WO2016039588A1 - Hwr cryomodule of heavy ion accelerator - Google Patents

Hwr cryomodule of heavy ion accelerator Download PDF

Info

Publication number
WO2016039588A1
WO2016039588A1 PCT/KR2015/009590 KR2015009590W WO2016039588A1 WO 2016039588 A1 WO2016039588 A1 WO 2016039588A1 KR 2015009590 W KR2015009590 W KR 2015009590W WO 2016039588 A1 WO2016039588 A1 WO 2016039588A1
Authority
WO
WIPO (PCT)
Prior art keywords
heavy ion
ion accelerator
vacuum
module
hwr
Prior art date
Application number
PCT/KR2015/009590
Other languages
French (fr)
Korean (ko)
Other versions
WO2016039588A4 (en
Inventor
김우강
김영권
김형진
이민기
전동오
조용우
Original Assignee
기초과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 기초과학연구원 filed Critical 기초과학연구원
Publication of WO2016039588A1 publication Critical patent/WO2016039588A1/en
Publication of WO2016039588A4 publication Critical patent/WO2016039588A4/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H9/00Linear accelerators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H9/00Linear accelerators
    • H05H9/04Standing-wave linear accelerators

Definitions

  • the present invention relates to a heavy ion accelerator, and more particularly to an HWR cryostat for a heavy ion accelerator.
  • An accelerator is a type of device that accelerates protons and uranium beams.
  • the accelerator is a device that accelerates charged particles such as electrons, protons, and ions into a high energy state (for example, a high energy state of several million electron volts to several trillion electron volts). Accelerated synchrotrons can be largely distinguished.
  • the high frequency accelerator can be classified into a linear accelerator, a cyclotron, and a high frequency synchrotron according to the acceleration method.
  • the size of the high frequency accelerator varies according to the use, and there are high frequency accelerators for obtaining large energy, ranging from large accelerators for atomic nucleus and small particle physics research to small size high frequency synchrotrons for cancer treatment that supply ion beams at relatively low energy levels.
  • high frequency acceleration cavities have been used to accelerate charged particles.
  • This high frequency accelerated cavity generates a high frequency electric field of several MHz to several tens of MHz due to the resonance vibration of the high frequency cavity in synchronization with the movement of the charged particles.
  • Heavy ion accelerators as a device for accelerating ions of atoms other than protons and helium which are light particles.
  • Heavy ion accelerators have the same form as light particles or electrons, but ions require a strong electromagnetic field because of their high mass.
  • the cryomodule that constitutes the heavy ion accelerator consists of various accelerator tubes (QWR, HWR1, HWR2, SSR1, SSR2), and these accelerator tubes need to be maintained at high vacuum and cryogenic temperature.
  • the present invention provides an HWR low temperature maintenance device for a heavy ion accelerator, which facilitates mounting and disassembly of each module to improve the performance of the heavy ion accelerator tube, and improves the performance of the accelerator tube and improves the beam speed of the accelerator tube. to provide.
  • the HWR cryostat of the heavy ion accelerator includes a plurality of heavy ion accelerator tubes including an inner tube maintaining a vacuum state and an outer tube into which a fluid for low temperature performance test is injected; A vacuum module that accommodates and protects the plurality of heavy ion accelerator tubes and forms an interior in a vacuum state; A pipe module for providing a performance test fluid to each of the heavy ion accelerator tubes; And a support module installed inside the vacuum module to support the respective heavy ion accelerator tubes.
  • the vacuum module includes a vacuum chamber in which a vacuum port is formed at one side, and a vacuum pump connected to the vacuum port to form a vacuum in the vacuum chamber.
  • the pipe module is a pipeline for supplying a performance test fluid to the heavy ion accelerator tube or discharge the vaporized performance test fluid, installed in the pipeline to supplement the input or discharge of the performance test fluid It includes a reservoir.
  • the reservoir is formed in the reservoir body, the reservoir body, the inlet port receiving the performance test fluid, the outlet port formed in the reservoir body so as to be spaced apart from the inlet port, and discharged helium, the reservoir body It includes a baffle that is installed at the boundary between the inlet port and the outlet port in the interior.
  • the support module includes a support body surrounding the heavy ion accelerator tube, and a support bar connecting the support body and the vacuum module.
  • the support module is characterized in that it further comprises a length adjusting member coupled to the support bar to adjust the length of the support bar.
  • the material of the support bar is characterized in that the G10.
  • the performance test fluid is characterized in that the liquid helium.
  • the magnetic shield further includes a magnetic shield installed to surround the heavy ion accelerator tube and the pipe module to shield electromagnetic waves.
  • the material of the magnetic shield is characterized in that the mu metal.
  • it is installed in the vacuum chamber, characterized in that it further comprises a thermal shield for activating the low-temperature state inside the vacuum chamber by circulating the refrigerant in the vacuum chamber.
  • the material of the thermal shield is characterized in that the copper.
  • the present invention it is possible to stably accelerate the ions of heavy ions, as well as light ions through a plurality of heavy ion accelerator tubes, and to maintain the vacuum and cryogenic temperatures to effectively accelerate the heavy ion beams, thereby providing beam performance. Can increase the efficiency.
  • FIG. 1 is a perspective view showing the appearance of the HWR cryostat of the heavy ion accelerator according to the present invention.
  • Figure 2 is a perspective view showing the inside of the HWR cryostat of the heavy ion accelerator according to the present invention.
  • Figure 3 is a perspective view showing a vacuum module applied to the present invention.
  • Figure 4 is a perspective view showing a magnetic shield applied to the present invention.
  • FIG. 5 is a perspective view showing a thermal shield applied to the present invention.
  • Figure 6 is a perspective view showing a pipe module applied to the present invention.
  • FIG. 7 is a partial cutaway view showing a reservoir of a pipe module applied to the present invention.
  • FIG. 8 is a perspective view showing a support module applied to the present invention.
  • the HWR cryostat of the heavy ion accelerator according to the present invention includes at least two heavy ion accelerator tubes 100, a vacuum module 200, a pipe module 300, and a support module (support module) ( 400).
  • the cryostat includes a plurality of heavy ion accelerator tubes 100 and is configured to test the performance of the heavy ion accelerator tube 100 by receiving liquid helium (He) in each of the heavy ion accelerator tubes 100.
  • He liquid helium
  • two heavy ion accelerator tubes 100 are vertically spaced apart from each other at predetermined intervals in the vacuum module 200.
  • Each heavy ion accelerator tube 100 has a substantially cylindrical shape, and receives liquid helium from the pipe module 300 to perform a performance test as the heavy ion accelerator tube 100.
  • Heavy ion accelerator tube 100 is not shown but consists of a double tube of inner tube and outer tube.
  • the inner tube maintains a vacuum state for efficient beam acceleration of the heavy ion accelerator tube 100, and liquid helium is injected between the outer tube and the inner tube to maintain the low temperature of the heavy ion accelerator tube 100. Therefore, a vacuum line (not shown) of a vacuum pump to be described later is connected to the inner tube, and the pipe line 112 of the pipe module is mechanically connected to the upper end and the lower end between the outer tube and the inner tube, respectively, to receive or discharge helium. Done.
  • the beam pipe 110 may be penetrated inside the heavy ion accelerator tube 100 to serve as a passage for accelerating the heavy ion beam.
  • the vacuum module 200 forms a vacuum state for beam acceleration, and includes a vacuum chamber 210 and a vacuum pump 220.
  • the vacuum chamber 210 serves to protect the heavy ion accelerator tube 100 and the pipe module 300 connected to the heavy ion accelerator tube 100 from inside to protect it from the external environment. At least one vacuum port is formed on one side (bottom surface in this embodiment) of the vacuum chamber 210 to be connected to the vacuum pump 220.
  • the vacuum chamber 210 may be made of stainless steel (for example, STS316L) having excellent strength and corrosion resistance.
  • the vacuum chamber 210 is formed in a substantially hexahedron, but this is not only limited to the shape of the design for the ease of storage of the heavy ion accelerator tube 100 and other modules.
  • One side of the vacuum chamber 210 is provided with a helium port 211 provided with liquid helium and a beam port 212 for irradiating the accelerated beam.
  • the vacuum pump 220 is disposed on one side of the vacuum chamber 210 is connected to the vacuum port through the vacuum line, the inside of the heavy ion accelerator tube 100 to promote the acceleration of the heavy ion beam in the heavy ion accelerator tube 100 And the inside of the vacuum chamber 210 is formed in a vacuum state.
  • a plurality of vacuum pumps 220 may be provided and connected to the vacuum chamber 210 and the heavy ion accelerator tubes 100, respectively.
  • the pipe module 112 supplies a performance test fluid, such as liquid helium (He), to the heavy ion accelerator tube 100, and includes a pipeline 310 and a reservoir 320 and a 330. ) May be included.
  • a performance test fluid such as liquid helium (He)
  • He liquid helium
  • the pipeline 310 connects the helium tank (not shown) with the heavy ion accelerator tube, and supplies liquid helium from the helium tank to the heavy ion accelerator tube, or helium tank vaporized in the heavy ion accelerator tube by the heat generated during the process It serves to return to the side.
  • the reservoirs 320 and 330 are mounted at one end of the pipeline 310 to serve as an auxiliary helium tank. For example, when helium supplied to the heavy ion accelerator tube or discharged from the heavy ion accelerator tube does not reach the set value, the reservoir storing a predetermined amount of helium supplements and supplies or discharges the helium in the reservoir.
  • the reservoir may be divided into a main reservoir 320 and a sub reservoir 330.
  • the main reservoir 320 stores helium at the set temperature required for the process
  • the sub reservoir 330 stores helium that is out of the set temperature. Therefore, a heat exchanger 340 may be interposed between the main reservoir 320 and the sub reservoir 330 to heat exchange the helium temperature according to the set temperature.
  • the main reservoir 320 includes a reservoir body 321 having a substantially cylindrical shape with both ends closed, and the reservoir body 321 has an inlet port 322 and vaporization supplied with helium liquid from a helium tank. Outlet ports 323 for discharging the helium to the helium tank side are formed spaced apart from each other at a predetermined interval.
  • the reservoir body 321 has a plurality of baffles at the boundary between the inlet port and the outlet port for the purpose of discharging the helium vaporized during cooling down and maintaining the liquid helium flowing in a constant amount.
  • 324 may be formed.
  • One side of the baffle 324 of the plurality of baffles may be provided with a level gauge for detecting the amount of helium passing through the reservoir body 321.
  • the baffle 324 is not formed to completely close the inside of the reservoir body 321, and is formed to have a diameter that is slightly smaller than the inner diameter of the reservoir body 321 so that a portion thereof communicates with the baffle 324.
  • sub reservoir is also similar to the configuration of the main reservoir, detailed description thereof will be omitted.
  • the support module 400 is installed to contact the heavy ion accelerator tube 100, and stabilizes the arrangement and fixation of the heavy ion accelerator tube 100 to support the heavy ion accelerator tube.
  • the support body 410 may include a support bar 420 supporting the support body 410.
  • the support body 410 has a substantially rectangular frame shape to surround the heavy ion accelerator tube.
  • the support body is partitioned into a number corresponding to the number of heavy ion accelerator tubes so that a plurality of heavy ion accelerator tubes are respectively inserted.
  • Support bar 420 is provided with a plurality, each end is connected to several places of the support body and the other end is connected to several places of the vacuum chamber 210 to secure the support body 410, the support body 410 It stably fixes the heavy ion accelerator tube inside.
  • the alignment state of the heavy ion accelerator tube may deviate from the set position, and thus the position of the beam port may be shifted.
  • 420 is preferably made of a material that minimizes condensation at low temperatures.
  • the support bar may be formed of a material of G10 or Invar.
  • the support bar 420 is introduced into the vacuum chamber 210 in a state where the length is basically adjusted at room temperature outside the vacuum chamber 210. Since the inside of the vacuum chamber 210 maintains a cryogenic temperature, a predetermined condensation may occur. . Therefore, the length adjusting member 430 may be mounted at one end of each support bar so that the length of the support bar 420 can be adjusted even in the vacuum chamber 210.
  • the heavy ion accelerator tube 100 can be easily disassembled and assembled individually, so that the performance test can be performed stably and efficiently.
  • the magnetic shield 500 may be formed of, for example, a mu-matal of an alloy of 75% Ni, 20% Fe, and 5% Cu.
  • the magnetic shield 500 Since the magnetic shield 500 is mounted on the inner wall of the vacuum chamber 210, the magnetic shield 500 is formed similarly to the internal shape of the vacuum chamber 210.
  • a first helium port through hole 510 is formed at an upper end of one side of the magnetic shield 500 to correspond to the helium port 211 of the vacuum chamber 210, and a beam port 212 of the vacuum chamber 210 is formed at the front lower end of the magnetic shield 500. ),
  • the first beam port through hole 520 is formed.
  • the cryostat of the present invention is installed inside the vacuum chamber 210, preferably inside the magnetic shield 500, and circulates a refrigerant to circulate inside the vacuum chamber 210.
  • the thermal shield 600 may be further included to activate a low temperature state.
  • the thermal shield 600 may be made of copper (Cu) having high thermal conductivity, and gaseous nitrogen (N) may be used as the refrigerant.
  • the thermal shield 600 is mounted on the inner wall of the vacuum chamber 210 similarly to the magnetic shield 500, the thermal shield 600 is formed similarly to the internal shape of the vacuum chamber 210. Accordingly, a second helium port through hole 610 is formed at an upper end of one side of the thermal shield 600 to correspond to the helium port 211 of the vacuum chamber 210, and a beam port of the vacuum chamber 210 is formed at the lower end of the front surface. The second beam port through hole 620 is formed to correspond to 212.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)

Abstract

An HWR cryomodule of a heavy ion accelerator is disclosed. The present invention comprises: a plurality of heavy ion accelerating tubes comprising an inner tube maintaining a vacuum state and an outer tube into which a performance test fluid of a low temperature is injected; a vacuum module for accommodating and protecting the plurality of heavy ion accelerating tubes and forming the inside as a vacuum state; a pipe module for providing the performance test fluid to each of the heavy ion accelerating tubes; and a support module provided inside the vacuum module to support each of the heavy ion accelerating tubes.

Description

중이온 가속기의 HWR 저온유지장치HWR cryostat of heavy ion accelerator
본 발명은 중이온 가속기에 관한 것으로, 더욱 상세하게는 중이온 가속기의 HWR 저온유지장치에 관한 것이다.The present invention relates to a heavy ion accelerator, and more particularly to an HWR cryostat for a heavy ion accelerator.
가속기는 양성자와 우라늄 빔을 가속시키는 장치의 일종이다. 즉 가속기는 전자, 양자 및 이온 등의 하전입자를 고에너지 상태(예를 들면, 수백만 전자볼트에서 수조 전자볼트 정도의 고에너지 상태)로 가속하는 장치로, 가속원리에 따라 고주파 가속기와 양자용 유도 가속 싱크로트론으로 크게 구별할 수 있다.An accelerator is a type of device that accelerates protons and uranium beams. In other words, the accelerator is a device that accelerates charged particles such as electrons, protons, and ions into a high energy state (for example, a high energy state of several million electron volts to several trillion electron volts). Accelerated synchrotrons can be largely distinguished.
고주파 가속기는 다시 가속방법에 따라 선형가속기, 사이클로트론, 고주파 싱크로트론 등으로 구분할 수 있다. 또한, 고주파 가속기의 크기도 용도에 따라 다양한 바, 큰 에너지를 얻는 고주파 가속기로서 원자핵·소립자 물리학 연구용의 대형가속기로부터 최근에는 비교적 저에너지 레벨의 이온빔을 공급하는 암치료 전용의 소형 고주파 싱크로트론까지 있다.The high frequency accelerator can be classified into a linear accelerator, a cyclotron, and a high frequency synchrotron according to the acceleration method. In addition, the size of the high frequency accelerator varies according to the use, and there are high frequency accelerators for obtaining large energy, ranging from large accelerators for atomic nucleus and small particle physics research to small size high frequency synchrotrons for cancer treatment that supply ion beams at relatively low energy levels.
이와 같은 고주파 가속기에서는 하전입자의 가속을 위하여 고주파 가속 공동을 사용해 왔다. 이 고주파 가속 공동은 하전입자의 주행에 동기하여 수 MHz∼수십MHz의 고주파 전장을 고주파 공동의 공명진동에 의한 여진으로 발생시킨다.In such high frequency accelerators, high frequency acceleration cavities have been used to accelerate charged particles. This high frequency accelerated cavity generates a high frequency electric field of several MHz to several tens of MHz due to the resonance vibration of the high frequency cavity in synchronization with the movement of the charged particles.
한편, 이와 같은 가속기와 관련하여 경(輕) 입자인 양성자나 헬륨을 제외한 원자의 이온을 가속시키는 장치로서 중이온 가속기가 있다. 중이온 가속기의 형식은 경입자나 전자의 경우와 같지만, 이온은 질량이 크기 때문에 강력한 전자기장이 필요하다.On the other hand, with respect to such an accelerator, there is a heavy ion accelerator as a device for accelerating ions of atoms other than protons and helium which are light particles. Heavy ion accelerators have the same form as light particles or electrons, but ions require a strong electromagnetic field because of their high mass.
중이온 가속기를 구성하는 저온유지장치(cryomodule)는 다양한 가속관 (QWR, HWR1, HWR2, SSR1, SSR2)으로 이루어져 있으며, 이들 가속관들을 고진공 및 극저온을 유지할 필요가 있다.The cryomodule that constitutes the heavy ion accelerator consists of various accelerator tubes (QWR, HWR1, HWR2, SSR1, SSR2), and these accelerator tubes need to be maintained at high vacuum and cryogenic temperature.
본 발명은 중이온 가속관의 성능을 향상시키기 위해서 각 모듈들의 장착 및 분해를 용이하게 하여 가속관의 성능을 향상시키고, 가속관의 빔의 속도를 향상시킬 수 있도록 한 중이온 가속기의 HWR 저온유지장치를 제공한다.The present invention provides an HWR low temperature maintenance device for a heavy ion accelerator, which facilitates mounting and disassembly of each module to improve the performance of the heavy ion accelerator tube, and improves the performance of the accelerator tube and improves the beam speed of the accelerator tube. to provide.
일 실시예에 따른 중이온 가속기의 HWR 저온유지장치는, 진공 상태를 유지하는 내부관, 저온의 성능 테스트용 유체가 주입되는 외부관을 포함하는 복수의 중이온 가속관; 상기 복수의 중이온 가속관을 수납하여 보호하고, 내부를 진공 상태로 형성하는 진공 모듈; 상기 각각의 중이온 가속관에 성능 테스트용 유체를 제공하는 파이프 모듈; 및 상기 각각의 중이온 가속관을 지지하도록 상기 진공 모듈 내부에 설치되는 서포트 모듈;을 포함한다.The HWR cryostat of the heavy ion accelerator according to an embodiment includes a plurality of heavy ion accelerator tubes including an inner tube maintaining a vacuum state and an outer tube into which a fluid for low temperature performance test is injected; A vacuum module that accommodates and protects the plurality of heavy ion accelerator tubes and forms an interior in a vacuum state; A pipe module for providing a performance test fluid to each of the heavy ion accelerator tubes; And a support module installed inside the vacuum module to support the respective heavy ion accelerator tubes.
일 실시예에 따르면, 상기 진공 모듈은 일측에 진공 포트가 형성된 진공 챔버, 상기 진공 포트에 연결되어 진공 챔버 내부를 진공 상태로 형성해 주는 진공 펌프를 포함한다.According to one embodiment, the vacuum module includes a vacuum chamber in which a vacuum port is formed at one side, and a vacuum pump connected to the vacuum port to form a vacuum in the vacuum chamber.
일 실시예에 따르면, 상기 파이프 모듈은 상기 중이온 가속관으로 성능 테스트용 유체를 공급하거나 기화된 성능 테스트용 유체를 배출하는 파이프 라인, 상기 파이프 라인에 설치되어 성능 테스트용 유체의 투입 또는 배출을 보충해 주는 리저버(reservoir)를 포함한다.According to one embodiment, the pipe module is a pipeline for supplying a performance test fluid to the heavy ion accelerator tube or discharge the vaporized performance test fluid, installed in the pipeline to supplement the input or discharge of the performance test fluid It includes a reservoir.
일 실시예에 따르면, 상기 리저버는 리저버 몸체, 리저버 몸체에 형성되어 성능 테스트용 유체를 공급받는 인렛포트, 상기 인렛포트와 이격되도록 리저버 몸체에 형성되어 기화된 헬륨을 배출하는 아웃렛포트, 상기 리저버 몸체의 내부에서 인렛포트와 아웃렛포트의 경계 부분에 설치되는 배플을 포함한다.According to one embodiment, the reservoir is formed in the reservoir body, the reservoir body, the inlet port receiving the performance test fluid, the outlet port formed in the reservoir body so as to be spaced apart from the inlet port, and discharged helium, the reservoir body It includes a baffle that is installed at the boundary between the inlet port and the outlet port in the interior.
일 실시예에 따르면, 상기 서포트 모듈은 중이온 가속관을 감싸는 서포트 몸체, 상기 서포트 몸체와 진공 모듈을 연결해 주는 서포트 바를 포함한다.According to one embodiment, the support module includes a support body surrounding the heavy ion accelerator tube, and a support bar connecting the support body and the vacuum module.
일 실시예에 따르면, 상기 서포트 모듈은 서포트 바에 결합되어 서포트 바의 길이를 조절하는 길이조절부재를 더 포함하는 것을 특징으로 한다.According to one embodiment, the support module is characterized in that it further comprises a length adjusting member coupled to the support bar to adjust the length of the support bar.
일 실시예에 따르면, 상기 서포트 바의 재질은 G10인 것을 특징으로 한다.According to one embodiment, the material of the support bar is characterized in that the G10.
일 실시예에 따르면, 상기 성능 테스트용 유체는 액체 헬륨인 것을 특징으로 한다.According to one embodiment, the performance test fluid is characterized in that the liquid helium.
일 실시예에 따르면, 상기 중이온 가속관 및 파이프모듈을 감싸도록 설치되어 전자파를 차폐하는 마그네틱 쉴드를 더 포함한다.According to an embodiment, the magnetic shield further includes a magnetic shield installed to surround the heavy ion accelerator tube and the pipe module to shield electromagnetic waves.
일 실시예에 따르면, 상기 마그네틱 쉴드의 재질은 뮤 메탈인 것을 특징으로 한다.According to one embodiment, the material of the magnetic shield is characterized in that the mu metal.
일 실시예에 따르면, 상기 진공 챔버의 내부에 설치되며, 진공 챔버 내부에 냉매를 순환시켜 진공 챔버 내부의 저온 상태를 활성화하기 위한 써멀 쉴드를 더 포함하는 것을 특징으로 한다.According to one embodiment, it is installed in the vacuum chamber, characterized in that it further comprises a thermal shield for activating the low-temperature state inside the vacuum chamber by circulating the refrigerant in the vacuum chamber.
일 실시예에 따르면, 상기 써멀 쉴드의 재질은 구리인 것을 특징으로 한다.According to one embodiment, the material of the thermal shield is characterized in that the copper.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 첨부 도면들에 포함되어 있다.Specific details of other embodiments are included in the detailed description and the accompanying drawings.
본 발명의 이점 및/또는 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예를 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며, 본 발명의 기술 분야에 속하는 통상의 기술자에게 본 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.Advantages and / or features of the present invention and methods for achieving them will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various forms, and only the present embodiments are intended to complete the disclosure of the present invention and to those skilled in the art. It is provided to inform the full scope of the invention, which is to be defined only by the scope of the claims.
명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭하며, 발명을 구성하는 각 구성 요소의 크기, 위치, 결합 관계 등은 명세서의 명확성을 위하여 과장되어 기술되어 있을 수 있음을 알아야 한다. 또한, 본 발명을 설명함에 있어 관련된 공지 기술 등이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그에 관한 자세한 설명은 생략될 수도 있다.Throughout the specification, the same reference numerals refer to the same components, it should be understood that the size, position, coupling relationship, etc. of each component constituting the invention may be exaggerated for clarity of the specification. In addition, in the following description of the present invention, if it is determined that related related art and the like may obscure the gist of the present invention, detailed description thereof may be omitted.
본 발명에 따르면, 복수의 중이온 가속관을 통해서 가벼운 이온인 양성자뿐만 아니라 중이온인 우라늄의 가속을 안정적으로 할 수 있고, 진공 및 극저온을 유지할 수 있도록 제작하여 중이온 빔을 효과적으로 가속시킬 수 있도록 하여 빔 성능의 효율성을 높일 수 있다.According to the present invention, it is possible to stably accelerate the ions of heavy ions, as well as light ions through a plurality of heavy ion accelerator tubes, and to maintain the vacuum and cryogenic temperatures to effectively accelerate the heavy ion beams, thereby providing beam performance. Can increase the efficiency.
도 1은 본 발명에 의한 중이온 가속기의 HWR 저온유지장치의 외관을 나타낸 사시도.1 is a perspective view showing the appearance of the HWR cryostat of the heavy ion accelerator according to the present invention.
도 2는 본 발명에 의한 중이온 가속기의 HWR 저온유지장치의 내부를 나타낸 사시도.Figure 2 is a perspective view showing the inside of the HWR cryostat of the heavy ion accelerator according to the present invention.
도 3은 본 발명에 적용되는 진공 모듈을 나타낸 사시도.Figure 3 is a perspective view showing a vacuum module applied to the present invention.
도 4는 본 발명에 적용되는 마그네틱 쉴드를 나타낸 사시도.Figure 4 is a perspective view showing a magnetic shield applied to the present invention.
도 5는 본 발명에 적용되는 써멀 쉴드를 나타낸 사시도.5 is a perspective view showing a thermal shield applied to the present invention.
도 6은 본 발명에 적용되는 파이프 모듈을 나타낸 사시도.Figure 6 is a perspective view showing a pipe module applied to the present invention.
도 7은 본 발명에 적용되는 파이프 모듈의 리저버를 나타낸 일부 절개도.7 is a partial cutaway view showing a reservoir of a pipe module applied to the present invention.
도 8은 본 발명에 적용되는 써포트 모듈을 나타낸 사시도.8 is a perspective view showing a support module applied to the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정되어 해석되지 말아야 하며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.The terms or words used in this specification and claims are not to be construed as being limited to the common or dictionary meanings, and the inventors may properly define the concept of terms in order to best explain their invention in the best way. Based on the principle, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다. 또한, 명세서에 기재된 "…부", "…기", "모듈", "장치" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.Throughout the specification, when a part is said to "include" a certain component, it means that it may further include other components, except to exclude other components unless specifically stated otherwise. In addition, the terms “… unit”, “… unit”, “module”, “device”, and the like described in the specification mean a unit that processes at least one function or operation, which is hardware or software or a combination of hardware and software. It can be implemented as.
이하에서는, 본 발명에 의한 중이온 가속기의 HWR 저온유지장치의 실시예를 첨부 도면을 참고하여 설명한다.Hereinafter, an embodiment of the HWR cryostat of the heavy ion accelerator according to the present invention will be described with reference to the accompanying drawings.
도 1 및 도 2를 참고하면, 본 발명에 의한 중이온 가속기의 HWR 저온유지장치는 적어도 둘 이상의 중이온 가속관(100), 진공 모듈(200), 파이프 모듈(300), 서포트 모듈(support module)(400)을 포함한다.1 and 2, the HWR cryostat of the heavy ion accelerator according to the present invention includes at least two heavy ion accelerator tubes 100, a vacuum module 200, a pipe module 300, and a support module (support module) ( 400).
즉, 저온유지장치는 복수의 중이온 가속관(100)을 포함하며, 각각의 중이온 가속관(100)에 액체 헬륨(He)을 공급받아 중이온 가속관(100)의 성능을 테스트하기 위한 것이다.That is, the cryostat includes a plurality of heavy ion accelerator tubes 100 and is configured to test the performance of the heavy ion accelerator tube 100 by receiving liquid helium (He) in each of the heavy ion accelerator tubes 100.
도 2를 참고하면, 진공 모듈(200) 내에 2개의 중이온 가속관(100)이 소정 간격을 두고 서로 이격된 상태로 수직 배치되어 있다.Referring to FIG. 2, two heavy ion accelerator tubes 100 are vertically spaced apart from each other at predetermined intervals in the vacuum module 200.
각각의 중이온 가속관(100)은 대략 원통형으로 이루어지며, 파이프 모듈(300)로부터 액체 헬륨을 공급받아 중이온 가속관(100)으로서의 성능 테스트를 한다.Each heavy ion accelerator tube 100 has a substantially cylindrical shape, and receives liquid helium from the pipe module 300 to perform a performance test as the heavy ion accelerator tube 100.
중이온 가속관(100)은 도시하지 않았으나 내부관과 외부관의 2중관으로 이루어진다. 내부관 내에는 중이온 가속관(100)의 효율적인 빔 가속을 위해 진공 상태를 유지하고, 외부관과 내부관 사이에는 중이온 가속관(100)의 저온 유지를 위한 액체 헬륨이 주입된다. 따라서, 내부관에는 후술하는 진공펌프의 진공라인(도시 생략)이 연결되고, 외부관과 내부관 사이의 상단부 및 하단부에는 파이프 모듈의 파이프 라인(112)이 각각 기계적으로 연결되어 헬륨을 공급받거나 배출하게 된다.Heavy ion accelerator tube 100 is not shown but consists of a double tube of inner tube and outer tube. The inner tube maintains a vacuum state for efficient beam acceleration of the heavy ion accelerator tube 100, and liquid helium is injected between the outer tube and the inner tube to maintain the low temperature of the heavy ion accelerator tube 100. Therefore, a vacuum line (not shown) of a vacuum pump to be described later is connected to the inner tube, and the pipe line 112 of the pipe module is mechanically connected to the upper end and the lower end between the outer tube and the inner tube, respectively, to receive or discharge helium. Done.
중이온 가속관(100)의 내부에는 중이온 빔의 가속을 위한 통로 역할을 하도록 빔 파이프(110)가 관통 설치될 수 있다.The beam pipe 110 may be penetrated inside the heavy ion accelerator tube 100 to serve as a passage for accelerating the heavy ion beam.
도 2 및 도 3을 참고하면, 진공 모듈(200)은 빔 가속을 위해 진공 상태를 형성해 주는 것으로, 진공 챔버(210), 진공 펌프(220)를 포함한다.2 and 3, the vacuum module 200 forms a vacuum state for beam acceleration, and includes a vacuum chamber 210 and a vacuum pump 220.
진공 챔버(210)는 중이온 가속관(100) 및 그 중이온 가속관(100)에 연결된 파이프 모듈(300)을 내부에 안치하여 외부의 환경으로부터 보호하는 역할을 한다. 진공 챔버(210)의 일측면(본 실시예에서는 바닥면)에는 진공 펌프(220)와 연결되도록 진공 포트가 적어도 하나 이상 형성된다. 진공 챔버(210)는 강도 및 내부식성이 우수한 스테인리스 스틸(예를 들면, STS316L)로 제작될 수 있다.The vacuum chamber 210 serves to protect the heavy ion accelerator tube 100 and the pipe module 300 connected to the heavy ion accelerator tube 100 from inside to protect it from the external environment. At least one vacuum port is formed on one side (bottom surface in this embodiment) of the vacuum chamber 210 to be connected to the vacuum pump 220. The vacuum chamber 210 may be made of stainless steel (for example, STS316L) having excellent strength and corrosion resistance.
본 발명의 실시예에서 진공 챔버(210)는 대략 육면체로 형성되어 있으나, 이는 중이온 가속관(100)의 수납 용이성과 기타 모듈과의 연계를 위한 설계일 뿐 그 형태에 한정될 필요는 없다. 진공 챔버(210)의 일측면에는 액체 헬륨을 제공받는 헬륨 포트(211) 및 가속된 빔을 조사하는 빔 포트(212)가 구비되어 있다.In the embodiment of the present invention, the vacuum chamber 210 is formed in a substantially hexahedron, but this is not only limited to the shape of the design for the ease of storage of the heavy ion accelerator tube 100 and other modules. One side of the vacuum chamber 210 is provided with a helium port 211 provided with liquid helium and a beam port 212 for irradiating the accelerated beam.
진공 펌프(220)는 진공 챔버(210)의 일측에 배치되어 진공라인을 통해 진공 포트와 연결되며, 중이온 가속관(100)에서의 중이온 빔의 가속을 촉진하기 위해 중이온 가속관(100)들의 내부 및 진공 챔버(210)의 내부를 진공 상태로 형성시켜 준다. 예컨대, 진공 펌프(220)는 복수 구비되어 진공 챔버(210)와 중이온 가속관(100)들에 각각 연결될 수 있다.The vacuum pump 220 is disposed on one side of the vacuum chamber 210 is connected to the vacuum port through the vacuum line, the inside of the heavy ion accelerator tube 100 to promote the acceleration of the heavy ion beam in the heavy ion accelerator tube 100 And the inside of the vacuum chamber 210 is formed in a vacuum state. For example, a plurality of vacuum pumps 220 may be provided and connected to the vacuum chamber 210 and the heavy ion accelerator tubes 100, respectively.
도 2 및 도 6을 참고하면, 파이프 모듈(112)은 중이온 가속관(100)에 성능 테스트용 유체, 예컨대 액체 헬륨(He)을 공급하는 것으로, 파이프 라인(310), 리저버(320)(330)를 포함할 수 있다.2 and 6, the pipe module 112 supplies a performance test fluid, such as liquid helium (He), to the heavy ion accelerator tube 100, and includes a pipeline 310 and a reservoir 320 and a 330. ) May be included.
파이프 라인(310)은 헬륨 탱크(도시 생략)와 중이온 가속관을 연결해 주며, 헬륨 탱크로부터 액체 헬륨을 중이온 가속관으로 공급해 주거나, 공정 진행시 발생하는 열에 의해 중이온 가속관 내에 기화된 헬륨을 헬륨 탱크 측으로 회귀하는 역할을 한다.The pipeline 310 connects the helium tank (not shown) with the heavy ion accelerator tube, and supplies liquid helium from the helium tank to the heavy ion accelerator tube, or helium tank vaporized in the heavy ion accelerator tube by the heat generated during the process It serves to return to the side.
리저버(320)(330)는 파이프 라인(310)의 일단에 장착되어 보조 헬륨 탱크의 역할을 한다. 예컨대, 중이온 가속관으로 공급되거나 또는 중이온 가속관으로부터 배출되는 헬륨이 설정치에 미치지 못할 경우 소정량의 헬륨을 저장하고 있는 리저버에서 그만큼의 헬륨을 보충하여 공급하거나 배출하는 역할을 한다.The reservoirs 320 and 330 are mounted at one end of the pipeline 310 to serve as an auxiliary helium tank. For example, when helium supplied to the heavy ion accelerator tube or discharged from the heavy ion accelerator tube does not reach the set value, the reservoir storing a predetermined amount of helium supplements and supplies or discharges the helium in the reservoir.
이때, 리저버는 메인 리저버(320)와 서브 리저버(330)로 구분될 수 있다. 메인 리저버(320)는 공정 진행시 요구되는 설정 온도의 헬륨을 저장하게 되고, 서브 리저버(330)는 설정 온도에서 벗어나는 헬륨을 저장하게 된다. 따라서, 메인 리저버(320)와 서브 리저버(330) 사이에는 헬륨의 온도를 설정 온도에 맞게 열교환시켜 줄 수 있는 열교환기(340)가 개재될 필요가 있다.At this time, the reservoir may be divided into a main reservoir 320 and a sub reservoir 330. The main reservoir 320 stores helium at the set temperature required for the process, and the sub reservoir 330 stores helium that is out of the set temperature. Therefore, a heat exchanger 340 may be interposed between the main reservoir 320 and the sub reservoir 330 to heat exchange the helium temperature according to the set temperature.
도 7을 참고하면, 메인 리저버(320)는 양단이 폐쇄된 대략 원통형으로 이루어진 리저버 몸체(321)를 포함하며, 리저버 몸체(321)에는 헬륨 탱크로부터 헬륨 액체를 공급받는 인렛포트(322) 및 기화된 헬륨을 헬륨 탱크 측으로 배출하는 아웃렛포트(323)가 서로 소정의 간격으로 이격되어 형성된다.Referring to FIG. 7, the main reservoir 320 includes a reservoir body 321 having a substantially cylindrical shape with both ends closed, and the reservoir body 321 has an inlet port 322 and vaporization supplied with helium liquid from a helium tank. Outlet ports 323 for discharging the helium to the helium tank side are formed spaced apart from each other at a predetermined interval.
또한 리저버 몸체(321) 내에는 쿨링 다운(cooling down)시 기화된 헬륨을 배출하고 유입된 액체헬륨을 일정한 양으로 유지하도록 하기 위한 목적으로 인렛포트와 아웃렛포트의 경계 부분에 복수의 배플(baffle)(324)이 형성될 수 있다. 복수의 배플 중 어느 하나의 배플(324)의 일측에는 리저버 몸체(321) 내를 통과하는 헬륨의 양을 검지하기 위한 레벨 게이지가 설치될 수 있다. 배플(324)은 리저버 몸체(321) 내를 완전히 폐쇄하도록 형성되지 않고 일부분이 연통되도록 리저버 몸체(321)의 내경보다 조금 작은 직경을 갖도록 형성된다.In addition, the reservoir body 321 has a plurality of baffles at the boundary between the inlet port and the outlet port for the purpose of discharging the helium vaporized during cooling down and maintaining the liquid helium flowing in a constant amount. 324 may be formed. One side of the baffle 324 of the plurality of baffles may be provided with a level gauge for detecting the amount of helium passing through the reservoir body 321. The baffle 324 is not formed to completely close the inside of the reservoir body 321, and is formed to have a diameter that is slightly smaller than the inner diameter of the reservoir body 321 so that a portion thereof communicates with the baffle 324.
서브 리저버 역시 메인 리저버의 구성과 대동소이하므로, 자세한 설명은 생략한다.Since the sub reservoir is also similar to the configuration of the main reservoir, detailed description thereof will be omitted.
도 2 및 도 8을 참고하면, 서포트 모듈(400)은 중이온 가속관(100)에 접촉되도록 설치되며, 중이온 가속관(100)의 배치 및 고정상태를 안정화시켜 주는 것으로, 중이온 가속관을 지지하는 서포트 몸체(410), 서포트 몸체(410)를 지지하는 서포트 바(420)를 포함할 수 있다.2 and 8, the support module 400 is installed to contact the heavy ion accelerator tube 100, and stabilizes the arrangement and fixation of the heavy ion accelerator tube 100 to support the heavy ion accelerator tube. The support body 410 may include a support bar 420 supporting the support body 410.
서포트 몸체(410)는 중이온 가속관을 둘러싸도록 대략 사각 틀체 형상으로 이루어진다. 또한, 서포트 몸체는 복수의 중이온 가속관이 각각 삽입되도록 중이온 가속관의 숫자와 대응되는 숫자로 구획된다.The support body 410 has a substantially rectangular frame shape to surround the heavy ion accelerator tube. In addition, the support body is partitioned into a number corresponding to the number of heavy ion accelerator tubes so that a plurality of heavy ion accelerator tubes are respectively inserted.
서포트 바(420)는 복수 구비되며, 각각의 일단은 서포트 몸체의 여러 개소에 연결되고 타단은 진공 챔버(210)의 여러 개소에 연결되어 서포트 몸체(410)를 고정시켜 줌으로써, 서포트 몸체(410) 내에 놓인 중이온 가속관을 안정적으로 고정시켜 준다. Support bar 420 is provided with a plurality, each end is connected to several places of the support body and the other end is connected to several places of the vacuum chamber 210 to secure the support body 410, the support body 410 It stably fixes the heavy ion accelerator tube inside.
진공 챔버(210) 내는 극저온을 형성하기 때문에 진공 챔버(210) 내에서 서포트 바에 응축이 발생할 경우 중이온 가속관의 정렬 상태가 설정 위치에서 벗어날 수 있고 이로 인해 빔 포트의 위치가 어긋날 수 있으므로, 서포트 바(420)는 저온에서 응축이 최소화되는 재질로 이루어지는 것이 바람직하다. 예컨대 서포트 바는 G10 또는 인바의 재질로 형성될 수 있다.Since the vacuum chamber 210 forms a cryogenic temperature, when the support bar is condensed in the vacuum chamber 210, the alignment state of the heavy ion accelerator tube may deviate from the set position, and thus the position of the beam port may be shifted. 420 is preferably made of a material that minimizes condensation at low temperatures. For example, the support bar may be formed of a material of G10 or Invar.
서포트 바(420)는 진공 챔버(210) 외부의 상온에서 기본적으로 길이 조정이 된 상태로 진공 챔버(210) 내로 유입되는데, 진공 챔버(210) 내부는 극저온을 유지하므로 소정의 응축이 발생할 수 있다. 따라서, 진공 챔버(210) 내에 배치된 상태에서도 서포트 바(420)의 길이 조절이 가능하도록 각 서포트 바의 일단에는 길이조절부재(430)가 장착될 수 있다.The support bar 420 is introduced into the vacuum chamber 210 in a state where the length is basically adjusted at room temperature outside the vacuum chamber 210. Since the inside of the vacuum chamber 210 maintains a cryogenic temperature, a predetermined condensation may occur. . Therefore, the length adjusting member 430 may be mounted at one end of each support bar so that the length of the support bar 420 can be adjusted even in the vacuum chamber 210.
이러한 서포트 모듈(400)에 의해 중이온 가속관(100)은 각각 개별적으로 분해 조립이 용이하며, 따라서 성능 시험이 안정적, 효율적으로 진행될 수 있다.By the support module 400, the heavy ion accelerator tube 100 can be easily disassembled and assembled individually, so that the performance test can be performed stably and efficiently.
도 2 및 도 4를 참고하면, 본 발명의 저온유지장치는, 진공 챔버(210)의 내부에 진공 챔버(210) 외부로부터 진공 챔버(210) 내부의 중이온 가속관(100)에 가해지는 외부 전자파를 차단하기 위한 마그네틱 쉴드(magnetic shield)(500)를 더 포함할 수 있다.2 and 4, in the cryostat of the present invention, external electromagnetic waves applied to the heavy ion accelerator tube 100 inside the vacuum chamber 210 from the outside of the vacuum chamber 210 inside the vacuum chamber 210. It may further include a magnetic shield (magnetic shield) 500 for blocking the.
외부 전자파가 중이온 가속관(100)에 전해지면 설정된 극저온 상태가 불안정할 수 있으므로, 마그네틱 쉴드(500)는 이러한 방해 요소를 제거하는 것이다. 마그네틱 쉴드(500)는 예컨대, Ni 75%, Fe 20%, Cu 5%의 합금의 뮤 메탈(Mu-matal)로 형성될 수 있다.When the external electromagnetic wave is transmitted to the heavy ion accelerator tube 100, the set cryogenic state may be unstable, and the magnetic shield 500 removes such an obstacle. The magnetic shield 500 may be formed of, for example, a mu-matal of an alloy of 75% Ni, 20% Fe, and 5% Cu.
마그네틱 쉴드(500)는 진공 챔버(210)의 내벽에 장착되므로, 진공 챔버(210)의 내부 형태와 유사하게 형성된다. 마그네틱 쉴드(500)의 일측면 상단에는 진공 챔버(210)의 헬륨 포트(211)에 대응되도록 제1 헬륨 포트 관통공(510)이 형성되고, 정면 하단에는 진공 챔버(210)의 빔 포트(212)에 대응되도록 제1 빔 포트 관통공(520)이 형성된다.Since the magnetic shield 500 is mounted on the inner wall of the vacuum chamber 210, the magnetic shield 500 is formed similarly to the internal shape of the vacuum chamber 210. A first helium port through hole 510 is formed at an upper end of one side of the magnetic shield 500 to correspond to the helium port 211 of the vacuum chamber 210, and a beam port 212 of the vacuum chamber 210 is formed at the front lower end of the magnetic shield 500. ), The first beam port through hole 520 is formed.
도 2 및 도 5를 참고하면, 본 발명의 저온유지장치는, 진공 챔버(210)의 내부, 바람직하게는 마그네틱 쉴드(500)의 내부에 설치되어, 냉매를 순환시켜 진공 챔버(210) 내부의 저온 상태를 활성화하기 위한 써멀 쉴드(600)를 더 포함할 수 있다.2 and 5, the cryostat of the present invention is installed inside the vacuum chamber 210, preferably inside the magnetic shield 500, and circulates a refrigerant to circulate inside the vacuum chamber 210. The thermal shield 600 may be further included to activate a low temperature state.
써멀 쉴드(600)는 열전도율이 높은 구리(Cu)로 제작될 수 있고, 냉매로는 기체 상태의 질소(N)가 사용될 수 있다.The thermal shield 600 may be made of copper (Cu) having high thermal conductivity, and gaseous nitrogen (N) may be used as the refrigerant.
써멀 쉴드(600) 역시 마그네틱 쉴드(500)와 마찬가지로 진공 챔버(210)의 내벽에 장착되므로 진공 챔버(210)의 내부 형태와 유사하게 형성된다. 따라서, 써멀 쉴드(600)의 일측면 상단에는 진공 챔버(210)의 헬륨 포트(211)에 대응되도록 제2 헬륨 포트 관통공(610)이 형성되고, 정면 하단에는 진공 챔버(210)의 빔 포트(212)에 대응되도록 제2 빔 포트 관통공(620)이 형성된다.Since the thermal shield 600 is mounted on the inner wall of the vacuum chamber 210 similarly to the magnetic shield 500, the thermal shield 600 is formed similarly to the internal shape of the vacuum chamber 210. Accordingly, a second helium port through hole 610 is formed at an upper end of one side of the thermal shield 600 to correspond to the helium port 211 of the vacuum chamber 210, and a beam port of the vacuum chamber 210 is formed at the lower end of the front surface. The second beam port through hole 620 is formed to correspond to 212.
지금까지 본 발명에 따른 야외 조사용 허리벨트에 관한 구체적인 실시예에 관하여 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서는 여러 가지 실시 변형이 가능함은 자명하다.Although a specific embodiment of the waist belt for outdoor irradiation according to the present invention has been described so far, it is obvious that various embodiments can be modified without departing from the scope of the present invention.
그러므로 본 발명의 범위에는 설명된 실시예에 국한되어서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the claims below and equivalents thereof.
즉, 전술된 실시예는 모든 면에서 예시적인 것이며, 한정적인 것이 아닌 것으로 이해되어야 하며, 본 발명의 범위는 상세한 설명보다는 후술될 특허청구범위에 의하여 나타내어지며, 그 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.In other words, the foregoing embodiments are to be understood in all respects as illustrative and not restrictive, the scope of the invention being indicated by the following claims rather than the detailed description, and the meaning and scope of the claims and All changes or modifications derived from the equivalent concept should be interpreted as being included in the scope of the present invention.

Claims (11)

  1. 진공 상태를 유지하는 내부관, 저온의 성능 테스트용 유체가 주입되는 외부관을 포함하는 복수의 중이온 가속관;A plurality of heavy ion accelerator tubes including an inner tube maintaining a vacuum state and an outer tube into which a low-temperature performance test fluid is injected;
    상기 복수의 중이온 가속관을 수납하여 보호하고, 내부를 진공 상태로 형성하는 진공 모듈;A vacuum module that accommodates and protects the plurality of heavy ion accelerator tubes and forms an interior in a vacuum state;
    상기 각각의 중이온 가속관에 성능 테스트용 유체를 제공하는 파이프 모듈; 및A pipe module for providing a performance test fluid to each of the heavy ion accelerator tubes; And
    상기 각각의 중이온 가속관을 지지하도록 상기 진공 모듈 내부에 설치되는 서포트 모듈;A support module installed inside the vacuum module to support the respective heavy ion accelerator tubes;
    을 포함하는 중이온 가속기의 HWR 저온유지장치.HWR cryostat of the heavy ion accelerator comprising a.
  2. 진공 상태를 유지하는 내부관, 저온의 성능 테스트용 유체가 주입되는 외부관을 포함하는 복수의 중이온 가속관;A plurality of heavy ion accelerator tubes including an inner tube maintaining a vacuum state and an outer tube into which a low-temperature performance test fluid is injected;
    상기 복수의 중이온 가속관을 수납하여 보호하고, 내부를 진공 상태로 형성하는 진공 모듈;A vacuum module that accommodates and protects the plurality of heavy ion accelerator tubes and forms an interior in a vacuum state;
    상기 각각의 중이온 가속관에 성능 테스트용 유체를 제공하는 파이프 모듈;A pipe module for providing a performance test fluid to each of the heavy ion accelerator tubes;
    상기 각각의 중이온 가속관을 지지하도록 상기 진공 모듈 내부에 설치되는 서포트 모듈;A support module installed inside the vacuum module to support the respective heavy ion accelerator tubes;
    상기 진공 모듈의 내부에 설치되어 전자파를 차폐하는 마그네틱 쉴드; 및A magnetic shield installed inside the vacuum module to shield electromagnetic waves; And
    상기 진공 모듈의 내부에 설치되며, 진공 모듈 내부에 냉매를 순환시켜 진공 모듈 내부의 저온 상태를 활성화하기 위한 써멀 쉴드;A thermal shield installed inside the vacuum module to activate a low temperature state inside the vacuum module by circulating a refrigerant inside the vacuum module;
    를 포함하는 중이온 가속기의 HWR 저온유지장치.HWR cryostat of the heavy ion accelerator comprising a.
  3. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 진공 모듈은 일측에 진공 포트가 형성된 진공 챔버, 상기 진공 포트에 연결되어 진공 챔버 내부를 진공 상태로 형성해 주는 진공 펌프를 포함하는 것을 특징으로 하는 중이온 가속기의 HWR 저온유지장치.The vacuum module is a vacuum chamber having a vacuum port formed on one side, HWR low temperature maintenance device of the heavy ion accelerator, characterized in that it comprises a vacuum pump connected to the vacuum port to form a vacuum inside the vacuum chamber.
  4. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 파이프 모듈은 상기 중이온 가속관으로 성능 테스트용 유체를 공급하거나 기화된 성능 테스트용 유체를 배출하는 파이프 라인, 상기 파이프 라인에 설치되어 성능 테스트용 유체의 투입 또는 배출을 보충해 주는 리저버(reservoir)를 포함하는 것을 특징으로 하는 중이온 가속기의 HWR 저온유지장치.The pipe module is a pipeline for supplying a performance test fluid to the heavy ion accelerator tube or discharging the vaporized performance test fluid, and a reservoir installed in the pipeline to supplement the input or discharge of the performance test fluid. HWR cryostat of the heavy ion accelerator comprising a.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 리저버는 공정 진행시 요구되는 설정 온도의 헬륨을 저장하는 메인 리저버와 설정 온도에서 벗어난 헬륨을 저장하는 서브 리저버를 포함하며, 상기 메인 리저버와 서브 리저버 사이에는 헬륨의 온도를 설정 온도에 맞게 열교환시켜 주는 열교환기가 더 설치되는 것을 특징으로 하는 중이온 가속기의 HWR 저온유지장치.The reservoir includes a main reservoir for storing helium at a set temperature required for the process and a sub reservoir for storing helium out of a set temperature, and the heat exchange between the main reservoir and the sub reservoir is performed according to a set temperature. HWR cryostat of the heavy ion accelerator, characterized in that the main heat exchanger is further installed.
  6. 제1항에 있어서,The method of claim 1,
    상기 메인 리저버 및 상기 서브 리저버 각각은 리저버 몸체, 리저버 몸체에 형성되어 성능 테스트용 유체를 공급받는 인렛포트, 상기 인렛포트와 이격되도록 리저버 몸체에 형성되어 기화된 헬륨을 배출하는 아웃렛포트, 상기 리저버 몸체의 내부에서 인렛포트와 아웃렛포트의 경계 부분에 설치되는 배플을 포함하는 것을 특징으로 하는 중이온 가속기의 HWR 저온유지장치.Each of the main reservoir and the sub reservoir is formed in a reservoir body, a reservoir body, an inlet port supplied with a performance test fluid, an outlet port formed in the reservoir body so as to be spaced apart from the inlet port, and discharged helium from the reservoir body, the reservoir body HWR cryostat of the heavy ion accelerator, characterized in that it comprises a baffle which is installed at the boundary between the inlet port and the outlet port inside the.
  7. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 서포트 모듈은 중이온 가속관을 감싸는 서포트 몸체, 상기 서포트 몸체와 진공 모듈을 연결해 주는 서포트 바를 포함하는 것을 특징으로 하는 중이온 가속기의 HWR 저온유지장치.The support module is a HWR cryostat of the heavy ion accelerator, characterized in that it comprises a support body surrounding the heavy ion accelerator tube, a support bar connecting the support body and the vacuum module.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 서포트 모듈은 서포트 바에 결합되어 서포트 바의 길이를 조절하는 길이조절부재를 더 포함하는 것을 특징으로 하는 중이온 가속기의 HWR 저온유지장치.The support module is coupled to the support bar HWR cryostat of the heavy ion accelerator further comprises a length adjusting member for adjusting the length of the support bar.
  9. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 성능 테스트용 유체는 액체 헬륨인 것을 특징으로 하는 중이온 가속기의 HWR 저온유지장치.The HWR cryostat of the heavy ion accelerator, characterized in that the performance test fluid is liquid helium.
  10. 제1항에 있어서,The method of claim 1,
    상기 중이온 가속관 및 파이프모듈을 감싸도록 설치되어 전자파를 차폐하는 마그네틱 쉴드를 더 포함하는 것을 특징으로 하는 중이온 가속기의 HWR 저온유지장치.The HWR cryostat of the heavy ion accelerator further comprises a magnetic shield installed to surround the heavy ion accelerator tube and the pipe module to shield electromagnetic waves.
  11. 제1항에 있어서,The method of claim 1,
    상기 진공 모듈의 내부에 설치되며, 진공 모듈 내부에 냉매를 순환시켜 진공 모듈 내부의 저온 상태를 활성화하기 위한 써멀 쉴드를 더 포함하는 것을 특징으로 하는 중이온 가속기의 HWR 저온유지장치.The HWR cryostat of the heavy ion accelerator is installed in the vacuum module, and further comprising a thermal shield for circulating a refrigerant in the vacuum module to activate a low temperature state inside the vacuum module.
PCT/KR2015/009590 2014-09-12 2015-09-11 Hwr cryomodule of heavy ion accelerator WO2016039588A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0120902 2014-09-12
KR1020140120902A KR101595769B1 (en) 2014-09-12 2014-09-12 HWR cryomodule of heavy ion accelerator

Publications (2)

Publication Number Publication Date
WO2016039588A1 true WO2016039588A1 (en) 2016-03-17
WO2016039588A4 WO2016039588A4 (en) 2016-05-12

Family

ID=55445548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009590 WO2016039588A1 (en) 2014-09-12 2015-09-11 Hwr cryomodule of heavy ion accelerator

Country Status (2)

Country Link
KR (1) KR101595769B1 (en)
WO (1) WO2016039588A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020053215A1 (en) * 2000-09-07 2002-05-09 Laubacher Daniel B. Cryogenic devices
KR20090005815A (en) * 2007-07-10 2009-01-14 현대자동차주식회사 Condensate water drain apparatus of fuel cell stack for automobile
US20130012394A1 (en) * 2010-05-12 2013-01-10 Mitsubishi Heavy Industries, Ltd. Superconducting accelerator cavity and method of manufacturing superconducting accelerator cavity

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3896420B2 (en) 2005-04-27 2007-03-22 大学共同利用機関法人 高エネルギー加速器研究機構 All ion accelerator and its control method
JP2010251275A (en) 2009-04-20 2010-11-04 Masayuki Kumada Ion collective accelerator and application thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020053215A1 (en) * 2000-09-07 2002-05-09 Laubacher Daniel B. Cryogenic devices
KR20090005815A (en) * 2007-07-10 2009-01-14 현대자동차주식회사 Condensate water drain apparatus of fuel cell stack for automobile
US20130012394A1 (en) * 2010-05-12 2013-01-10 Mitsubishi Heavy Industries, Ltd. Superconducting accelerator cavity and method of manufacturing superconducting accelerator cavity

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
G. OLRY ET AL.: "Development of a beta 0.12, 88 MHz, quarter-waveresonator and its cryomodule for the SPIRAL2 project", SCIENCEDIRECT, 2006, pages 197 - 200 *
W.K.KIM ET AL.: "FEBRICATION DESIGN OF QWR AND HWER CYROMODULES", PROCEEDINGS OF IPAC2014, 15 June 2014 (2014-06-15), Dresden, Germany, pages 2555 - 2557 *

Also Published As

Publication number Publication date
KR101595769B1 (en) 2016-02-22
WO2016039588A4 (en) 2016-05-12

Similar Documents

Publication Publication Date Title
CN102119584B (en) High-current DC proton accelerator
WO2016163689A1 (en) Device for maintaining low temperatures of plurality of single spoke-type accelerating tubes of heavy ion accelerator
EP2428101B1 (en) Isotope production system and cyclotron
EP2394498A2 (en) Cooling systems and methods
Barnes et al. Upgrade of the LHC injection kicker magnets
WO2015163607A1 (en) Cryogenic performance testing apparatus for heavy ion acceleration tube
Peterson et al. LCLS-II 1.3 GHz cryomodule design-modified tesla-style cryomodule for CW operation
CN104244560A (en) Small high-yield deuterium-deuterium neutron generator
Hertenberger et al. The Stern–Gerlach polarized ion source for the Munich MP-tandem laboratory, a bright source for unpolarized hydrogen and helium ion beams as well
WO2016039588A1 (en) Hwr cryomodule of heavy ion accelerator
Laxdal et al. The Injector Cryomodule for the ARIEL e-Linac at TRIUMF
WO2016159692A1 (en) Cryomodule of heavy ion accelerator having plurality of half wave resonators
US6576916B2 (en) Container for transporting antiprotons and reaction trap
WO2016032110A1 (en) Qwr cryomodule of heavy ion accelerator
CN110169208B (en) Particle acceleration system and adjustment method thereof
US6414331B1 (en) Container for transporting antiprotons and reaction trap
WO2016076633A1 (en) Ssr1 cryomodule of heavy ion accelerator
CN117854875A (en) Superconducting electromagnet assembly and isochronous cyclotron comprising same
Fimushkin et al. Source of polarised deuterons: JINR accelerator complex
ES2436010A1 (en) Compact superconducting classical cyclotron
WO2013151284A1 (en) Neutron source
CN101569847B (en) Filling type minisize noble gas polarization generator
US20220087000A1 (en) Ionic Threading Apparatus
Olry et al. R&D on spoke-type cryomodule
JP3720968B2 (en) Electron beam cooling device and ion storage ring and ion synchrotron provided with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15839392

Country of ref document: EP

Kind code of ref document: A1