WO2016043171A1 - Led illumination device - Google Patents

Led illumination device Download PDF

Info

Publication number
WO2016043171A1
WO2016043171A1 PCT/JP2015/076091 JP2015076091W WO2016043171A1 WO 2016043171 A1 WO2016043171 A1 WO 2016043171A1 JP 2015076091 W JP2015076091 W JP 2015076091W WO 2016043171 A1 WO2016043171 A1 WO 2016043171A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
led lighting
control circuit
temperature
drive control
Prior art date
Application number
PCT/JP2015/076091
Other languages
French (fr)
Japanese (ja)
Inventor
洋治 椋田
Original Assignee
株式会社ステラージアLed
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ステラージアLed filed Critical 株式会社ステラージアLed
Publication of WO2016043171A1 publication Critical patent/WO2016043171A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/18Controlling the intensity of the light using temperature feedback
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements

Definitions

  • the present invention relates to an LED lighting device including an LED lighting unit having LEDs mounted on a substrate.
  • the LED illumination device is configured to supply a drive current to an LED mounted on a substrate to cause the LED to emit light, and to irradiate the illumination area with light.
  • a high output type LED may be mounted in order to obtain brighter illumination light.
  • a high-power type LED generates a large amount of heat during operation, and its luminous efficiency decreases as the temperature of the LED chip increases. Therefore, it is used while appropriately dissipating heat.
  • a heat dissipating means such as a radiator is attached to the substrate on which the LED is mounted via a heat conductive material having a low thermal resistance.
  • the heat generated by the LED chip is transmitted from the chip to the heat dissipator as the heat dissipating means via the die bond portion, the LED package, the substrate, and the heat conducting material, and is radiated from the heat dissipating means to the air.
  • the temperature of the chip itself rises due to the heat generated from the LED chip, and then die-bonded.
  • the temperature of the part, LED package and substrate rises.
  • heat is transmitted to the heat dissipating means such as a radiator through the heat conducting material, and the temperature of the heat dissipating means rises.
  • a time lag in temperature rise occurs in each part of the heat transfer path from the chip to the heat dissipating means, and a certain amount of time is required until each part comes into a thermal equilibrium state after the power is turned on.
  • a transient temperature difference occurs between the chip, the LED package, the substrate, and the heat dissipation means.
  • transient thermal stress can occur in each part of the heat transfer path from the chip to the heat dissipation means.
  • a large thermal stress is transiently applied to the die bond portion provided between the chip and the LED package, the electrode portion of the LED package, and the connection portion between the heat radiation terminal and the substrate.
  • thermal stress accumulates due to long-term use of the LED lighting device, cracks occur in the die bond part and the connection part between the LED and the substrate, etc. In some cases, disconnection may occur. Then, even if the LED chip itself has a long life, the life of the LED lighting device as a whole is lost by causing cracks at each connection part from the LED chip to the substrate and causing a connection failure.
  • the entire LED lighting device including the LED chip and the substrate is cooled to the outside air temperature in a non-lighting state.
  • the temperature of the LED chip rapidly increases. If it does so, the thermal stress mentioned above will become larger and the possibility of a crack generation will increase significantly.
  • the present invention has been made in view of such problems, and one of the exemplary purposes thereof is to reduce a temperature difference temporarily generated between the LED chip and the substrate when the power is turned on. It is to improve the reliability of the LED lighting device by reducing the thermal stress applied to the connecting portion between them.
  • An LED illumination device includes an LED illumination unit having an LED mounted on a substrate, and a drive control circuit that supplies a drive current to the LED illumination unit.
  • the drive control circuit increases the supply current amount stepwise up to a predetermined drive current value set in advance.
  • the temperature increase rate of the chip in the LED is reduced compared to the case where a predetermined drive current value is supplied simultaneously with power-on. be able to.
  • the temperature rise rate in each part of the heat dissipation path from the LED chip to the substrate can be reduced, and the temperature difference that occurs transiently in each part of the heat dissipation path can be reduced.
  • substrate can be reduced, and generation
  • a temperature sensor that detects the temperature of the LED lighting unit or its surroundings may be further provided.
  • the drive control circuit compares the period from the start of current supply until the supply current amount reaches a predetermined drive current value, as compared to the case where the detected temperature is lower than the predetermined temperature reference value.
  • the amount of supply current may be increased step by step so as to be longer.
  • the drive control circuit increases the number of steps when the supply current amount is gradually increased to the predetermined drive current value when the detected temperature before the start of the current supply is lower than the predetermined temperature reference value compared to the case where the detected temperature is not the case. May be.
  • the drive control circuit supplies each stage when the supply current amount is increased stepwise up to a predetermined drive current value compared to the case where the detected temperature is not the case. You may lengthen the period which maintains an electric current amount, respectively.
  • the drive control circuit may lengthen the period during which the supply current amount at each stage is maintained each time the supply current amount is increased step by step.
  • the drive control circuit receives power supply from an external power source, and when the power supply voltage of the external power source exceeds the first voltage reference value, the drive control circuit sets the amount of current supplied to the LED lighting unit to a predetermined drive current.
  • the value may be reduced to a current value obtained by multiplying the value by the first ratio.
  • a temperature sensor that detects the temperature of the LED lighting unit or its surroundings may be provided.
  • the drive control circuit sets the amount of current supplied to the LED lighting unit to a predetermined drive current value. May be reduced to a current value obtained by multiplying by a second ratio smaller than the first ratio.
  • the drive control circuit reduces the amount of current supplied to the LED lighting unit to a predetermined drive current value that is less than the second ratio.
  • the current value multiplied by the third ratio may be decreased, or the current supply to the LED lighting unit may be stopped.
  • the drive control circuit is configured to multiply the predetermined drive current value by the third ratio by the amount of current supplied to the LED lighting unit. Or the current supply to the LED lighting unit may be stopped.
  • the reliability of the LED lighting device is improved by reducing the temperature difference generated between the LED chip and the substrate when the power is turned on and reducing the thermal stress applied to the connection portion between the LED chip and the substrate. Can be increased.
  • FIG. 1 is a block diagram showing a configuration of an LED lighting device 10 according to the first embodiment.
  • the LED lighting device 10 includes an LED lighting unit 11, a drive control circuit 20, and a temperature sensor 21.
  • FIG. 2 is a cross-sectional view showing a detailed configuration of the LED lighting unit 11.
  • the LED lighting unit 11 includes a substrate 12, a plurality of LEDs 13 mounted on the substrate 12, a heat conductive sheet 14 provided on the back surface of the substrate 12, and a heat dissipation member 15 thermally connected to the heat conductive sheet 14. And including.
  • Each LED 13 is mounted on the substrate 12, and the chip inside the LED emits light by the drive current I from the drive control circuit 20, and irradiates the light within a predetermined irradiation range.
  • the heat conductive sheet 14 has a known configuration and is made of a material having high thermal conductivity.
  • the heat radiating member 15 is similarly a well-known structure, for example, is comprised with a metal material with high heat conductivity.
  • the heat dissipating member 15 has a plurality of heat dissipating fins 15a for enhancing the heat dissipating effect.
  • FIG. 3 is a cross-sectional view showing the structure of each LED 13.
  • the LED 13 includes a lens portion 13a, a package 13b, a chip 13c, a die bond portion 13d, a chip electrode 13e, a bonding wire 13f, and an electrode terminal 13g.
  • the lens unit 13a converges light emitted from the chip 13c in a predetermined direction.
  • the chip 13c is bonded onto the die bond portion 13d provided on the upper surface of the package 13b.
  • the two chip electrodes 13e provided on the upper surface of the chip 13c are respectively connected to electrode terminals 13g provided on the upper surface of the package 13b by bonding wires 13f.
  • the electrode terminal 13g is formed so as to wrap around the lower surface of the package 13b, and is electrically connected to the electrode portion 12a provided on the substrate 12 by the solder 16.
  • the LED 13 preferably has a heat dissipation terminal 13h.
  • the heat radiating terminal 13h is formed near the center of the lower surface of the package 13b.
  • the heat radiating terminal 13 h is thermally connected to the heat radiating electrode portion 12 b provided on the substrate 12 by the solder 16.
  • the back surface of the substrate 12 is thermally connected to the heat radiating member 15 via the heat conductive sheet 14.
  • the heat generated by each LED 13 is conducted through the substrate 12, the heat conductive sheet 14 and the heat radiating member 15, and is radiated from the heat radiating member 15 into the air.
  • the temperature sensor 21 detects the ambient temperature T of the LED lighting unit 11 and sends a detection signal to the drive control circuit 20.
  • the drive control circuit 20 calculates the detected temperature based on the detection signal from the temperature sensor 21.
  • the temperature sensor 21 may be provided in the vicinity of the LED lighting unit 11 or may be provided in the LED lighting unit 11.
  • the drive control circuit 20 receives the supply of the AC voltage from the external power supply 22 and controls the supply current amount I output to the LED lighting unit 11.
  • the drive control circuit 20 adjusts the supply current I to the LED illumination unit 11 to a preset drive current value I0 and outputs it to the LED illumination unit 11.
  • the drive control circuit 20 switches the supply current amount I between the minimum drive current for low-luminance light emission and the maximum drive current that gives the maximum luminance, or the supply current amount between the minimum drive current and the maximum drive current.
  • the amount I of current supplied to the LED lighting unit 11 is adjusted by continuously changing it.
  • the drive control circuit 20 increases the supply current amount I stepwise to obtain a predetermined drive current value I0. Control is performed so that
  • FIG. 4 is a graph showing an example of control of the supply current amount I when the power is turned on by the drive control circuit 20.
  • FIG. 5A is a graph showing a temperature change of each part of the LED lighting device according to the embodiment. As shown in FIG. 5A, the temperature of each part of the LED lighting unit 11 is changed by increasing the amount of current I supplied to the LED lighting unit 11 stepwise.
  • T1 indicates the temperature of the PN junction of the chip 13c
  • T2 indicates the temperature of the chip 13c
  • T3 indicates the temperature of the package 13b
  • T4 indicates the temperature immediately below the LED 13 mounting portion of the substrate 12.
  • T5 indicates the temperature of the heat dissipating member 15 in the vicinity of the LED 13
  • T6 indicates the temperature of the heat dissipating member 15 at a position away from the LED 13.
  • FIG. 5B is a graph showing a temperature change of each part of the LED lighting device according to the comparative example.
  • FIG. 5B shows a temperature change when a desired drive current value I0 is supplied to the LED lighting unit 11 at the same time as the power is turned on.
  • the desired drive current value I0 is supplied simultaneously with the power-on, as shown in the graph of FIG. 5B, the temperatures T1 to T6 of each part rapidly increase. As a result, the temperature difference of each part of the LED lighting unit 11 becomes transiently large.
  • the increase amount (I1, I2-I1, I3-I2, I0-I3) of the supply current I at each time t0 to t3 is the final drive current value I0. Since it is comparatively small, the rapid temperature rise of each part of the LED lighting unit 11 is suppressed. In particular, it is possible to suppress a rapid temperature rise in the connection portion between the chip 13c and the package 13b and the connection portion between the package 13b and the substrate 12, and to reduce a temperature difference generated in each connection portion. Thereby, thermal stress applied to each connection portion when the power is turned on is reduced, occurrence of cracks and the like in the connection portion due to repeated power on is suppressed, and occurrence of contact failure in the connection portion is reduced.
  • FIG. 6 is a graph showing another example of control of the amount of supplied current when the power is turned on by the drive control circuit 20.
  • the drive control circuit 20 performs control so as to sequentially increase the supply current at the time ⁇ t that is equally spaced from the times t1, t2, and t3.
  • these times t0, t1, t2, and t3 may not be set at equal intervals.
  • each time the supply current amount I is increased stepwise the period for maintaining the supply current amount at each stage may be lengthened.
  • each stage is increased as the supply currents I1, I2 and I3 are increased.
  • the drive control circuit 20 may control the supply current amount I so that the intervals ⁇ t1, ⁇ t2, and ⁇ t3 are long ( ⁇ t1 ⁇ t2 ⁇ t3).
  • the amount of current I supplied to the LED lighting unit 11 gradually increases as a whole. Therefore, the temperature difference between the respective portions of the LED lighting unit 11 is further reduced, and the temperature applied to each connecting portion. Stress can be suppressed. In particular, the thermal stress applied to each connection portion can be further reduced by gradually increasing the time interval as it approaches the predetermined drive current value I0.
  • FIG. 7 is a graph showing still another example of the control of the supply current amount when the power is turned on by the drive control circuit 20.
  • the drive control circuit 20 performs control so as to sequentially increase the supply current in four stages of I1, I2, I3, and I0 after the power is turned on is shown.
  • the supply current may be sequentially increased in multiple stages. That is, based on the detection signal from the temperature sensor 21, the drive control circuit 20 gradually increases the amount of supplied current in multiple steps when the detected temperature, that is, the ambient temperature of the LED lighting unit 11, is lower than the predetermined temperature reference value Ta. You may let them. Thereby, you may make the temperature difference of each part of the LED lighting unit 11 in each step smaller.
  • the drive control circuit 20 adjusts the supply current amount I to the drive current value I0 set in the final stage by increasing the supply current quantity I in seven stages from the time of power-on.
  • the supply current amount I is increased stepwise in seven steps.
  • the temperature difference between the LED chip and the substrate can be reduced.
  • the thermal stress concerning each connection part can be reduced significantly and generation
  • the drive control circuit 20 increases the amount of supplied current in a stepwise manner up to the predetermined drive current value I0 as compared to the case where the temperature is not.
  • the period of each step may be lengthened. That is, the supply current amount I may be increased stepwise so that the period from when the current supply is started until the supply current amount reaches the predetermined drive current value I0 becomes longer.
  • the time during which the current amount of each stage is maintained is lengthened.
  • the temperature can be prevented from rising rapidly.
  • FIG. 8 is a block diagram showing the configuration of the LED lighting device 30 according to the second embodiment.
  • the LED lighting device 30 is different from the LED lighting device 10 according to the above-described embodiment in that the LED lighting device 30 further includes a voltage sensor 31.
  • the voltage sensor 31 has a known configuration and detects the power supply voltage V of the AC voltage applied by the external power supply 22 and outputs it to the drive control circuit 20.
  • the difference from the LED lighting device 10 will be mainly described.
  • the drive control circuit 20 operates as follows based on the power supply voltage V detected by the voltage sensor 31 and the ambient temperature T detected by the temperature sensor 21.
  • the power supply voltage V becomes higher than the first reference voltage V1 (V> V1), and the ambient temperature T exceeds the preset first reference temperature Tb (T> Tb).
  • the second ratio R2 is set to be a value (R1> R2) lower than the first ratio R1.
  • the drive control circuit 20 sets the supply current I in advance when the ambient temperature T exceeds the second reference temperature Tc higher than the first reference temperature Tb (T> Tc) regardless of the power supply voltage V.
  • the third ratio R3 is set to be a value (R2> R3) lower than the second ratio R2.
  • the LED lighting device 30 increases the supply current amount I in a stepwise manner to a drive current value I0 in the final step, similar to the LED lighting device 10 shown in FIG. Further, the LED lighting device 30 operates as shown in the flowchart of FIG. 9 in a state where the LED lighting unit 11 is stably driven.
  • FIG. 9 is a flowchart showing an operation example of the drive control circuit 20 with respect to voltage fluctuation.
  • the LED illumination unit 11 drives the LED 13 with the drive current I0 ⁇ R3 to emit light.
  • the drive control circuit 20 compares the power supply voltage V with the first reference voltage V1 (ST3).
  • the drive control circuit 20 supplies the supplied current amount I to the LED illumination unit 11 as I0 (ST4).
  • the LED illumination unit 11 drives the LED 13 with the drive current I0 to emit light with the maximum luminance.
  • a preset first ratio R1 for example, 90%
  • the supply current amount I is appropriately reduced based on the detection signal from the voltage sensor 31, and a large amount of unintended power is supplied to the LED lighting unit 11. Can be prevented. Thereby, it can suppress beforehand that excessive electric power is supplied to the LED illumination unit 11, and it will be damaged.
  • an increase in power consumption due to an increase in the power supply voltage can be reduced by reducing the supply current I when the detected temperature T increases as the power supply voltage of the external power supply 22 increases. .
  • the burden with respect to the power consumption increase in LED lighting unit 11 or drive control circuit 20 is reduced, the further temperature rise of LED lighting device 30 is controlled.
  • the LED lighting unit 11 and the drive control circuit 20 are protected by further reducing the supply current I or cutting off the current supply. be able to.
  • FIG. 10 is a flowchart showing another example of operation with respect to voltage fluctuation of the drive control circuit.
  • the power supply voltage V is less than or equal to the second reference voltage V2 (N in ST11)
  • the present invention can be implemented in various forms without departing from the spirit of the present invention.
  • the drive control circuit 20 may increase the supply current step by step in two steps, three steps, or five steps or more depending on the form of use.
  • the duration of each stage may be uniform, or may be set to become longer or shorter as the supply current I increases.
  • an AC power supply is adopted as the external power supply 22, but this is not a limitation, and it is obvious that a DC power supply may be adopted.
  • the reliability of the LED lighting device is improved by reducing the temperature difference generated between the LED chip and the substrate when the power is turned on and reducing the thermal stress applied to the connection portion between the LED chip and the substrate. Can be increased.

Abstract

 An LED illumination device 10, provided with an LED illumination unit 11 having an LED 13 mounted on a substrate 12, and a driving control circuit 20 for supplying a driving current to the LED illumination unit 11. The driving control circuit 20, when starting the supplying of the current to the LED illumination unit 11, incrementally increases the supplied current amount I to a prescribed driving current value I0 set in advance.

Description

LED照明装置LED lighting device
 本発明は、基板上に搭載されるLEDを有するLED照明ユニットを備えるLED照明装置に関する。 The present invention relates to an LED lighting device including an LED lighting unit having LEDs mounted on a substrate.
 LED照明装置は、基板上に搭載されるLEDに駆動電流を供給してLEDを発光させ、照明エリアに光を照射するよう構成されている。このようなLED照明装置では、より明るい照明光を得るために、高出力タイプのLEDが搭載されることがある。高出力タイプのLEDは、動作時の発熱量が多く、LEDチップの温度が高くなると発光効率が低下するため、適切に放熱しながら用いられる。 The LED illumination device is configured to supply a drive current to an LED mounted on a substrate to cause the LED to emit light, and to irradiate the illumination area with light. In such an LED lighting device, a high output type LED may be mounted in order to obtain brighter illumination light. A high-power type LED generates a large amount of heat during operation, and its luminous efficiency decreases as the temperature of the LED chip increases. Therefore, it is used while appropriately dissipating heat.
 LEDが搭載される基板には、放熱性を高めるために、放熱器等の熱放散手段が熱抵抗の低い熱伝導材を介して取り付けられる。この場合、LEDチップが発する熱は、チップからダイボンド部、LEDパッケージ、基板、熱伝導材を経由して熱放散手段である放熱器に伝わり、熱放散手段から空気中に放熱される。 In order to improve heat dissipation, a heat dissipating means such as a radiator is attached to the substrate on which the LED is mounted via a heat conductive material having a low thermal resistance. In this case, the heat generated by the LED chip is transmitted from the chip to the heat dissipator as the heat dissipating means via the die bond portion, the LED package, the substrate, and the heat conducting material, and is radiated from the heat dissipating means to the air.
 上述した構成によりLEDを放熱させる場合、電源投入によってLEDチップが非点灯状態から点灯状態(特に、最高輝度の点灯状態)になると、LEDチップの発熱によってチップ自体の温度が上昇し、つづいてダイボンド部、LEDパッケージおよび基板の温度が上昇する。さらに、熱伝導材を介して放熱器等の熱放散手段に熱が伝わり、熱放散手段の温度が上昇する。このとき、チップから熱放散手段までの伝熱経路の各部において温度上昇の時間的なずれが生じるとともに、電源投入されてから各部が熱平衡状態となるまでにはある程度の時間を要する。その結果、チップ、LEDパッケージ、基板および熱放散手段の間には、過渡的な温度差が生じることとなる。 When the LED is radiated with the above-described configuration, when the LED chip is turned from the non-lighting state to the lighting state (especially, the lighting state with the highest luminance) by turning on the power, the temperature of the chip itself rises due to the heat generated from the LED chip, and then die-bonded. The temperature of the part, LED package and substrate rises. Further, heat is transmitted to the heat dissipating means such as a radiator through the heat conducting material, and the temperature of the heat dissipating means rises. At this time, a time lag in temperature rise occurs in each part of the heat transfer path from the chip to the heat dissipating means, and a certain amount of time is required until each part comes into a thermal equilibrium state after the power is turned on. As a result, a transient temperature difference occurs between the chip, the LED package, the substrate, and the heat dissipation means.
 過渡的な温度差が生じると、チップから熱放散手段までの伝熱経路の各部において、過渡的な熱応力が生じうる。特に、チップとLEDパッケージ間に設けられるダイボンド部や、LEDパッケージの電極部および放熱端子と基板との間の接続部には、過渡的に大きな熱的ストレスが加わる。そして、このような過渡的な熱応力が電源投入のたびに加わると、LED照明装置の長期使用によって熱的ストレスが蓄積し、ダイボンド部やLEDと基板間の接続部等にクラックが発生し、場合によっては断線が発生しうる。そうすると、LEDチップ自体が長寿命であったとしても、LEDチップから基板までの各接続部にクラックが生じて接続不良となることによって、LED照明装置全体としての寿命が損なわれてしまう。 When a transient temperature difference occurs, transient thermal stress can occur in each part of the heat transfer path from the chip to the heat dissipation means. In particular, a large thermal stress is transiently applied to the die bond portion provided between the chip and the LED package, the electrode portion of the LED package, and the connection portion between the heat radiation terminal and the substrate. And when such transient thermal stress is applied every time the power is turned on, thermal stress accumulates due to long-term use of the LED lighting device, cracks occur in the die bond part and the connection part between the LED and the substrate, etc. In some cases, disconnection may occur. Then, even if the LED chip itself has a long life, the life of the LED lighting device as a whole is lost by causing cracks at each connection part from the LED chip to the substrate and causing a connection failure.
 特に、外気温が零下十数℃から零下数十℃以下となるような寒冷地では、非点灯状態においてLEDチップや基板を含むLED照明装置全体が外気温程度まで冷えている。このような温度状態において電源が投入され、最高輝度の点灯状態となるような大きな駆動電流が供給されると、LEDチップの温度が急激に上昇する。そうすると、上述した熱的ストレスがより大きくなって、クラック発生の可能性が大幅に増大してしまう。 In particular, in a cold district where the outside air temperature is below a few dozen degrees Celsius to below a few tens of degrees Celsius, the entire LED lighting device including the LED chip and the substrate is cooled to the outside air temperature in a non-lighting state. When the power is turned on in such a temperature state and a large driving current is supplied so that the lighting state with the highest luminance is achieved, the temperature of the LED chip rapidly increases. If it does so, the thermal stress mentioned above will become larger and the possibility of a crack generation will increase significantly.
 本発明はこうした課題に鑑みてなされたものであり、その例示的な目的のひとつは、電源投入時にLEDチップと基板との間で一時的に生じる温度差を小さくし、LEDチップと基板との間の接続部にかかる熱応力を低減させることにより、LED照明装置の信頼性を高めることにある。 The present invention has been made in view of such problems, and one of the exemplary purposes thereof is to reduce a temperature difference temporarily generated between the LED chip and the substrate when the power is turned on. It is to improve the reliability of the LED lighting device by reducing the thermal stress applied to the connecting portion between them.
 本発明のある態様のLED照明装置は、基板上に搭載されるLEDを有するLED照明ユニットと、LED照明ユニットに駆動電流を供給する駆動制御回路と、を備える。駆動制御回路は、LED照明ユニットへの電流供給を開始する際、予め設定される所定の駆動電流値まで供給電流量を段階的に増大させる。 An LED illumination device according to an aspect of the present invention includes an LED illumination unit having an LED mounted on a substrate, and a drive control circuit that supplies a drive current to the LED illumination unit. When starting the current supply to the LED lighting unit, the drive control circuit increases the supply current amount stepwise up to a predetermined drive current value set in advance.
 この態様によると、LED照明ユニットに供給される電流量が段階的に上昇するため、電源投入と同時に所定の駆動電流値を供給する場合と比べて、LED内のチップの温度上昇速度を低減させることができる。また、LEDチップから基板に至る放熱経路の各部における温度上昇速度を低減させて、放熱経路の各部において過渡的に生じる温度差を小さくできる。これにより、LEDチップと基板との間の各接続部に加わる熱応力を低減させ、熱的ストレスに起因するクラックの発生を防ぐことができる。長期的にLED照明装置を使用する場合であっても、熱的ストレスが蓄積されにくいため、クラック等による接続不良の発生を抑止してLED照明装置の信頼性および寿命を高めることができる。 According to this aspect, since the amount of current supplied to the LED lighting unit increases step by step, the temperature increase rate of the chip in the LED is reduced compared to the case where a predetermined drive current value is supplied simultaneously with power-on. be able to. Moreover, the temperature rise rate in each part of the heat dissipation path from the LED chip to the substrate can be reduced, and the temperature difference that occurs transiently in each part of the heat dissipation path can be reduced. Thereby, the thermal stress added to each connection part between an LED chip and a board | substrate can be reduced, and generation | occurrence | production of the crack resulting from a thermal stress can be prevented. Even when the LED lighting device is used for a long period of time, since thermal stress is difficult to accumulate, the occurrence of poor connection due to cracks or the like can be suppressed, and the reliability and life of the LED lighting device can be improved.
 LED照明ユニットあるいはその周辺の温度を検出する温度センサをさらに備えてもよい。駆動制御回路は、電流供給開始前の検出温度が所定の温度基準値を下回る場合、そうでない場合と比べて、電流供給を開始してから供給電流量が所定の駆動電流値となるまでの期間が長くなるようにして供給電流量を段階的に増大させてもよい。 A temperature sensor that detects the temperature of the LED lighting unit or its surroundings may be further provided. When the detected temperature before the start of current supply falls below a predetermined temperature reference value, the drive control circuit compares the period from the start of current supply until the supply current amount reaches a predetermined drive current value, as compared to the case where the detected temperature is lower than the predetermined temperature reference value. The amount of supply current may be increased step by step so as to be longer.
 駆動制御回路は、電流供給開始前の検出温度が所定の温度基準値を下回る場合、そうでない場合と比べて、所定の駆動電流値まで供給電流量を段階的に増大させる際の段階数を多くしてもよい。 The drive control circuit increases the number of steps when the supply current amount is gradually increased to the predetermined drive current value when the detected temperature before the start of the current supply is lower than the predetermined temperature reference value compared to the case where the detected temperature is not the case. May be.
 駆動制御回路は、電流供給開始前の検出温度が所定の温度基準値を下回る場合、そうでない場合と比べて、所定の駆動電流値まで供給電流量を段階的に増大させる際の各段階の供給電流量を維持する期間をそれぞれ長くしてもよい。 When the detected temperature before the start of current supply falls below a predetermined temperature reference value, the drive control circuit supplies each stage when the supply current amount is increased stepwise up to a predetermined drive current value compared to the case where the detected temperature is not the case. You may lengthen the period which maintains an electric current amount, respectively.
 駆動制御回路は、供給電流量を段階的に増大させるごとに各段階の供給電流量を維持する期間を長くしてもよい。 The drive control circuit may lengthen the period during which the supply current amount at each stage is maintained each time the supply current amount is increased step by step.
 駆動制御回路は、外部電源からの電力供給を受けており、駆動制御回路は、外部電源の電源電圧が第一の電圧基準値を超える場合、LED照明ユニットへの供給電流量を所定の駆動電流値に第一の割合を乗じた電流値に減少させてもよい。 The drive control circuit receives power supply from an external power source, and when the power supply voltage of the external power source exceeds the first voltage reference value, the drive control circuit sets the amount of current supplied to the LED lighting unit to a predetermined drive current. The value may be reduced to a current value obtained by multiplying the value by the first ratio.
 LED照明ユニットあるいはその周辺の温度を検出する温度センサを備えてもよい。駆動制御回路は、外部電源からの電源電圧が第一の電圧基準値を超え、かつ、検出温度が第一の温度基準値を超える場合、LED照明ユニットへの供給電流量を所定の駆動電流値に第一の割合より小さい第二の割合を乗じた電流値に減少させてもよい。 A temperature sensor that detects the temperature of the LED lighting unit or its surroundings may be provided. When the power supply voltage from the external power source exceeds the first voltage reference value and the detected temperature exceeds the first temperature reference value, the drive control circuit sets the amount of current supplied to the LED lighting unit to a predetermined drive current value. May be reduced to a current value obtained by multiplying by a second ratio smaller than the first ratio.
 駆動制御回路は、外部電源の電源電圧が第一の電圧基準値より大きい第二の基準電圧値を超える場合、LED照明ユニットへの供給電流量を所定の駆動電流値に第二の割合より小さい第三の割合を乗じた電流値に減少させ、または、LED照明ユニットへの電流供給を停止させてもよい。 When the power supply voltage of the external power supply exceeds a second reference voltage value that is greater than the first voltage reference value, the drive control circuit reduces the amount of current supplied to the LED lighting unit to a predetermined drive current value that is less than the second ratio. The current value multiplied by the third ratio may be decreased, or the current supply to the LED lighting unit may be stopped.
 駆動制御回路は、検出温度が第一の温度基準値より大きい第二の温度基準値を超える場合、LED照明ユニットへの供給電流量を所定の駆動電流値に第三の割合を乗じた電流値に減少させ、または、LED照明ユニットへの電流供給を停止させてもよい。 When the detected temperature exceeds a second temperature reference value that is greater than the first temperature reference value, the drive control circuit is configured to multiply the predetermined drive current value by the third ratio by the amount of current supplied to the LED lighting unit. Or the current supply to the LED lighting unit may be stopped.
 本発明によれば、電源投入時にLEDチップと基板との間で生じる温度差を小さくし、LEDチップと基板との間の接続部にかかる熱応力を低減させることにより、LED照明装置の信頼性を高めることができる。 According to the present invention, the reliability of the LED lighting device is improved by reducing the temperature difference generated between the LED chip and the substrate when the power is turned on and reducing the thermal stress applied to the connection portion between the LED chip and the substrate. Can be increased.
第一の実施形態に係るLED照明装置の構成を示すブロック図である。It is a block diagram which shows the structure of the LED lighting apparatus which concerns on 1st embodiment. 図1のLED照明ユニットの詳細な構成を示す断面図である。It is sectional drawing which shows the detailed structure of the LED illumination unit of FIG. 図2の各LEDの構造を示す断面図である。It is sectional drawing which shows the structure of each LED of FIG. 駆動制御回路による電源オン時の供給電流量の制御の一例を示すグラフである。It is a graph which shows an example of control of the supply current amount at the time of power-on by a drive control circuit. 実施形態に係るLED照明装置の各部の温度変化を示すグラフである。It is a graph which shows the temperature change of each part of the LED lighting apparatus which concerns on embodiment. 比較例に係るLED照明装置の各部の温度変化を示すグラフである。It is a graph which shows the temperature change of each part of the LED lighting apparatus which concerns on a comparative example. 駆動制御回路による電源オン時の供給電流量の制御の別の例を示すグラフである。It is a graph which shows another example of control of the supply current amount at the time of power-on by a drive control circuit. 駆動制御回路による電源オン時の供給電流量の制御のさらに別の例を示すグラフである。It is a graph which shows another example of control of the supply current amount at the time of power-on by a drive control circuit. 第二の実施形態に係るLED照明装置の構成を示すブロック図である。It is a block diagram which shows the structure of the LED lighting apparatus which concerns on 2nd embodiment. 駆動制御回路の電圧変動に対する動作例を示すフローチャートである。It is a flowchart which shows the operation example with respect to the voltage fluctuation of a drive control circuit. 駆動制御回路の電圧変動に対する別の動作例を示すフローチャートである。It is a flowchart which shows another operation example with respect to the voltage fluctuation of a drive control circuit.
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the description, the same elements are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate.
(第一の実施形態)
 図1は、第一の実施形態に係るLED照明装置10の構成を示すブロック図である。LED照明装置10は、LED照明ユニット11と、駆動制御回路20と、温度センサ21と、を備える。
(First embodiment)
FIG. 1 is a block diagram showing a configuration of an LED lighting device 10 according to the first embodiment. The LED lighting device 10 includes an LED lighting unit 11, a drive control circuit 20, and a temperature sensor 21.
 図2は、LED照明ユニット11の詳細な構成を示す断面図である。LED照明ユニット11は、基板12と、基板12上に搭載される複数個のLED13と、基板12の裏面に設けられる熱伝導シート14と、熱伝導シート14と熱的に接続される放熱部材15と、を含む。 FIG. 2 is a cross-sectional view showing a detailed configuration of the LED lighting unit 11. The LED lighting unit 11 includes a substrate 12, a plurality of LEDs 13 mounted on the substrate 12, a heat conductive sheet 14 provided on the back surface of the substrate 12, and a heat dissipation member 15 thermally connected to the heat conductive sheet 14. And including.
 各LED13は、基板12上に実装されており、駆動制御回路20からの駆動電流IによってLED内部のチップが発光し、所定の照射範囲にその光を照射する。熱伝導シート14は、公知の構成であり、熱伝導率の高い材料で構成される。放熱部材15は、同様に公知の構成であり、例えば、熱伝導率の高い金属材料で構成される。放熱部材15は、放熱効果を高めるための複数の放熱フィン15aを有する。 Each LED 13 is mounted on the substrate 12, and the chip inside the LED emits light by the drive current I from the drive control circuit 20, and irradiates the light within a predetermined irradiation range. The heat conductive sheet 14 has a known configuration and is made of a material having high thermal conductivity. The heat radiating member 15 is similarly a well-known structure, for example, is comprised with a metal material with high heat conductivity. The heat dissipating member 15 has a plurality of heat dissipating fins 15a for enhancing the heat dissipating effect.
 図3は、各LED13の構造を示す断面図である。LED13は、レンズ部13aと、パッケージ13bと、チップ13cと、ダイボンド部13dと、チップ電極13eと、ボンディングワイヤ13fと、電極端子13gとを有する。レンズ部13aは、チップ13cが発する光を所定の方向に収束させる。チップ13cは、パッケージ13bの上面に設けられるダイボンド部13dの上に接合されている。チップ13cの上面に設けられる二つのチップ電極13eは、それぞれボンディングワイヤ13fによってパッケージ13bの上面に設けられる電極端子13gに接続されている。電極端子13gは、パッケージ13bの下面に回り込むように形成され、基板12上に設けられる電極部12aにハンダ16によって電気的に接続される。 FIG. 3 is a cross-sectional view showing the structure of each LED 13. The LED 13 includes a lens portion 13a, a package 13b, a chip 13c, a die bond portion 13d, a chip electrode 13e, a bonding wire 13f, and an electrode terminal 13g. The lens unit 13a converges light emitted from the chip 13c in a predetermined direction. The chip 13c is bonded onto the die bond portion 13d provided on the upper surface of the package 13b. The two chip electrodes 13e provided on the upper surface of the chip 13c are respectively connected to electrode terminals 13g provided on the upper surface of the package 13b by bonding wires 13f. The electrode terminal 13g is formed so as to wrap around the lower surface of the package 13b, and is electrically connected to the electrode portion 12a provided on the substrate 12 by the solder 16.
 LED13は、放熱用端子13hを有することが好ましい。放熱用端子13hは、パッケージ13bの下面中央付近に形成される。放熱用端子13hは、基板12上に設けられる放熱用の電極部12bにハンダ16によって熱的に接続される。図2に示すように、基板12の裏面は、熱伝導シート14を介して放熱部材15に熱的に接続されている。各LED13で発生する熱は、基板12、熱伝導シート14および放熱部材15を伝導し、放熱部材15から空気中に放熱される。 The LED 13 preferably has a heat dissipation terminal 13h. The heat radiating terminal 13h is formed near the center of the lower surface of the package 13b. The heat radiating terminal 13 h is thermally connected to the heat radiating electrode portion 12 b provided on the substrate 12 by the solder 16. As shown in FIG. 2, the back surface of the substrate 12 is thermally connected to the heat radiating member 15 via the heat conductive sheet 14. The heat generated by each LED 13 is conducted through the substrate 12, the heat conductive sheet 14 and the heat radiating member 15, and is radiated from the heat radiating member 15 into the air.
 図1に戻り、温度センサ21は、LED照明ユニット11の周辺温度Tを検出し、検出信号を駆動制御回路20に送出する。駆動制御回路20は、温度センサ21からの検出信号に基づいて、検出温度を算出する。温度センサ21は、LED照明ユニット11に近接して設けられてもよいし、LED照明ユニット11内に設けられてもよい。 1, the temperature sensor 21 detects the ambient temperature T of the LED lighting unit 11 and sends a detection signal to the drive control circuit 20. The drive control circuit 20 calculates the detected temperature based on the detection signal from the temperature sensor 21. The temperature sensor 21 may be provided in the vicinity of the LED lighting unit 11 or may be provided in the LED lighting unit 11.
 駆動制御回路20は、外部電源22からの交流電圧の供給を受けて、LED照明ユニット11に出力する供給電流量Iを制御する。駆動制御回路20は、LED照明ユニット11への供給電流Iを予め設定される駆動電流値I0に調整してLED照明ユニット11に出力する。駆動制御回路20は、例えば、低輝度発光用の最低駆動電流と最大輝度を与える最大駆動電流との間で供給電流量Iを切り換えたり、最低駆動電流から最大駆動電流の間で供給電流量を連続的に変化させたりして、LED照明ユニット11への供給電流量Iを調整する。 The drive control circuit 20 receives the supply of the AC voltage from the external power supply 22 and controls the supply current amount I output to the LED lighting unit 11. The drive control circuit 20 adjusts the supply current I to the LED illumination unit 11 to a preset drive current value I0 and outputs it to the LED illumination unit 11. For example, the drive control circuit 20 switches the supply current amount I between the minimum drive current for low-luminance light emission and the maximum drive current that gives the maximum luminance, or the supply current amount between the minimum drive current and the maximum drive current. The amount I of current supplied to the LED lighting unit 11 is adjusted by continuously changing it.
 また、駆動制御回路20は、LED照明ユニット11の電源オン時、つまり、LED照明ユニット11への電流供給を開始する際に、供給電流量Iを段階的に増大させて所定の駆動電流値I0となるように制御を行なう。 In addition, when the LED lighting unit 11 is turned on, that is, when the current supply to the LED lighting unit 11 is started, the drive control circuit 20 increases the supply current amount I stepwise to obtain a predetermined drive current value I0. Control is performed so that
 図4は、駆動制御回路20による電源オン時の供給電流量Iの制御の一例を示すグラフである。駆動制御回路20は、時刻t0(=0)で電源オンとしたときに電流I1とし、時刻t1(t1=t0+Δt)にて電流I2(I2>I1)とし、時刻t2(t2=t0+Δt×2)にて電流I3(I3>I2)とし、時刻t3(t3=t0+Δt×3)にて所望の駆動電流I0(I0>I3)とする。すなわち、駆動制御回路20は、供給電流量Iを電源オン時から四段階で増大させ、最終段階にて設定された駆動電流値I0に調整する。 FIG. 4 is a graph showing an example of control of the supply current amount I when the power is turned on by the drive control circuit 20. The drive control circuit 20 sets the current I1 when the power is turned on at time t0 (= 0), sets the current I2 (I2> I1) at time t1 (t1 = t0 + Δt), and sets the current t2 (t2 = t0 + Δt × 2). The current is I3 (I3> I2) and the desired drive current I0 (I0> I3) is obtained at time t3 (t3 = t0 + Δt × 3). That is, the drive control circuit 20 increases the supply current amount I in four stages from when the power is turned on, and adjusts it to the drive current value I0 set in the final stage.
 図5Aは、実施形態に係るLED照明装置の各部の温度変化を示すグラフである。図5Aに示すように、LED照明ユニット11への供給電流量Iを段階的に増大させることでLED照明ユニット11の各部の温度が変化する。図5Aに示すグラフにおいて、T1はチップ13cのPN接合部の温度を示し、T2はチップ13cの温度を示し、T3はパッケージ13bの温度を示し、T4は基板12のLED13搭載部直下の温度を示し、T5は放熱部材15のLED13付近の温度を示し、T6は放熱部材15のLED13から離れた位置の温度を示す。 FIG. 5A is a graph showing a temperature change of each part of the LED lighting device according to the embodiment. As shown in FIG. 5A, the temperature of each part of the LED lighting unit 11 is changed by increasing the amount of current I supplied to the LED lighting unit 11 stepwise. In the graph shown in FIG. 5A, T1 indicates the temperature of the PN junction of the chip 13c, T2 indicates the temperature of the chip 13c, T3 indicates the temperature of the package 13b, and T4 indicates the temperature immediately below the LED 13 mounting portion of the substrate 12. T5 indicates the temperature of the heat dissipating member 15 in the vicinity of the LED 13, and T6 indicates the temperature of the heat dissipating member 15 at a position away from the LED 13.
 図5Aにおいて、時刻t0で電源オンされると、駆動制御回路20からLED照明ユニット11に供給電流I1が出力され、供給電流I1によりLED内部のチップ13cが発熱する。チップ13cで生じた熱がダイボンド部13dからLEDパッケージ13b、基板12及び熱伝導シート14を介して放熱部材15に伝導し、放熱部材15のフィン15aから空気中に放熱される。これにより、図5Aの符号T1~T6で示すように、LED照明ユニット11の各部の温度が上昇する。特に、符号T1で示すように、チップ13cのPN接合部では、電源オンと同時に急激に温度が上昇した後、徐々に低下する。 5A, when the power is turned on at time t0, a supply current I1 is output from the drive control circuit 20 to the LED illumination unit 11, and the chip 13c inside the LED generates heat due to the supply current I1. Heat generated in the chip 13c is conducted from the die bond portion 13d to the heat radiating member 15 through the LED package 13b, the substrate 12, and the heat conductive sheet 14, and is radiated from the fins 15a of the heat radiating member 15 to the air. As a result, the temperature of each part of the LED illumination unit 11 rises, as indicated by reference numerals T1 to T6 in FIG. 5A. In particular, as indicated by reference numeral T1, the temperature of the PN junction portion of the chip 13c rapidly increases at the same time as the power is turned on and then gradually decreases.
 同様に、時刻t1,t2,t3においても、それぞれ供給電流I2,I3,I0が流れて直前の供給電流I1,I2,I3との差分だけ供給電流量が増大する。その結果、図5Aの符号T1~T6のそれぞれで示すように、供給電流量の段階的な増大に伴って各部の温度が段階的に上昇する。 Similarly, at times t1, t2, and t3, supply currents I2, I3, and I0 flow, and the supply current amount increases by the difference from the immediately preceding supply currents I1, I2, and I3. As a result, as indicated by reference numerals T1 to T6 in FIG. 5A, the temperature of each part rises stepwise as the supply current amount increases stepwise.
 図5Bは、比較例に係るLED照明装置の各部の温度変化を示すグラフである。図5Bは、電源オンと同時に所望の駆動電流値I0をLED照明ユニット11に供給する場合の温度変化を示す。比較例では、電源オンと同時に所望の駆動電流値I0が供給されるため、図5Bのグラフに示されるように、各部の温度T1~T6が急激に上昇することとなる。その結果、LED照明ユニット11の各部の温度差が過渡的に大きな状態となってしまう。 FIG. 5B is a graph showing a temperature change of each part of the LED lighting device according to the comparative example. FIG. 5B shows a temperature change when a desired drive current value I0 is supplied to the LED lighting unit 11 at the same time as the power is turned on. In the comparative example, since the desired drive current value I0 is supplied simultaneously with the power-on, as shown in the graph of FIG. 5B, the temperatures T1 to T6 of each part rapidly increase. As a result, the temperature difference of each part of the LED lighting unit 11 becomes transiently large.
 一方、図5Aに示す本実施の形態によれば、各時刻t0~t3における供給電流Iの増大量(I1,I2-I1,I3-I2,I0-I3)が最終的な駆動電流値I0と比較して小さいため、LED照明ユニット11の各部の急激な温度上昇が抑制される。特に、チップ13cとパッケージ13bの間の接続部、パッケージ13bと基板12の間の接続部における急激な温度上昇を抑制して、各接続部において生じる温度差を小さくできる。これにより、電源オン時に各接続部にかかる熱的ストレスが低減され、繰り返しの電源オンによる接続部のクラック等の発生が抑制され、接続部における接触不良の発生が低減される。 On the other hand, according to the present embodiment shown in FIG. 5A, the increase amount (I1, I2-I1, I3-I2, I0-I3) of the supply current I at each time t0 to t3 is the final drive current value I0. Since it is comparatively small, the rapid temperature rise of each part of the LED lighting unit 11 is suppressed. In particular, it is possible to suppress a rapid temperature rise in the connection portion between the chip 13c and the package 13b and the connection portion between the package 13b and the substrate 12, and to reduce a temperature difference generated in each connection portion. Thereby, thermal stress applied to each connection portion when the power is turned on is reduced, occurrence of cracks and the like in the connection portion due to repeated power on is suppressed, and occurrence of contact failure in the connection portion is reduced.
 図6は、駆動制御回路20による電源オン時の供給電流量の制御の別の例を示すグラフである。上述の図4に示す制御例では、電源オンの後、駆動制御回路20が、時刻t1,t2,t3と等間隔の時間Δtで供給電流を順次増大させるように制御を行なう場合を示した。変形例においては、これらの時刻t0,t1,t2,t3が等間隔に設定されなくてもよい。例えば、図6に示すように、供給電流量Iを段階的に増大させるごとに各段階の供給電流量を維持する期間を長くしてもよい。つまり、各段階の電流量が維持される期間をΔt1=t1-t0,Δt2=t2-t0,Δt3=t3-t2としたとき、各段階の供給電流I1,I2,I3が増大するほど各段階の間隔Δt1,Δt2,Δt3が長くなる(Δt1<Δt2<Δt3となる)ように、駆動制御回路20が供給電流量Iを制御してもよい。 FIG. 6 is a graph showing another example of control of the amount of supplied current when the power is turned on by the drive control circuit 20. In the control example shown in FIG. 4 described above, after the power is turned on, the drive control circuit 20 performs control so as to sequentially increase the supply current at the time Δt that is equally spaced from the times t1, t2, and t3. In the modification, these times t0, t1, t2, and t3 may not be set at equal intervals. For example, as shown in FIG. 6, each time the supply current amount I is increased stepwise, the period for maintaining the supply current amount at each stage may be lengthened. In other words, when the period during which the current amount at each stage is maintained is Δt1 = t1−t0, Δt2 = t2−t0, Δt3 = t3−t2, each stage is increased as the supply currents I1, I2 and I3 are increased. The drive control circuit 20 may control the supply current amount I so that the intervals Δt1, Δt2, and Δt3 are long (Δt1 <Δt2 <Δt3).
 本変形例によれば、LED照明ユニット11への供給電流量Iが全体として緩やかに増大することとなるため、LED照明ユニット11の各部の温度差をより小さくして、各接続部にかかる温度ストレスを抑制することができる。特に、所定の駆動電流値I0に近づくにつれて時間間隔を徐々に長くすることにより、各接続部にかかる熱的ストレスをより一層低減させることができる。 According to the present modification, the amount of current I supplied to the LED lighting unit 11 gradually increases as a whole. Therefore, the temperature difference between the respective portions of the LED lighting unit 11 is further reduced, and the temperature applied to each connecting portion. Stress can be suppressed. In particular, the thermal stress applied to each connection portion can be further reduced by gradually increasing the time interval as it approaches the predetermined drive current value I0.
 図7は、駆動制御回路20による電源オン時の供給電流量の制御のさらに別の例を示すグラフである。上述の図4に示す制御例では、電源オンの後、駆動制御回路20が供給電流をI1,I2,I3,I0と四段階で順次に増大させるように制御を行なう場合を示した。変形例においては、周囲の温度が例えば零下十数℃から零下数十℃程度と低い場合、より多段階で供給電流を順次に増大させるようにしてもよい。つまり、駆動制御回路20は、温度センサ21からの検出信号に基づいて、検出温度即ちLED照明ユニット11の周辺温度が所定の温度基準値Taより低い場合により多段階で供給電流量を徐々に増大させてもよい。これにより、各段階におけるLED照明ユニット11の各部の温度差をより小さくしてもよい。 FIG. 7 is a graph showing still another example of the control of the supply current amount when the power is turned on by the drive control circuit 20. In the control example shown in FIG. 4 described above, the case where the drive control circuit 20 performs control so as to sequentially increase the supply current in four stages of I1, I2, I3, and I0 after the power is turned on is shown. In the modified example, when the ambient temperature is low, for example, from about several tens of degrees Celsius to about several tens of degrees Celsius, the supply current may be sequentially increased in multiple stages. That is, based on the detection signal from the temperature sensor 21, the drive control circuit 20 gradually increases the amount of supplied current in multiple steps when the detected temperature, that is, the ambient temperature of the LED lighting unit 11, is lower than the predetermined temperature reference value Ta. You may let them. Thereby, you may make the temperature difference of each part of the LED lighting unit 11 in each step smaller.
 例えば、図7に示すように、時刻t10(=0)で電源オンとしたとき電流I11とし、時刻t11にて電流I12(I12>I11)とし、時刻t12にて電流I13(I13>I12)とし、時刻t13にて電流I14(I14>I13)とし、時刻t14にて電流I15(I15>I14)とし、時刻t15にて電流I16(I16>I15)とし、時刻t16にて所望の駆動電流I0(I0>I16)とする。つまり、駆動制御回路20は、供給電流量Iを電源オン時から七段階で増大させて最終段階で設定された駆動電流値I0に調整する。 For example, as shown in FIG. 7, when the power is turned on at time t10 (= 0), the current is I11. At time t11, the current is I12 (I12> I11). At time t12, the current is I13 (I13> I12). At time t13, current I14 (I14> I13) is set, at time t14, current I15 (I15> I14) is set, at time t15, current I16 (I16> I15) is set, and at time t16, a desired drive current I0 ( I0> I16). That is, the drive control circuit 20 adjusts the supply current amount I to the drive current value I0 set in the final stage by increasing the supply current quantity I in seven stages from the time of power-on.
 本変形例によれば、周囲温度が非常に低く、LED照明装置10の駆動開始時における周囲温度との間に大きな温度差があっても、七段階で段階的に供給電流量Iを増大させることによって、LEDチップと基板との間の温度差を低減させることができる。これにより、各接続部にかかる熱的ストレスを大幅に低減し、接合部におけるクラック等の発生を大幅に抑制することができる。 According to this modification, even if the ambient temperature is very low and there is a large temperature difference from the ambient temperature at the start of driving the LED lighting device 10, the supply current amount I is increased stepwise in seven steps. Thus, the temperature difference between the LED chip and the substrate can be reduced. Thereby, the thermal stress concerning each connection part can be reduced significantly and generation | occurrence | production of the crack etc. in a junction part can be suppressed significantly.
 なお、駆動制御回路20は、温度センサ21の検出温度が所定の温度基準値Taより低い場合に、そうでない場合と比べて、所定の駆動電流値I0まで供給電流量を段階的に増大させる際の各段階の期間をそれぞれ長くしてもよい。つまり、電流供給を開始してから供給電流量が所定の駆動電流値I0となるまでにかかる期間が長くなるようにして供給電流量Iを段階的に増大させてもよい。 When the temperature detected by the temperature sensor 21 is lower than the predetermined temperature reference value Ta, the drive control circuit 20 increases the amount of supplied current in a stepwise manner up to the predetermined drive current value I0 as compared to the case where the temperature is not. The period of each step may be lengthened. That is, the supply current amount I may be increased stepwise so that the period from when the current supply is started until the supply current amount reaches the predetermined drive current value I0 becomes longer.
 本変形例によれば、検出温度が低い場合、つまり、電源オン直後のLED照明ユニット11の各部の温度差が大きくなる場合に、各段階の電流量が維持される時間を長くし、各部の温度が急激に上昇しないようにできる。LEDチップへの供給電流量を全体としてより緩やかに増大させることで、LEDチップと基板との間で過渡的に発生する温度差を小さくし、各接続部に加えられる熱的ストレスを大幅に低減できる。 According to this modification, when the detected temperature is low, that is, when the temperature difference between the respective parts of the LED lighting unit 11 immediately after the power is turned on, the time during which the current amount of each stage is maintained is lengthened. The temperature can be prevented from rising rapidly. By gradually increasing the amount of current supplied to the LED chip as a whole, the temperature difference that occurs transiently between the LED chip and the substrate is reduced, and the thermal stress applied to each connection is greatly reduced. it can.
(第二の実施形態)
 図8は、第二の実施形態に係るLED照明装置30の構成を示すブロック図である。LED照明装置30は、電圧センサ31をさらに備える点で、上述の実施形態に係るLED照明装置10と相違する。電圧センサ31は、公知の構成であって、外部電源22により印加される交流電圧の電源電圧Vを検出して駆動制御回路20に出力する。以下、LED照明装置10との相違点を中心に説明する。
(Second embodiment)
FIG. 8 is a block diagram showing the configuration of the LED lighting device 30 according to the second embodiment. The LED lighting device 30 is different from the LED lighting device 10 according to the above-described embodiment in that the LED lighting device 30 further includes a voltage sensor 31. The voltage sensor 31 has a known configuration and detects the power supply voltage V of the AC voltage applied by the external power supply 22 and outputs it to the drive control circuit 20. Hereinafter, the difference from the LED lighting device 10 will be mainly described.
 駆動制御回路20は、電圧センサ31で検出された電源電圧Vと温度センサ21で検出された周囲温度Tに基づいて、以下のように動作する。駆動制御回路20は、電源電圧Vが増大して第一の基準電圧値V1より大きくなったときに(V>V1)、供給電流量Iを予め設定された第一の割合R1(例えば90%)に減少させる。即ち、供給電流Iを、I=I0×R1とする。 The drive control circuit 20 operates as follows based on the power supply voltage V detected by the voltage sensor 31 and the ambient temperature T detected by the temperature sensor 21. When the power supply voltage V increases and becomes greater than the first reference voltage value V1 (V> V1), the drive control circuit 20 sets the supply current amount I to a preset first ratio R1 (for example, 90%). ) To decrease. That is, the supply current I is set to I = I0 × R1.
 また、駆動制御回路20は、電源電圧Vが第一の基準電圧V1より大きくなり(V>V1)、かつ、周囲温度Tが予め設定した第一の基準温度Tbを超えた(T>Tb)ときに、供給電流Iを予め設定された第二の割合R2(例えば75%)に減少させる。即ち、供給電流量Iを、I=I0×R2とする。第二の割合R2は、第1の割合R1よりも低い値(R1>R2)となるように設定される。 In the drive control circuit 20, the power supply voltage V becomes higher than the first reference voltage V1 (V> V1), and the ambient temperature T exceeds the preset first reference temperature Tb (T> Tb). Sometimes, the supply current I is reduced to a preset second ratio R2 (eg, 75%). That is, the supply current amount I is I = I0 × R2. The second ratio R2 is set to be a value (R1> R2) lower than the first ratio R1.
 さらに、駆動制御回路20は、電源電圧Vが第一の基準電圧V1より高い第二の基準電圧V2(例えば公称電圧の+14%)より大きくなったとき(V>V2)、電流供給を遮断して(I=0)、LED照明ユニット11の駆動を停止させる。 Further, when the power supply voltage V becomes higher than the second reference voltage V2 (for example, + 14% of the nominal voltage) higher than the first reference voltage V1 (V> V2), the drive control circuit 20 cuts off the current supply. (I = 0), the driving of the LED illumination unit 11 is stopped.
 また、駆動制御回路20は、電源電圧Vにかかわらず、周囲温度Tが第一の基準温度Tbより高い第二の基準温度Tcを超えたとき(T>Tc)、供給電流Iを予め設定された第三の割合R3(例えば50%)に減少させる。すなわち、供給電流量Iを、I=I0×R3とする。第三の割合R3は、第二の割合R2より低い値(R2>R3)となるように設定される。 Further, the drive control circuit 20 sets the supply current I in advance when the ambient temperature T exceeds the second reference temperature Tc higher than the first reference temperature Tb (T> Tc) regardless of the power supply voltage V. To a third ratio R3 (eg 50%). That is, the supply current amount I is I = I0 × R3. The third ratio R3 is set to be a value (R2> R3) lower than the second ratio R2.
 LED照明装置30は、電源オン時において、図1に示したLED照明装置10と同様に、段階的に供給電流量Iを増大させて最終段階で駆動電流値I0とする。また、LED照明装置30は、LED照明ユニット11が安定駆動される状態において、図9のフローチャートに示されるように動作する。 The LED lighting device 30 increases the supply current amount I in a stepwise manner to a drive current value I0 in the final step, similar to the LED lighting device 10 shown in FIG. Further, the LED lighting device 30 operates as shown in the flowchart of FIG. 9 in a state where the LED lighting unit 11 is stably driven.
 図9は、駆動制御回路20の電圧変動に対する動作例を示すフローチャートである。駆動制御回路20は、周囲温度Tが第二の基準温度Tcを超えている場合(ST1のY)、供給電流量Iを第三の割合R3に減少させ、I=I0×R3としてLED照明ユニット11に供給する(ST2)。これにより、LED照明ユニット11は、駆動電流I0×R3でLED13を駆動して発光させる。 FIG. 9 is a flowchart showing an operation example of the drive control circuit 20 with respect to voltage fluctuation. When the ambient temperature T exceeds the second reference temperature Tc (Y in ST1), the drive control circuit 20 decreases the supply current amount I to the third ratio R3, and sets the LED illumination unit as I = I0 × R3 11 (ST2). Thereby, the LED illumination unit 11 drives the LED 13 with the drive current I0 × R3 to emit light.
 一方、周囲温度Tが第二の基準温度Tc以下である場合(ST1のN)、駆動制御回路20は、電源電圧Vを第一の基準電圧V1と比較する(ST3)。電源電圧Vが第一の基準電圧V1以下である場合(ST3のN)、駆動制御回路20は、供給電流量IをI0としてLED照明ユニット11に供給する(ST4)。これにより、LED照明ユニット11は、駆動電流I0でLED13を駆動して最大輝度で発光させる。 On the other hand, when the ambient temperature T is equal to or lower than the second reference temperature Tc (N in ST1), the drive control circuit 20 compares the power supply voltage V with the first reference voltage V1 (ST3). When the power supply voltage V is equal to or lower than the first reference voltage V1 (N in ST3), the drive control circuit 20 supplies the supplied current amount I to the LED illumination unit 11 as I0 (ST4). Thereby, the LED illumination unit 11 drives the LED 13 with the drive current I0 to emit light with the maximum luminance.
 また、電源電圧Vが第一の基準電圧V1を超えている場合(ST3のY)、駆動制御回路20は、電源電圧Vを第二の基準電圧V2と比較する(ST5)。電源電圧Vが第二の基準電圧V2を超えている場合(ST5のY)、駆動制御回路20は、供給電流Iを遮断して(I=0)、LED照明ユニット11の駆動を停止させる(ST6)。 Further, when the power supply voltage V exceeds the first reference voltage V1 (Y in ST3), the drive control circuit 20 compares the power supply voltage V with the second reference voltage V2 (ST5). When the power supply voltage V exceeds the second reference voltage V2 (Y in ST5), the drive control circuit 20 cuts off the supply current I (I = 0) and stops driving the LED lighting unit 11 ( ST6).
 なお、電源電圧Vが第二の基準電圧V2以下である場合(ST5のN)、駆動制御回路20は、周囲温度Tと第一の基準温度Tbを比較する(ST7)。周囲温度Tが第一の基準温度Tb以下である場合(ST7のN)、駆動制御回路20は、供給電流Iを予め設定された第一の割合R1(例えば90%)に減少させ、供給電流IをI=I0×R1とする(ST8)。これにより、LED照明ユニット11は、駆動電流I0×R1でLED13を駆動して発光させる。 If the power supply voltage V is equal to or lower than the second reference voltage V2 (N in ST5), the drive control circuit 20 compares the ambient temperature T with the first reference temperature Tb (ST7). When the ambient temperature T is equal to or lower than the first reference temperature Tb (N in ST7), the drive control circuit 20 reduces the supply current I to a preset first ratio R1 (for example, 90%), and supplies the supply current I I is set to I = I0 × R1 (ST8). Thereby, the LED illumination unit 11 drives the LED 13 with the drive current I0 × R1 to emit light.
 また、周囲温度Tが第二の基準温度Tbを超えている場合(ST7のY)、駆動制御回路20は、供給電流Iを予め設定された第二の割合R2に減少させ、供給電流IをI=I0×R2とする(ST9)。これにより、LED照明ユニット11は、駆動電流I0×R2でLED13を駆動して発光させる。 When the ambient temperature T exceeds the second reference temperature Tb (Y in ST7), the drive control circuit 20 reduces the supply current I to a preset second ratio R2 and reduces the supply current I. I = I0 × R2 (ST9). Thereby, the LED illumination unit 11 drives the LED 13 with the drive current I0 × R2 to emit light.
 本実施形態によれば、電源電圧Vが増大したときに電圧センサ31からの検出信号に基づいて供給電流量Iを適切に減少させて、LED照明ユニット11に意図しない多大な電力が供給されることを防ぐことができる。これにより、LED照明ユニット11に過剰な電力が供給されて損傷してしまうことを未然に抑止することができる。 According to the present embodiment, when the power supply voltage V increases, the supply current amount I is appropriately reduced based on the detection signal from the voltage sensor 31, and a large amount of unintended power is supplied to the LED lighting unit 11. Can be prevented. Thereby, it can suppress beforehand that excessive electric power is supplied to the LED illumination unit 11, and it will be damaged.
 一般に、電源として交流の商用電源等を利用する場合には、電源のAC電圧が変動することが知られている。このようなAC電圧の変動は、交流または直流の定電圧電源を用いない場合、その変動分を駆動制御回路20で吸収する必要がある。そのため、AC電圧が増大する場合、駆動制御回路20においてAC電圧の増大分を吸収する必要があり、駆動制御回路20で負担する消費電力が増加し、駆動制御回路20の発熱量の増大につながりうる。一方、本実施形態では、電源電圧が上昇した場合にLED照明ユニット11への供給電流量を低減させるよう制御がなされるため、想定以上の電力が駆動制御回路20に流れることを防ぐことができる。これにより、LED照明ユニット11や駆動制御回路20の損傷を防いで、LED照明装置30の信頼性を高めることができる。 In general, when an AC commercial power source or the like is used as a power source, it is known that the AC voltage of the power source fluctuates. Such AC voltage fluctuations need to be absorbed by the drive control circuit 20 when an AC or DC constant voltage power supply is not used. Therefore, when the AC voltage increases, it is necessary to absorb the increase in the AC voltage in the drive control circuit 20, which increases the power consumed by the drive control circuit 20, leading to an increase in the amount of heat generated in the drive control circuit 20. sell. On the other hand, in the present embodiment, when the power supply voltage increases, control is performed so as to reduce the amount of current supplied to the LED lighting unit 11, so that it is possible to prevent more power than expected from flowing to the drive control circuit 20. . Thereby, damage to the LED lighting unit 11 and the drive control circuit 20 can be prevented, and the reliability of the LED lighting device 30 can be improved.
 また、本実施形態によれば、外部電源22の電源電圧の増大とともに検出温度Tが高くなったときに供給電流Iを減少させることにより、電源電圧の増大による消費電力増加を低減させることができる。これにより、LED照明ユニット11または駆動制御回路20における消費電力増大分に対する負担が軽減されると共に、LED照明装置30のさらなる温度上昇が抑制される。さらに、電源電圧がさらに増大した場合や、検出温度がさらに増大した場合に、供給電流Iをさらに減少させる、または、電流供給を遮断することにより、LED照明ユニット11および駆動制御回路20を保護することができる。 Further, according to the present embodiment, an increase in power consumption due to an increase in the power supply voltage can be reduced by reducing the supply current I when the detected temperature T increases as the power supply voltage of the external power supply 22 increases. . Thereby, while the burden with respect to the power consumption increase in LED lighting unit 11 or drive control circuit 20 is reduced, the further temperature rise of LED lighting device 30 is controlled. Further, when the power supply voltage further increases or the detected temperature further increases, the LED lighting unit 11 and the drive control circuit 20 are protected by further reducing the supply current I or cutting off the current supply. be able to.
 図10は、駆動制御回路の電圧変動に対する別の動作例を示すフローチャートである。駆動制御回路20は、電源電圧Vが第二の基準電圧V2を超えている場合(ST11のY)、LED照明ユニット11への電流供給を遮断してI=0とする(ST12)。電源電圧Vが第二の基準電圧V2以下の場合(ST11のN)、電源電圧Vを第一の基準電圧V1と比較し(ST13)、電源電圧Vが第一の基準電圧V1以下であれば(ST13のN)、供給電流量I=I0とする(ST14)。 FIG. 10 is a flowchart showing another example of operation with respect to voltage fluctuation of the drive control circuit. When the power supply voltage V exceeds the second reference voltage V2 (Y in ST11), the drive control circuit 20 cuts off the current supply to the LED lighting unit 11 and sets I = 0 (ST12). When the power supply voltage V is less than or equal to the second reference voltage V2 (N in ST11), the power supply voltage V is compared with the first reference voltage V1 (ST13). If the power supply voltage V is less than or equal to the first reference voltage V1, (N in ST13), supply current amount I = I0 (ST14).
 電源電圧Vが第一の基準電圧V1を超えていれば(ST13のY)、周囲温度Tと第二の基準温度Tcを比較し(ST15)、周囲温度Tが第二の基準温度Tcを超えていれば(ST15のY)、供給電流量Iを第三の割合R3に減少させ、I=I0×R3とする(ST16)。周囲温度Tが第二の基準温度Tc以下であって(ST15のN)、第一の基準温度Tb以下であれば(ST17のN)、供給電流量Iを第一の割合R1に減少させ、I=I0×R1とする(ST18)。周囲温度Tが第一の基準温度Tbを超えていれば(ST17のY)、供給電流量Iを第二の割合R2に減少させ、I=I0×R2とする。 If the power supply voltage V exceeds the first reference voltage V1 (Y in ST13), the ambient temperature T is compared with the second reference temperature Tc (ST15), and the ambient temperature T exceeds the second reference temperature Tc. If so (Y in ST15), the supply current amount I is reduced to the third ratio R3, and I = I0 × R3 (ST16). If the ambient temperature T is equal to or lower than the second reference temperature Tc (N in ST15) and equal to or lower than the first reference temperature Tb (N in ST17), the supply current amount I is decreased to the first ratio R1, I = I0 × R1 (ST18). If the ambient temperature T exceeds the first reference temperature Tb (Y in ST17), the supply current amount I is reduced to the second ratio R2, and I = I0 × R2.
 なお、電源電圧Vが第二の基準電圧V2を超える場合、LED照明ユニット11への電流供給を遮断する代わりに、供給電流量Iを第三の割合R3に減少させてI=I0×R3としてもよい。また、周囲温度Tが第二の基準温度Tcを超える場合、供給電流量Iを第三の割合R3に減少させる代わりに、LED照明ユニット11への電流供給を遮断してI=0としてもよい。 When the power supply voltage V exceeds the second reference voltage V2, instead of interrupting the current supply to the LED lighting unit 11, the supply current amount I is reduced to the third ratio R3 so that I = I0 × R3 Also good. Further, when the ambient temperature T exceeds the second reference temperature Tc, the current supply to the LED lighting unit 11 may be cut off and I = 0 instead of decreasing the supply current amount I to the third ratio R3. .
 本発明はその趣旨を逸脱しない範囲において様々な形態で実施することができる。例えば、上述した実施形態においては、電源オン時に、駆動制御回路20は、四段階で供給電流を増大させ、あるいは低温時には七段階で供給電流を増大させるように構成する場合を示した。しかしながら、使用形態によって、駆動制御回路20は、二段階,三段階または五段階以上で段階的に供給電流を増大させるようにしてもよい。その際、各段階の持続時間は、均一であってもよいし、供給電流Iが増大するにつれて長くなるように、または短くなるように設定してもよい。 The present invention can be implemented in various forms without departing from the spirit of the present invention. For example, in the above-described embodiment, the case where the drive control circuit 20 is configured to increase the supply current in four stages when the power is turned on, or to increase the supply current in seven stages at a low temperature is shown. However, the drive control circuit 20 may increase the supply current step by step in two steps, three steps, or five steps or more depending on the form of use. In this case, the duration of each stage may be uniform, or may be set to become longer or shorter as the supply current I increases.
 上述した実施形態においては、外部電源22として、交流電源が採用されているが、これに限らず、直流電源が採用されてもよいことは明らかである。 In the embodiment described above, an AC power supply is adopted as the external power supply 22, but this is not a limitation, and it is obvious that a DC power supply may be adopted.
 10  LED照明装置、
 11  LED照明ユニット
 12  基板
 13  LED
 13b LEDパッケージ
 13c チップ
 14  熱伝導シート
 15  放熱部材
 20  駆動制御回路
 21  温度センサ
 V   電源電圧
 V1  第一の基準電圧
 V2  第二の基準電圧
 T   周囲の温度
 Ta  所定温度
 Tb  第一の基準温度
 Tc  第二の基準温度
 R1  第一の割合
 R2  第二の割合
 R3  第三の割合
10 LED lighting device,
11 LED lighting unit 12 Substrate 13 LED
13b LED package 13c chip 14 heat conduction sheet 15 heat radiation member 20 drive control circuit 21 temperature sensor V power supply voltage V1 first reference voltage V2 second reference voltage T ambient temperature Ta predetermined temperature Tb first reference temperature Tc second Reference temperature R1 first proportion R2 second proportion R3 third proportion
 本発明によれば、電源投入時にLEDチップと基板との間で生じる温度差を小さくし、LEDチップと基板との間の接続部にかかる熱応力を低減させることにより、LED照明装置の信頼性を高めることができる。 According to the present invention, the reliability of the LED lighting device is improved by reducing the temperature difference generated between the LED chip and the substrate when the power is turned on and reducing the thermal stress applied to the connection portion between the LED chip and the substrate. Can be increased.

Claims (9)

  1.  基板上に搭載されるLEDを有するLED照明ユニットと、前記LED照明ユニットに駆動電流を供給する駆動制御回路と、を備え、
     前記駆動制御回路は、前記LED照明ユニットへの電流供給を開始する際、予め設定される所定の駆動電流値まで供給電流量を段階的に増大させることを特徴とするLED照明装置。
    An LED illumination unit having an LED mounted on a substrate, and a drive control circuit for supplying a drive current to the LED illumination unit,
    The drive control circuit, when starting to supply current to the LED lighting unit, gradually increases the amount of supplied current to a predetermined driving current value set in advance.
  2.  LED照明ユニットあるいはその周辺の温度を検出する温度センサをさらに備え、
     前記駆動制御回路は、電流供給開始前の検出温度が所定の温度基準値を下回る場合、そうでない場合と比べて、電流供給を開始してから供給電流量が前記所定の駆動電流値となるまでの期間が長くなるようにして供給電流量を段階的に増大させることを特徴とする請求項1に記載のLED照明装置。
    A temperature sensor for detecting the temperature of the LED lighting unit or its surroundings;
    When the detected temperature before starting the current supply is lower than the predetermined temperature reference value, the drive control circuit is configured to start supplying the current until the supply current amount reaches the predetermined drive current value, as compared with the case where the detected temperature is not lower than the predetermined temperature reference value. The LED lighting device according to claim 1, wherein the amount of supply current is increased in a stepwise manner so as to lengthen the period.
  3.  前記駆動制御回路は、電流供給開始前の検出温度が前記所定の温度基準値を下回る場合、そうでない場合と比べて、前記所定の駆動電流値まで供給電流量を段階的に増大させる際の段階数を多くすることを特徴とする請求項2に記載のLED照明装置。 When the detected temperature before the start of current supply is lower than the predetermined temperature reference value, the drive control circuit increases the supply current amount step by step up to the predetermined drive current value as compared to the case where the detected temperature is not the case. The LED lighting device according to claim 2, wherein the number is increased.
  4.  前記駆動制御回路は、電流供給開始前の検出温度が前記所定の温度基準値を下回る場合、そうでない場合と比べて、前記所定の駆動電流値まで供給電流量を段階的に増大させる際の各段階の供給電流量を維持する期間をそれぞれ長くすることを特徴とする請求項2に記載のLED照明装置。 When the detected temperature before the start of current supply is lower than the predetermined temperature reference value, the drive control circuit is configured to increase the supply current amount step by step up to the predetermined drive current value as compared to the case where the detected temperature is not lower. The LED lighting device according to claim 2, wherein each of the periods for maintaining the supply current amount in stages is lengthened.
  5.  前記駆動制御回路は、供給電流量を段階的に増大させるごとに各段階の供給電流量を維持する期間を長くすることを特徴とする請求項1から4のいずれか一項に記載のLED照明装置。 5. The LED illumination according to claim 1, wherein the drive control circuit lengthens a period during which the supply current amount at each stage is maintained each time the supply current amount is increased step by step. apparatus.
  6.  前記駆動制御回路は、外部電源からの電力供給を受けており、
     前記駆動制御回路は、前記外部電源の電源電圧が第一の電圧基準値を超える場合、前記LED照明ユニットへの供給電流量を前記所定の駆動電流値に第一の割合を乗じた電流値に減少させることを特徴とする請求項1から5のいずれか一項に記載のLED照明装置。
    The drive control circuit is supplied with power from an external power source,
    The drive control circuit, when the power supply voltage of the external power supply exceeds a first voltage reference value, the amount of current supplied to the LED lighting unit is a current value obtained by multiplying the predetermined drive current value by a first ratio. The LED illumination device according to any one of claims 1 to 5, wherein the LED illumination device is reduced.
  7.  LED照明ユニットあるいはその周辺の温度を検出する温度センサを備え、
     前記駆動制御回路は、前記外部電源からの電源電圧が前記第一の電圧基準値を超え、かつ、検出温度が第一の温度基準値を超える場合、前記LED照明ユニットへの供給電流量を前記所定の駆動電流値に前記第一の割合より小さい第二の割合を乗じた電流値に減少させることを特徴とする請求項6に記載のLED照明装置。
    A temperature sensor that detects the temperature of the LED lighting unit or its surroundings,
    When the power supply voltage from the external power source exceeds the first voltage reference value and the detected temperature exceeds the first temperature reference value, the drive control circuit determines the amount of current supplied to the LED lighting unit when the detected temperature exceeds the first temperature reference value. The LED lighting device according to claim 6, wherein the LED lighting device is reduced to a current value obtained by multiplying a predetermined drive current value by a second ratio smaller than the first ratio.
  8.  前記駆動制御回路は、前記外部電源の電源電圧が前記第一の電圧基準値より大きい第二の基準電圧値を超える場合、前記LED照明ユニットへの供給電流量を前記所定の駆動電流値に前記第二の割合より小さい第三の割合を乗じた電流値に減少させ、または、前記LED照明ユニットへの電流供給を停止させることを特徴とする請求項7に記載のLED照明装置。 When the power supply voltage of the external power supply exceeds a second reference voltage value that is larger than the first voltage reference value, the drive control circuit sets the amount of current supplied to the LED lighting unit to the predetermined drive current value. The LED lighting device according to claim 7, wherein a current value obtained by multiplying a third ratio smaller than the second ratio is reduced, or current supply to the LED lighting unit is stopped.
  9.  前記駆動制御回路は、検出温度が前記第一の温度基準値より大きい第二の温度基準値を超える場合、前記LED照明ユニットへの供給電流量を前記所定の駆動電流値に前記第三の割合を乗じた電流値に減少させ、または、前記LED照明ユニットへの電流供給を停止させることを特徴とする請求項8に記載のLED照明装置。 When the detected temperature exceeds a second temperature reference value that is greater than the first temperature reference value, the drive control circuit converts the amount of current supplied to the LED lighting unit to the predetermined drive current value to the third ratio. The LED lighting device according to claim 8, wherein the LED lighting device is reduced to a current value multiplied by or stopped from supplying current to the LED lighting unit.
PCT/JP2015/076091 2014-09-16 2015-09-15 Led illumination device WO2016043171A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014187735A JP2017201572A (en) 2014-09-16 2014-09-16 LED lighting device
JP2014-187735 2014-09-16

Publications (1)

Publication Number Publication Date
WO2016043171A1 true WO2016043171A1 (en) 2016-03-24

Family

ID=55533208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076091 WO2016043171A1 (en) 2014-09-16 2015-09-15 Led illumination device

Country Status (2)

Country Link
JP (1) JP2017201572A (en)
WO (1) WO2016043171A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008136293A (en) * 2006-11-28 2008-06-12 Fuji Electric Device Technology Co Ltd Power supply control circuit
JP2009033090A (en) * 2007-12-27 2009-02-12 Rohm Co Ltd Drive device
WO2013133547A1 (en) * 2012-03-07 2013-09-12 Yu Sang-Woo Led driver circuit having efficiency-improving function
JP2014078420A (en) * 2012-10-11 2014-05-01 Panasonic Corp Light emitting element lighting device and lighting fixture using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008136293A (en) * 2006-11-28 2008-06-12 Fuji Electric Device Technology Co Ltd Power supply control circuit
JP2009033090A (en) * 2007-12-27 2009-02-12 Rohm Co Ltd Drive device
WO2013133547A1 (en) * 2012-03-07 2013-09-12 Yu Sang-Woo Led driver circuit having efficiency-improving function
JP2014078420A (en) * 2012-10-11 2014-05-01 Panasonic Corp Light emitting element lighting device and lighting fixture using the same

Also Published As

Publication number Publication date
JP2017201572A (en) 2017-11-09

Similar Documents

Publication Publication Date Title
US9035331B2 (en) System for thermal control of red LED(s) chips
US20110031887A1 (en) Led lighting system
TWI447892B (en) Light emitting apparatus and fabrication method thereof
JP4750821B2 (en) Luminescent display panel
TWI569407B (en) Solid state lights with thermal control elements
JP2007066696A (en) Lighting system
US20150123571A1 (en) Thermal protection structure for multi-junction led module
Liu et al. High efficiency silicon-based high power LED package integrated with micro-thermoelectric device
US20190036300A1 (en) Semiconductor laser device and method for manufacturing same
JP2007150329A (en) Multilayer light emitting element having integrated thermoelectric chip
WO2016043171A1 (en) Led illumination device
JP2009206422A (en) Surface mounting led package
TW201433208A (en) Light-emitting device with a temperature compensation element
JP2014503955A (en) Lighting device and method of assembling the lighting device
CN103939780A (en) Semiconductor diode implantable temperature sampling temperature compensation LED lamp and implementation method thereof
JP2012163667A (en) Light source device, video display device, and multi-screen video display device
JP3212071U (en) Lighting apparatus having a thermal element provided at an optimum position
Kudsieh et al. Thermal modeling of specialty heat-sinks for low-cost COP packaging of high-power LEDs
CN217181118U (en) High-power integrated LED light source temperature control heat dissipation experimental device
Chen et al. Thermal management for high-power photonic crystal light emitting diodes
Jeong et al. Junction temperature control for the automotive LED lamp based on the current feed forward strategy
CN202056814U (en) Automatic temperature control system of high-power LED(Light Emitting Diode) lamps
US20150280087A1 (en) Light-emitting diode having a silicon submount and light-emitting diode lamp
JP2011076574A (en) Constant current element
Li et al. Effect of junction temperature on the performance of high-power white LEDs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15841649

Country of ref document: EP

Kind code of ref document: A1