WO2016041144A1 - 一种图像处理的方法及装置 - Google Patents

一种图像处理的方法及装置 Download PDF

Info

Publication number
WO2016041144A1
WO2016041144A1 PCT/CN2014/086624 CN2014086624W WO2016041144A1 WO 2016041144 A1 WO2016041144 A1 WO 2016041144A1 CN 2014086624 W CN2014086624 W CN 2014086624W WO 2016041144 A1 WO2016041144 A1 WO 2016041144A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
infrared
image
corrected
infrared image
Prior art date
Application number
PCT/CN2014/086624
Other languages
English (en)
French (fr)
Inventor
葛方勇
王雅丽
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/086624 priority Critical patent/WO2016041144A1/zh
Priority to JP2017533664A priority patent/JP6429176B2/ja
Priority to EP14902211.3A priority patent/EP3185549B1/en
Priority to KR1020177008320A priority patent/KR20170048454A/ko
Priority to US15/511,583 priority patent/US10560644B2/en
Priority to CN201480031329.2A priority patent/CN105612740B/zh
Publication of WO2016041144A1 publication Critical patent/WO2016041144A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/11Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/73Colour balance circuits, e.g. white balance circuits or colour temperature control
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration by the use of more than one image, e.g. averaging, subtraction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene

Definitions

  • the present invention relates to the field of image processing technologies, and in particular, to a method and an apparatus for image processing.
  • the user wants to get an image with uniform color and brightness, but most of the time, the image taken by the camera is poorly affected by the infrared rays. Generally, the color and brightness are not uniform, and the brightness is usually bright in the middle and around. dark.
  • a filter is installed on the lens, for example, an infrared filter or a blue glass is installed, so that the influence of infrared rays on the image can be reduced to some extent.
  • the final image quality will be affected to some extent, resulting in a yellow or greenish color and uneven color. In fact, the infrared image cannot be excluded. The impact of quality.
  • the embodiment of the invention provides a method for image processing, and in the case of having infrared rays during shooting, an image with uniform brightness can be obtained.
  • Embodiments of the present invention also provide corresponding devices.
  • a first aspect of the present invention provides a method of image processing, including:
  • a corresponding corrected image is obtained based on the corrected image data, and the corrected image is output.
  • the corresponding relationship is a set of relationships including n sets of test infrared intensity I x and infrared image data M x , wherein the infrared image data M x is the test infrared
  • the intensity I x participates in the imaged infrared image data, wherein the value of x is 1, 2...n-1, n, and the n is a positive integer greater than one;
  • M m corresponding to the I m or M m +1 corresponding to the I m+1 is determined as the infrared image data corresponding to the I.
  • the M m corresponding to the I m is determined as the infrared image data corresponding to the I.
  • the M m corresponding to the I m is determined as the I when the data corresponding to the infrared image, when the difference between the I and the difference value is greater than I m I m + 1 with the I determining the corresponding I m + 1 m m + 1 as the The infrared image data corresponding to I is described.
  • any one of the first to third possible implementation manners of the first aspect in a fourth possible implementation, the image data according to the initial image, and the I Corresponding infrared image data, resulting in corrected image data, including:
  • the infrared image data corresponding to the I is subtracted from the image data of the initial image to obtain corrected image data.
  • the corresponding corrected image data is corrected After the image, the method further includes:
  • the corrected image is subjected to white balance processing, and the white balance is adjusted to adjust the ratio of the three primary colors in different color temperature environments to achieve color balance.
  • a second aspect of the present invention provides an apparatus for image processing, including:
  • An acquiring unit configured to acquire image data of the captured initial image, and obtain an ambient infrared intensity I when the initial image is captured;
  • a determining unit configured to obtain, according to a preset correspondence between the preset test infrared intensity and the infrared image data, the infrared image data corresponding to the I acquired by the acquiring unit;
  • a calculating unit configured to obtain corrected image data according to image data of the initial image acquired by the acquiring unit, and infrared image data corresponding to the I obtained by the determining unit;
  • a corrected image obtaining unit configured to obtain a corresponding corrected image according to the corrected image data obtained by the calculating unit
  • an output unit configured to output the corrected image obtained by the corrected image obtaining unit.
  • the determining unit includes:
  • a first determining module configured to: in the correspondence, a set of relationships including n sets of test infrared intensity I x and infrared image data M x , wherein the infrared image data M x is obtained by the test infrared intensity I x participating in imaging Infrared image data, wherein the value of x is 1, 2...n-1, n, and n is a positive integer greater than 1, from the correspondence, determining that the I is in the I m Between I m+1 , the m is a positive integer smaller than the n;
  • a second determining module configured to determine, according to the preset selection policy, M m corresponding to the I m determined by the first determining module or M m+1 corresponding to the I m+1 as the I Corresponding infrared image data.
  • the second determining module particularly according to a preset strategy for selecting take the lower limit, the determining I M m m corresponding to an infrared image data corresponding to the I.
  • the second determining module is specifically configured to determine, according to the proximity selection policy, when the difference between the I and the I m is less than or equal to the difference between the I m+1 and the I,
  • the M m corresponding to m is the infrared image data corresponding to the I, and when the difference between the I and the I m is greater than the difference between the I m+1 and the I, determining the I m +1 corresponding M m+1 is used as the infrared image data corresponding to the I.
  • any one of the first to third possible implementation manners of the second aspect in a fourth possible implementation manner,
  • the calculating unit is specifically configured to subtract the infrared image data corresponding to the I from the image data of the initial image to obtain corrected image data.
  • the device further includes:
  • a processing unit configured to perform white balance processing on the corrected image obtained by the modified image obtaining unit, where the ratio of the three primary colors is adjusted to achieve color balance in different color temperature environments.
  • a third aspect of the present invention provides a terminal, comprising: a camera, an infrared sensor, a processor, a memory, and a display device;
  • the camera is used to capture an initial image
  • the infrared sensor is configured to collect ambient infrared rays when the camera captures an initial image and obtain an ambient infrared intensity I;
  • the memory is configured to store a preset relationship between the test infrared intensity and the infrared image data
  • the processor is configured to:
  • the display device is configured to display the corrected image.
  • the correspondence relationship is a set of relationships including n sets of test infrared intensity I x and infrared image data M x , wherein the infrared image data M x is the infrared image data obtained by the test infrared intensity I x participating in imaging, wherein the The value of x is 1, 2...n-1, n, and n is a positive integer greater than 1.
  • the processor is specifically configured to determine, according to the correspondence, that the I is between the I m and I m+1 , where the m is a positive integer smaller than the n, according to a preset selection policy, determining the m m I m corresponding to the or I m + 1 m m + 1 as corresponding to the infrared image data I corresponds.
  • the processor is configured to: select according to the preset policy take the lower limit, the determining M m I m corresponding to an infrared image data corresponding to the I.
  • the processor is specifically configured to: when the difference between the I and the I m is less than or equal to a difference between the I m+1 and the I, according to a proximity selection policy, determining that the I m corresponds to the I m M m as the infrared image data corresponding to the I; when the difference between the I and the I m is greater than the difference between the I m+1 and the I, determining and the I m+1
  • the corresponding M m+1 is used as the infrared image data corresponding to the I.
  • any one of the first to third possible implementation manners of the third aspect in a fourth possible implementation manner,
  • the processor is specifically configured to: subtract the infrared image data corresponding to the I from the image data of the initial image to obtain corrected image data.
  • any one of the first to third possible implementation manners of the third aspect in a fifth possible implementation manner,
  • the processor is further configured to: after obtaining the corresponding corrected image according to the corrected image data, perform white balance processing on the corrected image, where the white balance is adjusted in different color temperature environments.
  • the ratio of the base colors to achieve a color balance is further configured to: after obtaining the corresponding corrected image according to the corrected image data, perform white balance processing on the corrected image, where the white balance is adjusted in different color temperature environments. The ratio of the base colors to achieve a color balance.
  • the image data of the captured initial image is acquired by the embodiment of the present invention, and the ambient infrared intensity I when the initial image is captured is acquired; the corresponding infrared light intensity and the infrared image data are matched according to the preset test. Relation, obtaining infrared image data corresponding to the I; obtaining corrected image data according to the image data of the initial image and the infrared image data corresponding to the I, and eliminating infrared rays from the original image captured The effect is obtained by obtaining the corrected image based on the corrected image data, and outputting the corrected image to eliminate the influence of the ambient infrared intensity on the quality of the captured image.
  • the image processing method provided by the embodiment of the present invention can reduce the influence of infrared rays on image quality by processing the image to obtain an image with uniform brightness, as compared with the image brightness unevenness obtained by the infrared light in the prior art.
  • FIG. 1 is a schematic diagram of an embodiment of a method for image processing according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an embodiment of an apparatus for image processing according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of another embodiment of an apparatus for image processing according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another embodiment of an apparatus for image processing according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an embodiment of a terminal according to an embodiment of the present invention.
  • an embodiment of an image processing method in an embodiment of the present invention includes:
  • the optical image generated by the object is converted into an electrical signal, and then converted into a digital signal by A/D to obtain image data of the initial image, and the environment at the time of capturing the initial image is measured by a device such as an infrared sensor. Infrared intensity I.
  • the corresponding relationship between the test infrared intensity and the infrared image data may be: a set of test infrared intensity and infrared image data mapping relationship, wherein the test infrared intensity in the set changes according to a gradient, for example, increasing or decreasing according to a gradient,
  • the infrared image data in the set is infrared image data corresponding to each test infrared intensity obtained when each test infrared intensity in the set participates in imaging.
  • test infrared intensity is obtained by the developer through a large number of tests in advance.
  • the specific test process can be:
  • the infrared generator is used in the laboratory to test the terminal with the infrared sensor in the dark room, and the infrared generator is adjusted according to the step of emitting the infrared intensity from weak to strong.
  • the intensity of the test infrared ray emitted by the first infrared ray generator is I 1
  • the infrared ray image obtained by photoelectric conversion is M 1 .
  • I 1 can be 0 or a small test infrared ray. strength.
  • the infrared ray generator is adjusted, and when the infrared ray intensity is I 2 , the infrared image data M 2 is obtained, and the test infrared ray intensity is gradually adjusted, and the correspondence relationship between the n sets of the test infrared ray intensity I x and the infrared ray intensity data M x is obtained.
  • x takes values from 1...n.
  • the correspondence between I x and M x can be understood by referring to Table 1:
  • Table 1 Correspondence table between test infrared intensity and infrared image data
  • test infrared intensity and the infrared image data is not limited to the form of Table 1 above, and the correspondence between the test infrared intensity and the infrared image data may be expressed in other forms, for example, the infrared intensity may be obtained from strong to weak to obtain a corresponding infrared image. data.
  • M 1 ... M n may be data in the form of a matrix.
  • the correspondence between the test infrared intensity and the infrared image data obtained by a large number of tests is preset in the terminal, so that when the image is captured, the correspondence between the test infrared intensity and the infrared image data can be used to determine the ambient infrared intensity at the time of shooting.
  • the infrared image data is a factor that affects the image quality, and the corrected image data can be obtained by eliminating the factor affecting the image quality in the image data of the initial image.
  • the correction of the image data can be realized by a mathematical operation between the image data of the initial image and the infrared image data corresponding to the I.
  • the corrected image data is output to a digital signal processor processing, converted into a standard GRB, YUV, etc. image signal, that is, a corrected image corresponding to the initial image is obtained, and the corrected image is output to the display terminal display. .
  • the embodiment of the present invention adopts acquiring image data of the captured initial image, and acquiring an ambient infrared intensity I when the initial image is captured; according to the preset test infrared intensity and infrared image data Corresponding relationship, obtaining infrared image data corresponding to the I; obtaining corrected image data according to the image data of the initial image and the infrared image data corresponding to the I, and eliminating the original image band of the infrared image The influence is obtained; the corrected image is obtained based on the corrected image data, and the corrected image is output, and the influence of the ambient infrared intensity on the quality of the captured image is eliminated.
  • the image processing method provided by the embodiment of the present invention can reduce the influence of infrared rays on image quality by processing the image to obtain an image with uniform brightness, as compared with the image brightness unevenness obtained by the infrared light in the prior art.
  • the infrared image data corresponding to I is obtained.
  • the correspondence may be an array or a matrix, etc.
  • the corrected image data is obtained, and the corrected image data can be calculated from the image data of the initial image and the infrared image data corresponding to I. It can also be implemented by other implementation methods, which are not limited in this paper.
  • the corresponding relationship includes n sets of test infrared intensity I x and a set of relationships of infrared image data M x , wherein the infrared image data M x is infrared image data obtained by imaging the infrared intensity I x , wherein the value of x is 1, 2, ..., n-1, n , the n is a positive integer greater than one;
  • the obtaining the infrared image data corresponding to the I according to the corresponding relationship between the preset test infrared intensity and the infrared image data may include:
  • M m corresponding to the I m or M m +1 corresponding to the I m+1 is determined as the infrared image data corresponding to the I.
  • Table 1 may be understood from Table 1 depending on the magnitude of the intensity of infrared, infrared intensity can be determined when the photographing environment is between the images I and I I m m + 1, for example: when m is 1 When it can be determined that I is between I 1 and I 2 , then M 1 or M 2 can be selected as the infrared image data corresponding to the I.
  • the preset selection policy is performed according to the first optional embodiment of the foregoing image processing method. Determining the M m corresponding to the I m or the M m +1 corresponding to the I m+1 as the infrared image data corresponding to the I, may include:
  • the M m corresponding to the I m is determined as the infrared image data corresponding to the I.
  • M m is taken as the infrared image data corresponding to the I, although the M m may be smaller than the real infrared image data corresponding to the I, But even if a little infrared ray affects the image data, an image with uniform brightness will be obtained.
  • the preset selection policy is performed according to the first optional embodiment of the foregoing image processing method. Determining the M m corresponding to the I m or the M m +1 corresponding to the I m+1 as the infrared image data corresponding to the I, may include:
  • the M m corresponding to the I m is determined as the I Corresponding infrared image data
  • M m or M m+1 which is close to the value of I is selected as the infrared image data corresponding to the I, so that the corrected image effect is closest to the image without infrared influence.
  • the initial according to the initial The image data of the image and the infrared image data corresponding to the I, and the corrected image data may include:
  • the infrared image data corresponding to the I is subtracted from the image data of the initial image to obtain corrected image data.
  • the image data of the original image is represented by M a
  • M a, M m are matrix, typically 17 * 13 matrix, said matrix equation is subtracted, M r is also a matrix.
  • the corrected image is subjected to white balance processing, and the white balance is adjusted to adjust the ratio of the three primary colors in different color temperature environments to achieve color balance.
  • the corrected image data is output to a digital signal processor for processing, and converted into a standard GRB, YUV, and other format image signals.
  • White balance is to adjust the ratio of the three primary colors in different color temperature environments to achieve color balance, so that the image converges to the RGB correction parameters under the relevant light source, achieve the effect of non-color cast, and correct the camera effect caused by the difference of lens parameters. Difference, the image subjected to white balance processing is output to the display terminal display.
  • the embodiment of the present invention includes:
  • the acquiring unit 301 is configured to acquire image data of the captured initial image, and acquire an ambient infrared intensity I when the initial image is captured;
  • a determining unit 302 configured to obtain infrared image data corresponding to the I acquired by the acquiring unit 301 according to a preset relationship between the preset test infrared intensity and the infrared image data;
  • the calculating unit 303 is configured to obtain the corrected image data according to the image data of the initial image acquired by the obtaining unit 301 and the infrared image data corresponding to the I determined by the determining unit 302;
  • the corrected image obtaining unit 304 is configured to obtain a corresponding corrected image according to the corrected image data obtained by the calculating unit 303;
  • the output unit 305 is configured to output the corrected image obtained by the corrected image obtaining unit 304.
  • the acquiring unit 301 acquires the image data of the captured initial image, and acquires the ambient infrared intensity I when the initial image is captured; the determining unit 302 obtains the corresponding relationship between the preset test infrared intensity and the infrared image data. Acquiring the infrared image data corresponding to the I acquired by the acquiring unit 301; the calculating unit 303 is corrected according to the image data of the initial image acquired by the obtaining unit 301 and the infrared image data corresponding to the I determined by the determining unit 302.
  • the corrected image obtaining unit 304 obtains the corrected image obtained by the calculating unit 303
  • the image data obtains a corresponding corrected image
  • the output unit 305 outputs the corrected image obtained by the corrected image obtaining unit 304.
  • the image processing device provided by the embodiment of the present invention can reduce the influence of infrared rays on the image quality by processing the image to obtain an image with uniform brightness.
  • the determining unit 302 includes:
  • the first determining module 3021 is configured to: in the corresponding relationship, a set of relationships including n sets of test infrared intensity I x and infrared image data M x , wherein the infrared image data M x is the test infrared intensity I x participating in imaging Infrared image data, wherein the value of x is 1, 2...n-1, n, and n is a positive integer greater than 1, from the correspondence, determining that the I is in the I Between m and Im+1 , the m is a positive integer less than the n;
  • the second determining module 3022 is configured to determine, according to the preset selection policy, M m corresponding to the I m determined by the first determining module 3021 or M m+1 corresponding to the I m+1 as the Infrared image data corresponding to I.
  • the second determining module 3022 configured in accordance with a preset selection strategy take the lower limit, the determining M m I m corresponding to an infrared image data corresponding to the I.
  • the second determining module 3022 is specifically configured to determine, according to the proximity selection policy, when the difference between the I and the I m is less than or equal to the difference between the I m+1 and the I, I m m m as the corresponding infrared image data I corresponds, when the difference between the I and I m + I m is greater than the time difference with the I 1 to determine the I M m+1 corresponding to m+1 is used as the infrared image data corresponding to the I.
  • the fourth optional embodiment of the apparatus for image processing provided by the embodiment of the present invention, in the embodiment, the first, the second, or the third optional embodiment of the apparatus for image processing,
  • the calculating unit 303 is specifically configured to subtract the infrared image data corresponding to the I from the image data of the initial image to obtain corrected image data.
  • the device 30 further includes:
  • the processing unit 306 is configured to perform white balance processing on the corrected image obtained by the modified image obtaining unit 304, and adjust the ratio of the three primary colors to achieve color balance in different color temperature environments.
  • the present invention is specifically described by taking a terminal terminal as an example.
  • the illustrated terminal is merely an example of a mobile terminal exemplified by a mobile phone, and the terminal may have more or fewer components than those shown in the figure, and two or more components may be combined. Or can have different component configurations.
  • the various components shown in the figures can be implemented in hardware, software, or a combination of hardware and software, including one or more signal processing and/or application specific integrated circuits.
  • FIG. 5 is a schematic structural diagram of an embodiment of a terminal for image processing provided by the present invention.
  • the terminal includes a processor 160, a memory 120, an RF circuit 110, a power supply 190, an input unit 130, a display device 140, an audio circuit 170, and a wifi module 180.
  • the input unit 130 includes a camera 131 and an infrared sensor 132. These components communicate via one or more communication buses or signal lines.
  • the terminal provided in this embodiment is only an example of a mobile terminal, and the mobile terminal according to the embodiment of the present invention may have more or less components than those shown in FIG. 5, and may combine two or more. Multiple components, or different component configurations or arrangements, may be implemented in hardware, software, or a combination of hardware and software, including one or more signal processing and/or application specific integrated circuits.
  • the terminal for image processing provided in this embodiment will be described in detail below.
  • the camera 131 is configured to capture an initial image
  • the infrared sensor 132 is configured to collect ambient infrared rays when the camera captures an initial image and obtain an ambient infrared intensity I;
  • the memory 120 is configured to store a preset relationship between the test infrared intensity and the infrared image data
  • Memory 120 may be one or more disk storage devices, flash memory devices, or other volatile Solid state storage devices.
  • the RF circuit 110 is mainly used to establish communication between the terminal and the wireless network (ie, the network side), and implement data reception and transmission between the terminal and the wireless network. For example, sending and receiving short messages, emails, and the like.
  • the RF circuit 205 receives and transmits an RF signal, which is also referred to as an electromagnetic signal, and the RF circuit 205 converts the electrical signal into an electromagnetic signal or converts the electromagnetic signal into an electrical signal, and through the electromagnetic signal and communication network and other devices Communicate.
  • the RF circuit 110 may include known circuitry for performing these functions including, but not limited to, an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chip Group, Subscriber Identity Module (SIM), etc.
  • an antenna system an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chip Group, Subscriber Identity Module (SIM), etc.
  • SIM Subscriber Identity Module
  • the audio circuit 170 is mainly used to convert the audio data into an electrical signal.
  • a power supply 190 is provided for powering various components in the terminal.
  • Processor 160 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 160 or an instruction in the form of software.
  • the processor 160 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or discrete hardware. Component.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the manner in which the processor 160 processes the image can be performed in the manner as in the previous embodiment.
  • the processor 160 is configured to:
  • a corresponding corrected image is obtained based on the corrected image data and output to the display device.
  • the display device 140 is configured to display the corrected image.
  • the terminal provided by the embodiment of the invention can reduce the influence of infrared rays on the image quality by processing the image, and obtain an image with uniform brightness.
  • the correspondence relationship is a set of relationships including n sets of test infrared intensity I x and infrared image data M x , wherein the infrared image data M x is the infrared image data obtained by the test infrared intensity I x participating in imaging Wherein the value of x is 1, 2...n-1, n, and n is a positive integer greater than one;
  • the processor 160 is specifically configured to determine, according to the correspondence, that the I is between the I m and I m+1 , the m is less than or equal to the n, and the m is greater than or equal to 0; accordance with a preset selection strategy, determining the corresponding m m I m or the I m + 1 m m + 1 as corresponding to the infrared image data I corresponds.
  • processor 160 is configured to: select according to the preset policy take the lower limit, the determining M m I m corresponding to an infrared image data corresponding to the I.
  • the processor 160 is specifically configured to determine, according to the proximity selection policy, when the difference between the I and the I m is less than or equal to a difference between the I m+1 and the I, m m I m corresponding to the infrared image as corresponding data I; when the difference between the I and I m + I m is greater than the time difference with the I 1 to determine the I M m+1 corresponding to m+1 is used as the infrared image data corresponding to the I.
  • the processor 160 is specifically configured to: subtract the infrared image data corresponding to the I from the image data of the initial image to obtain the corrected image data.
  • the processor 160 is further configured to: perform white balance processing on the corrected image, where the white balance is to adjust the ratio of the three primary colors to achieve color balance in different color temperature environments.
  • the mobile terminal includes but is not limited to a mobile communication device such as a terminal, a personal digital assistant (PDA), a tablet computer, or the like.
  • a mobile communication device such as a terminal, a personal digital assistant (PDA), a tablet computer, or the like.
  • the storage medium may be a magnetic disk, an optical disk, a read-only storage memory, or a random storage memory.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold as a standalone product Or when used, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

本发明实施例公开了一种图像处理的方法,包括:获取拍摄的初始图像的图像数据,并获取拍摄所述初始图像时的环境红外线强度I,根据预置的测试红外线强度与红外线图像数据的对应关系,得到所述I所对应的红外线图像数据;根据所述初始图像的图像数据,以及所述I所对应的红外线图像数据,得到修正后的图像数据,根据所述修正后的图像数据得到对应的修正后的图像,并输出所述修正后的图像。本发明实施例提供的图像处理的方法,可以通过对图像的处理来降低红外线对图像质量的影响,得到亮度均匀的图像。

Description

一种图像处理的方法及装置 技术领域
本发明涉及图像处理技术领域,尤其涉及一种图像处理的方法及装置。
背景技术
在拍照时,用户都希望能得到色彩和亮度均匀的图像,但大多数时候受红外线的影响,导致摄像头所拍摄的图像成像效果比较差,一般色彩和亮度都不均一、亮度通常中间亮、四周暗。
现有技术中,为了消除红外线对所拍摄的图像的影响,会在镜头上安装滤光片,例如:安装红外线过滤片或者蓝玻璃,这样在一定程度上可以降低红外线对图像的影响。但是,由于红外线在滤光片和镜头组之间的多次反射,会对最终的画质产生一定的影响,导致画面会偏焦黄或者偏绿,色彩不均匀,实际上仍然无法排除红外线对图像质量的影响。
发明内容
为解决现有技术中红外线对图像质量影响较大的问题,本发明实施例提供了一种图像处理的方法,在拍摄时有红外线的情况下,可以到亮度均匀的图像。本发明实施例还提供了相应的装置。
本发明第一方面提供一种图像处理的方法,包括:
获取拍摄的初始图像的图像数据,并获取拍摄所述初始图像时的环境红外线强度I;
根据预置的测试红外线强度与红外线图像数据的对应关系,得到所述I所对应的红外线图像数据;
根据所述初始图像的图像数据,以及所述I所对应的红外线图像数据,得到修正后的图像数据;
根据所述修正后的图像数据得到对应的修正后的图像,并输出所述修正后的图像。
结合第一方面,在第一种可能的实现方式中,所述对应关系为包含n组测试红外线强度Ix与红外线图像数据Mx的关系集合,所述红外线图像数据Mx为所述测试红外线强度Ix参与成像得到的红外线图像数据,其中,所述x的取 值为1,2…n-1,n,所述n是一个大于1的正整数;
所述根据预置的测试红外线强度与红外线图像数据的对应关系,得到所述I所对应的红外线图像数据,包括:
从所述对应关系中,确定所述I处于所述Im与Im+1之间,所述m为小于所述n的正整数;
按照预置选择策略,确定与所述Im对应的Mm或者与所述Im+1对应的Mm+1作为所述I所对应的红外线图像数据。
结合第一方面第一种可能的实现方式,在第二种可能的实现方式中,所述按照预置选择策略,确定与所述Im对应的Mm或者与所述Im+1对应的Mm+1作为所述I所对应的红外线图像数据,包括:
按照预置的取下限选择策略,确定与所述Im对应的Mm作为所述I所对应的红外线图像数据。
结合第一方面第一种可能的实现方式,在第三种可能的实现方式中,所述按照预置选择策略,确定与所述Im对应的Mm或者与所述Im+1对应的Mm+1作为所述I所对应的红外线图像数据,包括:
按照靠近选择策略,当所述I与所述Im的差值小于或等于所述Im+1与所述I的差值时,确定与所述Im对应的Mm作为所述I所对应的红外线图像数据,当所述I与所述Im的差值大于所述Im+1与所述I的差值时,确定与所述Im+1对应的Mm+1作为所述I所对应的红外线图像数据。
结合第一方面、第一方面第一种至第三种可能的实现方式中的任意一种,在第四种可能的实现方式中,所述根据所述初始图像的图像数据,以及所述I所对应的红外线图像数据,得到修正后的图像数据,包括:
用所述初始图像的图像数据减去所述I所对应的红外线图像数据,得到修正后的图像数据。
结合第一方面、第一方面第一种至第三种可能的实现方式中的任意一种,在第五种可能的实现方式中,所述根据所述修正后的图像数据得到对应的修正后的图像之后,所述方法还包括:
将所述修正后的图像进行白平衡处理,所述白平衡为在不同色温环境下,调节三基色的比例来达到彩色的平衡。
本发明第二方面提供一种图像处理的装置,包括:
获取单元,用于获取所拍摄的初始图像的图像数据,并获取拍摄所述初始图像时的环境红外线强度I;
确定单元,用于根据预置的测试红外线强度与红外线图像数据的对应关系,得到所述获取单元获取的所述I所对应的红外线图像数据;
计算单元,用于根据获取单元获取的所述初始图像的图像数据,以及所述确定单元得到的所述I所对应的红外线图像数据,得到修正后的图像数据;
修正图像获得单元,用于根据所述计算单元得到的所述修正后的图像数据得到对应的修正后的图像;
输出单元,用于输出所述修正图像获得单元获得的修正后的图像。
结合第二方面,在第一种可能的实现方式中,所述确定单元包括:
第一确定模块,用于在所述对应关系为包含n组测试红外线强度Ix与红外线图像数据Mx的关系集合,所述红外线图像数据Mx为所述测试红外线强度Ix参与成像得到的红外线图像数据,其中,所述x的取值为1,2…n-1,n,所述n是一个大于1的正整数,从所述对应关系中,确定所述I处于所述Im与Im+1之间,所述m为小于所述n的正整数;
第二确定模块,用于按照预置选择策略,确定与所述第一确定模块确定的所述Im对应的Mm或者与所述Im+1对应的Mm+1作为所述I所对应的红外线图像数据。
结合第二方面第一种可能的实现方式,在第二种可能的实现方式中,
所述第二确定模块,具体用于按照预置的取下限选择策略,确定与所述Im对应的Mm作为所述I所对应的红外线图像数据。
结合第二方面第一种可能的实现方式,在第三种可能的实现方式中,
所述第二确定模块,具体用于按照靠近选择策略,当所述I与所述Im的差值小于或等于所述Im+1与所述I的差值时,确定与所述Im对应的Mm作为所述I所对应的红外线图像数据,当所述I与所述Im的差值大于所述Im+1与所述I的差值时,确定与所述Im+1对应的Mm+1作为所述I所对应的红外线图像数据。
结合第二方面、第二方面第一种至第三种可能的实现方式中的任意一种,在第四种可能的实现方式中,
所述计算单元,具体用于用所述初始图像的图像数据减去所述I所对应的红外线图像数据,得到修正后的图像数据。
结合第二方面、第二方面第一种至第三种可能的实现方式中的任意一种,在第五种可能的实现方式中,所述装置还包括:
处理单元,用于将所述修正图像获得单元获得的修正后的图像进行白平衡处理,所述白平衡为在不同色温环境下,调节三基色的比例来达到彩色的平衡。
本发明第三方面提供一种终端,其特征在于,包括:摄像头、红外线传感器、处理器、存储器和显示装置;
所述摄像头用于拍摄初始图像;
所述红外线传感器用于在所述摄像头拍摄初始图像时,采集环境红外线并得到环境红外线强度I;
所述存储器用于存储预置的测试红外线强度与红外线图像数据的对应关系;
所述处理器,用于:
获取拍摄的初始图像的图像数据,并获取拍摄所述初始图像时的环境红外线强度I;
根据预置的测试红外线强度与红外线图像数据的对应关系,得到所述I所对应的红外线图像数据;
根据所述初始图像的图像数据,以及所述I所对应的红外线图像数据,得到修正后的图像数据;
根据所述修正后的图像数据得到对应的修正后的图像并输出给所述显示装置;
所述显示装置,用于显示所述修正后的图像。
结合第三方面,在第一种可能的实现方式中,
所述对应关系为包含n组测试红外线强度Ix与红外线图像数据Mx的关系集合,所述红外线图像数据Mx为所述测试红外线强度Ix参与成像得到的红外线图像数据,其中,所述x的取值为1,2…n-1,n,所述n是一个大于1的正整数,
所述处理器具体用于:从所述对应关系中,确定所述I处于所述Im与Im+1 之间,所述m为小于所述n的正整数,按照预置选择策略,确定与所述Im对应的Mm或者与所述Im+1对应的Mm+1作为所述I所对应的红外线图像数据。
结合第三方面第一种可能的实现方式,在第二种可能的实现方式中,
所述处理器具体用于:按照预置的取下限选择策略,确定与所述Im对应的Mm作为所述I所对应的红外线图像数据。
结合第三方面第一种可能的实现方式,在第三种可能的实现方式中,
所述处理器具体用于:按照靠近选择策略,当所述I与所述Im的差值小于或等于所述Im+1与所述I的差值时,确定与所述Im对应的Mm作为所述I所对应的红外线图像数据;当所述I与所述Im的差值大于所述Im+1与所述I的差值时,确定与所述Im+1对应的Mm+1作为所述I所对应的红外线图像数据。
结合第三方面、第三方面第一种至第三种可能的实现方式中的任意一种,在第四种可能的实现方式中,
所述处理器具体用于:用所述初始图像的图像数据减去所述I所对应的红外线图像数据,得到修正后的图像数据。
结合第三方面、第三方面第一种至第三种可能的实现方式中的任意一种,在第五种可能的实现方式中,
所述处理器还用于:根据所述修正后的图像数据得到对应的修正后的图像之后,将所述修正后的图像进行白平衡处理,所述白平衡为在不同色温环境下,调节三基色的比例来达到彩色的平衡。
从以上技术方案可以看出:本发明实施例采用获取所拍摄的初始图像的图像数据,并获取拍摄所述初始图像时的环境红外线强度I;根据预置的测试红外线强度与红外线图像数据的对应关系,得到所述I所对应的红外线图像数据;根据所述初始图像的图像数据,以及所述I所对应的红外线图像数据,得到修正后的图像数据,消除红外线对拍摄的原始图像带来的影响;根据所述修正后的图像数据得到修正后的图像,并输出所述修正后的图像,将环境红外线强度对拍摄图像质量的影响消除。与现有技术中因红外线影响导致得到的图像亮度不均匀相比,本发明实施例提供的图像处理的方法,可以通过对图像的处理来降低红外线对图像质量的影响,得到亮度均匀的图像。
附图说明
图1为本发明实施例中图像处理的方法的一实施例示意图;
图2为本发明实施例中图像处理的装置的一实施例示意图;
图3为本发明实施例中图像处理的装置的另一实施例示意图;
图4为本发明实施例中图像处理的装置的另一实施例示意图;
图5为本发明实施例中终端的一实施例示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明实施例中一种图像处理的方法一个实施例包括:
101、获取拍摄的初始图像的图像数据,并获取拍摄初始图像时的环境红外线强度I。
终端拍摄图像时,将拍摄对象生成的光学图像转化为电信号,再经过A/D转换为数字信号即得到初始图像的图像数据,同时通过红外线传感器等装置测量在拍摄所述初始图像时的环境红外线强度I。
102、根据预置的测试红外线强度与红外线图像数据的对应关系,得到所述I所对应的红外线图像数据。
所述测试红外线强度与红外线图像数据的对应关系可以是:测试红外线强度与红外线图像数据映射关系的集合,其中,所述集合中的测试红外线强度按梯度变化,例如:按梯度递增或递减,所述集合中的红外线图像数据分别是集合中各测试红外线强度参与成像时所得到,与各测试红外线强度对应的红外线图像数据。
测试红外线强度与红外线图像数据的对应关系是开发人员预先通过大量的测试得到的,具体的测试过程可以是:
在实验室使用红外发生器在暗室对带有红外线传感器的终端进行测试,按照发射出的红外线强度由弱到强的步骤调整红外线发生器。第一次红外线发生器发射出的测试红外线的强度为I1,终端经过红外曝光,光电转换得到的红外线图像数据为M1,当然,I1可以是0,也可以是很小的测试红外线的强度。调 整红外线发生器,在测试红外线强度为I2时,得到红外线图像数据M2,逐渐调节测试红外线强度,得到n组测试红外线强度Ix与红外线强度数据Mx的对应关系。其中,x的取值从1…n。Ix与Mx的对应关系可以参阅表1进行理解:
表1:测试红外线强度与红外线图像数据的对应关系表
测试红外线强度Ix 红外线图像数据Mx
I1 M1
I2 M2
In Mn
测试红外线强度与红外线图像数据的对应关系不限于用上述表1的形式,还可以用其他形式来表达测试红外线强度与红外线图像数据的对应关系,比如可以红外线强度由强到弱得到对应的红外线图像数据。
其中M1…Mn可以是矩阵形式的数据。
经过大量测试得到的测试红外线强度与红外线图像数据的对应关系预置在终端中,这样,在拍摄图像时,就可以利用测试红外线强度与红外线图像数据的对应关系来确定拍摄拍摄时的环境红外线强度I所对应的红外线图像数据。
103、根据初始图像的图像数据,以及I所对应的红外线图像数据,得到修正后的图像数据。
红外线图像数据为影响图像质量的因子,消除初始图像的图像数据中影响图像质量的因子,即可得到修正后的图像数据。
具体可以通过初始图像的图像数据与所述I所对应的红外线图像数据之间的数学运算来实现图像数据的修正。
104、根据修正后的图像数据得到对应的修正后的图像,并输出修正后的图像。
对修正后的图像数据输出到数字信号处理器加工处理,转换成标准的GRB、YUV等格式图像信号,即得到与初始图像对应的修正后的图像,再将修正后的图像输出到显示终端显示。
本发明实施例采用获取所拍摄的初始图像的图像数据,并获取拍摄所述初始图像时的环境红外线强度I;根据预置的测试红外线强度与红外线图像数据 的对应关系,得到所述I所对应的红外线图像数据;根据所述初始图像的图像数据,以及所述I所对应的红外线图像数据,得到修正后的图像数据,消除红外线对拍摄的原始图像带来的影响;根据所述修正后的图像数据得到修正后的图像,并输出所述修正后的图像,将环境红外线强度对拍摄图像质量的影响消除。与现有技术中因红外线影响导致得到的图像亮度不均匀相比,本发明实施例提供的图像处理的方法,可以通过对图像的处理来降低红外线对图像质量的影响,得到亮度均匀的图像。
上面实施例中,根据预置的测试红外线强度与红外线图像数据的对应关系,得到I所对应的红外线图像数据,实际应用中,该对应关系可以是数组或矩阵等类似的形式,具体本文中均不作限定,另外,根据初始图像的图像数据,以及I所对应的红外线图像数据,得到修正后的图像数据,可以通过初始图像的图像数据和I所对应的红外线图像数据计算得到修正后的图像数据,也可以通过其他的实现方式,具体本文中均不作限定。
可选地,在上述图1对应的实施例的基础上,本发明实施例提供的图像处理的方法的第一个可选实施例中,所述对应关系为包含n组测试红外线强度Ix与红外线图像数据Mx的关系集合,所述红外线图像数据Mx为所述测试红外线强度Ix参与成像得到的红外线图像数据,其中,所述x的取值为1,2…n-1,n,所述n是一个大于1的正整数;
所述根据预置的测试红外线强度与红外线图像数据的对应关系,得到所述I所对应的红外线图像数据,可以包括:
从所述对应关系中,确定所述I处于所述Im与Im+1之间,所述m小于或等于所述n,且所述m大于或等于0;
按照预置选择策略,确定与所述Im对应的Mm或者与所述Im+1对应的Mm+1作为所述I所对应的红外线图像数据。
本发明实施例中,可以参阅表1进行理解,从表1中根据红外线强度的大小,可以确定拍摄图像时的环境红外线强度I处于Im与Im+1之间,例如:当m为1时,可以确定I处于I1和I2之间,则可以选择M1或M2作为所述I所对应的红外线图像数据。
可选地,在上述图像处理的方法的第一个可选实施例的基础上,本发明实 施例提供的图像处理的方法的第二个可选实施例中,所述按照预置选择策略,确定与所述Im对应的Mm或者与所述Im+1对应的Mm+1作为所述I所对应的红外线图像数据,可以包括:
按照预置的取下限选择策略,确定与所述Im对应的Mm作为所述I所对应的红外线图像数据。
本发明实施例中,考虑到I处于Im与Im+1之间时,取Mm作为所述I所对应的红外线图像数据,虽然Mm可能会小于I所对应的真实红外线图像数据,但即使残留一点红外线对图像数据的影响,还是会得到一个亮度均匀的图像。
可选地,在上述图像处理的方法的第一个可选实施例的基础上,本发明实施例提供的图像处理的方法的第三个可选实施例中,所述按照预置选择策略,确定与所述Im对应的Mm或者与所述Im+1对应的Mm+1作为所述I所对应的红外线图像数据,可以包括:
按照靠近选择策略,当所述I与所述Im的差值小于或等于所述Im+1与所述I的差值时,确定与所述Im对应的Mm作为所述I所对应的红外线图像数据;
当所述I与所述Im的差值大于所述Im+1与所述I的差值时,确定与所述Im+1对应的Mm+1作为所述I所对应的红外线图像数据。
本发明实施例中,选择与所述I的值相近的Mm或Mm+1作为所述I所对应的红外线图像数据,这样修正后得到的图像效果最接近无红外线影响的图像。
可选地,在上述图像处理的方法的实施例或任一可选实施例的基础上,本发明实施例提供的图像处理的方法的第四个可选实施例中,所述根据所述初始图像的图像数据,以及所述I所对应的红外线图像数据,得到修正后的图像数据,可以包括:
用所述初始图像的图像数据减去所述I所对应的红外线图像数据,得到修正后的图像数据。
本发明实施例中,初始图像的图像数据用Ma来表示,所述I所对应的红外线图像数据用于Mm来表示,修正后的图像数据用Mr来表示,则上述等式关系可以表达为:Mr=Ma-Mm
实际上,Ma、Mm都为矩阵,通常为17*13的矩阵,上述等式为矩阵相减,Mr也为一个矩阵。
可选地,在上述图像处理的方法的实施例或任一可选实施例的基础上,本发明实施例提供的图像处理的方法的第五个可选实施例中,所述根据所述修正后的图像数据得到对应的修正后的图像之后,所述方法还可以包括:
将所述修正后的图像进行白平衡处理,所述白平衡为在不同色温环境下,调节三基色的比例来达到彩色的平衡。
本发明实施例中,对修正后的图像数据输出到数字信号处理器加工处理,转换成标准的GRB、YUV等格式图像信号。
白平衡为在不同色温环境下,调节三基色的比例来达到彩色的平衡,使得图像收敛到相关光源下的RGB修正参数下,达到不偏色的效果,并校正因镜头参数差异而造成的摄像效果差异,将进行白平衡处理过的图像输出到显示终端显示。
下面介绍本发明实施例中的一种图像处理的装置实施例,该装置应用于图像处理领域,请参阅图2,本发明实施例包括:
获取单元301,用于获取所拍摄的初始图像的图像数据,并获取拍摄初始图像时的环境红外线强度I;
确定单元302,用于根据预置的测试红外线强度与红外线图像数据的对应关系,得到获取单元301获取的所述I所对应的红外线图像数据;
计算单元303,用于根据获取单元301获取的初始图像的图像数据,以及所述确定单元302确定的所述I所对应的红外线图像数据,得到修正后的图像数据;
修正图像获得单元304,用于根据所述计算单元303得到的所述修正后的图像数据得到对应的修正后的图像;
输出单元305,用于输出所述修正图像获得单元304获得的修正后的图像。
本发明实施例中,获取单元301获取所拍摄的初始图像的图像数据,并获取拍摄初始图像时的环境红外线强度I;确定单元302根据预置的测试红外线强度与红外线图像数据的对应关系,得到获取单元301获取的所述I所对应的红外线图像数据;计算单元303根据获取单元301获取的初始图像的图像数据,以及所述确定单元302确定的所述I所对应的红外线图像数据,得到修正后的图像数据;修正图像获得单元304根据所述计算单元303得到的所述修正后的 图像数据得到对应的修正后的图像;输出单元305输出所述修正图像获得单元304获得的修正后的图像。与现有技术中因红外线影响导致得到的图像亮度不均匀相比,本发明实施例提供的图像处理的装置,可以通过对图像的处理来降低红外线对图像质量的影响,得到亮度均匀的图像。
可选地,在上述图2对应的实施例的基础上,参阅图3,本发明实施例提供的图像处理的装置的第一个可选实施例中,所述确定单元302包括:
第一确定模块3021,用于在所述对应关系为包含n组测试红外线强度Ix与红外线图像数据Mx的关系集合,所述红外线图像数据Mx为所述测试红外线强度Ix参与成像得到的红外线图像数据,其中,所述x的取值为1,2…n-1,n,所述n是一个大于1的正整数,从所述对应关系中,确定所述I处于所述Im与Im+1之间,所述m为小于所述n的正整数;
第二确定模块3022,用于按照预置选择策略,确定与所述第一确定模块3021确定的所述Im对应的Mm或者与所述Im+1对应的Mm+1作为所述I所对应的红外线图像数据。
可选地,在上述图3对应的实施例的基础上,本发明实施例提供的图像处理的装置的第二个可选实施例中,
所述第二确定模块3022,具体用于按照预置的取下限选择策略,确定与所述Im对应的Mm作为所述I所对应的红外线图像数据。
可选地,在上述图3对应的实施例的基础上,本发明实施例提供的图像处理的装置的第三个可选实施例中,
所述第二确定模块3022,具体用于按照靠近选择策略,当所述I与所述Im的差值小于或等于所述Im+1与所述I的差值时,确定与所述Im对应的Mm作为所述I所对应的红外线图像数据,当所述I与所述Im的差值大于所述Im+1与所述I的差值时,确定与所述Im+1对应的Mm+1作为所述I所对应的红外线图像数据。
可选地,在上述图像处理的装置的实施例、第一、第二或第三可选实施例中,本发明实施例提供的图像处理的装置的第四个可选实施例中,
所述计算单元303,具体用于用所述初始图像的图像数据减去所述I所对应的红外线图像数据,得到修正后的图像数据。
可选地,在上述图像处理的装置的实施例、第一、第二或第三可选实施例中,参阅图4,本发明实施例提供的图像处理的装置的第四个可选实施例中,所述装置30还包括:
处理单元306,用于将所述修正图像获得单元304获得的修正后的图像进行白平衡处理,所述白平衡为在不同色温环境下,调节三基色的比例来达到彩色的平衡。
请参阅图5,本实施例以终端终端为例对本发明进行具体说明。
应该理解的是,图示终端仅仅是以手机为例的移动终端的一个范例,并且终端可以具有比图中所示出的更多的或者更少的部件,可以组合两个或更多的部件,或者可以具有不同的部件配置。图中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
现以终端为一个例子进行具体的说明。图5为本发明提供的用于对图像处理的终端的实施例的结构示意图。如图5所示,该终端包括处理器160、存储器120、RF电路110、电源190、输入单元130、显示装置140、音频电路170以及wifi模块180,输入单元130包括摄像头131和红外线传感器132,这些部件通过一个或多个通信总线或信号线来通信。
值得说明的是,本实施例提供的终端仅仅是移动终端的一个示例,本发明实施例涉及的移动终端可以具有比图5所示出的更多或更少的部件,可以组合两个或更多个部件,或者可以具有不同的部件配置或设置,各个部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件或硬件和软件的组合实现。
下面就本实施例提供的用于对图像处理的终端进行详细的描述。
所述摄像头131用于拍摄初始图像;
所述红外线传感器132用于在所述摄像头拍摄初始图像时,采集环境红外线并得到环境红外线强度I;
所述存储器120用于存储预置的测试红外线强度与红外线图像数据的对应关系;
存储器120:可以为一个或多个磁盘存储器件、闪存器件、或其他易失性 固态存储器件。
RF电路110,主要用于建立终端与无线网络(即网络侧)的通信,实现终端与无线网络的数据接收和发送。例如收发短信息、电子邮件等。具体地,RF电路205接收并发送RF信号,RF信号也称为电磁信号,RF电路205将电信号转换为电磁信号或将电磁信号转换为电信号,并且通过该电磁信号与通信网络以及其他设备进行通信。RF电路110可以包括用于执行这些功能的已知电路,其包括但不限于天线系统、RF收发机、一个或多个放大器、调谐器、一个或多个振荡器、数字信号处理器、CODEC芯片组、用户标识模块(Subscriber Identity Module,SIM)等等。
音频电路170,主要用于该音频数据转换为电信号。
电源190,用于终端中的各部件供电。
处理器160可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器160中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器160可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
可以理解的是,在本发明实施例中,处理器160对图像处理的方式可以如前面实施例中的方式进行。
处理器160用于:
获取所拍摄的初始图像的图像数据,并获取拍摄所述初始图像时的环境红外线强度I;
根据预置的测试红外线强度与红外线图像数据的对应关系,得到所述I所对应的红外线图像数据;
根据所述初始图像的图像数据,以及所述I所对应的红外线图像数据,得到修正后的图像数据;
根据所述修正后的图像数据得到对应的修正后的图像并输出给所述显示装置。
所述显示装置140,用于显示所述修正后的图像。
本发明实施例提供的终端,可以通过对图像的处理来降低红外线对图像质量的影响,得到亮度均匀的图像。
可选地,在所述对应关系为包含n组测试红外线强度Ix与红外线图像数据Mx的关系集合,所述红外线图像数据Mx为所述测试红外线强度Ix参与成像得到的红外线图像数据,其中,所述x的取值为1,2…n-1,n,所述n是一个大于1的正整数;
所述处理器160具体用于:从所述对应关系中,确定所述I处于所述Im与Im+1之间,所述m小于或等于所述n,且所述m大于或等于0;按照预置选择策略,确定与所述Im对应的Mm或者与所述Im+1对应的Mm+1作为所述I所对应的红外线图像数据。
可选地,处理器160具体用于:按照预置的取下限选择策略,确定与所述Im对应的Mm作为所述I所对应的红外线图像数据。
可选地,处理器160具体用于:按照靠近选择策略,当所述I与所述Im的差值小于或等于所述Im+1与所述I的差值时,确定与所述Im对应的Mm作为所述I所对应的红外线图像数据;当所述I与所述Im的差值大于所述Im+1与所述I的差值时,确定与所述Im+1对应的Mm+1作为所述I所对应的红外线图像数据。
可选地,处理器160具体用于:用所述初始图像的图像数据减去所述I所对应的红外线图像数据,得到修正后的图像数据。
可选地,处理器160还用于:将所述修正后的图像进行白平衡处理,所述白平衡为在不同色温环境下,调节三基色的比例来达到彩色的平衡。
在上述实施例中,移动终端包括但不限于终端、个人数字助理(Personal Digital Assistant,PDA)、平板电脑等移动通讯设备。
需要说明的是,本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体或随机存储记忆体等。
以上对本发明所提供的一种图像处理的方法及装置进行了详细介绍,本文中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售 或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (18)

  1. 一种图像处理的方法,其特征在于,包括:
    获取拍摄的初始图像的图像数据,并获取拍摄所述初始图像时的环境红外线强度I;
    根据预置的测试红外线强度与红外线图像数据的对应关系,得到所述I所对应的红外线图像数据;
    根据所述初始图像的图像数据,以及所述I所对应的红外线图像数据,得到修正后的图像数据;
    根据所述修正后的图像数据得到对应的修正后的图像,并输出所述修正后的图像。
  2. 根据权利要求1所述的方法,其特征在于,所述对应关系为包含n组测试红外线强度Ix与红外线图像数据Mx的关系集合,所述红外线图像数据Mx为所述测试红外线强度Ix参与成像得到的红外线图像数据,其中,所述x的取值为1,2…n-1,n,所述n是一个大于1的正整数;
    所述根据预置的测试红外线强度与红外线图像数据的对应关系,得到所述I所对应的红外线图像数据,包括:
    从所述对应关系中,确定所述I处于所述Im与Im+1之间,所述m为小于所述n的正整数;
    按照预置选择策略,确定与所述Im对应的Mm或者与所述Im+1对应的Mm+1作为所述I所对应的红外线图像数据。
  3. 根据权利要求2所述的方法,其特征在于,所述按照预置选择策略,确定与所述Im对应的Mm或者与所述Im+1对应的Mm+1作为所述I所对应的红外线图像数据,包括:
    按照预置的取下限选择策略,确定与所述Im对应的Mm作为所述I所对应的红外线图像数据。
  4. 根据权利要求2所述的方法,其特征在于,所述按照预置选择策略,确定与所述Im对应的Mm或者与所述Im+1对应的Mm+1作为所述I所对应的红外线图像数据,包括:
    按照靠近选择策略,当所述I与所述Im的差值小于或等于所述Im+1与所述 I的差值时,确定与所述Im对应的Mm作为所述I所对应的红外线图像数据,当所述I与所述Im的差值大于所述Im+1与所述I的差值时,确定与所述Im+1对应的Mm+1作为所述I所对应的红外线图像数据。
  5. 根据权利要求1-4任一所述的方法,其特征在于,所述根据所述初始图像的图像数据,以及所述I所对应的红外线图像数据,得到修正后的图像数据,包括:
    用所述初始图像的图像数据减去所述I所对应的红外线图像数据,得到修正后的图像数据。
  6. 根据权利要求1-4任一所述的方法,其特征在于,所述根据所述修正后的图像数据得到对应的修正后的图像之后,所述方法还包括:
    将所述修正后的图像进行白平衡处理,所述白平衡为在不同色温环境下,调节三基色的比例来达到彩色的平衡。
  7. 一种图像处理的装置,其特征在于,包括:
    获取单元,用于获取所拍摄的初始图像的图像数据,并获取拍摄所述初始图像时的环境红外线强度I;
    确定单元,用于根据预置的测试红外线强度与红外线图像数据的对应关系,得到所述获取单元获取的所述I所对应的红外线图像数据;
    计算单元,用于根据获取单元获取的所述初始图像的图像数据,以及所述确定单元得到的所述I所对应的红外线图像数据,得到修正后的图像数据;
    修正图像获得单元,用于根据所述计算单元得到的所述修正后的图像数据得到对应的修正后的图像;
    输出单元,用于输出所述修正图像获得单元获得的修正后的图像。
  8. 根据权利要求7所述的装置,其特征在于,所述确定单元包括:
    第一确定模块,用于在所述对应关系为包含n组测试红外线强度Ix与红外线图像数据Mx的关系集合,所述红外线图像数据Mx为所述测试红外线强度Ix参与成像得到的红外线图像数据,其中,所述x的取值为1,2…n-1,n,所述n是一个大于1的正整数,从所述对应关系中,确定所述I处于所述Im与Im+1之间,所述m为小于所述n的正整数;
    第二确定模块,用于按照预置选择策略,确定与所述第一确定模块确定的 所述Im对应的Mm或者与所述Im+1对应的Mm+1作为所述I所对应的红外线图像数据。
  9. 根据权利要求8所述的装置,其特征在于,
    所述第二确定模块,具体用于按照预置的取下限选择策略,确定与所述Im对应的Mm作为所述I所对应的红外线图像数据。
  10. 根据权利要求8所述的装置,其特征在于,
    所述第二确定模块,具体用于按照靠近选择策略,当所述I与所述Im的差值小于或等于所述Im+1与所述I的差值时,确定与所述Im对应的Mm作为所述I所对应的红外线图像数据,当所述I与所述Im的差值大于所述Im+1与所述I的差值时,确定与所述Im+1对应的Mm+1作为所述I所对应的红外线图像数据。
  11. 根据权利要求7至10任一所述的装置,其特征在于,
    所述计算单元,具体用于用所述初始图像的图像数据减去所述I所对应的红外线图像数据,得到修正后的图像数据。
  12. 根据权利要求7至10任一所述的装置,其特征在于,所述装置还包括:
    处理单元,用于将所述修正图像获得单元获得的修正后的图像进行白平衡处理,所述白平衡为在不同色温环境下,调节三基色的比例来达到彩色的平衡。
  13. 一种终端,其特征在于,包括:摄像头、红外线传感器、处理器、存储器和显示装置;
    所述摄像头用于拍摄初始图像;
    所述红外线传感器用于在所述摄像头拍摄初始图像时,采集环境红外线并得到环境红外线强度I;
    所述存储器用于存储预置的测试红外线强度与红外线图像数据的对应关系;
    所述处理器,用于:
    获取拍摄的初始图像的图像数据,并获取拍摄所述初始图像时的环境红外线强度I;
    根据预置的测试红外线强度与红外线图像数据的对应关系,得到所述I所对应的红外线图像数据;
    根据所述初始图像的图像数据,以及所述I所对应的红外线图像数据,得到修正后的图像数据;
    根据所述修正后的图像数据得到对应的修正后的图像并输出给所述显示装置;
    所述显示装置,用于显示所述修正后的图像。
  14. 根据权利要求13所述的终端,其特征在于,
    所述对应关系为包含n组测试红外线强度Ix与红外线图像数据Mx的关系集合,所述红外线图像数据Mx为所述测试红外线强度Ix参与成像得到的红外线图像数据,其中,所述x的取值为1,2…n-1,n,所述n是一个大于1的正整数,
    所述处理器具体用于:从所述对应关系中,确定所述I处于所述Im与Im+1之间,所述m为小于所述n的正整数,按照预置选择策略,确定与所述Im对应的Mm或者与所述Im+1对应的Mm+1作为所述I所对应的红外线图像数据。
  15. 根据权利要求14所述的终端,其特征在于,
    所述处理器具体用于:按照预置的取下限选择策略,确定与所述Im对应的Mm作为所述I所对应的红外线图像数据。
  16. 根据权利要求14所述的设备,其特征在于,
    所述处理器具体用于:按照靠近选择策略,当所述I与所述Im的差值小于或等于所述Im+1与所述I的差值时,确定与所述Im对应的Mm作为所述I所对应的红外线图像数据;当所述I与所述Im的差值大于所述Im+1与所述I的差值时,确定与所述Im+1对应的Mm+1作为所述I所对应的红外线图像数据。
  17. 根据权利要求13-16任一所述的终端,其特征在于,
    所述处理器具体用于:用所述初始图像的图像数据减去所述I所对应的红外线图像数据,得到修正后的图像数据。
  18. 根据权利要求13-16任一所述的终端,其特征在于,
    所述处理器还用于:根据所述修正后的图像数据得到对应的修正后的图像之后,将所述修正后的图像进行白平衡处理,所述白平衡为在不同色温环境下,调节三基色的比例来达到彩色的平衡。
PCT/CN2014/086624 2014-09-16 2014-09-16 一种图像处理的方法及装置 WO2016041144A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2014/086624 WO2016041144A1 (zh) 2014-09-16 2014-09-16 一种图像处理的方法及装置
JP2017533664A JP6429176B2 (ja) 2014-09-16 2014-09-16 画像処理方法および装置
EP14902211.3A EP3185549B1 (en) 2014-09-16 2014-09-16 Image processing method and device
KR1020177008320A KR20170048454A (ko) 2014-09-16 2014-09-16 이미지 프로세싱 방법 및 장치
US15/511,583 US10560644B2 (en) 2014-09-16 2014-09-16 Image processing method and apparatus
CN201480031329.2A CN105612740B (zh) 2014-09-16 2014-09-16 一种图像处理的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/086624 WO2016041144A1 (zh) 2014-09-16 2014-09-16 一种图像处理的方法及装置

Publications (1)

Publication Number Publication Date
WO2016041144A1 true WO2016041144A1 (zh) 2016-03-24

Family

ID=55532433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086624 WO2016041144A1 (zh) 2014-09-16 2014-09-16 一种图像处理的方法及装置

Country Status (6)

Country Link
US (1) US10560644B2 (zh)
EP (1) EP3185549B1 (zh)
JP (1) JP6429176B2 (zh)
KR (1) KR20170048454A (zh)
CN (1) CN105612740B (zh)
WO (1) WO2016041144A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107465864A (zh) * 2016-06-03 2017-12-12 宏碁股份有限公司 摄像装置及影像处理方法
US10536645B2 (en) 2016-05-25 2020-01-14 Acer Incorporated Image processing method and imaging device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108416333B (zh) * 2018-03-30 2020-01-17 百度在线网络技术(北京)有限公司 图像处理的方法和装置
US10892287B2 (en) 2019-01-18 2021-01-12 Cista System Corp. Image sensor with image receiver and automatic image switching

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1662943A (zh) * 2002-04-16 2005-08-31 英特尔公司 多媒体设备的色彩调适
CN1678082A (zh) * 2004-02-10 2005-10-05 卡西欧计算机株式会社 摄像装置、白平衡控方法以及白平衡控制程序
JP2012003201A (ja) * 2010-06-21 2012-01-05 Sharp Corp 映像表示装置
CN102665083A (zh) * 2005-07-21 2012-09-12 索尼株式会社 物理信息获取方法、物理信息获取装置和半导体器件
CN103959224A (zh) * 2011-11-21 2014-07-30 英特尔公司 基于环境条件修正色度
CN104113743A (zh) * 2013-04-18 2014-10-22 深圳中兴力维技术有限公司 低照度下彩色摄像机自动白平衡处理方法及装置
CN104113744A (zh) * 2013-04-18 2014-10-22 深圳中兴力维技术有限公司 全天候彩色摄像机白平衡处理方法及装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6211521B1 (en) 1998-03-13 2001-04-03 Intel Corporation Infrared pixel sensor and infrared signal correction
TW423252B (en) * 1998-07-30 2001-02-21 Intel Corp Infrared correction system
US8300042B2 (en) * 2001-06-05 2012-10-30 Microsoft Corporation Interactive video display system using strobed light
US7435962B2 (en) 2005-05-18 2008-10-14 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Imaging device and method for producing an infrared filtered digital image
US7491935B2 (en) * 2006-07-05 2009-02-17 Honeywell International Inc. Thermally-directed optical processing
JP4312222B2 (ja) * 2006-10-12 2009-08-12 三洋電機株式会社 撮像装置
US7773136B2 (en) 2006-08-28 2010-08-10 Sanyo Electric Co., Ltd. Image pickup apparatus and image pickup method for equalizing infrared components in each color component signal
US7737394B2 (en) * 2006-08-31 2010-06-15 Micron Technology, Inc. Ambient infrared detection in solid state sensors
JP4346634B2 (ja) * 2006-10-16 2009-10-21 三洋電機株式会社 目標物検出装置
CN100448280C (zh) * 2006-12-28 2008-12-31 上海广电(集团)有限公司中央研究院 一种环境光自适应图像显示方法
JP4316629B2 (ja) * 2007-03-29 2009-08-19 株式会社東芝 画像処理システム、画像取得方法及びプログラム
US7869019B2 (en) 2007-04-06 2011-01-11 Sony Corporation Device, method, and program for estimating light source
JP5046026B2 (ja) * 2007-04-06 2012-10-10 ソニー株式会社 光源推定装置および方法、並びにプログラム
CN102379125A (zh) * 2009-04-07 2012-03-14 柯尼卡美能达精密光学株式会社 图像输入装置
JP5432075B2 (ja) * 2010-07-06 2014-03-05 パナソニック株式会社 撮像装置および色温度算出方法
KR101806289B1 (ko) 2011-11-14 2017-12-07 삼성전자주식회사 촬상 장치
US9143704B2 (en) 2012-01-20 2015-09-22 Htc Corporation Image capturing device and method thereof
CN102722864B (zh) 2012-05-18 2014-11-26 清华大学 一种图像增强方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1662943A (zh) * 2002-04-16 2005-08-31 英特尔公司 多媒体设备的色彩调适
CN1678082A (zh) * 2004-02-10 2005-10-05 卡西欧计算机株式会社 摄像装置、白平衡控方法以及白平衡控制程序
CN102665083A (zh) * 2005-07-21 2012-09-12 索尼株式会社 物理信息获取方法、物理信息获取装置和半导体器件
JP2012003201A (ja) * 2010-06-21 2012-01-05 Sharp Corp 映像表示装置
CN103959224A (zh) * 2011-11-21 2014-07-30 英特尔公司 基于环境条件修正色度
CN104113743A (zh) * 2013-04-18 2014-10-22 深圳中兴力维技术有限公司 低照度下彩色摄像机自动白平衡处理方法及装置
CN104113744A (zh) * 2013-04-18 2014-10-22 深圳中兴力维技术有限公司 全天候彩色摄像机白平衡处理方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3185549A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10536645B2 (en) 2016-05-25 2020-01-14 Acer Incorporated Image processing method and imaging device
US10924683B2 (en) 2016-05-25 2021-02-16 Acer Incorporated Image processing method and imaging device
CN107465864A (zh) * 2016-06-03 2017-12-12 宏碁股份有限公司 摄像装置及影像处理方法

Also Published As

Publication number Publication date
US20170289466A1 (en) 2017-10-05
EP3185549A4 (en) 2017-07-12
CN105612740B (zh) 2017-12-15
JP6429176B2 (ja) 2018-11-28
JP2017528096A (ja) 2017-09-21
CN105612740A (zh) 2016-05-25
EP3185549B1 (en) 2020-11-11
EP3185549A1 (en) 2017-06-28
US10560644B2 (en) 2020-02-11
KR20170048454A (ko) 2017-05-08

Similar Documents

Publication Publication Date Title
US11849224B2 (en) Global tone mapping
JP6258555B2 (ja) 色温度合わせのためのマルチledカメラフラッシュ
US9686537B2 (en) Noise models for image processing
CN111586300B (zh) 颜色校正方法、装置及可读存储介质
EP3888345B1 (en) Method for generating image data for machine learning based imaging algorithms
CN107707789B (zh) 提供场景彩色高分辨率图像的方法、计算设备和存储介质
JP2018503325A (ja) 画素データに対して演算を実行するためのシステムおよび方法
US9961236B2 (en) 3D color mapping and tuning in an image processing pipeline
JP2016006954A (ja) 色補正パラメータ算出方法、色補正パラメータ算出装置および画像出力システム
WO2016041144A1 (zh) 一种图像处理的方法及装置
US20200228770A1 (en) Lens rolloff assisted auto white balance
JP2017028633A (ja) 映像配信端末、プログラム、及び、映像配信方法
CN104221364A (zh) 成像装置和图像处理方法
KR20140133272A (ko) 영상 처리 장치 및 영상 처리 방법
CN110807735A (zh) 图像处理方法、装置、终端设备及计算机可读存储介质
JP2014220815A (ja) 画像色調整方法及びその電子装置
KR20170074771A (ko) 라이트필드 카메라들에 의해 캡처된 이미지 상에 야기된 비네팅 효과를 정정하는 방법 및 장치
US9854218B2 (en) Electronic system and image processing method
JP2017073605A (ja) 画像処理装置、画像処理方法、およびプログラム
US20200228769A1 (en) Lens rolloff assisted auto white balance
WO2023151210A1 (zh) 图像处理方法、电子设备及计算机可读存储介质
US20150365576A1 (en) Image capturing device and method for shading compensation thereof
JP6209950B2 (ja) 色再現特性作成装置、色再現特性作成システム、プログラムおよび色再現特性作成方法
Liu et al. Preserving image color appearance on non-white projection surfaces
JP2015126416A (ja) 画像処理装置、制御方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902211

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017533664

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15511583

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014902211

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014902211

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177008320

Country of ref document: KR

Kind code of ref document: A