WO2016041187A1 - 光电同步脑活动记录的数据存储方法 - Google Patents

光电同步脑活动记录的数据存储方法 Download PDF

Info

Publication number
WO2016041187A1
WO2016041187A1 PCT/CN2014/086904 CN2014086904W WO2016041187A1 WO 2016041187 A1 WO2016041187 A1 WO 2016041187A1 CN 2014086904 W CN2014086904 W CN 2014086904W WO 2016041187 A1 WO2016041187 A1 WO 2016041187A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
infrared
eeg
basic information
field
Prior art date
Application number
PCT/CN2014/086904
Other languages
English (en)
French (fr)
Inventor
蒋田仔
左年明
张鑫
张玉瑾
刘浩
Original Assignee
中国科学院自动化研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院自动化研究所 filed Critical 中国科学院自动化研究所
Priority to CN201480000877.9A priority Critical patent/CN104380297B/zh
Priority to PCT/CN2014/086904 priority patent/WO2016041187A1/zh
Priority to US15/512,781 priority patent/US10460833B2/en
Publication of WO2016041187A1 publication Critical patent/WO2016041187A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14553Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases specially adapted for cerebral tissue
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0638Organizing or formatting or addressing of data
    • G06F3/0643Management of files
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation

Definitions

  • the invention relates to a data storage method, in particular to a data storage method for photoelectric synchronous brain activity recording.
  • Brain functional activities include multiple processes such as neuronal activity and local energy metabolism. Complex functional activities cause the brain to collect information from multiple modalities, the most important of which are the electrical activity of neurons and the changes in blood oxygen metabolism in the active region. Only by effectively extracting, analyzing and integrating these two kinds of information can brain function activities be organically linked.
  • the photoelectric synchronous brain activity detection system aims to realize the integration of three functions of near-infrared spectrometer, EEG, near-infrared spectroscopy and EEG fusion instrument on the same instrument through the effective fusion of functional near-infrared spectroscopy and EEG acquisition technology. In order to realize the synchronization or separate collection of nerve electrical activity and blood oxygen supply information in the brain region.
  • the combination of near-infrared spectroscopy and EEG acquisition technology is the simultaneous acquisition of two photoelectric signals.
  • the data needs to be stored synchronously. It requires not only the optical signal in time scale and space consistency, but also the compatibility of data storage files. .
  • the object of the present invention is to provide a data storage method for realizing the synchronous storage of EEG signals and near-infrared signals through a simple and reliable data storage file format.
  • the present invention provides a data storage method for photoelectric synchronous brain activity recording, the method comprising:
  • the photoelectric synchronous brain activity detection system generates data when working
  • the data storage file includes: a basic information data segment, a near-infrared spectral data segment, and an EEG active data segment, and sequentially deposits the data segments in binary form in the above order. file;
  • the basic information data segment includes mode information, a file version number, a testee's name and identity card number, a doctor's name and unit, a testee's age, and a name;
  • the near infrared spectral data segment includes:
  • Basic information fields of near-infrared data including sampling frequency of near-infrared signals, total number of event stimuli, near-infrared wavelengths, number of channels, number and position of light sources, number and position of probes, and number of samples of near-infrared data;
  • Near-infrared data channel information field including channel valid flag, source index, probe index, probe analog magnification, probe digital magnification, and reference optical density;
  • Near infrared data measurement data field including acquired near infrared spectral density
  • Near-infrared data event stimulus field including event stimulus name, stimulus type, marker location, marker location.
  • the EEG activity data segment includes:
  • the basic information fields of the EEG data including the EEG signal sampling frequency, the number of channels, the total number of event stimuli, the low-pass filter start-stop flag of the amplifier, the high-pass filter start-stop flag of the amplifier, the reference electrode mark, and the number of samples;
  • EEG data channel information field including channel valid flag, excitation electrode index, measurement electrode index, measurement electrode analog magnification, and measurement electrode digital magnification;
  • the EEG data measurement data field including the collected EEG signals
  • EEG data event stimulus field including event stimulus name, stimulus type, marker location, marker location.
  • the basic information data field includes a basic data type check bit, including a file version number, and automatically calls a corresponding interface according to different check bits to extract test data.
  • the near-infrared signal and the electroencephalogram signal are simultaneously acquired and simultaneously stored in a file for synchronous storage of data.
  • the near-infrared data basic information field records basic information of the near-infrared test sensor, including the position of the light source and the detector, and the number of channels.
  • the near-infrared data channel information data segment includes a near-infrared light source and probe index information for configuring the near-infrared light source and the probe information.
  • the near-infrared measurement data segment and the EEG activity measurement data segment dynamically access the near-infrared data and the EEG data according to the number of samples in the basic information field of the near-infrared data and the basic information field of the EEG activity, including The number of joints, the length of time, and the design of the experimental task.
  • the data storage method of the photoelectric synchronous brain activity record of the invention can store rich test information, and can flexibly configure near-infrared and EEG measurement information, realize synchronous storage of near-infrared data and EEG data, and maintain compatibility of file versions. .
  • FIG. 1 is a flow chart of a data storage method for photoelectric synchronous brain activity recording according to the present invention
  • FIG. 2 is a schematic diagram of a data storage file of the present invention
  • FIG. 3 is a structural diagram of a basic information data segment (.Info) of the present invention.
  • .NIRS near infrared spectral data segment
  • FIG. 5 is a structural diagram of an EEG data segment (.EEG) of the present invention.
  • FIG. 1 is a flow chart of a data storage method for photoelectric synchronous brain activity recording according to the present invention. As shown in the figure, the method includes the following steps:
  • Step 101 Generate data when the photoelectric synchronous brain activity detecting system works
  • Step 102 Generate data storage file by using the data.
  • FIG. 2 is a schematic diagram of a data storage file of the present invention, as shown in FIG. 2, the data storage file includes: a basic information data segment, a near-infrared spectral data segment, and an EEG active data segment, and sequentially stores the data segments in binary form according to the above sequence. Enter the .neg file.
  • the basic information data segment, the near-infrared spectral information data segment, and the EEG activity data segment are written into the .neg file in binary form as a whole, and the file access speed is improved while ensuring the integrity of all information.
  • This data segment contains information such as the file version number.
  • Different versions of the system can automatically call the corresponding interface according to different file version numbers, extract test data, improve file compatibility, and perform data reading operations between different systems. .
  • the basic information data field contains the basic data type check digit, including the file version number.
  • the system can automatically call the corresponding interface according to different check digits to extract the test data, improve the file compatibility, and then it is in a different system. Perform data reading operations.
  • the near infrared spectral data segment (.NIRS) structure diagram of the present invention
  • the near infrared spectral data segment includes:
  • Basic information fields of near-infrared data including sampling frequency of near-infrared signal, total number of event stimuli, near-infrared wavelength, number of channels, number and position of light sources, number and position of probes, and number of samples of near-infrared data;
  • the near-infrared data channel information field includes a channel valid flag bit, a light source index, a probe index, a probe analog magnification, a probe digital magnification, and a reference optical density;
  • the near-infrared spectral data segment (.NIRS) is further divided into four parts: the near-infrared data basic information field (.Info), the near-infrared data channel information field (.Channel), the near-infrared data measurement data field (.Data), and Near-infrared data event stimulus field (.Event).
  • the near-infrared data basic information field (.Info) contains basic information of the near-infrared test sensor, such as the position of the light source and the detector, the number of channels, etc., which makes the system can easily read out the configuration information of the near-infrared device; near-infrared data
  • the channel information field (.Channel) contains basic information of the channel.
  • the system can flexibly configure the near-infrared data acquisition channel according to this field;
  • the near-infrared data measurement data field (.Data) is composed of the collected near-infrared optical density; the near-infrared data event
  • the stimulus field (.Event) records basic information such as name, location, etc. of the event stimulus.
  • the near-infrared basic information data field records the basic information of the near-infrared test sensor, such as the position of the light source and the detector, the number of channels, etc., which makes it easy for the system to read the configuration information of the near-infrared device.
  • the near-infrared data channel information data segment contains near-infrared light source and probe index information, allowing the system to flexibly configure the near-infrared source and probe information.
  • the near-infrared measurement data segment and the EEG activity measurement data segment can dynamically access the near-infrared data and the EEG data according to the number of samples in the near-infrared basic information data field and the basic information field of the EEG activity, including the number of leads. , length of time, experimental task design, etc., to improve the system's ability to dynamically access data.
  • the brain electrical activity data segment (.EEG) structure diagram of the present invention
  • the brain electrical activity data segment includes:
  • the basic information fields of the EEG data including the EEG signal sampling frequency, the number of channels, the total number of event stimuli, the low-pass filter start-stop flag of the amplifier, the high-pass filter start-stop flag of the amplifier, the reference electrode mark, and the number of samples;
  • the EEG data channel information field includes a channel effective flag bit, an excitation electrode index, a measurement electrode index, a measurement electrode analog amplification factor, and a measurement electrode digital amplification factor;
  • EEG data measurement data fields including acquired EEG signals
  • the EEG Data Event Stimulus field includes the event stimulus name, the stimulus type, the marker location, and the marker location.
  • EEG data basic information field (.Info)
  • EEG data channel information field (.Channel)
  • EEG data measurement data field (.Data)
  • EEG data event stimulus field (.Event).
  • the basic information field (.Info) of the EEG data includes the EEG data sampling frequency, the number of channels, the number of events, the reference electrode, etc.
  • the system can quickly read out the basic information of the EEG data; EEG data
  • the channel information field (.Channel) contains the basic information of the channel, such as the electrode index, etc., the system can flexibly configure the acquisition channel of the EEG according to this;
  • the EEG data measurement data field (.Data) is composed of the collected EEG signals;
  • the electrical data event stimulus field (.Event) records basic information such as name, location, etc. of the event stimulus.
  • the data storage method of the photoelectric synchronous brain activity record of the invention can store rich test information, and can flexibly configure near-infrared and EEG measurement information, realize synchronous storage of near-infrared data and EEG data, and maintain compatibility of file versions. .
  • the steps of the method or algorithm described in connection with the embodiments disclosed herein may be implemented in hardware, processing The software module executed by the device, or a combination of the two.
  • the software module can be placed in random access memory (RAM), memory, read only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or technical field. Any other form of storage medium known.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Theoretical Computer Science (AREA)
  • General Business, Economics & Management (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Neurology (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种光电同步脑活动记录的数据存储方法,所述方法包括:光电同步脑活动检测系统工作时生成数据;将所述数据生成数据存储文件;所述数据存储文件包括:基本信息数据段,近红外光谱数据段和脑电活动数据段,并按照上述顺序将所述数据段以二进制形式依次存入.neg文件。该方法可以存储丰富的测试信息,并可灵活配置近红外和脑电测量信息,实现了近红外数据和脑电数据的同步存储并保持了文件版本的兼容性。

Description

光电同步脑活动记录的数据存储方法 技术领域
本发明涉及一种数据存储方法,尤其涉及一种光电同步脑活动记录的数据存储方法。
背景技术
脑功能活动包括神经元活动和局部能量代谢等多个过程,复杂的功能活动使得脑汇集了多个模态的信息,其中最为重要的是神经元的电活动和激活区域的血氧代谢变化,只有实现这两种信息的有效提取、分析和融合,才能将脑功能活动有机的联系起来。光电同步脑活动检测系统旨在通过功能近红外光谱技术和脑电采集技术的有效融合,在同一仪器上实现近红外光谱仪、脑电仪及近红外光谱和脑电融合仪三个功能一体化技术,从而实现脑区神经电活动和血氧供应信息的同步或分别采集等多种功能。近红外光谱技术与脑电采集技术的结合,是光电两种信号的同步采集,采集数据需要同步存储,不仅要求光电信号在时间尺度上和空间上的一致性,还要求数据存储文件具有兼容性。
截至目前,国内外尚没有光电同步检测设备或系统,更没有针对此设或系统的数据存储文件,也未检索到相应专利。随着近年来科学技术的进步以及临床上的迫切要求,将脑电与近红外技术相结合进行的基础研究和应用研究越来越多,迫切需要设计一种针对光电同步脑活动检测系统的数据存储文件格式用于同步存储采集的脑电信号和近红外信号。
发明内容
本发明的目的是针对现有技术的缺陷,提供一种数据存储方法,通过简单可靠的数据存储文件格式,实现脑电信号和近红外信号的同步存储。
为实现上述目的,本发明提供了一种光电同步脑活动记录的数据存储方法,所述方法包括:
光电同步脑活动检测系统工作时生成数据;
将所述数据生成数据存储文件;所述数据存储文件包括:基本信息数据段,近红外光谱数据段和脑电活动数据段,并按照上述顺序将所述数据段以二进制形式依次存入.neg文件;
其中,基本信息数据段包括模式信息、文件版本号、被测试者姓名和身份证号码、医生姓名和单位、被测试者年龄和姓名;
近红外光谱数据段包括:
近红外数据基本信息字段,包括近红外信号的采样频率、事件刺激总数、近红外波长、通道数目、光源数目和位置、探测头数目和位置以及近红外数据的样本数量;
近红外数据通道信息字段,包括通道有效标志位、光源索引、探测头索引、探测头模拟放大倍数、探测头数字放大倍数以及基准光密度;
近红外数据测量数据字段,包括采集到的近红外光谱密度;
近红外数据事件刺激字段,包括事件刺激名称、刺激类型、标记位置、标记位置。
脑电活动数据段包括:
脑电数据基本信息字段,包括脑电信号采样频率、通道数目、事件刺激总数、放大器的低通滤波启停标志、放大器的高通滤波启停标志、参考电极标志以及样本数目;
脑电数据通道信息字段,包括通道有效标志位、激励电极索引、测量电极索引、测量电极模拟放大倍数以及测量电极数字放大倍数;
脑电数据测量数据字段,包括采集到的脑电信号;
脑电数据事件刺激字段,包括事件刺激名称、刺激类型、标记位置、标记位置。
进一步的,所述基本信息数据字段包含基本的数据类型校验位,包含文件版本号,并根据不同的校验位自动调用相应的接口来提取测试数据。
进一步的,同步采集所述近红外信号和脑电信号并同时存入文件,用以数据的同步存储。
进一步的,所述近红外数据基本信息字段记录近红外测试传感器的基本信息,包括光源和探测器位置、通道数目。
进一步的,所述近红外数据通道信息数据段包括近红外光源和探测头索引信息,用以配置近红外光源和探测头信息。
进一步的,所述近红外测量数据段和脑电活动测量数据段根据近红外数据基本信息字段和脑电活动基本信息字段中的样本数量进行动态的存取近红外数据和脑电数据,包括导联个数、时间长度、实验任务设计。
本发明光电同步脑活动记录的数据存储方法可以存储丰富的测试信息,并可灵活配置近红外和脑电测量信息,实现了近红外数据和脑电数据的同步存储并保持了文件版本的兼容性。
附图说明
图1为本发明光电同步脑活动记录的数据存储方法的流程图;
图2为本发明数据存储文件的示意图;
图3为本发明基本信息数据段(.Info)结构图;
图4为本发明近红外光谱数据段(.NIRS)结构图;
图5为本发明脑电活动数据段(.EEG)结构图。
具体实施方式
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
图1为本发明光电同步脑活动记录的数据存储方法的流程图,如图所示,本方法包括如下步骤:
步骤101,光电同步脑活动检测系统工作时生成数据;
步骤102,将所述数据生成数据存储文件;
如图2所示的本发明数据存储文件的示意图,数据存储文件包括:基本信息数据段,近红外光谱数据段和脑电活动数据段,并按照上述顺序将所述数据段以二进制形式依次存入.neg文件。
将基本信息数据段、近红外光谱信息数据段以及脑电活动数据段等作为整体以二进制形式写入.neg文件,在保证所有信息完整性的同时,提高了文件存取速度。
如图3所示的本发明基本信息数据段(.Info)结构图,基本信息数据段包括模式信息、文件版本号、被测试者姓名和身份证号码、医生姓名和单位、被测试者年龄和姓名。
此数据段包含文件版本号等信息,不同版本的系统可以根据不同的文件版本号自动调用相应的接口,提取测试数据,提高了文件的兼容性,便与其在不同的系统间进行数据读取操作。
基本信息数据字段除包含基本的数据类型校验位,包含文件版本号,系统可以根据不同的校验位自动调用相应的接口来提取测试数据,提高了文件的兼容性,便与其在不同的系统间进行数据读取操作。
如图4所示的本发明近红外光谱数据段(.NIRS)结构图,近红外光谱数据段包括:
1、近红外数据基本信息字段,包括近红外信号的采样频率、事件刺激总数、近红外波长、通道数目、光源数目和位置、探测头数目和位置以及近红外数据的样本数量;
2、近红外数据通道信息字段,包括通道有效标志位、光源索引、探测头索引、探测头模拟放大倍数、探测头数字放大倍数以及基准光密度;
3、近红外数据测量数据字段,包括采集到的近红外光谱密度;
4、近红外数据事件刺激字段,包括事件刺激名称、刺激类型、标记位置、标记位置。
因为近红外光谱数据段(.NIRS)又分为四个部分:近红外数据基本信息字段(.Info)、近红外数据通道信息字段(.Channel)、近红外数据测量数据字段(.Data)以及近红外数据事件刺激字段(.Event)。近红外数据基本信息字段(.Info)包含近红外测试传感器的基本信息,如光源和探测器位置、通道数目等,这使得系统可以很方便的读取出近红外设备的配置信息;近红外数据通道信息字段(.Channel)包含通道的基本信息,系统可以根据此字段灵活配置近红外数据采集通道;近红外数据测量数据字段(.Data)由采集到的近红外光密度组成;近红外数据事件刺激字段(.Event)记录事件刺激的基本信息如名称、位置等。
近红外基本信息数据字段记录着近红外测试传感器的基本信息,如光源和探测器位置、通道数目等,这使得系统可以很方便的读取出近红外设备的配置信息。
近红外数据通道信息数据段含有近红外光源和探测头索引信息,从而允许系统可以灵活配置近红外光源和探测头信息。
近红外测量数据段和脑电活动测量数据段,可以根据近红外基本信息数据字段和脑电活动基本信息字段中的样本数量进行动态的存取近红外数据和脑电数据,包括导联个数、时间长度、实验任务设计等,从而提高系统动态存取数据的能力。
如图5所示的本发明脑电活动数据段(.EEG)结构图,脑电活动数据段包括:
1、脑电数据基本信息字段,包括脑电信号采样频率、通道数目、事件刺激总数、放大器的低通滤波启停标志、放大器的高通滤波启停标志、参考电极标志以及样本数目;
2、脑电数据通道信息字段,包括通道有效标志位、激励电极索引、测量电极索引、测量电极模拟放大倍数以及测量电极数字放大倍数;
3、脑电数据测量数据字段,包括采集到的脑电信号;
脑电数据事件刺激字段包括事件刺激名称、刺激类型、标记位置、标记位置。
此数据段又分为四个部分:脑电数据基本信息字段(.Info)、脑电数据通道信息字段(.Channel)、脑电数据测量数据字段(.Data)以及脑电数据事件刺激字段(.Event)。其中,脑电数据基本信息字段(.Info)包含脑电数据采样频率、通道数目、事件数目、参考电极等,根据此字段,系统可以快速的读取出脑电数据的基本信息;脑电数据通道信息字段(.Channel)包含通道的基本信息,如电极索引等,系统可以据此灵活配置脑电的采集通道;脑电数据测量数据字段(.Data)由采集到的脑电信号组成;脑电数据事件刺激字段(.Event)记录事件刺激的基本信息如名称、位置等。
将脑活动检测系统同步采集的近红外信号和脑电信号同时存入文件,实现数据的同步存储,有利于保持近红外信号和脑电信号的一致性和同步性。
本发明光电同步脑活动记录的数据存储方法可以存储丰富的测试信息,并可灵活配置近红外和脑电测量信息,实现了近红外数据和脑电数据的同步存储并保持了文件版本的兼容性。
专业人员应该还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、处理 器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

  1. 一种光电同步脑活动记录的数据存储方法,其特征在于,所述方法包括:
    光电同步脑活动检测系统工作时生成数据;
    将所述数据生成数据存储文件;所述数据存储文件包括:基本信息数据段,近红外光谱数据段和脑电活动数据段,并按照上述顺序将所述数据段以二进制形式依次存入.neg文件;
    其中,基本信息数据段包括模式信息、文件版本号、被测试者姓名和身份证号码、医生姓名和单位、被测试者年龄和姓名;
    近红外光谱数据段包括:
    近红外数据基本信息字段,包括近红外信号的采样频率、事件刺激总数、近红外波长、通道数目、光源数目和位置、探测头数目和位置以及近红外数据的样本数量;
    近红外数据通道信息字段,包括通道有效标志位、光源索引、探测头索引、探测头模拟放大倍数、探测头数字放大倍数以及基准光密度;
    近红外数据测量数据字段,包括采集到的近红外光谱密度;
    近红外数据事件刺激字段,包括事件刺激名称、刺激类型、标记位置、标记位置;
    脑电活动数据段包括:
    脑电数据基本信息字段,包括脑电信号采样频率、通道数目、事件刺激总数、放大器的低通滤波启停标志、放大器的高通滤波启停标志、参考电极标志以及样本数目;
    脑电数据通道信息字段,包括通道有效标志位、激励电极索引、测量电极索引、测量电极模拟放大倍数以及测量电极数字放大倍数;
    脑电数据测量数据字段,包括采集到的脑电信号;
    脑电数据事件刺激字段,包括事件刺激名称、刺激类型、标记位置、 标记位置。
  2. 根据权利要求1所述的方法,其特征在于,所述基本信息数据字段包含基本的数据类型校验位,包含文件版本号,并根据不同的校验位自动调用相应的接口来提取测试数据。
  3. 根据权利要求1所述的方法,其特征在于,同步采集所述近红外信号和脑电信号并同时存入文件,用以数据的同步存储。
  4. 根据权利要求1所述的方法,其特征在于,所述近红外数据基本信息字段记录近红外测试传感器的基本信息,包括光源和探测器位置、通道数目。
  5. 根据权利要求1所述的方法,其特征在于,所述近红外数据通道信息数据段包括近红外光源和探测头索引信息,用以配置近红外光源和探测头信息。
  6. 根据权利要求1所述的方法,其特征在于,所述近红外测量数据段和脑电活动测量数据段根据近红外数据基本信息字段和脑电活动基本信息字段中的样本数量进行动态的存取近红外数据和脑电数据,包括导联个数、时间长度、实验任务设计。
PCT/CN2014/086904 2014-09-19 2014-09-19 光电同步脑活动记录的数据存储方法 WO2016041187A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480000877.9A CN104380297B (zh) 2014-09-19 2014-09-19 光电同步脑活动记录的数据存储方法
PCT/CN2014/086904 WO2016041187A1 (zh) 2014-09-19 2014-09-19 光电同步脑活动记录的数据存储方法
US15/512,781 US10460833B2 (en) 2014-09-19 2014-09-19 Method for storing data of photoelectrically synchronous brain activity recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/086904 WO2016041187A1 (zh) 2014-09-19 2014-09-19 光电同步脑活动记录的数据存储方法

Publications (1)

Publication Number Publication Date
WO2016041187A1 true WO2016041187A1 (zh) 2016-03-24

Family

ID=52557539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086904 WO2016041187A1 (zh) 2014-09-19 2014-09-19 光电同步脑活动记录的数据存储方法

Country Status (3)

Country Link
US (1) US10460833B2 (zh)
CN (1) CN104380297B (zh)
WO (1) WO2016041187A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107203461B (zh) * 2016-03-16 2020-11-06 创新先进技术有限公司 兼容性测试方法及装置
CN106236085B (zh) * 2016-09-26 2019-03-08 中国医学科学院生物医学工程研究所 用于检测neg脑活动仪同步性的发生装置及检测方法
CN109009093A (zh) * 2018-06-19 2018-12-18 苏州修普诺斯医疗器械有限公司 移动脑电信号采集的分析方法
CN109542221B (zh) * 2018-11-09 2020-07-24 北京航空航天大学 用于近红外光谱上肢运动状态脑信号精确采集的打标系统
USD949355S1 (en) 2019-10-15 2022-04-19 JelikaLite, LLC Head wearable light therapy device
CN111195393A (zh) * 2020-01-08 2020-05-26 国家康复辅具研究中心 近红外脑区激活模式导向的外周电刺激系统及其使用方法
CN112386266B (zh) * 2020-11-16 2024-08-20 广州市润杰医疗器械有限公司 一种基于光电探测传感器实现视觉刺激与脑电采集的时间同步系统及方法
CN113253930B (zh) * 2021-05-20 2022-09-20 重庆会凌电子新技术有限公司 一种频谱监测装置的存储方法
CN118733539A (zh) * 2024-09-04 2024-10-01 首都医科大学宣武医院 一种临床脑电图数据读取方法、装置、设备及介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040082862A1 (en) * 2002-07-10 2004-04-29 Britton Chance Examination and imaging of brain cognitive functions
JP2006289565A (ja) * 2005-04-12 2006-10-26 Japan Science & Technology Agency ロボット操作装置及びロボット
CN102715889A (zh) * 2012-06-11 2012-10-10 天津大学 一种脑力负荷检测方法
CN102779229A (zh) * 2012-06-14 2012-11-14 天津大学 一种基于脑功能状态的自适应自动化方法
US8396525B2 (en) * 2008-06-23 2013-03-12 Shimadzu Corporation Real-time simultaneous measurement system, real-time simultaneous measurement apparatus, real-time simultaneous measurement method, and storage medium in which program is stored
CN103838736A (zh) * 2012-11-21 2014-06-04 大连灵动科技发展有限公司 一种fMRI脑激活数据仓库的建立方法
CN103917268A (zh) * 2011-11-08 2014-07-09 株式会社国际电气通信基础技术研究所 脑机能亢进辅助装置以及脑机能亢进辅助方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050043827A1 (en) * 2003-07-16 2005-02-24 St. Clair Hospital System and method for storing and accessing medical data
US8055584B2 (en) * 2003-10-20 2011-11-08 First Data Corporation Systems and methods for fraud management in relation to stored value cards
CN102156541B (zh) * 2010-05-13 2012-05-23 天津大学 前额脑电与血氧信息融合的人机交互方法
CN101853070B (zh) * 2010-05-13 2012-07-11 天津大学 前额脑电与血氧信息融合的人机交互装置
CN102894971A (zh) * 2011-07-29 2013-01-30 中国科学院沈阳自动化研究所 脑电和近红外光谱联合采集脑信号的头盔

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040082862A1 (en) * 2002-07-10 2004-04-29 Britton Chance Examination and imaging of brain cognitive functions
JP2006289565A (ja) * 2005-04-12 2006-10-26 Japan Science & Technology Agency ロボット操作装置及びロボット
US8396525B2 (en) * 2008-06-23 2013-03-12 Shimadzu Corporation Real-time simultaneous measurement system, real-time simultaneous measurement apparatus, real-time simultaneous measurement method, and storage medium in which program is stored
CN103917268A (zh) * 2011-11-08 2014-07-09 株式会社国际电气通信基础技术研究所 脑机能亢进辅助装置以及脑机能亢进辅助方法
CN102715889A (zh) * 2012-06-11 2012-10-10 天津大学 一种脑力负荷检测方法
CN102779229A (zh) * 2012-06-14 2012-11-14 天津大学 一种基于脑功能状态的自适应自动化方法
CN103838736A (zh) * 2012-11-21 2014-06-04 大连灵动科技发展有限公司 一种fMRI脑激活数据仓库的建立方法

Also Published As

Publication number Publication date
CN104380297A (zh) 2015-02-25
US10460833B2 (en) 2019-10-29
US20170290524A1 (en) 2017-10-12
CN104380297B (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
WO2016041187A1 (zh) 光电同步脑活动记录的数据存储方法
Hartings et al. Direct current electrocorticography for clinical neuromonitoring of spreading depolarizations
Atluri et al. TMSEEG: a MATLAB-based graphical user interface for processing electrophysiological signals during transcranial magnetic stimulation
CN107361760B (zh) 心磁图仪诊断系统及应用该系统的心磁图仪
Fred et al. A brief introduction to magnetoencephalography (MEG) and its clinical applications
Al-Nuaimi et al. Tsallis entropy as a biomarker for detection of Alzheimer's disease
CN105342569B (zh) 一种基于脑电分析的精神状态检测系统
Nemcova et al. Brno university of technology ECG quality database (BUT QDB)
Maccione et al. Microelectronics, bioinformatics and neurocomputation for massive neuronal recordings in brain circuits with large scale multielectrode array probes
CN106859673A (zh) 一种基于睡眠脑电的抑郁症风险筛查系统
Kumar et al. Center of excellence for mobile sensor data-to-knowledge (MD2K)
Wang et al. Clustering-constrained ICA for ballistocardiogram artifacts removal in simultaneous EEG-fMRI
Chandravadia et al. A NWB-based dataset and processing pipeline of human single-neuron activity during a declarative memory task
US20150265174A1 (en) Non-Invasive Evaluation of Cardiac Repolarisation Instability for Risk Stratification of Sudden Cardiac Death
Hernan et al. Methodological standards and functional correlates of depth in vivo electrophysiological recordings in control rodents. A TASK 1‐WG 3 report of the AES/ILAE Translational Task Force of the ILAE
Kuila et al. Feature extraction and classification of MIT-BIH arrhythmia database
Luke et al. fNIRS-BIDS, the brain imaging data structure extended to functional near-infrared spectroscopy
Chen et al. A deep learning model for the classification of atrial fibrillation in critically ill patients
Delorme et al. Tools for importing and evaluating BIDS-EEG formatted data
Gilon et al. IRIDIA-AF, a large paroxysmal atrial fibrillation long-term electrocardiogram monitoring database
Wadekar et al. Development of LabVIEW platform for EEG signal analysis
Shutov et al. Artificial intelligence in clinical physiology: How to improve learning agility
Li et al. A new design of portable EEG signal acquisition system
Jager et al. Development of a long term database for assessing the performance of transient ischemia detectors
Zhang et al. A portable real-time EEG signal acquisition and tele-medicine system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15512781

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14901898

Country of ref document: EP

Kind code of ref document: A1