JP6736011B2 - Method of assisting selection of therapeutic agent for type 2 diabetic patients, method of predicting effect of therapeutic agent, test method and therapeutic method - Google Patents

Method of assisting selection of therapeutic agent for type 2 diabetic patients, method of predicting effect of therapeutic agent, test method and therapeutic method Download PDF

Info

Publication number
JP6736011B2
JP6736011B2 JP2016547506A JP2016547506A JP6736011B2 JP 6736011 B2 JP6736011 B2 JP 6736011B2 JP 2016547506 A JP2016547506 A JP 2016547506A JP 2016547506 A JP2016547506 A JP 2016547506A JP 6736011 B2 JP6736011 B2 JP 6736011B2
Authority
JP
Japan
Prior art keywords
type
selenoprotein
value
diabetes
sep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016547506A
Other languages
Japanese (ja)
Other versions
JPWO2016039426A1 (en
Inventor
博文 御簾
博文 御簾
周一 金子
周一 金子
有美枝 竹下
有美枝 竹下
俊成 篁
俊成 篁
芳郎 斎藤
芳郎 斎藤
睦 田中
睦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
Alfresa Pharma Corp
Doshisha
Original Assignee
Kanazawa University NUC
Alfresa Pharma Corp
Doshisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC, Alfresa Pharma Corp, Doshisha filed Critical Kanazawa University NUC
Publication of JPWO2016039426A1 publication Critical patent/JPWO2016039426A1/en
Application granted granted Critical
Publication of JP6736011B2 publication Critical patent/JP6736011B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Description

本発明は、2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩投与を選択することを特徴とする2型糖尿病の治療薬選択の補助方法、治療薬の効果予測方法、検査方法及び治療方法に関する。
本出願は、参照によりここに援用されるところの日本出願、特願2014-184499号優先権を請求する。
The present invention is a method for assisting selection of a therapeutic agent for type 2 diabetes, which comprises administering metformin hydrochloride when the selenoprotein P level is higher than the cutoff value in a sample from a type 2 diabetic patient. The present invention relates to a method for predicting the effect of therapeutic agents, a test method, and a treatment method.
This application claims the priority of Japanese application Japanese Patent Application No. 2014-184499, which is incorporated herein by reference.

(2型糖尿病)
世界規模で増加し続ける2型糖尿病は、網膜・腎・神経の合併症や虚血性心疾患等の動脈硬化性疾患を促進することで人類のQOLと生命を脅かしており、その新たな治療法の開発は急務である。肝臓は、糖・脂質代謝の主役を担うだけではなく、血管新生因子をはじめとする各種生理活性物質の生体内最大の産生臓器である。2型糖尿病では、インスリンによる肝臓からの糖放出抑制作用は減弱しており、この現象はインスリン抵抗性と呼ばれる。インスリン抵抗性は、肝臓からの糖放出亢進による高血糖及び脂質の産生亢進による高脂血症をもたらし、動脈硬化性疾患を促進する。さらに肝臓は、動脈硬化のリスクにつながる血管新生因子をはじめとする各種生理活性物質の生体内最大の産生臓器である(参照:特許文献1)。
(Type 2 diabetes)
Type 2 diabetes, which continues to increase on a global scale, threatens human QOL and life by promoting arteriosclerotic diseases such as retinal/renal/nerve complications and ischemic heart disease. Development is urgent. The liver not only plays a major role in sugar/lipid metabolism, but is also the largest organ in the body that produces various physiologically active substances such as angiogenic factors. In type 2 diabetes, the action of insulin to suppress glucose release from the liver is diminished, and this phenomenon is called insulin resistance. Insulin resistance causes hyperglycemia due to enhanced glucose release from the liver and hyperlipidemia due to enhanced lipid production, and promotes arteriosclerotic diseases. Furthermore, the liver is the largest organ in the body that produces various physiologically active substances such as angiogenic factors that lead to the risk of arteriosclerosis (see Patent Document 1).

(セレノプロテインP(SeP))
セレノプロテインP(SeP)は、セレンを豊富に含む細胞外タンパク質であり、血漿セレンの53%を占める主要なセレノプロテインである。SePについて6種のモノクローナル抗体(BD1、BD3、BF2、AE2、AH5及びAA3)が知られ、SeP測定法として、2種のモノクローナル抗体を用いた酵素結合免疫吸着法(ELISA)が開発されている。SePは、血漿カリクレインでの分解を受けることにより、N末端側フラグメント及びC末端側フラグメントを生じ、上記の6種のモノクローナル抗体のうち、BD1、BD3、BF2、AE2及びAH5はN末端側フラグメントに対して特異的に反応し、AA3はC末端側フラグメントに対して特異的に反応する。AA3を用いたウェスタンブロット分析で確認されているように、血漿中には、SePの全長タンパク質と、血漿カリクレインでの分解による切断で生じたフラグメントタンパク質とが存在し得る。臨床研究の促進のために、生体内における血漿カリクレインによるSePの分解の有無又は程度が簡便に測定できる方法が求められている(参照:特許文献2)。
(Selenoprotein P (SeP))
Selenoprotein P (SeP) is a selenium-rich extracellular protein that is the major selenoprotein accounting for 53% of plasma selenium. Six kinds of monoclonal antibodies (BD1, BD3, BF2, AE2, AH5 and AA3) are known for SeP, and an enzyme-linked immunosorbent assay (ELISA) using two kinds of monoclonal antibodies has been developed as a method for measuring SeP. .. SeP undergoes degradation with plasma kallikrein to generate an N-terminal side fragment and a C-terminal side fragment. Among the above 6 types of monoclonal antibodies, BD1, BD3, BF2, AE2 and AH5 are converted into N-terminal side fragments. AA3 specifically reacts with the C-terminal fragment. As confirmed by Western blot analysis using AA3, there may be full-length protein of SeP in the plasma and a fragment protein generated by cleavage by degradation with plasma kallikrein. In order to promote clinical research, there is a demand for a method capable of easily measuring the presence or absence or the degree of degradation of SeP by plasma kallikrein in vivo (see Patent Document 2).

(先行特許文献)
特許文献1は、「セレノプロテインPを測定することを含む、2型糖尿病の検出方法」を開示している。しかし、特許文献1は、「セレノプロテインP値を指標として2型糖尿病の治療薬を選択する方法」を開示又は示唆をしていない。
特許文献2は、「検体中の被測定物質(セレノプロテインP)の長鎖型及び短鎖型を分別して測定する方法は、(a)該検体と、該長鎖型及び該短鎖型に結合し得る第1の特異的結合物質が結合した微小粒子及び該長鎖型に結合し得るが該短鎖型に結合しない第2の特異的結合物質が結合した微小粒子とを混合し、該微小粒子の凝集反応を測定する工程;(b)該検体と、異なる認識部位で該長鎖型及び該短鎖型に結合し得る、第3の特異的結合物質が結合した微小粒子及び第4の特異的結合物質が結合した微小粒子とを混合し、該微小粒子の凝集反応を測定する工程;(c)該(a)の測定値を用いて該長鎖型の量を決定する工程;及び(d)該(b)の測定値から該(a)の測定値を差し引いた値を用いて該短鎖型の量を決定する工程を含む。」を開示している。しかし、特許文献2は、「セレノプロテインP値を指標として2型糖尿病の治療薬を選択する方法」を開示又は示唆をしていない。
(Prior patent document)
Patent Document 1 discloses "a method for detecting type 2 diabetes including measuring selenoprotein P". However, Patent Document 1 does not disclose or suggest “a method for selecting a therapeutic agent for type 2 diabetes using the selenoprotein P level as an index”.
Patent Document 2 discloses that "a method for separately measuring a long-chain type and a short-chain type of a substance to be measured (selenoprotein P) in a sample is (a) the sample and the long-chain type and the short-chain type. Mixing microparticles bound with a first specific binding substance capable of binding and microparticles bound with a second specific binding substance capable of binding the long-chain type but not the short-chain type, Measuring the agglutination reaction of the microparticles; (b) the microparticles and the fourth microparticles bound to the third specific binding substance capable of binding to the long chain type and the short chain type at different recognition sites from the analyte; Mixing the microparticles bound with the specific binding substance, and measuring the agglutination reaction of the microparticles; (c) determining the amount of the long-chain form using the measurement value of (a); And (d) determining the amount of the short chain form by using the value obtained by subtracting the measured value of the (a) from the measured value of the (b)." However, Patent Document 2 does not disclose or suggest “a method for selecting a therapeutic agent for type 2 diabetes using the selenoprotein P level as an index”.

(非特許文献)
非特許文献1は、「セレノプロテインP発現は、メトホルミン投与治療により抑制されるが、AMPK阻害剤又はFoxO3a siRNAの共投与によりこの抑制は阻害される。メトホルミンは、AMPK阻害剤/FoxO3a パスウェイを介して、セレノプロテインP発現を抑制している。」を開示している。しかし、非特許文献1は、「セレノプロテインP値を指標として2型糖尿病の治療薬を選択する方法」を開示又は示唆をしていない。
(Non-patent document)
Non-Patent Document 1 states that “selenoprotein P expression is suppressed by metformin administration treatment, but this suppression is inhibited by co-administration of AMPK inhibitor or FoxO3a siRNA. Metformin is mediated by AMPK inhibitor/FoxO3a pathway. Suppresses the expression of selenoprotein P." However, Non-Patent Document 1 does not disclose or suggest "a method for selecting a therapeutic agent for type 2 diabetes using the selenoprotein P value as an index".

国際公開2008/013324号公報International Publication No. 2008/013324 特開2014−52338号公報JP, 2014-52338, A

January 3, 2014,Volume 289, (1), 335-345January 3, 2014,Volume 289, (1), 335-345

2型糖尿病治療において、メトホルミンを第一選択治療薬とするかDPP4(ジペプチジルペプチターゼ-4)阻害薬を第一選択治療薬とするかは主治医の裁量に委ねられている。しかし、2型糖尿病患者は、選択する治療薬により治療反応性の個人差が大きく、効果がない症例も多数存在する。
メトホルミンは、低血糖にほとんどならず、寿命延長のエビデンスが存在する。しかし、メトホルミンは、抗がん作用、消化管副作用(下痢、食欲低下)等も報告されており、治療反応性にかなりの個人差がある。
また、DPP4阻害薬は、インスリン分泌刺激効果があり、やはり血糖値降下作用に個人差があることが報告されている。
以上により、メトホルミンを第一選択治療薬とするかDPP4阻害薬を第一選択治療薬とするかを客観的に判断できる方法の要望があった。
すなわち、本発明は、2型糖尿病患者の治療薬選択の補助方法、治療薬の効果予測方法、検査方法及び治療方法を提供することを課題とする。
In treating type 2 diabetes, it is up to the discretion of the attending physician whether metformin should be the first-line treatment drug or a DPP4 (dipeptidyl peptidase-4) inhibitor should be the first-line treatment drug. However, patients with type 2 diabetes have large individual differences in treatment responsiveness depending on the selected therapeutic agent, and there are many cases in which they are ineffective.
Metformin has little evidence of hypoglycemia and there is evidence of life extension. However, metformin has also been reported to have anticancer effects, gastrointestinal side effects (diarrhea, decreased appetite) and the like, and there are considerable individual differences in therapeutic response.
Further, it has been reported that DPP4 inhibitors have an insulin secretagogue stimulating effect and also have a blood glucose lowering effect among individuals.
Based on the above, there has been a demand for a method capable of objectively determining whether metformin is the first-line treatment drug or the DPP4 inhibitor is the first-line treatment drug.
That is, an object of the present invention is to provide a method for assisting selection of a therapeutic agent for type 2 diabetic patients, a method for predicting the effect of a therapeutic agent, a test method, and a therapeutic method.

本発明者等は、上記課題を解決すべく、「2型糖尿病患者由来の検体(特に、血液)において、セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン投与の効果が高いこと」を見出し、本発明を完成した。 In order to solve the above-mentioned problems, the present inventors have stated that “in a sample (particularly blood) derived from a type 2 diabetic patient, when the selenoprotein P value is higher than the cutoff value, the effect of metformin administration is high. The present invention has been completed.

すなわち、本発明は以下からなる。
1.2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩投与を選択することを特徴とする2型糖尿病の治療薬選択の補助方法。
2.前記検体が、血液である前項1に記載の治療薬選択の補助方法。
3.前記カットオフ値が、3.5μg/mL〜4.7μg/mLである前項1又は2に記載の治療薬選択の補助方法。
4.2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩投与が有効であると判断することを特徴とする2型糖尿病の治療効果を予測する方法。
5.前記検体が、血液である前項4に記載の治療効果を予測する方法。
6.前記カットオフ値が、4.5μg/mL以上である前項4又は5に記載の治療効果を予測する方法。
7.2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩投与を選択することを特徴とする2型糖尿病の治療薬選択のための2型糖尿病患者由来の検体の検査方法。
8.前記検体が、血液である前項7に記載の検査方法。
9.前記カットオフ値が、3.5μg/mL〜4.7μg/mLである前項7又は8に記載の検査方法。
10.以下の工程を含む2型糖尿病の治療方法:
(1)2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高いかどうかを判定する工程;及び
(2)セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩を該患者に投与する工程。
11.前記カットオフ値が、3.5μg/mL〜4.7μg/mLである前項10に記載の治療方法。
That is, the present invention consists of the following.
A method of assisting selection of a therapeutic agent for type 2 diabetes, which comprises selecting metformin hydrochloride administration when the selenoprotein P level is higher than the cut-off level in a sample derived from a type 1 diabetic patient.
2. The method for assisting selection of a therapeutic agent according to the above 1, wherein the sample is blood.
3. The method for assisting selection of a therapeutic agent according to the above 1 or 2, wherein the cutoff value is 3.5 μg/mL to 4.7 μg/mL.
4. Predicting the therapeutic effect on type 2 diabetes, which is characterized by determining that the administration of metformin hydrochloride is effective when the selenoprotein P level is higher than the cutoff value in a sample derived from the type 2 diabetes patient how to.
5. The method for predicting the therapeutic effect according to the above item 4, wherein the sample is blood.
6. The method for predicting the therapeutic effect according to the above 4 or 5, wherein the cutoff value is 4.5 μg/mL or more.
7. Type 2 for the selection of therapeutic agent for type 2 diabetes, which is characterized by selecting metformin hydrochloride administration when the selenoprotein P level is higher than the cut-off value in a sample derived from type 2 diabetes patient A method for testing a sample derived from a diabetic patient.
8. The test method according to item 7, wherein the sample is blood.
9. 9. The inspection method according to item 7 or 8, wherein the cutoff value is 3.5 μg/mL to 4.7 μg/mL.
10. A method for treating type 2 diabetes comprising the following steps:
(1) determining whether the selenoprotein P value is higher than the cutoff value in a sample from a type 2 diabetic patient; and (2) if the selenoprotein P value is higher than the cutoff value, metformin Administering a hydrochloride salt to the patient.
11. The treatment method according to item 10, wherein the cutoff value is 3.5 μg/mL to 4.7 μg/mL.

本発明は、2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン投与を選択することを特徴とする2型糖尿病の治療薬選択の補助方法、治療薬の効果予測方法、検査方法及び治療方法を提供することができる。
これにより、メトホルミン投与の治療効果を投与前に予測することが可能になり、メトホルミン投与の効果が期待される2型糖尿病患者には早期からメトホルミンを投与することにより、高い治療効果を得ることができる。
The present invention is a method for assisting selection of a therapeutic agent for type 2 diabetes, which comprises administering metformin when the selenoprotein P level is higher than the cutoff value in a sample derived from a type 2 diabetes patient. It is possible to provide a method for predicting the effect of a drug, a test method, and a treatment method.
As a result, it becomes possible to predict the therapeutic effect of metformin administration before administration, and a high therapeutic effect can be obtained by early administration of metformin to a type 2 diabetic patient who is expected to have the effect of metformin administration. it can.

血漿カリクレインによるセレノプロテインP(SeP)の切断を示す模式図。Schematic diagram showing the cleavage of selenoprotein P (SeP) by plasma kallikrein. FL−SeP測定系におけるSeP濃度と吸光度変化量との関係を示すグラフ(検量線)。縦軸は、吸光度変化量を表し、横軸はSeP濃度(μg/mL)を示す。6 is a graph (calibration curve) showing the relationship between the SeP concentration and the amount of change in absorbance in the FL-SeP measurement system. The vertical axis represents the amount of change in absorbance, and the horizontal axis represents the SeP concentration (μg/mL). メトホルミン投与群での血糖値の変化及びHbA1c値の変化を示すグラフ(ピアソンの積率相関係数を使用)。The graph which shows the change of the blood glucose level and the change of HbA1c value in the metformin administration group (using Pearson's product moment correlation coefficient). DPP4阻害薬投与群での血糖値の変化及びHbA1c値の変化を示すグラフ(ピアソンの積率相関係数を使用)。The graph which shows the change of the blood glucose level and the change of HbA1c value in the DPP4 inhibitor administration group (using the Pearson product moment correlation coefficient). メトホルミン投与群及びDPP4阻害薬投与群でのセレノプロテインP値の変化を示すグラフ(ピアソンの積率相関係数を使用)。The graph which shows the change of the selenoprotein P value in the metformin administration group and the DPP4 inhibitor administration group (using the Pearson product moment correlation coefficient). メトホルミン投与群及びDPP4阻害薬投与群での血糖値の変化(ピアソンの積率相関係数を使用)。Changes in blood glucose levels in the metformin administration group and the DPP4 inhibitor administration group (using Pearson product moment correlation coefficient). メトホルミン投与群での投与前SeP値が高値(4.55μg/mL以上)の症例でのセレノプロテインP値の変化。Changes in selenoprotein P level in cases with high pre-dose SeP level (4.55 μg/mL or more) in the metformin administration group. 治療前の2型糖尿患者の血清中のセレノプロテインP値の分布図。Distribution map of selenoprotein P level in serum of type 2 diabetic patients before treatment. 選択したカットオフ値以上の症例でのメトホルミン投与群及びDPP4阻害薬投与群での血糖値の変化。Changes in blood glucose levels in the metformin-administered group and the DPP4 inhibitor-administered group in the cases with a cutoff value or more selected.

本発明は、「2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩投与を選択することを特徴とする2型糖尿病の治療薬選択の補助方法」、「2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩投与が有効であると判断することを特徴とする治療効果を予測する方法」、「2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩投与を選択することを特徴とする2型糖尿病の治療薬選択のための2型糖尿病患者由来の検体の検査方法」及び「2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩を該患者に投与することを特徴とする治療方法」である。以下に詳細に説明する。 The present invention relates to “assistance in the selection of a therapeutic agent for type 2 diabetes, which comprises selecting metformin hydrochloride administration when the selenoprotein P level is higher than the cutoff value in a sample derived from a type 2 diabetes patient. Method", "Method of predicting therapeutic effect, characterized in that when selenoprotein P level is higher than cut-off value in a sample derived from type 2 diabetic patient, administration of metformin hydrochloride is judged to be effective And “in a sample derived from a type 2 diabetic patient, when the selenoprotein P level is higher than the cutoff value, the administration of metformin hydrochloride is selected. Method for Testing Samples Derived from Type 2 Diabetic Patient" and "Type 2 diabetic patient-derived sample, wherein when the selenoprotein P level is higher than the cutoff value, metformin hydrochloride is administered to the patient Treatment method". The details will be described below.

(2型糖尿病の治療薬選択の補助方法)
本発明の2型糖尿病の治療薬選択の補助方法は、以下の工程を含む。
(1)2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高いかどうかを判定する工程。
(2)セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩投与を選択することを判定する工程。
(Method of assisting selection of therapeutic agent for type 2 diabetes)
The method for assisting selection of a therapeutic agent for type 2 diabetes of the present invention includes the following steps.
(1) A step of determining whether or not the selenoprotein P value is higher than the cutoff value in a sample derived from a type 2 diabetic patient.
(2) A step of determining to select administration of metformin hydrochloride when the selenoprotein P value is higher than the cutoff value.

(2型糖尿病のメトホルミン塩酸塩投与の治療効果を予測する方法)
本発明の2型糖尿病のメトホルミン塩酸塩投与の治療効果を予測する方法は、以下の工程を含む。
(1)2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高いかどうかを判定する工程。
(2)セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩投与が有効であると判定する工程。
なお、「有効」とは、メトホルミン塩酸塩投与により、血糖値改善、HbA1c値改善、血液中のSeP値低下、及び/又は糖尿病治療の効果があることを意味する。
(Method for predicting therapeutic effect of metformin hydrochloride administration for type 2 diabetes)
The method of predicting the therapeutic effect of metformin hydrochloride administration of type 2 diabetes of the present invention comprises the following steps.
(1) A step of determining whether or not the selenoprotein P value is higher than the cutoff value in a sample derived from a type 2 diabetic patient.
(2) A step of determining that the administration of metformin hydrochloride is effective when the selenoprotein P value is higher than the cutoff value.
The term “effective” means that administration of metformin hydrochloride has effects of improving blood glucose level, improving HbA1c level, lowering SeP level in blood, and/or treating diabetes.

(2型糖尿病の治療薬選択のための2型糖尿病患者由来の検体の検査方法)
本発明の2型糖尿病の治療薬選択のための2型糖尿病患者由来の検体の検査方法は、以下の工程を含む。
(1)2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高いかどうかを判定する工程。
(2)セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩投与を選択することを判定する工程。
(Method for Examining Specimens Derived from Type 2 Diabetes Patients for Selection of Remedies for Type 2 Diabetes)
The method for testing a sample derived from a type 2 diabetic patient for selecting a therapeutic agent for type 2 diabetes according to the present invention includes the following steps.
(1) A step of determining whether or not the selenoprotein P value is higher than the cutoff value in a sample derived from a type 2 diabetic patient.
(2) A step of determining to select administration of metformin hydrochloride when the selenoprotein P value is higher than the cutoff value.

(2型糖尿病の治療方法)
本発明の2型糖尿病の治療方法は、以下の工程を含む。
(1)2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高いかどうかを判定する工程。
(2)セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩を該患者に投与する工程。
さらに、必要に応じて、以下の工程を含む。
(3)メトホルミン塩酸塩投与により患者の症状が改善しない場合には、DPP4阻害薬投与に変更する工程又はDPP4阻害薬を併用する工程。
(Method for treating type 2 diabetes)
The method for treating type 2 diabetes of the present invention includes the following steps.
(1) A step of determining whether or not the selenoprotein P value is higher than the cutoff value in a sample derived from a type 2 diabetic patient.
(2) A step of administering metformin hydrochloride to the patient when the selenoprotein P value is higher than the cutoff value.
Furthermore, the following steps are included as needed.
(3) A step of changing to administration of a DPP4 inhibitor or a step of concomitantly using a DPP4 inhibitor when the symptoms of the patient are not improved by the administration of metformin hydrochloride.

(検体)
本発明の検体は、2型糖尿病患者由来でありかつセレノプロテインPが存在していれば特に限定されない。例えば、全血、血液(末梢単核球)、血清、血漿、尿、髄液、腹水、リンパ液、肝臓由来液、乳汁等が挙げられる。特に、末梢単核球、血清等が採取等の取り扱いが容易で、侵襲性が低いという点で最も好ましい。2型糖尿病患者からサンプルを取得する方法は、特に限定されず、自体公知の方法を利用することができる。
(Sample)
The sample of the present invention is not particularly limited as long as it is derived from a type 2 diabetic patient and selenoprotein P is present. For example, whole blood, blood (peripheral mononuclear cells), serum, plasma, urine, spinal fluid, ascites fluid, lymph fluid, liver-derived fluid, milk and the like can be mentioned. In particular, peripheral mononuclear cells, serum and the like are most preferable because they are easy to handle such as collecting and have low invasiveness. The method for obtaining a sample from a type 2 diabetic patient is not particularly limited, and a method known per se can be used.

(セレノプロテインP)
セレノプロテインP(SeP)は、セレノシステインを10残基含むタンパク質である。セレノプロテインPは、過酸化水素や過酸化脂質を還元して無毒化し、また細胞内の酸化還元を制御するグルタチオンペルオキシダーゼ様活性を有する酵素として作用する。
また、本発明者らは、セレノプロテインPは2型糖尿病の検出マーカーとなることを開示している(参照:特許文献1)。
セレノプロテインPは、ヒト血清中に含まれており、文献「Saito Y.et al., J Biol chem 274:2866-2871, 1999」の記載の方法に従って、ヒト血清より単離・精製することができる。
また、セレノプロテインP(SeP)は、血漿カリクレインにより切断される(参照:図1)。図1の上段図は、全長SePを表し、中段及び下段は血漿カリクレイン切断により生じるSePフラグメントを表す。図1中、「N」及び「C」はそれぞれ、N末端側及びC末端側を表し、「Sec」はセレノシステイン残基を表す。カリクレインは、235位のアルギニン(図1中「R235」)と236位のグルタミン(図1中「Q236」)との間、及び242位のアルギニン(図1中「R242」)と243位のアスパラギン酸(図1中「D243」)との間を切断し、SePのN末端側フラグメント(アミノ酸残基1〜235)及びC末端側フラグメント(アミノ酸残基243〜361)を含む3つのフラグメントを生じ得る(図1)。「長鎖型」は、未切断の全長SeP(アミノ酸残基1〜361:本明細書においては「FL−SeP」と称する場合がある)であり、「短鎖型」は、切断で生じたSePフラグメント(本明細書においては「S−SeP」と称する場合がある)であり、SePフラグメントは、例えば、N末端側フラグメント(アミノ酸残基1〜235)であり得る。
(Selenoprotein P)
Selenoprotein P (SeP) is a protein containing 10 residues of selenocysteine. Selenoprotein P acts as an enzyme having glutathione peroxidase-like activity that reduces hydrogen peroxide and lipid peroxide to detoxify them and controls intracellular redox.
Moreover, the present inventors have disclosed that selenoprotein P serves as a detection marker for type 2 diabetes (see Patent Document 1).
Selenoprotein P is contained in human serum and can be isolated and purified from human serum according to the method described in the document “Saito Y. et al., J Biol chem 274:2866-2871, 1999”. it can.
In addition, selenoprotein P (SeP) is cleaved by plasma kallikrein (see FIG. 1). The upper panel of FIG. 1 represents full-length SeP, and the middle and lower panels represent SeP fragments generated by plasma kallikrein cleavage. In FIG. 1, “N” and “C” represent the N-terminal side and the C-terminal side, respectively, and “Sec” represents the selenocysteine residue. Kallikrein is between arginine at position 235 (“R235” in FIG. 1) and glutamine at position 236 (“Q236” in FIG. 1), and arginine at position 242 (“R242” in FIG. 1) and asparagine at position 243. Cleavage with the acid (“D243” in FIG. 1) yielding three fragments, including the N-terminal fragment of SeP (amino acid residues 1-235) and the C-terminal fragment (amino acid residues 243-361). Obtain (Fig. 1). "Long-chain form" is uncleaved full-length SeP (amino acid residues 1-361: sometimes referred to herein as "FL-SeP"), and "short-chain form" resulted from cleavage. It is a SeP fragment (sometimes referred to herein as "S-SeP"), and the SeP fragment can be, for example, the N-terminal side fragment (amino acid residues 1-235).

(メトホルミン塩酸塩)
メトホルミン塩酸塩(化学名:1,1-Dimethylbiguanide monohydrochloride)は、「メトグルコ錠」、「グリコラン錠」、「メトホルミン塩酸塩錠」、その他の販売名で、2型糖尿病治療薬として複数の製薬企業から販売されている(以下、販売名としては「メトグルコ錠」とする)。
用法・用量は、通常、成人にはメトホルミン塩酸塩として1日500mgより開始し、1日2〜3回に分割して食直前又は食後に経口投与する。維持量は、効果を観察しながら決めるが、通常1日750mg〜1,500mgとする。なお、患者の状態により適宜増減するが、1日最高投与量は2,250mgまでである。
(Metformin hydrochloride)
Metformin hydrochloride (Chemical name: 1,1-Dimethylbiguanide monohydrochloride) is a brand name under the trade name of "Metgluco Tablets", "Glycolan Tablets", "Metformin Hydrochloride Tablets", etc. It is on sale (hereinafter referred to as the "Metogluco Tablets").
The usual dosage and administration for adults is metformin hydrochloride, which is started at 500 mg daily and is orally administered immediately before or after meals in 2 to 3 divided doses per day. The maintenance dose is determined by observing the effect, but it is usually 750 mg to 1,500 mg daily. Although the dose may be adjusted according to the patient's condition, the maximum daily dose is 2,250 mg.

(DPP4阻害薬)
DPP4阻害薬は、糖尿病内服治療薬であり、DPP4(ジペプチジルペプチターゼ-4)酵素を阻害する薬を意味し、一般名であるシタグリプチン、ビルダグリプチン、アログリプチン、リナグリプチン、テネリグリプチン及びアナグリプチンが知られている。
例えば、投与量及び投与時期は、以下を例示することができるが特に限定されない。
○シタグリプチン
通常、成人にはシタグリプチンとして50mgを1日1 回経口投与する。なお、効果不十分な場合には、経過を十分に観察しながら100mgを1日1回まで増量することができる。
○ビルダグリプチン
通常、成人には、ビルダグリプチンとして50mgを1日2回朝、夕に経口投与する。なお、患者の状態に応じて50mgを1日1回朝に投与することができる。
○アログリプチン
通常、成人にはアログリプチンとして25mgを1日1回経口投与する、好ましくは朝食後に投与する。
○リナグリプチン
通常、成人にはリナグリプチンとして5mgを1日1回経口投与する。
○テネリグリプチン
通常、成人にはテネリグリプチンとして20mgを1日1回経口投与する。なお、効果不十分な場合には、経過を十分に観察しながら40mgを1日1回に増量することができる。
○アナグリプチン
通常、成人にはアナグリプチンとして1回100mgを1日2回朝夕に経口投与する。なお、効果不十分な場合には、経過を十分に観察しながら1回量を200mgまで増量することができる。
(DPP4 inhibitor)
DPP4 inhibitor is a drug for oral administration of diabetes, which means a drug that inhibits the DPP4 (dipeptidyl peptidase-4) enzyme, and is known by its generic names sitagliptin, vildagliptin, alogliptin, linagliptin, tenegliptin and anagliptin. ..
For example, the dose and timing of administration can be exemplified as follows, but are not particularly limited.
○ Sitagliptin Normally, for adults, 50 mg of sitagliptin is orally administered once a day. If the effect is insufficient, 100 mg can be increased up to once a day while carefully observing the progress.
○ Vildagliptin In general, for adults, 50 mg of vildagliptin is orally administered twice daily in the morning and evening. 50 mg can be administered once daily in the morning depending on the patient's condition.
○Alogliptin Usually, for adults, 25 mg of alogliptin is orally administered once a day, preferably after breakfast.
○ Linagliptin Normally, 5 mg of linagliptin is orally administered to adults once a day.
○ Teneligliptin Normally, for adults, 20 mg of Teneligliptin is orally administered once a day. If the effect is insufficient, 40 mg can be increased once a day while carefully observing the progress.
○ Anagliptin Normally, for adults, 100 mg of anagliptin is orally administered twice a day in the morning and evening. When the effect is insufficient, the dose can be increased up to 200 mg while observing the progress sufficiently.

(2型糖尿病患者の治療薬選択のためのカットオフ値)
本発明の2型糖尿病患者の治療薬選択のためのカットオフ値の範囲は、検体中(特に血清中)において、下記実施例4より、3.5μg/mL〜4.7μg/mL、好ましくは3.7μg/mL〜4.5μg/mL、より好ましくは3.9μg/mL〜4.3μg/mL、最も好ましくは約4.1μg/mLである。
(Cutoff value for the selection of therapeutic agents for patients with type 2 diabetes)
The range of the cutoff value for the selection of the therapeutic agent for type 2 diabetic patients of the present invention is 3.5 μg/mL to 4.7 μg/mL, preferably 3.7 μg in the sample (particularly in serum) according to Example 4 below. /mL to 4.5 μg/mL, more preferably 3.9 μg/mL to 4.3 μg/mL, and most preferably about 4.1 μg/mL.

(メトホルミン塩酸塩投与が有効であると判断するためのカットオフ値)
本発明のメトホルミン塩酸塩投与が有効であると判断するためのカットオフ値の範囲は、検体中(特に血清中)において、下記実施例3より、4.5μg/mL以上、例えば、4.5μg/mL〜6.0μg/mL、より好ましくは4.5μg/mL〜5.5μg/mL、最も好ましくは4.5μg/mL〜5.0μg/mLである。なお、メトホルミン塩酸塩投与が有効であったとの一つの指標は、血中のセレノプロテインP値が有意に低下したことである。
(Cutoff value for determining that metformin hydrochloride administration is effective)
The range of the cutoff value for determining that the administration of metformin hydrochloride of the present invention is effective is 4.5 μg/mL or more, for example, 4.5 μg/mL, in the sample (particularly in serum) from the following Example 3. ˜6.0 μg/mL, more preferably 4.5 μg/mL to 5.5 μg/mL, and most preferably 4.5 μg/mL to 5.0 μg/mL. In addition, one of the indicators that the administration of metformin hydrochloride was effective is that the selenoprotein P level in blood was significantly decreased.

(セレノプロテインP値の測定方法)
本発明の2型糖尿病患者の治療薬選択の補助方法、治療薬の効果予測方法、検査方法及び治療方法におけるセレノプロテインP値の測定方法は特に限定されないが、セレノプロテインPを直接測定してもよいし、セレノプロテインPのmRNAを測定して、セレノプロテインP値を算出してもよい。
セレノプロテインPを直接測定する方法として、セレノプロテインPを特異的に認識し結合する抗セレノプロテインP抗体を用いる免疫学的測定法により行うことができる。抗セレノプロテインP抗体は、公知の方法により作製することができる。免疫学的測定法としては、抗セレノプロテインP抗体を固相化した担体を用いる方法やウエスタンブロッティング等が挙げられる。固相化担体を用いる方法として、例えば、固相化マイクロタイタープレートを用いるELISA、固相化粒子を用いる凝集法等が挙げられるが、これらには限定されず、公知の免疫学的測定法を採用して、血中セレノプロテインPを測定することができる。
また、セレノプロテインPのmRNAを測定する方法は、ノーザンブロッティング、RT−PCR法、DNAチップ(DNAマイクロアレイ)を利用した方法等により測定することができる。これらの方法も公知の方法で行うことができる。
(Method of measuring selenoprotein P value)
The method for measuring the selenoprotein P level in the method for assisting the selection of therapeutic agents for type 2 diabetic patients, the method for predicting the effect of therapeutic agents, the test method and the therapeutic method of the present invention is not particularly limited, but direct measurement of selenoprotein P is also possible. Alternatively, the selenoprotein P value may be calculated by measuring selenoprotein P mRNA.
As a method for directly measuring selenoprotein P, an immunological measurement method using an anti-selenoprotein P antibody that specifically recognizes and binds to selenoprotein P can be performed. The anti-selenoprotein P antibody can be prepared by a known method. Examples of the immunological measurement method include a method using a carrier on which an anti-selenoprotein P antibody is immobilized and Western blotting. Examples of the method using a solid-phased carrier include, but are not limited to, an ELISA using a solid-phased microtiter plate and an agglutination method using solid-phased particles. It can be used to measure selenoprotein P in blood.
The selenoprotein P mRNA can be measured by Northern blotting, RT-PCR, a method using a DNA chip (DNA microarray), or the like. These methods can also be performed by known methods.

セレノプロテインPの測定方法は、好ましくは、2種のモノクローナル抗体を用いた酵素結合免疫吸着法{参照:Saito, Y.ら,J. Health Sci. (2001) 47巻, 346〜352頁}、下記実施例に示す金コロイドを使用した抗原抗体反応を用いた測定方法(参照:特許文献2)等が挙げられる。 The method for measuring selenoprotein P is preferably an enzyme-linked immunosorbent assay using two types of monoclonal antibodies {Ref: Saito, Y. et al., J. Health Sci. (2001) Volume 47, 346-352}, A measurement method using an antigen-antibody reaction using gold colloid shown in the following examples (see: Patent Document 2) and the like can be mentioned.

以下に示す実施例によって本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、以下の症例は金沢大学医学倫理委員会の承認を得て、実施されている。 The present invention will be specifically described with reference to the following examples, but the present invention is not limited thereto. The following cases have been performed with the approval of the Kanazawa University Medical Ethics Committee.

(検体中のセレノプロテインP値測定系の構築)
検体のセレノプロテインP値を測定するための測定系を構築した。詳細は、以下の通りである。
(Construction of selenoprotein P value measurement system in sample)
A measurement system for measuring the selenoprotein P value of the sample was constructed. Details are as follows.

(調製例1:金コロイド液の調製)
95℃の蒸留水1Lに10w/v%塩化金酸水溶液2mLを攪拌しながら加え、1分後に2w/v%クエン酸ナトリウム水溶液10mLを加え、さらに20分間攪拌した後、30℃に冷却した。冷却後、0.1w/v%炭酸カリウム水溶液でpH7.1に調節した。
(Preparation Example 1: Preparation of colloidal gold solution)
To 1 L of distilled water at 95° C., 2 mL of 10 w/v% chloroauric acid aqueous solution was added with stirring, 1 minute later, 10 mL of 2 w/v% sodium citrate aqueous solution was added, and the mixture was further stirred for 20 minutes and then cooled to 30° C. After cooling, the pH was adjusted to 7.1 with a 0.1 w/v% potassium carbonate aqueous solution.

(調製例2:各種抗セレノプロテインP抗体結合金コロイド試薬の調製)
抗ヒトセレノプロテインPラットモノクローナル抗体AH5及びAA3は、文献{Saito, Y.ら,J. Health Sci. (2001) 47巻, 346〜352頁}に記載の手順にしたがって得た。AH5は、セレノプロテインPのカリクレイン切断によって生じるセレノプロテインPのN末端側を認識するモノクローナル抗体であり、AA3は、セレノプロテインPのC末端側を認識するモノクローナル抗体である。
(Preparation example 2: Preparation of various anti-selenoprotein P antibody-bonded colloidal gold reagents)
Anti-human selenoprotein P rat monoclonal antibodies AH5 and AA3 were obtained according to the procedure described in the document {Saito, Y. et al., J. Health Sci. (2001) 47, 346-352}. AH5 is a monoclonal antibody that recognizes the N-terminal side of selenoprotein P generated by cleavage of selenoprotein P with kallikrein, and AA3 is a monoclonal antibody that recognizes the C-terminal side of selenoprotein P.

抗セレノプロテインPモノクローナル抗体AH5及びAA3について、抗体結合金コロイド試薬を以下のようにして調製した。抗体を、0.05w/v%アジ化ナトリウムを含む10mM 2−[4−(2−ヒドロキシエチル)−1−ピペラジニル]エタンスルホン酸(以下、「HEPES」)緩衝液(pH7.1)で希釈し、50μg/mLの濃度にした。得られた抗体溶液100mLを、調製例1で調製した約1Lの金コロイド液に加え、冷蔵下で2時間攪拌した。さらに、5.46w/v%マンニトール、0.5w/v%ウシ血清アルブミン(BSA)、及び0.05%アジ化ナトリウムを含む10mM HEPES緩衝液(pH7.1)を110mL添加し、37℃にて90分間攪拌した。次いで、8000rpmで40分間遠心分離し、上清を除去した。次いで、得られた沈殿物に、3w/v%マンニトール、0.1w/v%BSA、及び0.05w/v%アジ化ナトリウムを含む5mM HEPES緩衝液(pH7.5)(A溶液)を約1L加え、抗体結合金コロイド粒子を分散させた後、8000rpmで40分間遠心分離し、上清を除去した。さらに、沈殿物に、0.9%デキストラン硫酸ナトリウムを含むA溶液を加えて抗体結合金コロイド粒子を分散させ、全量を240mLとし、これを抗体結合金コロイド試薬として回収した。 For the anti-selenoprotein P monoclonal antibodies AH5 and AA3, antibody-bound colloidal gold reagents were prepared as follows. The antibody is diluted with 10 mM 2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid (hereinafter, “HEPES”) buffer solution (pH 7.1) containing 0.05 w/v% sodium azide. To a concentration of 50 μg/mL. 100 mL of the obtained antibody solution was added to about 1 L of the gold colloid solution prepared in Preparation Example 1, and the mixture was stirred under refrigeration for 2 hours. Furthermore, 110 mL of 10 mM HEPES buffer (pH 7.1) containing 5.46 w/v% mannitol, 0.5 w/v% bovine serum albumin (BSA), and 0.05% sodium azide was added, and the mixture was heated to 37°C. And stirred for 90 minutes. Then, the mixture was centrifuged at 8000 rpm for 40 minutes, and the supernatant was removed. Then, to the obtained precipitate, 5 mM HEPES buffer (pH 7.5) (A solution) containing 3 w/v% mannitol, 0.1 w/v% BSA, and 0.05 w/v% sodium azide was added. After 1 L was added to disperse the antibody-bonded gold colloidal particles, the mixture was centrifuged at 8000 rpm for 40 minutes to remove the supernatant. Furthermore, the solution A containing 0.9% dextran sulfate sodium was added to the precipitate to disperse the antibody-bonded gold colloid particles to a total volume of 240 mL, which was recovered as an antibody-bonded gold colloid reagent.

AH5結合金コロイド試薬及びAA3結合金コロイド試薬を、それぞれ、金コロイド試薬1及び金コロイド試薬2とした。 The AH5-bound gold colloid reagent and the AA3-bound gold colloid reagent were designated as gold colloid reagent 1 and gold colloid reagent 2, respectively.

(調製例3:セレノプロテインP測定用試薬の調製)
5w/v%塩化ナトリウム、1.0w/v%エチレンジアミン四酢酸二水素二ナトリウム二水和物、0.1w/v%アルキルフェニルジスルホン酸ナトリウム塩、及び0.5w/v%ポリオキシエチレンラウリルエーテルを含む0.25M 2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール塩酸緩衝液(pH7.8)に、ポリエチレングリコールを以下の「FL−SeP測定用」に、2.4w/v%になるように添加して、試薬を得た。
(Preparation Example 3: Preparation of selenoprotein P measurement reagent)
5w/v% sodium chloride, 1.0w/v% ethylenediaminetetraacetic acid disodium dihydrogen dihydrate, 0.1w/v% alkylphenyl disulfonic acid sodium salt, and 0.5w/v% polyoxyethylene lauryl ether In a 0.25 M 2-amino-2-hydroxymethyl-1,3-propanediol hydrochloric acid buffer solution (pH 7.8) containing polyethylene glycol in the following "for FL-SeP measurement" 2.4 w/v% To obtain a reagent.

(FL−SeP測定系の設計)
全長SeP(「FL−SeP」)量の測定のために、セレノプロテインPのN末端側を認識する抗体が結合した金コロイド粒子及びC末端側を認識する抗体が結合した金コロイド粒子を用いる測定系を設計した(本明細書において、「FL−SeP測定系」ともいう)。FL−SeP測定系では、FL−SePのみが凝集反応に関与し得る。
(Design of FL-SeP measurement system)
Measurement using gold colloid particles bound with an antibody recognizing the N-terminal side of selenoprotein P and gold colloid particles bound with an antibody recognizing the C-terminal side for the measurement of the full-length SeP (“FL-SeP”) amount A system was designed (also referred to as "FL-SeP measurement system" in the present specification). In the FL-SeP measurement system, only FL-SeP can participate in the agglutination reaction.

(FL−SeP測定系の検量線の作成)
精製SeP(FL−SeP)を、文献{Saito, Y.ら,J. Biol. Chem. (1999) 274, 2866-2871}の記載にしたがってヒト血漿から精製した。
該精製SePをそれぞれ0.0μg/mL、0.75μg/mL、1.5μg/mL、3.0μg/mL、6.0μg/mL、及び9.0μg/mLの濃度で標準マトリックス(3w/v%BSAを含む50mM 2−[ビス(2−ヒドロキシエチル)アミノ]−2−(ヒドロキシメチル)プロパン−1,3−ジオール緩衝液(pH6.5))中に含む、FL−SeP標準液を調製した。得られたFL−SeP標準液3μLに、調製例3のFL−SeP測定用試薬を170μL分注し、37℃にて約5分間加温し、次いで、金コロイド試薬1及び金コロイド試薬2を混合したものを85μL分注し、37℃にて反応させた。次いで、得られた反応溶液を日立7070自動分析装置に供し、主波長505nm及び副波長660nmで測光ポイント18から31の吸光度変化を測定し、660nmでの吸光度変化量に505nmでの吸光度変化量の絶対値を加えた値を求め、吸光度変化量とした。
そして、FL−SeP測定系におけるSeP濃度と吸光度変化量との関係を示す検量線を作成した(参照:図2)。
(Creation of calibration curve for FL-SeP measurement system)
Purified SeP (FL-SeP) was purified from human plasma as described in the literature {Saito, Y. et al., J. Biol. Chem. (1999) 274, 2866-2871}.
The purified SeP was added to standard matrix (3 w/v at concentrations of 0.0 μg/mL, 0.75 μg/mL, 1.5 μg/mL, 3.0 μg/mL, 6.0 μg/mL, and 9.0 μg/mL, respectively. Prepare FL-SeP standard solution in 50 mM 2-[bis(2-hydroxyethyl)amino]-2-(hydroxymethyl)propane-1,3-diol buffer solution (pH 6.5) containing 10% BSA. did. 170 μL of the FL-SeP measurement reagent of Preparation Example 3 was added to 3 μL of the obtained FL-SeP standard solution, and the mixture was heated at 37° C. for about 5 minutes, and then gold colloid reagent 1 and gold colloid reagent 2 were added. The mixed product was dispensed in an amount of 85 µL and reacted at 37°C. Next, the obtained reaction solution is supplied to a Hitachi 7070 automatic analyzer, the absorbance change from photometric points 18 to 31 is measured at a main wavelength of 505 nm and a subwavelength of 660 nm, and the absorbance change amount at 660 nm is changed to the absorbance change amount at 505 nm. The value obtained by adding the absolute value was determined and used as the change in absorbance.
Then, a calibration curve showing the relationship between the SeP concentration and the amount of change in absorbance in the FL-SeP measurement system was created (see FIG. 2).

(2型糖尿患者の各治療薬投与)
本実施例の2型糖尿患者の背景及び各治療薬投与方法は以下の通りである。
(Administration of various therapeutic agents for patients with type 2 diabetes)
The background of type 2 diabetic patients and the method of administering each therapeutic agent in this example are as follows.

(2型糖尿患者の背景)
2型糖尿患者の背景は、以下の表の通りである。
(Background of patients with type 2 diabetes)
The background of type 2 diabetes patients is as shown in the table below.

(2型糖尿患者の治療薬の投与方法)
2型糖尿病患者79名をランダムにDPP4阻害薬アログリプチン(ネシーナ登録商標)25 mg/朝食後内服群とメトホルミン塩酸塩(メトグルコ登録商標)1,000 mg /朝食及び夕食後内服群に割り付けた。主治医の判断により、メトグルコは、最大2,250 mg/日まで増量可能とした。各治療薬の3か月間の内服の前後での血糖値及びHbA1c(ヘモグロビン・エイワンシー)値の変化を自体公知の方法により測定し、並びに、血清中セレノプロテインP値変化を下記記載の方法により測定した。
(Method of administering therapeutic drug for type 2 diabetes patient)
79 patients with type 2 diabetes were randomly assigned to the DPP4 inhibitor alogliptin (Nesina registered trademark ) 25 mg/meal after breakfast and metformin hydrochloride (Metgluco registered trademark ) 1,000 mg/meal for breakfast and after dinner. At the discretion of the attending physician, the dose of metgluco could be increased up to 2,250 mg/day. Changes in blood glucose level and HbA1c (hemoglobin-Awansi) level before and after oral administration of each therapeutic drug for 3 months were measured by a method known per se, and changes in selenoprotein P level in serum were measured by the method described below. did.

2型糖尿病患者79名から自体公知の方法で得られた血清3μLを実施例1に記載のFL−SeP測定系に供して、検量線(参照:図2)を参照して、血清中のセレノプロテインP値を測定した。 Serum 3 μL obtained from 79 type 2 diabetic patients by a method known per se was subjected to the FL-SeP measurement system described in Example 1, and with reference to a calibration curve (see FIG. 2), seleno in serum was determined. The protein P value was measured.

(2型糖尿患者の検体のセレノプロテインP値の解析)
実施例2で得られた各治療薬の3か月間の内服の前後での血糖値の変化、HbA1c値の変化及び血清中セレノプロテインP値変化を解析した。詳細は、以下の通りである。
(Analysis of selenoprotein P levels in specimens from patients with type 2 diabetes)
Changes in blood glucose level, changes in HbA1c level and changes in serum selenoprotein P level before and after oral administration of each therapeutic agent obtained in Example 2 for 3 months were analyzed. Details are as follows.

(メトホルミン投与群での血糖値の変化及びHbA1c値の変化)
メトホルミン投与群での血糖値の変化及びHbA1c値の変化を図3に示す。図3に記載のグラフから明らかなように、メトホルミン群では3か月間のSeP値低下度と血糖値降下度並びにSeP値低下度とHbA1c値降下度は相関する傾向にあった。さらに、メトホルミン群では、SeP値がよく低下した症例では、血糖値もよく改善する傾向があった。
(Changes in blood glucose and HbA1c levels in the metformin administration group)
FIG. 3 shows changes in blood glucose level and HbA1c level in the metformin administration group. As is clear from the graph shown in FIG. 3, in the metformin group, the degree of decrease in SeP value and the degree of decrease in blood glucose level for 3 months, and the degree of decrease in SeP value and the degree of decrease in HbA1c value tended to be correlated. Furthermore, in the metformin group, the blood glucose level tended to improve well in the cases where the SeP level decreased well.

(DPP4阻害薬投与群での血糖値の変化及びHbA1c値の変化)
DPP4阻害薬投与群での血糖値の変化及びHbA1c値の変化を図4に示す。図4に記載のグラフから明らかなように、DPP4阻害薬投与群では、3か月間のSeP値低下度と血糖値降下度並びにSeP値低下度とHbA1c値降下度は相関しなかった。
(Changes in blood glucose level and HbA1c level in the DPP4 inhibitor administration group)
FIG. 4 shows changes in blood glucose level and HbA1c level in the DPP4 inhibitor administration group. As is clear from the graph shown in FIG. 4, in the DPP4 inhibitor administration group, there was no correlation between the degree of decrease in SeP value and the degree of decrease in blood glucose level, and the degree of decrease in SeP value and the degree of decrease in HbA1c value for 3 months.

(メトホルミン投与群及びDPP4阻害薬投与群でのセレノプロテインP値の変化)
メトホルミン投与群及びDPP4阻害薬投与群でのSeP値の変化を図5に示す。図5に記載のグラフから明らかなように、メトホルミン投与群では、投与前のSeP値と投与後3か月間のSeP値低下度は相関した。しかし、DPP4阻害薬投与群では、投与前のSeP値と投与後3か月間のSeP値低下度は相関しなかった。すなわち、治療開始前のSeP値が高値症例では、メトホルミン投与によりSeP値をより低下させた。
(Change in selenoprotein P level in metformin administration group and DPP4 inhibitor administration group)
FIG. 5 shows changes in SeP values in the metformin administration group and the DPP4 inhibitor administration group. As is clear from the graph shown in FIG. 5, in the metformin administration group, the SeP value before administration was correlated with the degree of decrease in SeP value for 3 months after administration. However, in the DPP4 inhibitor-administered group, there was no correlation between the SeP level before administration and the degree of decrease in SeP level 3 months after administration. That is, in the case where the SeP value before the start of treatment was high, the SeP value was further lowered by the administration of metformin.

(メトホルミン投与群及びDPP4阻害薬投与群での血糖値の変化)
メトホルミン投与群及びDPP4阻害薬投与群での血糖値の変化を図6に示す。図6に記載のグラフから明らかなように、メトホルミン投与群では、投与前のSeP値と投与後3か月間の血糖値低下度は相関した。しかし、DPP4阻害薬投与群では、投与前のSeP値と投与後3か月間の血糖値低下度は相関しなかった。すなわち、治療薬投与前の血中SeP値は、メトホルミン投与においてのみその後の血糖値降下度を予測できた。
(Changes in blood glucose levels in the metformin administration group and the DPP4 inhibitor administration group)
FIG. 6 shows changes in blood glucose level in the metformin administration group and the DPP4 inhibitor administration group. As is clear from the graph shown in FIG. 6, in the metformin administration group, the SeP value before administration was correlated with the degree of decrease in blood glucose level for 3 months after administration. However, in the DPP4 inhibitor-administered group, there was no correlation between the SeP level before administration and the decrease in blood glucose level 3 months after administration. That is, the blood SeP level before the administration of the therapeutic agent was able to predict the degree of blood glucose decrease after the administration of metformin only.

(メトホルミン投与群での投与前SeP値が高症例でのセレノプロテインP値の変化)
メトホルミン投与群での投与前SeP値が高値(4.55μg/mL以上)の症例でのSeP値の変化を図7に示す。図7に記載のグラフから明らかなように、3か月間のメトホルミン投与により有意に血中SeP値を低下させた。
(Change in selenoprotein P level in patients with high pretreatment SeP level in metformin administration group)
FIG. 7 shows changes in the SeP value in the case where the pre-administration SeP value in the metformin administration group was high (4.55 μg/mL or more). As is clear from the graph shown in FIG. 7, the blood SeP level was significantly decreased by the administration of metformin for 3 months.

図3〜図7に記載のグラフの結果より、2型糖尿患者の血液中のSeP値が高値な場合には、メトホルミン投与により、血糖値及びHbA1c値を改善し、さらに血液中の2型糖尿病の検出マーカーであるSeP値を有意に低下させることを確認した。 From the results of the graphs shown in FIGS. 3 to 7, when the SeP value in the blood of the type 2 diabetic patient is high, the blood glucose level and the HbA1c level are improved by the administration of metformin, and the type 2 diabetes in the blood is further improved. It was confirmed that the SeP value, which is a detection marker for the, was significantly decreased.

(2型糖尿患者のメトホルミン投与を選択するためのカットオフ値の設定)
2型糖尿患者のメトホルミン投与を選択するためのカットオフ値を設定した。詳細は、以下の通りである。
(Setting of cut-off value for selecting metformin administration in type 2 diabetic patients)
A cut-off value was set for selecting metformin administration in patients with type 2 diabetes. Details are as follows.

(治療前の2型糖尿患者の血清中のセレノプロテインP値分布からの選択)
治療前の2型糖尿患者の血清中のSeP値分布を図8に示す。図8に記載の分布図より、中央値より高い値である4.1μg/mLをカットオフ値として選択した。
(Selection from selenoprotein P level distribution in serum of type 2 diabetic patients before treatment)
The SeP value distribution in the serum of the type 2 diabetic patients before treatment is shown in FIG. From the distribution chart shown in FIG. 8, 4.1 μg/mL, which is a value higher than the median value, was selected as the cutoff value.

(選択したカットオフ値の検証)
選択したカットオフ値である4.1μg/mL以上の症例でのメトホルミン投与群及びDPP4阻害薬投与群での血糖値の変化を図9に示す。図9に記載のグラフの結果から明らかなように、メトホルミン投与群では、血糖値を有意に改善した。すなわち、治療前の2型糖尿患者の血清中のSeP値が4.5μg/mL以上、例えば、4.5μg/mL〜6.0μg/mL、より好ましくは4.5μg/mL〜5.5μg/mL、最も好ましくは4.5μg/mL〜5.0μg/mLの場合には、メトホルミン投与により血糖値の改善(糖尿病治療効果)があることを確認した。
(Validation of selected cutoff value)
FIG. 9 shows changes in blood glucose level in the metformin administration group and the DPP4 inhibitor administration group in the cases where the selected cutoff value was 4.1 μg/mL or more. As is clear from the results of the graph shown in FIG. 9, the blood glucose level was significantly improved in the metformin administration group. That is, the serum SeP value of type 2 diabetic patients before treatment is 4.5 μg/mL or more, for example, 4.5 μg/mL to 6.0 μg/mL, more preferably 4.5 μg/mL to 5.5 μg/mL, and most preferably In the case of 4.5 μg/mL-5.0 μg/mL, it was confirmed that the administration of metformin had an improvement in blood glucose level (diabetes treatment effect).

(総論)
以上の実施例により、治療前の2型糖尿患者の血清中のセレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン投与により、血糖値改善、HbA1c値改善、血液中のSeP値低下、さらには糖尿病治療の有効性があることを予測することができる。
(General)
According to the above examples, when the selenoprotein P level in the serum of type 2 diabetic patients before treatment is higher than the cutoff value, the administration of metformin improves the blood glucose level, the HbA1c level, and the SeP level in the blood. , And can even be expected to be effective in treating diabetes.

2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン投与を選択することを特徴とする2型糖尿病の治療薬選択の補助方法、治療薬の効果予測方法、検査方法及び治療方法の提供。 A method for assisting selection of a therapeutic agent for type 2 diabetes, which is characterized by selecting metformin administration when the selenoprotein P level is higher than the cutoff value in a sample derived from a type 2 diabetic patient, and predicting the effect of the therapeutic agent Providing methods, examination methods, and treatment methods.

Claims (9)

2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩投与が選択されることを特徴とする2型糖尿病の治療薬選択の補助方法。
In type 2 diabetes specimens from patients, when selenoprotein P value is higher than the cut-off value, the treatment of type 2 diabetes selection method of the auxiliary, wherein the metformin hydrochloride dosage can be selected.
前記検体が、血液である請求項1に記載の治療薬選択の補助方法。
The method according to claim 1, wherein the sample is blood.
前記カットオフ値が、3.5μg/mL〜4.7μg/mLである請求項1又は2に記載の治療薬選択の補助方法。
The method according to claim 1 or 2, wherein the cutoff value is 3.5 µg/mL to 4.7 µg/mL.
2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高いことが、メトホルミン塩酸塩投与が有効であることを示すことを特徴とする2型糖尿病の治療効果を予測するための方法。
In type 2 diabetes specimens from patients, seleno that protein P value is higher than the cut-off value, for predicting the therapeutic effect of type 2 diabetes, characterized by indicating that metformin hydrochloride administration is effective Method.
前記検体が、血液である請求項4に記載の治療効果を予測するための方法。
The method for predicting a therapeutic effect according to claim 4, wherein the sample is blood.
前記カットオフ値が、4.5μg/mL以上である請求項4又は5に記載の治療効果を予測するための方法。
The method for predicting a therapeutic effect according to claim 4 or 5, wherein the cutoff value is 4.5 µg/mL or more.
2型糖尿病患者由来の検体において、セレノプロテインP値がカットオフ値よりも高い場合には、メトホルミン塩酸塩投与が選択されることを特徴とする2型糖尿病の治療薬選択のための2型糖尿病患者由来の検体の検査方法。
Type 2 diabetes for the selection of therapeutic agents for type 2 diabetes, characterized in that in a sample derived from a type 2 diabetes patient, if the selenoprotein P level is higher than the cutoff value, metformin hydrochloride administration is selected. Test method for specimens from patients.
前記検体が、血液である請求項7に記載の検査方法。
The test method according to claim 7, wherein the sample is blood.
前記カットオフ値が、3.5μg/mL〜4.7μg/mLである請求項7又は8に記載の検査方法。 The inspection method according to claim 7, wherein the cutoff value is 3.5 μg/mL to 4.7 μg/mL.
JP2016547506A 2014-09-10 2015-09-10 Method of assisting selection of therapeutic agent for type 2 diabetic patients, method of predicting effect of therapeutic agent, test method and therapeutic method Active JP6736011B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014184499 2014-09-10
JP2014184499 2014-09-10
PCT/JP2015/075760 WO2016039426A1 (en) 2014-09-10 2015-09-10 Method for assisting in selection of therapeutic drug for type-2 diabetes patient, method for predicting effect of therapeutic drug, inspection method, and treatment method

Publications (2)

Publication Number Publication Date
JPWO2016039426A1 JPWO2016039426A1 (en) 2017-09-14
JP6736011B2 true JP6736011B2 (en) 2020-08-05

Family

ID=55459170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016547506A Active JP6736011B2 (en) 2014-09-10 2015-09-10 Method of assisting selection of therapeutic agent for type 2 diabetic patients, method of predicting effect of therapeutic agent, test method and therapeutic method

Country Status (2)

Country Link
JP (1) JP6736011B2 (en)
WO (1) WO2016039426A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020002289B4 (en) 2020-04-07 2023-08-17 selenOmed GmbH Selenoprotein P as a marker for selenium poisoning

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013324A1 (en) * 2006-07-28 2008-01-31 National University Corporation Kanazawa University Use of diabetes-related, liver-derived secreted protein in diagnosis or treatment of type-2 diabetes or vascular disorder
JP2014052338A (en) * 2012-09-10 2014-03-20 Alfresa Pharma Corp Segregated measurement method for substance to be measured

Also Published As

Publication number Publication date
JPWO2016039426A1 (en) 2017-09-14
WO2016039426A1 (en) 2016-03-17

Similar Documents

Publication Publication Date Title
Stelzer et al. Link between leptin and interleukin-6 levels in the initial phase of obesity related inflammation
EP2500730B1 (en) Soluble urokinase plasminogen activator receptor (suPAR) as diagnostic marker for low-grade inflammation
Zhang et al. Relation of circulating PCSK9 concentration to fibrinogen in patients with stable coronary artery disease
US20140322723A1 (en) Diabetes diagnosis through the detection of glycated proteins in urine
US10845371B2 (en) Soluble MANF in pancreatic beta-cell disorders
Fazaeli et al. The influence of subclinical hypothyroidism on serum lipid profile, PCSK9 levels and CD36 expression on monocytes
Cusato et al. Efavirenz pharmacogenetics in a cohort of Italian patients
EP3645736B1 (en) Method for determining the risk to develop type 1 diabetes
Jasuja et al. Accurate measurement and harmonized reference ranges for total and free testosterone levels
JP6736011B2 (en) Method of assisting selection of therapeutic agent for type 2 diabetic patients, method of predicting effect of therapeutic agent, test method and therapeutic method
JP4256266B2 (en) Method for detecting cardiotoxicity caused by an anthracycline anticancer chemotherapeutic agent by detecting human H-FABP, and reagent therefor
CN111542755A (en) Selenoprotein P for prediction of first cardiovascular events
Mohammed et al. A case-control study to determination FBXW7 and Fetuin-A levels in patients with type 2 diabetes in Iraq
Singh et al. An insight into the association of sclerostin with insulin sensitivity and glycemic parameters in male Indian prediabetic and diabetic population
US20210121451A1 (en) Methods of monitoring, treating, and preventing renal inflammation associated with kidney transplantation
Afsar et al. The relationship between insulin, insulin resistance, parathyroid hormone, cortisol, testosterone, and thyroid function tests in the presence of nephrolithiasis: a comprehensive analysis
Salhotra et al. Influence of menopause on biochemical markers of endothelial dysfunction—A case–control pilot study in North Indian population
Han et al. The correlation of fibroblast growth factor 23 with cardiac remodeling in essential hypertension with normal renal function
Ikegwuonu et al. Correlative Study of Bone-related Biochemicals and Endocrine Changes in Perimenopausal Women in Enugu, Nigeria
Fatima et al. Prognostic significance of serum cortisol and serum albumin in patients of ischemic stroke
Alaaraji et al. Evaluation of Serum Malondialdehyde, Glutathione and Lipid Profile Levels in Iraqi Females with Type 2 Diabetes Mellitus
JP3564668B2 (en) Method for screening prostate cancer by measuring apolipoprotein D level in body fluid
Popovska-Dimova et al. The frequency of insulin resistance calculated upon the basis of a fasting glucose to insulin ratio and characteristics of insulin resistant women with polycystic ovary syndrome
Sharmila Estimation and Evaluation of Vitamin D Binding Protein Levels in Gingival Crevicular Fluid and Serum in Subjects with Periodontal Health and Disease. A Clinico-Biochemical Study
CN112449684A (en) Method for diagnosing liver disease

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20170517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170713

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200625

R150 Certificate of patent or registration of utility model

Ref document number: 6736011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250