WO2016045000A1 - 一种测量肺泡气中内源性co浓度的方法和装置 - Google Patents

一种测量肺泡气中内源性co浓度的方法和装置 Download PDF

Info

Publication number
WO2016045000A1
WO2016045000A1 PCT/CN2014/087224 CN2014087224W WO2016045000A1 WO 2016045000 A1 WO2016045000 A1 WO 2016045000A1 CN 2014087224 W CN2014087224 W CN 2014087224W WO 2016045000 A1 WO2016045000 A1 WO 2016045000A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
concentration
sample
standard
measuring
Prior art date
Application number
PCT/CN2014/087224
Other languages
English (en)
French (fr)
Inventor
马永健
Original Assignee
深圳市先亚生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市先亚生物科技有限公司 filed Critical 深圳市先亚生物科技有限公司
Priority to PCT/CN2014/087224 priority Critical patent/WO2016045000A1/zh
Priority to EP14902715.3A priority patent/EP3199098B1/en
Publication of WO2016045000A1 publication Critical patent/WO2016045000A1/zh
Priority to US15/466,840 priority patent/US10168316B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/082Evaluation by breath analysis, e.g. determination of the chemical composition of exhaled breath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/083Measuring rate of metabolism by using breath test, e.g. measuring rate of oxygen consumption
    • A61B5/0836Measuring rate of CO2 production
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/097Devices for facilitating collection of breath or for directing breath into or through measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0029Cleaning of the detector

Definitions

  • the present invention relates to the field of medical diagnostics and, more particularly, to a method and apparatus for measuring the concentration of endogenous CO in alveolar gas.
  • red blood cells which deliver oxygen to various tissues of the animal.
  • Determination of red blood cell life can be used for the differential diagnosis of various diseases such as anemia, understanding the pathogenesis of the disease and judging the prognosis treatment, so the measurement of human red blood cell life is essential.
  • the study confirmed that the difference between the CO concentration of the exhaled alveolar gas and the CO content in the air (ambient gas) of the place where the subject was located before the sample gas was collected, and the life of the human red blood cell can be estimated, and the CO concentration in the air can be measured.
  • non-dispersive infrared spectroscopy is not suitable for the determination of CO concentration as human exhalation because of the large amount of gas sample required; gas chromatography requires less sample volume, and the measurement accuracy can also meet the low required for red blood cell lifetime. Determination of concentration of CO, but the instrument operation, maintenance is complex, expensive, not suitable for clinical use.
  • the measured values measured by the existing equipment are all measuring the CO concentration in the gas chamber, and the concentration often has a certain deviation from the CO concentration in the alveolar gas under normal conditions, and the deviation is caused by gas production and/or
  • the mixing of environmental gases caused by inconsistent operation methods cannot be recognized by existing methods and equipment, and such deviations cannot be eliminated.
  • the technical problem to be solved by the present invention is to provide a method and a device for measuring the concentration of endogenous CO in alveolar gas, a. to solve the problem that the amount of sample in the breath test is small and the original gas in the gas chamber cannot be completely replaced into the sample to be tested.
  • the problem of gas b. Elimination of level zero drift is difficult to control the influence of low-concentration CO measurement accuracy, c. Eliminate the influence of factors such as the unknown amount of residual CO in the purge gas on the measurement of low-concentration CO, d. Compensating the measurement of the gas concentration measured by the absorption spectroscopy of the open measuring chamber.
  • the measured value is caused by the difference between the ambient temperature and the pressure at the time of measurement and the ambient temperature and pressure of the measuring device. e. Compensation for gas production and / Deviation between the measured value of the CO concentration in the sample gas and the actual value in the alveolar gas due to the incorporation of ambient gas due to inconsistent operation methods. Overcoming the deficiencies of existing methods and devices that are unrecognizable and even more difficult to eliminate.
  • a method of measuring endogenous CO concentration in alveolar gas comprising the steps of:
  • the injection mode includes the injection times of the sample gas and the bottom gas, the injection amount of each time, and the adjacent two times Injection time interval;
  • the injection mode in the method for measuring the concentration of endogenous CO in the alveolar gas of the present invention, in the step S1, the injection mode may be 40 ml to 400 ml per injection, and the injection speed is 10 per injection. ML/sec to 200 ml/sec, the number of injections per sample and bottom gas is 2 to 9 times, and the interval between adjacent injections is 12 to 48 seconds.
  • the step S2 specifically includes the following steps:
  • a and B are the constants of the fit, For the concentration of CO in the sample gas, For the concentration of CO in the bottom gas, The number of levels corresponding to the CO concentration in the sample gas, The number of levels corresponding to the CO concentration in the bottom gas.
  • the step S203 further comprises:
  • the bottom gas standard gas is injected into the measurement gas chamber to obtain and store the level of the last injection and balance of the bottom gas standard gas;
  • one of the sample gas standard gas is injected into the measurement gas chamber to obtain and store the level of the last injection and balance of the sample gas standard gas;
  • the level difference between the standard gas and the bottom gas standard gas is obtained
  • the bottom gas standard gas is injected into the measurement gas chamber to obtain and store the level of the last injection and balance of the bottom gas standard gas;
  • the second sample gas is injected into the measurement gas chamber to obtain and store the level of the last injection and balance of the sample gas standard gas;
  • the second pair of sample gas standard gas and the bottom gas standard gas level number the second pair of sample gas standard is obtained The level difference between the standard gas and the bottom gas standard gas;
  • the injection sequence is the same as when the difference is fitted to the standard curve.
  • the injection sequence of the gas standard gas and the bottom gas standard gas is the same.
  • the invention also provides a device for measuring the concentration of endogenous CO in alveolar gas.
  • the measuring principle of the device is a gas absorption spectroscopy method for opening a measuring chamber, which can measure both CO concentration and CO 2 .
  • Concentration the device comprises:
  • the processing unit calculates the volume ratio (V/V) concentration M of endogenous CO in the alveolar gas using the following compensation formula:
  • the above-mentioned device for measuring the concentration of endogenous CO in alveolar gas further comprises a sample introduction system comprising an air inlet, an air pump, a total electromagnetic valve, a measuring air chamber and an exhaust port,
  • the air inlet is connected to the air pump
  • the air pump is connected to the measuring air chamber via the total electromagnetic valve
  • the air outlet is disposed on the measuring air chamber
  • the measuring air chamber passes through the air outlet
  • the sampling system further includes a gas control unit, a gas pipe and a cylinder;
  • the gas control unit package Including a gas path switching buffer, a sample gas solenoid valve, a bottom gas solenoid valve and a gas pump solenoid valve, the gas circuit switching buffer is connected between the gas pipe and the total solenoid valve, the sample gas solenoid valve and the bottom gas electromagnetic valve a valve and a gas pump solenoid valve are respectively connected to the air circuit switching buffer, and the sample gas solenoid valve and the bottom gas electromagnetic valve are respectively used for conveying a
  • the gas control unit further includes a standby solenoid valve for replacing the sample gas solenoid valve, the bottom gas solenoid valve or the air pump solenoid valve.
  • the sample introduction system further comprising a driving unit connected to the piston of the cylinder, the driving unit comprising a base and being fixed at the same a rotating screw rod and a stepping motor on the base, and a slider disposed on the rotating screw rod and connected to the cylinder, the stepping motor driving the rotating screw rod to rotate to drive the piston Moving, and driving a sample of the gas to be tested into the measurement chamber through the air tube.
  • the compensation method can eliminate the deviation of the measurement result caused by the incorporation of ambient gas due to the inconsistent operation mode of gas production and/or intake;
  • 1 is a standard curve of a "concentration difference to level difference" fitting for measuring a CO concentration difference according to a preferred embodiment of the present invention
  • FIG. 2 is a structural view of a sample introduction system provided by a preferred embodiment of the present invention.
  • the CO concentration in the sample gas is measured, and the CO concentration in the sample gas is not equal to the CO concentration in the alveolar gas.
  • the prior art cannot identify, and it is even more difficult to eliminate the problem that the sample gas CO concentration value deviates from the actual value of the alveolar gas due to the mixing of the environmental gas caused by the inconsistent operation method, for example, the helium gas time is too long during gas production.
  • the CO concentration is higher than normal, and the sealing is not strict when gas or air intake causes the external environment gas to enter the diluted CO.
  • the main innovation of the invention lies in: one of the innovations, designing a small, multiple, intermittent injection method for the injection of gas absorption spectroscopy, selecting the appropriate single injection volume and injection
  • the speed, the number of injections, and the intermittent time between two adjacent injections, the sample to be tested is driven into the measurement chamber, and the CO concentration of the gas in the measurement chamber and the CO concentration in the sample to be tested are established after the injection is completed.
  • the fixed relationship reduces the sample gas consumption, and solves the problem that the sample gas in the breath test is small and the original gas in the measurement gas chamber cannot be completely replaced into the sample gas;
  • the second innovation point is to establish a sample by using the difference fitting method.
  • innovation of three to establish a measuring both CO
  • the device capable of measuring CO 2 can make the calculation and compensation correction of CO concentration by CO 2 concentration convenient to realize;
  • the fourth innovation point is to calculate the endogenous CO concentration value of the alveolar gas by using the CO 2 concentration measurement value, that is, in the same Under pressure and temperature conditions, the concentration difference between CO 2 and CO in sample gas and bottom gas was measured respectively.
  • the concentration of endogenous CO in alveolar gas was calculated and compensated according to the relatively stable CO 2 concentration in alveolar gas according to the compensation formula.
  • This innovation eliminates the method of operation due to gas production and/or intake The deviation caused by the inconsistency of the ambient gas to the detection result, and also eliminates the influence of the temperature, pressure and the temperature of the measuring device and the pressure difference of the measuring device on the measured value of the CO concentration of the sample, and obtains a more accurate alveolar bubble.
  • the value of endogenous CO concentration in the gas is not limited to gas production and/or intake.
  • sample gas volume in the breath test is small and the original gas in the gas chamber cannot be completely replaced by the sample gas
  • sample gas includes” “sample gas” and “base gas”
  • sample gas is “extracted subject exhaled”
  • base gas is “collecting ambient gas of exhaled place”
  • the intermittent time ensures that the injected sample gas and the original gas in the gas chamber are not fully mixed and balanced, for example, the interval between two adjacent injections is 12 to 48 s; (3) Control the number of injections of each sample to be tested, and ensure that the new CO concentration has sufficient influence on the CO concentration in the measurement chamber after multiple injections are completed, that is, the amount of intake air should not be too small each time.
  • the effect of the new gas on the level is too small to detect Change, each sample to be tested is divided into 2 to 9 injections; and the purpose of establishing a fixed relationship between the CO concentration of the gas in the gas chamber and the CO concentration in the sample to be tested is established.
  • the gas concentration of the sample to be tested is X
  • the concentration of the cleaning gas is Y
  • each sample to be tested is divided into 5 injections, 200 ml each time, and the interval between adjacent injections is 19 s
  • the infrared spectrometer measures
  • the total volume of the gas chamber is 700ml. After each injection and reaching equilibrium, the measured CO concentration in the gas chamber is:
  • the invention firstly cleans the measurement gas chamber with the cleaning gas until the measurement gas chamber is completely filled with the cleaning gas, and adopts the "small, multiple, intermittent" injection mode on the basis of the completion of the cleaning, and selects a suitable single feed.
  • the sample volume and injection speed, the number of injections, and the intermittent time between two adjacent injections, the sample to be tested is driven into the measurement chamber, and the CO concentration of the gas in the measurement chamber after the injection is completed is established and tested.
  • the object of the present invention is firstly to measure the difference between the CO concentration in the sample gas and the CO concentration value in the bottom gas of the place where the subject is before the sample gas is collected.
  • the relationship between the signal level D and the CO concentration P in the measuring cell follows:
  • K 0 is the slope and is a constant
  • D 0 is the level at which the CO is zero (referred to as "level zero").
  • the general standard curve is established by injecting a series of known concentrations of standard gas into the measurement chamber to measure K 0 'and D 0 '.
  • the gas concentration X to be measured can be derived.
  • the cleaning gas passes through the process of catalyzing CO to CO 2 before cleaning the measurement gas chamber.
  • D 0 and Y are both uncertain and cause D' 0 to be indeterminate. Therefore, it is impossible to accurately measure The CO concentration of the sample gas is measured.
  • the present invention takes a paired measurement method in which the measurement time of the sample gas and the bottom gas to be tested is next to each other.
  • the CO concentration Y in the cleaning gas is unknown, and the signal level corresponding to the sample gas and the bottom gas concentration are affected by Y, as long as the sample gas and the bottom gas to be tested are measured next to each other,
  • the cleaning gas concentration Y corresponding to the secondary measurement can be considered to be the same, and D 0 is almost unchanged in the next two measurements, so when the measurement of the sample gas and the bottom gas to be tested is performed next to each other, Y treats The influence level of the signal level of the sample gas and the bottom gas can be considered to be the same.
  • the lower limit of the CO concentration detection in the sample gas is 0.05 ppm, and the CO concentration corresponding to the normal red blood cell life of the human body is about 1.5 ppm, thus satisfying the determination of the red blood cell life. Sensitivity requirements.
  • the sampling sequence and the injection mode of the sample gas and the bottom gas are set, and the "small amount, Multiple injection, intermittent injection mode, single injection volume and injection speed, injection times to meet the sample gas per injection will not be discharged from the gas outlet of the CO measurement chamber, but only CO measurement gas chamber
  • the interval between the original gas discharge of the same volume and the interval between two adjacent injections is sufficient for the injection gas to be sufficiently mixed and balanced with the original gas unexhausted portion of the CO measurement gas chamber.
  • each sample to be tested The gas and bottom gas standard gas are injected in 5 times, each time the injection volume is 200ml, and the interval between two adjacent injections is 19s.
  • the injection sequence is to measure the bottom gas standard gas first, and then measure the sample gas standard gas.
  • CO gas sample standard gas with concentration of 1ppm, 2ppm, 3ppm, 5ppm respectively is prepared; preparation of a catalytically treated, low residual CO concentration ( ⁇ 0 ppm) of ultrapure nitrogen as the bottom gas standard gas.
  • the standard gas bags of the CO sample gas at a concentration of 1 ppm, 2 ppm, 3 ppm, and 5 ppm are respectively inserted into the sample gas inlet of the device, and the above-mentioned bottom gas standard gas is inserted into the bottom gas inlet.
  • the air pump is started to clean the measuring chamber for 200s.
  • the sample gas to be tested and the standard gas to be tested are injected according to a preset injection number, a sample injection amount, and a sampling interval of two adjacent injections.
  • each sample gas to be tested or the bottom gas standard gas is injected five times, each injection volume is 200 ml, and the total volume of the measurement gas chamber is 700 ml, and the sample gas and measurement after entering each sample are measured.
  • the original gas in the gas chamber is well mixed, and the expression for measuring the CO concentration in the gas chamber after the fifth injection and balance is:
  • the bottom gas standard gas is first measured, and the bottom gas standard gas is divided into five injections. After each injection, the next injection is performed for 19 seconds, so that the sample gas and the measurement gas chamber are in the original. If some of the gas is completely mixed, the signal level after the fifth injection of the bottom gas standard gas is measured and the analog-to-digital is converted to a digital level, and finally, when the fifth injection is performed and the gas in the measurement gas chamber is sufficiently mixed. The number of levels of the bottom gas standard gas is stored.
  • the air pump to clean the measuring chamber for 200s, so that the measuring chamber is completely filled with the cleaning gas, and the sample gas with the concentration of 1ppm is also injected in five times.
  • the level of the 1 ppm sample gas standard gas can be measured.
  • the sample gas standard gas and the level of the bottom gas standard gas of about 0 ppm calculate the level difference between the sample gas standard gas and the bottom gas standard gas. In this embodiment, the level difference is 31, and the data is stored. On the computer.
  • the measurement chamber is cleaned, then the signal level of the bottom gas standard gas is measured, and then the measurement chamber is cleaned, the signal level of the sample gas of 2 ppm is measured, and the standard gas and the bottom gas standard of the sample are calculated.
  • the level difference of the gas that is, after each sample to be tested is measured, the measurement chamber needs to be cleaned again to measure the next sample to be tested.
  • the bottom gas standard gas is re-measured to eliminate the effects of zero drift and cleaning gas. Repeatedly, the level difference between the standard gas and the bottom gas standard gas is obtained, and the specific values are as follows:
  • the difference between the level of the 1 ppm standard gas and the level of the standard gas of the bottom gas is 31;
  • the difference between the level of the 2 ppm standard gas and the level of the standard gas of the bottom gas is 61;
  • the difference between the level of the 3 ppm standard gas and the level of the standard gas of the bottom gas is 94;
  • the difference between the level of the 5 ppm standard gas and the level of the standard gas of the bottom gas is 153;
  • the standard curve of the difference fitting based on the difference between the level difference between the standard gas and the bottom gas standard gas and the concentration difference between the above-mentioned samples is as follows:
  • A is 0.038 and B is -0.30
  • a and B are the fitting constants of the difference fitting standard curve.
  • concentration of CO in the sample gas For the concentration of CO in the bottom gas, For the number of levels of CO in the sample gas, The number of levels of CO in the bottom gas.
  • the linear relationship of the difference fitting standard curve is better, and the reliability of the difference fitting standard curve (10) is further verified below:
  • a CO standard gas having a concentration of 5 ppm was inserted as a sample gas at the sample gas inlet, and a catalytically treated ultrapure nitrogen standard gas having a residual CO concentration of about 0 ppm was inserted as a bottom gas at the bottom gas inlet.
  • the level difference is measured by the above method, and finally, the level difference between the two is 140, and the difference between the two is 5.02 ppm according to the difference fitting standard curve (10), which is 5 ppm with the true concentration difference. The difference is not large. Therefore, using the "difference difference to level difference" difference fitting method, the measurement of the CO concentration difference is very accurate and reliable.
  • the above standard curve (10) is established according to the order of measuring the bottom gas and then measuring the sample gas.
  • the measurement order of the sample gas and the bottom gas in the measuring device may be reversed, that is, the sample gas is measured first, then the bottom gas is measured, and then the difference between the sample gas and the bottom gas is established.
  • the value fits the standard curve (10).
  • the order of measurement of the sample gas and the bottom gas should be consistent with the order in which the difference fits the standard curve (10).
  • the following is an example of collecting and measuring exhaled samples, and introducing the application of the difference fitting method.
  • the residence time in the place where the sample gas is collected is 6 hours or more.
  • the first measurement after the measuring device is turned on should be performed after the measuring device is warmed up for 20 minutes, and the second and subsequent measurements are not subject to this limitation.
  • the measuring device After the power is turned on, the measuring device automatically performs a measurement chamber cleaning.
  • the air pump is started to clean the measuring chamber for 200s.
  • First measure the bottom gas inserted into the bottom gas inlet that is, the bottom gas is divided into 5 injections, each time the injection volume is 200ml, and the number of levels of the CO after the fifth injection and balance of the bottom gas is measured and stored;
  • the measurement gas chamber is cleaned, and the sample gas inserted into the sample gas inlet is measured.
  • the injection is also divided into 5 injections, each time the injection volume is 200 ml, and the fifth injection and the balance in the measurement gas chamber are measured.
  • the number of levels of the sample gas is finally calculated as the level difference between the sample gas and the bottom gas, and the difference in concentration of CO corresponding to the level difference is obtained.
  • the pressure and temperature are respectively P', T', and the same sample under this second measurement environment condition, the CO concentration is from ⁇ ', to the same measuring device (a, b, A, B is unchanged), measuring the same sample, there is
  • Formula (23) is also applicable to the determination of CO and CO 2 , so that d is the proportion of alveolar gas in the whole sample gas, M is the endogenous CO concentration value in alveolar gas, and the CO 2 in alveolar gas is 5%. then
  • the invention proposes a compensation method suitable for calculating the concentration measurement value of another component by using the concentration measurement value of one component in the concentration measurement of the multi-component mixed gas (under certain conditions, the measurement value Different from the true value, by compensating according to the method, the compensated measured value can be conveniently equal to the true value after compensation.
  • the compensation method is suitable for the concentration measurement by gas absorption spectroscopy, and the measuring gas chamber used is arranged through the row. The port is connected to the external environment.
  • the compensation method is specifically applied to the calculation and compensation of the endogenous CO measurement value of the alveolar gas, specifically, using the measured difference between the sample gas and the bottom gas CO 2 , and calculating the endogenous property of the alveolar gas by using the compensation formula.
  • the volume ratio (V/V) of the CO is the net value M.
  • step S20 further includes the following steps:
  • step S20 calculates the volume ratio (V/V) of endogenous CO in the alveolar gas using formula (27).
  • the net concentration of concentration M can be;
  • the d value is not within the interval range [0.6, 1.5], it indicates that the sample gas collection or the intake process has a serious error, and the correction error is large, and it is necessary to re-inject and re-measure.
  • the step S20 further comprises the steps of:
  • the value of d falls within the range [0.6, 1.5], it is necessary to further determine whether the d value falls within the individual difference of the individual difference of the endogenous CO 2 concentration of the alveolar gas of the subject before the step S20 is transferred to the step S20.
  • the fluctuation range if the d value falls within the fluctuation range of the d value that may be caused by the individual difference in the endogenous CO 2 concentration of the alveolar gas of the subject, for example, within [1, 1.1], the sample gas and the bottom gas are considered.
  • step S20 If the value of d is not within the range [1, 1.1], the process proceeds directly to step S20.
  • the water vapor and CO 2 gas in the sample gas and the bottom gas are removed prior to determining the concentration of CO gas in the sample gas and the bottom gas.
  • the present invention measures the concentration of CO and CO 2 using a CO probe and a CO 2 probe.
  • the CO probe uses a high-sensitivity room temperature indium antimonide infrared detector to meet the CO detection index.
  • the CO 2 probe uses NDIR probe, wide temperature compensation, good stability, resistance to water and gas interference, and high precision.
  • the noise is mainly eliminated by the sample gas and the bottom gas in the measurement result difference calculation (ie, "difference fitting method") because the background noise of the sample gas and the bottom gas in the measurement period is included. basically the same.
  • the separate CO 2 measurement chamber in the present invention is used to separately measure the CO 2 concentration to avoid the influence of gas flow on the measurement results. After the purge before each measurement with CO 2 gas was purged out of the gas measuring chamber internal residual gas, CO 2 gas will be greater than 100 times the volume of the chamber of the sample gas into the CO 2 gas measuring chamber, to ensure the CO 2 gas as a sample gas is completely internal chamber Gas composition, measured after gas balance (such as waiting for 30s).
  • the present invention devises a device for measuring the concentration of endogenous CO in alveolar gas, specifically using a cylinder injection method through a cylinder piston. The motion draws the gas from the air bag into the cylinder and then into the measurement chamber assembly.
  • the sample introduction system is mainly measured by the air inlet 1, the air pump 2, and the measurement.
  • the gas chamber assembly 3, the exhaust port 4, the total solenoid valve 5, the gas pipe 9, the cylinder 10, the absorption pack assembly 7, the gas control unit 6, and a drive unit (not shown) are composed.
  • the air inlet 1 is connected to the air pump 2, and the air pump 2 is connected to the measuring air chamber assembly 3 after passing through the total electromagnetic valve 5.
  • the exhaust port 4 is disposed on the measuring air chamber assembly 3, and one end of the air tube 9 is connected to the gas control unit 6.
  • the other end is connected to the cylinder 10, and the cylinder 10 is further connected with a driving unit for driving the reciprocating motion of the cylinder 10.
  • the cylinder 10 of the cylinder 10 is provided with a piston 110, and also absorbs CO 2 and water vapor through the absorption pack assembly before the gas to be tested is driven into the measurement chamber assembly 3 by the movement of the piston 110.
  • the gas control unit 6 includes a pneumatic circuit switching buffer 64, a sample gas solenoid valve 61, a bottom gas solenoid valve 62, Air pump solenoid valve 63.
  • the air circuit switching buffer 64 is connected between the air pipe 9 and the total electromagnetic valve 5, and the sample gas solenoid valve 61, the bottom gas solenoid valve 62 and the air pump solenoid valve 63 are both connected to the air passage switching buffer 64, and the air passage switching buffer 64 is used to communicate with the total solenoid valve 5 and to drive the gas to be tested into the measurement chamber assembly 3.
  • the sample gas solenoid valve 61 is provided with a sample gas inlet 610, and is connected with the sample gas bag for conveying the sample gas to the gas circuit switching buffer 64;
  • the bottom gas electromagnetic valve 62 is provided with a bottom gas inlet 620 and is connected with the bottom gas bag.
  • the air pump solenoid valve 63 is connected to the air pump 2 for conveying the cleaning gas to the air passage switching buffer 64.
  • the gas control unit 6 may further include a backup solenoid valve 65, which may be replaced when any one of the sample gas solenoid valve 61, the bottom gas solenoid valve 62, or the air pump solenoid valve 63 is damaged, or may be expanded later. use.
  • a drive unit is coupled to the cylinder 10 for powering the movement of the cylinder 10.
  • the drive unit includes a base 13, a rotating screw shaft 12, a stepping motor 11, and a slider 15.
  • the stepping motor 11 drives the rotating screw rod 12 to rotate, thereby driving the slider 15 to move. Since the slider 15 is connected to the cylinder 10, the slider 15 drives the cylinder 10 to move, thereby being tested.
  • the gas hits the measurement chamber assembly 3.
  • the sample gas inlet 610 of the sample gas solenoid valve 61 is inserted into the sample gas, and the bottom gas inlet 620 of the bottom gas solenoid valve 62 is inserted into the bottom gas.
  • the sample gas solenoid valve 61 and the bottom gas solenoid valve 62 are closed, the gas pump solenoid valve 63 and the total
  • the solenoid valve 5 is opened, the air pump 2 starts to work, the cleaning gas (air) enters from the air inlet 1, and passes through the desiccant and the CO catalyst to enter the measuring chamber assembly 3, and then is discharged through the exhaust port 4, after rinsing for about 200 s. Cleaned.
  • the sample gas solenoid valve 61, the air pump solenoid valve 63 and the total solenoid valve 5 are closed, the bottom gas solenoid valve 62 is opened, the stepping motor 11 drives the rotary screw rod 12 to rotate, and the cylinder piston 110 is sliding.
  • the block 15 is moved from the leftmost end to the rightmost end, and a certain amount (for example, 200 ml) of the bottom gas is extracted and the solenoid valve is switched.
  • the sample gas solenoid valve 61, the bottom gas solenoid valve 62 and the air pump solenoid valve 63 are closed, the total solenoid valve 5 is opened, and the bottom gas enters the absorption pack assembly from the cylinder 10 to remove CO 2 and water vapor, and then enters into the measurement gas chamber assembly 3
  • the bottom gas (the cylinder piston is moved from the rightmost end to the leftmost end by the slider 15), and the cylinder 10 is continuously subjected to the pumping process five times, and a total of 1000 ml of the bottom gas enters the measuring chamber assembly 3 to measure the bottom gas.
  • the step (1) is repeated to clean the inner cavity of the measuring gas chamber assembly 3, and the electromagnetic valve is switched after cleaning for 200 seconds.
  • the bottom gas solenoid valve 62, the air pump solenoid valve 63 and the total solenoid valve 5 are closed, the sample gas solenoid valve 61 is opened, the stepping motor 11 drives the rotary screw rod 12 to rotate, and the cylinder piston is moved from the leftmost end to the most driven by the slider 15 At the right end, after pumping a certain amount (such as 200ml) of sample gas, the solenoid valve switches.
  • the sample gas solenoid valve 61, the bottom gas solenoid valve 62 and the air pump solenoid valve 63 are closed, the total solenoid valve 5 is opened, and the sample gas enters the absorption pack assembly from the cylinder 10 to remove CO2 and water vapor, and then enters into the measurement gas chamber assembly 3
  • the sample gas (the cylinder piston is moved from the rightmost end to the leftmost end by the slider 15), and the sample gas enters the measurement chamber assembly 3 to start the measurement.
  • the cylinder 10 starts to pump the sample gas.
  • the sample gas is divided into five injections. For each injection of 200 ml, the sample gas is injected into the measurement chamber assembly 3 four times, and a total of 1000 ml sample gas is introduced into the measurement gas. Room, followed by measurement of the sample gas.
  • the test system of the device for measuring the CO concentration in the alveolar gas of the present invention comprises a tracheal tube, a CO 2 gas measuring chamber, a CO gas measuring chamber, and a processing unit.
  • the CO 2 gas measurement chamber and the CO gas measurement chamber are both located in the measurement chamber assembly 3 and connected to the intake port through the air tube line; the CO 2 gas measurement chamber and the CO gas measurement chamber are respectively connected to the processing unit at the same temperature and Measure the concentration of CO 2 gas in the sample gas and bottom gas under pressure Concentration difference Concentration of CO gas in sample gas and bottom gas Concentration difference
  • the processing unit acquires the difference between the measured value or the sample gas measured value and the measured value of the bottom gas, and calculates the volume ratio (V/V) concentration M of the endogenous CO in the alveolar gas using the formula (27).
  • the absorption pack assembly of the measuring device can also be installed or detachably mounted between the air inlet and the CO gas measuring chamber through the connection of the tracheal tube, after the absorbent inside the absorption pack assembly fails. Easy to replace instantly.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Pulmonology (AREA)
  • Physiology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Combustion & Propulsion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Emergency Medicine (AREA)
  • Obesity (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种测量肺泡气中内源性CO浓度的方法和装置,包括:1、提出一种少量、多次、间歇的进样法,建立样气与进样完毕后气室中气体的CO浓度关系;2、建立"浓度差~电平差"差值拟合法,得到样气与底气的差值拟合标准曲线;3、建立一种既能测量CO又能测量CO2的装置用于测量样气与底气的CO的浓度差和CO2的浓度差;4、提出了一种肺泡气内源性CO测量值的补偿方法。通过采用少量、多次、间歇进样法,解决了呼气试验中样气量少、不能完全置换气室内原有气体的问题,差值拟合法有效消除清洗气中未知浓度残余CO和电平零点漂移的影响,补偿方法可消除样气中混入环境气或者测量时温度、压强与标定时的温度、压强不同所致的偏差。

Description

一种测量肺泡气中内源性CO浓度的方法和装置 技术领域
本发明涉及医学诊断领域,更具体的说,涉及一种测量肺泡气中内源性CO浓度的方法和装置。
背景技术
哺乳动物造血系统的一个特殊和重要的作用是生成红细胞,红细胞给动物体的各个组织输送氧气。测定红细胞寿命可用于贫血等多种疾病的鉴别诊断,了解疾病的发病机理及判断预后治疗,因此人体红细胞寿命的测量至关重要。研究证实准确测出呼出的肺泡气的CO浓度与采集样气前受试者所在的场所的空气(环境气)中的CO含量之差值,可推算出人体红细胞寿命,测量空气中的CO浓度的常用的方法有非色散红外光谱法、气相色谱法、电化学方法、汞置换法等。其中非色散红外光谱法和电化学方法由于需要气体样品量大,不适合用作为人体呼气的CO浓度测定;气相色谱法需要的样品量少,测量精度也可满足红细胞寿命所需的对低浓度CO的测定,但仪器操作、维护复杂,价格昂贵,不适合在临床上推广使用。同时,现有设备所测得的测量值都是测量气室之中的CO浓度,该浓度与正常情况下肺泡气中的CO浓度往往存在一定的偏差,该偏差产生的原因在于采气和/或进气的时候,操作方法不一致导致的环境气的混入,现有方法和设备无法识别、更加无法消除此种偏差。
发明内容
本发明所要解决的技术问题在于:提供一种测量肺泡气中内源性CO浓度的方法和装置,a.解决呼气试验中样品量少而无法将气室中原有气体完全置换成待测样品气体的问题,b.消除电平零点漂移难以控制对低浓度CO测量精度的影响,c.消除清洗气中残余CO量未知等因素对低浓度CO测量值的影响, d.补偿开放测量气室的吸收光谱法测得的气体浓度测量值因测量时的环境温度、压强与测量装置标定时的环境温度、压强的差异对测量值造成偏差,e.补偿采气和/或进气时、由于操作方法不一致引起的环境气的混入等原因所致的样品气中CO浓度的测量值与肺泡气中实际值的偏差。克服现有方法和设备无法识别、更加无法消除这些偏差的缺陷。
本发明解决其技术问题所采用的技术方案是:
提供一种测量肺泡气中内源性CO浓度的方法,包括以下步骤:
S1、设置呼气试验样品中的样气和底气的吸收光谱测量法中的进样方式,所述进样方式包括样气和底气的进样次数、每次的进样量、相邻两次进样的时间间隔;
S2、利用已知CO和CO2的浓度的样气标准气与底气标准气,分别建立CO和CO2的“浓度差~电平差”的差值拟合标准曲线;
S3、在同一温度和压强下,使用同一装置测量与样气和底气浓度所对应的电平数并算出电平差,并依据S2中的差值拟合标准曲线得到CO的浓度差和CO2的浓度差;
S4、使用如下补偿公式计算肺泡气中内源性CO的体积比(V/V)浓度值M:
Figure PCTCN2014087224-appb-000001
其中,
Figure PCTCN2014087224-appb-000002
在本发明的测量肺泡气中内源性CO浓度的方法中,所述步骤S1中,所述进样方式可以为每次的进样量为40毫升~400毫升、每次进样速度为10毫升/秒~200毫升/秒、每个样气和底气的进样次数为2次~9次、相邻两次进样的时间间隔为12秒~48秒。
在本发明的测量肺泡气中内源性CO浓度的方法中,所述步骤S2具体包括如下步骤:
S201、配制不同浓度的CO样气标准气,以及一个底气标准气;
S202、用经过CO催化剂和干燥剂处理后或其它催化或干燥法处理后的空气作为清洗气清洗测量气室,直至测量气室内完全充满清洗气;
S203、按照上述进样方式,分别测量样气标准气和底气标准气的电平数;根据上述样气标准气和底气标准气中的电平数,求得样气标准气与底气标准气的电平差;
S204、根据样气标准气与底气标准气的电平差和浓度差值,拟合得到“浓度差~电平差”的差值拟合标准曲线,所述差值拟合标准曲线的表达式为:
Figure PCTCN2014087224-appb-000003
其中,A和B均为拟合的常数,
Figure PCTCN2014087224-appb-000004
为样气中CO的浓度,
Figure PCTCN2014087224-appb-000005
为底气中CO的浓度,
Figure PCTCN2014087224-appb-000006
为样气中CO浓度对应的电平数,
Figure PCTCN2014087224-appb-000007
为底气中CO浓度对应的电平数。
在本发明的测量肺泡气中内源性CO浓度的方法中,所述步骤S203进一步包括:
用清洗气清洗测量气室,直至测量气室内完全充满清洗气;
按照所述进样方式,将底气标准气注入测量气室,得到并存储底气标准气最后一次进样、平衡后的电平数;
用清洗气清洗测量气室,直至测量气室内完全充满清洗气;
按照所述进样方式,将其中一个样气标准气注入测量气室,得到并存储所述样气标准气最后一次进样、平衡后的电平数;
根据上述其中一对样气标准气和底气标准气的电平数,得到该对样气标准气与底气标准气的电平差;
用清洗气清洗测量气室,直至测量气室内完全充满清洗气;
按照所述进样方式,将底气标准气注入测量气室,得到并存储底气标准气最后一次进样、平衡后的电平数;
用清洗气清洗测量气室,直至测量气室内完全充满清洗气;
按照所述进样方式,将第二个样气标准气注入测量气室,得到并存储所述样气标准气最后一次进样、平衡后的电平数;
根据上述第二对样气标准气和底气标准气的电平数,得到第二对样气标 准气与底气标准气的电平差;
重复上述过程,可得到一组样气标准气和底气标准气的“浓度差~电平差”的成对数据。
在本发明的测量肺泡气中内源性CO浓度的方法中,所述步骤S3中测量呼气样品的样气和底气的浓度差时,进样顺序与制作差值拟合标准曲线时的样气标准气、底气标准气的进样顺序相同。
根据权利要求1~5中任意一项所述的测量肺泡气中内源性CO浓度的方法,其特征在于,测定样气和底气中CO气体前,去除该样气和底气中的水蒸气和CO2气体。
本发明还提供一种专门用于测量肺泡气中内源性CO浓度的装置,该装置的测量原理是开放测量气室的气体吸收光谱法,所述装置既能测量CO浓度又能测量CO2浓度,所述装置包括:
CO2气体测量室和CO气体测量室,所述CO2气体测量室和所述CO气体测量室通过气管管路与进气口相连,在同一温度和压强下,测定样气和底气中CO2气体的浓度
Figure PCTCN2014087224-appb-000008
或浓度差值
Figure PCTCN2014087224-appb-000009
并测定样气和底气中CO气体的浓度
Figure PCTCN2014087224-appb-000010
或浓度差值
Figure PCTCN2014087224-appb-000011
处理单元,使用如下补偿公式计算肺泡气中内源性CO的体积比(V/V)浓度净值M:
Figure PCTCN2014087224-appb-000012
其中,
Figure PCTCN2014087224-appb-000013
本发明提供的上述专门用于测量肺泡气中内源性CO浓度的装置,还包括进样系统,所述进样系统包括进气口、气泵、总电磁阀、测量气室和排气口,所述进气口与所述气泵连接,所述气泵经过所述总电磁阀与所述测量气室连接,所述排气口设置在所述测量气室上,测量气室通过排气口与外部环境相通,所述进样系统还包括气体控制单元、气管和气缸;所述气体控制单元包 括气路切换缓冲区、样气电磁阀、底气电磁阀和气泵电磁阀,所述气路切换缓冲区连接在所述气管和所述总电磁阀之间,所述样气电磁阀、底气电磁阀和气泵电磁阀均接入所述气路切换缓冲区,所述样气电磁阀和底气电磁阀分别用于向所述气路切换缓冲区输送样气和底气,所述气泵电磁阀与所述气泵相连用于向所述气路切换缓冲区输送清洗气,所述气缸与所述气管连接,用于将待测气体样品打入所述测量气室内。
本发明提供的上述专门用于测量肺泡气中内源性CO浓度的装置中,所述气体控制单元还包括用于替换样气电磁阀、底气电磁阀或气泵电磁阀的备用电磁阀。
本发明提供的上述专门用于测量肺泡气中内源性CO浓度的装置中,所述进样系统还包括与所述气缸的活塞连接的驱动单元,所述驱动单元包括机座、固定在所述机座上的旋动螺丝杆和步进电机、以及设置在所述旋动螺丝杆上并与所述气缸相连的滑块,所述步进电机驱动旋动螺丝杆旋转从而带动所述活塞运动,并通过所述气管将待测气体样品打入所述测量气室内。
实施本发明具有以下有益效果:
(1)采用所述的“少量、多次、间歇”的进样方式,以“建立测量气室内气体的CO浓度与待测样品中的CO浓度的固定关系”的做法代替“将测量气室中原有气体完全置换成待测样品气”的做法,从而减少了待测样品气用量,解决了呼气试验中样气量少而无法将测量气室中原有气体完全置换成样品气的问题;
(2)通过时间上紧挨着进行样气和底气测量的成对测量的做法,并建立成对的样气、底气的“浓度差~电平差”差值拟合标准曲线,通过测量样气、底气的电平差来得到样气、底气的浓度差,有效地消除了电平零点漂移和清洗气中未知浓度的残余CO量对肺泡气内源性CO浓度测量的影响,测量精度显著提高;
(3)分别测定样气、底气中CO2和CO的浓度差,通过肺泡气中相对稳定的CO2浓度来对样气、底气中CO的浓度差的测量值进行补偿校正,借助CO2的浓度与CO的浓度成同比例的浓缩或者稀释的关系,使用该补偿法即可 消除由于采气和/或进气的时操作方法不一致所致的环境气的混入对测量结果造成的偏差;
(4)使用肺泡气内源性CO测量值补偿办法的补偿公式计算肺泡气中内源性CO的体积比(V/V)浓度净值M时,还可以消除测量装置的使用时的温度、压强与标定时的温度、压强的差异对肺泡气内源性CO浓度测量值的影响。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明较佳实施例提供的测量CO浓度差的“浓度差~电平差”拟合的标准曲线;
图2是本发明较佳实施例提供的进样系统的结构图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
基于现有气体吸收光谱技术来测量CO浓度时,要面临如下问题:a.要将测量气室内气体完全置换成待测样品所需要样品气体量大,b.CO浓度低时难以控制的电平零点漂移对CO测量影响大,c.用来清洗气室的清洗气中残余CO浓度未知对待测样品的CO浓度测量精度存在影响,d.样品测量时的温度、压强与仪器标定时的温度、压强的差异对测量结果有影响,e.要测量肺泡气中的CO浓度还面临如下问题:测量的只是样气中的CO浓度,而样气中的CO浓度并不等于肺泡气中的CO浓度,现有技术无法识别、更加无法消除因为操作方法不一致所致的环境气的混入等原因导致的样气CO浓度值与肺泡气中实际值存在偏差的问题,例如采气时憋气时间过长导致CO浓度比正常情况下偏高、采气或者进气时密封不严导致外界环境气进入稀释了CO。
本发明的主要创新点在于:创新点之一,设计一种少量、多次、间歇的进样方式,用于气体的吸收光谱测量法的进样,选择合适的单次进样量和进样速度、进样次数、相邻两次进样之间的间歇时间,将待测样品打入测量气 室,建立起进样完毕后的测量气室内气体的CO浓度与待测样品中的CO浓度的固定关系,从而减少了样品气用量,解决了呼气试验中样品气量少而无法将测量气室中原有气体完全置换成样品气的问题;创新点之二,采用差值拟合法,建立样品气的差值对差值的“浓度差~电平差”的差值拟合标准曲线,而不是一般的“浓度~电平”拟合标准曲线,即建立CO和CO2的样气标准气与底气标准气的“浓度差~电平差”的差值拟合标准曲线X-X=A(D-D)+B,测量样品时,用同一装置,在测量时间上紧挨着,对样气、底气进行成对测量,测定样气、底气的电平数并求其电平差(D-D),依据上述“浓度差~电平差”的差值拟合标准曲线X-X=A(D-D)+B,可得到样气、底气的浓度差值,该创新点有效地消除了电平零点漂移和清洗气中未知浓度的残余CO量对肺泡气内源性CO浓度测量的影响,测量精度显著提高(对于CO2,由于肺泡气中CO2浓度远高于底气,底气中CO2浓度与肺泡气中CO2浓度相比可以忽略);创新点之三,建立一种既能测量CO又能测量CO2的装置,使得用CO2浓度来对CO浓度进行计算补偿校正得以方便实现;创新点之四,用CO2浓度测量值计算补偿肺泡气内源性CO浓度值,即在同一压强、温度条件下,分别测定CO2和CO在样气、底气中的浓度差,通过肺泡气中相对稳定的CO2浓度按照补偿公式来对肺泡气内源性CO的浓度进行计算补偿校正,该创新点消除了由于采气和/或进气的时候操作方法不一致所致的环境气的混入对检测结果造成的偏差,同时还消除了测量时的温度、压强与测量装置标定时的温度、压强的差异对样品CO浓度测量值的影响,得到更加准确的肺泡气中内源性CO浓度值。
一、差值拟合法的建立
本发明所采用所述的“少量、多次、间歇”的进样方式,克服了呼气试验中样品气量少、无法用样品气完全置换测量气室内原有气体的问题(“样品”包括“样气”和“底气”,“样气”为“采集到的受试者呼气”,“底气”为“采集呼气的场所的环境气”,全文中所描述的“样品”、“样气”、“底气”皆同此),具体原理如下:
将每个待测样品分成少量、多次进样,在相邻两次进样间留一段间歇时间以确保注入的样品气与气室内存留的气体混合平衡,具体为,(1)通过控制气缸活塞运动速度、进气量,保证每次进气时从排气口排出的气是原来在测量气室内的气体、即新进的样品气没有被排出,故每次的进样量、进样速度根据气室体积大小应控制在一定范围,例如每次的进样量40~400ml,每次进样速度为10毫升/秒~200毫升/秒;(2)通过控制相邻两次进样的间歇时间(相邻两次注入的时间间隔),保证注入样品气体与气室内原有气体未排出部分充分混合平衡,例如相邻两次的进样间隔时间为12~48s;(3)通过控制每个待测样品的进样次数,保证新进的CO浓度对多次进样完成后的测量气室中的CO浓度有足够的影响力,即每次的进气量不能太少,以免新进的气对电平的影响太小,检测不出来变化,每个待测样品分成2次~9次进样;并达到建立起进样完毕后的气室内气体的CO浓度与待测样品中的CO浓度的固定关系的目的。
本实施例中,设待测样品气体浓度为X,清洗气浓度为Y,以每个待测样品分5次进样、每次200ml、相邻两次进气间隔时间为19s,红外光谱仪测量气室总体积为700ml为例,则每次进样并达到平衡后,测量气室内待测CO浓度分别为:
第一次进样并平衡后测量气室内待测CO浓度
Figure PCTCN2014087224-appb-000014
第二次进样并平衡后测量气室内待测CO浓度
Figure PCTCN2014087224-appb-000015
第三次进样并平衡后测量气室内待测CO浓度
Figure PCTCN2014087224-appb-000016
第四次进样并平衡后测量气室内待测CO浓度
Figure PCTCN2014087224-appb-000017
第五次进样并平衡后测量气室内待测CO浓度
Figure PCTCN2014087224-appb-000018
由公式(1)-(5)可以看出,当清洗气中的CO浓度Y为常数时,5次进气后测量气室中的待测气体浓度P5与打入的待测样品气体浓度X的关系为一次线性关系。用这种方式,5次进样所需样品气体体积只有1000ml,若减少进样次数,所需待测样品气体体积量会更少,从而克服了连续进样时要将测量气室内气体完全置换成待测样品气体所需样品气体量大的问题。
本发明首先使用清洗气清洗测量气室,直至测量气室内完全充满清洗气,并在清洗完成的基础上采用所述的“少量、多次、间歇”的进样方式,选择合适的单次进样量和进样速度、进样次数、相邻两次进样之间的间歇时间,将待测样品打入测量气室,建立起进样完毕后的测量气室内气体的CO浓度与待测样品气体中的CO浓度的关系;利用已知浓度的CO和CO2样气标准气与底气标准气,分别建立CO和CO2的“浓度差~电平差”的差值拟合标准曲线;
本发明的目的首先是测出样气中CO浓度与受试者被采集样气前所在场所的底气中的CO浓度值之差。一般情况下,信号电平D与测量气室中CO浓度P的关系遵循:
D=K0P+D0(6)
其中K0为斜率,是常数,D0为CO零浓度时电平(简称“电平零点”)。将公式(5)中的测量气室中CO浓度的表达式代入公式(6),得到:
Figure PCTCN2014087224-appb-000019
其中
Figure PCTCN2014087224-appb-000020
Figure PCTCN2014087224-appb-000021
一般的标准曲线的建立是通过用系列已知浓度的标准气体注入测量气室 内,测出K0’和D0’,在测量未知浓度的样品时,只要测量出待测样品的信号电平D,就可推算出待测气体浓度X。但是,电子学上要实现电平零点D0每次开机都相同或开机后较长时间不漂移是困难的,同时清洗气虽然在清洗测量气室前,经过了把CO催化为CO2的处理,但清洗气中还是有少量的CO未被完全清除,且清洗气中所含的CO浓度是未知的,故D0,Y均不确定导致D’0不确定,因此,无法准确地测量待测样品气体的CO浓度。
为了克服D0不稳定、且清洗气中的CO的残余浓度Y未知的问题,本发明将采取待测样气与底气的测量时间紧挨着的成对测量方法。虽然清洗气中的CO浓度Y是未知的,且待测样气与底气浓度所对应的信号电平都受Y的影响,但只要待测样气与底气是紧挨着进行测量的,则两次测量所对应的清洗气浓度Y可以认为是相同的,且在紧挨着的两次测量中D0几乎不变,故在待测样气与底气的测量是紧挨着进行时,Y对待测样气和底气的信号电平的影响量可认为相同,在待测样气电平与底气电平求差的过程中,Y的影响量刚好消除,且零浓度时的电平D0的漂移对电平差值的影响(待测样气与底气的电平差值)也基本消除(因时间上紧挨着,D0漂移较小)。即
D-D=K0’(X-X)+(D0-D0)(8)
在同一测量时间段只要保证Y不变(即清洗气浓度不变)、电平零点D0漂移认为可忽略(因两次测量时间挨得很近),则(D’0样-D’0底)≈0,故D-D与(X-X)是线性关系,且近似地通过原点。也就是说,针对我们追求样气与底气的浓度差值的测量,理论上与清洗气的浓度Y是无关的。
进一步将公式(8)改写为:
X-X=A(D-D)+B   (9)
使用该“浓度差~电平差”的差值拟合方法,测量样气中CO浓度检测下限为0.05ppm,而人体正常红细胞寿命对应的CO浓度约为1.5ppm,因此,满足了红细胞寿命测定的灵敏度要求。
二、差值拟合法的实验验证
差值拟合标准曲线的建立
首先设置样气和底气的进样顺序及进样方式,采用本发明所述“少量、 多次、间歇”的进样方式,单次进样量和进样速度、进样次数要满足每次注入的样气不会从CO测量气室的出气口排出、而只将CO测量气室内同体积的原有气体排出、相邻两次进样之间的间歇时间长度要足够让注入气体与CO测量气室内原有气体未排出部分充分混合平衡。本实施例中,每个待测样气、底气标准气体分5次进样,每次的进样量为200ml,相邻两次进样的时间间隔为19s,进样顺序为先测量底气标准气,再测量样气标准气。配制不同浓度的CO样气标准气,以及一个底气标准气体。本实施例中,配制浓度分别为1ppm、2ppm、3ppm、5ppm的CO样气标准气;制备一个经过催化处理的、残留CO浓度很低(≈0ppm)的超纯氮气作为底气标准气。
将浓度为1ppm、2ppm、3ppm、5ppm的CO样气标准气袋分别插入装置的样气进口,将上述底气标准气插入底气进口。
用清洗气清洗测量气室,直至测量气室内完全充满清洗气,一般启动气泵对测量气室进行200s的清洗即可。将上述配制好的待测样气标准气和底气标准气按照预先设置的进样次数、每次的进样量及相邻两次进样的时间间隔的进样方式进样。本实施方式中,每个待测样气或底气标准气分5次进样,每次的进样量为200ml,测量气室总体积为700ml,每次进样后,进入的样品气与测量气室中的原有气体充分混合均匀,则当第五次进样并平衡后测量气室内CO浓度的表达式为:
Figure PCTCN2014087224-appb-000022
本实施例中,先对底气标准气进行测量,该底气标准气分五次进样,每次进样后,间歇19s再进行下一次进样,以使打入的样品气体与测量气室中原有的气体完全混合,则当第五次进样并使测量气室内气体充分混合后,测出该底气标准气体第五次进样后的信号电平,并模数变换为数字电平,最终将该底气标准气的电平数存储起来。
然后再启动气泵对测量气室清洗200s,使测量气室内完全充满清洗气,将浓度为1ppm的样气标准气体也分五次进样,当第五次进样并使测量气室内气体平衡后,就可测出该1ppm的样气标准气体的电平数。最后根据上述1ppm 的样气标准气和约0ppm的底气标准气的电平数计算出该1ppm的样气标准气与底气标准气的电平差,本实施例中,该电平差为31,并将该数据存储在计算机上。
接着再对测量气室清洗,然后测量底气标准气的信号电平,再对测量气室清洗,测量2ppm的样气标准气的信号电平,并计算出该2ppm的样气标准气体与底气标准气的电平差;即每个待测样品测量完成后,都需要对测量气室重新进行清洗,才能测量下一个待测样品。且在测量每个样气标准气与底气标准气的电平差时,底气标准气体都要重新测量一遍,以便消除零点漂移和清洗气的影响。如此反复,得到各样气标准气与底气标准气的电平差,具体数值如下:
1ppm标准气的电平减去底气标准气的电平数的差值为31;
2ppm标准气的电平减去底气标准气的电平数的差值为61;
3ppm标准气的电平减去底气标准气的电平数的差值为94;
5ppm标准气的电平减去底气标准气的电平数的差值为153;
如图1所示,根据上述各样气标准气与底气标准气的电平差与其之间的浓度差拟合得到的差值拟合标准曲线为:
Figure PCTCN2014087224-appb-000023
其中A为0.038,B为-0.30,A、B是该差值拟合标准曲线的拟合常数,
Figure PCTCN2014087224-appb-000024
为样气中CO的浓度,
Figure PCTCN2014087224-appb-000025
为底气中CO的浓度,
Figure PCTCN2014087224-appb-000026
为样气中CO的电平数,
Figure PCTCN2014087224-appb-000027
为底气中CO的电平数。该差值拟合标准曲线的线性关系较好,下面进一步对差值拟合标准曲线(10)的可靠性进行了验证:
在样气进口插入作为样气的浓度为5ppm的CO标准气,在底气进口插入作为底气的经过催化处理的、残留CO浓度约为0ppm的超纯氮气标准气。采用上述方法对其电平差进行测量,最后得出,两者的电平差为140,根据差值拟合标准曲线(10)得出其浓度差为5.02ppm,与真实的浓度差5ppm相比,差别不大,因此,采用“浓度差~电平差”差值拟合法,测量CO浓度差很精确、可靠。
上述标准曲线(10)是按照先测量底气,再测量样气的顺序建立的,在 其它实施方式中,也可以将测量装置中的样气、底气的测量顺序设置为反过来,即先测量样气,再测量底气,然后建立样气与底气的“浓度差~电平差”差值拟合标准曲线(10)。当用此设定顺序的测量装置测量样品时,要注意样气与底气的测量先后顺序应与建立差值拟合标准曲线(10)时的顺序一致。
三、下面以采集、测量呼气样品为例,对差值拟合法的应用进行介绍。
首先,分别收集受试者的样气和受试者被采集样气前所在场所的环境空气;如环境空气中CO浓度随地点不同而有较大波动,则在采集环境空气前要求受试者在样气采集的场所停留时间为6小时或以上。
进行测量装置开机后的第一次测量时,应在测量装置开机预热20分钟后进行,第二次及后面的测量不受此限。
开机后测量装置会自动进行一次测量气室清洗。
在装置的样气进气口插入样气样品,底气进气口插入底气样品;
进入测量主界面;
用清洗气清洗测量气室,直至测量气室内完全充满清洗气,一般启动气泵对测量气室进行200s的清洗即可。先对插入底气进口的底气进行测量,即将底气分5次进样,每次的进样量为200ml,测出该底气第五次进样并平衡后的CO的电平数并存储;然后再对测量气室进行清洗,对插入样气进口的样气进行测量,也是分5次进样,每次的进样量为200ml,第五次进样并在测量气室内达到平衡时,测出样气的电平数,最后计算出样气与底气的电平差,并得到与此电平差相对应的CO的浓度差。
四、用CO2浓度测量值对肺泡气中内源性CO浓度值进行计算补偿的补偿原理与补偿公式
1、气体浓度ρ、电平数D、气体浓度测量值X之间的关系
在第一种测定条件下,压强和温度分别为P、T,对CO浓度为ρ的样品有:
D=a·ρ+b   (11)
X=A·D+B  (12)
其中公式(11)是CO气体浓度转化为电平数公式,CO传感器测得的电平数D与CO浓度ρ成正比,其中ρ是样品的CO真实体积比浓度(V/V);公式(12)是电平数转化为浓度测量值的公式,浓度测量值X与电平数D成正比,X是CO体积比浓度(V/V)测量值。若测量时的温度、压强与测量装置标定时的温度、压强相同,则ρ=X,否则ρ≠X。
在第二种测定条件下,压强和温度分别为P′、T′,同一样品在此第二测定环境条件下,CO浓度由ρ→ρ′,对同一台测量装置(a,b,A,B均不变)、测量同一样品,有
D→D′D′=a·ρ′+b  (13)
X→X′X′=A·D′+B   (14)
2、确定X′与X的关系
将(13)代入(14)中,得
X′=A(a·ρ′+b)+B=A·a·ρ′+(A·b+B)  (15)
将(11)带入(12)中,得
X=A(a·ρ+b)+B=A·a·ρ+(A·b+B)   (16)
根据理想气体方程(假设为理想气体)有
Figure PCTCN2014087224-appb-000028
将(17)带入(15)中,得
Figure PCTCN2014087224-appb-000029
由(16)和(18)得
Figure PCTCN2014087224-appb-000030
Figure PCTCN2014087224-appb-000031
由于实际测量中需要去除底气对测量结果的干扰,而且样气和底气的测量条件相同,因此,
Figure PCTCN2014087224-appb-000032
Figure PCTCN2014087224-appb-000033
Figure PCTCN2014087224-appb-000034
为了简化公式和计算过程,设定常数c,令,
Figure PCTCN2014087224-appb-000035
3、用CO2浓度测量值计算补偿肺泡气中的内源性CO浓度值
公式(23)同时适用于CO和CO2的测定,令d为肺泡气占整个样气中的比例,M为肺泡气中的内源性CO浓度值,肺泡气中的CO2为5%,则
Figure PCTCN2014087224-appb-000036
Figure PCTCN2014087224-appb-000037
由公式(25)和(26)可知:
Figure PCTCN2014087224-appb-000038
(其中,
Figure PCTCN2014087224-appb-000039
)(27)
由公式(27)可以看出,我们通过肺泡气中相对稳定的CO2浓度来对CO的浓度进行补偿校正,即可消除因为温度、压强等的不同导致测量值与实际值之间存在差异的问题,同时,由于采气和/或进气的时候操作方法不一致所致的环境气的混入也会对测量值造成偏差,借助CO2浓度与CO成比例的浓缩或者稀释的关系,使用公式(27)即可消除此种偏差。
本发明提出了一种适用于在多组分混合气体的浓度测量中以一种组分的浓度测量值计算补偿另一种组分的浓度测量值的补偿方法(在某些条件下,测量值不同于真实值,通过按本方法补偿就可以方便地将被补偿的测量值在补偿后等于真实值),该补偿方法适用于采用气体吸收光谱法进行浓度测量、并且所用的测量气室通过排气口与外部环境相通的情况。本发明中,把该补偿法具体应用于肺泡气内源性CO测量值的计算补偿,具体为,使用测得的样气、底气CO2的浓度差,用补偿公式计算肺泡气中内源性CO的体积比(V/V)浓度净值M。
五、补偿公式的应用示例
使用补偿公式(27)对CO浓度进行补偿校正的第一较佳实施例中,具体包括,
S10、在同一温度和压强下,测定样气和底气中CO2气体的浓度
Figure PCTCN2014087224-appb-000040
Figure PCTCN2014087224-appb-000041
或浓度差值
Figure PCTCN2014087224-appb-000042
测定样气和底气中CO气体的浓度
Figure PCTCN2014087224-appb-000043
或浓度差值
Figure PCTCN2014087224-appb-000044
前文所述的第一种测定条件的压强和温度为测量装置标定时的压强和温度P、T;第二测定条件的压强 和温度P′、T′为样品测量时的压强和温度。
S20、使用公式(27)计算肺泡气中内源性CO的体积比(V/V)浓度净值M。
使用补偿公式(27)对CO浓度进行补偿校正的第二较佳实施例中,在第一较佳实施例基础上,所述步骤S20之前还包括步骤:
S15、使用公式(25)计算肺泡气占整个样气中的比例d,并判断:
若d值落入区间范围[0.6,1.5]内,表明该比例属于正常可校正范围内,直接转入步骤S20使用公式(27)计算肺泡气中内源性CO的体积比(V/V)浓度净值M即可;
若d值不在区间范围[0.6,1.5]内,表明样气的采集或者进气过程出现严重错误,校正误差较大,需要重新进样、重新测定。
在本发明测量肺泡气中内源性CO浓度的方法的第三较佳实施例中,在第一较佳实施例基础上,所述步骤S20之前还包括步骤:
S16、若d值落入区间范围[0.6,1.5]内,在转入步骤S20之前还需进一步判断d值是否落入受试者肺泡气内源性CO2浓度的个体差异可能造成的d值的波动区间范围内,若d值落入受试者肺泡气内源性CO2浓度的个体差异可能造成的d值的波动区间范围内,例如[1,1.1]内,则认为样气、底气的CO2浓度差对5%的偏离是由受试者肺泡气内源性CO2浓度的个体差异所致,不认为是采气和/或进气的操作方法不一致导致的环境气混入所致,故直接认定d=1,然后转入步骤S20,此时,肺泡气中内源性CO的体积比(V/V)浓度净值M通过如下公式计算:
Figure PCTCN2014087224-appb-000045
若d值不在区间范围[1,1.1]内,直接转入步骤S20。
在本发明测量肺泡气中内源性CO浓度的方法的另一较佳实施例中,测定样气和底气中CO气体的浓度前,去除该样气和底气中的水蒸气和CO2气体。本发明使用CO探头和CO2探头测量CO和CO2的浓度。例如,CO探头采用高灵敏度室温锑化铟红外探测器,满足CO探测的指标。CO2探头采用NDIR探头,宽温补偿,稳定性好,抗水气干扰,精度高。对于CO探测的背景噪音的消除,主要是通过样气和底气在测量结果求差运算中消除这些噪音(即“差值拟合法”),因为样气和底气在测量周期内所包含的背景噪音基本相同。同时,本发明中单独的CO2测量气室用以单独测量CO2浓度,避免气体流动对测量结果的影响。每次测量前用清洗气吹扫掉CO2测量气室内部残气后,将大于CO2气室容积100倍的样气打入CO2测量气室,保证CO2气室内部气体完全为样气成分,待气体平衡(如等待30s)后测量。
六、测量肺泡气中内源性CO浓度的装置的实施示例
为了实现所述的“少量、多次、间歇”进样和补偿校正的目的,本发明设计了一种测量肺泡气中内源性CO浓度的装置,具体是采用气缸进样方式,通过气缸活塞的运动将气袋中的气体抽入气缸,然后再打入测量气室组件。
图2示出了本发明测量肺泡气中内源性CO浓度的装置的进样系统较佳实施例的结构,如图2所示,该进样系统主要由进气口1、气泵2、测量气室组件3、排气口4、总电磁阀5、气管9、气缸10、吸收包组件7、气体控制单元6和驱动单元(未标出)组成。其中,进气口1与气泵2连接,气泵2经过总电磁阀5后与测量气室组件3连接,排气口4设置在测量气室组件3上,气管9的一端与气体控制单元6连接,另一端与气缸10连接,气缸10上还连接有驱动单元,驱动单元用于驱动气缸10的往复运动。气缸10的缸体内设有活塞110,并通过活塞110的运动将待测气体打入测量气室组件3内之前还通过吸收包组件吸收CO2和水蒸气。
气体控制单元6包括气路切换缓冲区64、样气电磁阀61、底气电磁阀62、 气泵电磁阀63。气路切换缓冲区64连接在气管9和总电磁阀5之间,且样气电磁阀61、底气电磁阀62和气泵电磁阀63均接入气路切换缓冲区64内,气路切换缓冲区64用于与总电磁阀5连通,并将待测气体打入测量气室组件3内。样气电磁阀61上设有样气进口610,并与样气袋连接,用于向气路切换缓冲区64输送样气;底气电磁阀62上设有底气进口620,并与底气气袋连接,用于向气路切换缓冲区64输送底气;气泵电磁阀63与气泵2连接,用于向气路切换缓冲区64输送清洗气。在其它实施方式中,气体控制单元6还可以包括备用电磁阀65,当样气电磁阀61、底气电磁阀62或气泵电磁阀63中的任意一个损坏时,可以替换使用,或者为以后扩展功能使用。
驱动单元与气缸10连接,用于为气缸10的运动提供动力。驱动单元包括机座13、旋动螺丝杆12、步进电机11和滑块15。
机座13为两个,形状规格完全相同。旋动螺丝杆12的两端分别固定连接在两个机座13,步进电机11设置在其中一个机座13上,滑块15设置在旋动螺旋杆12上,滑块15与气缸的活塞相连。具体在本实施方式中,步进电机11驱动旋动螺丝杆12旋转,从而带动滑块15运动,由于滑块15与气缸10连接,故滑块15又会驱动气缸10运动,从而将待测气体打到测量气室组件3内。
本进样系统的工作过程为:
(1)清洗测量气室
在样气电磁阀61的样气进口610插入样气,底气电磁阀62的底气进口620插入底气,仪器测量程序启动后,样气电磁阀61和底气电磁阀62关闭,气泵电磁阀63和总电磁阀5打开,气泵2开始工作,清洗气(空气)从进气口1进入,并通过干燥剂和CO催化剂处理后进入测量气室组件3,后经排气口4排出,冲洗约200s后清洗干净。
(2)底气测量
测量气室组件3内腔清洗完毕,样气电磁阀61、气泵电磁阀63和总电磁阀5关闭,底气电磁阀62打开,步进电机11驱动旋动螺丝杆12旋转,气缸活塞110在滑块15的带动下由最左端运动到最右端,抽取一定量(如200ml) 的底气后电磁阀切换。样气电磁阀61、底气电磁阀62和气泵电磁阀63关闭,总电磁阀5打开,底气由气缸10进入吸收包组件内清除CO2和水蒸气后,再向测量气室组件3内打入底气(气缸活塞在滑块15的带动下由最右端运动到最左端),气缸10如此连续进行五次抽打气过程,合计1000ml底气进入测量气室组件3,对底气进行测量。
(3)样气测量
底气测量完毕重复步骤(1)对测量气室组件3内腔进行清洗,清洗200s后电磁阀切换。底气电磁阀62、气泵电磁阀63和总电磁阀5关闭,样气电磁阀61打开,步进电机11驱动旋动螺丝杆12旋转,气缸活塞在滑块15的带动下由最左端运动到最右端,抽取一定量(如200ml)的样气后电磁阀切换。样气电磁阀61、底气电磁阀62和气泵电磁阀63关闭,总电磁阀5打开,样气由气缸10进入吸收包组件内清除CO2和水蒸气后,再向测量气室组件3内打入样气(气缸活塞在滑块15的带动下由最右端运动到最左端),样气进入测量气室组件3后启动测量。气缸10开始继续抽送样气,例如,以样气分五次进样,每次进样200ml为例,则再给测量气室组件3内打入四次样气,合计1000ml样气进入测量气室,紧接着对样气进行测量。
本发明测量肺泡气中CO浓度的装置的测试系统包括气管管路、CO2气体测量室、CO气体测量室、处理单元。CO2气体测量室和CO气体测量室均位于测量气室组件3中,并通过气管管路连接到进气口上;CO2气体测量室和CO气体测量室分别与处理单元连接,在同一温度和压强下,分别测量样气和底气中CO2气体的浓度
Figure PCTCN2014087224-appb-000046
或浓度差值
Figure PCTCN2014087224-appb-000047
样气和底气中CO气体的浓度
Figure PCTCN2014087224-appb-000048
或浓度差值
Figure PCTCN2014087224-appb-000049
处理单元获取上述测定值或者上述样气测定值与底气测定值之差值,使用公式(27)计算肺泡气中内源性CO的体积比(V/V)浓度净值M。
在本测量装置的吸收包组件还可通过气管管路的连接,可安装、或可拆卸地安装于进气口与CO气体测量室之间,在吸收包组件内部吸收剂失效后可 方便地即时更换。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (10)

  1. 一种测量肺泡气中内源性CO浓度的方法,其特征在于,包括以下步骤:
    S1、设置呼气试验的样气和底气的吸收光谱测量法中的进样方式,所述进样方式包括样气和底气的进样次数、每次的进样量、相邻两次进样的时间间隔;
    S2、利用已知浓度的CO和CO2的样气标准气与底气标准气,分别建立CO和CO2的“浓度差~电平差”的差值拟合标准曲线;
    S3、在同一温度和压强下,使用同一台装置测量与样气和底气浓度所对应的电平数并算出电平差,并依据S2中的差值拟合标准曲线得到CO的浓度差和CO2的浓度差;
    S4、使用如下补偿公式计算肺泡气中内源性CO的体积比(V/V)浓度值M:
    Figure PCTCN2014087224-appb-100001
    其中,
    Figure PCTCN2014087224-appb-100002
  2. 根据权利要求1所述的测量肺泡气中内源性CO浓度的方法,其特征在于,所述步骤S1中,所述进样方式为每次的进样量为40毫升~400毫升,每次进样速度为10毫升/秒~200毫升/秒,每个样气和底气的进样次数为2次~9次,相邻两次进样的时间间隔为12秒~48秒。
  3. 根据权利要求1所述的测量肺泡气中内源性CO浓度的方法,其特征在于,所述步骤S2具体包括如下步骤:
    S201、配制不同浓度的CO样气标准气,以及一个底气标准气;
    S202、用经过CO催化剂和干燥剂处理后或其它催化或干燥法处理后的空气作为清洗气清洗测量气室,直至测量气室内完全充满清洗气;
    S203、按照上述进样方式,分别测量样气标准气和底气标准气的电平数;根据上述样气标准气和底气标准气的电平数,得到样气标准气与底气标准气 的电平差;
    S204、根据样气标准气与底气标准气的电平差和浓度差值,拟合得到“浓度差~电平差”的差值拟合标准曲线,所述差值拟合标准曲线的表达式为:
    Figure PCTCN2014087224-appb-100003
    其中,A和B均为拟合的常数,
    Figure PCTCN2014087224-appb-100004
    为样气中CO的浓度,
    Figure PCTCN2014087224-appb-100005
    为底气中CO的浓度,
    Figure PCTCN2014087224-appb-100006
    为样气中CO浓度对应的电平数,
    Figure PCTCN2014087224-appb-100007
    为底气中CO浓度对应的电平数。
  4. 根据权利要求3所述的测量肺泡气中内源性CO浓度的方法,其特征在于,所述步骤S203进一步包括:
    用清洗气清洗测量气室,直至测量气室内完全充满清洗气;
    按照所述进样方式,将底气标准气注入测量气室,得到并存储底气标准气最后一次进样、平衡后的电平数;
    用清洗气清洗测量气室,直至测量气室内完全充满清洗气;
    按照所述进样方式,将其中一个样气标准气注入测量气室,得到并存储所述样气标准气最后一次进样、平衡后的电平数;
    根据上述其中一个样气标准气和底气标准气的电平数,得到上述样气标准气与底气标准气的电平差;
    用清洗气清洗测量气室,直至测量气室内完全充满清洗气;
    按照所述进样方式,将底气标准气注入测量气室,得到并存储底气标准气最后一次进样、平衡后的电平数;
    用清洗气清洗测量气室,直至测量气室内完全充满清洗气;
    按照所述进样方式,将第二个样气标准气注入测量气室,得到并存储所述样气标准气最后一次进样、平衡后的电平数;
    根据上述第二个样气标准气和底气标准气的电平数,得到第二个样气标准气与底气标准气的电平差;
    重复上述过程,可得到一组样气标准气和底气标准气的“浓度差~电平差”的成对数据。
  5. 根据权利要求1所述的测量肺泡气中内源性CO浓度的方法,其特征 在于,所述步骤S3中测量呼气样品的样气和底气的浓度差时,进样顺序与制作差值拟合标准曲线时的样气标准气、底气标准气的进样顺序相同。
  6. 根据权利要求1~5中任意一项所述的测量肺泡气中内源性CO浓度的方法,其特征在于,测定样气和底气中CO气体前,去除该样气和底气中的水蒸气和CO2气体。
  7. 一种测量肺泡气中内源性CO浓度的装置,其特征在于,所述装置既能测量CO浓度又能测量CO2浓度,所述装置包括:
    CO2气体测量室和CO气体测量室,所述CO2气体测量室和所述CO气体测量室通过气管管路与进气口相连,在同一温度和压强下,测定样气和底气中CO2气体的浓度
    Figure PCTCN2014087224-appb-100008
    或浓度差值
    Figure PCTCN2014087224-appb-100009
    并测定样气和底气中CO气体的浓度
    Figure PCTCN2014087224-appb-100010
    或浓度差值
    Figure PCTCN2014087224-appb-100011
    处理单元,使用如下补偿公式计算肺泡气中内源性CO的体积比(V/V)浓度净值M:
    Figure PCTCN2014087224-appb-100012
    其中,
    Figure PCTCN2014087224-appb-100013
  8. 根据权利要求7所述的测量肺泡气中内源性CO浓度的装置,包括进样系统,所述进样系统包括进气口、气泵、总电磁阀、测量气室和排气口,所述进气口与所述气泵连接,所述气泵经过所述总电磁阀与所述测量气室连接,所述排气口设置在所述测量气室上,测量气室通过排气口与外部环境相通,其特征在于,所述进样系统还包括气体控制单元、气管和气缸;所述气体控制单元包括气路切换缓冲区、样气电磁阀、底气电磁阀和气泵电磁阀,所述气路切换缓冲区连接在所述气管和所述总电磁阀之间,所述样气电磁阀、底气电磁阀和气泵电磁阀均接入所述气路切换缓冲区,所述样气电磁阀和底气电磁阀分别用于向所述气路切换缓冲区输送样气和底气,所述气泵电磁阀与所述气泵相连用于向所述气路切换缓冲区输送清洗气,所述气缸与所述气 管连接,用于将待测气体样品打入所述测量气室内。
  9. 根据权利要求8所述的测量肺泡气中内源性CO浓度的装置,其特征在于,所述气体控制单元还包括用于替换样气电磁阀、底气电磁阀或气泵电磁阀的备用电磁阀。
  10. 根据权利要求8所述的测量肺泡气中内源性CO浓度的装置,其特征在于,所述进样系统还包括与所述气缸的活塞连接的驱动单元,所述驱动单元包括机座、固定在所述机座上的旋动螺丝杆和步进电机、以及设置在所述旋动螺丝杆上并与所述气缸相连的滑块,所述步进电机驱动旋动螺丝杆旋转从而带动所述活塞运动,并通过所述气管将待测气体样品打入所述测量气室内。
PCT/CN2014/087224 2014-09-23 2014-09-23 一种测量肺泡气中内源性co浓度的方法和装置 WO2016045000A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2014/087224 WO2016045000A1 (zh) 2014-09-23 2014-09-23 一种测量肺泡气中内源性co浓度的方法和装置
EP14902715.3A EP3199098B1 (en) 2014-09-23 2014-09-23 Method and apparatus for measuring endogenous co concentration in alveolar air
US15/466,840 US10168316B2 (en) 2014-09-23 2017-03-22 Method and apparatus for measuring endogenous CO concentration in alveolar air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/087224 WO2016045000A1 (zh) 2014-09-23 2014-09-23 一种测量肺泡气中内源性co浓度的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/466,840 Continuation US10168316B2 (en) 2014-09-23 2017-03-22 Method and apparatus for measuring endogenous CO concentration in alveolar air

Publications (1)

Publication Number Publication Date
WO2016045000A1 true WO2016045000A1 (zh) 2016-03-31

Family

ID=55580049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087224 WO2016045000A1 (zh) 2014-09-23 2014-09-23 一种测量肺泡气中内源性co浓度的方法和装置

Country Status (3)

Country Link
US (1) US10168316B2 (zh)
EP (1) EP3199098B1 (zh)
WO (1) WO2016045000A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109490466A (zh) * 2017-09-11 2019-03-19 深圳市先亚生物科技有限公司 零点漂移的数字化补偿方法和红细胞寿命测定方法
CN110522451A (zh) * 2019-08-13 2019-12-03 深圳市美好创亿医疗科技有限公司 多组分气体中co弥散量的测量方法和系统
CN117405620A (zh) * 2023-12-14 2024-01-16 深圳市瑞利医疗科技有限责任公司 气体干扰消除检测方法、装置、气体检测设备及存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016045000A1 (zh) * 2014-09-23 2016-03-31 深圳市先亚生物科技有限公司 一种测量肺泡气中内源性co浓度的方法和装置
CN106124749B (zh) * 2016-02-26 2019-01-29 深圳市先亚生物科技有限公司 一种红细胞寿命测定方法及装置
US11209417B2 (en) * 2017-10-12 2021-12-28 Carrot, Inc. Breath sensor apparatus and methods of use
EP3567356B1 (en) * 2018-05-07 2021-02-24 Inficon GmbH Sniffing leak detector with switching valve and buffer chamber
TWI672488B (zh) * 2018-10-12 2019-09-21 國立交通大學 氣體採集裝置與氣體採集及分析設備
WO2021138195A1 (en) 2019-12-31 2021-07-08 Carrot, Inc. Breath sensor calibration methods and apparatus
CN113777244A (zh) * 2021-09-27 2021-12-10 惠雨恩科技(深圳)有限公司 分离气道的肺泡气浓度检测装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993025142A2 (en) * 1992-06-16 1993-12-23 Natus Medical, Inc. In vivo measurement of end-tidal carbon monoxide concentration apparatus and methods and filters therefor
WO2001069639A2 (en) * 2000-03-13 2001-09-20 Kinderlife Instruments, Inc. Method and apparatus for $m(f)i$m(g)in-vivo$m(f)/i$m(g) measurement of carbon monoxide production rate
US6544190B1 (en) * 2001-08-03 2003-04-08 Natus Medical Inc. End tidal breath analyzer
WO2013003429A1 (en) * 2011-06-28 2013-01-03 Ikaria, Inc. End-tidal gas monitoring apparatus
CN103454242A (zh) * 2013-09-27 2013-12-18 中安消技术有限公司 一种气体浓度测量方法及其系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5293875A (en) * 1992-06-16 1994-03-15 Natus Medical Incorporated In-vivo measurement of end-tidal carbon monoxide concentration apparatus and methods
US6248078B1 (en) * 1998-08-31 2001-06-19 Johns Hopkins University Volatile biomarkers for analysis of hepatic disorders
US7445601B2 (en) * 2001-09-27 2008-11-04 Charlotte-Mecklenburg Hospital Non-invasive device and method for the diagnosis of pulmonary vascular occlusions
IL148468A (en) * 2002-03-03 2012-12-31 Exalenz Bioscience Ltd Breath collection system
US7900626B2 (en) * 2006-04-17 2011-03-08 Daly Robert W Method and system for controlling breathing
US7941199B2 (en) * 2006-05-15 2011-05-10 Masimo Laboratories, Inc. Sepsis monitor
US20090163825A1 (en) * 2007-12-19 2009-06-25 The Cooper Health System Non-Invasive Method and System of Signaling a Hyper or Hypoglycemic State
US8178355B2 (en) * 2008-09-15 2012-05-15 Platypus Technologies, Llc. Detection of vapor phase compounds by changes in physical properties of a liquid crystal
US8652064B2 (en) * 2008-09-30 2014-02-18 Covidien Lp Sampling circuit for measuring analytes
US10031126B2 (en) * 2013-04-04 2018-07-24 The Regents Of The University Of California System and method for utilizing exhaled breath for monitoring inflammatory states
US10386357B2 (en) * 2013-07-01 2019-08-20 Albert DONNAY Interpretation of gas levels measured via breath, blood and skin after different breath-holding times
US10773036B2 (en) * 2013-11-06 2020-09-15 The Periodic-Breathing Foundation, LLC Respiratory tubing set
MX2016006252A (es) * 2013-11-14 2017-02-02 Proterris Inc Tratamiento o prevencion de afecciones pulmonares con monoxido de carbono.
CA2939937A1 (en) * 2014-03-04 2015-09-11 University Of Florida Research Foundation Medication adherence monitoring device
TW201618795A (zh) * 2014-04-15 2016-06-01 波泰里斯股份有限公司 用以改良器官功能及延長器官移植物壽命之系統及方法
WO2016045000A1 (zh) * 2014-09-23 2016-03-31 深圳市先亚生物科技有限公司 一种测量肺泡气中内源性co浓度的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993025142A2 (en) * 1992-06-16 1993-12-23 Natus Medical, Inc. In vivo measurement of end-tidal carbon monoxide concentration apparatus and methods and filters therefor
WO2001069639A2 (en) * 2000-03-13 2001-09-20 Kinderlife Instruments, Inc. Method and apparatus for $m(f)i$m(g)in-vivo$m(f)/i$m(g) measurement of carbon monoxide production rate
US6544190B1 (en) * 2001-08-03 2003-04-08 Natus Medical Inc. End tidal breath analyzer
WO2013003429A1 (en) * 2011-06-28 2013-01-03 Ikaria, Inc. End-tidal gas monitoring apparatus
CN103454242A (zh) * 2013-09-27 2013-12-18 中安消技术有限公司 一种气体浓度测量方法及其系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3199098A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109490466A (zh) * 2017-09-11 2019-03-19 深圳市先亚生物科技有限公司 零点漂移的数字化补偿方法和红细胞寿命测定方法
CN109490466B (zh) * 2017-09-11 2021-06-08 深圳市先亚生物科技有限公司 零点漂移的数字化补偿方法和红细胞寿命测定方法
CN110522451A (zh) * 2019-08-13 2019-12-03 深圳市美好创亿医疗科技有限公司 多组分气体中co弥散量的测量方法和系统
CN110522451B (zh) * 2019-08-13 2022-11-08 深圳市美好创亿医疗科技股份有限公司 多组分气体中co弥散量的测量方法和系统
CN117405620A (zh) * 2023-12-14 2024-01-16 深圳市瑞利医疗科技有限责任公司 气体干扰消除检测方法、装置、气体检测设备及存储介质

Also Published As

Publication number Publication date
US10168316B2 (en) 2019-01-01
EP3199098A4 (en) 2018-05-23
EP3199098A1 (en) 2017-08-02
US20170191984A1 (en) 2017-07-06
EP3199098B1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
WO2016045000A1 (zh) 一种测量肺泡气中内源性co浓度的方法和装置
US9591992B2 (en) Method of exhaled gas measurement and analysis and apparatus therefor
CA1291795C (en) Blood analyzer
US5964712A (en) Apparatus and breathing bag for spectrometrically measuring isotopic gas
CN100483108C (zh) 确定二氧化碳吸收剂的吸收能力的方法
CN106770738B (zh) 一种二氧化碳浓度修正的呼出气多组分检测仪及检测方法
EP0953148A1 (en) Stable isotope measurement method and apparatus by spectroscopy
WO2010025601A1 (zh) 自标定气体传感器
CN103487481B (zh) 一种呼气氨气分析仪
CN104251841A (zh) 基于光腔衰荡光谱的多样本呼吸分析仪
US20180292345A1 (en) Method and device for measuring concentration of substance in fluid
CN100481309C (zh) 用于检测有机体和天然产品状态以及分析具有主要和次要成分的气体混合物的方法和装置
EP1682000B1 (en) Gas injection amount determining method in isotope gas analysis, and isotope gas analyzing and measuring method and apparatus
US10816460B2 (en) Method and device for measuring lifespan of red blood cell
Linderholm et al. Determination of carbon monoxide in small gas volumes
WO2022246775A1 (zh) 一种便携吹气式酒精浓度测量装置及测量方法
CN204255927U (zh) 应用于欠平衡钻井ubd的气体标定装置
CN104111228B (zh) 测量气体浓度差的方法及非色散红外光谱仪的进样装置
CN104977384A (zh) 氢气甲烷呼吸气检测方法
CN112630272A (zh) 一种具有多通路多探测器的气体检测仪及其检测方法
CN207976330U (zh) 一种便携式大流量低浓度烟尘自动测试仪
CN214150537U (zh) 一种具有多通路多探测器的气体检测仪
JPH10197444A (ja) 同位体ガス分光測定方法
Ortega et al. Determination of carbon dioxide content of blood by infrared analysis.
CN202676663U (zh) 一种测量气体中物质浓度的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902715

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014902715

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014902715

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE