WO2016041373A1 - 一种数据查询的方法及装置 - Google Patents
一种数据查询的方法及装置 Download PDFInfo
- Publication number
- WO2016041373A1 WO2016041373A1 PCT/CN2015/079602 CN2015079602W WO2016041373A1 WO 2016041373 A1 WO2016041373 A1 WO 2016041373A1 CN 2015079602 W CN2015079602 W CN 2015079602W WO 2016041373 A1 WO2016041373 A1 WO 2016041373A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- data
- data query
- component
- metric
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
Definitions
- This paper relates to the field of communication technologies, and in particular, to a method and device for data query.
- OLAP On-line Analytical Processing
- OLAP is an online data access and analysis for specific problems. Quick, consistent, and interactive access to multiple possible forms of observation of information or multidimensional data enables analysts, managers, or executives to view data from multiple perspectives to achieve complex analysis and data
- the software technology features: rapidity, analyzability, multidimensionality, and informationality.
- OLAP data model information is abstracted as a cube, which includes dimensions (Dimension) and metrics (Measure). Dimensions are a specific angle at which people observe data. They are a type of attribute that considers a problem. A set of attributes constitutes a dimension. For example, companies often observe the sales of products from a time perspective, so time can be used as a dimension. A metric is a measure of interest to the user or data to be analyzed, ie, an indicator. It is a digital scale entity used to describe events and is actually stored in a physical table. For example, the number of visits to the website, the amount of visits, and the amount of orders, sales, etc. of e-commerce.
- Multi-dimensional analysis refers to taking a variety of analysis actions such as slicing, dicing, rotating, scrolling, and drilling down the data organized in a multi-dimensional form, so as to analyze the data from multiple dimensions, so that the end user can observe the database from multiple angles.
- the data thus gets deeper information contained in the data.
- the method of realizing quick query user attention to TOP-N data is one of the OLAP multi-dimensional operation functions.
- the traditional TOP-N data query the traditional TOP-N query maximum and minimum TOP items need to load all data, the query time-consuming, the key indicators of user attention can not be set, and the efficiency is low.
- This paper provides a method and device for data query.
- the flexibility of query mode and the configurability of query value improve the efficiency of data query, facilitate user's use, and help users to deeply observe and understand the data.
- a method of data query comprising:
- the data information is preprocessed according to the data query request input by the user, and the information report related to the data query request is obtained by using the multi-dimensional analysis OLAP component;
- the information report is displayed by displaying the top N items of the TOP-N component.
- the step of preprocessing the data information by using the multi-dimensional analysis OLAP component according to the data query request input by the user, and obtaining the information report related to the data query request includes:
- the cubic multidimensional information model Constructing a cubic multidimensional information model according to a data query request input by the user, the cubic multidimensional information model including dimension information and metric information;
- the step of obtaining an information report related to the data query request includes:
- the analyzing operation includes slicing, drilling, filtering, and/or subtotaling.
- the step of displaying the information report by displaying the top N items of the TOP-N component includes:
- the second information that needs to be displayed in the information report includes: metric information to be displayed, a query manner of the metric information, and the quantity of the metric information.
- the determined second information is presented using a TOP-N component.
- the query manner of the metric information includes: a first N item display, a last N item display, a front percentage item display, a last percentage item display, and a group display.
- the step of displaying the determined second information by using the TOP-N component comprises:
- the determined second information is displayed in a tabular or graphical form or a chart coexistence format.
- the method before the preprocessing the data information by using the multi-dimensional analysis OLAP component according to the data query request input by the user, the method further includes:
- the information report is extracted from the database file.
- a device for data query comprising:
- the pre-processing module is configured to: according to the data query request input by the user, pre-process the data information by using the multi-dimensional analysis OLAP component, and obtain an information report related to the data query request;
- the display module is configured to display the information report by displaying the top N items of the TOP-N component according to the information report.
- the preprocessing module includes:
- the building module is configured to: construct a cubic multi-dimensional information model according to a data query request input by the user, where the cubic multi-dimensional information model includes dimension information and metric information;
- the first obtaining module is configured to: obtain, according to the cube multi-dimensional information model, an information report related to the data query request, where the information report includes metric values corresponding to the metric information under different dimension information.
- the first obtaining module includes:
- Creating a module configured to: create a real-time multi-dimensional analysis model according to the cube multidimensional information model;
- Obtaining a sub-module configured to: preset dimension information based on the real-time multi-dimensional analysis model and The metric information is subjected to an analysis operation to obtain a report of information related to the data query request.
- the analyzing operation includes slicing, drilling, filtering, and/or subtotaling.
- the display module includes:
- the determining module is configured to: determine, according to the data query request of the user, the second information that needs to be displayed in the information report; wherein the second information that needs to be displayed includes: the metric information to be displayed, and the query manner of the metric information And the quantity value of the metric information;
- the presentation sub-module is configured to: display the determined second information by using a TOP-N component.
- the query manner of the metric information includes: a first N item display, a last N item display, a front percentage item display, a last percentage item display, and a group display.
- the display submodule includes:
- the display unit is configured to display the determined second information by using a table form or a graphic form or a chart coexistence form based on the TOP-N component.
- the device further includes:
- a second obtaining module configured to: obtain, by the extract-convert-load ETL component, a database file, where the database file is obtained by converting the original data file by the ETL component; wherein the information report is from the database Extracted from the file.
- a computer readable storage medium storing computer executable instructions for performing the method of any of the above.
- the multi-dimensional analysis OLAP component is used to preprocess the data information to realize fast, consistent and interactive access to the data information; and the top N TOP-N components are displayed according to the display.
- Dimensions and multi-metrics perform fast TOP-N query according to the setting method, so that users can quickly query the key indicator data that they need, which greatly improves the query efficiency and is convenient for users.
- FIG. 1 is a flow chart showing the basic steps of a method for data query according to an embodiment of the present invention
- FIG. 2 is a schematic diagram showing a method of data query according to an embodiment of the present invention.
- FIG. 3 is a schematic diagram showing the basic structure of an apparatus for data query according to an embodiment of the present invention.
- This paper provides a method and device for data query based on the problem that the efficiency of data query in related technologies is low and the key indicators of user attention cannot be set.
- multi-dimensional analysis of OLAP components is used to preprocess data information to realize data information. Fast, consistent, and interactive access; re-use the top N items of the TOP-N component to perform fast TOP-N query according to the setting mode according to the multi-dimensional and multi-metrics, so that the user can quickly find the desired one.
- the key indicator data greatly improves the query efficiency and is convenient for users to use.
- an embodiment of the present invention provides a data query method, including:
- Step 1 according to the data query request input by the user, preprocessing the data information by using the multi-dimensional analysis OLAP component, and obtaining an information report related to the data query request;
- Step 2 Display the information report by displaying the top N items of the TOP-N component according to the information report.
- the multi-dimensional analysis of the OLAP component is used to perform multi-dimensional analysis on the data information, wherein the multi-dimensional analysis refers to taking, dicing, rotating, and uppering the data organized in a multi-dimensional form.
- Various analysis actions such as volume and drill-down, are used to analyze data from multiple dimensions, so that the end user can observe the data in the database from multiple angles, thereby obtaining deep information contained in the data.
- an information report is obtained, which is related to the data query request input by the user, and the information report can be displayed in the form of a graph or a graph, or can be a method in which the graph and the graph are displayed together.
- the embodiment of the present invention further provides a setting of a line graph, a histogram, a pie chart, and the like, and a multi-dimensional analysis function for the above-mentioned line graph, histogram, and pie graph, and the following drilling and scrolling functions.
- the TOP-N component generates a multi-dimensional analysis data file (information report) and parameters required for the query, selects an appropriate algorithm to extract and displays according to a preset format, such as a table format display, a graphic format. Display or coexistence of graphics and charts to enable users to Quickly query the key indicator data that you need, which greatly improves the query efficiency and is convenient for users.
- a preset format such as a table format display, a graphic format.
- step 1 includes:
- Step 11 Construct a cubic multi-dimensional information model according to a data query request input by the user, where the cubic multi-dimensional information model includes dimension information and metric information;
- Step 12 Acquire, according to the cube multi-dimensional information model, an information report related to the data query request, where the information report includes metric values corresponding to the metric information under different dimension information.
- information is abstracted as a cube, which includes dimensions (Dimension) and metrics.
- the dimension is a specific angle at which people observe data, and is a problem considering the problem.
- Class attributes which form a dimension. For example, companies often observe the sales of products from a time perspective, so time can be used as a dimension.
- a metric is a measure of interest to the user or data to be analyzed, ie, an indicator. It is a digital scale entity used to describe events and is actually stored in a physical table. For example, the number of visits to the website, the amount of visits, and the amount of orders, sales, etc. of e-commerce.
- all the dimensions and metric information involved in an instance are configured, that is, a cube multidimensional information model file, and the model file includes at least the following contents: the name and level of all dimensions, one level Contains a dimension table name and multiple levels, such as time dimension name is Time, corresponding level is Hierarchy, Hierarchy contains a dimension table name, including levels of year, month, day, hour, minute; there is only one cube model Information, this cube model information contains all dimension information, metric information name and fact table name.
- step 12 may include:
- Step 121 Create a real-time multi-dimensional analysis model according to the cubic multi-dimensional information model
- Step 122 Perform an analysis operation on the preset dimension information and the metric information based on the real-time multi-dimensional analysis model, and obtain an information report related to the data query request.
- the analyzing operation includes slicing, drilling, filtering, and/or subtotaling.
- a real-time multi-dimensional analysis model is created according to the key indicators of the user's attention, and the dimension is preset.
- Degree information and metric information for example, a real-time multi-dimensional analysis model for slice analysis, selecting the dimension to be analyzed at the slice, moving the selected dimension to the row axis, and setting the dimension; at the column axis, selecting the metric member to be presented, Adjust the presentation order of the metric members, and measure the member settings.
- step 122 the set dimensions and metrics are analyzed, for example, the location drilling mode is selected, and when the roll up and the drill down (Drill Down) are performed, the selected parent node still displays. Select the next-level child node of the parent node to expand; select the alternate drill mode. When performing the roll-up and drill-down, the selected parent node is replaced by the next-level child node of the selected parent node, and all child nodes are expanded.
- the upper volume refers to the summary of the low-level detail data to the high-level summary data in one dimension
- the drill-down refers to the observation from the summary data to the detailed data, both of which are operations for changing the granularity of the dimension hierarchy.
- Select Filter set the filter combination criteria, and the data is presented in the selected way.
- Select the subtotal set the sum, average, maximum and minimum of the data in one dimension, and add a subtotal for the data in the table.
- an information report is obtained; wherein the information report is displayed by default in the form of excel, but is not limited to the form, and other methods such as word and csv are in this form. Both of the embodiments of the invention are applicable.
- step 2 may include:
- Step 21 Determine, according to the data query request of the user, the second information that needs to be displayed in the information report, where the second information that needs to be displayed includes: metric information to be displayed, a query manner of the metric information, and the metric The amount of information;
- Step 22 using the TOP-N component to display the determined second information.
- the query manner of the metric information may include: a first N item display, a last N item display, a front percentage item display, a last percentage item display, and a group display.
- step 22 may include:
- Step 221 based on the TOP-N component, displaying the determined second information in a tabular form or a graphical form or a chart coexistence form.
- step 21 is implemented on the TOP-N component, that is, in the TOP-N query setting interface, there are three settings of measurement, mode and value.
- a metric is a query metric that displays all metrics and defaults the first metric by selecting different metrics as query terms.
- the query method includes: the first N items, the last N items, the former percentage item (%), and the last percentage item (%), Group TOP-N, the first one of the first N items is selected by default, and different query methods can be selected for query.
- the value is the corresponding value that can be entered for the selected query mode, so that the query can be more efficiently performed under the premise of a large amount of data.
- the metric to be queried is selected as the traffic, the first N items are set, and the value is set to 100. That is, only the first 100 records of the required metric parameters need to be obtained in the 728 406 line data, so that the query response time is fast, and the query result data can be displayed in real time. . In the same way, you can choose other metrics and query methods.
- the data that needs to be queried in the foreground is transmitted to the background, and the background selects an appropriate query algorithm according to the query setting parameter.
- the task number is returned, and the foreground obtains the query result according to the task number.
- the default is displayed in the form of a table, and the user can also select another form, such as a graphic method or a method in which graphics and a chart coexist. .
- the method may further include:
- Step 3 Obtain a database file by extracting-converting-loading the ETL component, where the database file is obtained by converting the original data file by the ETL component;
- the information report is extracted from the database file.
- the input end of the ETL component is mainly input raw data, such as bill data, and the ETL component mainly extracts and converts the original data, and then loads the data into the database for use by the later OLAP component.
- the primary role of this ETL component is to transform raw data into data that can be used by OLAP components.
- the dimension is an angle of observation data.
- the user analyzes the metric data through the dimension.
- the dimension of the LTE service traffic in this example includes the time dimension and the area.
- the metric refers to the metric data to be analyzed.
- the metric member includes the traffic, the guaranteed bandwidth, the port bandwidth, and the network. Metrics such as total flow rate, mean flow rate, peak flow rate, % guaranteed bandwidth, % flow ratio, and growth rate.
- the embodiment of the invention performs real-time multi-dimensional analysis on the interface of the data transmitted by the ETL component through the OLAP component, and performs fast TOP-N query display through the multi-dimensional analyzed data.
- the ETL component mainly extracts and converts the original data, and then loads it into the database for
- the latter OLAP components are used, and the embodiments of the present invention focus on multi-dimensional analysis and TOP-N data query. Therefore, the following two components of the analysis and query data, namely the OLAP component and the TOP-N component, are described in detail.
- the analysis of OLAP components from OLAP components includes three modules: model management, cube management, and real-time multidimensional analysis.
- the user first configures all the dimensions and metrics involved in an instance, that is, a model file.
- this model file at least the following content: the name and level of all dimensions, one level contains a dimension table name and more Hierarchy, such as time dimension name is Time, corresponding level is Hierarchy, Hierarchy contains a dimension table name, including levels of year, month, day, hour, minute; there is only one cube template information, this cube template information Contains all dimension information, metric member names, and fact table names.
- the cube is a multi-dimensional space constructed by dimensions.
- the cube is created according to the model file.
- the dimension selected in this example contains time and region.
- the selected metrics include traffic, guaranteed bandwidth, port bandwidth, and total network traffic. , flow rate average, flow rate peak, guaranteed bandwidth percentage, flow percentage, growth rate, etc.
- the background creates a cube according to the selected dimensions and metrics, and creates a corresponding aggregation table in the database to modify the cube configuration file. After the cube is created, it is transferred to the real-time multi-dimensional analysis module to create real-time multi-dimensional analysis.
- the real-time multi-dimensional analysis is a subset of the cube multidimensional space.
- the dimensions in the cube correspond to the row axis and slice options in real-time multidimensional analysis.
- Column axis options in real-time multidimensional analysis where the dimensions of the slice are not displayed on the table, and the options for the row and column axes are displayed on the table.
- the multi-dimensional analysis open the analysis.
- the data is presented in tabular form, and the dimensions and metric settings are set. For example, the time and area dimensions are moved to the row axis.
- the metrics in the column axis select traffic, guarantee bandwidth, total network traffic, The proportion of traffic, etc. Select an operation, such as selecting to replace the drill.
- the foreground organizes the MDD statement to the Mondrian process in the background according to these operations.
- the Mondrian process processes the MDX statement into a traditional SQL statement and sends a SQL request to the original table and the aggregate table in the cube configuration file. There is a pooled table, then The data is obtained preferentially from the aggregation table.
- the data is obtained from the fact table, and the data in the aggregation table and the fact table are all from the data converted by the ETL component in real time.
- the Mondrian process returns the query results to the interface and displays them in the table.
- the table shows the traffic, guaranteed bandwidth, total network traffic, and traffic ratio corresponding to all regions in 2014.
- Other analysis operations such as position drilling, filtering, subtotaling, etc., are similar to this and will not be repeated here.
- the analysis data at this time is displayed in the table by default.
- the sorting function can realize the data before and after viewing, the efficiency is not high enough, and the TOP-N is not flexible in use, so the user can analyze the data.
- the data result is TOP-N query.
- the user opens the above analysis data, and the row axis includes a time dimension and an area dimension.
- the metrics in the column axis include traffic, guaranteed bandwidth, total network traffic, and traffic ratio.
- the time dimension replaces the drill to the hour level, and the area dimension, for example, replaces the drill into Shenzhen under the provincial market.
- the OLAP component After clicking the first N button, in the background, the OLAP component generates a multi-dimensional analysis data file according to the above analysis result, notifies the TOP-N query component of the location of the file, and the query component obtains the file and generates a data source, wherein the data source is TOP-N. Query the required source file; in the foreground, the TOP-N query interface opens.
- the LTE service traffic ranking table generated has generated 728,406 rows of data, and the metrics are selected, namely, traffic, guaranteed bandwidth, total network traffic, The proportion of traffic.
- the metric to be queried is the traffic, the first is N, and the value is 100.
- the foreground passes the query condition to the background according to the setting mode.
- the background queries according to the setting conditions.
- the result is returned to the foreground.
- the front desk displays the results of the query. That is, in the 728,406 rows of data, only the first 100 records of the required metric parameters need to be obtained, so that the query response time is fast, and the query result data can be displayed in real time. In the same way, you can choose other metrics and query methods.
- the members to be grouped and sorted in each group are subclasses under the regional category. (ie, all members of a level, the union of each subset of provinces, cities, and districts).
- select the query mode as grouping TOP-N select the query mode as grouping TOP-N, set the data value to confirm the query, and also get the group query result quickly.
- the multi-dimensionality of the TOP-N query operation greatly improves the query efficiency for thousands of data, and the results of the query analysis are exported and displayed in a variety of file formats.
- an embodiment of the present invention further provides an apparatus for data query, including:
- the pre-processing module 10 is configured to: according to the data query request input by the user, pre-process the data information by using the multi-dimensional analysis OLAP component, and obtain an information report related to the data query request;
- the display module 20 is configured to display the information report by using the top N items of the TOP-N component according to the information report.
- the pre-processing module 10 includes:
- the building module is configured to: construct a cubic multi-dimensional information model according to a data query request input by the user, where the cubic multi-dimensional information model includes dimension information and metric information;
- the first obtaining module is configured to: obtain, according to the cube multi-dimensional information model, an information report related to the data query request, where the information report includes metric values corresponding to the metric information under different dimension information.
- the first acquiring module includes:
- Creating a module configured to: create a real-time multi-dimensional analysis model according to the cube multidimensional information model;
- the obtaining sub-module is configured to: perform an analysis operation on the preset dimension information and the metric information based on the real-time multi-dimensional analysis model, and obtain an information report related to the data query request.
- the analyzing operations include slicing, drilling, filtering, and/or subtotaling.
- the display module 20 includes:
- a determining module configured to: determine, according to a data query request of the user, second information that needs to be displayed in the information report; wherein the second information that needs to be displayed includes: a metric to be displayed Information, the manner in which the metric information is queried, and the quantity value of the metric information;
- the presentation sub-module is configured to: display the determined second information by using a TOP-N component.
- the query manner of the metric information includes: a first N item display, a last N item display, a front percentage item display, a last percentage item display, and a group display.
- the display sub-module includes:
- the display unit is configured to display the determined second information by using a table form or a graphic form or a chart coexistence form based on the TOP-N component.
- the device further includes:
- a second obtaining module configured to: obtain a database file by extracting-converting-loading the ETL component, where the database file is obtained by converting the original data file by the ETL component; the information report is from the database file Extracted.
- the multi-dimensional analysis OLAP component is used to preprocess the data information to realize fast, consistent and interactive access to the data information; and then use the display N items of the TOP-N component according to Multi-dimensional and multi-metrics will quickly query the data to be queried according to the setting mode, so that users can quickly query the key indicator data that they need, which greatly improves the query efficiency and is convenient for users.
- the data query device provided by the embodiment of the present invention is a device capable of implementing the above data query method, and the data query method is applicable to the device in all embodiments, and all of the same or similar beneficial effects can be achieved.
- all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
- the device/function module/functional unit in the above embodiments may be implemented by using a general-purpose computing device, which may be concentrated on a single computing device or distributed in multiple computing devices. On the network.
- the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
- the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
- the embodiment of the invention firstly uses the multi-dimensional analysis OLAP component to preprocess the data information to realize fast, consistent and interactive access to the data information; and then use the display N items of the TOP-N component according to the multi-dimensional and multi-metrics.
- the queried data is quickly TOP-N queried according to the setting mode, so that the user can quickly query the key metric data that he needs, which greatly improves the query efficiency and is convenient for the user to use.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
一种数据查询的方法及装置,其中数据查询的方法包括:根据用户输入的数据查询请求,利用多维分析OLAP组件对数据信息进行预处理,得到与所述数据查询请求相关的信息报表;根据所述信息报表,利用显示前N项TOP-N组件,对所述信息报表进行展示。
Description
本文涉及通信技术领域,特别涉及一种数据查询的方法及装置。
如今,一个大规模生产、分享和应用数据的时代正在开启,在大数据时代我们就需要分析更多的数据,有时更要分析某个特别现象关联的所有数据。这就对我们目前多维分析(OLAP)功能提出了更高的要求。OLAP(On-line Analytical Processing)是针对特定问题的联机数据访问和分析。通过对信息或者多维数据的多种可能的观察形式进行快速、稳定一致和交互性的存取,使分析人员、管理人员或者执行人员能够从多种角度对数据进行深入观察以达到复杂分析和数据预测目的一类软件技术。该软件技术其特点包括:快速性、可分析性、多维性、信息性。在介绍快速查询数据的方法前首先我们要了解多维分析基本数据模型的几个概念,在一个OLAP数据模型中,信息被抽象视为一个立方体(Cube),它包括维度(Dimension)和度量(Measure),维度是人们观察数据的特定角度,是考虑问题的一类属性,属性集合构成一个维。例如企业常常从时间的角度来观察产品的销售,因此时间可以作为一个维。度量是用户感兴趣的一个测量值或者要分析展示的数据,即指标。它是用于描述事件的数字尺度实体,是实际储存于物理表中的。比如网站的浏览量、访问量,再如电子商务的订单量、销售额等。多维分析就是指对以多维形式组织起来的数据采取切片、切块、旋转、上卷、下钻等多种分析动作,以求从多维度剖析数据,使最终用户能从多个角度观察数据库中的数据,从而获取包含在数据中深层次的信息。而实现快速查询用户关注TOP-N数据的方法是属于OLAP多维操作功能中的一种。对于传统的TOP-N数据查询来说,传统的TOP-N查询最大、最小值前TOP项时,需要加载所有数据,查询耗时,用户关注的重点指标也无法设置,且效率低。
发明内容
本文提供一种数据查询的方法及装置,查询方式的灵活性和查询数值的可设置性提高了数据的查询效率,方便用户的使用,帮助用户对数据进行深入的观察和了解。
一种数据查询的方法,包括:
根据用户输入的数据查询请求,利用多维分析OLAP组件对数据信息进行预处理,得到与所述数据查询请求相关的信息报表;
根据所述信息报表,利用显示前N项TOP-N组件,对所述信息报表进行展示。
可选地,根据响应用户输入的数据查询请求,利用多维分析OLAP组件对数据信息进行预处理,得到与所述数据查询请求相关的信息报表的步骤包括:
根据用户输入的数据查询请求,构建立方体多维信息模型,所述立方体多维信息模型包括维度信息和度量信息;
根据所述立方体多维信息模型,获取与所述数据查询请求相关的信息报表,其中所述信息报表包括不同维度信息下,所述度量信息分别对应的度量值。
可选地,根据所述立方体多维信息模型,获取与所述数据查询请求相关的信息报表的步骤包括:
根据所述立方体多维信息模型,创建实时多维分析模型;
基于所述实时多维分析模型对预设的维度信息和度量信息进行分析操作,得到与所述数据查询请求相关的信息报表。
可选地,所述分析操作包括切片、钻取、过滤和/或小计。
可选地,根据所述信息报表,利用显示前N项TOP-N组件,对所述信息报表进行展示的步骤包括:
根据用户的数据查询请求,确定所述信息报表中需要显示的第二信息;其中,所述需要显示的第二信息包括:需要显示的度量信息、该度量信息的查询方式以及该度量信息的数量值;
利用TOP-N组件展示确定的所述第二信息。
可选地,所述度量信息的查询方式包括:前N项显示、后N项显示、前百分比项显示、后百分比项显示以及分组显示。
可选地,利用TOP-N组件展示确定的所述第二信息的步骤包括:
基于TOP-N组件,利用表格形式或者图形形式或者图表共存形式展示确定的所述第二信息。
可选地,所述根据用户输入的数据查询请求,利用多维分析OLAP组件对数据信息进行预处理前,还包括:
通过提取-转换-加载ETL组件获取数据库文件,所述数据库文件是所述ETL组件对原始数据文件进行转换后得到的;
其中,所述信息报表是从所述数据库文件中提取的。
一种数据查询的装置,包括:
预处理模块,设置为:根据用户输入的数据查询请求,利用多维分析OLAP组件对数据信息进行预处理,得到与所述数据查询请求相关的信息报表;
展示模块,设置为:根据所述信息报表,利用显示前N项TOP-N组件,对所述信息报表进行展示。
可选地,所述预处理模块包括:
构建模块,设置为:根据用户输入的数据查询请求,构建立方体多维信息模型,所述立方体多维信息模型包括维度信息和度量信息;
第一获取模块,设置为:根据所述立方体多维信息模型,获取与所述数据查询请求相关的信息报表,其中所述信息报表包括不同维度信息下,所述度量信息分别对应的度量值。
可选地,所述第一获取模块包括:
创建模块,设置为:根据所述立方体多维信息模型,创建实时多维分析模型;
获取子模块,设置为:基于所述实时多维分析模型对预设的维度信息和
度量信息进行分析操作,得到与所述数据查询请求相关的信息报表。
可选地,所述分析操作包括切片、钻取、过滤和/或小计。
可选地,所述展示模块包括:
确定模块,设置为:根据用户的数据查询请求,确定所述信息报表中需要显示的第二信息;其中,所述需要显示的第二信息包括:需要显示的度量信息、该度量信息的查询方式以及该度量信息的数量值;
展示子模块,设置为:利用TOP-N组件展示确定的所述第二信息。
可选地,所述度量信息的查询方式包括:前N项显示、后N项显示、前百分比项显示、后百分比项显示以及分组显示。
可选地,所述展示子模块包括:
展示单元,设置为:基于TOP-N组件,利用表格形式或者图形形式或者图表共存形式展示确定的所述第二信息。
可选地,所述装置还包括:
第二获取模块,设置为:通过提取-转换-加载ETL组件获取数据库文件,所述数据库文件是所述ETL组件对原始数据文件进行转换后得到的;其中,所述信息报表是从所述数据库文件中提取的。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一项的方法。
本发明实施例的数据查询的方法中,先利用多维分析OLAP组件对数据信息进行预处理,实现对数据信息进行快速、一致、交互的存取;再利用显示前N项TOP-N组件根据多维度、多度量将所需要查询的数据按照设置方式进行快速TOP-N查询,使得用户能够快速查询到自己需要的重点指标数据,极大的提高了查询效率,方便用户使用。
附图概述
图1表示本发明实施例的数据查询的方法的基本步骤流程图;
图2表示本发明实施例的数据查询的方法的原理图;
图3表示本发明实施例的数据查询的装置的基本结构示意图。
下面将结合附图对本发明的实施方式进行详细描述。
本文针对相关技术中数据查询的效率低且用户关注的重点指标也无法设置的问题,提供一种数据查询的方法及装置,先利用多维分析OLAP组件对数据信息进行预处理,实现对数据信息进行快速、一致、交互的存取;再利用显示前N项TOP-N组件根据多维度、多度量将所需要查询的数据按照设置方式进行快速TOP-N查询,使得用户能够快速查询到自己需要的重点指标数据,极大的提高了查询效率,方便用户使用。
如图1所示,本发明实施例提供一种数据查询的方法,包括:
步骤1,根据用户输入的数据查询请求,利用多维分析OLAP组件对数据信息进行预处理,得到与所述数据查询请求相关的信息报表;
步骤2,根据所述信息报表,利用显示前N项TOP-N组件,对所述信息报表进行展示。
本发明上述实施例中,利用多维分析OLAP组件对数据信息进行预处理即是对数据信息进行多维分析,其中,多维分析就是指对以多维形式组织起来的数据采取切片、切块、旋转、上卷、下钻等多种分析动作,以求从多维度剖析数据,使最终用户能从多个角度观察数据库中的数据,从而获取包含在数据中深层次的信息。数据信息经过步骤1的预处理后得到一信息报表,该信息报表是与用户输入的数据查询请求相关的,该信息报表可以以图形或图表的方式展现,也可以是图形与图表共同展现的方式,本发明实施例还提供线图、柱状图以及饼状图等的设置以及对上述线图、柱状图以及饼状图的多维分析功能,如下钻及上卷功能。
可选的,步骤2中TOP-N组件将生成的多维分析数据文件(信息报表)以及查询所需的参数,选择合适的算法进行提取并按照预设格式进行展示,如表格形式展示、图形格式展示或图形和图表共存形式展示,使得用户能够
快速查询到自己需要的重点指标数据,极大的提高了查询效率,方便用户使用。
本发明上述实施例中,步骤1包括:
步骤11,根据用户输入的数据查询请求,构建立方体多维信息模型,所述立方体多维信息模型包括维度信息和度量信息;
步骤12,根据所述立方体多维信息模型,获取与所述数据查询请求相关的信息报表,其中所述信息报表包括不同维度信息下,所述度量信息分别对应的度量值。
本发明实施例中,在一个OLAP数据模型中,信息被抽象视为一个立方体(Cube),它包括维度(Dimension)和度量(Measure),维度是人们观察数据的特定角度,是考虑问题的一类属性,属性集合构成一个维。例如企业常常从时间的角度来观察产品的销售,因此时间可以作为一个维。度量是用户感兴趣的一个测量值或者要分析展示的数据,即指标。它是用于描述事件的数字尺度实体,是实际储存于物理表中的。比如网站的浏览量、访问量,再如电子商务的订单量、销售额等。
首先根据用户输入的数据查询请求配置一个实例中所涉及到的所有维度及度量信息,即一个立方体多维信息模型文件,在这个模型文件中,至少包含如下内容:所有维度的名称及等级,一个等级包含一个维度表名称及多个层级,比如时间维度名称为Time,对应的等级为Hierarchy,Hierarchy包含一个维度表名称,包含的层级为年、月、日、时、分钟;有且只有一个立方体模型信息,此立方体模型信息中包含所有的维度信息、度量信息名称及事实表名称。
本发明上述实施例中,步骤12可包括:
步骤121,根据所述立方体多维信息模型,创建实时多维分析模型;
步骤122,基于所述实时多维分析模型对预设的维度信息和度量信息进行分析操作,得到与所述数据查询请求相关的信息报表。
本发明实施例中,所述分析操作包括切片、钻取、过滤和/或小计。
步骤121中根据用户关注的重点指标创建实时多维分析模型,并预设维
度信息和度量信息;例如一实时多维分析模型进行切片分析,在切片处选择需要进行分析的维度,移动所选维度至行轴,维度设置完毕;在列轴处,选择需要展现的度量成员,调整度量成员的展现顺序,度量成员设置完毕。
可选的,步骤122中对已设置的维度和度量进行分析操作,例如选择位置钻取方式,在进行上卷(Roll Up)和下钻(Drill Down)时,所选父节点仍然展现,所选父节点的下一级子节点展开;选择替换钻取方式,在进行上卷和下钻时,所选父节点均被所选父节点的下一级子节点所替换,所有子节点展开,其中上卷是指在一维度上将低层次的细节数据概括到高层次的汇总数据,下钻是指从汇总数据深入到细节数据进行观察,这两者都是改变维度层次粒度的操作。选择过滤,设置过滤组合条件,数据以所选方式进行展现。选择小计,设置一维度上数据的求和、求平均值、求最大值和求最小值,表格中的数据增加一行小计。综上,进行对维度和度量进行一系列分析操作后,得到一信息报表;其中,该信息报表默认以表格(excel)形式展现,但是不限于该形式,其他的如word、csv等方式在本发明实施例中均适用。
本发明的上述实施例中,步骤2可包括:
步骤21,根据用户的数据查询请求,确定所述信息报表中需要显示的第二信息;其中,所述需要显示的第二信息包括:需要显示的度量信息、该度量信息的查询方式以及该度量信息的数量值;
步骤22,利用TOP-N组件展示确定的所述第二信息。
本发明上述实施例中,所述度量信息的查询方式可包括:前N项显示、后N项显示、前百分比项显示、后百分比项显示以及分组显示。
在本发明实施例中,步骤22可包括:
步骤221,基于TOP-N组件,利用表格形式或者图形形式或者图表共存形式展示确定的所述第二信息。
本发明上述实施例中,步骤21是在TOP-N组件上实现的,即在TOP-N查询设置界面,有度量、方式、数值三项设置。度量即查询指标,它可以显示所有度量,并默认将第一个度量选中,可以选择不同的度量作为查询项。查询方式包含:前N项、后N项、前百分比项(%)、后百分比项(%)、
分组TOP-N,默认将第一个前N项选中,可以选不同的查询方式进行查询。数值是对所选的查询方式可以输入相应的数值,从而可以在数据量较大的前提下更高效的进行查询。例如选择需要查询的度量为流量,方式为前N项,设置数值100,即在728406行数据中只需要得到所需度量参数的前100条记录,这样查询响应时间快,能实时展示查询结果数据。同理还可以选择其它所需要的度量指标及查询方式。
承续上例,本发明实施例过程中,在所述TOP-N组件中,点击TOP-N设置确认按键后,前台需要查询的数据传递给后台,后台根据查询设置参数选择合适的查询算法并进行查询,查询完毕后,返回任务号,前台根据任务号获取到查询结果,默认是按表格形式展示,同样也可以有另外形式展示用户可以自己选择,例如图形方式或图形与图表共存的方式等。
本发明上述实施例中,步骤1之前还可包括:
步骤3,通过提取-转换-加载ETL组件获取数据库文件,所述数据库文件是所述ETL组件对原始数据文件进行转换后得到的;
其中,所述信息报表是从所述数据库文件中提取的。
本发明上述实施例中,ETL组件的输入端主要是输入的原始数据,如话单数据,ETL组件主要是对原始数据进行抽取、转换,然后加载到数据库中供后面的OLAP组件进行使用。该ETL组件的主要作用是将原始数据转换成能够供OLAP组件使用的数据。
下面结合图2,以一个LTE业务流量排名表来进行快速的TOP-N数据查询为例对本发明实施例进行详细说明:
维度就是观察数据的一种角度,用户通过维度分析度量数据,本实例LTE业务流量中维度包含时间维度和区域,度量是指要分析的指标数据,度量成员包含流量、保证带宽、端口带宽、网络总流量、流速均值、流速峰值、保证带宽占比%、流量占比%、增长率等度量指标。
本发明实施例是将ETL组件传送的数据通过OLAP组件在界面上进行实时多维分析,通过多维分析后的数据进行快速TOP-N查询展现。
因ETL组件主要是对原始数据进行抽取、转换,然后加载到数据库中供
后面的OLAP组件进行使用,而本发明实施例重点为多维分析及TOP-N数据查询,故下面对分析及查询数据的两个组件,即OLAP组件和TOP-N组件进行详细描述。
实际应用中,从OLAP组件的功能分析OLAP组件包含模型管理、立方体管理和实时多维分析三个模块。用户首先根据需要配置一个实例中所涉及到的所有维度及度量信息,即一个模型文件,在这个模型文件中,至少包含如下内容:所有维度的名称及等级,一个等级包含一个维度表名称及多个层级,比如时间维度名称为Time,对应的等级为Hierarchy,Hierarchy包含一个维度表名称,包含的层级为年、月、日、时、分钟;有且只有一个立方体模板信息,此立方体模板信息中包含所有的维度信息、度量成员名称及事实表名称。
接着在模型管理模块中上传此模型文件,后台处理此模型文件,生成立方体配置文件。之后,转入立方体管理模块,立方体是由维度构建出来的多维空间,依据模型文件创建立方体,本实例中选择的维度包含时间、区域,选择的度量包含流量、保证带宽、端口带宽、网络总流量、流速均值、流速峰值、保证带宽占比%、流量占比%、增长率等,后台根据所选维度和度量,创建立方体,并在数据库创建对应的聚集表,修改立方体配置文件。立方体创建完毕后,转入实时多维分析模块,创建实时多维分析,实时多维分析是立方体多维空间的一个子集,立方体中的维度对应实时多维分析中的行轴和切片选项,立方体中的度量对应实时多维分析中的列轴选项,其中位于切片的维度不显示在表格上,行轴和列轴的选项显示在表格上。多维分析创建完毕后,打开此分析,默认以表格形式展现数据,进行维度和度量设置,比如将时间和区域维度移至行轴,列轴中的度量值选择流量、保证带宽、网络总流量、流量占比等。选择一操作,比如选择替换钻取,表格中对于可以进行钻取的维度层级增加上卷或者下钻按钮,因下钻功能用户使用较多,这里以下钻为例进行说明。选择时间维度下钻,年层级的子节点会替代其父节点并展开。在这个过程中,前台根据这些操作组织MDX语句发送至后台的Mondrian进程,Mondrian进程将MDX语句处理,转换成传统的SQL语句,向立方体配置文件中的原始表及聚集表发送SQL请求,其中若有聚集表,则
优先从聚集表中获取数据,若无聚集表,则从事实表中获取数据,其中聚集表和事实表中的数据均来自ETL组件实时转换的数据。之后,Mondrian进程将查询结果返回界面,在表格中展现出来。在本实例中,进行第一次钻取之后,表格中展现的是2014年和所有区域对应的流量、保证带宽、网络总流量、流量占比。其他分析操作,如位置钻取、过滤、小计等过程与此类似,在此不一一赘述。
特殊地,经多维分析完毕后,此时的分析数据默认为表格展示,虽然排序功能可以实现查看前后数据,但是效率不够高,而且使用起来也没有TOP-N灵活,所以用户可以将已分析的数据结果进行TOP-N查询,在分析界面,点击显示前N项按钮,转入TOP-N查询组件。
用户打开上述分析数据,行轴包含时间维度和区域维度,列轴中的度量包含流量、保证带宽、网络总流量、流量占比等。时间维度替换钻取到小时层级,区域维度例如替换钻取到省市下的深圳。
点击显示前N项按钮后,在后台,OLAP组件根据上述分析结果生成多维分析数据文件,通知TOP-N查询组件此文件所在位置,查询组件获取文件并生成数据源,其中数据源是TOP-N查询所需的源文件;在前台,TOP-N查询界面打开,根据多维分析完毕后生成的LTE业务流量排名表格中已经生成有728406行数据,选择度量,即流量、保证带宽、网络总流量、流量占比。
选择TOP-N查询方式前N项、后N项、前百分比项(%)、后百分比项(%)、分组TOP-N。例如选择需要查询的度量为流量,方式为前N项,设置数值100,点击确认后,前台根据设置方式将查询条件传递给后台,后台根据设置条件进行查询,查询完毕后将结果返回给前台,前台展示查询结果。即在728406行数据中只需要得到所需度量参数的前100条记录,这样查询响应时间快,能实时展示查询结果数据。同理还可以选择其它所需要的度量指标及查询方式。比如需要查询流量占比%数据,前百分比项%按照同样的方法进行查询。在分组TOP-N方式时,需要在大于两个的维度情况下,以其中一个维度作为分组条件,其它维度交叉之后作为分组内的排序项进行查询。比如在本实例中时间作为一个维度,区域作为一个维度。假如区域中有
省、市、区等大类,每一个分组内要进行分组排序查询的成员就是区域大类下面的子类。(即一个级别Level上的所有成员,省、市、区每个子集的并集)。同样选择所需要的查询度量指标,选择查询方式为分组TOP-N,设置数据值确认查询,同样快速得到分组查询结果。TOP-N查询操作的多维性对于成千上万条数据极大的提高了查询效率,查询分析的结果多种文件方式导出展示并保存。
如图3所示,本发明实施例还提供一种数据查询的装置,包括:
预处理模块10,设置为:根据用户输入的数据查询请求,利用多维分析OLAP组件对数据信息进行预处理,得到与所述数据查询请求相关的信息报表;
展示模块20,设置为:根据所述信息报表,利用显示前N项TOP-N组件,对所述信息报表进行展示。
本发明上述实施例中,所述预处理模块10包括:
构建模块,设置为:根据用户输入的数据查询请求,构建立方体多维信息模型,所述立方体多维信息模型包括维度信息和度量信息;
第一获取模块,设置为:根据所述立方体多维信息模型,获取与所述数据查询请求相关的信息报表,其中所述信息报表包括不同维度信息下,所述度量信息分别对应的度量值。
本发明上述实施例中,所述第一获取模块包括:
创建模块,设置为:根据所述立方体多维信息模型,创建实时多维分析模型;
获取子模块,设置为:基于所述实时多维分析模型对预设的维度信息和度量信息进行分析操作,得到与所述数据查询请求相关的信息报表。
本发明上述实施例中,所述分析操作包括切片、钻取、过滤和/或小计。
本发明上述实施例中,所述展示模块20包括:
确定模块,设置为:根据用户的数据查询请求,确定所述信息报表中需要显示的第二信息;其中,所述需要显示的第二信息包括:需要显示的度量
信息、该度量信息的查询方式以及该度量信息的数量值;
展示子模块,设置为:利用TOP-N组件展示确定的所述第二信息。
本发明上述实施例中,所述度量信息的查询方式包括:前N项显示、后N项显示、前百分比项显示、后百分比项显示以及分组显示。
本发明上述实施例中,所述展示子模块包括:
展示单元,设置为:基于TOP-N组件,利用表格形式或者图形形式或者图表共存形式展示确定的所述第二信息。
本发明上述实施例中,所述装置还包括:
第二获取模块,设置为:通过提取-转换-加载ETL组件获取数据库文件,所述数据库文件是所述ETL组件对原始数据文件进行转换后得到的;所述信息报表是从所述数据库文件中提取的。
本发明上述实施例的数据查询的方法中,先利用多维分析OLAP组件对数据信息进行预处理,实现对数据信息进行快速、一致、交互的存取;再利用显示前N项TOP-N组件根据多维度、多度量将所需要查询的数据按照设置方式进行快速TOP-N查询,使得用户能够快速查询到自己需要的重点指标数据,极大的提高了查询效率,方便用户使用。
本发明实施例提供的数据查询装置是能够实现上述数据查询方法的装置,则上述数据查询方法是所有实施例均适用于该装置,且均能达到相同或相似的有益效果。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成
的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
本发明实施例先利用多维分析OLAP组件对数据信息进行预处理,实现对数据信息进行快速、一致、交互的存取;再利用显示前N项TOP-N组件根据多维度、多度量将所需要查询的数据按照设置方式进行快速TOP-N查询,使得用户能够快速查询到自己需要的重点指标数据,极大的提高了查询效率,方便用户使用。
Claims (17)
- 一种数据查询的方法,包括:根据用户输入的数据查询请求,利用多维分析OLAP组件对数据信息进行预处理,得到与所述数据查询请求相关的信息报表;根据所述信息报表,利用显示前N项TOP-N组件,对所述信息报表进行展示。
- 根据权利要求1所述的数据查询的方法,其中,根据响应用户输入的数据查询请求,利用多维分析OLAP组件对数据信息进行预处理,得到与所述数据查询请求相关的信息报表的步骤包括:根据用户输入的数据查询请求,构建立方体多维信息模型,所述立方体多维信息模型包括维度信息和度量信息;根据所述立方体多维信息模型,获取与所述数据查询请求相关的信息报表,其中所述信息报表包括不同维度信息下,所述度量信息分别对应的度量值。
- 根据权利要求2所述的数据查询的方法,其中,根据所述立方体多维信息模型,获取与所述数据查询请求相关的信息报表的步骤包括:根据所述立方体多维信息模型,创建实时多维分析模型;基于所述实时多维分析模型对预设的维度信息和度量信息进行分析操作,得到与所述数据查询请求相关的信息报表。
- 根据权利要求3所述的数据查询的方法,其中,所述分析操作包括切片、钻取、过滤和/或小计。
- 根据权利要求1所述的数据查询的方法,其中,根据所述信息报表,利用显示前N项TOP-N组件,对所述信息报表进行展示的步骤包括:根据用户的数据查询请求,确定所述信息报表中需要显示的第二信息;其中,所述需要显示的第二信息包括:需要显示的度量信息、该度量信息的查询方式以及该度量信息的数量值;利用TOP-N组件展示确定的所述第二信息。
- 根据权利要求5所述的数据查询的方法,其中,所述度量信息的查询方式包括:前N项显示、后N项显示、前百分比项显示、后百分比项显示以及分组显示。
- 根据权利要求5所述的数据查询的方法,其中,利用TOP-N组件展示确定的所述第二信息的步骤包括:基于TOP-N组件,利用表格形式或者图形形式或者图表共存形式展示确定的所述第二信息。
- 根据权利要求1所述的数据查询的方法,其中,所述根据用户输入的数据查询请求,利用多维分析OLAP组件对数据信息进行预处理前,还包括:通过提取-转换-加载ETL组件获取数据库文件,所述数据库文件是所述ETL组件对原始数据文件进行转换后得到的;其中,所述信息报表是从所述数据库文件中提取的。
- 一种数据查询的装置,包括:预处理模块,设置为:根据用户输入的数据查询请求,利用多维分析OLAP组件对数据信息进行预处理,得到与所述数据查询请求相关的信息报表;展示模块,设置为:根据所述信息报表,利用显示前N项TOP-N组件,对所述信息报表进行展示。
- 根据权利要求9所述的数据查询的装置,其中,所述预处理模块包括:构建模块,设置为:根据用户输入的数据查询请求,构建立方体多维信息模型,所述立方体多维信息模型包括维度信息和度量信息;第一获取模块,设置为:根据所述立方体多维信息模型,获取与所述数据查询请求相关的信息报表,其中所述信息报表包括不同维度信息下,所述度量信息分别对应的度量值。
- 根据权利要求10所述的数据查询的装置,其中,所述第一获取模块包括:创建模块,设置为:根据所述立方体多维信息模型,创建实时多维分析模型;获取子模块,设置为:基于所述实时多维分析模型对预设的维度信息和度量信息进行分析操作,得到与所述数据查询请求相关的信息报表。
- 根据权利要求11所述的数据查询的装置,其中,所述分析操作包括切片、钻取、过滤和/或小计。
- 根据权利要求9所述的数据查询的装置,其中,所述展示模块包括:确定模块,设置为:根据用户的数据查询请求,确定所述信息报表中需要显示的第二信息;其中,所述需要显示的第二信息包括:需要显示的度量信息、该度量信息的查询方式以及该度量信息的数量值;展示子模块,设置为:利用TOP-N组件展示确定的所述第二信息。
- 根据权利要求13所述的数据查询的装置,其中,所述度量信息的查询方式包括:前N项显示、后N项显示、前百分比项显示、后百分比项显示以及分组显示。
- 根据权利要求14所述的数据查询的装置,其中,所述展示子模块包括:展示单元,设置为:基于TOP-N组件,利用表格形式或者图形形式或者图表共存形式展示确定的所述第二信息。
- 根据权利要求9所述的数据查询的装置,还包括:第二获取模块,设置为:通过提取-转换-加载ETL组件获取数据库文件,所述数据库文件是所述ETL组件对原始数据文件进行转换后得到的;所述信息报表是从所述数据库文件中提取的。
- 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1-8任一项的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410472986.2A CN105488048A (zh) | 2014-09-16 | 2014-09-16 | 一种数据查询的方法及装置 |
CN201410472986.2 | 2014-09-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016041373A1 true WO2016041373A1 (zh) | 2016-03-24 |
Family
ID=55532527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/079602 WO2016041373A1 (zh) | 2014-09-16 | 2015-05-22 | 一种数据查询的方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105488048A (zh) |
WO (1) | WO2016041373A1 (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105930905A (zh) * | 2016-04-15 | 2016-09-07 | 广州慧睿思通信息科技有限公司 | 一种基于指标指向的逻辑推演方法及系统 |
CN110297855A (zh) * | 2019-05-22 | 2019-10-01 | 深圳壹账通智能科技有限公司 | 报表动态展示方法、装置、计算机设备及存储介质 |
CN110851667A (zh) * | 2019-09-25 | 2020-02-28 | 中国移动通信集团河南有限公司 | 一种多源头大量数据的整合分析方法及工具 |
CN111026759A (zh) * | 2019-12-11 | 2020-04-17 | 中盈优创资讯科技有限公司 | 基于Hbase的报表生成方法及装置 |
CN111401014A (zh) * | 2020-03-12 | 2020-07-10 | 山东浪潮通软信息科技有限公司 | 一种基于报表的多指标多维度分析方法、系统及构建方法 |
CN111831882A (zh) * | 2019-04-16 | 2020-10-27 | 阿里巴巴集团控股有限公司 | 一种查询交互方法及装置 |
CN112395309A (zh) * | 2020-11-17 | 2021-02-23 | 中国电力科学研究院有限公司 | 一种电力现货市场的数据评价指标查询方法及系统 |
CN114238392A (zh) * | 2021-12-21 | 2022-03-25 | 佳讯飞鸿(北京)智能科技研究院有限公司 | 一种物联网数据的查询方法、装置、电子设备及介质 |
CN114722790A (zh) * | 2022-04-24 | 2022-07-08 | 北京京航计算通讯研究所 | 一种非嵌入式的全面预算管理方法和系统 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106021486A (zh) * | 2016-05-18 | 2016-10-12 | 广东源恒软件科技有限公司 | 一种基于大数据的数据多维分析处理方法 |
CN106250480A (zh) * | 2016-08-01 | 2016-12-21 | 浪潮软件集团有限公司 | 一种基于元数据的可视化统计分析方法 |
CN106649431A (zh) * | 2016-08-31 | 2017-05-10 | 天津南大通用数据技术股份有限公司 | 一种数据可视化中显示图表的方法 |
CN106372194B (zh) * | 2016-08-31 | 2019-12-20 | 杭州追灿科技有限公司 | 一种呈现搜索结果的方法和系统 |
CN108153776A (zh) * | 2016-12-05 | 2018-06-12 | 北京国双科技有限公司 | 数据查询方法及装置 |
CN108572995A (zh) * | 2017-03-14 | 2018-09-25 | 阿里巴巴集团控股有限公司 | 一种数据处理方法、装置及电子设备 |
CN107193971A (zh) * | 2017-05-25 | 2017-09-22 | 山东浪潮商用系统有限公司 | 指标数据分析模型查询方法 |
CN110019425A (zh) * | 2017-08-22 | 2019-07-16 | 北京京东尚科信息技术有限公司 | 一种数据展示的方法和装置 |
CN108197297B (zh) * | 2018-01-23 | 2020-09-29 | 正方软件股份有限公司 | 数据展示方法及系统 |
CN109254970A (zh) * | 2018-08-31 | 2019-01-22 | 广东创我科技发展有限公司 | 一种数据的快速自定义图表展现的方法及装置 |
CN112559472B (zh) * | 2020-12-07 | 2024-05-14 | 北京锐安科技有限公司 | 一种文件传输方法、装置、计算机设备及存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101008954A (zh) * | 2007-01-30 | 2007-08-01 | 金蝶软件(中国)有限公司 | 联机分析处理系统中多维表达式数据缓存的方法和装置 |
CN101271475A (zh) * | 2008-04-02 | 2008-09-24 | 北京邮电大学 | 一种商业智能系统 |
CN102004752A (zh) * | 2009-08-31 | 2011-04-06 | 埃森哲环球服务有限公司 | 灵活的立方体数据入库 |
US20110208690A1 (en) * | 2010-02-24 | 2011-08-25 | International Business Machines Corporation | Viewing an olap cube as a virtual data source |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7181450B2 (en) * | 2002-12-18 | 2007-02-20 | International Business Machines Corporation | Method, system, and program for use of metadata to create multidimensional cubes in a relational database |
WO2008122830A1 (en) * | 2007-04-10 | 2008-10-16 | Heng Toon Ting | Method and system for navigation and visualization of data in relational and/or multidimensional databases |
CN101241506A (zh) * | 2008-03-17 | 2008-08-13 | 张建中 | 一种多维检索方法和装置以及系统 |
CN102682118B (zh) * | 2012-05-15 | 2015-02-04 | 北京久其软件股份有限公司 | 一种多维数据模型访问方法及装置 |
CN103955502B (zh) * | 2014-04-24 | 2017-07-28 | 科技谷(厦门)信息技术有限公司 | 一种可视化olap的应用实现方法及系统 |
-
2014
- 2014-09-16 CN CN201410472986.2A patent/CN105488048A/zh active Pending
-
2015
- 2015-05-22 WO PCT/CN2015/079602 patent/WO2016041373A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101008954A (zh) * | 2007-01-30 | 2007-08-01 | 金蝶软件(中国)有限公司 | 联机分析处理系统中多维表达式数据缓存的方法和装置 |
CN101271475A (zh) * | 2008-04-02 | 2008-09-24 | 北京邮电大学 | 一种商业智能系统 |
CN102004752A (zh) * | 2009-08-31 | 2011-04-06 | 埃森哲环球服务有限公司 | 灵活的立方体数据入库 |
US20110208690A1 (en) * | 2010-02-24 | 2011-08-25 | International Business Machines Corporation | Viewing an olap cube as a virtual data source |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105930905A (zh) * | 2016-04-15 | 2016-09-07 | 广州慧睿思通信息科技有限公司 | 一种基于指标指向的逻辑推演方法及系统 |
CN111831882A (zh) * | 2019-04-16 | 2020-10-27 | 阿里巴巴集团控股有限公司 | 一种查询交互方法及装置 |
CN110297855A (zh) * | 2019-05-22 | 2019-10-01 | 深圳壹账通智能科技有限公司 | 报表动态展示方法、装置、计算机设备及存储介质 |
CN110851667A (zh) * | 2019-09-25 | 2020-02-28 | 中国移动通信集团河南有限公司 | 一种多源头大量数据的整合分析方法及工具 |
CN110851667B (zh) * | 2019-09-25 | 2023-05-30 | 中国移动通信集团河南有限公司 | 一种多源头大量数据的整合分析方法及工具 |
CN111026759A (zh) * | 2019-12-11 | 2020-04-17 | 中盈优创资讯科技有限公司 | 基于Hbase的报表生成方法及装置 |
CN111026759B (zh) * | 2019-12-11 | 2024-03-12 | 中盈优创资讯科技有限公司 | 基于Hbase的报表生成方法及装置 |
CN111401014A (zh) * | 2020-03-12 | 2020-07-10 | 山东浪潮通软信息科技有限公司 | 一种基于报表的多指标多维度分析方法、系统及构建方法 |
CN112395309A (zh) * | 2020-11-17 | 2021-02-23 | 中国电力科学研究院有限公司 | 一种电力现货市场的数据评价指标查询方法及系统 |
CN114238392A (zh) * | 2021-12-21 | 2022-03-25 | 佳讯飞鸿(北京)智能科技研究院有限公司 | 一种物联网数据的查询方法、装置、电子设备及介质 |
CN114722790A (zh) * | 2022-04-24 | 2022-07-08 | 北京京航计算通讯研究所 | 一种非嵌入式的全面预算管理方法和系统 |
CN114722790B (zh) * | 2022-04-24 | 2023-09-05 | 北京京航计算通讯研究所 | 一种非嵌入式的全面预算管理方法和系统 |
Also Published As
Publication number | Publication date |
---|---|
CN105488048A (zh) | 2016-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016041373A1 (zh) | 一种数据查询的方法及装置 | |
US10817534B2 (en) | Systems and methods for interest-driven data visualization systems utilizing visualization image data and trellised visualizations | |
US10459940B2 (en) | Systems and methods for interest-driven data visualization systems utilized in interest-driven business intelligence systems | |
US8589337B2 (en) | System and method for analyzing data in a report | |
US9465523B2 (en) | Visual exploration of multidimensional data | |
US10585892B2 (en) | Hierarchical dimension analysis in multi-dimensional pivot grids | |
US9934299B2 (en) | Systems and methods for interest-driven data visualization systems utilizing visualization image data and trellised visualizations | |
US9460402B2 (en) | Condensing hierarchical data | |
US8122337B2 (en) | Apparatus and method for navigating a multi-dimensional database | |
US8190620B2 (en) | Apparatus and method for visualizing data within a decomposition graph | |
US10192330B2 (en) | Rendering data visualizations in different analytical applications | |
US9153051B2 (en) | Visualization of parallel co-ordinates | |
US20140143270A1 (en) | Generating dynamic drilldown reports | |
US20150032685A1 (en) | Visualization and comparison of business intelligence reports | |
US9582566B2 (en) | Condensing hierarchical data | |
US9081806B2 (en) | Automated Database Archiving | |
US20130151465A1 (en) | Range and pattern selection in reporting solutions related to analytical models | |
TWI480754B (zh) | 使用條件群組之樞紐分析方法 | |
US10990255B1 (en) | Hierarchical data display | |
US20140344235A1 (en) | Determination of data modification | |
Carmichael et al. | Visually contrast two collections of frequent patterns | |
Zou et al. | TAVO: A Tree-like Analytical View for OLAP | |
KR101801091B1 (ko) | 다차원 계층 데이터 큐브 시스템 및 처리 방법 | |
CN117609362A (zh) | 一种数据处理方法、装置、计算机设备及存储介质 | |
OBJELEAN | A system for query and graphical analysis of abstract relational databases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15841485 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15841485 Country of ref document: EP Kind code of ref document: A1 |