WO2016042910A1 - Photoelectric conversion device - Google Patents

Photoelectric conversion device Download PDF

Info

Publication number
WO2016042910A1
WO2016042910A1 PCT/JP2015/070499 JP2015070499W WO2016042910A1 WO 2016042910 A1 WO2016042910 A1 WO 2016042910A1 JP 2015070499 W JP2015070499 W JP 2015070499W WO 2016042910 A1 WO2016042910 A1 WO 2016042910A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
conversion element
light receiving
conversion device
substrate
Prior art date
Application number
PCT/JP2015/070499
Other languages
French (fr)
Japanese (ja)
Inventor
宮西 晋太郎
正典 栗原
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016042910A1 publication Critical patent/WO2016042910A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention relates to a photoelectric conversion device, and more particularly to an integrated thin film photoelectric conversion device.
  • Patent Document 1 discloses a solar cell module in which a plurality of cell light receiving surfaces are arranged concentrically in consideration of design and the like, and the areas of the respective cell light receiving surfaces are substantially the same. By making the area of each cell light receiving surface the same, the output of each cell becomes equal, and the power loss at the time of series connection is reduced.
  • Patent Documents 2 to 4 also disclose solar cells in which a plurality of cell light receiving surfaces are arranged concentrically.
  • Japanese Utility Model Publication No. 1-1121958 Japanese Patent Laid-Open No. 62-111480 JP-A-11-26786 Japanese Utility Model Publication No. 58-122466
  • the photoelectric conversion device of the present invention includes an insulating substrate and a plurality of photoelectric conversion elements including a first electrode layer, a photoelectric conversion layer, and a second electrode layer sequentially stacked on the main surface of the substrate, A plurality of photoelectric conversion elements are arranged concentrically from the central portion of the substrate toward the outer peripheral direction so as to sequentially surround the outer periphery of the photoelectric conversion elements formed relatively inside, and the central portion From the photoelectric conversion element arranged on the outermost periphery to the photoelectric conversion element arranged on the outermost periphery, they are sequentially electrically connected in series via an electrical connection portion, and from the central portion toward the outermost periphery. The light receiving area of each photoelectric conversion element is reduced.
  • the light conversion efficiency can be improved within a limited light receiving area.
  • FIG. 1 is a plan view illustrating an overall configuration of a photoelectric conversion device in Embodiment 1.
  • FIG. FIG. 6 is a plan view illustrating an overall configuration of a photoelectric conversion device in a second embodiment.
  • FIG. 10 is a plan view illustrating an overall configuration of a photoelectric conversion device in a third embodiment.
  • FIG. 2 is a cross-sectional view corresponding to the line OP in FIG. 1 in the first embodiment.
  • FIG. 10 is a plan view illustrating an overall configuration of a photoelectric conversion device in a fourth embodiment.
  • FIG. 6 is a cross-sectional view corresponding to line OP in FIG. 5 in the fourth embodiment. It is a figure which shows the correlation of the serial resistance of a photoelectric conversion element, and fill factor FF.
  • FIG. 1 is a plan view of the entire configuration of the photoelectric conversion apparatus 1000 according to Embodiment 1 on the light receiving surface side.
  • FIG. 4 is a cross-sectional view of the photoelectric conversion device 1000 corresponding to the OP line in FIG.
  • the photoelectric conversion device 1000 includes first electrode layers 101, 111, 121, 131, 141, 151 and photoelectric conversion layers 102, 112, 122, 132, 142, 152 that are sequentially formed on the main surface of the insulating substrate 10. , And a plurality of photoelectric conversion elements 100, 110, 120, 130, 140, 150 constituted by the second electrode layers 103, 113, 123, 133, 143, 153 (in FIG. 1, each radius is r 0. It consists of a ⁇ r 5.).
  • the insulating substrate may have an insulating surface on the side where the first electrode layer is formed.
  • the insulating substrate a substrate made of glass or resin, a substrate in which an insulating film is laminated on the surface of a conductive substrate such as metal, or the like is used.
  • the first electrode layer and the second electrode layer are made of a zinc oxide-based, tin oxide-based, or indium oxide-based transparent conductive film material.
  • a metal film may be formed on the outermost surface of the second electrode layer (lower part in FIG. 4) for the purpose of increasing light reflectivity and electrical conductivity. In particular, it is desirable to form a silver thin film that is excellent in terms of reflectance and electrical conductivity.
  • the light conversion device 1000 when the insulating substrate 10 is formed of a flexible substrate, the light conversion device 1000 can be attached to a curved surface for the purpose of energy harvesting. It is suitable for the light conversion element.
  • the photoelectric conversion layers 102, 112, 122, 132, 142, 152 are made of materials used for thin film solar cells.
  • the photoelectric conversion layers 102, 112, 122, 132, 142, and 152 may be made of CIGS, organic materials, or dye-sensitized materials, and the thin film Si type such as amorphous Si or microcrystalline Si. If it is made of a material, it is easy to pattern by laser scribing, and it is easy to adjust the light receiving area of each photoelectric conversion element, and it can be adjusted to desired power generation characteristics by changing the patterning of laser scribing. .
  • the plurality of photoelectric conversion elements 110, 120, 130, 140, and 150 are concentrically arranged from the center of the substrate 10 toward the outer periphery so as to sequentially surround the outer periphery of the photoelectric conversion element 100 formed relatively inside. Has been placed.
  • the plurality of photoelectric conversion elements 100, 110, 120, 130, 140, and 150 are sequentially electrically connected in series from the photoelectric conversion element 100 disposed at the center toward the photoelectric conversion element 150 disposed at the outermost periphery. It is connected.
  • the 1st electrode layer and 2nd electrode layer of an adjacent photoelectric conversion element are connected by the electrical connection part 105,115,125,135,145.
  • the first electrode layer 101 at the center is electrically connected to the electrode 12 via the electrical connecting portion 11 and electricity is extracted from the electrode 12.
  • the electrical connecting portions 105, 115, 125, 135, and 145 are made of a transparent conductive film material that constitutes the first electrode layer or the second electrode layer. Since the connection area of the electrical connection portion increases toward the outer periphery, the series resistance of the photoelectric conversion element decreases as it goes toward the outer periphery.
  • FIG. 7 is a diagram showing the relationship between the series resistance Rs of the photoelectric conversion element and the fill factor FF. As shown in FIG. 7, as the series resistance component Rs decreases, the fill factor FF of the photoelectric conversion element increases. For this reason, the power generation efficiency of a photoelectric conversion element improves as it goes to the outer periphery.
  • the power generation characteristics of the photoelectric conversion device are dragged to the photoelectric conversion elements (photovoltaic elements having no characteristics) with large power loss. Even if power is generated with great effort, it will not be possible to efficiently extract power to the outside.
  • changes in power loss in each photoelectric conversion element can be made uniform, so that an optimum photoelectric conversion efficiency can be realized within a limited area.
  • the photoelectric conversion elements are arranged concentrically, so that even if the outer periphery is shaded, the light receiving part in the center is not shaded. The power generation efficiency is not extremely lowered.
  • the light receiving surface is arranged so that the light receiving area of each photoelectric conversion element satisfies (Equation 1) from the center of the photoelectric conversion apparatus 1000 toward the outermost periphery. If formed, more efficient light conversion efficiency can be realized within a limited area.
  • Equation 1 can be described as follows.
  • S n the light receiving surface area (n ⁇ 1) of the nth photoelectric conversion element from the central part side excluding the photoelectric conversion element arranged in the central part.
  • S 0 The light receiving surface area of the photoelectric conversion element disposed in the center.
  • Power loss improvement rate at the electrical connection.
  • n increases in the fill factor FF of the nth photoelectric conversion element from the center side excluding the photoelectric conversion element arranged in the center.
  • the fill factor FF increases linearly at ⁇ n. This is because as n increases, the contact area of the electrical connection portion increases, and as a result, the series resistance Rs decreases and the fill factor FF increases.
  • the power loss improvement rate ⁇ due to the series resistance of the operating current with respect to ⁇ n.
  • FIG. 2 is a plan view on the light-receiving surface side of the entire configuration of the photoelectric conversion device 2000 according to the second embodiment.
  • a cross-sectional view of the photoelectric conversion device 2000 corresponding to the OP line in FIG. 2 has the same configuration as that in Embodiment 1, and thus the description thereof is omitted.
  • the photoelectric conversion device 2000 includes photoelectric conversion elements 200, 210, 220, and 230 from the center of the substrate toward the outer periphery so as to sequentially surround the outer periphery of the photoelectric conversion elements formed inside. , 240 and 250 are arranged concentrically.
  • the light receiving surfaces of the photoelectric conversion elements 200, 210, 220, 230, 240, 250 have a hexagonal shape.
  • each light receiving surface is patterned so as to satisfy (Equation 3).
  • Equation 3 can be described as follows.
  • S n the light receiving surface area (n ⁇ 1) of the nth photoelectric conversion element from the central part side excluding the photoelectric conversion element arranged in the central part.
  • S 0 The light receiving surface area of the photoelectric conversion element disposed in the center.
  • Power loss improvement rate at the electrical connection.
  • l n The outer peripheral length of the light receiving surface of the n-th photoelectric conversion element from the central side excluding the photoelectric conversion element arranged in the central part.
  • r 0 Radius of a circle having the same area as the light receiving surface area of the photoelectric conversion element arranged at the center.
  • Equation 3 is based on the derivation method of (Equation 1) in the case of concentric circles, and when the photoelectric conversion element has a polygonal shape, the outer peripheral length of the light receiving surface of the photoelectric conversion element is a circle. Therefore, as a coefficient for correcting the amount, l n / (2 ⁇ r 0 ) is multiplied by the power loss improvement rate ⁇ .
  • the shape of the photoelectric conversion elements 200, 210, 220, 230, 240, 250 may be a polygonal shape, but a regular hexagonal shape is desirable as a shape for efficiently filling the plane. Thereby, the limited area and the range of a shape can be efficiently covered with a photoelectric conversion element.
  • the power loss improvement rate ⁇ of (Equation 3) is expressed by the light receiving surface area of the photoelectric conversion element and the number of elements n, (Equation 4) is obtained.
  • the series resistance at the electrical connection portion is too large, the difference in photoelectric conversion efficiency (curve factor FF) between the photoelectric conversion elements becomes too large, which is not preferable. It is desirable that it is 002 or less.
  • FIG. 3 is a plan view of the entire configuration of the photoelectric conversion device 3000 according to Embodiment 3 on the light receiving surface side.
  • a cross-sectional view of the photoelectric conversion device 3000 corresponding to the OP line in FIG. 3 has the same configuration as that in Embodiment 1, and thus description thereof is omitted.
  • the photoelectric conversion device 3000 includes a plurality of photoelectric cells that are concentrically arranged from the center of the substrate toward the outer periphery so as to sequentially surround the outer periphery of the photoelectric conversion element 300 having a light receiving surface formed in a circular shape formed relatively inside.
  • the conversion elements 310, 320, 330, 340, and 350 are arranged, and the light receiving surface shape continuously changes toward the outer periphery, and has a hexagonal shape at the outermost periphery.
  • a hexagonal shape is shown, but the shape of the outermost periphery may be imitated in accordance with the shape that the photoelectric conversion device 3000 should cover.
  • the shape of the outermost light receiving surface may be elliptical.
  • FIG. 5 is a plan view on the light receiving surface side of the entire configuration of the photoelectric conversion device 4000 according to the fourth embodiment.
  • FIG. 6 is a cross-sectional view of the photoelectric conversion device 4000 corresponding to the line OP in FIG. 5 in the fourth embodiment.
  • the photoelectric conversion device 4000 includes first electrode layers 401, 411, 421, 431, 441, 451, and photoelectric conversion layers 402, 412, 422, 432, 442, 452 that are sequentially formed on the main surface of the insulating substrate 40. , And a plurality of photoelectric conversion elements 400, 410, 420, 430, 440, 450 constituted by the second electrode layers 403, 413, 423, 433, 443, 453.
  • the first electrode layer and the second electrode layer are made of a zinc oxide-based, tin oxide-based, or indium oxide-based transparent conductive film material.
  • a metal film may be formed on the lower surface of the second electrode layer (between the substrate 40 and the second electrode layer in FIG.
  • the light conversion device 4000 can be attached to a curved surface.
  • the photoelectric conversion layers 402, 412, 422, 432, 442, and 452 are made of a thin film Si-based material such as amorphous Si or microcrystalline Si
  • the photoelectric conversion layer formed on the substrate 40 is from the substrate 40 side.
  • N-layer, i-layer, and p-layer are formed in this order, and the photoelectric conversion efficiency is improved by forming the structure of the substrate-type thin film solar cell, and the transparent casing 43 is formed on the second electrode layer.
  • the durability of the photoelectric conversion device 4000 is improved.
  • the first electrode layer and the second electrode layer of the adjacent photoelectric conversion elements are sequentially electrically connected to the photoelectric conversion elements 450 formed on the outermost periphery by the electrical connection portions 404, 414, 424, 434, 444, and 454. It is connected.
  • An electrode 41 for electrical extraction is electrically connected to the second electrode layer 403 at the center, and an electrode 42 for electrical extraction is electrically connected to the first electrode layer 451 at the outermost periphery. It is electrically connected via.
  • Embodiment 1 to Embodiment 4 were specifically described, the present invention is not limited to them. Embodiments obtained by appropriately combining the technical means disclosed in the four embodiments described above are also included in the technical scope of the present invention.
  • 10, 40 substrate, 41 take-out electrode, 100, 110, 120, 130, 140, 150, 200, 210, 220, 230, 240, 250, 300, 310, 320, 330, 340, 350, 400, 410, 420 , 430, 440, 450 photoelectric conversion element, 101, 111, 121, 131, 141, 151, 401, 411, 421, 431, 441, 451, first electrode layer, 102, 112, 122, 132, 142, 152, 402, 412, 422, 432, 442, 452 Photoelectric conversion layer, 103, 113, 123, 133, 143, 153, 403, 413, 423, 433, 443, 453 Second electrode layer, 105, 115, 125, 135 , 145, 405, 415, 425, 435, 445, electrical connection, 100 , 2000, 3000, and 4000 a photoelectric conversion device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

In this photoelectric conversion device (1000), a plurality of photoelectric conversion elements (100, 110, 120, 130, 140, 150) are disposed concentrically, the photoelectric conversion elements (100, 110, 120, 130, 140, 150) are sequentially electrically connected in series from a center part towards an outer peripheral side, and the area of a light reception part of each of the photoelectric conversion elements (100, 110, 120, 130, 140, 150) becomes smaller from the center towards the outer peripheral side. Due to this configuration, it is possible to improve the light conversion efficiency of the photoelectric conversion device.

Description

光電変換装置Photoelectric conversion device
 本発明は、光電変換装置に関し、特に集積型薄膜光電変換装置に関するものである。 The present invention relates to a photoelectric conversion device, and more particularly to an integrated thin film photoelectric conversion device.
 近年、スマートフォンなどの携帯情報端末機器が普及するに従い、携帯情報端末機器に内蔵されているバッテリーを如何に長持ちさせるかが重要な課題として注目されている。従来から、携帯情報端末機器の限られたスペースに電源のサポートを目的として、太陽電池を備え付ける技術が開発されてきている。特許文献1には、意匠性等を考慮して複数のセル受光面を同心状に配置し、且つ各セル受光面の面積をほぼ同一にした太陽電池モジュールが開示されている。各セル受光面の面積を同一とすることにより、個々のセル出力が等しくなり、直列接続の際のパワー損失を少なくするというものである。また、特許文献2から特許文献4にも複数のセル受光面を同心状に配置した太陽電池が開示されている。 In recent years, with the spread of mobile information terminal devices such as smartphones, it has been noted as an important issue how to last a battery built in the mobile information terminal device. 2. Description of the Related Art Conventionally, a technique for providing a solar cell has been developed for the purpose of supporting a power source in a limited space of a portable information terminal device. Patent Document 1 discloses a solar cell module in which a plurality of cell light receiving surfaces are arranged concentrically in consideration of design and the like, and the areas of the respective cell light receiving surfaces are substantially the same. By making the area of each cell light receiving surface the same, the output of each cell becomes equal, and the power loss at the time of series connection is reduced. Patent Documents 2 to 4 also disclose solar cells in which a plurality of cell light receiving surfaces are arranged concentrically.
実開平1-121958号公報Japanese Utility Model Publication No. 1-1121958 特開昭62-111480号公報Japanese Patent Laid-Open No. 62-111480 特開平11-26786号公報JP-A-11-26786 実開昭58-122466号公報Japanese Utility Model Publication No. 58-122466
 しかしながら、特許文献1から特許文献4に開示された太陽電池モジュールでは、各セルの形状に起因する光電変換特性の違いが考慮されておらず、モジュール全体の光電変換効率が低下し、また、限られた面積を有効に活用できないという問題があった。本発明はかかる問題点を解決すべく創案されたもので、光電変換効率を改善した光電変換装置を提供することを目的とする。 However, in the solar cell modules disclosed in Patent Document 1 to Patent Document 4, the difference in photoelectric conversion characteristics due to the shape of each cell is not considered, and the photoelectric conversion efficiency of the entire module is reduced. There was a problem that the area thus obtained could not be used effectively. The present invention was devised to solve such problems, and an object thereof is to provide a photoelectric conversion device with improved photoelectric conversion efficiency.
 本発明の光電変換装置は、絶縁性の基板と前記基板の主表面上に順次積層された第1電極層、光電変換層、及び第2電極層を含む複数の光電変換素子とを備え、前記複数の光電変換素子は、相対的に内側に形成されている前記光電変換素子の外周を順次取り囲むように前記基板の中央部から外周方向に向かって同心状に複数配置されており、前記中央部に配置されている前記光電変換素子から最外周に配置されている前記光電変換素子に向かって、電気接続部を介して順次電気的に直列接続されており、前記中央部から前記最外周に向かって其々の光電変換素子の受光部面積が小さくなっていることを特徴とする。 The photoelectric conversion device of the present invention includes an insulating substrate and a plurality of photoelectric conversion elements including a first electrode layer, a photoelectric conversion layer, and a second electrode layer sequentially stacked on the main surface of the substrate, A plurality of photoelectric conversion elements are arranged concentrically from the central portion of the substrate toward the outer peripheral direction so as to sequentially surround the outer periphery of the photoelectric conversion elements formed relatively inside, and the central portion From the photoelectric conversion element arranged on the outermost periphery to the photoelectric conversion element arranged on the outermost periphery, they are sequentially electrically connected in series via an electrical connection portion, and from the central portion toward the outermost periphery. The light receiving area of each photoelectric conversion element is reduced.
 本発明によれば、限られた受光面積の範囲内で光変換効率を向上することが可能となる。 According to the present invention, the light conversion efficiency can be improved within a limited light receiving area.
実施の形態1における光電変換装置の全体構成を示す平面図である。1 is a plan view illustrating an overall configuration of a photoelectric conversion device in Embodiment 1. FIG. 実施の形態2における光電変換装置の全体構成を示す平面図である。FIG. 6 is a plan view illustrating an overall configuration of a photoelectric conversion device in a second embodiment. 実施の形態3における光電変換装置の全体構成を示す平面図である。FIG. 10 is a plan view illustrating an overall configuration of a photoelectric conversion device in a third embodiment. 実施の形態1における図1のO-P線に対応する断面図である。FIG. 2 is a cross-sectional view corresponding to the line OP in FIG. 1 in the first embodiment. 実施の形態4における光電変換装置の全体構成を示す平面図である。FIG. 10 is a plan view illustrating an overall configuration of a photoelectric conversion device in a fourth embodiment. 実施の形態4における図5のO-P線に対応する断面図である。FIG. 6 is a cross-sectional view corresponding to line OP in FIG. 5 in the fourth embodiment. 光電変換素子の直列抵抗と曲線因子FFの相関関係を示す図である。It is a figure which shows the correlation of the serial resistance of a photoelectric conversion element, and fill factor FF.
 本発明に基づいた各実施の形態における光電変換装置について、以下、図を参照しながら説明する。尚、以下に説明する各実施の形態において、個数、量などに言及する場合、特に記載が有る場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。また、同一の部品、相当部品に対しては、同一参照番号を付し、重複する説明は繰り返さない場合が有る。 The photoelectric conversion device in each embodiment based on the present invention will be described below with reference to the drawings. In each embodiment described below, when referring to the number, amount, etc., the scope of the present invention is not necessarily limited to the number, amount, etc. unless otherwise specified. The same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated.
 (実施の形態1)
 図1は、実施の形態1における光電変換装置1000の全体構成の受光面側の平面図を示している。図4は、実施の形態1における図1のO-P線に対応する光電変換装置1000の断面図を示す。
(Embodiment 1)
FIG. 1 is a plan view of the entire configuration of the photoelectric conversion apparatus 1000 according to Embodiment 1 on the light receiving surface side. FIG. 4 is a cross-sectional view of the photoelectric conversion device 1000 corresponding to the OP line in FIG.
 光電変換装置1000は、絶縁性の基板10の主表面上に順次形成された第1電極層101、111、121,131,141、151、光電変換層102、112、122、132、142、152、及び第2電極層103、113、123、133、143、153によって構成される複数の光電変換素子100、110、120、130、140、150(図1中では、其々の半径はr~rとなる。)で構成される。絶縁性の基板は、第1電極層が形成される側の表面が絶縁性を有していれば良い。絶縁性の基板としては、ガラスや樹脂製のもの、金属などの導電性基板の表面に絶縁性膜が積層されたものなどが用いられる。第1電極層、第2電極層は酸化亜鉛系、酸化錫系、或いは、酸化インジュウム系の透明導電膜材料によって構成される。さらに、第2電極層の最表面(図4では下部)には、光の反射率増加と電気伝導性の増加を目的とした金属膜が形成されていてもよい。特に反射率、電気伝導の面で優れている銀薄膜が形成されていることが望ましい。上記目的を達成するため、本発明に基づく光電変換装置において、絶縁性の基板10がフレキシブル基板で構成された場合、曲面に光変換装置1000を張り付けることが可能になり、エネルギーハーベスティングを目的とした光変換素子に適している。 The photoelectric conversion device 1000 includes first electrode layers 101, 111, 121, 131, 141, 151 and photoelectric conversion layers 102, 112, 122, 132, 142, 152 that are sequentially formed on the main surface of the insulating substrate 10. , And a plurality of photoelectric conversion elements 100, 110, 120, 130, 140, 150 constituted by the second electrode layers 103, 113, 123, 133, 143, 153 (in FIG. 1, each radius is r 0. It consists of a ~ r 5.). The insulating substrate may have an insulating surface on the side where the first electrode layer is formed. As the insulating substrate, a substrate made of glass or resin, a substrate in which an insulating film is laminated on the surface of a conductive substrate such as metal, or the like is used. The first electrode layer and the second electrode layer are made of a zinc oxide-based, tin oxide-based, or indium oxide-based transparent conductive film material. Furthermore, a metal film may be formed on the outermost surface of the second electrode layer (lower part in FIG. 4) for the purpose of increasing light reflectivity and electrical conductivity. In particular, it is desirable to form a silver thin film that is excellent in terms of reflectance and electrical conductivity. In order to achieve the above object, in the photoelectric conversion device according to the present invention, when the insulating substrate 10 is formed of a flexible substrate, the light conversion device 1000 can be attached to a curved surface for the purpose of energy harvesting. It is suitable for the light conversion element.
 光電変換層102、112、122、132、142、152は、薄膜太陽電池に用いられる材料が用いられる。例として、CIGS系,有機系材料、もしくは色素増感材料で構成されていてもよい、特に光電変換層102、112、122、132、142、152がアモルファスSiや微結晶Siなどの薄膜Si系材料で構成されれば、レーザースクライビングによりパターンニングが容易で各光電変換素子の受光面積を調整することが容易であり、レーザースクライビングのパターンニングを変えることで所望の発電特性に調整することが出来る。 The photoelectric conversion layers 102, 112, 122, 132, 142, 152 are made of materials used for thin film solar cells. For example, the photoelectric conversion layers 102, 112, 122, 132, 142, and 152 may be made of CIGS, organic materials, or dye-sensitized materials, and the thin film Si type such as amorphous Si or microcrystalline Si. If it is made of a material, it is easy to pattern by laser scribing, and it is easy to adjust the light receiving area of each photoelectric conversion element, and it can be adjusted to desired power generation characteristics by changing the patterning of laser scribing. .
 複数の光電変換素子110、120、130、140、150は、相対的に内側に形成されている光電変換素子100の外周を順次取り囲むように基板10の中央部から外周に向かって同心円状に複数配置されている。複数の光電変換素子100、110、120、130、140、150は、中央部に配置されている光電変換素子100から、最外周に配置されている光電変換素子150に向かって順次電気的に直列接続されている。 The plurality of photoelectric conversion elements 110, 120, 130, 140, and 150 are concentrically arranged from the center of the substrate 10 toward the outer periphery so as to sequentially surround the outer periphery of the photoelectric conversion element 100 formed relatively inside. Has been placed. The plurality of photoelectric conversion elements 100, 110, 120, 130, 140, and 150 are sequentially electrically connected in series from the photoelectric conversion element 100 disposed at the center toward the photoelectric conversion element 150 disposed at the outermost periphery. It is connected.
 隣接する光電変換素子の第1電極層と第2電極層は、電気接続部105、115、125、135、145によって接続されている。中央部の第1電極層101は、電気接続部11を介して電極12に電気的に接続され、電極12から電気が取り出される構成である。 The 1st electrode layer and 2nd electrode layer of an adjacent photoelectric conversion element are connected by the electrical connection part 105,115,125,135,145. The first electrode layer 101 at the center is electrically connected to the electrode 12 via the electrical connecting portion 11 and electricity is extracted from the electrode 12.
 電気接続部105、115、125、135、145は、前記第1電極層或いは第2電極層を構成する透明導電膜材料で構成される。電気接続部の接続面積は外周に行くに従って大きくなるため、光電変換素子の直列抵抗は、外周に行くに従って減少する。図7は、光電変換素子の直列抵抗Rsと曲線因子FFの関係を示した図である。図7に示したように、直列抵抗成分Rsが小さくなるに従って、光電変換素子の曲線因子FFは大きくなる。このため、外周に行くに従って光電変換素子の発電効率が良くなる。本実施の形態のように其々の光電変換素子が直列に接続される場合、パワー損失が大きな光電変換素子(特性の出ていない光発電素子)に光電変換装置の発電特性が引きずられるため、せっかく発電していても効率良く電力を外部に取り出せなくなる。 The electrical connecting portions 105, 115, 125, 135, and 145 are made of a transparent conductive film material that constitutes the first electrode layer or the second electrode layer. Since the connection area of the electrical connection portion increases toward the outer periphery, the series resistance of the photoelectric conversion element decreases as it goes toward the outer periphery. FIG. 7 is a diagram showing the relationship between the series resistance Rs of the photoelectric conversion element and the fill factor FF. As shown in FIG. 7, as the series resistance component Rs decreases, the fill factor FF of the photoelectric conversion element increases. For this reason, the power generation efficiency of a photoelectric conversion element improves as it goes to the outer periphery. When the respective photoelectric conversion elements are connected in series as in the present embodiment, the power generation characteristics of the photoelectric conversion device are dragged to the photoelectric conversion elements (photovoltaic elements having no characteristics) with large power loss. Even if power is generated with great effort, it will not be possible to efficiently extract power to the outside.
 そこで、中央部(中央部を0番目)から最外周に向かってn番目の光電変換素子の受光部面積Sn(n≧0、n=0は、光電変換素子100の受光面面積S)が、最外周に向かって小さくなるように形成する。このような構成とすることにより、其々の光電変換素子でのパワー損失の変化を均一化できるために、限られた面積の範囲内で最適な光電変換効率を実現することが出来る。また、ストライプ状にパターンニングされた従来の光電変換装置に比べ、同心状に光電変換素子が配置されることで、外周部に影が掛った場合でも、中央部の受光部が陰にならない限り、発電効率が極端に下がらないといった効果を有する。 Accordingly, the light receiving area Sn (n ≧ 0, n = 0 is the light receiving surface area S 0 of the photoelectric conversion element 100) of the nth photoelectric conversion element from the central portion (the central portion is 0th) toward the outermost periphery. And formed so as to become smaller toward the outermost periphery. By adopting such a configuration, changes in power loss in each photoelectric conversion element can be made uniform, so that an optimum photoelectric conversion efficiency can be realized within a limited area. Compared with conventional photoelectric conversion devices patterned in stripes, the photoelectric conversion elements are arranged concentrically, so that even if the outer periphery is shaded, the light receiving part in the center is not shaded. The power generation efficiency is not extremely lowered.
 特に、光電変換素子が円状に構成された場合、光電変換装置1000の中央部から最外周に向かって其々の光電変換素子の受光部面積が(数1)を満足するように受光面が形成されれば、限られた面積の範囲内でより効率の良い光変換効率を実現することが出来る。 In particular, when the photoelectric conversion elements are formed in a circular shape, the light receiving surface is arranged so that the light receiving area of each photoelectric conversion element satisfies (Equation 1) from the center of the photoelectric conversion apparatus 1000 toward the outermost periphery. If formed, more efficient light conversion efficiency can be realized within a limited area.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、(数1)は、以下の通り説明できる。
 S:中央部に配置された光電変換素子を除く中央部側からn番目の光電変換素子の受光面面積(n≧1)。
 S:中央部に配置された光電変換素子の受光面面積。
 α:電気接続部でのパワー損失改善率。
Here, (Equation 1) can be described as follows.
S n : the light receiving surface area (n ≧ 1) of the nth photoelectric conversion element from the central part side excluding the photoelectric conversion element arranged in the central part.
S 0 : The light receiving surface area of the photoelectric conversion element disposed in the center.
α: Power loss improvement rate at the electrical connection.
 図7に示す光電変換素子の直列抵抗Rsと曲線因子FFの相関関係では、中央部に配置された光電変換素子を除く中央部側からn番目の光電変換素子の曲線因子FFは、nが増加するに従って増加しており、√nで曲線因子FFは線形増加している。これは、nが増加することで電気接続部の接触面積が増加し、その結果、直列抵抗Rsが減少し曲線因子FFが増加するためである。ここで、曲線因子FFの変化が光電変換素子の動作電流に与える影響度は、曲線因子FFの変化のほぼ半分であるので、√nに対しての動作電流の直列抵抗によるパワー損失改善率αは、図7の√nに対しての曲線因子FFの傾きのほぼ半分の値である。図7では、√nに対しての曲線因子FFの傾きは、0.004なので、電気接続部での直列抵抗によるパワー損失改善率αの値は、約0.002となる。 In the correlation between the series resistance Rs of the photoelectric conversion element and the fill factor FF shown in FIG. 7, n increases in the fill factor FF of the nth photoelectric conversion element from the center side excluding the photoelectric conversion element arranged in the center. The fill factor FF increases linearly at √n. This is because as n increases, the contact area of the electrical connection portion increases, and as a result, the series resistance Rs decreases and the fill factor FF increases. Here, since the influence of the change in the fill factor FF on the operating current of the photoelectric conversion element is almost half of the change in the fill factor FF, the power loss improvement rate α due to the series resistance of the operating current with respect to √n. Is a value approximately half of the slope of the fill factor FF with respect to √n in FIG. In FIG. 7, since the slope of the fill factor FF with respect to √n is 0.004, the value of the power loss improvement rate α due to the series resistance at the electrical connection is about 0.002.
 (数1)のパワー損失改善率αを光電変換素子の受光面面積と素子数nで表わすと、(数2)になる。ここで、電気接続部での直列抵抗が大きすぎると、各光電変換素子間で光電変換効率(曲線因子FF)の差が大きくなり過ぎて好ましくないことから、パワー損失改善率αは、0.002以下であることが望ましい。 When the power loss improvement rate α in (Equation 1) is expressed by the light receiving surface area of the photoelectric conversion element and the number n of elements, (Equation 2) is obtained. Here, if the series resistance at the electrical connection portion is too large, the difference in photoelectric conversion efficiency (curve factor FF) between the photoelectric conversion elements becomes too large, which is not preferable. It is desirable that it is 002 or less.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 (実施の形態2)
 図2は、実施の形態2における光電変換装置2000の全体構成の受光面側の平面図を示している。図2のO-P線に対応する光電変換装置2000の断面図は、実施の形態1と同様の構成になっているので説明を省略する。
(Embodiment 2)
FIG. 2 is a plan view on the light-receiving surface side of the entire configuration of the photoelectric conversion device 2000 according to the second embodiment. A cross-sectional view of the photoelectric conversion device 2000 corresponding to the OP line in FIG. 2 has the same configuration as that in Embodiment 1, and thus the description thereof is omitted.
 光電変換装置2000は、実施の形態1と同様に、内側に形成されている光電変換素子の外周を順次取り囲むように基板の中央部から外周に向かって、光電変換素子200、210、220、230、240、250が同心状に複数配置されている。本実施の形態において、光電変換素子200、210、220、230、240、250の受光面は六角形の形状とされている。 As in the first embodiment, the photoelectric conversion device 2000 includes photoelectric conversion elements 200, 210, 220, and 230 from the center of the substrate toward the outer periphery so as to sequentially surround the outer periphery of the photoelectric conversion elements formed inside. , 240 and 250 are arranged concentrically. In the present embodiment, the light receiving surfaces of the photoelectric conversion elements 200, 210, 220, 230, 240, 250 have a hexagonal shape.
 ここで、中央部(中央部を0番目)から最外周に向かってn番目の光電変換素子の受光部面積Sn(n≧0、n=0は、光電変換素子100の受光面面積S)が、(数3)を満足するように、其々の受光面がパターンニングされている。 Here, the light receiving area Sn (n ≧ 0, n = 0 is the light receiving surface area S 0 of the photoelectric conversion element 100) of the nth photoelectric conversion element from the center (the center is 0th) toward the outermost periphery. However, each light receiving surface is patterned so as to satisfy (Equation 3).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここで、(数3)は、以下の通り説明できる。
 S:中央部に配置された光電変換素子を除く中央部側からn番目の光電変換素子の受光面面積(n≧1)。
Here, (Equation 3) can be described as follows.
S n : the light receiving surface area (n ≧ 1) of the nth photoelectric conversion element from the central part side excluding the photoelectric conversion element arranged in the central part.
 S:中央部に配置された光電変換素子の受光面面積。
 α:電気接続部でのパワー損失改善率。
 l:中央部に配置された光電変換素子を除く中央部側からn番目の光電変換素子の受光面外周長さ。
 r:中央部に配置された光電変換素子の受光面面積と同面積の円の半径。
S 0 : The light receiving surface area of the photoelectric conversion element disposed in the center.
α: Power loss improvement rate at the electrical connection.
l n : The outer peripheral length of the light receiving surface of the n-th photoelectric conversion element from the central side excluding the photoelectric conversion element arranged in the central part.
r 0 : Radius of a circle having the same area as the light receiving surface area of the photoelectric conversion element arranged at the center.
 (数3)は、同心円状の場合の(数1)の導出方法が基本となっており、光電変換素子の形状が多角形になった場合、光電変換素子の受光面外周長さが、円状に比べ長くなることから、その分を補正する係数として、l/(2πr)をパワー損失改善率αに掛けている。 (Equation 3) is based on the derivation method of (Equation 1) in the case of concentric circles, and when the photoelectric conversion element has a polygonal shape, the outer peripheral length of the light receiving surface of the photoelectric conversion element is a circle. Therefore, as a coefficient for correcting the amount, l n / (2πr 0 ) is multiplied by the power loss improvement rate α.
 本実施の形態の光電変換装置が(数3)を満たすことにより、中央部から最外周にかけて形成されている其々の光電変換素子の直流抵抗分のパワー損失を考慮し、限られた面積かつ形状の範囲内で最適な光変換効率を実現することが出来る。 When the photoelectric conversion device of the present embodiment satisfies (Equation 3), the power loss corresponding to the DC resistance of each photoelectric conversion element formed from the center to the outermost periphery is considered, and the limited area and Optimum light conversion efficiency can be realized within the shape range.
 ここで、光電変換素子200、210、220、230、240、250の形状は、多角形の形状でもよいが、平面を効率良く充填する形状として、正六角形の形状が望ましい。これにより、限られた面積かつ形状の範囲を効率良く光電変換素子でカバーできる。
(数3)のパワー損失改善率αを光電変換素子の受光面面積と素子数nで表わすと、(数4)になる。ここで、電気接続部での直列抵抗が大きすぎると、各光電変換素子間で光電変換効率(曲線因子FF)の差が大きくなり過ぎて好ましくないことから、パワー損失改善率αは、0.002以下であることが望ましい。
Here, the shape of the photoelectric conversion elements 200, 210, 220, 230, 240, 250 may be a polygonal shape, but a regular hexagonal shape is desirable as a shape for efficiently filling the plane. Thereby, the limited area and the range of a shape can be efficiently covered with a photoelectric conversion element.
When the power loss improvement rate α of (Equation 3) is expressed by the light receiving surface area of the photoelectric conversion element and the number of elements n, (Equation 4) is obtained. Here, if the series resistance at the electrical connection portion is too large, the difference in photoelectric conversion efficiency (curve factor FF) between the photoelectric conversion elements becomes too large, which is not preferable. It is desirable that it is 002 or less.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 (実施の形態3)
 図3は、実施の形態3における光電変換装置3000の全体構成の受光面側の平面図を示している。図3のO-P線に対応する光電変換装置3000の断面図は、実施の形態1と同様の構成になっているので説明を省略する。
(Embodiment 3)
FIG. 3 is a plan view of the entire configuration of the photoelectric conversion device 3000 according to Embodiment 3 on the light receiving surface side. A cross-sectional view of the photoelectric conversion device 3000 corresponding to the OP line in FIG. 3 has the same configuration as that in Embodiment 1, and thus description thereof is omitted.
 光電変換装置3000は、相対的に内側に形成されている円状に受光面が形成された光電変換素子300の外周を順次取り囲むように基板の中央部から外周に向かって同心状に複数の光電変換素子310、320、330、340、350が配置されており、かつ、外周に行くに従って連続的に受光面形状が変化しながら最外周で六角形の形状になっている。ここでは、六角形の形状を示しているが、光電変換装置3000がカバーすべき形状に合わせて、最外周の形状を模ってもよい。例えば楕円状の面積の場合は、最外周の受光面の形状が楕円状であっても良い。 The photoelectric conversion device 3000 includes a plurality of photoelectric cells that are concentrically arranged from the center of the substrate toward the outer periphery so as to sequentially surround the outer periphery of the photoelectric conversion element 300 having a light receiving surface formed in a circular shape formed relatively inside. The conversion elements 310, 320, 330, 340, and 350 are arranged, and the light receiving surface shape continuously changes toward the outer periphery, and has a hexagonal shape at the outermost periphery. Here, a hexagonal shape is shown, but the shape of the outermost periphery may be imitated in accordance with the shape that the photoelectric conversion device 3000 should cover. For example, in the case of an elliptical area, the shape of the outermost light receiving surface may be elliptical.
 (実施の形態4)
 図5は、実施の形態4における光電変換装置4000の全体構成の受光面側の平面図を示している。図6は、実施の形態4における図5のO-P線に対応する光電変換装置4000の断面図を示す。
(Embodiment 4)
FIG. 5 is a plan view on the light receiving surface side of the entire configuration of the photoelectric conversion device 4000 according to the fourth embodiment. FIG. 6 is a cross-sectional view of the photoelectric conversion device 4000 corresponding to the line OP in FIG. 5 in the fourth embodiment.
 光電変換装置4000は、絶縁性の基板40の主表面上に順次形成された第1電極層401、411、421,431,441、451、光電変換層402、412、422、432、442、452、及び第2電極層403、413、423、433、443、453によって構成される複数の光電変換素子400、410、420、430、440、450で構成される。第1電極層、第2電極層は酸化亜鉛系、酸化錫系、或いは、酸化インジュウム系の透明導電膜材料によって構成される。さらに、第2電極層の下面(図6では基板40と第2電極層の間)には、光の反射率増加と電気伝導性の増加を目的とした金属膜が形成されていてもよい。特に反射率、電気伝導の面で優れている銀薄膜が形成されていることが望ましい。絶縁性の基板40がフレキシブル基板で構成された場合、曲面に光変換装置4000を張り付けることが可能になる。 The photoelectric conversion device 4000 includes first electrode layers 401, 411, 421, 431, 441, 451, and photoelectric conversion layers 402, 412, 422, 432, 442, 452 that are sequentially formed on the main surface of the insulating substrate 40. , And a plurality of photoelectric conversion elements 400, 410, 420, 430, 440, 450 constituted by the second electrode layers 403, 413, 423, 433, 443, 453. The first electrode layer and the second electrode layer are made of a zinc oxide-based, tin oxide-based, or indium oxide-based transparent conductive film material. Furthermore, a metal film may be formed on the lower surface of the second electrode layer (between the substrate 40 and the second electrode layer in FIG. 6) for the purpose of increasing light reflectivity and electrical conductivity. In particular, it is desirable to form a silver thin film that is excellent in terms of reflectance and electrical conductivity. When the insulating substrate 40 is formed of a flexible substrate, the light conversion device 4000 can be attached to a curved surface.
 光電変換層402、412、422、432、442、452が、アモルファスSiや微結晶Siなどの薄膜Si系材料で構成される場合、基板40上に形成された光電変換層が、基板40側から、n層、i層、p層と順に形成されており、サブストレート型の薄膜太陽電池の構造を形成することで、光電変換効率を改善し、また、第2電極層上に透明の筺体43で固定されることで、光電変換装置4000の耐久性が向上する。 When the photoelectric conversion layers 402, 412, 422, 432, 442, and 452 are made of a thin film Si-based material such as amorphous Si or microcrystalline Si, the photoelectric conversion layer formed on the substrate 40 is from the substrate 40 side. , N-layer, i-layer, and p-layer are formed in this order, and the photoelectric conversion efficiency is improved by forming the structure of the substrate-type thin film solar cell, and the transparent casing 43 is formed on the second electrode layer. As a result, the durability of the photoelectric conversion device 4000 is improved.
 最外周に形成されている光電変換素子450に向かって順次電気的に電気接続部404、414、424、434、444、454によって、隣り合う光電変換素子の第1電極層と第2電極層が接続されている。中央部の第2電極層403には、電気取り出しのための電極41が電気的に接続されており、最外周の第1電極層451には、電気取り出しのための電極42が電気接続部454を介して電気的に接続されている。 The first electrode layer and the second electrode layer of the adjacent photoelectric conversion elements are sequentially electrically connected to the photoelectric conversion elements 450 formed on the outermost periphery by the electrical connection portions 404, 414, 424, 434, 444, and 454. It is connected. An electrode 41 for electrical extraction is electrically connected to the second electrode layer 403 at the center, and an electrode 42 for electrical extraction is electrically connected to the first electrode layer 451 at the outermost periphery. It is electrically connected via.
 以上、実施の形態1から実施の形態4について具体的に説明を行ったが、本発明はそれらに限定されるものではない。上述した4つの実施の形態それぞれ開示された技術的手段を適宜組み合わせて得られる実施の形態についても本発明の技術的範囲に含まれる。 As mentioned above, although Embodiment 1 to Embodiment 4 were specifically described, the present invention is not limited to them. Embodiments obtained by appropriately combining the technical means disclosed in the four embodiments described above are also included in the technical scope of the present invention.
 なお、今回開示した実施の形態はすべての点で例示であって、限定的な解釈の根拠となるものではない。従って、本発明の技術的範囲は、上記した実施の形態のみによって解釈されるものではなく、請求の範囲の記載に基づいて画定される。また、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。 It should be noted that the embodiment disclosed this time is illustrative in all respects and does not serve as a basis for limited interpretation. Therefore, the technical scope of the present invention is not interpreted only by the above-described embodiment, but is defined based on the description of the scope of claims. Moreover, all the changes within the meaning and range equivalent to a claim are included.
10,40 基板、41 取り出し電極、100,110,120,130,140,150,200,210,220,230,240,250,300,310,320,330,340,350,400,410,420,430,440,450 光電変換素子、101,111,121,131,141,151,401,411,421,431,441,451 第1電極層、102,112,122,132,142,152,402,412,422,432,442,452 光電変換層、103,113,123,133,143,153,403,413,423,433,443,453 第2電極層、105,115,125,135,145,405,415,425,435,445 電気接続部、1000,2000,3000,4000 光電変換装置。 10, 40 substrate, 41 take-out electrode, 100, 110, 120, 130, 140, 150, 200, 210, 220, 230, 240, 250, 300, 310, 320, 330, 340, 350, 400, 410, 420 , 430, 440, 450 photoelectric conversion element, 101, 111, 121, 131, 141, 151, 401, 411, 421, 431, 441, 451, first electrode layer, 102, 112, 122, 132, 142, 152, 402, 412, 422, 432, 442, 452 Photoelectric conversion layer, 103, 113, 123, 133, 143, 153, 403, 413, 423, 433, 443, 453 Second electrode layer, 105, 115, 125, 135 , 145, 405, 415, 425, 435, 445, electrical connection, 100 , 2000, 3000, and 4000 a photoelectric conversion device.

Claims (6)

  1.  絶縁性の基板と、前記基板の主表面上に順次積層された第1電極層、光電変換層、及び第2電極層を含む複数の光電変換素子とを備え、
     前記複数の光電変換素子は、相対的に内側に形成されている前記光電変換素子の外周を順次取り囲むように前記基板の中央部から外周方向に向かって同心状に複数配置されており、前記中央部に配置されている前記光電変換素子から最外周に配置されている前記光電変換素子に向かって、電気接続部を介して順次電気的に直列接続されており、前記中央部から前記最外周に向かって其々の光電変換素子の受光部面積が小さくなっていることを特徴とする、光電変換装置。
    An insulating substrate, and a plurality of photoelectric conversion elements including a first electrode layer, a photoelectric conversion layer, and a second electrode layer sequentially stacked on the main surface of the substrate;
    The plurality of photoelectric conversion elements are arranged concentrically from the central portion of the substrate toward the outer peripheral direction so as to sequentially surround the outer periphery of the photoelectric conversion elements formed relatively inside, and the center From the photoelectric conversion element arranged in the part toward the photoelectric conversion element arranged in the outermost periphery, it is sequentially electrically connected in series via the electrical connection part, and from the central part to the outermost periphery. The photoelectric conversion device, wherein the area of the light receiving portion of each photoelectric conversion element is reduced.
  2.  請求項1記載の光電変換装置であって、前記光電変換素子が円状に構成されており、前記光電変換素子の受光部面積が下記の(数1)を満たす、光電変換装置。
    Figure JPOXMLDOC01-appb-M000001
     Sn:前記中央部に配置された光電変換素子を除く前記中央部側からn番目の光電変換素子の受光面面積(n≧1)
     S0:前記中央部に配置された光電変換素子の受光面面積
    The photoelectric conversion device according to claim 1, wherein the photoelectric conversion element is formed in a circular shape, and a light receiving portion area of the photoelectric conversion element satisfies the following (Equation 1).
    Figure JPOXMLDOC01-appb-M000001
    S n : Light receiving surface area of the nth photoelectric conversion element from the central side excluding the photoelectric conversion element arranged in the central part (n ≧ 1)
    S 0 : Light receiving surface area of the photoelectric conversion element disposed in the central portion
  3.  請求項1記載の光電変換装置であって、前記光電変換装置の最外周に配置されている前記光電変換素子の形状が多角形形状で構成され、前記光電変換素子の受光部面積が下記の(数2)を満たす、光電変換装置。
    Figure JPOXMLDOC01-appb-M000002
     Sn:前記中央部に配置された光電変換素子を除く前記中央部側からn番目の光電変換素子の受光面面積(n≧1)
     S0:前記中央部に配置された光電変換素子の受光面面積
     ln:前記中央部に配置された光電変換素子を除く前記中央部側からn番目の光電変換素子の受光面外周長さ
     r0:前記中央部に配置された光電変換素子の受光面面積と同面積の円の半径
    2. The photoelectric conversion device according to claim 1, wherein a shape of the photoelectric conversion element disposed on an outermost periphery of the photoelectric conversion device is a polygonal shape, and a light receiving area of the photoelectric conversion element is the following ( A photoelectric conversion device that satisfies Equation 2).
    Figure JPOXMLDOC01-appb-M000002
    S n : Light receiving surface area of the nth photoelectric conversion element from the central side excluding the photoelectric conversion element arranged in the central part (n ≧ 1)
    S 0 : Light receiving surface area of the photoelectric conversion element arranged in the central portion l n : Light receiving surface outer peripheral length r of the nth photoelectric conversion element from the central portion side excluding the photoelectric conversion element arranged in the central portion 0 : Radius of a circle having the same area as the light receiving surface area of the photoelectric conversion element arranged in the central portion
  4.  請求項1から請求項3のいずれか1項に記載の光電変換装置であって、前記光電変換層がアモルファスSi系材料で構成される、光電変換装置。 4. The photoelectric conversion device according to claim 1, wherein the photoelectric conversion layer is made of an amorphous Si-based material.
  5.  請求項1から請求項4のいずれか1項に記載の光電変換装置であって、前記基板がフレキシブル基板で構成される、光電変換装置。 The photoelectric conversion device according to any one of claims 1 to 4, wherein the substrate is configured by a flexible substrate.
  6.  請求項1から請求項5のいずれか1項に記載の光電変換装置であって、前記基板上に形成された前記光電変換層が、前記基板側から、n層、i層、p層と順に形成されており、前記第2電極層上に透明の筺体が固定されている、光電変換装置。 The photoelectric conversion device according to any one of claims 1 to 5, wherein the photoelectric conversion layer formed on the substrate is in order of an n layer, an i layer, and a p layer from the substrate side. A photoelectric conversion device formed and having a transparent casing fixed on the second electrode layer.
PCT/JP2015/070499 2014-09-16 2015-07-17 Photoelectric conversion device WO2016042910A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014187777A JP2016062969A (en) 2014-09-16 2014-09-16 Photoelectric conversion device
JP2014-187777 2014-09-16

Publications (1)

Publication Number Publication Date
WO2016042910A1 true WO2016042910A1 (en) 2016-03-24

Family

ID=55532955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070499 WO2016042910A1 (en) 2014-09-16 2015-07-17 Photoelectric conversion device

Country Status (2)

Country Link
JP (1) JP2016062969A (en)
WO (1) WO2016042910A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240967A (en) * 1988-07-30 1990-02-09 Nitto Denko Corp Optoelectric conversion type batteries and hybrid type secondary battery constituted by combining them
JP2011035270A (en) * 2009-08-04 2011-02-17 Sharp Corp Photoelectric converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240967A (en) * 1988-07-30 1990-02-09 Nitto Denko Corp Optoelectric conversion type batteries and hybrid type secondary battery constituted by combining them
JP2011035270A (en) * 2009-08-04 2011-02-17 Sharp Corp Photoelectric converter

Also Published As

Publication number Publication date
JP2016062969A (en) 2016-04-25

Similar Documents

Publication Publication Date Title
US20120031480A1 (en) Current collection system for a photovoltaic cell
US20170323993A1 (en) Dual layer photovoltaic device
US9634171B2 (en) Monolithically integrated thin-film electronic conversion unit for lateral multijunction thin-film solar cells
WO2010150833A1 (en) Thin film composite battery and process for production thereof
KR20090081950A (en) Solar battery and manufacturing method thereof
US20170194525A1 (en) High power solar cell module
TW201521214A (en) Solar cell contacts and method of fabricating the same
JP5531082B2 (en) Solar cell
TWI502756B (en) Solar cell with thick and thin bus bar electrodes
KR20110080663A (en) Solar cell apparatus
JP2012231142A (en) Solar cell
TWI590477B (en) Solar cell hollow circuit and solar cell display
WO2016042910A1 (en) Photoelectric conversion device
WO2011011348A2 (en) Method of manufacturing a photovoltaic device
TWI408821B (en)
KR20150071553A (en) Flexible solar cell having layer for diffusion barrier comprising transparent conducting oxide
CN104254926B (en) Photovoltaic apparatus
KR101866309B1 (en) Metal welding solar cell
KR101127054B1 (en) Thin film solar cell
US10170655B2 (en) Energy harvesting device with prefabricated thin film energy absorption sheets and roll-to-sheet and roll-to-roll fabrication thereof
TWI543383B (en) Buried electrode solar cells, production methods, and multi - face Solar module
WO2015178307A1 (en) Photoelectric conversion element
WO2013174056A1 (en) Solar cell
EP2610921B1 (en) Solar cell and solar cell module including same
KR102396820B1 (en) Solar cell module and method of fabricating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15841609

Country of ref document: EP

Kind code of ref document: A1