WO2016045112A1 - 用于火源模拟的燃气控制器及控制方法 - Google Patents

用于火源模拟的燃气控制器及控制方法 Download PDF

Info

Publication number
WO2016045112A1
WO2016045112A1 PCT/CN2014/087645 CN2014087645W WO2016045112A1 WO 2016045112 A1 WO2016045112 A1 WO 2016045112A1 CN 2014087645 W CN2014087645 W CN 2014087645W WO 2016045112 A1 WO2016045112 A1 WO 2016045112A1
Authority
WO
WIPO (PCT)
Prior art keywords
fire source
data
controller
fire
output device
Prior art date
Application number
PCT/CN2014/087645
Other languages
English (en)
French (fr)
Inventor
黄小菲
Original Assignee
万盛(中国)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万盛(中国)科技有限公司 filed Critical 万盛(中国)科技有限公司
Priority to PCT/CN2014/087645 priority Critical patent/WO2016045112A1/zh
Publication of WO2016045112A1 publication Critical patent/WO2016045112A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion

Definitions

  • the present invention relates to a control system and control method, and more particularly to a remote control system and control method for the purpose of controlling a gas state.
  • Firefighters need to carry out real fire training in the simulated complex fire environment, otherwise they will not be able to effectively extinguish the fire in the face of fire, and it will also lead to casualties. It is extremely common in China to lack fire training, because it is impossible to effectively simulate various fires. Since the flame width, flame height, flame length and flame temperature of different fire sources are completely different, the development process of the fire source is not the same. Therefore, a universal gas control system is urgently needed to simulate various fire sources.
  • the simulated fire source is single, and the fire source controller cannot implement programmable control
  • Another object of the present invention is to provide a fire source control method that solves the technical problem that the fire source of the above-mentioned gas controller for fire source simulation cannot accurately coordinate when the real fire is simulated on a large scale.
  • the gas controller for fire source simulation of the invention comprises a controller, an analog output device, a digital input and output device and an execution feedback device, wherein:
  • the controller is configured to receive the fire source data distributed by the controller, convert the flame intensity data and the ignition order data of each fire source controlled by the time, and distribute the analog fire source data and the switch fire source respectively Data, receiving fire source flame state data, sending corrected fire source data and outputting to the server;
  • the analog output device is configured to receive the fire source data distributed by the controller, extract analog control data of each fire source into an analog signal, and output the signals separately;
  • the switch quantity input/output device is configured to receive the fire source data distributed by the controller, extract the switch quantity control data of each fire source into a switch signal, and output respectively, receive the switch signal of the fire source flame state, and convert to the fire source flame state. Data and output to the controller;
  • the feedback device is configured to receive the analog signal and the switch signal of the controlled fire source, control the corresponding component action, and form a switch signal of the fire source flame state signal to the switch quantity input and output device.
  • the execution feedback device is disposed on a fire source, including a regulating valve, an on-off valve, an ignition module, and a sensor, wherein:
  • On-off valve for switching the manifold of the node where the fire source is located
  • Ignition module for ignition of combustible gases
  • a sensor for collecting the combustion state of a fire source is a sensor for collecting the combustion state of a fire source.
  • An emergency valve is arranged on the branch pipe of the LPG pipeline for the on and off of the branch pipe where the fire source manifold is located.
  • One or several controllers of the gas controller respectively establish a data connection with the server, and the server is configured to store dynamic energy data, dynamic fire data and fire source characteristic data of the fire source during the fire simulation process, and distribute the fire source data. Collect fire source flame status data.
  • the switch output port and the switch input port perform a feedback device and an analog output device to establish an analog signal one-way transmission channel; the execution feedback device and the switch input and output device establish two switch positive transmission channels and one switch quantity inverse To the transmission channel; the emergency valve and the digital input and output device establish a switching positive transmission channel.
  • the controller adopts NFN controller
  • the analog output device adopts ADAM5024 analog output module
  • the switch input and output device adopts ADAM4050 switch input and output module
  • the regulating valve adopts NTLT liquefied gas regulating valve
  • the switching valve adopts AF01B liquefied gas solenoid valve.
  • the ignition module adopts ZIA liquefied gas ignition module
  • the sensor adopts UV1 ultraviolet flame sensor
  • the emergency valve adopts DCF90 liquefied gas emergency shut-off valve.
  • Step 70 The server allocates fire source data to each controller in the simulation process according to the needs of the simulation process;
  • Step 71 The controller receives the fire source data.
  • the steps and subsequent steps are the same as step 73 and subsequent steps.
  • Step 72 The controller receives the fire source data.
  • the steps and subsequent steps are the same as step 73 and subsequent steps.
  • Step 73 The controller receives the fire source data, extracts the fire source data of the controlled fire source, sends the analog fire source data to the analog output device, and sends the switch fire source data to the switch quantity input and output device;
  • Step 74 The analog output device receives the fire source data, extracts the fire source flame intensity data and the time series data, and converts the 4-20 mA analog signal to the corresponding regulating valve output;
  • Step 75 The switch quantity input/output device receives the fire source data, extracts the switch data and the time series data, and converts the level signal to the corresponding switch valve output;
  • Step 76 The switch quantity input/output device receives the fire source data, extracts the ignition data and the time series data, and converts the signal into a high and low level signal to output to the corresponding ignition module;
  • Step 77 The regulating valve adjusts the opening according to the analog signal
  • Step 78 The switch valve opens the LPG manifold according to the switch signal
  • Step 79 The ignition module activates the electric spark according to the switch signal to cause the LPG to ignite;
  • Step 80 The fire source enters a combustion state, and the sensor collects a combustion state signal
  • Step 81 When the combustion state is abnormal, the sensor sends an abnormal signal to the controller through the digital input and output device;
  • Step 82 The controller counts the abnormal signal.
  • Step 83 the controller determines whether the count value reaches 5, if yes, go to step 85, otherwise go to step 84;
  • Step 84 The controller sends the ignition data to the digital input and output device.
  • Step 85 The controller issues an alarm.
  • the gas controller for fire source simulation includes the following flameout control steps when performing fire scene simulation:
  • the controller When the controller generates an alarm, or the server transmits any of the LPG concentration over-limit alarm, normal simulation end, ventilation system fault alarm, and ambient temperature over-limit alarm to the controller, perform the following steps:
  • Step 86 The controller receives the alarm or trigger data, first sends the fire source off data to the switch quantity input and output device, and then sends the emergency shutdown data to the switch quantity input and output device, and then sends the fire source flame minimum intensity data to the analog output device;
  • Step 87 The analog output device receives the fire source data, extracts the fire source flame intensity data, and converts it into a 4 mA analog signal to output to the corresponding regulating valve;
  • Step 88 The switch quantity input/output device receives the fire source data, extracts the emergency shutdown data, and converts it into a shutdown level signal to output to the corresponding emergency valve;
  • Step 89 The switch quantity input/output device receives the fire source data, extracts the fire source off data, and converts it into a shutdown level signal to output to the corresponding switch valve;
  • Step 90 the regulating valve is adjusted to be minimum according to the analog signal
  • Step 91 The emergency valve closes the LPG branch pipe according to the switch signal
  • Step 92 The switch valve closes the LPG manifold according to the switch signal
  • step 93 the fire source is turned off and turned off.
  • the gas controller for fire source simulation of the present invention can realize:
  • the precise control of the energy of the fire source can truly simulate the kitchen fire of small energy, and can also simulate the fire of large energy, tunnel fire, oil tank fire;
  • FIG. 1 is a schematic structural view of a gas controller for fire source simulation according to the present invention
  • FIG. 2 is a flow chart of ignition control of a gas controller for fire source simulation according to the present invention
  • FIG. 3 is a flow chart of a flameout control of a gas controller for fire source simulation according to the present invention.
  • LPG liquefied petroleum gas
  • a branch structure composed of a branch pipe of the LPG pipeline and a manifold of the branch pipe is set according to a typical fire building model, and is at a node of the manifold (also a fire source).
  • An execution feedback device 05 that controls the flame characteristics is provided.
  • the embodiment includes a controller 02, an analog output device 03, a digital input/output device 04, and an execution feedback device 05, wherein:
  • the controller 02 is configured to receive the fire source data distributed by the server, convert the flame intensity data and the ignition order data of the fire source controlled by the time, and distribute the analog fire source data and the switch fire source respectively. Data, receiving fire source flame state data, correcting fire source data and outputting to server 01;
  • the analog output device 03 is configured to receive the fire source data distributed by the controller 02, extract analog control data of each fire source into an analog signal, and output the signals separately;
  • the switch quantity input/output device 04 is configured to receive the fire source data distributed by the controller 02, extract the switch quantity control data of each fire source and convert it into a switch signal, and output respectively, receive the switch signal of the fire source flame state, and convert it into a fire source. Flame state data and output to controller 02;
  • the feedback device 05 is configured to receive the analog signal and the switch signal of the controlled fire source, control the corresponding component action, and form a switch signal of the fire source flame state signal to the switch quantity input/output device 04.
  • An execution feedback device 05 disposed on a fire source includes a regulating valve 51, an on-off valve 52, an ignition module 53, and a sensor 54, wherein:
  • a regulating valve 51 for linearly adjusting the timing and energy intensity (flow rate) of the fire source
  • the on-off valve 52 is used for switching on and off the manifold of the node where the fire source is located;
  • An ignition module 53 for igniting the combustible gas
  • the sensor 54 is configured to collect the combustion state of the fire source.
  • An emergency valve 06 is arranged on the branch pipe of the pipeline topology for the on and off of the branch pipe where the fire source manifold is located.
  • One or several gas controllers for fire source simulation establish a data connection with server 01 via controller 02,
  • the server 01 is configured to store dynamic energy data, dynamic fire data and fire source characteristic data of the fire source during the fire simulation process, and distribute the fire source data to collect the fire source state data.
  • the server and the simulation data model and the simulation database the data of each control factor in the simulation process is scheduled, and the fire source combustion characteristics controlled by each controller 02 are coordinated, so that a reproducible and optimizable large-scale fire scene can be effectively formed.
  • the server 01 includes a remote communication port 11, the controller 02 includes a remote communication port 11 and a serial port 21, the analog output device 03 includes a serial port 21 and an analog signal output port 31, and the digital input/output device 04 includes a serial port 21
  • the emergency valve 06 includes a digital input port 42.
  • the remote communication port adopts TCP/IP protocol, RJ45 type interface, serial port adopts asynchronous serial protocol, and RS485 type interface.
  • a remote communication link is established between the server 01 and the controller 02; through the serial port 21, the analog output device 03 and the digital input/output device 04 respectively establish a serial communication link with the controller 02;
  • the feedback device 05 and the analog output device 03 are configured to establish an analog signal one-way transmission channel;
  • the execution feedback device 05 and the digital input/output device 04 establish two switching amounts.
  • the emergency valve 06 and the digital input/output device 04 establish a switching amount forward transmission channel.
  • the gas controller for fire source simulation of the embodiment can realize simultaneous control of several sources of fire by combining precise energy and timing, and simulate different types of fire sources. Integrated features with precise gas volume control and several fire source gas sequence controls. The complete real-time detection of ignition, unignited real-time detection, real-time detection of misfire, liquefied gas volume control of each fire source, sequential control of liquefied gas volume of each fire source, and emergency liquefied gas shutdown are highly unified.
  • the controller 02 uses the NFN controller
  • the analog output device 03 uses the ADAM5024 analog output module
  • the switch input and output device uses the ADAM4050 switch input and output module
  • the regulating valve 51 uses the NTLT liquefied gas regulating valve
  • the on-off valve 52 uses AF01B liquefied gas solenoid valve
  • ignition module 53 uses ZIA liquefied gas ignition module
  • sensor 54 uses UV1 ultraviolet flame sensor
  • emergency valve 06 uses DCF90 liquefied gas emergency shut-off valve.
  • the steps of ignition of the fire source are as follows:
  • Step 70 The server 01 allocates fire source data to each controller 02 in the simulation process according to the needs of the simulation process;
  • Step 71 the controller 02 receives the fire source data..., this step and the subsequent steps are the same as step 73 and subsequent steps;
  • Step 72 the controller 02 receives the fire source data..., this step and the subsequent steps are the same as step 73 and subsequent steps;
  • Step 73 the controller 02 receives the fire source data, extracts the fire source data of the controlled fire source, sends the analog fire source data to the analog output device 03, and the switch fire source data is sent to the switch input/output device 04;
  • Step 74 The analog output device 03 receives the fire source data, extracts the fire source flame intensity data and the time series data, and converts Outputting a 4-20 mA analog signal to the corresponding regulating valve 51;
  • Step 75 the switch quantity input/output device 04 receives the fire source data, extracts the switch data and the time series data, and converts the signal into a level signal to output to the corresponding switch valve 52;
  • Step 76 the switch quantity input/output device 04 receives the fire source data, extracts the ignition data and the time series data, and converts the high-low level signal to the corresponding ignition module 53;
  • Step 77 the regulating valve 51 adjusts the opening according to the analog signal
  • Step 78 the switch valve 52 opens the LPG manifold according to the switch signal
  • Step 79 the ignition module 53 activates the electric spark according to the switch signal to cause the LPG to ignite;
  • Step 80 The fire source enters a combustion state, and the sensor 54 collects a combustion state signal
  • Step 81 When the combustion state is abnormal, the sensor 54 sends an abnormal signal to the controller 02 through the digital input/output device 04;
  • Step 82 The controller 02 counts the abnormal signal.
  • Step 83 the controller 02 determines whether the count value reaches 5, if yes, step 85 is performed, otherwise step 84 is performed;
  • Step 84 the controller 02 sends the ignition data to the digital input and output device 04;
  • Step 85 The controller 02 issues an alarm.
  • the steps of extinguishing the fire source are as follows:
  • the controller 02 When the controller 02 generates an alarm, or the server 01 transmits any one of the LPG concentration over-limit alarm, the normal simulation end, the ventilation system failure alarm, and the ambient temperature over-limit alarm to the controller 02, the following steps are performed:
  • Step 86 The controller 02 receives the alarm or trigger data, first sends the fire source shutdown data to the digital input/output device 04, and then sends the emergency shutdown data to the digital input/output device 04, and then sends the fire source flame to the analog output device 03.
  • Minimum intensity data
  • Step 87 the analog output device 03 receives the fire source data, extracts the fire source flame intensity data, and converts it into a 4 mA analog signal to output to the corresponding regulating valve 51;
  • Step 88 the switch quantity input/output device 04 receives the fire source data, extracts the emergency shutdown data, and converts it into a shutdown level signal to output to the corresponding emergency valve 06;
  • Step 89 the switch quantity input/output device 04 receives the fire source data, extracts the fire source off data, and converts it into a shutdown level signal to output to the corresponding switch valve 52;
  • Step 90 the regulating valve 51 adjusts the opening degree according to the analog signal to be minimized
  • Step 91 The emergency valve 06 closes the LPG branch pipe according to the switch signal
  • Step 92 the switching valve 52 closes the LPG manifold according to the switching signal
  • step 93 the fire source is turned off and turned off.
  • the gas controller for fire source simulation of the present invention can be combined into an arbitrary fire environment, and the server is linked with other systems to accurately coordinate the energy and timing of each thermal power in the simulation process of the complex natural environment, and reduce the training. Danger, improve the authenticity of the whole process of simulation.
  • the invention utilizes existing hardware components and combines mature software components to be widely applied in the field of fire prevention training, and reduces or avoids high training costs and risks, and has great market prospects in industries such as fire prevention and fire rescue. Very strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)

Abstract

一种用于火源模拟的燃气控制器,包括控制器(02)、模拟量输出装置(03)、开关量输入输出装置(04)和执行反馈装置(05),所述燃气控制器可以实现火源能量的精确控制,可以真正模拟出小能量的厨房火和大能量的轰然火、隧道火、油罐火;通过控制器(02)只需要更改火源类型参数就可以模拟各种火源;通过一台控制器(02)可以控制若干路火源,通过时序控制完全复现"真火"的动态发展过程;若干个所述燃气控制器组合使用,在服务器(01)的调度下,可以复现超大火灾的能量和动态发展过程。

Description

用于火源模拟的燃气控制器及控制方法 技术领域
本发明涉及一种控制系统和控制方法,特别是涉及一种以控制燃气状态为目的的远程控制系统和控制方法。
背景技术
救火队员需要在模拟的复杂火情环境中进行真实火灾培训,否则面临火灾不知道如何处理,往往不能有效灭火,而且还导致伤亡事故。在国内极为普遍的是缺乏火灾实战训练,原因在于无法有效的模拟出各种火情。由于不同火源的火焰宽度、火焰高度、火焰长度、火焰温度完全不一样,火源的发展过程也不尽相同,因此急需一种通用的燃气控制系统实现对各种火源的模拟。
在现有燃气控制系统中,有以下致命问题:
无法实现火源能量精确控制;
模拟火源单一,火源控制器无法实现可编程控制;
最多控制两路火源。
这就导致不能够模拟出包括厨房火、气瓶火、轰然火、门后火、电器柜火、床火、楼梯火、油罐火、化工火、隧道火、机舱火等各种火源,火源模拟和实际火源特征相差很大、无法逼真复现火源发展过程,这对真正实现“真火”现场中的消防队员培训要求有很大距离。
发明内容
本发明的目的是提供一种用于火源模拟的燃气控制器,解决无法对火源的燃烧特征准确仿真的技术问题。
本发明的另一个目的是提供一种火源控制方法,解决上述用于火源模拟的燃气控制器大规模仿真真实火情时的火源无法准确协调的技术问题。
本发明用于火源模拟的燃气控制器,包括控制器、模拟量输出装置、开关量输入输出装置和执行反馈装置,其中:
控制器,用于接收控制器分发的火源数据,转换为与时间正相关的,所控制各路火源的火焰强度数据和点火次序数据,并分别分发模拟量火源数据和开关量火源数据,接收火源火焰状态数据,发送修正火源数据并向服务器输出;
模拟量输出装置,用于接收控制器分发的火源数据,提取各火源的模拟量控制数据转换为模拟信号,并分别输出;
开关量输入输出装置,用于接收控制器分发的火源数据,提取各火源的开关量控制数据转换为开关信号,并分别输出,接收火源火焰状态的开关信号,转换为火源火焰状态数据,并向控制器输出;
执行反馈装置,用于接收所控制火源的模拟信号和开关信号,控制相应的部件动作,同时将火源火焰的状态信号形成开关信号,向开关量输入输出装置输出。
所述执行反馈装置设置在火源上,包括调节阀、开关阀、点火模块和传感器,其中:
调节阀,用于线性调整火源的时序和能量强度;
开关阀,用于火源所在节点歧管的通断;
点火模块,用于可燃气体的点燃;
传感器,用于采集火源火焰的燃烧状态。
在LPG管路的支管上设置应急阀,用于火源歧管所在支管的通断。
一个或若干个所述燃气控制器的控制器分别与服务器建立数据连接,服务器用于存储火灾仿真过程中火源的动态能量数据、动态火情数据和火源特征数据,并分发火源数据,收集火源火焰状态数据。
通过远程通信端口,所述服务器和控制器之间建立远程通信链路;通过串行端口,所述模拟量输出装置和开关量输入输出装置分别与控制器建立串行通信链路;通过匹配的开关量输出端口和开关量输入端口,执行反馈装置与模拟量输出装置建立一条模拟信号单向传输通道;执行反馈装置与开关量输入输出装置建立两条开关量正向传输通道和一条开关量反向传输通道;应急阀与开关量输入输出装置建立一条开关量正向传输通道。
所述控制器采用NFN控制器,模拟量输出装置采用ADAM5024模拟量输出模块,开关量输入输出装置采用ADAM4050开关量输入输出模块,调节阀采用NTLT液化气调节阀,开关阀采用AF01B液化气电磁阀,点火模块采用ZIA液化气点火模块,传感器采用UV1紫外火焰传感器,应急阀采用DCF90液化气应急切断阀。
所述用于火源模拟的燃气控制器,进行火灾现场仿真时,包括以下点火控制步骤:
步骤70、服务器根据仿真过程需要,向仿真过程中各控制器分配火源数据;
步骤71、控制器接收火源数据...,本步骤及后续步骤与步骤73及其后续步骤相同;
步骤72、控制器接收火源数据...,本步骤及后续步骤与步骤73及其后续步骤相同;
步骤73、控制器接收火源数据,提取所控制火源的火源数据,将模拟量火源数据发送至模拟量输出装置,开关量火源数据发送至开关量输入输出装置;
步骤74、模拟量输出装置接收火源数据,提取火源火焰强度数据和时序数据,转换为4-20mA模拟信号向相应调节阀输出;
步骤75、开关量输入输出装置接收火源数据,提取开关数据和时序数据,转换为电平信号向相应开关阀输出;
步骤76、开关量输入输出装置接收火源数据,提取点火数据和时序数据,转换为高低电平信号向相应点火模块输出;
步骤77、调节阀根据模拟信号调节开度;
步骤78、开关阀根据开关信号开启LPG歧管;
步骤79、点火模块根据开关信号激发电火花,促使LPG点燃;
步骤80、火源进入燃烧状态,传感器采集燃烧状态信号;
步骤81、当燃烧状态异常时传感器通过开关量输入输出装置向控制器发送异常信号;
步骤82、控制器对异常信号计数;
步骤83、控制器判断计数值是否达到5,是则执行步骤85,否则执行步骤84;
步骤84、控制器发送点火数据发送至开关量输入输出装置;
步骤85、控制器发出告警。
所述用于火源模拟的燃气控制器,进行火灾现场仿真时,包括以下熄火控制步骤:
当控制器产生告警,或服务器将LPG浓度超限告警、正常仿真结束、通风系统故障告警和环境温度超限告警中任一信号传送至控制器时,执行如下步骤:
步骤86、控制器接收告警或触发数据,首先向开关量输入输出装置发送火源关闭数据,其次向开关量输入输出装置发送应急关闭数据,然后向模拟量输出装置发送火源火焰最低强度数据;
步骤87、模拟量输出装置接收火源数据,提取火源火焰强度数据,转换为4mA模拟信号向相应调节阀输出;
步骤88、开关量输入输出装置接收火源数据,提取应急关闭数据,并转换为关闭电平信号向相应应急阀输出;
步骤89、开关量输入输出装置接收火源数据,提取火源关闭数据,并转换为关闭电平信号向相应开关阀输出;
步骤90、调节阀根据模拟信号调节开度置于最小;
步骤91、应急阀根据开关信号,关闭LPG支管;
步骤92、开关阀根据开关信号,关闭LPG歧管;
步骤93、火源熄火、关闭。
本发明的用于火源模拟的燃气控制器可以实现:
火源能量的精确控制,可以真正模拟出小能量的厨房火,也可以模拟出大能量的轰然火、隧道火、油罐火;
通过控制器只需要更改货源类型参数就可以模拟各种火源;
通过一台控制器可以控制若干路火源,通过时序控制完全复现“真火”的动态发展过程;
若干个本发明的用于火源模拟的燃气控制器组合使用,在服务器的调度下,可以复现超大火灾的能量和动态发展过程。
附图说明
图1为本发明用于火源模拟的燃气控制器的结构示意图;
图2为本发明用于火源模拟的燃气控制器的点火控制流程图;
图3为本发明用于火源模拟的燃气控制器的熄火控制流程图。
具体实施方式
本实施例中,利用LPG(液化石油气)作为燃料源,根据典型火场建筑物模型设置由LPG管路的支管,支管的歧管构成的拓扑结构,在歧管的节点(也是火源)上设置控制火焰特征的执行反馈装置05。
如图1所示,本实施例中包括控制器02、模拟量输出装置03、开关量输入输出装置04和执行反馈装置05,其中:
控制器02,用于接收服务器分发的火源数据,转换为与时间正相关的,所控制各路火源的火焰强度数据和点火次序数据,并分别分发模拟量火源数据和开关量火源数据,接收火源火焰状态数据,修正火源数据并向服务器01输出;
模拟量输出装置03,用于接收控制器02分发的火源数据,提取各火源的模拟量控制数据转换为模拟信号,并分别输出;
开关量输入输出装置04,用于接收控制器02分发的火源数据,提取各火源的开关量控制数据转换为开关信号,并分别输出,接收火源火焰状态的开关信号,转换为火源火焰状态数据,并向控制器02输出;
执行反馈装置05,用于接收所控制火源的模拟信号和开关信号,控制相应的部件动作,同时将火源火焰的状态信号形成开关信号,向开关量输入输出装置04输出。
设置在火源(拓扑结构的节点)上的执行反馈装置05,包括调节阀51、开关阀52、点火模块53和传感器54,其中:
调节阀51,用于线性调整火源的时序和能量强度(流量);
开关阀52,用于火源所在节点歧管的通断;
点火模块53,用于可燃气体的点燃;
传感器54,用于采集火源火焰的燃烧状态。
在管路拓扑结构的支管上设置应急阀06,用于火源歧管所在支管的通断。
一个或若干个用于火源模拟的燃气控制器通过控制器02分别与服务器01建立数据连接, 服务器01用于存储火灾仿真过程中火源的动态能量数据、动态火情数据和火源特征数据,并分发火源数据,收集火源火焰状态数据。利用服务器与仿真数据模型及仿真数据库配合,调度仿真过程中的各控制因素数据,协调各控制器02控制的火源燃烧特征,可以有效形成可复现的、可优化的大规模火灾场景。
服务器01包括远程通信端口11,控制器02包括远程通信端口11和串行端口21,模拟量输出装置03包括串行端口21和模拟信号输出端口31,开关量输入输出装置04包括串行端口21、开关量输出端口41和开关量输入端口42,调节阀51包括模拟信号输入端口32,开关阀52包括开关量输入端口42,点火模块53包括开关量输入端口42,传感器54包括开关量输出端口41,应急阀06包括开关量输入端口42。远程通信端口采用TCP/IP协议,RJ45类型接口,串行端口采用异步串行协议,RS485类型接口。
通过远程通信端口11,服务器01和控制器02之间建立远程通信链路;通过串行端口21,模拟量输出装置03和开关量输入输出装置04分别与控制器02建立串行通信链路;通过匹配的开关量输出端口41和开关量输入端口42,执行反馈装置05与模拟量输出装置03建立一条模拟信号单向传输通道;执行反馈装置05与开关量输入输出装置04建立两条开关量正向传输通道和一条开关量反向传输通道;应急阀06与开关量输入输出装置04建立一条开关量正向传输通道。
本实施例的用于火源模拟的燃气控制器可实现同时精确能量和时序组合控制若干路火源,模拟出不同的火源类型。具有精确气量控制和若干火源气量次序控制的一体化特性。完整的将点火、未点火实时检测、断火实时检测、各火源液化气量控制、各火源液化气量次序控制、应急液化气关闭的实时性高度统一。
在实际应用中,控制器02采用NFN控制器,模拟量输出装置03采用ADAM5024模拟量输出模块,开关量输入输出装置采用ADAM4050开关量输入输出模块,调节阀51采用NTLT液化气调节阀,开关阀52采用AF01B液化气电磁阀,点火模块53采用ZIA液化气点火模块,传感器54采用UV1紫外火焰传感器,应急阀06采用DCF90液化气应急切断阀。
如图2所示,利用本实施例的用于火源模拟的燃气控制器进行火灾现场仿真过程中,火源点火的步骤如下:
步骤70、服务器01根据仿真过程需要,向仿真过程中各控制器02分配火源数据;
步骤71、控制器02接收火源数据...,本步骤及后续步骤与步骤73及其后续步骤相同;
步骤72、控制器02接收火源数据...,本步骤及后续步骤与步骤73及其后续步骤相同;
步骤73、控制器02接收火源数据,提取所控制火源的火源数据,将模拟量火源数据发送至模拟量输出装置03,开关量火源数据发送至开关量输入输出装置04;
步骤74、模拟量输出装置03接收火源数据,提取火源火焰强度数据和时序数据,转换 为4-20mA模拟信号向相应调节阀51输出;
步骤75、开关量输入输出装置04接收火源数据,提取开关数据和时序数据,转换为电平信号向相应开关阀52输出;
步骤76、开关量输入输出装置04接收火源数据,提取点火数据和时序数据,转换为高低电平信号向相应点火模块53输出;
步骤77、调节阀51根据模拟信号调节开度;
步骤78、开关阀52根据开关信号开启LPG歧管;
步骤79、点火模块53根据开关信号激发电火花,促使LPG点燃;
步骤80、火源进入燃烧状态,传感器54采集燃烧状态信号;
步骤81、当燃烧状态异常时传感器54通过开关量输入输出装置04向控制器02发送异常信号;
步骤82、控制器02对异常信号计数;
步骤83、控制器02判断计数值是否达到5,是则执行步骤85,否则执行步骤84;
步骤84、控制器02发送点火数据发送至开关量输入输出装置04;
步骤85、控制器02发出告警;
如图3所示,利用本实施例的用于火源模拟的燃气控制器进行火灾现场仿真过程中,火源熄火的步骤如下:
当控制器02产生告警,或服务器01将LPG浓度超限告警、正常仿真结束、通风系统故障告警和环境温度超限告警中任一信号传送至控制器02时,执行如下步骤:
步骤86、控制器02接收告警或触发数据,首先向开关量输入输出装置04发送火源关闭数据,其次向开关量输入输出装置04发送应急关闭数据,然后向模拟量输出装置03发送火源火焰最低强度数据;
步骤87、模拟量输出装置03接收火源数据,提取火源火焰强度数据,转换为4mA模拟信号向相应调节阀51输出;
步骤88、开关量输入输出装置04接收火源数据,提取应急关闭数据,并转换为关闭电平信号向相应应急阀06输出;
步骤89、开关量输入输出装置04接收火源数据,提取火源关闭数据,并转换为关闭电平信号向相应开关阀52输出;
步骤90、调节阀51根据模拟信号调节开度置于最小;
步骤91、应急阀06根据开关信号,关闭LPG支管;
步骤92、开关阀52根据开关信号,关闭LPG歧管;
步骤93、火源熄火、关闭。
通过本方法,本发明的用于火源模拟的燃气控制器可以组合成规模任意的火场环境,服务器与其他系统联动,可以在复杂自然环境模拟过程中准确协调各火电的能量和时序,降低训练危险性,提高仿真全过程的真实性。
工业实用性
本发明利用现有的硬件部件,结合成熟的软件组件可以大规模应用在火灾预防培训领域,减轻或避免高昂的培训成本和危险性,在防火、火灾救险等行业具有很大的市场前景和很强的工业实用性。

Claims (8)

  1. 一种用于火源模拟的燃气控制器,其特征在于,包括控制器(02)、模拟量输出装置(03)、开关量输入输出装置(04)和执行反馈装置(05),其中:
    控制器(02),用于接收控制器分发的火源数据,转换为与时间正相关的,所控制各路火源的火焰强度数据和点火次序数据,并分别分发模拟量火源数据和开关量火源数据,接收火源火焰状态数据,发送修正火源数据并向服务器(01)输出;
    模拟量输出装置(03),用于接收控制器(02)分发的火源数据,提取各火源的模拟量控制数据转换为模拟信号,并分别输出;
    开关量输入输出装置(04),用于接收控制器(02)分发的火源数据,提取各火源的开关量控制数据转换为开关信号,并分别输出,接收火源火焰状态的开关信号,转换为火源火焰状态数据,并向控制器(02)输出;
    执行反馈装置(05),用于接收所控制火源的模拟信号和开关信号,控制相应的部件动作,同时将火源火焰的状态信号形成开关信号,向开关量输入输出装置(04)输出。
  2. 如权利要求1所述的用于火源模拟的燃气控制器,其特征在于,所述执行反馈装置(05)设置在火源上,包括调节阀(51)、开关阀(52)、点火模块(53)和传感器(54),其中:
    调节阀(51),用于线性调整火源的时序和能量强度(流量);
    开关阀(52),用于火源所在节点歧管的通断;
    点火模块(53),用于可燃气体的点燃;
    传感器(54),用于采集火源火焰的燃烧状态。
  3. 如权利要求2所述的用于火源模拟的燃气控制器,其特征在于,在LPG管路的支管上设置应急阀(06),用于火源歧管所在支管的通断。
  4. 如权利要求3所述的用于火源模拟的燃气控制器,其特征在于,一个或若干个所述燃气控制器的控制器(02)分别与服务器(01)建立数据连接,服务器(01)用于存储火灾仿真过程中火源的动态能量数据、动态火情数据和火源特征数据,并分发火源数据,收集火源火焰状态数据。
  5. 如权利要求4所述的用于火源模拟的燃气控制器,其特征在于,通过远程通信端口(11),所述服务器(01)和控制器(02)之间建立远程通信链路;通过串行端口(21),所述模拟量输出装置(03)和开关量输入输出装置(04)分别与控制器(02)建立串行通信链路;通过匹配的开关量输出端口(41)和开关量输入端口(42),执行反馈装置(05)与 模拟量输出装置(03)建立一条模拟信号单向传输通道;执行反馈装置(05)与开关量输入输出装置(04)建立两条开关量正向传输通道和一条开关量反向传输通道;应急阀(06)与开关量输入输出装置(04)建立一条开关量正向传输通道。
  6. 如权利要求5所述的用于火源模拟的燃气控制器,其特征在于,所述控制器(02)采用NFN控制器,模拟量输出装置(03)采用ADAM5024模拟量输出模块,开关量输入输出装置采用ADAM4050开关量输入输出模块,调节阀(51)采用NTLT液化气调节阀,开关阀(52)采用AF01B液化气电磁阀,点火模块(53)采用ZIA液化气点火模块,传感器(54)采用UV1紫外火焰传感器,应急阀(06)采用DCF90液化气应急切断阀。
  7. 如权利要求1至6任一所述用于火源模拟的燃气控制器,进行火灾现场仿真时,包括以下点火控制步骤:
    步骤70、服务器(01)根据仿真过程需要,向仿真过程中各控制器(02)分配火源数据;
    步骤71、控制器(02)接收火源数据...,本步骤及后续步骤与步骤73及其后续步骤相同;
    步骤72、控制器(02)接收火源数据...,本步骤及后续步骤与步骤73及其后续步骤相同;
    步骤73、控制器(02)接收火源数据,提取所控制火源的火源数据,将模拟量火源数据发送至模拟量输出装置(03),开关量火源数据发送至开关量输入输出装置(04);
    步骤74、模拟量输出装置(03)接收火源数据,提取火源火焰强度数据和时序数据,转换为4-20mA模拟信号向相应调节阀(51)输出;
    步骤75、开关量输入输出装置(04)接收火源数据,提取开关数据和时序数据,转换为电平信号向相应开关阀(52)输出;
    步骤76、开关量输入输出装置(04)接收火源数据,提取点火数据和时序数据,转换为高低电平信号向相应点火模块(53)输出;
    步骤77、调节阀(51)根据模拟信号调节开度;
    步骤78、开关阀(52)根据开关信号开启LPG歧管;
    步骤79、点火模块(53)根据开关信号激发电火花,促使LPG点燃;
    步骤80、火源进入燃烧状态,传感器(54)采集燃烧状态信号;
    步骤81、当燃烧状态异常时传感器(54)通过开关量输入输出装置(04)向控制器(02)发送异常信号;
    步骤82、控制器(02)对异常信号计数;
    步骤83、控制器(02)判断计数值是否达到5,是则执行步骤85,否则执行步骤84;
    步骤84、控制器(02)发送点火数据发送至开关量输入输出装置(04);
    步骤85、控制器(02)发出告警。
  8. 如权利要求7所述用于火源模拟的燃气控制器,进行火灾现场仿真时,包括以下熄火 控制步骤:
    当控制器(02)产生告警,或服务器(01)将LPG浓度超限告警、正常仿真结束、通风系统故障告警和环境温度超限告警中任一信号传送至控制器(02)时,执行如下步骤:
    步骤86、控制器(02)接收告警或触发数据,首先向开关量输入输出装置(04)发送火源关闭数据,其次向开关量输入输出装置(04)发送应急关闭数据,然后向模拟量输出装置(03)发送火源火焰最低强度数据;
    步骤87、模拟量输出装置(03)接收火源数据,提取火源火焰强度数据,转换为4mA模拟信号向相应调节阀(51)输出;
    步骤88、开关量输入输出装置(04)接收火源数据,提取应急关闭数据,并转换为关闭电平信号向相应应急阀(06)输出;
    步骤89、开关量输入输出装置(04)接收火源数据,提取火源关闭数据,并转换为关闭电平信号向相应开关阀(52)输出;
    步骤90、调节阀(51)根据模拟信号调节开度置于最小;
    步骤91、应急阀(06)根据开关信号,关闭LPG支管;
    步骤92、开关阀(52)根据开关信号,关闭LPG歧管;
    步骤93、火源熄火、关闭。
PCT/CN2014/087645 2014-09-28 2014-09-28 用于火源模拟的燃气控制器及控制方法 WO2016045112A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/087645 WO2016045112A1 (zh) 2014-09-28 2014-09-28 用于火源模拟的燃气控制器及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/087645 WO2016045112A1 (zh) 2014-09-28 2014-09-28 用于火源模拟的燃气控制器及控制方法

Publications (1)

Publication Number Publication Date
WO2016045112A1 true WO2016045112A1 (zh) 2016-03-31

Family

ID=55580157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087645 WO2016045112A1 (zh) 2014-09-28 2014-09-28 用于火源模拟的燃气控制器及控制方法

Country Status (1)

Country Link
WO (1) WO2016045112A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109316700A (zh) * 2018-11-07 2019-02-12 王永刚 模拟轰然、回燃发生装置
CN109597386A (zh) * 2018-07-17 2019-04-09 柳州钢铁股份有限公司 炼铁厂煤气报警仪集中监控系统及方法
CN115792084A (zh) * 2022-11-10 2023-03-14 中国矿业大学(北京) 模拟不同液位高度储罐灭火及复燃的装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006081736A1 (fr) * 2005-02-03 2006-08-10 Emerson Network Power Co., Ltd. Systeme de surveillance pour moteur a mazout et reseau electrique longue distance et methode d'analyse et de surveillance de leurs ondes harmoniques
CN201662086U (zh) * 2009-06-08 2010-12-01 辽河石油勘探局 注汽锅炉程序器点火控制装置
CN201666188U (zh) * 2009-11-20 2010-12-08 株洲南方燃气轮机成套制造安装有限公司 燃气轮机发电机组的控制装置
CN202012902U (zh) * 2010-12-22 2011-10-19 中国石油天然气集团公司 一种油田燃油注气锅炉plc控制装置
CN102889684A (zh) * 2012-09-07 2013-01-23 中国石油天然气集团公司 真空加热炉控制装置
CN103557081A (zh) * 2013-11-18 2014-02-05 沈阳黎明航空发动机(集团)有限责任公司 一种轻型燃气轮机控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006081736A1 (fr) * 2005-02-03 2006-08-10 Emerson Network Power Co., Ltd. Systeme de surveillance pour moteur a mazout et reseau electrique longue distance et methode d'analyse et de surveillance de leurs ondes harmoniques
CN201662086U (zh) * 2009-06-08 2010-12-01 辽河石油勘探局 注汽锅炉程序器点火控制装置
CN201666188U (zh) * 2009-11-20 2010-12-08 株洲南方燃气轮机成套制造安装有限公司 燃气轮机发电机组的控制装置
CN202012902U (zh) * 2010-12-22 2011-10-19 中国石油天然气集团公司 一种油田燃油注气锅炉plc控制装置
CN102889684A (zh) * 2012-09-07 2013-01-23 中国石油天然气集团公司 真空加热炉控制装置
CN103557081A (zh) * 2013-11-18 2014-02-05 沈阳黎明航空发动机(集团)有限责任公司 一种轻型燃气轮机控制系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109597386A (zh) * 2018-07-17 2019-04-09 柳州钢铁股份有限公司 炼铁厂煤气报警仪集中监控系统及方法
CN109316700A (zh) * 2018-11-07 2019-02-12 王永刚 模拟轰然、回燃发生装置
CN115792084A (zh) * 2022-11-10 2023-03-14 中国矿业大学(北京) 模拟不同液位高度储罐灭火及复燃的装置

Similar Documents

Publication Publication Date Title
WO2016045112A1 (zh) 用于火源模拟的燃气控制器及控制方法
GB2568392A (en) System, apparatus, and method of preventing fuel tank explosion
CN104635819B (zh) 公共场所环境空气质量安全监测查询警报系统及其方法
CN110533976A (zh) 用于模拟高层住宅火灾的智能消防模拟训练系统和方法
CN104992524A (zh) 带WiFi功能的无线火灾报警系统
CN107583224B (zh) 海上石油火气系统检测评估实验平台及方法
CN203162944U (zh) 一种氢气燃烧器系统
CN105225568A (zh) 全天候火灾与烟雾真实场景模拟训练装置
CN205050402U (zh) 全天候火灾与烟雾真实场景模拟训练装置
CN209558374U (zh) 一种用于燃烧器的流量控制系统
CN102889684B (zh) 真空加热炉控制装置
CN213302850U (zh) 一种基于scada系统的天然气站远程诊断系统
CN202692152U (zh) 自动防干烧燃气灶
CN107859998B (zh) 一种混合可燃气体燃烧器试验装置在真火灭火训练的应用
CN103615740B (zh) 火炬爆燃点火安全系统
CN209708356U (zh) 有害气体泄漏灾情模拟装置
CN203101990U (zh) 智能燃气控制器
CN207037865U (zh) 一种实验室消防监控预警装置
CN208998117U (zh) 一种硫化氢点火装置
CN111027227B (zh) 热风炉动态仿真系统、方法及电子设备
CN211575176U (zh) 一种半导体设备点火控制系统
CN104748394B (zh) 燃气热水器安全保护系统及燃气热水器
CN203786926U (zh) 消防救援真火训练系统
CN105528864A (zh) 智能燃气报警器及报警调试方法
CN202615236U (zh) 一种基于zigbee的重大危险源监控仿真实验装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14902611

Country of ref document: EP

Kind code of ref document: A1