WO2016042853A1 - High-pressure fuel supply pump - Google Patents

High-pressure fuel supply pump Download PDF

Info

Publication number
WO2016042853A1
WO2016042853A1 PCT/JP2015/066430 JP2015066430W WO2016042853A1 WO 2016042853 A1 WO2016042853 A1 WO 2016042853A1 JP 2015066430 W JP2015066430 W JP 2015066430W WO 2016042853 A1 WO2016042853 A1 WO 2016042853A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
damper
valve
chamber
convex portion
Prior art date
Application number
PCT/JP2015/066430
Other languages
French (fr)
Japanese (ja)
Inventor
眞徳 渡部
明靖 宮本
徳尾 健一郎
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2016042853A1 publication Critical patent/WO2016042853A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston

Definitions

  • the present invention relates to a high-pressure fuel supply pump used for an internal combustion engine.
  • Patent Document 1 describes a cover portion (same as the cover of Patent Document 1) by pressing so that the central portion protrudes inward in a straight line.
  • a high-pressure pump is described.
  • the press working part forms a flow change part and a fuel collision wall inside the lid part, creates a flow of fuel toward the diaphragm that constitutes the damper, and makes the damper function sufficiently, thereby reducing the fuel pressure.
  • the pulsation is suppressed (see paragraph 0074, FIG. 4A).
  • JP 2013-64364 A (reference 2), an annular rib-shaped portion is provided at the center of the surface of the damper cover in order to further improve the rigidity of the damper cover and for other functional purposes (paragraph 0050, (See FIG. 6).
  • the fuel collision wall formed in a rib shape is intended to create a flow of fuel toward the diaphragm, and has a structure in which radiation noise is considered. It is not.
  • an annular rib-shaped portion is provided at the center of the surface of the damper cover to improve the rigidity of the damper cover and reduce the vibration of the damper cover.
  • it is difficult to suppress the vibration mode in the vertical direction of the pump, that is, the vertical direction of the damper cover. For this reason, in patent document 2, the consideration with respect to the suppression effect with respect to the radiated sound by the vibration mode of an up-down direction was not enough.
  • an object of the present invention is to reduce the radiated sound radiated from the damper cover by improving the rigidity of the damper cover and increasing the natural frequency.
  • the present invention provides: "a reciprocating plunger, a fuel pressurizing chamber whose volume is changed by the reciprocating motion of the plunger, a fuel flow path located on the fuel suction side of the pressurizing chamber”
  • a suction valve that opens and closes a discharge valve that is located on the fuel discharge side of the pressurizing chamber and opens and closes a fuel flow path, a pump body that has the pressurizing chamber therein, and a pump body
  • the high-pressure fuel supply pump including a damper disposed in the damper chamber and a damper cover that covers the damper chamber, the damper cover substantially protrudes on the side opposite to the damper chamber or on the side of the damper chamber.
  • a circular convex portion is provided, and a substantially rectangular convex portion that is convex on the same side as the substantially circular convex portion is provided at a position overlapping the substantially circular convex portion.
  • the circular convex portion and the rectangular convex portion provided on the surface of the damper cover can improve the rigidity of the damper cover and increase the natural frequency, so that the resonance frequency due to vibration can be increased.
  • the radiation sound radiated from can be reduced.
  • FIG. 2 is an enlarged cross-sectional view of an electromagnetically driven intake valve in the high-pressure fuel supply pump of FIG. 1, showing a state when the valve is opened (at the time of fuel intake and spill). It is the external view which looked at the high-pressure fuel supply pump of FIG. 1 from the top except for the suction joint.
  • FIG. 5 is a cross-sectional view showing the damper cover 40 of FIG. 4 in a VV cross section.
  • FIG. 1 is a longitudinal sectional view showing the overall structure of a high-pressure fuel supply pump according to a first embodiment of the present invention.
  • FIG. 2 is a system configuration diagram showing an example of a fuel supply system using the high-pressure fuel supply pump of FIG.
  • FIG. 3 is an enlarged cross-sectional view showing the electromagnetically driven intake valve in the high-pressure fuel supply pump of FIG. 1, and is a view showing a state when the valve is opened (at the time of fuel intake and spilling).
  • symbol cannot be attached
  • the electromagnetically driven intake valve mechanism 200 shown in FIG. 3 is shown in a state where the left and right are interchanged with respect to FIG.
  • the pump body (pump housing) 1 is provided with a recess 12A that forms a bottomed cylindrical space that is open at one end, and a cylinder 20 is inserted into the recess 12A from the open end side.
  • the piston 20 is in sliding contact with the cylinder 20.
  • the pressurizing chamber 12 is defined between the tip of the piston plunger 2, the inner wall surface of the recess 12A, and the outer peripheral surface of the cylinder 20.
  • a cylindrical hole 200H is formed from the peripheral wall of the pump body 1 toward the pressurizing chamber 12, and the cylindrical hole 200H has an intake valve portion INV and an electromagnetic drive mechanism portion EMD of the electromagnetically driven intake valve mechanism 200. A part of is inserted.
  • the inside of the pump body 1 is sealed from the atmosphere.
  • the cylindrical hole 200H sealed by attaching the electromagnetically driven intake valve mechanism 200 functions as the low pressure fuel chamber 10a.
  • a cylindrical hole 60 ⁇ / b> H is provided from the peripheral wall of the pump body 1 toward the pressurizing chamber 12 at a position facing the cylindrical hole 200 ⁇ / b> H across the pressurizing chamber 12.
  • a discharge valve unit 60 is mounted in the cylindrical hole 60H.
  • the discharge valve unit 60 has a valve seat (valve seat) 61 formed at the tip, and a valve seat member (valve seat member) 61B provided with a through hole 11A serving as a discharge passage at the center.
  • a valve holder 62 surrounding the periphery of the valve seat 61 is fixed to the outer periphery of the valve seat member 61B.
  • a discharge valve 63 and a spring 64 that urges the discharge valve 63 in a direction to press the discharge valve 63 against the valve seat 61 are provided in the valve holder 62.
  • a discharge joint 11 fixed to the pump body 1 by screw fastening is provided in the opening portion on the side opposite to the pressure chamber of the cylindrical hole 60H.
  • the discharge valve 63 is located on the fuel discharge side of the pressurizing chamber 12 and opens and closes the fuel flow path.
  • the electromagnetically driven suction valve mechanism 200 includes a plunger rod 201 that is electromagnetically driven.
  • a suction valve 203 is provided at the tip of the plunger rod 201 and faces a valve seat (valve seat) 214S formed in a valve housing (valve seat member) 214 provided at an end of the electromagnetically driven suction valve mechanism 200. ing.
  • the other end of the plunger rod 201 is provided with a plunger rod biasing spring 202, and the suction valve 203 biases the plunger rod 201 in a direction away from the valve seat 214S.
  • a valve stopper S 0 is fixed to the inner peripheral portion of the tip of the valve housing 214.
  • the suction valve 203 is held between the valve seat 214S and the valve stopper S0 so as to be able to reciprocate.
  • a valve biasing spring S4 is disposed between the suction valve 203 and the valve stopper S0, and the suction valve 203 is biased in a direction away from the valve stopper S0 by the valve biasing spring S4.
  • the suction valve 203 and the tip of the plunger rod 201 are biased by respective springs in opposite directions, but the plunger rod biasing spring 202 is configured by a stronger spring.
  • the suction valve 203 is pushed in the direction away from the valve seat 214S (the right direction in the drawing) against the force of the bias spring S4, and as a result, the suction valve 203 is pushed against the valve stopper S0.
  • the plunger rod 201 is connected to the intake valve 203 by the plunger rod biasing spring 202, as shown in FIGS. As shown in FIG. 3, the valve is maintained in the open position (detailed configuration will be described later).
  • the suction valve 203 is located on the fuel suction side of the pressurizing chamber 12 and opens and closes the fuel flow path.
  • the fuel is guided from the fuel tank 50 to the fuel inlet of the pump body 1 by the low pressure pump 51.
  • a plurality of injectors 54 and pressure sensors 56 are mounted on the common rail 53.
  • the injectors 54 are mounted in accordance with the number of cylinders of the engine, and inject high-pressure fuel sent to the common rail 53 into each cylinder in response to a signal from an engine control unit (ECU) 600.
  • ECU engine control unit
  • a relief valve mechanism (not shown) built in the pump body 1 opens when the pressure in the common rail 53 exceeds a predetermined value, and returns excess high-pressure fuel to the upstream side of the discharge valve 60.
  • a lifter and a cam are provided at the lower end of the piston plunger 2, and the lifter is pressed against the cam by a spring 4.
  • the piston plunger 2 is slidably held by the cylinder 20 and reciprocates by a cam rotated by an engine cam shaft or the like to change the volume in the pressurizing chamber 12.
  • the cylinder 20 is fixed to the pump body 1 by holding the outer periphery of the lower end portion thereof with a cylinder holder 21 and fixing the cylinder holder 21 to the pump body 1.
  • the cylinder holder 21 is provided with a plunger seal 5 for sealing the outer periphery of the small diameter portion 2A formed on the lower end side of the piston plunger 2.
  • the O-ring 21 ⁇ / b> C seals between the inner peripheral surface of the recess 12 ⁇ / b> A of the pump body 1 on the side opposite to the pressurizing chamber and the outer peripheral surface of the cylinder holder 21.
  • the pump is screwed to the engine block with a flange (details are omitted) of the pump body 1 and is thereby fixed to the engine block.
  • a recess 10 ⁇ / b> D that is recessed toward the cylinder 20 is formed at a position opposite to the cylinder 20 in the driving direction of the piston plunger 2.
  • the upper opening of the recess 10D is covered with a damper cover 40, and the recess 10D and the damper cover 40 constitute a damper chamber 10b.
  • the damper cover 40 is press-fitted and fixed to the outer peripheral surface 10F of the pump body 1.
  • the damper chamber 10b is formed in the middle of the fuel passage from the suction joint (not shown) to the low pressure fuel chamber 10a.
  • the suction joint and the damper chamber 10b are connected by a fuel passage (not shown) formed in the pump body 1.
  • a two-metal diaphragm type damper 80 is accommodated in the damper chamber 10b.
  • the double metal diaphragm damper 80 is held by the damper holder 30 and is sandwiched between the damper cover 40 and the pump body 1. Specifically, it is sandwiched between the damper cover 40 and a step portion 10E formed inside the recess 10D.
  • the damper holder 30 includes two members, a damper holder upper member 30A and a damper holder lower member 30B.
  • the damper holder upper member 30A and the damper holder lower member 30B are press-fitted and fixed.
  • the damper holder upper member 30 ⁇ / b> A and the damper holder lower member 30 ⁇ / b> B are formed with an opening at the center, and a double metal diaphragm damper 80 is held at the peripheral edge of both.
  • the double metal diaphragm damper 80 has a pair of upper and lower metal diaphragms 80A and 80B butted together and welded around the entire circumference to seal the inside.
  • the double metal diaphragm type damper 80 and the damper holder 30 are formed as one unit (unit).
  • An inert gas such as argon is sealed in the hollow portion formed by the two-plate metal diaphragms 80A and 80B, and the volume of the hollow portion changes in response to an external pressure change. Play.
  • a fuel passage 80U between the diaphragm 80A and the damper cover 40 is connected to a damper chamber 10b (a diaphragm 80B on one side of the two-metal diaphragm damper 80) as a fuel passage through a groove passage 80C provided on the inner peripheral wall of the damper cover 40. Is connected to the fuel passage facing.
  • a circular convex portion 40 ⁇ / b> B and a rectangular convex portion 40 ⁇ / b> A that protrude in the outer direction of the damper cover 40 are provided at the center portion.
  • the width of the rectangular convex portion 40A is set narrower than the circular convex portion 40B.
  • the damper chamber 10b communicates with the low-pressure fuel chamber 10a where the electromagnetically driven suction valve 203 is located by a communication hole 10c formed in the pump body 1 constituting the bottom wall of the damper chamber 10b.
  • the fuel sent from the feed pump 50 flows into the damper chamber 10b of the pump from the suction joint, acts on both diaphragms 80A and 80B of the double metal diaphragm damper 80, and passes through the communication hole 10c to the low pressure fuel chamber 10a. And flow.
  • the connecting portion between the small diameter portion 2A of the piston plunger 2 and the large diameter portion 2B sliding with the cylinder 21 is connected by a conical surface 2K.
  • a fuel sub chamber 250 is formed between the plunger seal 5 and the lower end surface of the cylinder 21 around the conical surface 2K.
  • the fuel sub chamber 250 captures fuel leaking from the sliding surface between the cylinder 20 and the piston plunger 2.
  • An annular passage 21G defined between the inner peripheral surface of the pump body 1, the outer peripheral surface of the cylinder 20, and the upper end surface of the cylinder holder 21 has one end at the damper chamber 10b by a vertical passage 250B formed through the pump body 1. And is connected to the fuel sub chamber 250 via a fuel passage 250 ⁇ / b> A formed in the cylinder holder 21.
  • the damper chamber 10A and the fuel sub chamber 250 communicate with each other by the longitudinal passage 250B, the annular passage 21G, and the fuel passage 250A.
  • the tapered surface 2K reciprocates in the fuel sub chamber 250, so that the volume of the fuel sub chamber 250 changes.
  • the volume of the fuel sub chamber 250 increases, fuel flows from the damper chamber 10b into the fuel sub chamber 250 through the vertical passage 250B, the annular passage 21G, and the fuel passage 250A.
  • the volume of the fuel sub chamber 250 decreases, fuel flows from the fuel sub chamber 250 into the damper chamber 10b via the vertical passage 250B, the annular passage 21G, and the fuel passage 250A.
  • the fuel sucked into the pressurizing chamber is reduced in pressure from the opened suction valve 203. It overflows (spills) into the fuel chamber 10a and flows into the damper chamber 10b through the communication hole 10C.
  • the fuel from the suction joint, the fuel from the fuel sub chamber 250, the overflow fuel from the pressurizing chamber 12, and the fuel from the relief valve are combined.
  • the fuel pulsation of the respective fuels merges in the damper chamber 10b and is absorbed by the double metal diaphragm damper 80.
  • the electromagnetically driven intake valve mechanism 200 will be described. Note that the electromagnetically driven intake valve mechanism 200 shown in FIG. 3 is shown in a state where the left and right sides are interchanged with respect to FIG.
  • the electromagnetically driven intake valve mechanism 200 includes a yoke 205 that also serves as the body of the electromagnetically driven mechanism EMD on the inner peripheral side of the annularly formed coil 204.
  • a fixed core 206 and an anchor 207 are accommodated in an inner peripheral portion with a plunger rod biasing spring 202 interposed therebetween.
  • the yoke 205 is divided into a side yoke 205A and an upper yoke 205B and joined by press-fitting.
  • the fixed core 206 is divided into an outer core 206A and an inner core 206B and joined by press-fitting.
  • the anchor 207 is fixed to the end of the plunger rod 201 opposite to the valve by welding, and faces the inner core 206B via a magnetic gap GP.
  • the coil 204 is housed in the yoke 205, and both are fixed by screwing and fastening a screw portion provided on the outer periphery of the open end portion of the side yoke 205A to the screw portion 1SR of the pump body 1.
  • the flange 206F formed by the open end of the side yoke 205A on the outer periphery of the outer core 206A is pushed toward the pump body 1, and the outer periphery of the open end cylindrical portion 206G of the outer core 206A is the pump.
  • the body 1 is inserted into the inner peripheral surface of the guide hole 1GH.
  • an annular enlarged diameter portion 206GS formed as a stepped portion on the outer periphery of the open-side end tubular portion 206G of the outer core 206A is press-contacted to the annular surface portion 1GS formed around the opening side of the guide hole 1GH of the pump body 1.
  • the seal ring 206SR disposed between the annular surface portion 1GS formed around the opening side of the guide hole 1GH of the pump body 1 formed at this time and the flange portion 206F formed on the outer periphery of the outer core 206A is compressed.
  • the space on the low pressure side including the space on the inner peripheral portion of the fixed core 206 and the low pressure fuel chamber 10a is sealed against the atmosphere.
  • a closed magnetic path CMP that crosses the magnetic gap GP is formed around the coil 204 by the side yoke 205A and the upper yoke 205B, the outer core 206A and the inner core 206B, and the anchor 207.
  • the portion of the outer core 206A that faces the periphery of the magnetic gap GP is formed thin (a groove is formed when viewed from the outer periphery), and this groove portion is a magnetic diaphragm 206S (magnetic resistance) of the closed magnetic circuit CMP.
  • the urging force SP1 of the plunger rod urging spring 202 is set larger than the urging force of the urging force SP2 of the valve urging spring S4, the urging forces of both springs urge the intake valve 203 in the valve opening direction at this time.
  • the suction valve is caused by the pressure difference between the static pressure P1 of the fuel acting on the outer surface of the suction valve 203 represented by the flat portion 203F of the suction valve 203 located in the low pressure fuel chamber 10a and the pressure P12 of the fuel in the pressurizing chamber. 203 receives the force in the valve opening direction.
  • the fluid friction force P2 generated between the fuel flow flowing into the pressurizing chamber 12 along the arrow R4 through the fuel introduction passage 10P and the peripheral surface of the cylindrical portion 203H of the suction valve 203 opens the suction valve 203.
  • the dynamic pressure P3 of the fuel flow passing through the annular fuel passage 10S formed between the valve seat 214S and the annular surface portion 203R of the intake valve 203 acts on the annular surface portion 203R of the intake valve 203 to open the intake valve 203.
  • the suction valve 203 having a weight of several milligrams is quickly opened when the piston plunger 2 starts to descend by these urging forces, and strokes until it collides with the stopper S0.
  • the valve seat 214 is formed on the outer side in the diameter direction than the cylindrical portion 203H of the intake valve 203 and the fuel introduction passage 10P. As a result, the area on which P1, P2, and P3 act can be increased, and the opening speed of the suction valve 203 can be increased. At this time, the plunger rod 201 and the anchor 207 are filled with the staying fuel, and the friction force with the bearing 214B acts, so that the plunger rod 201 and the anchor 207 are slightly lower than the opening speed of the suction valve 203. The stroke in the right direction of the drawing is delayed. As a result, a slight gap is formed between the distal end surface of the plunger rod 201 and the flat portion 203F of the suction valve 203.
  • the valve opening force provided from the plunger rod 201 falls for a moment.
  • the suction valve 203 is opened to reduce the valve opening force applied from the plunger rod 201 (plunger rod biasing spring 202).
  • the fluid force in the valve direction compensates.
  • the intake valve 203 is opened, the static pressure and dynamic pressure of the fluid act on the entire surface of the intake valve 203 on the low pressure fuel chamber 10a side, so that the valve opening speed is increased.
  • the inner peripheral surface of the cylindrical portion 203H of the intake valve 203 is guided by a valve guide formed by the cylindrical surface SG of the protruding portion ST of the valve stopper S0, and the valve 203 is displaced in the radial direction. Stroke smoothly without any problems.
  • the cylindrical surface SG forming the valve guide is formed across the upstream side and the downstream side across the surface on which the valve seat 214S is formed, and can sufficiently support the stroke of the intake valve 203. Since the dead space on the inner peripheral side can be used effectively, the dimension in the axial direction of the intake valve portion INV can be shortened.
  • valve urging spring S4 is installed between the end surface SH of the valve stopper S0 and the bottom surface of the flat surface portion 203F of the valve 203 on the valve stopper S0 side, the opening portion 214C and the cylindrical portion 203H of the suction valve 203
  • the intake valve 203 and the valve biasing spring S4 can be arranged inside the opening 214C while ensuring a sufficient passage area of the fuel introduction passage 10p formed between the two.
  • the valve biasing spring S4 can be disposed by effectively utilizing the dead space on the inner peripheral side of the valve 203 located inside the opening 214C forming the fuel introduction passage 10p, the dimension of the intake valve portion INV in the axial direction can be arranged. Can be shortened.
  • the suction valve 203 has a valve guide SG at the center thereof, and has an annular protrusion 203S that contacts the receiving surface S2 of the annular surface S3 of the valve stopper S0 on the outer periphery of the valve guide SG. Further, a valve seat 214S is formed at a position on the radially outer side. On the radially outer side of the valve seat 214S and the annular surface portion 203R of the suction valve 203, three fuel passages Sn1 to Sn3 having a guide wall 1GH formed in the pump body 1 as a passage wall surface are arranged in the circumferential direction of the guide hole 1GH. It is arranged at equal intervals. Since the fuel passages Sn1 to Sn3 are formed on the radially outer side of the valve seat 214S, there is an advantage that the cross-sectional areas of the fuel passages Sn1 to Sn3 can be made sufficiently large.
  • the annular gap SGP is provided on the outer peripheral portion of the annular protrusion 203S, the fluid pressure P on the pressure chamber side is quickly applied to the annular gap SGP during the valve closing operation to press the suction valve 203 against the valve seat 214.
  • the valve closing speed can be increased.
  • the suction valve 203 Presses the suction valve 203 against the stopper S0. Rather, the suction valve 203 and the stopper S0 are connected by the fluid force that presses the suction valve 203 toward the stopper S0 by the dynamic pressure of the fuel flowing into the annular fuel passage 10S of the valve seat 214 and the suction effect of the fuel flow that flows around the outer periphery of the annular gap SGP. The suction valve 203 is firmly pressed against the stopper S0 by the fluid force acting to attract.
  • the fuel in the pressurizing chamber 12 flows into the low-pressure fuel chamber 10a in the order of the fuel passages Sn1 to Sn3, the annular fuel passage 10S, and the fuel introduction passage 10P.
  • the fuel passage cross-sectional area of the fuel passage 10S is set smaller than the fuel passage cross-sectional areas of the fuel passages Sn1 to Sn3 and the fuel introduction passage 10P. That is, the smallest fuel flow path cross-sectional area is set in the annular fuel path 10S.
  • the fuel in the storage chamber 206K of the magnetic gap GP and the plunger rod biasing spring 202 is discharged to the low pressure passage through the through hole 201H or from the fuel passage 214K to the low pressure passage through the periphery of the anchor 207.
  • the anchor 207 and the plunger rod 201 are smoothly displaced toward the inner core 206B.
  • the anchor 207 and the plunger rod 201 stop moving.
  • the annular gap SGP has an effect of assisting the valve closing movement of the suction valve 203.
  • the valve closing force of the intake valve is too small, and the valve closing motion is not stable. Therefore, by providing pressure equalizing holes S5 and S6, fuel is supplied to the spring accommodating space SP through the pressure equalizing holes S5 and S6 when the suction valve 203 is closed. Thereby, the pressure in the spring housing space SP becomes constant, and the force applied when the suction valve 203 is closed is stabilized, so that the closing timing of the suction valve 203 can be stabilized. And while improving the responsiveness of both valve opening and closing, variation in valve closing timing can be further reduced.
  • the discharge valve 63 of the discharge valve unit 60 overcomes the force of the discharge valve urging spring 64 and moves away from the valve seat 61, and passes through the discharge joint 11 from the discharge passage 11A to the arrow R6.
  • the fuel is discharged in the direction along
  • the annular gap SGP has an effect of assisting the valve closing movement of the suction valve 203.
  • the valve closing force of the intake valve is too small, and the valve closing motion is not stable.
  • the fuel is supplied to the spring accommodating space SP through the equalizing holes S5 and S6 when the intake valve 203 is closed, so that the pressure in the spring accommodating space SP becomes constant and the suction is performed. Since the force applied when the valve 203 is closed is stabilized, the closing timing of the suction valve 203 can be stabilized. As a result, it is possible to further improve the responsiveness of both opening and closing of the valve, and further reduce the variation in valve closing timing.
  • FIG. 4 is an external view of the high-pressure fuel supply pump of FIG. 1 as seen from above, excluding the suction joint.
  • FIG. 5 is a sectional view showing the damper cover 40 of FIG. 4 in a VV section.
  • the damper cover 40 of the present embodiment is provided with a substantially circular convex portion 40B which is convex on the opposite side of the damper chamber 10b (upper side in FIG. 1, front side in FIG. 4) on the center side. Also, the damper cover 40 is provided with a substantially rectangular convex portion 40A that is convex on the opposite side (upper side in FIG. 1, front side in FIG. 4) of the damper chamber 10b at a position overlapping the convex portion 40B. It has been.
  • the center of the circular convex portion 40B is arranged so as to coincide with the center of the damper cover 40.
  • the width in the short direction of the rectangular convex portion 40A is set to be narrower than the diameter of the circular convex portion 40B.
  • the damper cover 40, the circular convex portion 40B, and the rectangular convex portion 40A are configured with substantially the same plate thickness, and are created by press molding or cutting.
  • the height of the rectangular convex portion 40A is set to be equal to or higher than the height of the circular convex portion 40B.
  • the electromagnetically driven suction valve mechanism 200 and the discharge valve unit 60 are arranged in a direction along the center line 100 so as to face each other with the pressurizing chamber 12 and the cylinder 20 interposed therebetween.
  • the suction valve 203 is driven in a direction along the center line 100.
  • the intake valve 203 collides with the valve stopper S0 when the valve is opened, and collides with the valve seat 214S when the valve is closed.
  • the collision of the suction valve 203 with the valve stopper S0 and the valve seat 214S vibrates the pump body 1, and the vibration is transmitted to the damper cover 40.
  • the damper cover 40 In response to this vibration, the damper cover 40 generates a vibration mode in which a broken line parallel to the center line 103 orthogonal to the center line 100 is formed.
  • the longitudinal direction of the rectangular convex portion 40A is formed in the driving direction of the suction valve 203 of the electromagnetically driven suction valve mechanism 200, that is, the direction along the center line 100. Yes.
  • the rigidity in the driving direction of the suction valve 203 that is, the direction parallel to the center line 100 is improved, so that the vibration mode can be suppressed.
  • the rectangular convex portion 40A is parallel to the center line 100. However, as long as the direction is not perpendicular to the center line 100, the effect of reducing vibration can be achieved even if the rectangular convex portion 40A is inclined with respect to the center line 100. Is obtained.
  • the damper cover 40 has a curved surface portion 40R formed at the outer peripheral edge portion, and both ends of the substantially rectangular convex portion 40A are connected to the curved surface portion 40R.
  • this invention is not limited to the above-mentioned Example, Various modifications are included. That is, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations. Further, a part of the configuration of the embodiment can be replaced with another configuration, and another configuration can be added to the configuration of the embodiment.
  • the substantially circular convex portion 40B and the substantially rectangular convex portion 40A are formed on the damper cover 40 so as to protrude on the opposite side of the damper chamber 10b.
  • the same effect can be obtained even if the substantially circular convex portion 40B and the substantially rectangular convex portion 40A are formed so as to protrude to the inside of the pump, that is, the damper chamber 10b.
  • one circular convex portion 40B and one rectangular convex portion 40A are provided, but it is not always necessary to have one, and there may be one or more.
  • the heights of the circular convex portion 40A and the rectangular convex portion 40A do not have to be the same, and may be different heights.
  • a shape provided with the convex portion 40A is also possible.
  • the angle may be any angle with respect to the shape convex portion 40A.
  • the circular convex portion 40B and the rectangular convex portion 40A it is possible to use both the shape projecting outside the pump and the shape projecting inward.
  • the circular convex portion 40B may be substantially circular, for example, an ellipse.
  • the rectangular convex portion 40A may be substantially rectangular, and may be, for example, a rectangle, a square, a rhombus, or the like.
  • the rigidity of the surface of the damper cover 40 is increased to increase the secondary moment, and the area of the flat surface where the radiated sound is likely to be emitted is reduced. Therefore, the shape, number, combination, and the like of the circular convex portion 40A and the rectangular convex portion can be changed as necessary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

The purpose of the present invention is to reduce radiation noise emitted from a damper cover, the reduction being accomplished by improving the rigidity of the damper cover to increase the natural frequency thereof. A high-pressure fuel supply pump is provided with: a reciprocating plunger; a fuel pressurizing chamber, the volume of which is changed by the reciprocation of the plunger; a suction valve located on the fuel suction side of the pressurizing chamber and opening and closing a fuel passage; a discharge valve located on the fuel discharge side of the pressurizing chamber and opening and closing a fuel passage; a pump body having the pressurizing chamber therein; a damper disposed in a damper chamber formed in the pump body; and a damper cover for covering the damper chamber. The damper cover is provided with: a substantially circular protrusion protruding either toward the side opposite the damper chamber or toward the damper chamber; and a substantially rectangular protrusion located at a position which overlaps the substantially circular protrusion and protruding to the same side as the substantially circular protrusion.

Description

高圧燃料供給ポンプHigh pressure fuel supply pump
 本発明は、内燃機関に用いられる高圧燃料供給ポンプに関する。 The present invention relates to a high-pressure fuel supply pump used for an internal combustion engine.
 本技術分野の背景技術として、特開2011-117429号公報(特許文献1)には、蓋部(特許文献1のカバーに同じ)を、中央部分が直線状に内側へ突出するようにプレス加工した高圧ポンプが記載されている。この高圧ポンプでは、プレス加工部により蓋部内側に流れ変更部と燃料衝突壁とを形成し、ダンパを構成するダイアフラムへ向かう燃料の流れを作り出し、ダンパを十分に機能させることにより、燃料圧力の脈動を抑制している(段落0074、図4(a)参照)。 As a background art in this technical field, Japanese Patent Application Laid-Open No. 2011-117429 (Patent Document 1) describes a cover portion (same as the cover of Patent Document 1) by pressing so that the central portion protrudes inward in a straight line. A high-pressure pump is described. In this high-pressure pump, the press working part forms a flow change part and a fuel collision wall inside the lid part, creates a flow of fuel toward the diaphragm that constitutes the damper, and makes the damper function sufficiently, thereby reducing the fuel pressure. The pulsation is suppressed (see paragraph 0074, FIG. 4A).
 また、特開2013-64364号広報(参考文献2)では、ダンパカバーの更なる剛性向上や他の機能目的のためにダンパカバー表面の中央部に環状リブ形状部を設けている(段落0050、図6参照)。 In JP 2013-64364 A (reference 2), an annular rib-shaped portion is provided at the center of the surface of the damper cover in order to further improve the rigidity of the damper cover and for other functional purposes (paragraph 0050, (See FIG. 6).
特開2011-117429号公報JP 2011-117429 A 特開2013-64364号公報JP 2013-64364 A
 特許文献1の高圧ポンプ(高圧燃料供給ポンプ)では、リブ状に形成された燃料衝突壁はダイアフラムへ向かう燃料の流れを作り出すことを目的としており、放射音を抑制することについて配慮された構造にはなっていない。 In the high-pressure pump (high-pressure fuel supply pump) of Patent Document 1, the fuel collision wall formed in a rib shape is intended to create a flow of fuel toward the diaphragm, and has a structure in which radiation noise is considered. It is not.
 また、特許文献2の高圧燃料供給ポンプでは、ダンパカバーの表面中央部に環状のリブ形状部を設けることでダンパカバーの剛性を向上させてダンパカバーの振動を小さくしているが、このような構造では、ポンプの上下方向、すなわちダンパカバーの上下方向の振動モードを抑制することが難しい。このため、特許文献2では、上下方向の振動モードによる放射音に対する抑制効果に対する配慮が十分ではなかった。 Further, in the high pressure fuel supply pump of Patent Document 2, an annular rib-shaped portion is provided at the center of the surface of the damper cover to improve the rigidity of the damper cover and reduce the vibration of the damper cover. In the structure, it is difficult to suppress the vibration mode in the vertical direction of the pump, that is, the vertical direction of the damper cover. For this reason, in patent document 2, the consideration with respect to the suppression effect with respect to the radiated sound by the vibration mode of an up-down direction was not enough.
 そこで本発明は、ダンパカバーの剛性を向上して固有周波数を高くすることにより、ダンパカバーから放射される放射音を低減することを目的とする。 Therefore, an object of the present invention is to reduce the radiated sound radiated from the damper cover by improving the rigidity of the damper cover and increasing the natural frequency.
 上記目的を達成するための本発明は、「往復運動するプランジャと、 前記プランジャの往復運動により体積が変化する燃料の加圧室と、前記加圧室の燃料吸入側に位置し、燃料流路の開閉を行う吸入弁と、前記加圧室の燃料吐出側に位置し、燃料流路の開閉を行う吐出弁と、前記加圧室を内部に有するポンプボディと、前記ポンプボディに形成されたダンパ室に配設されたダンパと、前記ダンパ室を覆うダンパカバーとを備えた高圧燃料供給ポンプにおいて、前記ダンパカバーは、前記ダンパ室と反対側に又は前記ダンパ室の側に凸となる略円形状凸部が設けられるとともに、前記略円形状凸部と重なる位置に、前記略円形状凸部と同じ側に凸となる略矩形状凸部が設けられること」を特徴とする。 In order to achieve the above object, the present invention provides: "a reciprocating plunger, a fuel pressurizing chamber whose volume is changed by the reciprocating motion of the plunger, a fuel flow path located on the fuel suction side of the pressurizing chamber" A suction valve that opens and closes, a discharge valve that is located on the fuel discharge side of the pressurizing chamber and opens and closes a fuel flow path, a pump body that has the pressurizing chamber therein, and a pump body In the high-pressure fuel supply pump including a damper disposed in the damper chamber and a damper cover that covers the damper chamber, the damper cover substantially protrudes on the side opposite to the damper chamber or on the side of the damper chamber. A circular convex portion is provided, and a substantially rectangular convex portion that is convex on the same side as the substantially circular convex portion is provided at a position overlapping the substantially circular convex portion.
 本発明によれば、ダンパカバーの表面に設けた円形状凸部と矩形状凸部によりダンパカバーの剛性を向上して固有周波数を高くすることができるので振動による共振周波数を高くでき、ダンパカバーから放射される放射音を低減できる。 According to the present invention, the circular convex portion and the rectangular convex portion provided on the surface of the damper cover can improve the rigidity of the damper cover and increase the natural frequency, so that the resonance frequency due to vibration can be increased. The radiation sound radiated from can be reduced.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明に係る実施例1の高圧燃料供給ポンプの全体構造を示す縦断面図である。It is a longitudinal section showing the whole high-pressure fuel supply pump structure of Example 1 concerning the present invention. 図1の高圧燃料供給ポンプを用いた燃料供給システムの一例を示すシステム構成図である。It is a system block diagram which shows an example of the fuel supply system using the high pressure fuel supply pump of FIG. 図1の高圧燃料供給ポンプにおける電磁駆動型吸入弁を拡大して示す断面図であり、開弁時(燃料吸入時およびスピル時)の状態を示した図である。FIG. 2 is an enlarged cross-sectional view of an electromagnetically driven intake valve in the high-pressure fuel supply pump of FIG. 1, showing a state when the valve is opened (at the time of fuel intake and spill). 図1の高圧燃料供給ポンプを、吸入ジョイントを除いて、上から見た外観図である。It is the external view which looked at the high-pressure fuel supply pump of FIG. 1 from the top except for the suction joint. 図4のダンパカバー40をV-V断面で示す断面図である。FIG. 5 is a cross-sectional view showing the damper cover 40 of FIG. 4 in a VV cross section.
 以下、図面を用いて本発明に係る実施例を説明する。 Embodiments according to the present invention will be described below with reference to the drawings.
 以下に添付の図を参照して本発明の実施例について詳細に説明する。図1は、本発明に係る実施例1の高圧燃料供給ポンプの全体構造を示す縦断面図である。図2は、図1の高圧燃料供給ポンプを用いた燃料供給システムの一例を示すシステム構成図である。図3は、図1の高圧燃料供給ポンプにおける電磁駆動型吸入弁を拡大して示す断面図であり、開弁時(燃料吸入時およびスピル時)の状態を示した図である。なお、図1は細部に符号を付すことができないので、説明中の符号で図1にその符号がないものは後述の拡大図にその符号を記載している。また、図3に示す電磁駆動型吸入弁機構200は、図1に対して左右が入れ替わった状態で示している。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. 1 is a longitudinal sectional view showing the overall structure of a high-pressure fuel supply pump according to a first embodiment of the present invention. FIG. 2 is a system configuration diagram showing an example of a fuel supply system using the high-pressure fuel supply pump of FIG. FIG. 3 is an enlarged cross-sectional view showing the electromagnetically driven intake valve in the high-pressure fuel supply pump of FIG. 1, and is a view showing a state when the valve is opened (at the time of fuel intake and spilling). In addition, since the code | symbol cannot be attached | subjected to detail in FIG. 1, the code | symbol which does not have the code | symbol in FIG. 1 in description is described in the enlarged drawing mentioned later. Further, the electromagnetically driven intake valve mechanism 200 shown in FIG. 3 is shown in a state where the left and right are interchanged with respect to FIG.
 ポンプボディ(ポンプハウジング)1には、一端が開放された有底の筒状空間を形成する窪み部12Aが設けられ、当該窪み部12Aには開放端側からシリンダ20が挿入されている。シリンダ20にはピストンプランジャ2が滑合している。その結果、ピストンプランジャ2の先端と窪み部12Aの内壁面とシリンダ20の外周面との間に加圧室12が画成されている。 The pump body (pump housing) 1 is provided with a recess 12A that forms a bottomed cylindrical space that is open at one end, and a cylinder 20 is inserted into the recess 12A from the open end side. The piston 20 is in sliding contact with the cylinder 20. As a result, the pressurizing chamber 12 is defined between the tip of the piston plunger 2, the inner wall surface of the recess 12A, and the outer peripheral surface of the cylinder 20.
 ポンプボディ1の周壁から加圧室12に向けて筒状の孔200Hが形成されており、この筒状の孔200Hには電磁駆動型吸入弁機構200の吸入弁部INVおよび電磁駆動機構部EMDの一部が挿入されている。ポンプボディ1の内部は大気から密閉されている。電磁駆動型吸入弁機構200が取付けられることによって密封された筒状の孔200Hは低圧燃料室10aとして機能する。 A cylindrical hole 200H is formed from the peripheral wall of the pump body 1 toward the pressurizing chamber 12, and the cylindrical hole 200H has an intake valve portion INV and an electromagnetic drive mechanism portion EMD of the electromagnetically driven intake valve mechanism 200. A part of is inserted. The inside of the pump body 1 is sealed from the atmosphere. The cylindrical hole 200H sealed by attaching the electromagnetically driven intake valve mechanism 200 functions as the low pressure fuel chamber 10a.
 加圧室12を挟んで筒状の孔200Hと対向する位置にはポンプボディ1の周壁から加圧室12に向けて筒状の孔60Hが設けられている。この筒状の孔60Hには吐出弁ユニット60が装着されている。吐出弁ユニット60は先端にバルブシート(弁座)61が形成され、中心に吐出通路となる通孔11Aを備えたバルブシート部材(弁座部材)61Bを備える。バルブシート部材61Bの外周にはバルブシート61側周囲を包囲するバルブホルダー62が固定されている。バルブホルダー62内には吐出弁63とこの吐出弁63をバルブシート61に押し付ける方向に付勢するばね64が設けられている。筒状の孔60Hの反加圧室側開口部はポンプボディ1にねじ締結で固定された吐出ジョイント11が設けられている。このように吐出弁63は加圧室12の燃料吐出側に位置し、燃料流路の開閉を行う。 A cylindrical hole 60 </ b> H is provided from the peripheral wall of the pump body 1 toward the pressurizing chamber 12 at a position facing the cylindrical hole 200 </ b> H across the pressurizing chamber 12. A discharge valve unit 60 is mounted in the cylindrical hole 60H. The discharge valve unit 60 has a valve seat (valve seat) 61 formed at the tip, and a valve seat member (valve seat member) 61B provided with a through hole 11A serving as a discharge passage at the center. A valve holder 62 surrounding the periphery of the valve seat 61 is fixed to the outer periphery of the valve seat member 61B. A discharge valve 63 and a spring 64 that urges the discharge valve 63 in a direction to press the discharge valve 63 against the valve seat 61 are provided in the valve holder 62. A discharge joint 11 fixed to the pump body 1 by screw fastening is provided in the opening portion on the side opposite to the pressure chamber of the cylindrical hole 60H. Thus, the discharge valve 63 is located on the fuel discharge side of the pressurizing chamber 12 and opens and closes the fuel flow path.
 電磁駆動型吸入弁機構200は電磁的に駆動されるプランジャロッド201を備える。プランジャロッド201の先端には吸入弁203が設けられ、電磁駆動型吸入弁機構200の端部に設けられたバルブハウジング(弁座部材)214に形成されたバルブシート(弁座)214Sと対面している。 The electromagnetically driven suction valve mechanism 200 includes a plunger rod 201 that is electromagnetically driven. A suction valve 203 is provided at the tip of the plunger rod 201 and faces a valve seat (valve seat) 214S formed in a valve housing (valve seat member) 214 provided at an end of the electromagnetically driven suction valve mechanism 200. ing.
 プランジャロッド201の他端には、プランジャロッド付勢ばね202が設けられており、吸入弁203がバルブシート214Sから離れる方向にプランジャロッド201を付勢している。バルブハウジング214の先端内周部にはバルブストッパS0が固定されている。吸入弁203はバルブシート214SとバルブストッパS0との間に往復動可能に保持されている。吸入弁203はとバルブストッパS0との間にはバルブ付勢ばねS4が配置されており、吸入弁203はバルブ付勢ばねS4によってバルブストッパS0から離れる方向に付勢されている。 The other end of the plunger rod 201 is provided with a plunger rod biasing spring 202, and the suction valve 203 biases the plunger rod 201 in a direction away from the valve seat 214S. A valve stopper S 0 is fixed to the inner peripheral portion of the tip of the valve housing 214. The suction valve 203 is held between the valve seat 214S and the valve stopper S0 so as to be able to reciprocate. A valve biasing spring S4 is disposed between the suction valve 203 and the valve stopper S0, and the suction valve 203 is biased in a direction away from the valve stopper S0 by the valve biasing spring S4.
 吸入弁203とプランジャロッド201の先端とは互いに反対方向にそれぞれのばねで付勢されているが、プランジャロッド付勢ばね202の方が強いばねで構成してあるので、プランジャロッド201がバルブ付勢ばねS4の力に抗して吸入弁203がバルブシート214Sから離れる方向(図面右方向)に押し、結果的に吸入弁203をバルブストッパS0に押し付けている。 The suction valve 203 and the tip of the plunger rod 201 are biased by respective springs in opposite directions, but the plunger rod biasing spring 202 is configured by a stronger spring. The suction valve 203 is pushed in the direction away from the valve seat 214S (the right direction in the drawing) against the force of the bias spring S4, and as a result, the suction valve 203 is pushed against the valve stopper S0.
 このため、プランジャロッド201は、電磁駆動型吸入弁機構200がOFF時(電磁コイル204に通電されていないとき)には、プランジャロッド付勢ばね202によって、吸入弁203を、図1、図2、図3のように、開弁位置に維持する(詳細構成は後述する)。このように吸入弁203は加圧室12の燃料吸入側に位置し、燃料流路の開閉を行う。 For this reason, when the electromagnetically driven intake valve mechanism 200 is OFF (when the electromagnetic coil 204 is not energized), the plunger rod 201 is connected to the intake valve 203 by the plunger rod biasing spring 202, as shown in FIGS. As shown in FIG. 3, the valve is maintained in the open position (detailed configuration will be described later). Thus, the suction valve 203 is located on the fuel suction side of the pressurizing chamber 12 and opens and closes the fuel flow path.
 図2に示すように、燃料は、燃料タンク50から低圧ポンプ51によってポンプボディ1の燃料導入口へ導かれている。 As shown in FIG. 2, the fuel is guided from the fuel tank 50 to the fuel inlet of the pump body 1 by the low pressure pump 51.
 コモンレール53には、複数のインジェクタ54、圧力センサ56が装着されている。インジェクタ54は、エンジンの気筒数にあわせて装着されており、エンジンコントロールユニット(ECU)600の信号に応じてコモンレール53に送られてきた高圧燃料を各気筒に噴射する。また、ポンプボディ1に内蔵されたリリーフ弁機構(図示しない)は、コモンレール53内の圧力が所定値を超えたとき開弁して余剰高圧燃料を吐出弁60の上流側に戻す。 A plurality of injectors 54 and pressure sensors 56 are mounted on the common rail 53. The injectors 54 are mounted in accordance with the number of cylinders of the engine, and inject high-pressure fuel sent to the common rail 53 into each cylinder in response to a signal from an engine control unit (ECU) 600. A relief valve mechanism (not shown) built in the pump body 1 opens when the pressure in the common rail 53 exceeds a predetermined value, and returns excess high-pressure fuel to the upstream side of the discharge valve 60.
 図1に戻って説明する。ピストンプランジャ2の下端には図示しないリフタとカムとが設けられており、リフタはばね4にてカムに圧接されている。ピストンプランジャ2はシリンダ20に摺動可能に保持されており、エンジンカムシャフト等により回転されるカムにより、往復運動して加圧室12内の容積を変化させる。シリンダ20は、その下端部外周がシリンダホルダ21で保持され、シリンダホルダ21をポンプボディ1に固定することによって、ポンプボディ1に固定されている。 Referring back to FIG. A lifter and a cam (not shown) are provided at the lower end of the piston plunger 2, and the lifter is pressed against the cam by a spring 4. The piston plunger 2 is slidably held by the cylinder 20 and reciprocates by a cam rotated by an engine cam shaft or the like to change the volume in the pressurizing chamber 12. The cylinder 20 is fixed to the pump body 1 by holding the outer periphery of the lower end portion thereof with a cylinder holder 21 and fixing the cylinder holder 21 to the pump body 1.
 シリンダホルダ21にはピストンプランジャ2の下端部側に形成された小径部2Aの外周をシールするプランジャシール5が装着されている。Oリング21Cはポンプボディ1の窪み12Aの反加圧室側端部内周面とシリンダホルダ21の外周面との間をシールする。 ポンプは、ポンプボディ1のフランジ(詳細は省略)でエンジンブロックにねじ止めされ、これによってエンジンブロックに固定される。 The cylinder holder 21 is provided with a plunger seal 5 for sealing the outer periphery of the small diameter portion 2A formed on the lower end side of the piston plunger 2. The O-ring 21 </ b> C seals between the inner peripheral surface of the recess 12 </ b> A of the pump body 1 on the side opposite to the pressurizing chamber and the outer peripheral surface of the cylinder holder 21. The pump is screwed to the engine block with a flange (details are omitted) of the pump body 1 and is thereby fixed to the engine block.
 ここで、ダンパ室10bとダンパカバー40とについて、説明する。ポンプボディ1には、ピストンプランジャ2の駆動方向において、シリンダ20の反対側となる位置に、シリンダ20側に窪んだ凹部10Dが形成されている。この凹部10Dの上部開口はダンパカバー40によって覆われ、凹部10Dとダンパカバー40とでダンパ室10bが構成されている。ダンパカバー40はポンプボディ1の外周面10Fに圧入固定されている。 Here, the damper chamber 10b and the damper cover 40 will be described. In the pump body 1, a recess 10 </ b> D that is recessed toward the cylinder 20 is formed at a position opposite to the cylinder 20 in the driving direction of the piston plunger 2. The upper opening of the recess 10D is covered with a damper cover 40, and the recess 10D and the damper cover 40 constitute a damper chamber 10b. The damper cover 40 is press-fitted and fixed to the outer peripheral surface 10F of the pump body 1.
 ダンパ室10bは吸入ジョイント(図示しない)から低圧燃料室10aまでの燃料通路の途中に形成されている。なお、吸入ジョイントとダンパ室10bとの間は、ポンプボディ1に形成された図示しない燃料通路で接続されている。ダンパ室10bの中には二枚金属ダイアフラム式ダンパ80が収納されている。二枚金属ダイアフラム式ダンパ80はダンパホルダ30に保持され、ダンパカバー40とポンプボディ1との間に挟持されている。具体的には、ダンパカバー40と凹部10Dの内側に形成された段部10Eとの間に挟持されている。ダンパホルダ30はダンパホルダ上側部材30Aとダンパホルダ下側部材30Bとの2つの部材で構成されており、ダンパホルダ上側部材30Aとダンパホルダ下側部材30Bとは圧入固定されている。ダンパホルダ上側部材30Aとダンパホルダ下側部材30Bとには中央部に開口が形成されており、両者の周縁部で二枚金属ダイアフラム式ダンパ80を保持している。二枚式金属ダイヤフラムダンパ80は、上下一対の金属ダイアフラム80Aと80Bとを突合せその外周部を全周に亘って溶接して内部をシールしている。二枚金属ダイアフラム式ダンパ80とダンパホルダ30とは一つの組体(ユニット)として形成されている。 The damper chamber 10b is formed in the middle of the fuel passage from the suction joint (not shown) to the low pressure fuel chamber 10a. The suction joint and the damper chamber 10b are connected by a fuel passage (not shown) formed in the pump body 1. A two-metal diaphragm type damper 80 is accommodated in the damper chamber 10b. The double metal diaphragm damper 80 is held by the damper holder 30 and is sandwiched between the damper cover 40 and the pump body 1. Specifically, it is sandwiched between the damper cover 40 and a step portion 10E formed inside the recess 10D. The damper holder 30 includes two members, a damper holder upper member 30A and a damper holder lower member 30B. The damper holder upper member 30A and the damper holder lower member 30B are press-fitted and fixed. The damper holder upper member 30 </ b> A and the damper holder lower member 30 </ b> B are formed with an opening at the center, and a double metal diaphragm damper 80 is held at the peripheral edge of both. The double metal diaphragm damper 80 has a pair of upper and lower metal diaphragms 80A and 80B butted together and welded around the entire circumference to seal the inside. The double metal diaphragm type damper 80 and the damper holder 30 are formed as one unit (unit).
 二枚式金属ダイアフラム80Aと80Bによって形成された中空部にはアルゴンのような不活性ガスが封入されており、外部の圧力変化に応じてこの中空部が体積変化をすることによって、脈動減衰機能を奏する。 An inert gas such as argon is sealed in the hollow portion formed by the two-plate metal diaphragms 80A and 80B, and the volume of the hollow portion changes in response to an external pressure change. Play.
 ダイアフラム80Aとダンパカバー40との間の燃料通路80Uはダンパカバー40の内周壁に設けられた溝通路80Cを介して燃料通路としてのダンパ室10b(二枚式金属ダイヤフラムダンパ80の片側のダイアフラム80Bが面する燃料通路)と繋がっている。ダンパカバー40の上面には、中央部にダンパカバー40の外側方向に突出した円形状の凸部40Bと矩形状の凸部40Aが設けられている。ここで、矩形状凸部40Aの幅は、円形状凸部40Bより狭く設定されている。これによりダンパカバーの剛性を向上できる。 A fuel passage 80U between the diaphragm 80A and the damper cover 40 is connected to a damper chamber 10b (a diaphragm 80B on one side of the two-metal diaphragm damper 80) as a fuel passage through a groove passage 80C provided on the inner peripheral wall of the damper cover 40. Is connected to the fuel passage facing. On the upper surface of the damper cover 40, a circular convex portion 40 </ b> B and a rectangular convex portion 40 </ b> A that protrude in the outer direction of the damper cover 40 are provided at the center portion. Here, the width of the rectangular convex portion 40A is set narrower than the circular convex portion 40B. Thereby, the rigidity of a damper cover can be improved.
 ダンパ室10bはダンパ室10bの底壁を構成するポンプボディ1に形成した連通孔10cによって電磁駆動型の吸入弁203が位置する低圧燃料室10aと連通されている。かくしてフィードポンプ50から送られてきた燃料は吸入ジョイントからポンプのダンパ室10bに流入し、二枚式金属ダイヤフラムダンパ80の両ダイアフラム80A、80Bに作用しながら連通孔10cを通り低圧燃料室10aへと流れる。 The damper chamber 10b communicates with the low-pressure fuel chamber 10a where the electromagnetically driven suction valve 203 is located by a communication hole 10c formed in the pump body 1 constituting the bottom wall of the damper chamber 10b. Thus, the fuel sent from the feed pump 50 flows into the damper chamber 10b of the pump from the suction joint, acts on both diaphragms 80A and 80B of the double metal diaphragm damper 80, and passes through the communication hole 10c to the low pressure fuel chamber 10a. And flow.
 次に、ピストンプランジャ2及びシリンダ21の周辺の構成について説明する。 Next, the configuration around the piston plunger 2 and the cylinder 21 will be described.
 ピストンプランジャ2の小径部2Aとシリンダ21と滑合する大径部2Bとのつながり部は円錐面2Kで繋がっている。円錐面2Kの周囲にはプランジャシール5とシリンダ21の下端面との間に燃料副室250が形成されている。燃料副室250はシリンダ20とピストンプランジャ2との滑合面から漏れてくる燃料を捕獲する。ポンプボディ1の内周面とシリンダ20の外周面とシリンダホルダ21の上端面との間に区画形成された環状通路21Gは、ポンプボディ1に貫通形成された縦通路250Bによって一端がダンパ室10bに接続され、シリンダホルダ21に形成された燃料通路250Aを介して燃料副室250に繋がっている。かくして、ダンパ室10Aと燃料副室250とは縦通路250B、環状通路21G、燃料通路250Aによって連通されている。 The connecting portion between the small diameter portion 2A of the piston plunger 2 and the large diameter portion 2B sliding with the cylinder 21 is connected by a conical surface 2K. A fuel sub chamber 250 is formed between the plunger seal 5 and the lower end surface of the cylinder 21 around the conical surface 2K. The fuel sub chamber 250 captures fuel leaking from the sliding surface between the cylinder 20 and the piston plunger 2. An annular passage 21G defined between the inner peripheral surface of the pump body 1, the outer peripheral surface of the cylinder 20, and the upper end surface of the cylinder holder 21 has one end at the damper chamber 10b by a vertical passage 250B formed through the pump body 1. And is connected to the fuel sub chamber 250 via a fuel passage 250 </ b> A formed in the cylinder holder 21. Thus, the damper chamber 10A and the fuel sub chamber 250 communicate with each other by the longitudinal passage 250B, the annular passage 21G, and the fuel passage 250A.
 ピストンプランジャ2が上下(往復動)するとテーパー面2Kが燃料副室250の中で往復動するので燃料副室250の容積が変化する。燃料副室250の容積が増加するとき、縦通路250B、環状通路21G、燃料通路250Aを介してダンパ室10bから燃料副室250に燃料が流れ込む。燃料副室250の容積が減少するとき、縦通路250B、環状通路21G、燃料通路250Aを介して燃料副室250からダンパ室10bへ燃料が流れ込む。吸入弁203が開弁位置に維持された状態(コイル204が無通電状態)でピストンプランジャ2が下死点から上昇すると、加圧室内に吸入された燃料は開弁中の吸入弁203から低圧燃料室10aに溢流(スピル)し、連通孔10Cを介してダンパ室10bに流れる。かくしてダンパ室10bでは吸入ジョイントからの燃料、燃料副室250からの燃料、加圧室12からの溢流燃料、さらにはリリーフ弁(図示しない)からの燃料が合流するように構成されている。その結果それぞれの燃料が有する燃料脈動がダンパ室10bで合流し、二枚式金属ダイヤフラムダンパ80によって吸収される。 When the piston plunger 2 moves up and down (reciprocating), the tapered surface 2K reciprocates in the fuel sub chamber 250, so that the volume of the fuel sub chamber 250 changes. When the volume of the fuel sub chamber 250 increases, fuel flows from the damper chamber 10b into the fuel sub chamber 250 through the vertical passage 250B, the annular passage 21G, and the fuel passage 250A. When the volume of the fuel sub chamber 250 decreases, fuel flows from the fuel sub chamber 250 into the damper chamber 10b via the vertical passage 250B, the annular passage 21G, and the fuel passage 250A. When the piston plunger 2 rises from the bottom dead center while the suction valve 203 is maintained at the open position (the coil 204 is not energized), the fuel sucked into the pressurizing chamber is reduced in pressure from the opened suction valve 203. It overflows (spills) into the fuel chamber 10a and flows into the damper chamber 10b through the communication hole 10C. Thus, in the damper chamber 10b, the fuel from the suction joint, the fuel from the fuel sub chamber 250, the overflow fuel from the pressurizing chamber 12, and the fuel from the relief valve (not shown) are combined. As a result, the fuel pulsation of the respective fuels merges in the damper chamber 10b and is absorbed by the double metal diaphragm damper 80.
 次に、電磁駆動型吸入弁機構200について説明する。なお、図3に示す電磁駆動型吸入弁機構200は、図1に対して左右が入れ替わった状態で示している。 Next, the electromagnetically driven intake valve mechanism 200 will be described. Note that the electromagnetically driven intake valve mechanism 200 shown in FIG. 3 is shown in a state where the left and right sides are interchanged with respect to FIG.
 図2において、破線で囲んだ部分が図1のポンプ本体部分を示す。電磁駆動型吸入弁機構200は環状に形成されたコイル204の内周側に、電磁駆動機構部EMDのボディを兼ねたヨーク205を備える。ヨーク205は内周部に固定コア206、とアンカー207がプランジャロッド付勢ばね202を挟んで収納されている。 In FIG. 2, the portion surrounded by a broken line indicates the pump body portion of FIG. The electromagnetically driven intake valve mechanism 200 includes a yoke 205 that also serves as the body of the electromagnetically driven mechanism EMD on the inner peripheral side of the annularly formed coil 204. In the yoke 205, a fixed core 206 and an anchor 207 are accommodated in an inner peripheral portion with a plunger rod biasing spring 202 interposed therebetween.
 図3に詳細に示されるように、この実施例では、ヨーク205は、サイドヨーク205Aとアッパヨーク205Bに分割されて、圧入にて接合されている。また、固定コア206はアウターコア206Aとインナーコア206Bに分割され、圧入にて接合されている。アンカー207はプランジャロッド201の反バルブ側端部に溶接により固定され、インナーコア206Bとの間に磁気空隙GPを介して対面している。コイル204はヨーク205の中に収納されており、サイドヨーク205Aの開放端部の外周に設けたねじ部をポンプボディ1のねじ部1SRと螺合締結することで両者が固定されている。この固定作業によって、サイドヨーク205Aの開放端部がアウターコア206Aの外周に形成されたフランジ部206Fをポンプボディ1に向かって押し込み、アウターコア206Aの開放側端部筒状部206Gの外周がポンプボディ1のガイドホール1GHの内周面に挿入される。また、ポンプボディ1のガイドホール1GHの開口側周囲に形成された環状面部1GSにアウターコア206Aの開放側端部筒状部206Gの外周に段付部として形成された環状拡径部206GSが圧接する。このとき形成されたポンプボディ1のガイドホール1GHの開口側周囲に形成された環状面部1GSとアウターコア206Aの外周に形成されたフランジ部206Fとの間に配置したシールリング206SRが圧縮され、これにより、固定コア206の内周部の空間と低圧燃料室10aとを含む低圧側の空間が大気に対して密封される。 As shown in detail in FIG. 3, in this embodiment, the yoke 205 is divided into a side yoke 205A and an upper yoke 205B and joined by press-fitting. The fixed core 206 is divided into an outer core 206A and an inner core 206B and joined by press-fitting. The anchor 207 is fixed to the end of the plunger rod 201 opposite to the valve by welding, and faces the inner core 206B via a magnetic gap GP. The coil 204 is housed in the yoke 205, and both are fixed by screwing and fastening a screw portion provided on the outer periphery of the open end portion of the side yoke 205A to the screw portion 1SR of the pump body 1. By this fixing operation, the flange 206F formed by the open end of the side yoke 205A on the outer periphery of the outer core 206A is pushed toward the pump body 1, and the outer periphery of the open end cylindrical portion 206G of the outer core 206A is the pump. The body 1 is inserted into the inner peripheral surface of the guide hole 1GH. Further, an annular enlarged diameter portion 206GS formed as a stepped portion on the outer periphery of the open-side end tubular portion 206G of the outer core 206A is press-contacted to the annular surface portion 1GS formed around the opening side of the guide hole 1GH of the pump body 1. To do. The seal ring 206SR disposed between the annular surface portion 1GS formed around the opening side of the guide hole 1GH of the pump body 1 formed at this time and the flange portion 206F formed on the outer periphery of the outer core 206A is compressed. As a result, the space on the low pressure side including the space on the inner peripheral portion of the fixed core 206 and the low pressure fuel chamber 10a is sealed against the atmosphere.
 サイドヨーク205Aとアッパヨーク205B、アウターコア206Aとインナーコア206B、アンカー207によって磁気空隙GPを横切る閉磁路CMPがコイル204の周囲に形成されている。アウターコア206Aの磁気空隙GPの周囲に対面する部分は肉厚が薄く形成されており(外周か見ると溝が形成されている)、この溝の部分が閉磁路CMPの磁気絞り206S(磁気抵抗の機能を有する)を形成している。これにより、アウターコア206Aを通って漏洩する磁束を少なくすることができ、結果的に磁気空隙GPを通る磁束を増加することができる。 A closed magnetic path CMP that crosses the magnetic gap GP is formed around the coil 204 by the side yoke 205A and the upper yoke 205B, the outer core 206A and the inner core 206B, and the anchor 207. The portion of the outer core 206A that faces the periphery of the magnetic gap GP is formed thin (a groove is formed when viewed from the outer periphery), and this groove portion is a magnetic diaphragm 206S (magnetic resistance) of the closed magnetic circuit CMP. Have the function of Thereby, the magnetic flux leaking through the outer core 206A can be reduced, and as a result, the magnetic flux passing through the magnetic gap GP can be increased.
 図1、図2、図3を参照して、本実施例の高圧燃料供給ポンプの動作について説明する。 Referring to FIGS. 1, 2, and 3, the operation of the high-pressure fuel supply pump of this embodiment will be described.
 ≪燃料吸入状態≫
 まず、燃料吸入状態について説明する。ピストンプランジャ2が図2の破線で示す上死点位置から矢印Q2に示す方向に下降する吸入工程では、コイル204は非通電状態である。プランジャロッド付勢ばね202の付勢力SP1は矢印に示すように吸入弁203に向かってプランジャロッド201を付勢する。一方バルブ付勢ばねS4の付勢力SP2は吸入弁203を矢印に示す方向へ付勢する。プランジャロッド付勢ばね202の付勢力SP1がバルブ付勢ばねS4の付勢力SP2の付勢力より大きく設定されているので両ばねの付勢力はこのとき吸入弁203を開弁方向に付勢する。また低圧燃料室10a内に位置する吸入弁203の平面部203Fに代表される吸入弁203の外表面に作用する燃料の静圧P1と加圧室内の燃料の圧力P12との圧力差によって吸入弁203は開弁方向の力を受ける。さらに燃料導入通路10Pを通って矢印R4に沿って加圧室12に流入する燃料流と吸入弁203の円筒部203Hの周面との間に発生する流体摩擦力P2は吸入弁203を開弁方向に付勢する。さらに、バルブシート214Sと吸入弁203の環状面部203Rとの間に形成される環状燃料通路10Sを通る燃料流の動圧P3は吸入弁203の環状面部203Rに作用して吸入弁203を開弁方向に付勢する。重量が数ミリグラムの吸入弁203はこれらの付勢力によって、ピストンプランジャ2が下降し始めると素早く開弁し、ストッパS0に衝突するまでストロークする。
≪Fuel intake state≫
First, the fuel intake state will be described. In the suction process in which the piston plunger 2 descends from the top dead center position indicated by the broken line in FIG. 2 in the direction indicated by the arrow Q2, the coil 204 is in a non-energized state. The urging force SP1 of the plunger rod urging spring 202 urges the plunger rod 201 toward the suction valve 203 as indicated by an arrow. On the other hand, the urging force SP2 of the valve urging spring S4 urges the suction valve 203 in the direction indicated by the arrow. Since the urging force SP1 of the plunger rod urging spring 202 is set larger than the urging force of the urging force SP2 of the valve urging spring S4, the urging forces of both springs urge the intake valve 203 in the valve opening direction at this time. Further, the suction valve is caused by the pressure difference between the static pressure P1 of the fuel acting on the outer surface of the suction valve 203 represented by the flat portion 203F of the suction valve 203 located in the low pressure fuel chamber 10a and the pressure P12 of the fuel in the pressurizing chamber. 203 receives the force in the valve opening direction. Further, the fluid friction force P2 generated between the fuel flow flowing into the pressurizing chamber 12 along the arrow R4 through the fuel introduction passage 10P and the peripheral surface of the cylindrical portion 203H of the suction valve 203 opens the suction valve 203. Energize in the direction. Further, the dynamic pressure P3 of the fuel flow passing through the annular fuel passage 10S formed between the valve seat 214S and the annular surface portion 203R of the intake valve 203 acts on the annular surface portion 203R of the intake valve 203 to open the intake valve 203. Energize in the direction. The suction valve 203 having a weight of several milligrams is quickly opened when the piston plunger 2 starts to descend by these urging forces, and strokes until it collides with the stopper S0.
 バルブシート214は、吸入弁203の円筒部203Hおよび燃料導入通路10Pよりも直径方向で外側に形成されている。これによりP1、P2、P3が作用する面積を大きくすることが可能となり、吸入弁203の開弁速度を速くすることができる。このときプランジャロッド201およびアンカー207の周囲は滞留した燃料で満たされていること、および軸受214Bとの摩擦力が作用することによって、プランジャロッド201およびアンカー207は吸入弁203の開弁速度よりわずかに図面右方向へのストロークが遅れる。その結果プランジャロッド201の先端面と吸入弁203の平面部203Fとの間にわずかな隙間ができる。このためプランジャロッド201から付与される開弁力が一瞬低下する。しかし、この隙間には低圧燃料室10a内の燃料の圧力P1が遅れなく作用するので、プランジャロッド201(プランジャロッド付勢ばね202)から付与される開弁力の低下をこの吸入弁203を開弁する方向の流体力が補う。かくして、吸入弁203の開弁時には吸入弁203の低圧燃料室10a側の全表面に流体の静圧および動圧が作用するので、開弁速度が速くなる。 The valve seat 214 is formed on the outer side in the diameter direction than the cylindrical portion 203H of the intake valve 203 and the fuel introduction passage 10P. As a result, the area on which P1, P2, and P3 act can be increased, and the opening speed of the suction valve 203 can be increased. At this time, the plunger rod 201 and the anchor 207 are filled with the staying fuel, and the friction force with the bearing 214B acts, so that the plunger rod 201 and the anchor 207 are slightly lower than the opening speed of the suction valve 203. The stroke in the right direction of the drawing is delayed. As a result, a slight gap is formed between the distal end surface of the plunger rod 201 and the flat portion 203F of the suction valve 203. For this reason, the valve opening force provided from the plunger rod 201 falls for a moment. However, since the pressure P1 of the fuel in the low pressure fuel chamber 10a acts without delay in this gap, the suction valve 203 is opened to reduce the valve opening force applied from the plunger rod 201 (plunger rod biasing spring 202). The fluid force in the valve direction compensates. Thus, when the intake valve 203 is opened, the static pressure and dynamic pressure of the fluid act on the entire surface of the intake valve 203 on the low pressure fuel chamber 10a side, so that the valve opening speed is increased.
 吸入弁203の開弁時は、吸入弁203の円筒部203Hの内周面をバルブストッパS0の突出部STの円筒面SGによって形成されるバルブガイドでガイドされ、バルブ203は径方向に変位することなくスムースにストロークする。バルブガイドを形成する円筒面SGはバルブシート214Sが形成された面を挟んでその上流側および下流側にまたがって形成されており、吸入弁203のストロークを十分に支持できるだけでなく、バルブ203の内周側のデッドスペースを有効に利用できるので、吸入弁部INVの軸方向の寸法を短くできる。また、バルブ付勢ばねS4はバルブストッパS0の端面SHとバルブ203の平面部203FのバルブストッパS0側底面部との間に設置されているので、開口部214Cと吸入弁203の円筒部203Hとの間に形成される燃料導入通路10pの通路面積を十分確保しながら開口部214Cの内側に吸入弁203とバルブ付勢ばねS4を配置できる。また燃料導入通路10pを形成する開口部214Cの内側に位置するバルブ203の内周側のデッドスペースを有効に利用してバルブ付勢ばねS4を配置できるので、吸入弁部INVの軸方向の寸法を短くできる。 When the intake valve 203 is opened, the inner peripheral surface of the cylindrical portion 203H of the intake valve 203 is guided by a valve guide formed by the cylindrical surface SG of the protruding portion ST of the valve stopper S0, and the valve 203 is displaced in the radial direction. Stroke smoothly without any problems. The cylindrical surface SG forming the valve guide is formed across the upstream side and the downstream side across the surface on which the valve seat 214S is formed, and can sufficiently support the stroke of the intake valve 203. Since the dead space on the inner peripheral side can be used effectively, the dimension in the axial direction of the intake valve portion INV can be shortened. Further, since the valve urging spring S4 is installed between the end surface SH of the valve stopper S0 and the bottom surface of the flat surface portion 203F of the valve 203 on the valve stopper S0 side, the opening portion 214C and the cylindrical portion 203H of the suction valve 203 The intake valve 203 and the valve biasing spring S4 can be arranged inside the opening 214C while ensuring a sufficient passage area of the fuel introduction passage 10p formed between the two. Further, since the valve biasing spring S4 can be disposed by effectively utilizing the dead space on the inner peripheral side of the valve 203 located inside the opening 214C forming the fuel introduction passage 10p, the dimension of the intake valve portion INV in the axial direction can be arranged. Can be shortened.
 吸入弁203はその中心部にバルブガイドSGを有し、バルブガイドSGのすぐ外周でバルブストッパS0の環状面部S3の受け面S2に接触する環状突起部203Sを有する。さらにその径方向外側の位置にバルブシート214Sが形成されている。バルブシート214Sおよび吸入弁203の環状面部203Rの径方向外側には、ポンプボディ1に形成されたガイドホール1GHを通路壁面とする3個の燃料通路Sn1~Sn3が、ガイドホール1GHの周方向に等間隔に配置されている。燃料通路Sn1~Sn3がバルブシート214Sの径方向外側に形成されているので、燃料通路Sn1~Sn3の断面積を十分に大きく取れる利点がある。 The suction valve 203 has a valve guide SG at the center thereof, and has an annular protrusion 203S that contacts the receiving surface S2 of the annular surface S3 of the valve stopper S0 on the outer periphery of the valve guide SG. Further, a valve seat 214S is formed at a position on the radially outer side. On the radially outer side of the valve seat 214S and the annular surface portion 203R of the suction valve 203, three fuel passages Sn1 to Sn3 having a guide wall 1GH formed in the pump body 1 as a passage wall surface are arranged in the circumferential direction of the guide hole 1GH. It is arranged at equal intervals. Since the fuel passages Sn1 to Sn3 are formed on the radially outer side of the valve seat 214S, there is an advantage that the cross-sectional areas of the fuel passages Sn1 to Sn3 can be made sufficiently large.
 また、環状突起部203Sの外周部には環状空隙SGPを設けたので、閉弁動作時に環状空隙SGPへ加圧室側の流体圧力Pを速やかに作用させて吸入弁203をバルブシート214に押し付ける際の閉弁速度を上げることができる。 Further, since the annular gap SGP is provided on the outer peripheral portion of the annular protrusion 203S, the fluid pressure P on the pressure chamber side is quickly applied to the annular gap SGP during the valve closing operation to press the suction valve 203 against the valve seat 214. The valve closing speed can be increased.
 ≪燃料スピル状態≫
 次に、燃料スピル状態について説明する。ピストンプランジャ2が下死点位置から転じて矢印Q1方向に上昇し始めるが、コイル204は非通電状態であるので、一端加圧室12内に吸入された燃料の一部が燃料通路Sn1~Sn3、環状燃料通路10Sおよび燃料導入通路10Pを通して低圧燃料室10aにスピル(溢流)される。燃料通路Sn1~Sn3における燃料の流れが矢印R4方向からR5方向(図2参照)へ切り替わる際、一瞬燃料の流れが止り、環状空隙SGPの圧力が上がるが、このときはプランジャロッド付勢ばね202が吸入弁203をストッパS0に押し付ける。むしろ、バルブシート214の環状燃料通路10Sに流れ込む燃料の動圧によって吸入弁203をストッパS0側に押し付ける流体力と環状空隙SGPの外周を流れる燃料流の吸出し効果で吸入弁203とストッパS0とを引き付けるように作用する流体力とによって、吸入弁203はしっかりとストッパS0に押し付けられる。
≪Fuel spill condition≫
Next, the fuel spill state will be described. The piston plunger 2 turns from the bottom dead center position and begins to rise in the direction of the arrow Q1, but since the coil 204 is in a non-energized state, a part of the fuel sucked into the pressurizing chamber 12 is partly in the fuel passages Sn1 to Sn3. Then, the fuel is spilled (overflowed) into the low-pressure fuel chamber 10a through the annular fuel passage 10S and the fuel introduction passage 10P. When the fuel flow in the fuel passages Sn1 to Sn3 switches from the direction of the arrow R4 to the direction of R5 (see FIG. 2), the fuel flow stops for a moment and the pressure in the annular gap SGP rises. Presses the suction valve 203 against the stopper S0. Rather, the suction valve 203 and the stopper S0 are connected by the fluid force that presses the suction valve 203 toward the stopper S0 by the dynamic pressure of the fuel flowing into the annular fuel passage 10S of the valve seat 214 and the suction effect of the fuel flow that flows around the outer periphery of the annular gap SGP. The suction valve 203 is firmly pressed against the stopper S0 by the fluid force acting to attract.
 燃料流がR5方向に切り替わった瞬間から加圧室12内の燃料は、燃料通路Sn1~Sn3、環状燃料通路10Sおよび燃料導入通路10Pの順で低圧燃料室10aに流れる。ここで、燃料通路10Sの燃料流路断面積は燃料通路Sn1~Sn3、および燃料導入通路10Pの燃料流路断面積よりも小さく設定されている。すなわち、環状燃料通路10Sで最も燃料流路断面積が小さく設定されている。そのため、環状燃料通路10Sで圧力損失が発生し加圧室12内の圧力が上昇し始めるが、その流体圧力P4はストッパS0の加圧室側の環状面で受けて、吸入弁203には作用しにくい。また、均圧孔S5は、穴径が小さいため、矢印Pで示す加圧室12側の燃料の動的流体力が吸入弁203には作用しにくい。 From the moment when the fuel flow is switched to the R5 direction, the fuel in the pressurizing chamber 12 flows into the low-pressure fuel chamber 10a in the order of the fuel passages Sn1 to Sn3, the annular fuel passage 10S, and the fuel introduction passage 10P. Here, the fuel passage cross-sectional area of the fuel passage 10S is set smaller than the fuel passage cross-sectional areas of the fuel passages Sn1 to Sn3 and the fuel introduction passage 10P. That is, the smallest fuel flow path cross-sectional area is set in the annular fuel path 10S. For this reason, pressure loss occurs in the annular fuel passage 10S and the pressure in the pressurizing chamber 12 starts to rise, but the fluid pressure P4 is received by the annular surface of the stopper S0 on the pressurizing chamber side and acts on the suction valve 203. Hard to do. Further, since the pressure equalizing hole S5 has a small hole diameter, the dynamic fluid force of the fuel on the pressurizing chamber 12 side indicated by the arrow P hardly acts on the suction valve 203.
 スピル状態では、低圧燃料室10aから4つの燃料通孔214Qを介してダンパ室10bへ燃料が流れる。一方、ピストンプランジャ2が上昇することで、副燃料室250の容積が増加するので、縦通路250B、環状通路21Gおよび燃料通路250Aを矢印R8の下方矢印方向へ燃料が流れ、ダンパ室10bから燃料副室250へ燃料の一部が導入される。かくして燃料副室に冷たい燃料が供給されるので、ピストンプランジャ2とシリンダ20との摺動部が冷却される。 In the spill state, fuel flows from the low pressure fuel chamber 10a to the damper chamber 10b through the four fuel through holes 214Q. On the other hand, as the piston plunger 2 rises, the volume of the auxiliary fuel chamber 250 increases, so that fuel flows through the vertical passage 250B, the annular passage 21G and the fuel passage 250A in the downward arrow direction of the arrow R8, and the fuel flows from the damper chamber 10b. Part of the fuel is introduced into the sub chamber 250. Thus, since the cold fuel is supplied to the fuel sub chamber, the sliding portion between the piston plunger 2 and the cylinder 20 is cooled.
 ≪燃料吐出状態≫
 次に、燃料吐出状態について説明する。前述の燃料スピル状態においてエンジン制御装置ECUからの指令に基づきコイル204に通電されると、閉磁路CMPを流れる磁束が図3に示すごとく生起される。閉磁路CMPを流れる磁束が生起されると、磁気空隙GPにおいてインナーコア206Bとアンカー207の対抗面間に磁気吸引力MFが発生する。この磁気吸引力はプランジャロッド付勢ばね202の付勢力に打ち勝ってアンカー207とこれに固定されているプランジャロッド201をインナーコア206Bに引き付ける。このとき、磁気空隙GP、プランジャロッド付勢ばね202の収納室206K内の燃料は貫通孔201Hを通して低圧通路に、或いはアンカー207の周囲を通して燃料通路214Kから低圧通路に排出される。これにより、アンカー207とプランジャロッド201はスムースにインナーコア206B側に変位する。アンカー207がインナーコア206Bに接触すると、アンカー207とプランジャロッド201は運動を停止する。
≪Fuel discharge state≫
Next, the fuel discharge state will be described. When the coil 204 is energized based on a command from the engine control unit ECU in the fuel spill state described above, a magnetic flux flowing through the closed magnetic circuit CMP is generated as shown in FIG. When a magnetic flux flowing in the closed magnetic path CMP is generated, a magnetic attractive force MF is generated between the opposing surfaces of the inner core 206B and the anchor 207 in the magnetic gap GP. This magnetic attraction force overcomes the biasing force of the plunger rod biasing spring 202 and attracts the anchor 207 and the plunger rod 201 fixed thereto to the inner core 206B. At this time, the fuel in the storage chamber 206K of the magnetic gap GP and the plunger rod biasing spring 202 is discharged to the low pressure passage through the through hole 201H or from the fuel passage 214K to the low pressure passage through the periphery of the anchor 207. As a result, the anchor 207 and the plunger rod 201 are smoothly displaced toward the inner core 206B. When the anchor 207 contacts the inner core 206B, the anchor 207 and the plunger rod 201 stop moving.
 プランジャロッド201がインナーコア206Bに引き寄せられることにより、吸入弁203をストッパS0側に押し付けていた付勢力がなくなるので、吸入弁203はバルブ付勢ばねS4の付勢力によってストッパS0から離れる方向に付勢され吸入弁203は閉弁運動を開始する。このとき、環状突起部203Sの外周側に位置する環状空隙SGP内の圧力は、燃料加圧室12内の圧力上昇に伴って低圧燃料10a側の圧力よりも高くなり、吸入弁203の閉弁運動を助ける。その結果、吸入弁203がシート214Sに接触して閉弁状態となり、図3においてバルブシート214Sと吸入弁203の環状面部203Rとの間に形成されていた環状燃料通路10Sが閉じられる。 When the plunger rod 201 is attracted to the inner core 206B, the urging force that presses the suction valve 203 toward the stopper S0 disappears, so the suction valve 203 is applied in a direction away from the stopper S0 by the urging force of the valve urging spring S4. The suction valve 203 starts to close the valve. At this time, the pressure in the annular gap SGP located on the outer peripheral side of the annular protrusion 203S becomes higher than the pressure on the low-pressure fuel 10a side as the pressure in the fuel pressurizing chamber 12 rises, and the intake valve 203 is closed. Help exercise. As a result, the intake valve 203 comes into contact with the seat 214S and closes, and the annular fuel passage 10S formed between the valve seat 214S and the annular surface portion 203R of the intake valve 203 in FIG. 3 is closed.
 このように、環状空隙SGPは吸入弁203の閉弁運動を助ける効果が有る。しかし、バルブ付勢ばねS4のみでは、吸入弁の閉弁力が小さすぎるので閉弁運動が安定しない。そこで、均圧孔S5、S6を設けることにより、吸入弁203が閉じる際に均圧孔S5、S6を通じてばね収納空間SPへ燃料が供給されるようにする。これにより、ばね収納空間SPの圧力が一定になり、吸入弁203が閉じる際にかかる力が安定化するため、吸入弁203の閉弁タイミングを安定させることができる。そして、バルブの開弁・閉弁の両方の応答性を改善しつつ、さらに閉弁タイミングばらつきを低減することができる。 Thus, the annular gap SGP has an effect of assisting the valve closing movement of the suction valve 203. However, with only the valve urging spring S4, the valve closing force of the intake valve is too small, and the valve closing motion is not stable. Therefore, by providing pressure equalizing holes S5 and S6, fuel is supplied to the spring accommodating space SP through the pressure equalizing holes S5 and S6 when the suction valve 203 is closed. Thereby, the pressure in the spring housing space SP becomes constant, and the force applied when the suction valve 203 is closed is stabilized, so that the closing timing of the suction valve 203 can be stabilized. And while improving the responsiveness of both valve opening and closing, variation in valve closing timing can be further reduced.
 ピストンプランジャ2は吸入弁203の閉弁後も引き続いて上昇するので、加圧室12の容積が減少し、加圧室12内の圧力が上昇する。その結果、図1および図2に示すように、吐出バルブユニット60の吐出弁63が吐出バルブ付勢ばね64の力に打ち勝ってバルブシート61から離れ、吐出通路11Aから吐出ジョイント11を通して、矢印R6に沿った方向に燃料が吐出する。 Since the piston plunger 2 continues to rise even after the intake valve 203 is closed, the volume of the pressurizing chamber 12 decreases and the pressure in the pressurizing chamber 12 increases. As a result, as shown in FIGS. 1 and 2, the discharge valve 63 of the discharge valve unit 60 overcomes the force of the discharge valve urging spring 64 and moves away from the valve seat 61, and passes through the discharge joint 11 from the discharge passage 11A to the arrow R6. The fuel is discharged in the direction along
 このように、環状空隙SGPは吸入弁203の閉弁運動を助ける効果が有る。しかし、バルブ付勢ばねS4のみでは、吸入弁の閉弁力が小さすぎるので閉弁運動が安定しない。均圧孔S5、S6を設けたことにより、吸入弁203が閉じる際に均圧孔S5、S6を通じてばね収納空間SPへ燃料が供給されるため、ばね収納空間SPの圧力が一定になり、吸入弁203が閉じる際にかかる力が安定化するため、吸入弁203の閉弁タイミングを安定させることができる。これにより、バルブの開弁・閉弁の両方の応答性を改善しつつ、さらに閉弁タイミングばらつきを低減することが可能である。 Thus, the annular gap SGP has an effect of assisting the valve closing movement of the suction valve 203. However, with only the valve urging spring S4, the valve closing force of the intake valve is too small, and the valve closing motion is not stable. By providing the pressure equalizing holes S5 and S6, the fuel is supplied to the spring accommodating space SP through the equalizing holes S5 and S6 when the intake valve 203 is closed, so that the pressure in the spring accommodating space SP becomes constant and the suction is performed. Since the force applied when the valve 203 is closed is stabilized, the closing timing of the suction valve 203 can be stabilized. As a result, it is possible to further improve the responsiveness of both opening and closing of the valve, and further reduce the variation in valve closing timing.
 次に、図4乃至図5を参照して、ダンパカバー40の構造について説明する。図4は、図1の高圧燃料供給ポンプを、吸入ジョイントを除いて、上から見た外観図である。図5は、図4のダンパカバー40をV-V断面で示す断面図である。 Next, the structure of the damper cover 40 will be described with reference to FIGS. FIG. 4 is an external view of the high-pressure fuel supply pump of FIG. 1 as seen from above, excluding the suction joint. FIG. 5 is a sectional view showing the damper cover 40 of FIG. 4 in a VV section.
 本実施例のダンパカバー40はその中央側にダンパ室10bと反対側(図1の上側、図4の手前側)に凸となる略円形状の凸部40Bが設けられている。またダンパカバー40には凸部40Bと重なる位置に、凸部40Bと同じくダンパ室10bと反対側(図1の上側、図4の手前側)に凸となる略矩形状の凸部40Aが設けられている。なお、円形状の凸部40Bの中心はダンパカバー40の中心と一致するように配置されている。矩形状の凸部40Aの短手方向の幅は、円形状の凸部40Bの径より狭く設定されている。 The damper cover 40 of the present embodiment is provided with a substantially circular convex portion 40B which is convex on the opposite side of the damper chamber 10b (upper side in FIG. 1, front side in FIG. 4) on the center side. Also, the damper cover 40 is provided with a substantially rectangular convex portion 40A that is convex on the opposite side (upper side in FIG. 1, front side in FIG. 4) of the damper chamber 10b at a position overlapping the convex portion 40B. It has been. The center of the circular convex portion 40B is arranged so as to coincide with the center of the damper cover 40. The width in the short direction of the rectangular convex portion 40A is set to be narrower than the diameter of the circular convex portion 40B.
 これによりダンパカバー40のV-V断面の断面二次モーメントを大きくできるのでポンプの上下方向、つまり、ピストンプランジャ2の駆動方向に対するダンパカバー40の変形に対する剛性が向上できる。従って、ダンパカバー40の固有周波数を高くすることができるので、他のポンプ部品や車体部品の固有周波数より高周波側にもっていくことにより共振を回避できるので、共振によるダンパカバー40から放射音を低減できる。また、人間の騒音の感度の高い周波数帯域以上、さらには、可聴範囲以上に持っていくことで更なる低騒音化が可能となる。 This makes it possible to increase the sectional moment of the VV section of the damper cover 40, so that the rigidity against deformation of the damper cover 40 in the vertical direction of the pump, that is, the driving direction of the piston plunger 2 can be improved. Accordingly, since the natural frequency of the damper cover 40 can be increased, resonance can be avoided by moving to a higher frequency side than the natural frequency of other pump parts and vehicle body parts, so that the sound emitted from the damper cover 40 due to resonance is reduced. it can. In addition, it is possible to further reduce noise by bringing it to a frequency band higher than the high sensitivity of human noise, or even beyond the audible range.
 ダンパカバー40、円形状凸部40B、及び矩形状凸部40Aは、ほぼ同じ板厚で構成されており、プレス成型や切削加工等で作成される。また、矩形状の凸部40Aの高さは、円形状の凸部40Bの高さと同等もしくはそれ以上に高く設定されている。矩形状の凸部40Aの高さを円形状の凸部40Bの高さより高くすることにより同等の場合に比べて,V-V断面の断面二次モーメントを大きくできるので,ダンパカバー40の剛性を向上できる。 The damper cover 40, the circular convex portion 40B, and the rectangular convex portion 40A are configured with substantially the same plate thickness, and are created by press molding or cutting. The height of the rectangular convex portion 40A is set to be equal to or higher than the height of the circular convex portion 40B. By making the height of the rectangular convex portion 40A higher than the height of the circular convex portion 40B, the second moment of section of the VV cross section can be increased, so that the rigidity of the damper cover 40 can be increased. Can be improved.
 さらに、本実施例では、電磁駆動型吸入弁機構200と吐出弁ユニット60とが、加圧室12及びシリンダ20を挟んで対向するように中心線100に沿う方向に配置されている。コネクタ102(図4参照)を通じてコイル204への通電がON/OFFされると、吸入弁203は中心線100に沿う方向に駆動される。吸入弁203は開弁動作した場合にはバルブストッパS0に衝突し、閉弁動作した場合にはバルブシート214Sに衝突する。このとき、吸入弁203のバルブストッパS0及びバルブシート214Sへの衝突はポンプボディ1を加振し、その振動はダンパカバー40へ伝達される。この振動を受けて、ダンパカバー40は中心線100と直交する中心線103に平行な折れ線が形成されるような振動モードを生じる。 Furthermore, in this embodiment, the electromagnetically driven suction valve mechanism 200 and the discharge valve unit 60 are arranged in a direction along the center line 100 so as to face each other with the pressurizing chamber 12 and the cylinder 20 interposed therebetween. When energization of the coil 204 is turned ON / OFF through the connector 102 (see FIG. 4), the suction valve 203 is driven in a direction along the center line 100. The intake valve 203 collides with the valve stopper S0 when the valve is opened, and collides with the valve seat 214S when the valve is closed. At this time, the collision of the suction valve 203 with the valve stopper S0 and the valve seat 214S vibrates the pump body 1, and the vibration is transmitted to the damper cover 40. In response to this vibration, the damper cover 40 generates a vibration mode in which a broken line parallel to the center line 103 orthogonal to the center line 100 is formed.
 このような振動を低減するために、本実施例では、矩形状凸部40Aの長手方向を電磁駆動型吸入弁機構200の吸入弁203の駆動方向、すなわち中心線100に沿う方向に形成している。これにより、吸入弁203の駆動方向つまり中心線100に平行な方向に対する剛性が向上するので、上記の振動モードを抑制することができる。なお、本実施例では、矩形状凸部40Aを中心線100に平行にしているが、中心線100に対して直交する方向とならない限り、中心線100に対して傾斜させても振動の低減効果は得られる。 In order to reduce such vibration, in this embodiment, the longitudinal direction of the rectangular convex portion 40A is formed in the driving direction of the suction valve 203 of the electromagnetically driven suction valve mechanism 200, that is, the direction along the center line 100. Yes. As a result, the rigidity in the driving direction of the suction valve 203, that is, the direction parallel to the center line 100 is improved, so that the vibration mode can be suppressed. In the present embodiment, the rectangular convex portion 40A is parallel to the center line 100. However, as long as the direction is not perpendicular to the center line 100, the effect of reducing vibration can be achieved even if the rectangular convex portion 40A is inclined with respect to the center line 100. Is obtained.
 また、ダンパカバー40は外周縁部に曲面部40Rが形成されており,略矩形状凸部40Aの両端部は曲面部40Rに接続されている。 Further, the damper cover 40 has a curved surface portion 40R formed at the outer peripheral edge portion, and both ends of the substantially rectangular convex portion 40A are connected to the curved surface portion 40R.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。つまり、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部を他の構成に置き換えることが可能であり、また、実施例の構成に他の構成を加えることも可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. That is, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations. Further, a part of the configuration of the embodiment can be replaced with another configuration, and another configuration can be added to the configuration of the embodiment.
 例えば、本実施例では、ダンパカバー40にダンパ室10bと反対側に凸となるように略円形状の凸部40Bおよび略矩形状の凸部40Aを形成するようにしたが、ダンパ室10bに影響がない限り、逆にポンプの内側、つまりダンパ室10bの側に凸となるように略円形状の凸部40Bおよび略矩形状の凸部40Aを形成しても同等の効果が得られる。 For example, in the present embodiment, the substantially circular convex portion 40B and the substantially rectangular convex portion 40A are formed on the damper cover 40 so as to protrude on the opposite side of the damper chamber 10b. As long as there is no influence, the same effect can be obtained even if the substantially circular convex portion 40B and the substantially rectangular convex portion 40A are formed so as to protrude to the inside of the pump, that is, the damper chamber 10b.
 また、本実施例では、円形状凸部40Bと矩形状凸部40Aをそれぞれ一つとしているが、必ずしも一つである必要はなく、1つ以上あればよい。その場合、円形状凸部40Aと矩形状凸部40Aの高さは同じ必要はなく、異なる高さでもよい。例えば、1つの矩形状凸部40Aに対して、直径の異なる2つの円形状凸部40Bを備えた形状や1つの円形状凸部40Bに対して、十文字型の90度で交わる2つの矩形状凸部40Aを備えた形状も可能である。矩形状凸部40Aを複数有する場合は、お互いの交わる角度に制限はなく、電磁駆動型吸入弁機構200の吸入弁203の駆動方向、すなわち中心線100に沿う方向に形成している1つの矩形状凸部40Aに対してどの角度になってもよい。 Further, in this embodiment, one circular convex portion 40B and one rectangular convex portion 40A are provided, but it is not always necessary to have one, and there may be one or more. In that case, the heights of the circular convex portion 40A and the rectangular convex portion 40A do not have to be the same, and may be different heights. For example, two rectangular shapes intersecting at a 90-degree cross shape with one circular convex portion 40A and a shape having two circular convex portions 40B having different diameters or one circular convex portion 40B. A shape provided with the convex portion 40A is also possible. In the case of having a plurality of rectangular convex portions 40A, there is no limitation on the angle at which they intersect with each other, and one rectangular formed in the driving direction of the intake valve 203 of the electromagnetically driven intake valve mechanism 200, that is, in the direction along the center line 100. The angle may be any angle with respect to the shape convex portion 40A.
 また、円形状凸部40Bと矩形状凸部40Aにおいては、上述したポンプの外側に突出する形状と内側に突出する形状の併用も可能である。また、円形状凸部40Bは略円形状でよく、たとえば楕円でもよい。さらに、矩形状凸部40Aは略矩形状でよく、たとえば長方形、正方形、菱形等でもよい。 Further, in the circular convex portion 40B and the rectangular convex portion 40A, it is possible to use both the shape projecting outside the pump and the shape projecting inward. Further, the circular convex portion 40B may be substantially circular, for example, an ellipse. Furthermore, the rectangular convex portion 40A may be substantially rectangular, and may be, for example, a rectangle, a square, a rhombus, or the like.
 ダンパカバー40からの放射音を低減するには、ダンパカバー40の表面上に凹凸をつけて断面二次モーメントを大きくするなどの剛性向上や放射音を放射しやすい平坦な面の面積を少なくすることが有効であるので、必要に応じて、円形状凸部40Aと矩形状凸部の形状、個数、組合せなどを変更できる。 In order to reduce the radiated sound from the damper cover 40, the rigidity of the surface of the damper cover 40 is increased to increase the secondary moment, and the area of the flat surface where the radiated sound is likely to be emitted is reduced. Therefore, the shape, number, combination, and the like of the circular convex portion 40A and the rectangular convex portion can be changed as necessary.
10b…ダンパ室、10P…屈曲通路部、10S…隙間通路部、11…吐出ジョイント、12…加圧室、30…ダンパホルダ、40…ダンパカバー、40A…矩形状突部、40B…円形状凸部、40R…R部、60…吐出弁ユニット、61…バルブシート、61B…バルブシート部材、61B…バルブシート部材、63…吐出弁、80C…溝通路、80U…燃料通路、200…電磁駆動型吸入弁機構、203…吸入弁、214…バルブハウジング、214S…バルブシート。 DESCRIPTION OF SYMBOLS 10b ... Damper chamber, 10P ... Bending passage part, 10S ... Gap passage part, 11 ... Discharge joint, 12 ... Pressurization chamber, 30 ... Damper holder, 40 ... Damper cover, 40A ... Rectangular protrusion, 40B ... Circular convex part 40R ... R section, 60 ... discharge valve unit, 61 ... valve seat, 61B ... valve seat member, 61B ... valve seat member, 63 ... discharge valve, 80C ... groove passage, 80U ... fuel passage, 200 ... electromagnetically driven suction Valve mechanism 203 ... Suction valve 214 ... Valve housing 214S ... Valve seat

Claims (6)

  1.  往復運動するプランジャと、
     前記プランジャの往復運動により体積が変化する燃料の加圧室と、
     前記加圧室の燃料吸入側に位置し、燃料流路の開閉を行う吸入弁と、
     前記加圧室の燃料吐出側に位置し、燃料流路の開閉を行う吐出弁と、
     前記加圧室を内部に有するポンプボディと、
     前記ポンプボディに形成されたダンパ室に配設されたダンパと、
     前記ダンパ室を覆うダンパカバーと、を備えた高圧燃料供給ポンプにおいて、
     前記ダンパカバーは、前記ダンパ室と反対側に又は前記ダンパ室の側に凸となる略円形状凸部が設けられるとともに、前記略円形状凸部と重なる位置に、前記略円形状凸部と同じ側に凸となる略矩形状凸部が設けられることを特徴とする高圧燃料供給ポンプ。
    A reciprocating plunger;
    A fuel pressurizing chamber whose volume is changed by the reciprocating motion of the plunger;
    An intake valve located on the fuel intake side of the pressurizing chamber, for opening and closing the fuel flow path;
    A discharge valve located on the fuel discharge side of the pressurizing chamber for opening and closing the fuel flow path;
    A pump body having the pressurizing chamber therein;
    A damper disposed in a damper chamber formed in the pump body;
    In a high pressure fuel supply pump comprising a damper cover that covers the damper chamber,
    The damper cover is provided with a substantially circular convex portion that is convex on the opposite side of the damper chamber or on the damper chamber side, and the substantially circular convex portion at a position overlapping the substantially circular convex portion. A high-pressure fuel supply pump, characterized in that a substantially rectangular convex portion that is convex on the same side is provided.
  2.  請求項1に記載の高圧燃料供給ポンプにおいて、
     前記略矩形状凸部の短手方向の幅は、前記略円形状凸部の径より狭く設定されていることを特徴とする高圧燃料供給ポンプ。
    The high-pressure fuel supply pump according to claim 1,
    The width of the substantially rectangular convex part in the short direction is set to be narrower than the diameter of the substantially circular convex part.
  3.  請求項1に記載の高圧燃料供給ポンプにおいて、
     前記略矩形状凸部は前記吸入弁の駆動方向に垂直となる方向以外に沿って形成されたことを特徴とする高圧燃料供給ポンプ。
    The high-pressure fuel supply pump according to claim 1,
    The high-pressure fuel supply pump according to claim 1, wherein the substantially rectangular convex portion is formed along a direction other than a direction perpendicular to a driving direction of the intake valve.
  4.  請求項1から3の何れかに記載の高圧燃料供給ポンプにおいて、
     前記ダンパカバーは外周縁部に曲面部が形成されており,前記略矩形状凸部の両端部は前記曲面部に接続されていることを特徴とする高圧燃料供給ポンプ。
    The high-pressure fuel supply pump according to any one of claims 1 to 3,
    The high-pressure fuel supply pump is characterized in that the damper cover has a curved surface portion at an outer peripheral edge portion, and both end portions of the substantially rectangular convex portion are connected to the curved surface portion.
  5.  請求項1に記載の高圧燃料供給ポンプにおいて、
     前記略円形状凸部の高さは前記略矩形状凸部の高さ以上であることを特徴とする高圧燃料供給ポンプ。
    The high-pressure fuel supply pump according to claim 1,
    The high-pressure fuel supply pump according to claim 1, wherein a height of the substantially circular convex portion is equal to or higher than a height of the substantially rectangular convex portion.
  6.  請求項1から3の何れかに記載の高圧燃料供給ポンプにおいて、
     前記ダンパカバー,前記略円形状凸部,前記略矩形状凸部が概略同等の板厚で形成されることを特徴とする高圧燃料供給ポンプ。
    The high-pressure fuel supply pump according to any one of claims 1 to 3,
    The high-pressure fuel supply pump, wherein the damper cover, the substantially circular convex portion, and the substantially rectangular convex portion are formed with substantially the same thickness.
PCT/JP2015/066430 2014-09-19 2015-06-08 High-pressure fuel supply pump WO2016042853A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-190660 2014-09-19
JP2014190660A JP6324282B2 (en) 2014-09-19 2014-09-19 High pressure fuel supply pump

Publications (1)

Publication Number Publication Date
WO2016042853A1 true WO2016042853A1 (en) 2016-03-24

Family

ID=55532898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066430 WO2016042853A1 (en) 2014-09-19 2015-06-08 High-pressure fuel supply pump

Country Status (2)

Country Link
JP (1) JP6324282B2 (en)
WO (1) WO2016042853A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018007055A1 (en) * 2016-07-08 2018-01-11 Robert Bosch Gmbh High-pressure fuel pump

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7070343B2 (en) * 2018-11-01 2022-05-18 株式会社デンソー Solenoid valve and high-pressure pump using it

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004002489A1 (en) * 2004-01-17 2005-08-11 Robert Bosch Gmbh High-pressure automotive fuel pump has an inlet pressure dampener and gas space between two membranes
JP2008286144A (en) * 2007-05-21 2008-11-27 Hitachi Ltd Liquid pressure pulsation damping mechanism and high-pressure fuel supply pump with the same
JP2011144700A (en) * 2010-01-12 2011-07-28 Denso Corp High pressure pump
JP2012117471A (en) * 2010-12-02 2012-06-21 Denso Corp High pressure pump
JP2015086699A (en) * 2013-10-28 2015-05-07 日立オートモティブシステムズ株式会社 High-pressure fuel supply pump

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5682335B2 (en) * 2011-01-28 2015-03-11 株式会社デンソー High pressure pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004002489A1 (en) * 2004-01-17 2005-08-11 Robert Bosch Gmbh High-pressure automotive fuel pump has an inlet pressure dampener and gas space between two membranes
JP2008286144A (en) * 2007-05-21 2008-11-27 Hitachi Ltd Liquid pressure pulsation damping mechanism and high-pressure fuel supply pump with the same
JP2011144700A (en) * 2010-01-12 2011-07-28 Denso Corp High pressure pump
JP2012117471A (en) * 2010-12-02 2012-06-21 Denso Corp High pressure pump
JP2015086699A (en) * 2013-10-28 2015-05-07 日立オートモティブシステムズ株式会社 High-pressure fuel supply pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018007055A1 (en) * 2016-07-08 2018-01-11 Robert Bosch Gmbh High-pressure fuel pump
CN109416009A (en) * 2016-07-08 2019-03-01 罗伯特·博世有限公司 High-pressure fuel pump
US10865751B2 (en) 2016-07-08 2020-12-15 Robert Bosch Gmbh High-pressure fuel pump

Also Published As

Publication number Publication date
JP6324282B2 (en) 2018-05-16
JP2016061246A (en) 2016-04-25

Similar Documents

Publication Publication Date Title
US10655585B2 (en) High-pressure fuel supply pump having electromagnetically-driven intake valve
JP5677329B2 (en) High pressure fuel supply pump with electromagnetically driven suction valve
US9169816B2 (en) High-pressure fuel supply pump having electromagnetically-driven intake valve
JP4285883B2 (en) Solenoid valve and fuel supply device using the same
JP6235518B2 (en) High pressure fuel supply pump and method of assembling high pressure fuel supply pump
JP6224415B2 (en) High pressure fuel supply pump
JP6219672B2 (en) High pressure fuel supply pump
JP6324282B2 (en) High pressure fuel supply pump
JP5989075B2 (en) High pressure fuel supply pump with electromagnetically driven suction valve
JP6438920B2 (en) High pressure fuel supply pump with electromagnetically driven suction valve
JP6663971B2 (en) High pressure fuel supply pump with electromagnetically driven suction valve
JP6533454B2 (en) High pressure fuel supply pump
CN112867861B (en) High-pressure fuel pump
JP6527995B2 (en) High-pressure fuel supply pump with an electromagnetically driven suction valve
JP6118790B2 (en) High pressure fuel supply pump with electromagnetically driven suction valve
JP2017106475A (en) High pressure fuel supply pump including electromagnetic drive-type suction valve
JP5370438B2 (en) High pressure pump
JP2019196745A (en) High pressure fuel supply pump and assembly method thereof
JP2019148262A (en) High pressure fuel supply pump including electromagnetic drive-type suction valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15841915

Country of ref document: EP

Kind code of ref document: A1