的UE的功率控制参数配置相同。
  3. 根据权利要求1所述的方法,其特征在于,所述功率控制参数包括:所述UE的目标接收功率,路损补偿因子和传输格式补偿项。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述UE根据所述功率控制参数控制其在物理上行共享信道PUSCH上的总发射功率PPUSCH,c(i)满足:
    在传输时刻i,所述UE在服务小区c只有PUSCH的传输而同时没有PUCCH的传输,则
    或,
    在传输时刻i,所述UE在服务小区c既有PUSCH的传输同时又有物理上行控制信道PUCCH的传输,则
    Figure PCTCN2014087700-appb-100002
    其中,PCMAX,c(i)为所述UE在服务小区c上的最大发射功率;而MPUSCH,c(i)为所述UE在传输时刻i的PUSCH调度资源块数目,单位为物理资源块PRB;i为大于等于0的整数;c为大于等于0的整数;
    PO_PUSCH,c,k(j)包括PO_NOMINAL_PUSCH,c,k(j)和PO_UE_PUSCH,c,k(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,当所述UE接收到的测量导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUSCH,c,k(j)是第k套测量导频对应的功率控制参数,k的取值范围为从1到M的整数,其中M为所述服务小区内 配置的不同测量导频总数;
    当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,αc,k(j)表示第k套测量导频对应的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
    PLc是终端基于参考信号接收功率RSRP的路损测量值;
    Figure PCTCN2014087700-appb-100003
    是对不同的调制编码方式的功率调整值,其中,当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,Ks,k是第k套测量导频对应的功率控制参数,由高层RRC信令半静态配置;
    Figure PCTCN2014087700-appb-100004
    为高层配置的参数;BPRE由UE数据承载的比特数量以及为所述UE数据分配的资源单元RE数计算得来;
    fc(i)是闭环功率调整量,是接收端根据接收或测量的误差量化出来的反馈值。
  5. 根据权利要求4所述的方法,其特征在于,所述UE根据所述功率控制参数控制其在物理上行控制信道PUCCH上的总发射功率满足:
    在传输时刻i,所述UE在服务小区c的总发射功率为:
    Figure PCTCN2014087700-appb-100005
    其中,P0_PUCCH,k包括PO_NOMINAL_PUCCH,k和PO_UE_PUCCH,k,当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUCCH,k表示第k套测量导频对应的功率控制参数,由RRC信令半静态配置;
    ΔF_PUCCH(F)为与PUCCH格式相关的功率控制调整参数,由高层配置参数决定;
    h(nCQI,nHARQ,nSR)为与PUCCH传输信息相关的变量;
    ΔTxD(F')为与发送PUCCH的天线端口数和PUCCH传输模式相关的参数;
    g(i)为闭环功率控制调整值,由网络设备发送的功控命令字决定。
  6. 根据权利要求4或5所述的方法,其特征在于,所述UE根据所述功率控制参数控制探测参考信号SRS的总发射功率满足:
    在传输时刻i,所述UE在服务小区c的探测参考信号SRS的总发射功率 为:
    Figure PCTCN2014087700-appb-100006
    其中,PO_PUSCH,c,k(j)包括PO_NOMINAL_PUSCH,c,k(j)和PO_UE_PUSCH,c,k(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中,当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUSCH,c,k(j)是第k套测量导频对应的功率控制参数,k的取值范围为从1到M的整数,其中M为所述服务小区内配置的不同测量导频总数;
    当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,αc,k(j)表示第k套测量导频对应的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
    PSRS_OFFSET,c(m)表示由调制编码方式不同带来的PUSCH发射功率与SRS发射功率的偏置值;
    MSRS,c表示所述UE的SRS传输带宽。
  7. 一种上行功率控制方法,其特征在于,包括:
    用户设备UE接收网络设备发送的用户特定的功率控制参数的配置信息;所述网络设备配置的功率控制参数包括:所述UE的目标接收功率,路损补偿因子和传输格式补偿项;
    所述UE根据所述功率控制参数控制其在服务小区上的发射功率。
  8. 根据权利要求7所述的方法,其特征在于,所述UE根据所述功率控制参数控制其在物理上行共享信道PUSCH上的总发射功率满足:
    在传输时刻i,所述UE在服务小区c只有PUSCH的传输而同时没有PUCCH的传输,则
    Figure PCTCN2014087700-appb-100007
    或,
    在传输时刻i,所述UE在服务小区c既有PUSCH的传输同时又有物理上行控制信道PUCCH的传输,则
    Figure PCTCN2014087700-appb-100008
    其中,PCMAX,c(i)为所述UE在服务小区c上的最大发射功率;而MPUSCH,c(i)为所述UE在传输时刻i的PUSCH调度资源块数目,单位为物理资源块PRB;i为大于等于0的整数;c为大于等于0的整数;
    PO_PUSCH,c(j)包括PO_NOMINAL_PUSCH,c(j)和PO_UE_PUSCH,c(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中PO_NOMINAL_PUSCH,c(j)是所述UE特定的功率控制参数,由RRC信令半静态配置;
    αc(j)表示所述UE特定的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
    PLc是终端基于参考信号接收功率RSRP的路损测量值;
    Figure PCTCN2014087700-appb-100009
    是对不同的调制编码方式的功率调整值,其中,Ks是所述UE特定的功率控制参数,由高层RRC信令半静态配置;
    Figure PCTCN2014087700-appb-100010
    为高层配置的参数;BPRE由UE数据承载的比特数量以及为所述UE数据分配的资源单元RE数计算得来;
    fc(i)是闭环功率调整量,是接收端根据接收或测量的误差量化出来的反馈值。
  9. 根据权利要求8所述的方法,其特征在于,所述UE根据所述功率控制参数控制其在物理上行控制信道PUCCH上的总发射功率满足:
    在传输时刻i,所述UE在服务小区c的总发射功率为:
    Figure PCTCN2014087700-appb-100011
    其中,P0_PUCCH包括PO_NOMINAL_PUCCH和PO_UE_PUCCH,PO_NOMINAL_PUCCH表示所述UE特定的功率控制参数,由RRC信令半静态配置;
    ΔF_PUCCH(F)为与PUCCH格式相关的功率控制调整参数,由高层配置参数决定;
    h(nCQI,nHARQ,nSR)为与PUCCH传输信息相关的变量;
    ΔTxD(F')为与发送PUCCH的天线端口数和PUCCH传输模式相关的参数;
    g(i)为闭环功率控制调整值,由网络设备发送的功控命令字决定。
  10. 根据权利要求8或9所述的方法,其特征在于,所述UE根据所述功 率控制参数控制探测参考信号SRS总发射功率满足:
    在传输时刻i,所述UE在服务小区c的探测参考信号SRS的总发射功率为:
    Figure PCTCN2014087700-appb-100012
    其中,PO_PUSCH,c(j)包括PO_NOMINAL_PUSCH,c(j)和PO_UE_PUSCH,c(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中PO_NOMINAL_PUSCH,c(j)是所述UE特定的功率控制参数,由RRC信令半静态配置;
    αc(j)表示所述用户特定的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
    PSRS_OFFSET,c(m)表示由调制编码方式不同带来的PUSCH发射功率与SRS发射功率的偏置值;
    MSRS,c表示所述UE的SRS传输带宽。
  11. 一种上行功率控制方法,其特征在于,包括:
    网络设备向用户设备UE发送配置的测量导频,所述测量导频对应一个预编码矩阵信息;
    网络设备向用户设备UE发送配置的功率控制参数,所述功率控制参数与配置的所述测量导频对应;所述功率控制参数用于用户设备UE控制其在服务小区上的发射功率。
  12. 根据权利要求11所述的方法,其特征在于,所述功率控制参数与配置的所述测量导频对应,包括:接收到相同测量导频配置的UE的功率控制参数配置相同。
  13. 根据权利要求11所述的方法,其特征在于,所述功率控制参数包括:所述UE的目标接收功率,路损补偿因子和传输格式补偿项。
  14. 根据权利要求11-13任一项所述的方法,其特征在于,所述UE根据所述功率控制参数控制其在物理上行共享信道PUSCH上的总发射功率满足:
    在传输时刻i,所述UE在服务小区c只有PUSCH的传输而同时没有物理上行控制信道PUCCH的传输,则
    Figure PCTCN2014087700-appb-100013
    或,
    在传输时刻i,所述UE在服务小区c既有PUSCH的传输同时又有PUCCH的传输,则
    Figure PCTCN2014087700-appb-100014
    其中,PCMAX,c(i)为所述UE在服务小区c上的最大发射功率;而MPUSCH,c(i)为所述UE在传输时刻i的PUSCH调度资源块数目,单位为物理资源块PRB;i为大于等于0的整数;c为大于等于0的整数;
    PO_PUSCH,c,k(j)包括PO_NOMINAL_PUSCH,c,k(j)和PO_UE_PUSCH,c,k(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,当所述UE接收到的测量导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUSCH,c,k(j)是第k套测量导频对应的功率控制参数,k的取值范围为从1到M的整数,其中M为所述服务小区内配置的不同测量导频总数;
    当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,αc,k(j)表示第k套测量导频对应的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
    PLc是终端基于参考信号接收功率RSRP的路损测量值;
    Figure PCTCN2014087700-appb-100015
    是对不同的调制编码方式的功率调整值,其中,当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,Ks,k是第k套测量导频对应的功率控制参数,由高层RRC信令半静态配置;
    Figure PCTCN2014087700-appb-100016
    为高层配置的参数;BPRE由UE数据承载的比特数量以及为所述UE数据分配的资源单元RE数计算得来;
    fc(i)是闭环功率调整量,是接收端根据接收或测量的误差量化出来的反馈值。
  15. 根据权利要求14所述的方法,其特征在于,所述UE根据所述功率控制参数控制其在物理上行控制信道PUCCH上的总发射功率满足:
    在传输时刻i,所述UE在服务小区c的总发射功率为:
    Figure PCTCN2014087700-appb-100017
    其中,P0_PUCCH,k包括PO_NOMINAL_PUCCH,k和PO_UE_PUCCH,k,当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUCCH,k表示第k套测量导频对应的功率控制参数,由RRC信令半静态配置;
    ΔF_PUCCH(F)为与PUCCH格式相关的功率控制调整参数,由高层配置参数决定;
    h(nCQI,nHARQ,nSR)为与PUCCH传输信息相关的变量;
    ΔTxD(F')为与发送PUCCH的天线端口数和PUCCH传输模式相关的参数;
    g(i)为闭环功率控制调整值,由网络设备发送的功控命令字决定。
  16. 根据权利要求14或15所述的方法,其特征在于,所述UE根据所述功率控制参数控制探测参考信号SRS的总发射功率满足:
    在传输时刻i,所述UE在服务小区c的探测参考信号SRS的总发射功率为:
    Figure PCTCN2014087700-appb-100018
    其中,PO_PUSCH,c,k(j)包括PO_NOMINAL_PUSCH,c,k(j)和PO_UE_PUSCH,c,k(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中,当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUSCH,c,k(j)是第k套测量导频对应的功率控制参数,k的取值范围为从1到M的整数,其中M为所述服务小区内配置的不同测量导频总数;
    当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,αc,k(j)表示第k套测量导频对应的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
    PSRS_OFFSET,c(m)表示由调制编码方式不同带来的PUSCH发射功率与SRS发射功率的偏置值;
    MSRS,c表示所述UE的SRS传输带宽。
  17. 一种上行功率控制方法,其特征在于,包括:
    网络设备向用户设备UE发送UE特定的功率控制参数的配置信息;所述网络设备配置的功率控制参数包括:所述UE的目标接收功率,路损补偿因子 和传输格式补偿项;所述功率控制参数用于所述UE根据所述功率控制参数控制其在服务小区上的发射功率。
  18. 根据权利要求17所述的方法,其特征在于,所述UE根据所述功率控制参数控制其在物理上行共享信道PUSCH上的总发射功率满足:
    在传输时刻i,所述UE在服务小区c只有PUSCH的传输而同时没有物理上行控制信道PUCCH的传输,则
    Figure PCTCN2014087700-appb-100019
    或,
    在传输时刻i,所述UE在服务小区c既有PUSCH的传输同时又有PUCCH的传输,则
    Figure PCTCN2014087700-appb-100020
    其中,PCMAX,c(i)为所述UE在服务小区c上的最大发射功率;而MPUSCH,c(i)为所述UE在传输时刻i的PUSCH调度资源块数目,单位为物理资源块PRB;i为大于等于0的整数;c为大于等于0的整数;
    PO_PUSCH,c(j)包括PO_NOMINAL_PUSCH,c(j)和PO_UE_PUSCH,c(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中PO_NOMINAL_PUSCH,c(j)是所述UE特定的功率控制参数,由RRC信令半静态配置;
    αc(j)表示所述UE特定的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
    PLc是终端基于参考信号接收功率RSRP的路损测量值;
    Figure PCTCN2014087700-appb-100021
    是对不同的调制编码方式的功率调整值,其中,Ks是所述UE特定的功率控制参数,由高层RRC信令半静态配置;
    Figure PCTCN2014087700-appb-100022
    为高层配置的参数;BPRE由UE数据承载的比特数量以及为所述UE数据分配的资源单元RE数计算得来;
    fc(i)是闭环功率调整量,是接收端根据接收或测量的误差量化出来的反馈值。
  19. 根据权利要求18所述的方法,其特征在于,所述UE根据所述功率控制参数控制其在物理上行控制信道PUCCH上的总发射功率满足:
    在传输时刻i,所述UE在服务小区c的总发射功率为:
    Figure PCTCN2014087700-appb-100023
    其中,P0_PUCCH包括PO_NOMINAL_PUCCH和PO_UE_PUCCH,PO_NOMINAL_PUCCH表示所述UE特定的功率控制参数,由RRC信令半静态配置;
    ΔF_PUCCH(F)为与PUCCH格式相关的功率控制调整参数,由高层配置参数决定;
    h(nCQI,nHARQ,nSR)为与PUCCH传输信息相关的变量;
    ΔTxD(F')为与发送PUCCH的天线端口数和PUCCH传输模式相关的参数;
    g(i)为闭环功率控制调整值,由网络设备发送的功控命令字决定。
  20. 根据权利要求18或19所述的方法,其特征在于,所述UE根据所述功率控制参数控制探测参考信号SRS总发射功率满足:
    在传输时刻i,所述UE在服务小区c的探测参考信号SRS的总发射功率为:
    Figure PCTCN2014087700-appb-100024
    其中,PO_PUSCH,c(j)包括PO_NOMINAL_PUSCH,c(j)和PO_UE_PUSCH,c(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中PO_NOMINAL_PUSCH,c(j)是所述UE特定的功率控制参数,由RRC信令半静态配置;
    αc(j)表示所述用户特定的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
    PSRS_OFFSET,c(m)表示由调制编码方式不同带来的PUSCH发射功率与SRS发射功率的偏置值;
    MSRS,c表示所述UE的SRS传输带宽。
  21. 一种用户设备UE,其特征在于,包括:
    接收模块,用于接收网络设备配置的测量导频,所述测量导频对应一个预编码矩阵信息;
    所述接收模块,还用于接收网络设备配置的功率控制参数,所述功率控 制参数与配置的所述测量导频对应;所述功率控制参数用于用户设备UE控制其在服务小区上的发射功率。
  22. 根据权利要求21所述的UE,其特征在于,所述功率控制参数与配置的所述测量导频对应,包括:接收到相同测量导频配置的UE的功率控制参数配置相同。
  23. 根据权利要求21所述的UE,其特征在于,所述功率控制参数包括:所述UE的目标接收功率,路损补偿因子和传输格式补偿项。
  24. 根据权利要求21-23任一项所述的UE,其特征在于,还包括:
    控制模块,用于根据所述功率控制参数控制所述UE在物理上行共享信道PUSCH上的总发射功率满足:
    在传输时刻i,所述UE在服务小区c只有PUSCH的传输而同时没有物理上行控制信道PUCCH的传输,则
    Figure PCTCN2014087700-appb-100025
    或,
    在传输时刻i,所述UE在服务小区c既有PUSCH的传输同时又有PUCCH的传输,则
    Figure PCTCN2014087700-appb-100026
    其中,PCMAX,c(i)为所述UE在服务小区c上的最大发射功率;而MPUSCH,c(i)为所述UE在传输时刻i的PUSCH调度资源块数目,单位为物理资源块PRB;i为大于等于0的整数;c为大于等于0的整数;
    PO_PUSCH,c,k(j)包括PO_NOMINAL_PUSCH,c,k(j)和PO_UE_PUSCH,c,k(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,当所述UE接收到的测量导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUSCH,c,k(j)是第k套测量导频对应的功率控制参数,k的取值范围为从1到M的整数,其中M为所述服务小区内配置的不同测量导频总数;
    当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,αc,k(j)表示第k套测量导频对应的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
    PLc是终端基于参考信号接收功率RSRP的路损测量值;
    Figure PCTCN2014087700-appb-100027
    是对不同的调制编码方式的功率调整值,其中,当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,Ks,k是第k套测量导频对应的功率控制参数,由高层RRC信令半静态配置;
    Figure PCTCN2014087700-appb-100028
    为高层配置的参数;BPRE由UE数据承载的比特数量以及为所述UE数据分配的资源单元RE数计算得来;
    fc(i)是闭环功率调整量,是接收端根据接收或测量的误差量化出来的反馈值。
  25. 根据权利要求24所述的UE,其特征在于,所述控制模块,还用于根据所述功率控制参数控制所述UE在物理上行控制信道PUCCH上的总发射功率满足:
    在传输时刻i,所述UE在服务小区c的总发射功率为:
    Figure PCTCN2014087700-appb-100029
    其中,P0_PUCCH,k包括PO_NOMINAL_PUCCH,k和PO_UE_PUCCH,k,当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUCCH,k表示第k套测量导频对应的功率控制参数,由RRC信令半静态配置;
    ΔF_PUCCH(F)为与PUCCH格式相关的功率控制调整参数,由高层配置参数决定;
    h(nCQI,nHARQ,nSR)为与PUCCH传输信息相关的变量;
    ΔTxD(F')为与发送PUCCH的天线端口数和PUCCH传输模式相关的参数;
    g(i)为闭环功率控制调整值,由网络设备发送的功控命令字决定。
  26. 根据权利要求24或25所述的UE,其特征在于,所述控制模块,还用于根据所述功率控制参数控制探测参考信号SRS的总发射功率满足:
    在传输时刻i,所述UE在服务小区c的探测参考信号SRS的总发射功率为:
    Figure PCTCN2014087700-appb-100030
    其中,PO_PUSCH,c,k(j)包括PO_NOMINAL_PUSCH,c,k(j)和PO_UE_PUSCH,c,k(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中,当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,PO_NOMINAL_PUSCH,c,k(j)是第k套测量导频对应的功率控制参数,k的取值范围为从1到M的整数,其中M为所述服务小区内配置的不同测量导频总数;
    当UE接收到配置的测量导频为所述服务小区内的第k套测量导频时,αc,k(j)表示第k套测量导频对应的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
    PSRS_OFFSET,c(m)表示由调制编码方式不同带来的PUSCH发射功率与SRS发射功率的偏置值;
    MSRS,c表示所述UE的SRS传输带宽。
  27. 一种用户设备UE,其特征在于,包括:
    接收模块,用于接收网络设备发送的用户特定的功率控制参数的配置信息;所述网络设备配置的功率控制参数包括:所述UE的目标接收功率,路损补偿因子和传输格式补偿项;
    控制模块,用于根据所述功率控制参数控制所述UE在服务小区上的发射功率。
  28. 根据权利要求27所述的UE,其特征在于,所述控制模块,具体用于根据所述功率控制参数控制所述UE在物理上行共享信道PUSCH上的总发射功率满足:
    在传输时刻i,所述UE在服务小区c只有PUSCH的传输而同时没有物理上行控制信道PUCCH的传输,则
    Figure PCTCN2014087700-appb-100031
    或,
    在传输时刻i,所述UE在服务小区c既有PUSCH的传输同时又有PUCCH的传输,则
    Figure PCTCN2014087700-appb-100032
    其中,PCMAX,c(i)为所述UE在服务小区c上的最大发射功率;而MPUSCH,c(i)为所述UE在传输时刻i的PUSCH调度资源块数目,单位为物理资源块PRB; i为大于等于0的整数;c为大于等于0的整数;
    PO_PUSCH,c(j)包括PO_NOMINAL_PUSCH,c(j)和PO_UE_PUSCH,c(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中PO_NOMINAL_PUSCH,c(j)是所述UE特定的功率控制参数,由RRC信令半静态配置;
    αc(j)表示所述UE特定的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
    PLc是终端基于参考信号接收功率RSRP的路损测量值;
    Figure PCTCN2014087700-appb-100033
    是对不同的调制编码方式的功率调整值,其中,Ks是所述UE特定的功率控制参数,由高层RRC信令半静态配置;
    Figure PCTCN2014087700-appb-100034
    为高层配置的参数;BPRE由UE数据承载的比特数量以及为所述UE数据分配的资源单元RE数计算得来;
    fc(i)是闭环功率调整量,是接收端根据接收或测量的误差量化出来的反馈值。
  29. 根据权利要求28所述的UE,其特征在于,所述控制模块,具体用于根据所述功率控制参数控制所述UE在物理上行控制信道PUCCH上的总发射功率满足:
    在传输时刻i,所述UE在服务小区c的总发射功率为:
    Figure PCTCN2014087700-appb-100035
    其中,P0_PUCCH包括PO_NOMINAL_PUCCH和PO_UE_PUCCH,PO_NOMINAL_PUCCH表示所述UE特定的功率控制参数,由RRC信令半静态配置;
    ΔF_PUCCH(F)为与PUCCH格式相关的功率控制调整参数,由高层配置参数决定;
    h(nCQI,nHARQ,nSR)为与PUCCH传输信息相关的变量;
    ΔTxD(F')为与发送PUCCH的天线端口数和PUCCH传输模式相关的参数;
    g(i)为闭环功率控制调整值,由网络设备发送的功控命令字决定。
  30. 根据权利要求28或29所述的UE,其特征在于,所述控制模块,具体用于根据所述功率控制参数控制探测参考信号SRS总发射功率满足:
    在传输时刻i,所述UE在服务小区c的探测参考信号SRS的总发射功率为:
    Figure PCTCN2014087700-appb-100036
    其中,PO_PUSCH,c(j)包括PO_NOMINAL_PUSCH,c(j)和PO_UE_PUSCH,c(j),用来表示UE的目标接收功率,由高层RRC信令半静态配置,其中PO_NOMINAL_PUSCH,c(j)是所述UE特定的功率控制参数,由RRC信令半静态配置;
    αc(j)表示所述用户特定的功率控制参数中的路损补偿因子参数,由高层RRC信令半静态配置;
    PSRS_OFFSET,c(m)表示由调制编码方式不同带来的PUSCH发射功率与SRS发射功率的偏置值;
    MSRS,c表示所述UE的SRS传输带宽。
  31. 一种网络设备,其特征在于,包括:
    发送模块,用于向用户设备UE发送配置的测量导频,所述测量导频对应一个预编码矩阵信息;
    所述发送模块,还用于向用户设备UE发送配置的功率控制参数,所述功率控制参数与配置的所述测量导频对应;所述功率控制参数用于用户设备UE控制其在服务小区上的发射功率。
  32. 根据权利要求31所述的网络设备,其特征在于,所述功率控制参数与配置的所述测量导频对应,包括:接收到相同测量导频配置的UE的功率控制参数配置相同。
  33. 根据权利要求31所述的网络设备,其特征在于,所述功率控制参数包括:所述UE的目标接收功率,路损补偿因子和传输格式补偿项。
  34. 一种网络设备,其特征在于,包括:
    发送模块,用于向用户设备UE发送用户特定的功率控制参数的配置信息;所述网络设备配置的功率控制参数包括:所述UE的目标接收功率,路损补偿因子和传输格式补偿项;所述功率控制参数用于所述UE根据所述功率控制参数控制其在服务小区上的发射功率。
  35. 一种用户设备UE,其特征在于,包括:
    包括处理器和存储器,所述存储器存储执行指令,当所述用户设备运行时,所述处理器与所述存储器之间通信,所述处理器执行所述执行指令使得所述用户设备执行如权利要求1至10任一项所述的方法。
  36. 一种网络设备,其特征在于,包括:
    包括处理器和存储器,所述存储器存储执行指令,当所述网络设备运行时,所述处理器与所述存储器之间通信,所述处理器执行所述执行指令使得所述用户设备执行如权利要求11至20任一项所述的方法。
PCT/CN2014/087700 2014-09-28 2014-09-28 上行功率控制方法和装置 WO2016045130A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201810595077.6A CN108924919B (zh) 2014-09-28 2014-09-28 上行功率配置方法、装置和计算机可读存储介质
CN202011462699.5A CN112533272A (zh) 2014-09-28 2014-09-28 上行功率配置方法和装置
CN201480035736.0A CN105745975B (zh) 2014-09-28 2014-09-28 上行功率控制方法和装置
CN201810594911.XA CN108811064B (zh) 2014-09-28 2014-09-28 上行功率配置方法和网络设备
PCT/CN2014/087700 WO2016045130A1 (zh) 2014-09-28 2014-09-28 上行功率控制方法和装置
EP20155513.3A EP3764703B1 (en) 2014-09-28 2014-09-28 Uplink power control method and apparatus
EP14902786.4A EP3190839B1 (en) 2014-09-28 2014-09-28 Uplink power control method and device
US15/471,817 US10869277B2 (en) 2014-09-28 2017-03-28 Uplink power control method and apparatus
US16/117,410 US10917854B2 (en) 2014-09-28 2018-08-30 Uplink power control method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/087700 WO2016045130A1 (zh) 2014-09-28 2014-09-28 上行功率控制方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/471,817 Continuation US10869277B2 (en) 2014-09-28 2017-03-28 Uplink power control method and apparatus

Publications (1)

Publication Number Publication Date
WO2016045130A1 true WO2016045130A1 (zh) 2016-03-31

Family

ID=55580175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087700 WO2016045130A1 (zh) 2014-09-28 2014-09-28 上行功率控制方法和装置

Country Status (4)

Country Link
US (2) US10869277B2 (zh)
EP (2) EP3764703B1 (zh)
CN (4) CN112533272A (zh)
WO (1) WO2016045130A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109392065A (zh) * 2017-08-09 2019-02-26 维沃移动通信有限公司 一种功率控制方法、接收方法、功率分配方法及相关设备
CN111542092A (zh) * 2018-02-23 2020-08-14 Oppo广东移动通信有限公司 一种功率余量上报方法及装置、计算机存储介质
CN113411876A (zh) * 2017-05-05 2021-09-17 华为技术有限公司 上行链路传输的功率控制方法
WO2023159409A1 (en) * 2022-02-24 2023-08-31 Qualcomm Incorporated Uplink power compensation
US11991642B2 (en) 2017-01-04 2024-05-21 Nokia Technologies Oy Sounding reference signal power control for multiple input multiple output wireless system

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112533272A (zh) 2014-09-28 2021-03-19 华为技术有限公司 上行功率配置方法和装置
CN106961721B (zh) * 2016-01-11 2020-05-15 中兴通讯股份有限公司 一种实现上行功率控制的方法及终端
CN109565854B (zh) * 2016-08-03 2022-06-17 Lg 电子株式会社 在无线通信系统中执行上行链路通信的终端的方法和使用该方法的终端
KR102097854B1 (ko) * 2016-10-07 2020-04-06 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 업링크 기준 신호의 송신 전력을 도출하기 위한 방법 및 장치
CN108282856B (zh) * 2017-01-06 2023-05-16 华为技术有限公司 上行功率控制的方法和通信设备
JP6972136B2 (ja) 2017-01-09 2021-11-24 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ハイブリッドsrs組合せシグナリング
CN108811063B (zh) * 2017-05-05 2023-07-18 华为技术有限公司 一种确定上行信号发射功率的方法及设备
MX2019015586A (es) * 2017-06-29 2020-02-26 Guangdong Oppo Mobile Telecommunications Corp Ltd Procedimiento, dispositivo terminal y dispositivo de red para transmitir se?ales.
WO2019140665A1 (zh) * 2018-01-19 2019-07-25 Oppo广东移动通信有限公司 功率控制的方法、终端设备和网络设备
US11026180B2 (en) * 2018-01-23 2021-06-01 Qualcomm Incorporated Uplink power control configuration
US10560901B2 (en) * 2018-02-16 2020-02-11 Lenovo (Singapore) Pte. Ltd. Method and apparatus having power control for grant-free uplink transmission
CN109818727B (zh) * 2018-02-24 2020-06-26 华为技术有限公司 发送上行控制信道的方法和装置
GB2572390B (en) 2018-03-28 2021-03-10 Samsung Electronics Co Ltd Reference signal power boosting in a telecommunication system
US10952151B2 (en) 2018-04-19 2021-03-16 Samsung Electronics Co., Ltd. Uplink power control for advanced wireless communication systems
CN111182619B (zh) * 2018-11-12 2022-04-15 大唐移动通信设备有限公司 一种上行功率控制的方法和设备
WO2020104844A1 (en) * 2018-11-21 2020-05-28 Lenovo (Singapore) Pte. Ltd. Determining a power headroom report
CN110149128B (zh) * 2019-05-09 2021-01-15 中国科学院计算技术研究所 一种mimo-noma系统中功率调整方法及装置
WO2021012586A1 (en) * 2019-07-19 2021-01-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Methods and apparatuses of uplink power control for sounding reference signal transmission
WO2021027761A1 (en) * 2019-08-12 2021-02-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus for determining transmit power
WO2021034051A1 (ko) * 2019-08-16 2021-02-25 엘지전자 주식회사 무선 통신 시스템에서 단말이 상향링크 신호를 전송하는 방법 및 이를 위한 장치
CN111148151B (zh) * 2019-12-27 2023-08-15 宇龙计算机通信科技(深圳)有限公司 发射功率的调整方法、装置、存储介质及终端设备
CN111901020A (zh) * 2020-01-21 2020-11-06 中兴通讯股份有限公司 一种功率控制参数确定方法、设备和存储介质
CN115380578A (zh) * 2020-04-10 2022-11-22 华为技术有限公司 一种通信方法、装置及系统
CN113596975B (zh) * 2020-04-30 2022-12-06 华为技术有限公司 一种上行功率控制方法及装置
EP4338490A1 (en) * 2021-05-17 2024-03-20 Huawei Technologies Co., Ltd. Transmit power control in wireless communication networks
CN115915369A (zh) * 2021-09-30 2023-04-04 大唐移动通信设备有限公司 Pucch功率控制方法、终端、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102006657A (zh) * 2009-08-31 2011-04-06 华为技术有限公司 上行功率控制方法、装置及终端
CN102271389A (zh) * 2010-06-04 2011-12-07 中兴通讯股份有限公司 一种上行功率控制方法及系统
CN102695261A (zh) * 2011-03-22 2012-09-26 中国移动通信集团公司 上行功率控制方法、装置及系统
EP2747495A1 (en) * 2011-08-16 2014-06-25 Huawei Technologies Co., Ltd Compensation method, base station, and user equipment for uplink power control in a comp system

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3988568B2 (ja) * 2002-07-31 2007-10-10 松下電器産業株式会社 高周波モジュールおよびそれを用いた無線装置
US7346314B2 (en) * 2003-08-15 2008-03-18 Telefonaktiebolaget Lm Ericsson (Publ) Forward link transmit power control based on observed command response
WO2005025225A1 (ja) * 2003-09-04 2005-03-17 Nec Corporation 動画像データ変換方法および装置ならびにプログラム
US20060001828A1 (en) * 2004-06-30 2006-01-05 Robert Duggan Automatic identification symbology suitable for contact lens manufacturing verification
US8000221B2 (en) * 2004-07-20 2011-08-16 Qualcomm, Incorporated Adaptive pilot insertion for a MIMO-OFDM system
US8354069B2 (en) * 2005-03-08 2013-01-15 Authentix, Inc. Plug flow system for identification and authentication of markers
US20070042799A1 (en) 2005-06-03 2007-02-22 Samsung Electronics Co., Ltd. Auto adaptive technique to provide adequate coverage and mitigate RF interference
US7966033B2 (en) * 2006-01-05 2011-06-21 Qualcomm Incorporated Serving sector directed power control
US8700083B2 (en) 2007-08-10 2014-04-15 Qualcomm Incorporated Adaptation of transmit power based on maximum received signal strength
US8233559B2 (en) * 2008-03-12 2012-07-31 Lg Electronics Inc. Method and apparatus for transmitting a pilot in multi-antenna system
EP2316240B1 (en) * 2008-08-08 2013-01-16 Nokia Siemens Networks Oy Method and apparatus for controlling power of a mobile station
KR101691223B1 (ko) * 2008-09-08 2016-12-30 엘지전자 주식회사 무선통신 시스템에서 파일럿 전송방법
US8964868B2 (en) * 2009-03-17 2015-02-24 Interdigital Patent Holdings, Inc. Method and apparatus for uplink power control in multiple-input multiple-output
US20110018220A1 (en) * 2009-07-22 2011-01-27 Wen-Hung Huang Bicycle with two driving units
US8838161B2 (en) * 2010-06-16 2014-09-16 Samsung Electronics Co., Ltd Uplink power control method for mobile communication system
CN102468947A (zh) * 2010-11-05 2012-05-23 大唐移动通信设备有限公司 信道质量信息的反馈方法和设备
US9252930B2 (en) 2011-01-07 2016-02-02 Futurewei Technologies, Inc. Reference signal transmission and reception method and equipment
CN103002554B (zh) * 2011-09-15 2016-01-13 中国移动通信集团山西有限公司 一种td-scdma网络的开环功率控制参数的设置方法及装置
JP5813444B2 (ja) * 2011-09-30 2015-11-17 シャープ株式会社 基地局、端末、通信システムおよび通信方法
CN103096448B (zh) * 2011-10-28 2016-08-24 华为技术有限公司 上行功率控制的方法、用户设备和接入点
US9282521B2 (en) * 2012-03-22 2016-03-08 Lg Electronics Inc. Method and device for controlling uplink transmit power in wireless access system
US9681397B2 (en) 2012-03-27 2017-06-13 Qualcomm Incorporated Format dependent power control for coordinated multipoint transmission
CN103369654A (zh) * 2012-04-09 2013-10-23 电信科学技术研究院 功控参数的指示及功控方法和设备
JP6121118B2 (ja) * 2012-09-07 2017-04-26 株式会社Nttドコモ 無線通信方法、ユーザ端末、無線基地局及び無線通信システム
KR102008467B1 (ko) 2012-12-27 2019-08-07 삼성전자주식회사 빔포밍 기반 무선 통신시스템의 상향링크 전력 제어 방법 및 장치
US9558136B2 (en) * 2013-07-19 2017-01-31 Advanced Micro Devices, Inc. Variable series resistance termination for wireline serial link transistor
CN112533272A (zh) 2014-09-28 2021-03-19 华为技术有限公司 上行功率配置方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102006657A (zh) * 2009-08-31 2011-04-06 华为技术有限公司 上行功率控制方法、装置及终端
CN102271389A (zh) * 2010-06-04 2011-12-07 中兴通讯股份有限公司 一种上行功率控制方法及系统
CN102695261A (zh) * 2011-03-22 2012-09-26 中国移动通信集团公司 上行功率控制方法、装置及系统
EP2747495A1 (en) * 2011-08-16 2014-06-25 Huawei Technologies Co., Ltd Compensation method, base station, and user equipment for uplink power control in a comp system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3190839A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11991642B2 (en) 2017-01-04 2024-05-21 Nokia Technologies Oy Sounding reference signal power control for multiple input multiple output wireless system
CN113411876A (zh) * 2017-05-05 2021-09-17 华为技术有限公司 上行链路传输的功率控制方法
US11265817B2 (en) 2017-05-05 2022-03-01 Huawei Technologies Co., Ltd. Method of power control for uplink transmission
CN109392065A (zh) * 2017-08-09 2019-02-26 维沃移动通信有限公司 一种功率控制方法、接收方法、功率分配方法及相关设备
CN109392065B (zh) * 2017-08-09 2020-06-05 维沃移动通信有限公司 一种功率控制方法、接收方法、功率分配方法及相关设备
CN111586825A (zh) * 2017-08-09 2020-08-25 维沃移动通信有限公司 一种功率控制方法、接收方法、功率分配方法及相关设备
US11503603B2 (en) 2017-08-09 2022-11-15 Vivo Mobile Communication Co., Ltd. Power allocation based on target downlink power corresponding to target bandwith part
US11622354B2 (en) 2017-08-09 2023-04-04 Vivo Mobile Communication Co., Ltd. Power control method, reception method, power allocation method, user equipment, and network device
US11737076B2 (en) 2017-08-09 2023-08-22 Vivo Mobile Communication Co., Ltd. User equipment, network device, and non-transitory computer storage media
CN111542092A (zh) * 2018-02-23 2020-08-14 Oppo广东移动通信有限公司 一种功率余量上报方法及装置、计算机存储介质
US11785558B2 (en) 2018-02-23 2023-10-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Power headroom report method and apparatus, and computer storage medium
WO2023159409A1 (en) * 2022-02-24 2023-08-31 Qualcomm Incorporated Uplink power compensation

Also Published As

Publication number Publication date
CN108924919B (zh) 2019-08-09
EP3190839B1 (en) 2020-08-26
CN108811064B (zh) 2019-07-12
CN105745975A (zh) 2016-07-06
US10869277B2 (en) 2020-12-15
CN108811064A (zh) 2018-11-13
US20170201950A1 (en) 2017-07-13
EP3764703B1 (en) 2024-02-28
CN112533272A (zh) 2021-03-19
US10917854B2 (en) 2021-02-09
EP3764703A1 (en) 2021-01-13
CN108924919A (zh) 2018-11-30
EP3190839A4 (en) 2017-08-23
US20180376430A1 (en) 2018-12-27
CN105745975B (zh) 2020-12-22
EP3190839A1 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
WO2016045130A1 (zh) 上行功率控制方法和装置
US11924772B2 (en) System and method for wireless power control
US11496204B2 (en) Beam training method, apparatus, and system
US10659126B2 (en) Method for feeding back CSI information in wireless communication system and device therefor
WO2018126850A1 (en) Uplinksignal transmit power control
CN103945504A (zh) 功率控制方法及设备
US20180054244A1 (en) Method for feeding back csi information on basis of csi reporting type in wireless communication system, and device thereof
KR20190111125A (ko) 채널 상태 정보 피드백을 위한 동적 지시
US9344972B2 (en) Uplink power controlling method and uplink signal receiving method thereof
KR20120121299A (ko) 기지국의 상향링크 전력 제어 정보 제공 방법 및 단말의 상향링크 전력 제어 방법, 그 기지국, 그 단말
US20150009913A1 (en) Apparatus and method for controlling uplink power of mobile station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014902786

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014902786

Country of ref document: EP