WO2016039426A1 - Method for assisting in selection of therapeutic drug for type-2 diabetes patient, method for predicting effect of therapeutic drug, inspection method, and treatment method - Google Patents

Method for assisting in selection of therapeutic drug for type-2 diabetes patient, method for predicting effect of therapeutic drug, inspection method, and treatment method Download PDF

Info

Publication number
WO2016039426A1
WO2016039426A1 PCT/JP2015/075760 JP2015075760W WO2016039426A1 WO 2016039426 A1 WO2016039426 A1 WO 2016039426A1 JP 2015075760 W JP2015075760 W JP 2015075760W WO 2016039426 A1 WO2016039426 A1 WO 2016039426A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
type
selenoprotein
diabetes
sep
Prior art date
Application number
PCT/JP2015/075760
Other languages
French (fr)
Japanese (ja)
Inventor
博文 御簾
周一 金子
有美枝 竹下
俊成 篁
芳郎 斎藤
睦 田中
Original Assignee
国立大学法人金沢大学
学校法人同志社
アルフレッサファーマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人金沢大学, 学校法人同志社, アルフレッサファーマ株式会社 filed Critical 国立大学法人金沢大学
Priority to JP2016547506A priority Critical patent/JP6736011B2/en
Publication of WO2016039426A1 publication Critical patent/WO2016039426A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present invention relates to a method for assisting selection of a therapeutic agent for type 2 diabetes, which comprises selecting metformin hydrochloride administration when a selenoprotein P value is higher than a cutoff value in a specimen derived from a type 2 diabetes patient
  • the present invention relates to a method for predicting an effect of a therapeutic agent, a test method, and a treatment method.
  • Type 2 diabetes Type 2 diabetes, which continues to increase on a global scale, threatens human QOL and life by promoting arteriosclerotic diseases such as retinal, renal and neurological complications and ischemic heart disease.
  • arteriosclerotic diseases such as retinal, renal and neurological complications and ischemic heart disease.
  • the development of is urgent.
  • the liver not only plays a major role in glucose and lipid metabolism, but is the largest organ in the body of various biologically active substances including angiogenic factors.
  • insulin resistance In type 2 diabetes, the action of insulin to suppress sugar release from the liver is attenuated, and this phenomenon is called insulin resistance. Insulin resistance leads to hyperglycemia due to increased glucose release from the liver and hyperlipidemia due to increased lipid production, and promotes arteriosclerotic diseases.
  • the liver is the largest producing organ in vivo of various physiologically active substances including angiogenic factors that lead to the risk of arteriosclerosis (see: Patent Document 1).
  • SeP Selenoprotein P
  • BD1, BD3, BF2, AE2, AH5, and AA3 monoclonal antibodies
  • ELISA enzyme-linked immunosorbent assay
  • SeP undergoes degradation with plasma kallikrein to produce N-terminal and C-terminal fragments, and among the above six monoclonal antibodies, BD1, BD3, BF2, AE2 and AH5 become N-terminal fragments.
  • AA3 reacts specifically with the C-terminal fragment.
  • AA3 reacts specifically with the C-terminal fragment.
  • Patent Document 2 discloses a method that can easily measure the presence or degree of SeP degradation by plasma kallikrein in vivo.
  • Patent Document 1 discloses “a method for detecting type 2 diabetes, including measuring selenoprotein P”. However, Patent Document 1 does not disclose or suggest a “method for selecting a therapeutic agent for type 2 diabetes using selenoprotein P value as an index”. Patent Document 2 states that “a method for separately measuring a long-chain type and a short-chain type of a substance to be measured (selenoprotein P) in a sample includes (a) the sample, the long-chain type, and the short-chain type.
  • Non-patent literature Non-patent literature
  • Non-Patent Document 1 states that “selenoprotein P expression is suppressed by treatment with metformin, but this suppression is inhibited by co-administration of an AMPK inhibitor or FoxO3a siRNA. Metformin is mediated through an AMPK inhibitor / FoxO3a pathway. In other words, the expression of selenoprotein P is suppressed.
  • Non-Patent Document 1 does not disclose or suggest a “method for selecting a therapeutic agent for type 2 diabetes using selenoprotein P value as an index”.
  • metformin is the first-line treatment or a DPP4 (dipeptidyl peptidase-4) inhibitor is the first-line treatment.
  • DPP4 dipeptidyl peptidase-4
  • patients with type 2 diabetes have large individual differences in treatment responsiveness depending on the therapeutic agent to be selected, and there are many cases in which there is no effect.
  • Metformin has little evidence of hypoglycemia, and there is evidence of life extension.
  • metformin has been reported to have anticancer effects, gastrointestinal side effects (diarrhea, decreased appetite), and the like, and there are considerable individual differences in treatment response.
  • DPP4 inhibitors have an effect of stimulating insulin secretion and there are individual differences in blood glucose lowering action.
  • an object of the present invention is to provide a method for assisting selection of a therapeutic drug for type 2 diabetes patients, a method for predicting the effect of the therapeutic drug, a test method, and a therapeutic method.
  • the present inventors have described that “in specimens (especially blood) derived from type 2 diabetes, the effect of metformin administration is high when the selenoprotein P value is higher than the cutoff value. And the present invention has been completed.
  • this invention consists of the following.
  • a method for assisting selection of a therapeutic agent for type 2 diabetes wherein in a specimen derived from a type 2 diabetes patient, metformin hydrochloride administration is selected when the selenoprotein P value is higher than the cutoff value.
  • the method for assisting selection of a therapeutic agent according to item 1 wherein the specimen is blood.
  • the cutoff value is 3.5 ⁇ g / mL to 4.7 ⁇ g / mL. 4.
  • Predicting the therapeutic effect of type 2 diabetes characterized in that metformin hydrochloride administration is judged to be effective when the selenoprotein P value is higher than the cut-off value in specimens derived from type 2 diabetes patients how to. 5. 5. The method for predicting a therapeutic effect according to item 4, wherein the specimen is blood. 6). 6. The method for predicting a therapeutic effect according to item 4 or 5, wherein the cut-off value is 4.5 ⁇ g / mL or more. 7. Type 2 for selecting a therapeutic agent for type 2 diabetes, characterized by selecting metformin hydrochloride administration when the selenoprotein P value is higher than the cut-off value in a sample derived from a type 2 diabetes patient A method for testing specimens from diabetic patients. 8). 8.
  • a method for treating type 2 diabetes comprising the following steps: (1) a step of determining whether a selenoprotein P value is higher than a cut-off value in a sample derived from a type 2 diabetes patient; and (2) metformin if the selenoprotein P value is higher than a cut-off value. Administering hydrochloride to the patient. 11. The treatment method according to item 10, wherein the cut-off value is 3.5 ⁇ g / mL to 4.7 ⁇ g / mL.
  • the present invention relates to a method for assisting selection of a therapeutic agent for type 2 diabetes, which comprises selecting metformin administration when a selenoprotein P value is higher than a cut-off value in a specimen derived from a type 2 diabetes patient.
  • a drug effect prediction method, a test method, and a treatment method can be provided.
  • the therapeutic effect of metformin administration can be predicted before administration, and a high therapeutic effect can be obtained by administering metformin from an early stage to patients with type 2 diabetes who are expected to have an effect of metformin administration. it can.
  • FIG. 1 Schematic diagram showing cleavage of selenoprotein P (SeP) by plasma kallikrein.
  • a graph (calibration curve) showing the relationship between the SeP concentration and the amount of change in absorbance in the FL-SeP measurement system.
  • the vertical axis represents the amount of change in absorbance, and the horizontal axis represents the SeP concentration ( ⁇ g / mL).
  • the graph which shows the change of a blood glucose level in a metformin administration group, and the change of a HbA1c value (using the Pearson product-moment correlation coefficient).
  • the graph which shows the change of the blood glucose level in a DPP4 inhibitor administration group, and the change of a HbA1c value (using the Pearson product-moment correlation coefficient).
  • the graph which shows the change of the selenoprotein P value in a metformin administration group and a DPP4 inhibitor administration group (using the Pearson product-moment correlation coefficient). Changes in blood glucose levels in the metformin administration group and the DPP4 inhibitor administration group (using Pearson product moment correlation coefficient). Change in selenoprotein P level in patients with high pre-dose SeP level (4.55 ⁇ g / mL or more) in the metformin group. Distribution map of selenoprotein P level in serum of type 2 diabetic patients before treatment. Changes in blood glucose levels in the metformin administration group and the DPP4 inhibitor administration group in cases with a selected cut-off value or higher.
  • the administration of metformin hydrochloride in a specimen derived from a type 2 diabetes patient, when the selenoprotein P value is higher than the cut-off value, the administration of metformin hydrochloride is selected.
  • Method Method for predicting therapeutic effect, characterized in that metformin hydrochloride administration is judged to be effective when the selenoprotein P value is higher than the cut-off value in a specimen derived from a type 2 diabetic patient " “In a specimen derived from a type 2 diabetic patient, if the selenoprotein P value is higher than the cut-off value, the administration of metformin hydrochloride is selected.
  • metformin A therapeutic method comprising administering hydrochloride to the patient. This will be described in detail below.
  • the method for assisting selection of a therapeutic agent for type 2 diabetes includes the following steps. (1) A step of determining whether a selenoprotein P value is higher than a cutoff value in a sample derived from a type 2 diabetes patient. (2) A step of determining that metformin hydrochloride administration is selected when the selenoprotein P value is higher than the cutoff value.
  • the method for predicting the therapeutic effect of metformin hydrochloride administration of type 2 diabetes includes the following steps. (1) A step of determining whether a selenoprotein P value is higher than a cutoff value in a sample derived from a type 2 diabetes patient. (2) A step of determining that metformin hydrochloride administration is effective when the selenoprotein P value is higher than the cut-off value. “Effective” means that administration of metformin hydrochloride has an effect of improving blood glucose level, improving HbA1c level, lowering SeP level in blood, and / or treating diabetes.
  • the method for examining a specimen derived from a type 2 diabetes patient for selecting a therapeutic agent for type 2 diabetes includes the following steps. (1) A step of determining whether a selenoprotein P value is higher than a cutoff value in a sample derived from a type 2 diabetes patient. (2) A step of determining that metformin hydrochloride administration is selected when the selenoprotein P value is higher than the cutoff value.
  • the method for treating type 2 diabetes includes the following steps. (1) A step of determining whether a selenoprotein P value is higher than a cutoff value in a sample derived from a type 2 diabetes patient. (2) A step of administering metformin hydrochloride to the patient when the selenoprotein P value is higher than the cutoff value. Furthermore, the following processes are included as needed. (3) A step of changing to DPP4 inhibitor administration or a combination of DPP4 inhibitor when metformin hydrochloride administration does not improve patient symptoms.
  • the specimen of the present invention is not particularly limited as long as it is derived from a type 2 diabetic patient and selenoprotein P is present.
  • examples thereof include whole blood, blood (peripheral mononuclear cells), serum, plasma, urine, cerebrospinal fluid, ascites, lymph, liver-derived fluid, and milk.
  • peripheral mononuclear cells, serum and the like are most preferable in terms of easy handling such as collection and low invasiveness.
  • the method for obtaining a sample from a type 2 diabetes patient is not particularly limited, and a method known per se can be used.
  • Selenoprotein P is a protein containing 10 residues of selenocysteine.
  • Selenoprotein P acts as an enzyme having glutathione peroxidase-like activity that reduces hydrogen peroxide and lipid peroxide to detoxify and controls intracellular redox.
  • the present inventors have disclosed that selenoprotein P is a detection marker for type 2 diabetes (see: Patent Document 1).
  • Selenoprotein P is contained in human serum and can be isolated and purified from human serum according to the method described in the literature “Saito Y. et al., J Biol chem 274: 2866-2871, 1999”. it can.
  • Selenoprotein P is cleaved by plasma kallikrein (see: FIG. 1).
  • the upper part of FIG. 1 represents full-length SeP, and the middle and lower parts represent SeP fragments generated by plasma kallikrein cleavage.
  • N and C represent the N-terminal side and the C-terminal side, respectively
  • Sec represents a selenocysteine residue.
  • Kallikrein consists of arginine at position 235 (“R235” in FIG. 1) and glutamine at position 236 (“Q236” in FIG. 1), and arginine at position 242 (“R242” in FIG. 1) and asparagine at position 243.
  • the “long chain type” is an uncut full length SeP (amino acid residues 1 to 361: sometimes referred to as “FL-SeP” in this specification), and the “short chain type” is generated by cleavage. It is a SeP fragment (sometimes referred to herein as “S-SeP”), and the SeP fragment can be, for example, an N-terminal fragment (amino acid residues 1 to 235).
  • Metformin hydrochloride Metformin hydrochloride
  • Metformin hydrochloride (Chemical name: 1,1-Dimethylbiguanide monohydrochloride) is “Metgluco Tablets”, “Glycolane Tablets”, “Metformin Hydrochloride Tablets”, and other brand names from several pharmaceutical companies as a treatment for type 2 diabetes. It is sold (hereinafter referred to as “Metogluco Tablet”).
  • Metformin hydrochloride is “Metgluco Tablets”, “Glycolane Tablets”, “Metformin Hydrochloride Tablets”, and other brand names from several pharmaceutical companies as a treatment for type 2 diabetes. It is sold (hereinafter referred to as “Metogluco Tablet”).
  • the maintenance dose is determined while observing the effect, but is usually 750 mg to 1,500 mg per day.
  • the dose may be adjusted according to the patient's condition, but the maximum daily dose is 2,250 mg.
  • DPP4 inhibitor is an antidiabetic drug, which means a drug that inhibits the DPP4 (dipeptidyl peptidase-4) enzyme, and the generic names sitagliptin, vildagliptin, alogliptin, linagliptin, teneligliptin and anagliptin are known .
  • the dosage and administration timing can be exemplified as follows, but are not particularly limited. ⁇ Sitagliptin Normally, for adults, 50 mg of sitagliptin is orally administered once a day. If the effect is insufficient, 100 mg can be increased once a day while observing the progress sufficiently.
  • ⁇ Vildagliptin Usually, for adults, 50 mg of vildagliptin is orally administered twice a day in the morning and evening. Depending on the patient's condition, 50 mg can be administered once a day in the morning.
  • Alogliptin Usually, for adults, 25 mg of alogliptin is orally administered once a day, preferably after breakfast.
  • Linagliptin Usually, for adults, 5 mg of linagliptin is orally administered once a day.
  • Tenerigliptin Usually, for adults, 20 mg of tenerigliptin is orally administered once a day. If the effect is insufficient, 40 mg can be increased once a day while observing the progress sufficiently.
  • Anagliptin Normally, for adults, 100 mg of anagliptin is orally administered twice a day in the morning and evening. If the effect is insufficient, the single dose can be increased to 200 mg while observing the progress sufficiently.
  • the range of the cut-off value for selecting a therapeutic agent for patients with type 2 diabetes according to the present invention is 3.5 ⁇ g / mL to 4.7 ⁇ g / mL, preferably 3.7 ⁇ g in the specimen (particularly serum) from Example 4 below.
  • the range of the cut-off value for judging that the administration of metformin hydrochloride of the present invention is effective is 4.5 ⁇ g / mL or more, for example, 4.5 ⁇ g / mL in the sample (particularly in serum) from Example 3 below. It is ⁇ 6.0 ⁇ g / mL, more preferably 4.5 ⁇ g / mL to 5.5 ⁇ g / mL, and most preferably 4.5 ⁇ g / mL to 5.0 ⁇ g / mL.
  • One indicator that metformin hydrochloride administration was effective is a significant decrease in blood selenoprotein P level.
  • the method for assisting selection of a therapeutic agent for type 2 diabetes patients, the method for predicting the effect of a therapeutic agent, the method for measuring the selenoprotein P value in the test method and the therapeutic method of the present invention are not particularly limited.
  • selenoprotein P mRNA may be calculated by measuring mRNA of selenoprotein P.
  • As a method of directly measuring selenoprotein P it can be performed by an immunoassay using an anti-selenoprotein P antibody that specifically recognizes and binds to selenoprotein P.
  • Anti-selenoprotein P antibody can be prepared by a known method.
  • Examples of the immunological measurement method include a method using a carrier on which an anti-selenoprotein P antibody is immobilized, western blotting, and the like.
  • Examples of the method using a solid-phase support include, but are not limited to, ELISA using a solid-phase microtiter plate, and an aggregation method using solid-phase particles.
  • Adopted, blood selenoprotein P can be measured.
  • the selenoprotein P mRNA can be measured by Northern blotting, RT-PCR, a method using a DNA chip (DNA microarray), or the like. These methods can also be performed by a known method.
  • the method for measuring selenoprotein P is preferably an enzyme-linked immunosorbent method using two types of monoclonal antibodies ⁇ Reference: Saito, Y. et al., J. Health Sci. (2001) 47, 346-352 ⁇ , Examples thereof include a measurement method using an antigen-antibody reaction using a gold colloid shown in the following Examples (see Patent Document 2).
  • AH5 and AA3 Anti-human selenoprotein P rat monoclonal antibodies AH5 and AA3 were obtained according to the procedure described in the literature ⁇ Saito, Y. et al., J. Health Sci. (2001) 47, 346-352 ⁇ .
  • AH5 is a monoclonal antibody that recognizes the N-terminal side of selenoprotein P generated by kallikrein cleavage of selenoprotein P
  • AA3 is a monoclonal antibody that recognizes the C-terminal side of selenoprotein P.
  • antibody-bound gold colloid reagents were prepared as follows.
  • the antibody was diluted with 10 mM 2- [4- (2-hydroxyethyl) -1-piperazinyl] ethanesulfonic acid (hereinafter “HEPES”) buffer (pH 7.1) containing 0.05 w / v% sodium azide.
  • HEPES 2- [4- (2-hydroxyethyl) -1-piperazinyl] ethanesulfonic acid
  • colloidal gold reagent AH5 and colloidal gold reagent AA3 were used as colloidal gold reagent 1 and colloidal gold reagent 2, respectively.
  • FL-SeP measurement system For measurement of full-length SeP (“FL-SeP”), measurement using gold colloid particles bound with antibodies recognizing the N-terminal side of selenoprotein P and gold colloid particles bound with antibodies recognizing the C-terminal side A system was designed (also referred to herein as “FL-SeP measurement system”). In the FL-SeP measurement system, only FL-SeP can participate in the agglutination reaction.
  • Purified SeP (FL-SeP) was purified from human plasma as described in the literature ⁇ Saito, Y. et al., J. Biol. Chem. (1999) 274, 2866-2871 ⁇ .
  • the purified SeP was added to a standard matrix (3 w / v) at concentrations of 0.0 ⁇ g / mL, 0.75 ⁇ g / mL, 1.5 ⁇ g / mL, 3.0 ⁇ g / mL, 6.0 ⁇ g / mL, and 9.0 ⁇ g / mL, respectively.
  • FL-SeP standard solution prepared in 50 mM 2- [bis (2-hydroxyethyl) amino] -2- (hydroxymethyl) propane-1,3-diol buffer (pH 6.5)) containing% BSA did. 170 ⁇ L of the FL-SeP measurement reagent of Preparation Example 3 is dispensed into 3 ⁇ L of the obtained FL-SeP standard solution, heated at 37 ° C. for about 5 minutes, and then gold colloid reagent 1 and gold colloid reagent 2 are added. 85 ⁇ L of the mixture was dispensed and reacted at 37 ° C.
  • the obtained reaction solution was subjected to a Hitachi 7070 automatic analyzer, and the change in absorbance from the photometry point 18 to 31 was measured at a main wavelength of 505 nm and a sub wavelength of 660 nm, and the change in absorbance at 505 nm was changed to the change in absorbance at 660 nm.
  • the value obtained by adding the absolute value was determined and used as the amount of change in absorbance.
  • a calibration curve showing the relationship between the SeP concentration and the amount of change in absorbance in the FL-SeP measurement system was prepared (see FIG. 2).
  • Type 2 diabetics 79 patients were assigned to DPP4 inhibitor Alogliptin (Neshina TM) 25 mg / after breakfast oral group with metformin hydrochloride (Metoguruko ®) 1,000 mg / breakfast and after dinner oral group randomly. At the discretion of the attending physician, it was possible to increase the amount of Metogluco up to 2,250 mg / day. Changes in blood glucose levels and HbA1c (hemoglobin, A1 sea) levels before and after oral administration of each therapeutic drug for 3 months are measured by a method known per se, and changes in serum selenoprotein P levels are measured by the methods described below. did.
  • Serum 3 ⁇ L obtained from 79 patients with type 2 diabetes by a method known per se is subjected to the FL-SeP measurement system described in Example 1, and the seleno in the serum is obtained with reference to a calibration curve (see FIG. 2). Protein P value was measured.
  • FIG. 3 shows changes in blood glucose level and changes in HbA1c value in the metformin administration group.
  • the SeP level lowering degree and the blood glucose level lowering degree and the SeP level lowering degree and the HbA1c level lowering degree for three months tended to correlate.
  • the blood glucose level tended to improve well in cases where the SeP level decreased well.
  • FIG. 4 shows changes in blood glucose level and changes in HbA1c value in the DPP4 inhibitor administration group.
  • the SeP value lowering degree and the blood sugar level lowering degree and the SeP value lowering degree and the HbA1c lowering degree for three months were not correlated.
  • FIG. 5 shows changes in SeP values in the metformin administration group and the DPP4 inhibitor administration group.
  • the SeP value before administration correlated with the degree of decrease in SeP value for 3 months after administration.
  • the SeP value before administration did not correlate with the degree of decrease in SeP value for 3 months after administration. That is, in cases where the SeP value before the start of treatment was high, the SeP value was further reduced by administration of metformin.
  • FIG. 6 shows changes in blood glucose levels in the metformin administration group and the DPP4 inhibitor administration group.
  • the SeP value before administration correlated with the blood glucose level decrease for 3 months after administration.
  • the SeP level before administration did not correlate with the degree of blood glucose decrease for 3 months after administration. That is, the blood SeP value before administration of the therapeutic agent was able to predict the blood glucose level lowering level only after metformin administration.
  • FIG. 7 shows changes in the SeP value in cases where the pre-administration SeP value in the metformin administration group was high (4.55 ⁇ g / mL or more). As is clear from the graph shown in FIG. 7, the blood SeP value was significantly reduced by administration of metformin for 3 months.
  • SeP value distribution in the serum of type 2 diabetic patients before treatment is shown in FIG. From the distribution chart shown in FIG. 8, 4.1 ⁇ g / mL, which is higher than the median, was selected as the cutoff value.
  • FIG. 9 shows changes in blood glucose levels in the metformin administration group and the DPP4 inhibitor administration group in cases with a selected cutoff value of 4.1 ⁇ g / mL or more. As is apparent from the results of the graph shown in FIG. 9, the blood glucose level was significantly improved in the metformin administration group.
  • the SeP value in the serum of type 2 diabetic patients before treatment is 4.5 ⁇ g / mL or more, for example, 4.5 ⁇ g / mL to 6.0 ⁇ g / mL, more preferably 4.5 ⁇ g / mL to 5.5 ⁇ g / mL, most preferably In the case of 4.5 ⁇ g / mL to 5.0 ⁇ g / mL, it was confirmed that metformin administration improved blood glucose levels (diabetes treatment effect).
  • metformin administration improves blood glucose level, improves HbA1c level, and decreases blood SeP level. Furthermore, it can be predicted that there is the effectiveness of diabetes treatment.
  • metformin administration is selected. Providing methods, testing methods and treatment methods.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 The present invention addresses the problem of providing a method for assisting in selection of a therapeutic drug for a type-2 diabetes patient, a method for predicting the effect of a therapeutic drug, an inspection method, and a treatment method. The inventors discovered that the effect of administering metformin is high when the selenoprotein P value is higher than a cutoff value in a specimen (particularly blood) originating from a type-2 diabetes patient, and thereby developed the present invention.

Description

2型糖尿病患者の治療薬選択の補助方法、治療薬の効果予測方法、検査方法及び治療方法Method for assisting selection of therapeutic agent for type 2 diabetes patient, method for predicting effect of therapeutic agent, test method, and therapeutic method
 本発明は、2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩投与を選択することを特徴とする2型糖尿病の治療薬選択の補助方法、治療薬の効果予測方法、検査方法及び治療方法に関する。
 本出願は、参照によりここに援用されるところの日本出願、特願2014-184499号優先権を請求する。
The present invention relates to a method for assisting selection of a therapeutic agent for type 2 diabetes, which comprises selecting metformin hydrochloride administration when a selenoprotein P value is higher than a cutoff value in a specimen derived from a type 2 diabetes patient The present invention relates to a method for predicting an effect of a therapeutic agent, a test method, and a treatment method.
This application claims the priority of Japanese Patent Application No. 2014-184499, which is incorporated herein by reference.
(2型糖尿病)
 世界規模で増加し続ける2型糖尿病は、網膜・腎・神経の合併症や虚血性心疾患等の動脈硬化性疾患を促進することで人類のQOLと生命を脅かしており、その新たな治療法の開発は急務である。肝臓は、糖・脂質代謝の主役を担うだけではなく、血管新生因子をはじめとする各種生理活性物質の生体内最大の産生臓器である。2型糖尿病では、インスリンによる肝臓からの糖放出抑制作用は減弱しており、この現象はインスリン抵抗性と呼ばれる。インスリン抵抗性は、肝臓からの糖放出亢進による高血糖及び脂質の産生亢進による高脂血症をもたらし、動脈硬化性疾患を促進する。さらに肝臓は、動脈硬化のリスクにつながる血管新生因子をはじめとする各種生理活性物質の生体内最大の産生臓器である(参照:特許文献1)。
(Type 2 diabetes)
Type 2 diabetes, which continues to increase on a global scale, threatens human QOL and life by promoting arteriosclerotic diseases such as retinal, renal and neurological complications and ischemic heart disease. The development of is urgent. The liver not only plays a major role in glucose and lipid metabolism, but is the largest organ in the body of various biologically active substances including angiogenic factors. In type 2 diabetes, the action of insulin to suppress sugar release from the liver is attenuated, and this phenomenon is called insulin resistance. Insulin resistance leads to hyperglycemia due to increased glucose release from the liver and hyperlipidemia due to increased lipid production, and promotes arteriosclerotic diseases. Furthermore, the liver is the largest producing organ in vivo of various physiologically active substances including angiogenic factors that lead to the risk of arteriosclerosis (see: Patent Document 1).
(セレノプロテインP(SeP))
 セレノプロテインP(SeP)は、セレンを豊富に含む細胞外タンパク質であり、血漿セレンの53%を占める主要なセレノプロテインである。SePについて6種のモノクローナル抗体(BD1、BD3、BF2、AE2、AH5及びAA3)が知られ、SeP測定法として、2種のモノクローナル抗体を用いた酵素結合免疫吸着法(ELISA)が開発されている。SePは、血漿カリクレインでの分解を受けることにより、N末端側フラグメント及びC末端側フラグメントを生じ、上記の6種のモノクローナル抗体のうち、BD1、BD3、BF2、AE2及びAH5はN末端側フラグメントに対して特異的に反応し、AA3はC末端側フラグメントに対して特異的に反応する。AA3を用いたウェスタンブロット分析で確認されているように、血漿中には、SePの全長タンパク質と、血漿カリクレインでの分解による切断で生じたフラグメントタンパク質とが存在し得る。臨床研究の促進のために、生体内における血漿カリクレインによるSePの分解の有無又は程度が簡便に測定できる方法が求められている(参照:特許文献2)。
(Selenoprotein P (SeP))
Selenoprotein P (SeP) is an extracellular protein rich in selenium and is the major selenoprotein that accounts for 53% of plasma selenium. Six types of monoclonal antibodies (BD1, BD3, BF2, AE2, AH5, and AA3) are known for SeP, and an enzyme-linked immunosorbent assay (ELISA) using two types of monoclonal antibodies has been developed as a method for measuring SeP. . SeP undergoes degradation with plasma kallikrein to produce N-terminal and C-terminal fragments, and among the above six monoclonal antibodies, BD1, BD3, BF2, AE2 and AH5 become N-terminal fragments. In contrast, AA3 reacts specifically with the C-terminal fragment. As confirmed by Western blot analysis using AA3, in plasma, there may be a full-length protein of SeP and a fragment protein produced by cleavage by degradation with plasma kallikrein. In order to promote clinical research, there is a need for a method that can easily measure the presence or degree of SeP degradation by plasma kallikrein in vivo (see: Patent Document 2).
(先行特許文献)
 特許文献1は、「セレノプロテインPを測定することを含む、2型糖尿病の検出方法」を開示している。しかし、特許文献1は、「セレノプロテインP値を指標として2型糖尿病の治療薬を選択する方法」を開示又は示唆をしていない。
 特許文献2は、「検体中の被測定物質(セレノプロテインP)の長鎖型及び短鎖型を分別して測定する方法は、(a)該検体と、該長鎖型及び該短鎖型に結合し得る第1の特異的結合物質が結合した微小粒子及び該長鎖型に結合し得るが該短鎖型に結合しない第2の特異的結合物質が結合した微小粒子とを混合し、該微小粒子の凝集反応を測定する工程;(b)該検体と、異なる認識部位で該長鎖型及び該短鎖型に結合し得る、第3の特異的結合物質が結合した微小粒子及び第4の特異的結合物質が結合した微小粒子とを混合し、該微小粒子の凝集反応を測定する工程;(c)該(a)の測定値を用いて該長鎖型の量を決定する工程;及び(d)該(b)の測定値から該(a)の測定値を差し引いた値を用いて該短鎖型の量を決定する工程を含む。」を開示している。しかし、特許文献2は、「セレノプロテインP値を指標として2型糖尿病の治療薬を選択する方法」を開示又は示唆をしていない。
(Prior Patent Literature)
Patent Document 1 discloses “a method for detecting type 2 diabetes, including measuring selenoprotein P”. However, Patent Document 1 does not disclose or suggest a “method for selecting a therapeutic agent for type 2 diabetes using selenoprotein P value as an index”.
Patent Document 2 states that “a method for separately measuring a long-chain type and a short-chain type of a substance to be measured (selenoprotein P) in a sample includes (a) the sample, the long-chain type, and the short-chain type. Mixing microparticles bound to a first specific binding substance capable of binding and microparticles bound to a second specific binding substance that can bind to the long chain type but not to the short chain type, and A step of measuring an agglutination reaction of microparticles; (b) a microparticle having a third specific binding substance bound to the specimen, and a third specific binding substance capable of binding to the long chain type and the short chain type at different recognition sites; A step of mixing the microparticles bound with the specific binding substance and measuring the aggregation reaction of the microparticles; (c) determining the amount of the long chain type using the measurement value of (a); And (d) determining the amount of the short chain using a value obtained by subtracting the measured value of (a) from the measured value of (b). Is disclosed. However, Patent Document 2 does not disclose or suggest a “method for selecting a therapeutic agent for type 2 diabetes using selenoprotein P value as an index”.
(非特許文献)
 非特許文献1は、「セレノプロテインP発現は、メトホルミン投与治療により抑制されるが、AMPK阻害剤又はFoxO3a siRNAの共投与によりこの抑制は阻害される。メトホルミンは、AMPK阻害剤/FoxO3a パスウェイを介して、セレノプロテインP発現を抑制している。」を開示している。しかし、非特許文献1は、「セレノプロテインP値を指標として2型糖尿病の治療薬を選択する方法」を開示又は示唆をしていない。
(Non-patent literature)
Non-Patent Document 1 states that “selenoprotein P expression is suppressed by treatment with metformin, but this suppression is inhibited by co-administration of an AMPK inhibitor or FoxO3a siRNA. Metformin is mediated through an AMPK inhibitor / FoxO3a pathway. In other words, the expression of selenoprotein P is suppressed. " However, Non-Patent Document 1 does not disclose or suggest a “method for selecting a therapeutic agent for type 2 diabetes using selenoprotein P value as an index”.
国際公開2008/013324号公報International Publication No. 2008/013324 特開2014-52338号公報JP 2014-52338 A
 2型糖尿病治療において、メトホルミンを第一選択治療薬とするかDPP4(ジペプチジルペプチターゼ-4)阻害薬を第一選択治療薬とするかは主治医の裁量に委ねられている。しかし、2型糖尿病患者は、選択する治療薬により治療反応性の個人差が大きく、効果がない症例も多数存在する。
 メトホルミンは、低血糖にほとんどならず、寿命延長のエビデンスが存在する。しかし、メトホルミンは、抗がん作用、消化管副作用(下痢、食欲低下)等も報告されており、治療反応性にかなりの個人差がある。
 また、DPP4阻害薬は、インスリン分泌刺激効果があり、やはり血糖値降下作用に個人差があることが報告されている。
 以上により、メトホルミンを第一選択治療薬とするかDPP4阻害薬を第一選択治療薬とするかを客観的に判断できる方法の要望があった。
 すなわち、本発明は、2型糖尿病患者の治療薬選択の補助方法、治療薬の効果予測方法、検査方法及び治療方法を提供することを課題とする。
In the treatment of type 2 diabetes, it is left to the discretion of the attending physician whether metformin is the first-line treatment or a DPP4 (dipeptidyl peptidase-4) inhibitor is the first-line treatment. However, patients with type 2 diabetes have large individual differences in treatment responsiveness depending on the therapeutic agent to be selected, and there are many cases in which there is no effect.
Metformin has little evidence of hypoglycemia, and there is evidence of life extension. However, metformin has been reported to have anticancer effects, gastrointestinal side effects (diarrhea, decreased appetite), and the like, and there are considerable individual differences in treatment response.
In addition, it has been reported that DPP4 inhibitors have an effect of stimulating insulin secretion and there are individual differences in blood glucose lowering action.
Based on the above, there has been a demand for a method that can objectively determine whether metformin is a first-line treatment or a DPP4 inhibitor is a first-line treatment.
That is, an object of the present invention is to provide a method for assisting selection of a therapeutic drug for type 2 diabetes patients, a method for predicting the effect of the therapeutic drug, a test method, and a therapeutic method.
 本発明者等は、上記課題を解決すべく、「2型糖尿病患者由来の検体(特に、血液)において、セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン投与の効果が高いこと」を見出し、本発明を完成した。 In order to solve the above-mentioned problems, the present inventors have described that “in specimens (especially blood) derived from type 2 diabetes, the effect of metformin administration is high when the selenoprotein P value is higher than the cutoff value. And the present invention has been completed.
 すなわち、本発明は以下からなる。
 1.2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩投与を選択することを特徴とする2型糖尿病の治療薬選択の補助方法。
 2.前記検体が、血液である前項1に記載の治療薬選択の補助方法。
 3.前記カットオフ値が、3.5μg/mL~4.7μg/mLである前項1又は2に記載の治療薬選択の補助方法。
 4.2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩投与が有効であると判断することを特徴とする2型糖尿病の治療効果を予測する方法。
 5.前記検体が、血液である前項4に記載の治療効果を予測する方法。
 6.前記カットオフ値が、4.5μg/mL以上である前項4又は5に記載の治療効果を予測する方法。
 7.2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩投与を選択することを特徴とする2型糖尿病の治療薬選択のための2型糖尿病患者由来の検体の検査方法。
 8.前記検体が、血液である前項7に記載の検査方法。
 9.前記カットオフ値が、3.5μg/mL~4.7μg/mLである前項7又は8に記載の検査方法。
 10.以下の工程を含む2型糖尿病の治療方法:
 (1)2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高いかどうかを判定する工程;及び
 (2)セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩を該患者に投与する工程。
 11.前記カットオフ値が、3.5μg/mL~4.7μg/mLである前項10に記載の治療方法。
That is, this invention consists of the following.
1.2 A method for assisting selection of a therapeutic agent for type 2 diabetes, wherein in a specimen derived from a type 2 diabetes patient, metformin hydrochloride administration is selected when the selenoprotein P value is higher than the cutoff value.
2. 2. The method for assisting selection of a therapeutic agent according to item 1, wherein the specimen is blood.
3. 3. The method for assisting selection of a therapeutic agent according to item 1 or 2, wherein the cutoff value is 3.5 μg / mL to 4.7 μg / mL.
4. Predicting the therapeutic effect of type 2 diabetes, characterized in that metformin hydrochloride administration is judged to be effective when the selenoprotein P value is higher than the cut-off value in specimens derived from type 2 diabetes patients how to.
5. 5. The method for predicting a therapeutic effect according to item 4, wherein the specimen is blood.
6). 6. The method for predicting a therapeutic effect according to item 4 or 5, wherein the cut-off value is 4.5 μg / mL or more.
7. Type 2 for selecting a therapeutic agent for type 2 diabetes, characterized by selecting metformin hydrochloride administration when the selenoprotein P value is higher than the cut-off value in a sample derived from a type 2 diabetes patient A method for testing specimens from diabetic patients.
8). 8. The inspection method according to item 7, wherein the specimen is blood.
9. 9. The inspection method according to item 7 or 8, wherein the cutoff value is 3.5 μg / mL to 4.7 μg / mL.
10. A method for treating type 2 diabetes comprising the following steps:
(1) a step of determining whether a selenoprotein P value is higher than a cut-off value in a sample derived from a type 2 diabetes patient; and (2) metformin if the selenoprotein P value is higher than a cut-off value. Administering hydrochloride to the patient.
11. The treatment method according to item 10, wherein the cut-off value is 3.5 μg / mL to 4.7 μg / mL.
 本発明は、2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン投与を選択することを特徴とする2型糖尿病の治療薬選択の補助方法、治療薬の効果予測方法、検査方法及び治療方法を提供することができる。
 これにより、メトホルミン投与の治療効果を投与前に予測することが可能になり、メトホルミン投与の効果が期待される2型糖尿病患者には早期からメトホルミンを投与することにより、高い治療効果を得ることができる。
The present invention relates to a method for assisting selection of a therapeutic agent for type 2 diabetes, which comprises selecting metformin administration when a selenoprotein P value is higher than a cut-off value in a specimen derived from a type 2 diabetes patient. A drug effect prediction method, a test method, and a treatment method can be provided.
As a result, the therapeutic effect of metformin administration can be predicted before administration, and a high therapeutic effect can be obtained by administering metformin from an early stage to patients with type 2 diabetes who are expected to have an effect of metformin administration. it can.
血漿カリクレインによるセレノプロテインP(SeP)の切断を示す模式図。Schematic diagram showing cleavage of selenoprotein P (SeP) by plasma kallikrein. FL-SeP測定系におけるSeP濃度と吸光度変化量との関係を示すグラフ(検量線)。縦軸は、吸光度変化量を表し、横軸はSeP濃度(μg/mL)を示す。A graph (calibration curve) showing the relationship between the SeP concentration and the amount of change in absorbance in the FL-SeP measurement system. The vertical axis represents the amount of change in absorbance, and the horizontal axis represents the SeP concentration (μg / mL). メトホルミン投与群での血糖値の変化及びHbA1c値の変化を示すグラフ(ピアソンの積率相関係数を使用)。The graph which shows the change of a blood glucose level in a metformin administration group, and the change of a HbA1c value (using the Pearson product-moment correlation coefficient). DPP4阻害薬投与群での血糖値の変化及びHbA1c値の変化を示すグラフ(ピアソンの積率相関係数を使用)。The graph which shows the change of the blood glucose level in a DPP4 inhibitor administration group, and the change of a HbA1c value (using the Pearson product-moment correlation coefficient). メトホルミン投与群及びDPP4阻害薬投与群でのセレノプロテインP値の変化を示すグラフ(ピアソンの積率相関係数を使用)。The graph which shows the change of the selenoprotein P value in a metformin administration group and a DPP4 inhibitor administration group (using the Pearson product-moment correlation coefficient). メトホルミン投与群及びDPP4阻害薬投与群での血糖値の変化(ピアソンの積率相関係数を使用)。Changes in blood glucose levels in the metformin administration group and the DPP4 inhibitor administration group (using Pearson product moment correlation coefficient). メトホルミン投与群での投与前SeP値が高値(4.55μg/mL以上)の症例でのセレノプロテインP値の変化。Change in selenoprotein P level in patients with high pre-dose SeP level (4.55 μg / mL or more) in the metformin group. 治療前の2型糖尿患者の血清中のセレノプロテインP値の分布図。Distribution map of selenoprotein P level in serum of type 2 diabetic patients before treatment. 選択したカットオフ値以上の症例でのメトホルミン投与群及びDPP4阻害薬投与群での血糖値の変化。Changes in blood glucose levels in the metformin administration group and the DPP4 inhibitor administration group in cases with a selected cut-off value or higher.
 本発明は、「2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩投与を選択することを特徴とする2型糖尿病の治療薬選択の補助方法」、「2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩投与が有効であると判断することを特徴とする治療効果を予測する方法」、「2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩投与を選択することを特徴とする2型糖尿病の治療薬選択のための2型糖尿病患者由来の検体の検査方法」及び「2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩を該患者に投与することを特徴とする治療方法」である。以下に詳細に説明する。 According to the present invention, “in a specimen derived from a type 2 diabetes patient, when the selenoprotein P value is higher than the cut-off value, the administration of metformin hydrochloride is selected. Method "," Method for predicting therapeutic effect, characterized in that metformin hydrochloride administration is judged to be effective when the selenoprotein P value is higher than the cut-off value in a specimen derived from a type 2 diabetic patient " “In a specimen derived from a type 2 diabetic patient, if the selenoprotein P value is higher than the cut-off value, the administration of metformin hydrochloride is selected. Method for testing specimens from type 2 diabetic patients "and" In the case of specimens from type 2 diabetic patients, if the selenoprotein P value is higher than the cutoff value, metformin A therapeutic method comprising administering hydrochloride to the patient. This will be described in detail below.
(2型糖尿病の治療薬選択の補助方法)
 本発明の2型糖尿病の治療薬選択の補助方法は、以下の工程を含む。
 (1)2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高いかどうかを判定する工程。
 (2)セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩投与を選択することを判定する工程。
(Assistive method for selection of treatment for type 2 diabetes)
The method for assisting selection of a therapeutic agent for type 2 diabetes according to the present invention includes the following steps.
(1) A step of determining whether a selenoprotein P value is higher than a cutoff value in a sample derived from a type 2 diabetes patient.
(2) A step of determining that metformin hydrochloride administration is selected when the selenoprotein P value is higher than the cutoff value.
(2型糖尿病のメトホルミン塩酸塩投与の治療効果を予測する方法)
 本発明の2型糖尿病のメトホルミン塩酸塩投与の治療効果を予測する方法は、以下の工程を含む。
 (1)2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高いかどうかを判定する工程。
 (2)セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩投与が有効であると判定する工程。
 なお、「有効」とは、メトホルミン塩酸塩投与により、血糖値改善、HbA1c値改善、血液中のSeP値低下、及び/又は糖尿病治療の効果があることを意味する。
(Method for predicting the therapeutic effect of metformin hydrochloride administration on type 2 diabetes)
The method for predicting the therapeutic effect of metformin hydrochloride administration of type 2 diabetes according to the present invention includes the following steps.
(1) A step of determining whether a selenoprotein P value is higher than a cutoff value in a sample derived from a type 2 diabetes patient.
(2) A step of determining that metformin hydrochloride administration is effective when the selenoprotein P value is higher than the cut-off value.
“Effective” means that administration of metformin hydrochloride has an effect of improving blood glucose level, improving HbA1c level, lowering SeP level in blood, and / or treating diabetes.
(2型糖尿病の治療薬選択のための2型糖尿病患者由来の検体の検査方法)
 本発明の2型糖尿病の治療薬選択のための2型糖尿病患者由来の検体の検査方法は、以下の工程を含む。
 (1)2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高いかどうかを判定する工程。
 (2)セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩投与を選択することを判定する工程。
(Test method for specimens from patients with type 2 diabetes to select therapeutic agents for type 2 diabetes)
The method for examining a specimen derived from a type 2 diabetes patient for selecting a therapeutic agent for type 2 diabetes according to the present invention includes the following steps.
(1) A step of determining whether a selenoprotein P value is higher than a cutoff value in a sample derived from a type 2 diabetes patient.
(2) A step of determining that metformin hydrochloride administration is selected when the selenoprotein P value is higher than the cutoff value.
(2型糖尿病の治療方法)
 本発明の2型糖尿病の治療方法は、以下の工程を含む。
 (1)2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高いかどうかを判定する工程。
 (2)セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩を該患者に投与する工程。
 さらに、必要に応じて、以下の工程を含む。
 (3)メトホルミン塩酸塩投与により患者の症状が改善しない場合には、DPP4阻害薬投与に変更する工程又はDPP4阻害薬を併用する工程。
(Method for treating type 2 diabetes)
The method for treating type 2 diabetes according to the present invention includes the following steps.
(1) A step of determining whether a selenoprotein P value is higher than a cutoff value in a sample derived from a type 2 diabetes patient.
(2) A step of administering metformin hydrochloride to the patient when the selenoprotein P value is higher than the cutoff value.
Furthermore, the following processes are included as needed.
(3) A step of changing to DPP4 inhibitor administration or a combination of DPP4 inhibitor when metformin hydrochloride administration does not improve patient symptoms.
(検体)
 本発明の検体は、2型糖尿病患者由来でありかつセレノプロテインPが存在していれば特に限定されない。例えば、全血、血液(末梢単核球)、血清、血漿、尿、髄液、腹水、リンパ液、肝臓由来液、乳汁等が挙げられる。特に、末梢単核球、血清等が採取等の取り扱いが容易で、侵襲性が低いという点で最も好ましい。2型糖尿病患者からサンプルを取得する方法は、特に限定されず、自体公知の方法を利用することができる。
(Sample)
The specimen of the present invention is not particularly limited as long as it is derived from a type 2 diabetic patient and selenoprotein P is present. Examples thereof include whole blood, blood (peripheral mononuclear cells), serum, plasma, urine, cerebrospinal fluid, ascites, lymph, liver-derived fluid, and milk. In particular, peripheral mononuclear cells, serum and the like are most preferable in terms of easy handling such as collection and low invasiveness. The method for obtaining a sample from a type 2 diabetes patient is not particularly limited, and a method known per se can be used.
(セレノプロテインP)
 セレノプロテインP(SeP)は、セレノシステインを10残基含むタンパク質である。セレノプロテインPは、過酸化水素や過酸化脂質を還元して無毒化し、また細胞内の酸化還元を制御するグルタチオンペルオキシダーゼ様活性を有する酵素として作用する。
 また、本発明者らは、セレノプロテインPは2型糖尿病の検出マーカーとなることを開示している(参照:特許文献1)。
 セレノプロテインPは、ヒト血清中に含まれており、文献「Saito Y.et al., J Biol chem 274:2866-2871, 1999」の記載の方法に従って、ヒト血清より単離・精製することができる。
 また、セレノプロテインP(SeP)は、血漿カリクレインにより切断される(参照:図1)。図1の上段図は、全長SePを表し、中段及び下段は血漿カリクレイン切断により生じるSePフラグメントを表す。図1中、「N」及び「C」はそれぞれ、N末端側及びC末端側を表し、「Sec」はセレノシステイン残基を表す。カリクレインは、235位のアルギニン(図1中「R235」)と236位のグルタミン(図1中「Q236」)との間、及び242位のアルギニン(図1中「R242」)と243位のアスパラギン酸(図1中「D243」)との間を切断し、SePのN末端側フラグメント(アミノ酸残基1~235)及びC末端側フラグメント(アミノ酸残基243~361)を含む3つのフラグメントを生じ得る(図1)。「長鎖型」は、未切断の全長SeP(アミノ酸残基1~361:本明細書においては「FL-SeP」と称する場合がある)であり、「短鎖型」は、切断で生じたSePフラグメント(本明細書においては「S-SeP」と称する場合がある)であり、SePフラグメントは、例えば、N末端側フラグメント(アミノ酸残基1~235)であり得る。
(Selenoprotein P)
Selenoprotein P (SeP) is a protein containing 10 residues of selenocysteine. Selenoprotein P acts as an enzyme having glutathione peroxidase-like activity that reduces hydrogen peroxide and lipid peroxide to detoxify and controls intracellular redox.
In addition, the present inventors have disclosed that selenoprotein P is a detection marker for type 2 diabetes (see: Patent Document 1).
Selenoprotein P is contained in human serum and can be isolated and purified from human serum according to the method described in the literature “Saito Y. et al., J Biol chem 274: 2866-2871, 1999”. it can.
Selenoprotein P (SeP) is cleaved by plasma kallikrein (see: FIG. 1). The upper part of FIG. 1 represents full-length SeP, and the middle and lower parts represent SeP fragments generated by plasma kallikrein cleavage. In FIG. 1, “N” and “C” represent the N-terminal side and the C-terminal side, respectively, and “Sec” represents a selenocysteine residue. Kallikrein consists of arginine at position 235 (“R235” in FIG. 1) and glutamine at position 236 (“Q236” in FIG. 1), and arginine at position 242 (“R242” in FIG. 1) and asparagine at position 243. Cleaves with the acid (“D243” in FIG. 1), resulting in three fragments including an N-terminal fragment of SeP (amino acid residues 1 to 235) and a C-terminal fragment (amino acid residues 243 to 361) Obtain (Figure 1). The “long chain type” is an uncut full length SeP (amino acid residues 1 to 361: sometimes referred to as “FL-SeP” in this specification), and the “short chain type” is generated by cleavage. It is a SeP fragment (sometimes referred to herein as “S-SeP”), and the SeP fragment can be, for example, an N-terminal fragment (amino acid residues 1 to 235).
(メトホルミン塩酸塩)
 メトホルミン塩酸塩(化学名:1,1-Dimethylbiguanide monohydrochloride)は、「メトグルコ錠」、「グリコラン錠」、「メトホルミン塩酸塩錠」、その他の販売名で、2型糖尿病治療薬として複数の製薬企業から販売されている(以下、販売名としては「メトグルコ錠」とする)。
 用法・用量は、通常、成人にはメトホルミン塩酸塩として1日500mgより開始し、1日2~3回に分割して食直前又は食後に経口投与する。維持量は、効果を観察しながら決めるが、通常1日750mg~1,500mgとする。なお、患者の状態により適宜増減するが、1日最高投与量は2,250mgまでである。
(Metformin hydrochloride)
Metformin hydrochloride (Chemical name: 1,1-Dimethylbiguanide monohydrochloride) is “Metgluco Tablets”, “Glycolane Tablets”, “Metformin Hydrochloride Tablets”, and other brand names from several pharmaceutical companies as a treatment for type 2 diabetes. It is sold (hereinafter referred to as “Metogluco Tablet”).
In general, for adults, for adults, start with metformin hydrochloride at 500 mg per day, orally in 2 to 3 divided doses, orally before or after a meal. The maintenance dose is determined while observing the effect, but is usually 750 mg to 1,500 mg per day. The dose may be adjusted according to the patient's condition, but the maximum daily dose is 2,250 mg.
(DPP4阻害薬)
 DPP4阻害薬は、糖尿病内服治療薬であり、DPP4(ジペプチジルペプチターゼ-4)酵素を阻害する薬を意味し、一般名であるシタグリプチン、ビルダグリプチン、アログリプチン、リナグリプチン、テネリグリプチン及びアナグリプチンが知られている。
 例えば、投与量及び投与時期は、以下を例示することができるが特に限定されない。
 ○シタグリプチン
 通常、成人にはシタグリプチンとして50mgを1日1 回経口投与する。なお、効果不十分な場合には、経過を十分に観察しながら100mgを1日1回まで増量することができる。
 ○ビルダグリプチン
 通常、成人には、ビルダグリプチンとして50mgを1日2回朝、夕に経口投与する。なお、患者の状態に応じて50mgを1日1回朝に投与することができる。
 ○アログリプチン
 通常、成人にはアログリプチンとして25mgを1日1回経口投与する、好ましくは朝食後に投与する。
 ○リナグリプチン
 通常、成人にはリナグリプチンとして5mgを1日1回経口投与する。
 ○テネリグリプチン
 通常、成人にはテネリグリプチンとして20mgを1日1回経口投与する。なお、効果不十分な場合には、経過を十分に観察しながら40mgを1日1回に増量することができる。
 ○アナグリプチン
 通常、成人にはアナグリプチンとして1回100mgを1日2回朝夕に経口投与する。なお、効果不十分な場合には、経過を十分に観察しながら1回量を200mgまで増量することができる。
(DPP4 inhibitor)
DPP4 inhibitor is an antidiabetic drug, which means a drug that inhibits the DPP4 (dipeptidyl peptidase-4) enzyme, and the generic names sitagliptin, vildagliptin, alogliptin, linagliptin, teneligliptin and anagliptin are known .
For example, the dosage and administration timing can be exemplified as follows, but are not particularly limited.
○ Sitagliptin Normally, for adults, 50 mg of sitagliptin is orally administered once a day. If the effect is insufficient, 100 mg can be increased once a day while observing the progress sufficiently.
○ Vildagliptin Usually, for adults, 50 mg of vildagliptin is orally administered twice a day in the morning and evening. Depending on the patient's condition, 50 mg can be administered once a day in the morning.
○ Alogliptin Usually, for adults, 25 mg of alogliptin is orally administered once a day, preferably after breakfast.
○ Linagliptin Usually, for adults, 5 mg of linagliptin is orally administered once a day.
○ Tenerigliptin Usually, for adults, 20 mg of tenerigliptin is orally administered once a day. If the effect is insufficient, 40 mg can be increased once a day while observing the progress sufficiently.
○ Anagliptin Normally, for adults, 100 mg of anagliptin is orally administered twice a day in the morning and evening. If the effect is insufficient, the single dose can be increased to 200 mg while observing the progress sufficiently.
(2型糖尿病患者の治療薬選択のためのカットオフ値)
 本発明の2型糖尿病患者の治療薬選択のためのカットオフ値の範囲は、検体中(特に血清中)において、下記実施例4より、3.5μg/mL~4.7μg/mL、好ましくは3.7μg/mL~4.5μg/mL、より好ましくは3.9μg/mL~4.3μg/mL、最も好ましくは約4.1μg/mLである。
(Cutoff value for selection of treatment for type 2 diabetes patients)
The range of the cut-off value for selecting a therapeutic agent for patients with type 2 diabetes according to the present invention is 3.5 μg / mL to 4.7 μg / mL, preferably 3.7 μg in the specimen (particularly serum) from Example 4 below. / mL to 4.5 μg / mL, more preferably 3.9 μg / mL to 4.3 μg / mL, and most preferably about 4.1 μg / mL.
(メトホルミン塩酸塩投与が有効であると判断するためのカットオフ値)
 本発明のメトホルミン塩酸塩投与が有効であると判断するためのカットオフ値の範囲は、検体中(特に血清中)において、下記実施例3より、4.5μg/mL以上、例えば、4.5μg/mL~6.0μg/mL、より好ましくは4.5μg/mL~5.5μg/mL、最も好ましくは4.5μg/mL~5.0μg/mLである。なお、メトホルミン塩酸塩投与が有効であったとの一つの指標は、血中のセレノプロテインP値が有意に低下したことである。
(Cutoff value for determining that metformin hydrochloride administration is effective)
The range of the cut-off value for judging that the administration of metformin hydrochloride of the present invention is effective is 4.5 μg / mL or more, for example, 4.5 μg / mL in the sample (particularly in serum) from Example 3 below. It is ˜6.0 μg / mL, more preferably 4.5 μg / mL to 5.5 μg / mL, and most preferably 4.5 μg / mL to 5.0 μg / mL. One indicator that metformin hydrochloride administration was effective is a significant decrease in blood selenoprotein P level.
(セレノプロテインP値の測定方法)
 本発明の2型糖尿病患者の治療薬選択の補助方法、治療薬の効果予測方法、検査方法及び治療方法におけるセレノプロテインP値の測定方法は特に限定されないが、セレノプロテインPを直接測定してもよいし、セレノプロテインPのmRNAを測定して、セレノプロテインP値を算出してもよい。
 セレノプロテインPを直接測定する方法として、セレノプロテインPを特異的に認識し結合する抗セレノプロテインP抗体を用いる免疫学的測定法により行うことができる。抗セレノプロテインP抗体は、公知の方法により作製することができる。免疫学的測定法としては、抗セレノプロテインP抗体を固相化した担体を用いる方法やウエスタンブロッティング等が挙げられる。固相化担体を用いる方法として、例えば、固相化マイクロタイタープレートを用いるELISA、固相化粒子を用いる凝集法等が挙げられるが、これらには限定されず、公知の免疫学的測定法を採用して、血中セレノプロテインPを測定することができる。
 また、セレノプロテインPのmRNAを測定する方法は、ノーザンブロッティング、RT-PCR法、DNAチップ(DNAマイクロアレイ)を利用した方法等により測定することができる。これらの方法も公知の方法で行うことができる。
(Measurement method of selenoprotein P value)
The method for assisting selection of a therapeutic agent for type 2 diabetes patients, the method for predicting the effect of a therapeutic agent, the method for measuring the selenoprotein P value in the test method and the therapeutic method of the present invention are not particularly limited. Alternatively, selenoprotein P mRNA may be calculated by measuring mRNA of selenoprotein P.
As a method of directly measuring selenoprotein P, it can be performed by an immunoassay using an anti-selenoprotein P antibody that specifically recognizes and binds to selenoprotein P. Anti-selenoprotein P antibody can be prepared by a known method. Examples of the immunological measurement method include a method using a carrier on which an anti-selenoprotein P antibody is immobilized, western blotting, and the like. Examples of the method using a solid-phase support include, but are not limited to, ELISA using a solid-phase microtiter plate, and an aggregation method using solid-phase particles. Adopted, blood selenoprotein P can be measured.
The selenoprotein P mRNA can be measured by Northern blotting, RT-PCR, a method using a DNA chip (DNA microarray), or the like. These methods can also be performed by a known method.
 セレノプロテインPの測定方法は、好ましくは、2種のモノクローナル抗体を用いた酵素結合免疫吸着法{参照:Saito, Y.ら,J. Health Sci. (2001) 47巻, 346~352頁}、下記実施例に示す金コロイドを使用した抗原抗体反応を用いた測定方法(参照:特許文献2)等が挙げられる。 The method for measuring selenoprotein P is preferably an enzyme-linked immunosorbent method using two types of monoclonal antibodies {Reference: Saito, Y. et al., J. Health Sci. (2001) 47, 346-352}, Examples thereof include a measurement method using an antigen-antibody reaction using a gold colloid shown in the following Examples (see Patent Document 2).
 以下に示す実施例によって本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、以下の症例は金沢大学医学倫理委員会の承認を得て、実施されている。 The present invention will be specifically described with reference to the following examples, but the present invention is not limited thereto. The following cases have been implemented with the approval of the Kanazawa University Medical Ethics Committee.
(検体中のセレノプロテインP値測定系の構築)
 検体のセレノプロテインP値を測定するための測定系を構築した。詳細は、以下の通りである。
(Construction of selenoprotein P level measurement system in specimen)
A measurement system for measuring the selenoprotein P value of the specimen was constructed. Details are as follows.
(調製例1:金コロイド液の調製)
 95℃の蒸留水1Lに10w/v%塩化金酸水溶液2mLを攪拌しながら加え、1分後に2w/v%クエン酸ナトリウム水溶液10mLを加え、さらに20分間攪拌した後、30℃に冷却した。冷却後、0.1w/v%炭酸カリウム水溶液でpH7.1に調節した。
(Preparation Example 1: Preparation of colloidal gold solution)
To 1 L of distilled water at 95 ° C., 2 mL of a 10 w / v% aqueous chloroauric acid solution was added with stirring, and after 1 minute, 10 mL of a 2 w / v% aqueous sodium citrate solution was added, stirred for another 20 minutes, and then cooled to 30 ° C. After cooling, the pH was adjusted to 7.1 with a 0.1 w / v% aqueous potassium carbonate solution.
(調製例2:各種抗セレノプロテインP抗体結合金コロイド試薬の調製)
 抗ヒトセレノプロテインPラットモノクローナル抗体AH5及びAA3は、文献{Saito, Y.ら,J. Health Sci. (2001) 47巻, 346~352頁}に記載の手順にしたがって得た。AH5は、セレノプロテインPのカリクレイン切断によって生じるセレノプロテインPのN末端側を認識するモノクローナル抗体であり、AA3は、セレノプロテインPのC末端側を認識するモノクローナル抗体である。
(Preparation Example 2: Preparation of various anti-selenoprotein P antibody-binding gold colloid reagents)
Anti-human selenoprotein P rat monoclonal antibodies AH5 and AA3 were obtained according to the procedure described in the literature {Saito, Y. et al., J. Health Sci. (2001) 47, 346-352}. AH5 is a monoclonal antibody that recognizes the N-terminal side of selenoprotein P generated by kallikrein cleavage of selenoprotein P, and AA3 is a monoclonal antibody that recognizes the C-terminal side of selenoprotein P.
 抗セレノプロテインPモノクローナル抗体AH5及びAA3について、抗体結合金コロイド試薬を以下のようにして調製した。抗体を、0.05w/v%アジ化ナトリウムを含む10mM 2-[4-(2-ヒドロキシエチル)-1-ピペラジニル]エタンスルホン酸(以下、「HEPES」)緩衝液(pH7.1)で希釈し、50μg/mLの濃度にした。得られた抗体溶液100mLを、調製例1で調製した約1Lの金コロイド液に加え、冷蔵下で2時間攪拌した。さらに、5.46w/v%マンニトール、0.5w/v%ウシ血清アルブミン(BSA)、及び0.05%アジ化ナトリウムを含む10mM HEPES緩衝液(pH7.1)を110mL添加し、37℃にて90分間攪拌した。次いで、8000rpmで40分間遠心分離し、上清を除去した。次いで、得られた沈殿物に、3w/v%マンニトール、0.1w/v%BSA、及び0.05w/v%アジ化ナトリウムを含む5mM HEPES緩衝液(pH7.5)(A溶液)を約1L加え、抗体結合金コロイド粒子を分散させた後、8000rpmで40分間遠心分離し、上清を除去した。さらに、沈殿物に、0.9%デキストラン硫酸ナトリウムを含むA溶液を加えて抗体結合金コロイド粒子を分散させ、全量を240mLとし、これを抗体結合金コロイド試薬として回収した。 For anti-selenoprotein P monoclonal antibodies AH5 and AA3, antibody-bound gold colloid reagents were prepared as follows. The antibody was diluted with 10 mM 2- [4- (2-hydroxyethyl) -1-piperazinyl] ethanesulfonic acid (hereinafter “HEPES”) buffer (pH 7.1) containing 0.05 w / v% sodium azide. To a concentration of 50 μg / mL. 100 mL of the obtained antibody solution was added to about 1 L of the gold colloid solution prepared in Preparation Example 1 and stirred for 2 hours under refrigeration. Further, 110 mL of 10 mM HEPES buffer (pH 7.1) containing 5.46 w / v% mannitol, 0.5 w / v% bovine serum albumin (BSA), and 0.05% sodium azide was added, and the temperature was changed to 37 ° C. And stirred for 90 minutes. Next, the mixture was centrifuged at 8000 rpm for 40 minutes, and the supernatant was removed. Next, about 5 mM HEPES buffer (pH 7.5) (A solution) containing 3 w / v% mannitol, 0.1 w / v% BSA, and 0.05 w / v% sodium azide was added to the resulting precipitate. 1 L was added to disperse the antibody-bound colloidal gold particles, followed by centrifugation at 8000 rpm for 40 minutes to remove the supernatant. Further, A solution containing 0.9% sodium dextran sulfate was added to the precipitate to disperse the antibody-bound gold colloidal particles to a total volume of 240 mL, which was recovered as an antibody-bound gold colloid reagent.
 AH5結合金コロイド試薬及びAA3結合金コロイド試薬を、それぞれ、金コロイド試薬1及び金コロイド試薬2とした。 The colloidal gold reagent AH5 and colloidal gold reagent AA3 were used as colloidal gold reagent 1 and colloidal gold reagent 2, respectively.
(調製例3:セレノプロテインP測定用試薬の調製)
 5w/v%塩化ナトリウム、1.0w/v%エチレンジアミン四酢酸二水素二ナトリウム二水和物、0.1w/v%アルキルフェニルジスルホン酸ナトリウム塩、及び0.5w/v%ポリオキシエチレンラウリルエーテルを含む0.25M 2-アミノ-2-ヒドロキシメチル-1,3-プロパンジオール塩酸緩衝液(pH7.8)に、ポリエチレングリコールを以下の「FL-SeP測定用」に、2.4w/v%になるように添加して、試薬を得た。
(Preparation Example 3: Preparation of selenoprotein P measurement reagent)
5 w / v% sodium chloride, 1.0 w / v% ethylenediaminetetraacetic acid dihydrogen disodium dihydrate, 0.1 w / v% alkylphenyl disulfonic acid sodium salt, and 0.5 w / v% polyoxyethylene lauryl ether 0.25M 2-amino-2-hydroxymethyl-1,3-propanediol hydrochloric acid buffer solution (pH 7.8) containing polyethylene glycol in an amount of 2.4 w / v% for the following “FL-SeP measurement” To obtain a reagent.
(FL-SeP測定系の設計)
 全長SeP(「FL-SeP」)量の測定のために、セレノプロテインPのN末端側を認識する抗体が結合した金コロイド粒子及びC末端側を認識する抗体が結合した金コロイド粒子を用いる測定系を設計した(本明細書において、「FL-SeP測定系」ともいう)。FL-SeP測定系では、FL-SePのみが凝集反応に関与し得る。
(Design of FL-SeP measurement system)
For measurement of full-length SeP ("FL-SeP"), measurement using gold colloid particles bound with antibodies recognizing the N-terminal side of selenoprotein P and gold colloid particles bound with antibodies recognizing the C-terminal side A system was designed (also referred to herein as “FL-SeP measurement system”). In the FL-SeP measurement system, only FL-SeP can participate in the agglutination reaction.
(FL-SeP測定系の検量線の作成)
 精製SeP(FL-SeP)を、文献{Saito, Y.ら,J. Biol. Chem. (1999) 274, 2866-2871}の記載にしたがってヒト血漿から精製した。
 該精製SePをそれぞれ0.0μg/mL、0.75μg/mL、1.5μg/mL、3.0μg/mL、6.0μg/mL、及び9.0μg/mLの濃度で標準マトリックス(3w/v%BSAを含む50mM 2-[ビス(2-ヒドロキシエチル)アミノ]-2-(ヒドロキシメチル)プロパン-1,3-ジオール緩衝液(pH6.5))中に含む、FL-SeP標準液を調製した。得られたFL-SeP標準液3μLに、調製例3のFL-SeP測定用試薬を170μL分注し、37℃にて約5分間加温し、次いで、金コロイド試薬1及び金コロイド試薬2を混合したものを85μL分注し、37℃にて反応させた。次いで、得られた反応溶液を日立7070自動分析装置に供し、主波長505nm及び副波長660nmで測光ポイント18から31の吸光度変化を測定し、660nmでの吸光度変化量に505nmでの吸光度変化量の絶対値を加えた値を求め、吸光度変化量とした。
 そして、FL-SeP測定系におけるSeP濃度と吸光度変化量との関係を示す検量線を作成した(参照:図2)。
(Preparation of calibration curve for FL-SeP measurement system)
Purified SeP (FL-SeP) was purified from human plasma as described in the literature {Saito, Y. et al., J. Biol. Chem. (1999) 274, 2866-2871}.
The purified SeP was added to a standard matrix (3 w / v) at concentrations of 0.0 μg / mL, 0.75 μg / mL, 1.5 μg / mL, 3.0 μg / mL, 6.0 μg / mL, and 9.0 μg / mL, respectively. FL-SeP standard solution prepared in 50 mM 2- [bis (2-hydroxyethyl) amino] -2- (hydroxymethyl) propane-1,3-diol buffer (pH 6.5)) containing% BSA did. 170 μL of the FL-SeP measurement reagent of Preparation Example 3 is dispensed into 3 μL of the obtained FL-SeP standard solution, heated at 37 ° C. for about 5 minutes, and then gold colloid reagent 1 and gold colloid reagent 2 are added. 85 μL of the mixture was dispensed and reacted at 37 ° C. Next, the obtained reaction solution was subjected to a Hitachi 7070 automatic analyzer, and the change in absorbance from the photometry point 18 to 31 was measured at a main wavelength of 505 nm and a sub wavelength of 660 nm, and the change in absorbance at 505 nm was changed to the change in absorbance at 660 nm. The value obtained by adding the absolute value was determined and used as the amount of change in absorbance.
A calibration curve showing the relationship between the SeP concentration and the amount of change in absorbance in the FL-SeP measurement system was prepared (see FIG. 2).
(2型糖尿患者の各治療薬投与)
 本実施例の2型糖尿患者の背景及び各治療薬投与方法は以下の通りである。
(Therapeutic drug administration for type 2 diabetes patients)
The background of patients with type 2 diabetes and the method of administering each therapeutic agent in this example are as follows.
(2型糖尿患者の背景)
 2型糖尿患者の背景は、以下の表の通りである。
(Background of type 2 diabetes patients)
The background of type 2 diabetes patients is shown in the table below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(2型糖尿患者の治療薬の投与方法)
 2型糖尿病患者79名をランダムにDPP4阻害薬アログリプチン(ネシーナ登録商標)25 mg/朝食後内服群とメトホルミン塩酸塩(メトグルコ登録商標)1,000 mg /朝食及び夕食後内服群に割り付けた。主治医の判断により、メトグルコは、最大2,250 mg/日まで増量可能とした。各治療薬の3か月間の内服の前後での血糖値及びHbA1c(ヘモグロビン・エイワンシー)値の変化を自体公知の方法により測定し、並びに、血清中セレノプロテインP値変化を下記記載の方法により測定した。
(Method of administration of therapeutic drugs for patients with type 2 diabetes)
Type 2 diabetics 79 patients were assigned to DPP4 inhibitor Alogliptin (Neshina TM) 25 mg / after breakfast oral group with metformin hydrochloride (Metoguruko ®) 1,000 mg / breakfast and after dinner oral group randomly. At the discretion of the attending physician, it was possible to increase the amount of Metogluco up to 2,250 mg / day. Changes in blood glucose levels and HbA1c (hemoglobin, A1 sea) levels before and after oral administration of each therapeutic drug for 3 months are measured by a method known per se, and changes in serum selenoprotein P levels are measured by the methods described below. did.
 2型糖尿病患者79名から自体公知の方法で得られた血清3μLを実施例1に記載のFL-SeP測定系に供して、検量線(参照:図2)を参照して、血清中のセレノプロテインP値を測定した。 Serum 3 μL obtained from 79 patients with type 2 diabetes by a method known per se is subjected to the FL-SeP measurement system described in Example 1, and the seleno in the serum is obtained with reference to a calibration curve (see FIG. 2). Protein P value was measured.
(2型糖尿患者の検体のセレノプロテインP値の解析)
 実施例2で得られた各治療薬の3か月間の内服の前後での血糖値の変化、HbA1c値の変化及び血清中セレノプロテインP値変化を解析した。詳細は、以下の通りである。
(Analysis of selenoprotein P value in specimens of patients with type 2 diabetes)
The change in blood glucose level, the change in HbA1c value, and the change in serum selenoprotein P value were analyzed before and after oral administration of each therapeutic drug obtained in Example 2 for 3 months. Details are as follows.
(メトホルミン投与群での血糖値の変化及びHbA1c値の変化)
 メトホルミン投与群での血糖値の変化及びHbA1c値の変化を図3に示す。図3に記載のグラフから明らかなように、メトホルミン群では3か月間のSeP値低下度と血糖値降下度並びにSeP値低下度とHbA1c値降下度は相関する傾向にあった。さらに、メトホルミン群では、SeP値がよく低下した症例では、血糖値もよく改善する傾向があった。
(Changes in blood glucose levels and changes in HbA1c levels in the metformin administration group)
FIG. 3 shows changes in blood glucose level and changes in HbA1c value in the metformin administration group. As is apparent from the graph shown in FIG. 3, in the metformin group, the SeP level lowering degree and the blood glucose level lowering degree and the SeP level lowering degree and the HbA1c level lowering degree for three months tended to correlate. Furthermore, in the metformin group, the blood glucose level tended to improve well in cases where the SeP level decreased well.
(DPP4阻害薬投与群での血糖値の変化及びHbA1c値の変化)
 DPP4阻害薬投与群での血糖値の変化及びHbA1c値の変化を図4に示す。図4に記載のグラフから明らかなように、DPP4阻害薬投与群では、3か月間のSeP値低下度と血糖値降下度並びにSeP値低下度とHbA1c値降下度は相関しなかった。
(Change in blood glucose level and change in HbA1c level in the DPP4 inhibitor administration group)
FIG. 4 shows changes in blood glucose level and changes in HbA1c value in the DPP4 inhibitor administration group. As is clear from the graph shown in FIG. 4, in the DPP4 inhibitor administration group, the SeP value lowering degree and the blood sugar level lowering degree and the SeP value lowering degree and the HbA1c lowering degree for three months were not correlated.
(メトホルミン投与群及びDPP4阻害薬投与群でのセレノプロテインP値の変化)
 メトホルミン投与群及びDPP4阻害薬投与群でのSeP値の変化を図5に示す。図5に記載のグラフから明らかなように、メトホルミン投与群では、投与前のSeP値と投与後3か月間のSeP値低下度は相関した。しかし、DPP4阻害薬投与群では、投与前のSeP値と投与後3か月間のSeP値低下度は相関しなかった。すなわち、治療開始前のSeP値が高値症例では、メトホルミン投与によりSeP値をより低下させた。
(Changes in selenoprotein P levels in the metformin administration group and the DPP4 inhibitor administration group)
FIG. 5 shows changes in SeP values in the metformin administration group and the DPP4 inhibitor administration group. As is apparent from the graph shown in FIG. 5, in the metformin administration group, the SeP value before administration correlated with the degree of decrease in SeP value for 3 months after administration. However, in the DPP4 inhibitor administration group, the SeP value before administration did not correlate with the degree of decrease in SeP value for 3 months after administration. That is, in cases where the SeP value before the start of treatment was high, the SeP value was further reduced by administration of metformin.
(メトホルミン投与群及びDPP4阻害薬投与群での血糖値の変化)
 メトホルミン投与群及びDPP4阻害薬投与群での血糖値の変化を図6に示す。図6に記載のグラフから明らかなように、メトホルミン投与群では、投与前のSeP値と投与後3か月間の血糖値低下度は相関した。しかし、DPP4阻害薬投与群では、投与前のSeP値と投与後3か月間の血糖値低下度は相関しなかった。すなわち、治療薬投与前の血中SeP値は、メトホルミン投与においてのみその後の血糖値降下度を予測できた。
(Changes in blood glucose levels in the metformin administration group and the DPP4 inhibitor administration group)
FIG. 6 shows changes in blood glucose levels in the metformin administration group and the DPP4 inhibitor administration group. As is clear from the graph shown in FIG. 6, in the metformin administration group, the SeP value before administration correlated with the blood glucose level decrease for 3 months after administration. However, in the DPP4 inhibitor administration group, the SeP level before administration did not correlate with the degree of blood glucose decrease for 3 months after administration. That is, the blood SeP value before administration of the therapeutic agent was able to predict the blood glucose level lowering level only after metformin administration.
(メトホルミン投与群での投与前SeP値が高症例でのセレノプロテインP値の変化)
 メトホルミン投与群での投与前SeP値が高値(4.55μg/mL以上)の症例でのSeP値の変化を図7に示す。図7に記載のグラフから明らかなように、3か月間のメトホルミン投与により有意に血中SeP値を低下させた。
(Changes in selenoprotein P level in patients with high pre-dose SeP levels in the metformin group)
FIG. 7 shows changes in the SeP value in cases where the pre-administration SeP value in the metformin administration group was high (4.55 μg / mL or more). As is clear from the graph shown in FIG. 7, the blood SeP value was significantly reduced by administration of metformin for 3 months.
 図3~図7に記載のグラフの結果より、2型糖尿患者の血液中のSeP値が高値な場合には、メトホルミン投与により、血糖値及びHbA1c値を改善し、さらに血液中の2型糖尿病の検出マーカーであるSeP値を有意に低下させることを確認した。 From the results of the graphs shown in FIGS. 3 to 7, when the SeP level in the blood of type 2 diabetes patients is high, the blood glucose level and HbA1c level are improved by the administration of metformin, and type 2 diabetes in the blood is further improved. It was confirmed that the SeP value, which is a detection marker, was significantly reduced.
(2型糖尿患者のメトホルミン投与を選択するためのカットオフ値の設定)
 2型糖尿患者のメトホルミン投与を選択するためのカットオフ値を設定した。詳細は、以下の通りである。
(Set cutoff value to select metformin administration for type 2 diabetes patients)
A cut-off value was set for selecting metformin administration for patients with type 2 diabetes. Details are as follows.
(治療前の2型糖尿患者の血清中のセレノプロテインP値分布からの選択)
 治療前の2型糖尿患者の血清中のSeP値分布を図8に示す。図8に記載の分布図より、中央値より高い値である4.1μg/mLをカットオフ値として選択した。
(Selection from selenoprotein P value distribution in serum of type 2 diabetic patients before treatment)
The SeP value distribution in the serum of type 2 diabetic patients before treatment is shown in FIG. From the distribution chart shown in FIG. 8, 4.1 μg / mL, which is higher than the median, was selected as the cutoff value.
(選択したカットオフ値の検証)
 選択したカットオフ値である4.1μg/mL以上の症例でのメトホルミン投与群及びDPP4阻害薬投与群での血糖値の変化を図9に示す。図9に記載のグラフの結果から明らかなように、メトホルミン投与群では、血糖値を有意に改善した。すなわち、治療前の2型糖尿患者の血清中のSeP値が4.5μg/mL以上、例えば、4.5μg/mL~6.0μg/mL、より好ましくは4.5μg/mL~5.5μg/mL、最も好ましくは4.5μg/mL~5.0μg/mLの場合には、メトホルミン投与により血糖値の改善(糖尿病治療効果)があることを確認した。
(Verify selected cutoff value)
FIG. 9 shows changes in blood glucose levels in the metformin administration group and the DPP4 inhibitor administration group in cases with a selected cutoff value of 4.1 μg / mL or more. As is apparent from the results of the graph shown in FIG. 9, the blood glucose level was significantly improved in the metformin administration group. That is, the SeP value in the serum of type 2 diabetic patients before treatment is 4.5 μg / mL or more, for example, 4.5 μg / mL to 6.0 μg / mL, more preferably 4.5 μg / mL to 5.5 μg / mL, most preferably In the case of 4.5 μg / mL to 5.0 μg / mL, it was confirmed that metformin administration improved blood glucose levels (diabetes treatment effect).
(総論)
 以上の実施例により、治療前の2型糖尿患者の血清中のセレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン投与により、血糖値改善、HbA1c値改善、血液中のSeP値低下、さらには糖尿病治療の有効性があることを予測することができる。
(General)
According to the above examples, when the selenoprotein P level in the serum of type 2 diabetic patients before treatment is higher than the cutoff value, metformin administration improves blood glucose level, improves HbA1c level, and decreases blood SeP level. Furthermore, it can be predicted that there is the effectiveness of diabetes treatment.
 2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン投与を選択することを特徴とする2型糖尿病の治療薬選択の補助方法、治療薬の効果予測方法、検査方法及び治療方法の提供。 In specimens from patients with type 2 diabetes, if the selenoprotein P value is higher than the cutoff value, metformin administration is selected. Providing methods, testing methods and treatment methods.

Claims (11)

  1.  2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩投与を選択することを特徴とする2型糖尿病の治療薬選択の補助方法。 A method for assisting selection of a therapeutic agent for type 2 diabetes, wherein in a sample derived from a type 2 diabetes patient, if the selenoprotein P value is higher than the cut-off value, metformin hydrochloride administration is selected.
  2.  前記検体が、血液である請求項1に記載の治療薬選択の補助方法。 The method for assisting selection of a therapeutic agent according to claim 1, wherein the specimen is blood.
  3.  前記カットオフ値が、3.5μg/mL~4.7μg/mLである請求項1又は2に記載の治療薬選択の補助方法。 The method for assisting selection of a therapeutic agent according to claim 1 or 2, wherein the cutoff value is from 3.5 µg / mL to 4.7 µg / mL.
  4.  2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩投与が有効であると判断することを特徴とする2型糖尿病の治療効果を予測する方法。 A method for predicting the therapeutic effect of type 2 diabetes characterized by determining that metformin hydrochloride administration is effective when a selenoprotein P value is higher than a cutoff value in a sample derived from a type 2 diabetes patient .
  5.  前記検体が、血液である請求項4に記載の治療効果を予測する方法。 The method for predicting a therapeutic effect according to claim 4, wherein the specimen is blood.
  6.  前記カットオフ値が、4.5μg/mL以上である請求項4又は5に記載の治療効果を予測する方法。 The method according to claim 4 or 5, wherein the cutoff value is 4.5 µg / mL or more.
  7.  2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩投与を選択することを特徴とする2型糖尿病の治療薬選択のための2型糖尿病患者由来の検体の検査方法。 In a sample derived from a type 2 diabetes patient, if the selenoprotein P value is higher than the cut-off value, the administration of metformin hydrochloride is selected. A method for testing specimens of origin.
  8.  前記検体が、血液である請求項7に記載の検査方法。 The test method according to claim 7, wherein the specimen is blood.
  9.  前記カットオフ値が、3.5μg/mL~4.7μg/mLである請求項7又は8に記載の検査方法。 The inspection method according to claim 7 or 8, wherein the cutoff value is 3.5 μg / mL to 4.7 μg / mL.
  10.  以下の工程を含む2型糖尿病の治療方法:
     (1)2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高いかどうかを判定する工程;及び
     (2)セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩を該患者に投与する工程。
    A method for treating type 2 diabetes comprising the following steps:
    (1) a step of determining whether a selenoprotein P value is higher than a cut-off value in a sample derived from a type 2 diabetes patient; and (2) metformin if the selenoprotein P value is higher than a cut-off value. Administering hydrochloride to the patient.
  11.  前記カットオフ値が、3.5μg/mL~4.7μg/mLである請求項10に記載の治療方法。 The treatment method according to claim 10, wherein the cut-off value is 3.5 μg / mL to 4.7 μg / mL.
PCT/JP2015/075760 2014-09-10 2015-09-10 Method for assisting in selection of therapeutic drug for type-2 diabetes patient, method for predicting effect of therapeutic drug, inspection method, and treatment method WO2016039426A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016547506A JP6736011B2 (en) 2014-09-10 2015-09-10 Method of assisting selection of therapeutic agent for type 2 diabetic patients, method of predicting effect of therapeutic agent, test method and therapeutic method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014184499 2014-09-10
JP2014-184499 2014-09-10

Publications (1)

Publication Number Publication Date
WO2016039426A1 true WO2016039426A1 (en) 2016-03-17

Family

ID=55459170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075760 WO2016039426A1 (en) 2014-09-10 2015-09-10 Method for assisting in selection of therapeutic drug for type-2 diabetes patient, method for predicting effect of therapeutic drug, inspection method, and treatment method

Country Status (2)

Country Link
JP (1) JP6736011B2 (en)
WO (1) WO2016039426A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020002289A1 (en) 2020-04-07 2021-10-07 selenOmed GmbH Selenoprotein P as a marker for selenium poisoning

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013324A1 (en) * 2006-07-28 2008-01-31 National University Corporation Kanazawa University Use of diabetes-related, liver-derived secreted protein in diagnosis or treatment of type-2 diabetes or vascular disorder
JP2014052338A (en) * 2012-09-10 2014-03-20 Alfresa Pharma Corp Segregated measurement method for substance to be measured

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013324A1 (en) * 2006-07-28 2008-01-31 National University Corporation Kanazawa University Use of diabetes-related, liver-derived secreted protein in diagnosis or treatment of type-2 diabetes or vascular disorder
JP2014052338A (en) * 2012-09-10 2014-03-20 Alfresa Pharma Corp Segregated measurement method for substance to be measured

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIROAKI TAKAYAMA ET AL.: "Metformin Suppresses Expression of the Selenoprotein P Gene via an AMP-activated Kinase (AMPK)/Fox03a Pathway in H4IIEC3 Hepatocytes", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 289, no. 1, pages 335 - 345 *
NIENKE VAN LEEUWEN ET AL.: "Genetic Variation Associated With Metformin Treatment Response", DIABETES, vol. 62, no. Supplement_1, July 2013 (2013-07-01), pages A432 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020002289A1 (en) 2020-04-07 2021-10-07 selenOmed GmbH Selenoprotein P as a marker for selenium poisoning
DE102020002289B4 (en) 2020-04-07 2023-08-17 selenOmed GmbH Selenoprotein P as a marker for selenium poisoning

Also Published As

Publication number Publication date
JP6736011B2 (en) 2020-08-05
JPWO2016039426A1 (en) 2017-09-14

Similar Documents

Publication Publication Date Title
EP2500730B1 (en) Soluble urokinase plasminogen activator receptor (suPAR) as diagnostic marker for low-grade inflammation
US20140322723A1 (en) Diabetes diagnosis through the detection of glycated proteins in urine
US20150093765A1 (en) Method of prognosis
US9783600B2 (en) Apolipoprotein C3 (ApoCIII) antagonists and methods of their use to remove ApoCIII inhibition of lipoprotein lipase (LPL)
KR102464380B1 (en) Metabolite Biomarkers for Diseases Associated with Contact Activation Systems
Picard et al. Tissue kallikrein–deficient mice display a defect in renal tubular calcium absorption
RU2745751C2 (en) Method to predict obesity risk in subject
Fazaeli et al. The influence of subclinical hypothyroidism on serum lipid profile, PCSK9 levels and CD36 expression on monocytes
CN111065749B (en) Method for determining the risk of developing type 1 diabetes
JP4256266B2 (en) Method for detecting cardiotoxicity caused by an anthracycline anticancer chemotherapeutic agent by detecting human H-FABP, and reagent therefor
BR112020005647A2 (en) selenoprotein p for prognosis of a first cardiovascular event
WO2016039426A1 (en) Method for assisting in selection of therapeutic drug for type-2 diabetes patient, method for predicting effect of therapeutic drug, inspection method, and treatment method
US20120083586A1 (en) Nmdar biomarkers for diagnosing and treating cerebral ischemia
JP3490715B2 (en) Method for detecting hemoglobin-promoting glucosylated end products
Afsar et al. The relationship between insulin, insulin resistance, parathyroid hormone, cortisol, testosterone, and thyroid function tests in the presence of nephrolithiasis: a comprehensive analysis
Han et al. The correlation of fibroblast growth factor 23 with cardiac remodeling in essential hypertension with normal renal function
TW201920956A (en) Method for measuring amount of muc5ac in tear
JP3564668B2 (en) Method for screening prostate cancer by measuring apolipoprotein D level in body fluid
de Almeida Callou et al. Pro198Leu polymorphism in the GPX1 gene has no influence on selenium biomarkers after Brazil nut consumption in rheumatoid arthritis patients
Ikegwuonu et al. Correlative Study of Bone-related Biochemicals and Endocrine Changes in Perimenopausal Women in Enugu, Nigeria
CN117517674A (en) Method for evaluating drug effect of metformin by using immunoglobulin A
Ngwira Assessment od Adiponectin and Endothelial Nitric Oxide Synthase levels in Black Zambian patients with Hypertension at the University Teaching Hospital, Lusaka
CN112449684A (en) Method for diagnosing liver disease
JP2015143640A (en) Method for detecting diabetes
Schwarzinger et al. First Congress of the Austrian Society for Laboratory Medicine and Clinical Chemistry (ÖGLMKC)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547506

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15840916

Country of ref document: EP

Kind code of ref document: A1