WO2016039393A1 - Production method for amino acid derivative - Google Patents

Production method for amino acid derivative Download PDF

Info

Publication number
WO2016039393A1
WO2016039393A1 PCT/JP2015/075653 JP2015075653W WO2016039393A1 WO 2016039393 A1 WO2016039393 A1 WO 2016039393A1 JP 2015075653 W JP2015075653 W JP 2015075653W WO 2016039393 A1 WO2016039393 A1 WO 2016039393A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
salt
formula
alkyl group
compound represented
Prior art date
Application number
PCT/JP2015/075653
Other languages
French (fr)
Japanese (ja)
Inventor
雅彦 関
Original Assignee
株式会社エーピーアイ コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エーピーアイ コーポレーション filed Critical 株式会社エーピーアイ コーポレーション
Priority to JP2016547484A priority Critical patent/JPWO2016039393A1/en
Publication of WO2016039393A1 publication Critical patent/WO2016039393A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/02Preparation of carboxylic acid amides from carboxylic acids or from esters, anhydrides, or halides thereof by reaction with ammonia or amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/06Preparation of carboxylic acid amides from nitriles by transformation of cyano groups into carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/45Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • C07C233/46Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/47Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C237/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C237/06Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/24Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the same saturated acyclic carbon skeleton
    • C07C255/26Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the same saturated acyclic carbon skeleton containing cyano groups, amino groups and singly-bound oxygen atoms bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/48Preparation of compounds having groups
    • C07C41/50Preparation of compounds having groups by reactions producing groups
    • C07C41/52Preparation of compounds having groups by reactions producing groups by substitution of halogen only
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/30Compounds having groups
    • C07C43/315Compounds having groups containing oxygen atoms singly bound to carbon atoms not being acetal carbon atoms

Definitions

  • the present invention relates to an amino acid derivative and a method for producing an intermediate thereof. Specifically, the present invention relates to a method for producing (R) -N-benzyl-2-acetylamino-3-methoxypropionic acid amide (lacosamide) and an intermediate thereof.
  • Lacosamide is a useful drug for treating epilepsy and pain.
  • Patent Documents 1 and 2 and Non-Patent Document 1 disclose a method for producing lacosamide using methyl iodide and silver oxide as O-methylating agents.
  • Patent Document 3 discloses a method using dimethyl sulfate as an O-methylating agent.
  • Patent Documents 4 and 5 disclose a method for protecting an amino group before methylation of a hydroxyl group. All of these methods use expensive D-serine and its derivatives as starting materials, use expensive O-methylating agents and reagents for protection, Therefore, there is a demand for a method that can be manufactured industrially at a lower cost. Further, the method described in Patent Document 3 uses a large amount of dimethyl sulfate when industrially producing lacosamide on a large scale, which may cause safety or environmental problems, and is safer. An environmentally friendly manufacturing method is desired.
  • Patent Documents 6, 7 and 8 disclose a method of producing a racemic lacosamide or an intermediate thereof and optically resolving the same, or a method of separating optical isomers using an SMB (Simulated Moving Bed) separation apparatus. Yes.
  • SMB Simulated Moving Bed
  • An object of the present invention is to provide a method for industrially producing lacosamide having high optical purity in a high yield, inexpensively and safely.
  • R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3,
  • R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group).
  • R 5 , R 6 and R 7 are each independently an alkyl group.
  • R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3,
  • R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group).
  • a compound represented by general formula [I] comprising a step of amidating a compound represented by formula (hereinafter also referred to as compound [III]) or a salt thereof:
  • R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3,
  • R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group).
  • R 5 , R 6 and R 7 are each independently an alkyl group.
  • R 1 and R 2 are each independently an alkyl group or an aralkyl group, and R 1 and R 2 may be linked by an alkyl chain.
  • R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3,
  • R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group).
  • the production method according to [2] wherein the compound is obtained by reacting with a compound represented by formula (hereinafter also referred to as compound [V]) or a salt thereof.
  • compound [V] compound represented by formula
  • R 1 and R 2 are each independently an alkyl group or an aralkyl group, and R 1 and R 2 may be linked by an alkyl chain.
  • R 1 and R 2 are each independently an alkyl group or an aralkyl group, and R 1 and R 2 may be linked by an alkyl chain.
  • R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3,
  • R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group).
  • R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3,
  • R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group).
  • the method includes a step of reacting with a compound represented by the formula:
  • R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3,
  • R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group).
  • R 5 , R 6 and R 7 are each independently an alkyl group.
  • R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3,
  • R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group).
  • R 5 , R 6 and R 7 are each independently an alkyl group.
  • R 1 and R 2 are each independently an alkyl group or an aralkyl group, and R 1 and R 2 may be linked by an alkyl chain.
  • R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3,
  • R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group).
  • R 5 , R 6 and R 7 are each independently an alkyl group.
  • R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3,
  • R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group).
  • R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3,
  • R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group).
  • a compound represented by the formula or a salt thereof is hydrolyzed to give a general formula [XIV]:
  • R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3,
  • R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group).
  • R 5 , R 6 and R 7 are each independently an alkyl group.
  • a salt thereof is benzylamidated to give a general formula [XV]:
  • R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3,
  • R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group).
  • the compound represented by the formula or a salt thereof is reduced to give the formula [XVI]:
  • R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3,
  • R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group).
  • R 5 , R 6 and R 7 are each independently an alkyl group.
  • R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3,
  • R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group).
  • R 5 , R 6 and R 7 are each independently an alkyl group.
  • high optical purity lacosamide can be industrially produced in a high yield, inexpensively and safely.
  • an intermediate useful in the production of lacosamide can be provided.
  • PMAD means (1′R, 2R) -2- (1-methylbenzyl) amino-3-methoxypropionic acid amide.
  • PMAD is an example of a compound represented by the general formula [I].
  • MAD means (R) -2-amino-3-methoxypropionic acid amide.
  • PMAN means (1′R) -2- (1′-methylbenzyl) amino-3-methoxypropionitrile.
  • PMAN is an example of a compound represented by the general formula [III].
  • MAA means methoxyacetaldehyde dimethyl acetal.
  • MAA is an example of a compound represented by the general formula [IV].
  • CAA means chloroacetaldehyde dimethyl acetal.
  • CAA is an example of a compound represented by the general formula [VI].
  • AME means methyl acrylate.
  • MCA means (R) -2-amino-3-methoxypropionic acid.
  • AMCA means (R) -2-acetylamino-3-methoxypropionic acid.
  • LACO means (R) -2-acetamino-3-methoxy-N-benzylpropionic acid amide (lacosamide).
  • AMOD means (R) -2-acetylamino-3-methoxypropionamide.
  • PMCA means (2R, 1′R) -2- (1′-methylbenzyl) amino-3-methoxypropionic acid.
  • PMCA is an example of a compound represented by the general formula [XIV].
  • PMBA means (2R, 1′R) -N-benzyl-2- (1′-methylbenzyl) amino-3-methoxypropionic acid amide.
  • PMBA is an example of a compound represented by the general formula [XV].
  • HMBA means (R) —N-benzyl-2-amino-3-methoxypropionic acid amide.
  • PEA means ⁇ -methylbenzylamine.
  • PEA is an example of a compound represented by the general formula [V]. The absolute configuration of PEA may be R-form or S-form, but R-form (R-PEA) is preferred.
  • DCM means dichloromethane.
  • DMF means N, N′-dimethylformamide.
  • DMA means N, N-dimethylacetamide.
  • DMSO means dimethyl sulfoxide.
  • NMP N-methyl-2-pyrrolidone.
  • THF tetrahydrofuran.
  • DCC means N, N′-dicyclohexylcarbodiimide.
  • EDC means 1,2-dichloroethane.
  • CDI means 1,1-carbonyldiimidazole.
  • Me means a methyl group.
  • Et means an ethyl group.
  • Ac means an acetyl group.
  • Bn means a benzyl group.
  • examples of the “alkyl group” include linear or branched alkyl groups having 1 to 12 carbon atoms, such as a methyl group, an ethyl group, a propyl group, and an isopropyl group. Butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, hexyl, heptyl, octyl, nonyl, decyl and the like.
  • a lower alkyl group having 1 to 6 carbon atoms is preferable, and a methyl group or an ethyl group is particularly preferable.
  • alkoxy group examples include linear or branched alkoxy groups having 1 to 12 carbon atoms, such as methoxy group, ethoxy group, propoxy group, isopropoxy group.
  • examples of the “aryl group” include aryl groups having 6 to 14 carbon atoms, such as phenyl group, 1-naphthyl group, 2-naphthyl group, 2-anthryl group and the like. Is mentioned.
  • examples of the “aryloxy group” include aryloxy groups having 6 to 14 carbon atoms, such as phenoxy group, 1-naphthyloxy group, 2-naphthyloxy group and the like. Can be mentioned.
  • examples of the “aralkyl group” include aralkyl groups having 7 to 40 carbon atoms, such as benzyl group, phenethyl group, 1-naphthylmethyl group, 2-naphthylmethyl group, Examples include 2-anthrylmethyl group and trityl group.
  • examples of the “alkyl chain” include an alkyl chain having 1 to 12 carbon atoms, such as a methylene group, an ethylene group, and an isopropylidene group.
  • examples of the “acetylating agent” include acetic anhydride, acetyl chloride, N-acetylimidazole, acetic acid and the like.
  • R 1 and R 2 are each independently an alkyl group or an aralkyl group, and R 1 and R 2 may be linked by an alkyl chain.
  • R 1 and R 2 are preferably both methyl groups.
  • R 3 is a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, and the aryl group may be condensed with a benzene ring to which R 3 is bonded.
  • the R 3 in the case where "the aryl group, R 3 may be condensed with the benzene ring which is bonded", for example, biphenylenyl group, and a fluorenyl group.
  • R 3 is preferably a hydrogen atom.
  • R 4 is an alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group) .) R 4 is preferably a methyl group.
  • Step 1 Production of compound [II] or a salt thereof
  • Compound [II] or a salt thereof can be produced by reducing compound [I] or a salt thereof.
  • the reduction is preferably performed in the presence of a noble metal catalyst.
  • a noble metal catalyst As the salt of compound [I] or [II], an acid salt is preferred, and for example, hydrochloride, sulfate, p-toluenesulfonate, camphorsulfonate, tartrate, mandelate can be used, Hydrochloride is preferable.
  • the noble metal catalyst palladium carbon, palladium black, palladium barium sulfate, palladium calcium carbonate, platinum carbon, rhodium carbon, ruthenium carbon and the like can be used, and preferably palladium carbon.
  • the amount of the noble metal catalyst used is 0.05 to 10 mmol, preferably 0.1 to 0.5 mmol, relative to 1 mmol of compound [I] or a salt thereof.
  • Hydrogen, formic acid, ammonium formate, triethylammonium formate, etc. can be used as the reducing agent used for the reduction of compound [I] or a salt thereof, preferably hydrogen.
  • compound [I] or a salt thereof can be reduced by reacting in the presence of a noble metal catalyst in a hydrogen atmosphere.
  • the hydrogen pressure is usually 1 atm to 100 atm, preferably 3 atm to 15 atm.
  • compound [I] or a salt thereof can be reduced by reacting these reducing agents with a noble metal catalyst.
  • the amount of formic acid, ammonium formate, or triethylammonium formate to be used is 1 mmol-100 mmol, preferably 1 mmol-20 mmol, relative to 1 mmol of compound [I] or a salt thereof.
  • the reduction can be performed in the presence of a solvent.
  • the solvent is not particularly limited as long as the reaction proceeds, but water, methanol, ethanol, isopropanol, THF, dioxane, toluene, xylene, methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, etc., preferably water, methanol Ethanol or isopropanol. You may mix and use a solvent.
  • the amount of the solvent to be used is generally 1 mL to 20 mL, preferably 3 mL to 10 mL, per 1 mmol of compound [I] or a salt thereof.
  • the temperature during the reduction is usually 5 ° C.
  • the reduction time is usually 0.5 hours to 48 hours, preferably 1 hour to 24 hours.
  • the reduction can be performed in the presence or absence of an acid.
  • examples of the acid include acetic acid, butanoic acid, trifluoroacetic acid, hydrochloric acid, sulfuric acid, methanesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid, camphorsulfonic acid, tartaric acid, mandelic acid, etc. These may be used as a mixture.
  • hydrochloric acid sulfuric acid or methanesulfonic acid
  • hydrochloric acid particularly preferred is hydrochloric acid.
  • the amount of the acid used is 0.05 to 10 mmol, preferably 0.1 to 0.5 mmol, relative to 1 mmol of compound [I] or a salt thereof.
  • the pressure during the reaction is usually atmospheric pressure.
  • Step 2 Production of Compound [I] or a Salt thereof (Part 1)
  • Compound [I] or a salt thereof can be produced by amidating compound [III] or a salt thereof. Specifically, it can be produced by reacting with hydrogen peroxide in the presence of an alkali metal carbonate.
  • an acid salt is preferable.
  • hydrochloride, sulfate, p-toluenesulfonate, camphorsulfonate, tartrate, mandelate and the like can be used, preferably hydrochloric acid. Salt.
  • the alkali metal carbonate lithium carbonate, sodium carbonate, and potassium carbonate are preferable, and potassium carbonate is particularly preferable.
  • the amount of alkali metal carbonate used is 0.01 mmol to 10 mmol, preferably 0.1 mmol to 0.5 mmol, relative to 1 mmol of compound [III] or a salt thereof.
  • hydrogen peroxide an aqueous solution having a concentration of 5% to 45%, preferably 20% to 30% can be used.
  • the amount of hydrogen peroxide to be used is 1 mmol to 10 mmol, preferably 1.5 mmol to 3 mmol, relative to 1 mmol of compound [III] or a salt thereof.
  • the amidation is preferably performed in the presence of a solvent.
  • the solvent is not particularly limited as long as amidation proceeds, but DMSO, methylene chloride, toluene, chlorobenzene and the like can be used, and DMSO is particularly preferable. Further, DMSO and a solvent such as methylene chloride, toluene, or chlorobenzene may be mixed and used.
  • the amount of the solvent to be used is generally 0.5 mL to 100 mL, preferably 1 mL to 3 mL, relative to 1 mmol of compound [III] or a salt thereof.
  • the reaction temperature is usually ⁇ 10 ° C. to 100 ° C., preferably 5 ° C. to 50 ° C.
  • the reaction time is usually 0.1 hour to 48 hours, preferably 0.5 hour to 30 hours.
  • the pressure during the reaction is usually atmospheric pressure.
  • Compound [I] or a salt thereof is useful as a starting material or an intermediate for producing lacosamide.
  • Step 3 Production of compound [III] or a salt thereof
  • Compound [III] or a salt thereof can be produced by reacting compound [IV] with an acid and then reacting the obtained compound with compound [V] or a salt thereof (Strecker reaction). Specifically, (Step 3-1) reacting compound [IV] with an acid to produce methoxyacetaldehyde, (Step 3-2) the produced aldehyde with an inorganic cyanide compound and compound [V] or a salt thereof. It can be produced by reacting.
  • the salt of compound [V] is preferably an acid salt, and for example, hydrochloride, sulfate, p-toluenesulfonate, camphorsulfonate, tartrate, and mandelate are preferable.
  • Step 3-1 As the acid, acetic acid, butanoic acid, trifluoroacetic acid, hydrochloric acid, sulfuric acid, methanesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid, camphorsulfonic acid, tartaric acid, mandelic acid and the like can be used. You may mix and use. Hydrochloric acid is preferred.
  • the amount of the acid to be used is generally 0.1 mmol-10 mmol, preferably 1 mmol-3 mmol, relative to 1 mmol of compound [IV].
  • the concentration of the acid in the reaction system is usually 0.01 mol / L to 16 mol / L, preferably 0.5 mol / L to 6 mol / L.
  • the reaction can be carried out in the presence of a solvent.
  • the solvent is not particularly limited as long as the reaction proceeds, but alcohols such as methanol, ethanol, and isopropanol, methyl acetate, ethyl acetate, acetonitrile, toluene, DCM, DMF, DMA, NMP, water, and the like can be used. Is preferred. Further, water and a solvent other than water may be mixed and used.
  • the amount of the solvent to be used is generally 1 mL to 100 mL, preferably 5 mL to 20 mL, per 1 mmol of compound [IV].
  • the reaction temperature is usually 0 ° C. to 100 ° C., preferably 10 ° C. to 40 ° C.
  • the reaction time is usually 0.5 to 24 hours, preferably 1 to 5 hours.
  • the pressure during the reaction is usually atmospheric pressure.
  • Compound [III] or a salt thereof is useful as a starting material or an intermediate for producing lacosamide.
  • Step 3-2 After the reaction in Step 3-1, an inorganic cyanide compound and compound [V] or a salt thereof are further added.
  • the compound [III] or a salt thereof can be produced by reacting the aldehyde produced in Step 3-1 with an inorganic cyanide compound and the compound [V] or a salt thereof in the presence or absence of an acid.
  • the inorganic cyanide compound hydrogen cyanide, lithium cyanide, sodium cyanide, potassium cyanide and the like can be used. From the viewpoint of safety and economy, lithium cyanide, sodium cyanide and potassium cyanide are preferable, and particularly preferable. Is sodium cyanide.
  • the amount of the inorganic cyanide compound used is 1 mmol to 10 mmol, preferably 1 mmol to 2 mmol, relative to 1 mmol of the compound [IV].
  • the amount of compound [V] or a salt thereof used is 1 mmol to 10 mmol, preferably 1 mmol to 2 mmol, relative to 1 mmol of compound [IV].
  • As the acid acetic acid, butanoic acid, trifluoroacetic acid, hydrochloric acid, sulfuric acid, methanesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid, camphorsulfonic acid, tartaric acid, mandelic acid and the like can be used. You may mix and use.
  • Hydrochloric acid is preferred.
  • the amount used is 1 mmol to 10 mmol, preferably 1 mmol to 2 mmol, with respect to 1 mmol of the inorganic cyanide compound.
  • the acid may be present in the reaction system from the previous step.
  • the reaction can be carried out in the presence of a solvent.
  • the solvent is not particularly limited as long as the reaction proceeds, but alcohols such as methanol, ethanol, and isopropanol, methyl acetate, ethyl acetate, acetonitrile, toluene, DCM, DMF, DMA, NMP, water, and the like can be used. Is preferred. Further, water and a solvent other than water may be mixed and used.
  • the amount of the solvent to be used is generally 1 mL to 100 mL, preferably 5 mL to 20 mL, per 1 mmol of compound [V] or a salt thereof.
  • the reaction temperature is usually ⁇ 50 ° C. to 120 ° C., preferably 10 ° C. to 80 ° C.
  • the reaction time is usually 0.1 hour to 168 hours, preferably 1 hour to 48 hours.
  • the pressure during the reaction is usually atmospheric pressure.
  • Compound [IV] can be commercially available, but can also be produced at lower cost by methoxylation of compound [VI] as in Step 4 below.
  • compound [IV] can be produced by reacting commercially available compound [VI] such as chloroacetaldehyde dimethyl acetal with sodium methoxide.
  • the amount of sodium methoxide to be used is generally 1 mmol-100 mmol, preferably 1 mmol-10 mmol, relative to 1 mmol of compound [VI].
  • the solvent is not particularly limited as long as the reaction proceeds, but methanol, THF, toluene and the like can be used. You may mix and use a solvent. Preferred is methanol or THF, and particularly preferred is methanol.
  • the amount of the solvent to be used is generally 0.1 mL to 100 mL, preferably 0.5 mL to 5 mL, particularly preferably 1 mL to 3 mL, relative to 1 mmol of compound [VI].
  • the reaction temperature is usually 0 ° C. to 150 ° C., preferably 10 ° C. to 120 ° C.
  • the reaction time is usually 0.1 hour to 48 hours, preferably 1 hour to 24 hours.
  • the pressure during the reaction is usually atmospheric pressure.
  • Step 5 Production of Compound [I] or a Salt thereof (Part 2)
  • Compound [I] or a salt thereof can be produced by halogenating compound [VII] or a salt thereof and then reacting with compound [V] or a salt thereof. Specifically, first, compound [VII] or a salt thereof is reacted with a halogen.
  • a halogen bromine is particularly preferable.
  • the amount of halogen to be used is generally 1 mmol-5 mmol, preferably 1 mmol-2 mmol, particularly preferably 1 mmol-1.5 mmol, relative to 1 mmol of compound [VII] or a salt thereof.
  • the reaction can be carried out in the presence of a solvent.
  • the solvent is not particularly limited as long as the reaction proceeds, and examples thereof include methanol, DCM, chloroform, toluene and the like. You may mix and use a solvent.
  • the reaction temperature is usually ⁇ 10 ° C. to 100 ° C., preferably 5 ° C. to 40 ° C.
  • the reaction time is usually 0.1 hour to 24 hours, preferably 0.5 hour to 5 hours.
  • the pressure during the reaction is usually atmospheric pressure.
  • compound [I] or a salt thereof is produced by reacting the produced halide [VIII] or a salt thereof with compound [V] or a salt thereof.
  • the reaction is preferably performed in the presence of a base.
  • Compound [V] or a salt thereof is generally 1 mmol to 10 mmol, preferably 1 mmol to 5 mmol, particularly preferably 1 mmol to 2 mmol, relative to 1 mmol of compound [VII] or a salt thereof.
  • the base include triethylamine, pyridine, potassium carbonate, sodium hydroxide and the like.
  • the amount of the base to be used is generally 2 mmol to 10 mmol, preferably 2 mmol to 6 mmol, particularly preferably 2 mmol to 4 mmol, relative to 1 mmol of compound [VII] or a salt thereof.
  • the reaction can be carried out in the presence of a solvent.
  • the solvent is not particularly limited as long as the reaction proceeds, and examples thereof include methanol, ethanol, isopropanol, DCM, chloroform, toluene, and THF. You may mix and use a solvent.
  • the reaction temperature is usually ⁇ 10 ° C. to 100 ° C., preferably 0 ° C. to 80 ° C.
  • the reaction time is usually 0.1 hour to 72 hours, preferably 1 hour to 8 hours.
  • the pressure during the reaction is usually atmospheric pressure.
  • compound [XII] lacosamide
  • a salt thereof is produced from compound [II] or a salt thereof by the following method A (step 6 ⁇ 7 ⁇ 8) or method B (step 9 ⁇ 10).
  • method A step 6 ⁇ 7 ⁇ 8> Step 6: Production of compound [X] or a salt thereof
  • Compound [X] or a salt thereof can be produced by hydrolyzing compound [II] or a salt thereof. Specifically, compound [II] or a salt thereof is reacted with an acid to be hydrolyzed.
  • an acid acetic acid, butanoic acid, trifluoroacetic acid, hydrochloric acid, sulfuric acid, methanesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid, camphorsulfonic acid, tartaric acid, mandelic acid and the like can be used. You may mix and use.
  • Preferred is hydrochloric acid or sulfuric acid.
  • the concentration of the acid used is usually 1% to 98%.
  • the amount of the acid used is 1 mmol to 1000 mmol, preferably 2 mmol to 100 mmol, particularly preferably 3 mmol to 10 mmol, relative to 1 mmol of compound [II] or a salt thereof.
  • the reaction temperature is usually 0 ° C. to 200 ° C., preferably 40 ° C. to 120 ° C.
  • the reaction time is usually 0.5 hours to 48 hours, preferably 5 hours to 30 hours.
  • the pressure during the reaction is usually atmospheric pressure.
  • the salt of compound [X] is preferably an acid salt, and for example, hydrochloride, sulfate, p-toluenesulfonate, camphorsulfonate, tartrate, and mandelate are preferable.
  • the obtained compound [X] or a salt thereof can be used in the next step as it is, but may be used in the next step after purification.
  • a conventionally known method can be adopted, and it is preferable to purify using an ion exchange resin such as Dowex 50X4.
  • Step 7 Production of compound [XI] or a salt thereof
  • Compound [XI] or a salt thereof can be produced by acetylating compound [X] or a salt thereof. Specifically, compound [X] or a salt thereof is reacted with an acetylating agent in the presence of a base.
  • an acetylating agent acetic anhydride, acetyl chloride, N-acetylimidazole, acetic acid and the like can be used, and these may be used in combination. In particular, acetic anhydride or acetyl chloride is preferred.
  • the amount of the acetylating agent to be used is 1 mmol to 10 mmol, preferably 1 mmol to 3 mmol, relative to 1 mmol of compound [X] or a salt thereof.
  • the base triethylamine, pyridine, 4-N, N-dimethylaminopyridine, N-methylmorpholine, N-methylimidazole, sodium hydroxide, potassium carbonate, etc. can be used. Also good.
  • the amount of the base used is 1 mmol to 10 mmol, preferably 1 mmol to 3 mmol, relative to 1 mmol of compound [X] or a salt thereof.
  • the reaction can also be carried out in the presence of a solvent.
  • the solvent water, THF, toluene, ethyl acetate or the like can be used.
  • the amount of the solvent used is 1 mL to 20 mL, preferably 3 mL to 10 mL, relative to 1 mmol of compound [X] or a salt thereof.
  • the reaction temperature is usually ⁇ 10 ° C. to 80 ° C., preferably ⁇ 5 ° C. to 30 ° C.
  • the reaction time is usually 0.5 hours to 48 hours, preferably 3 hours to 10 hours.
  • the pressure during the reaction is usually atmospheric pressure.
  • the salt of compound [XI] is preferably an acid salt, for example, hydrochloride, sulfate, p-toluenesulfonate, camphorsulfonate, tartrate, and mandelate, but an amine salt such as dicyclohexylamine is preferred.
  • an acid salt for example, hydrochloride, sulfate, p-toluenesulfonate, camphorsulfonate, tartrate, and mandelate
  • an amine salt such as dicyclohexylamine is preferred.
  • Step 8 Production of Compound [XII] (Lacosamide) or a Salt thereof (Part 1)
  • Compound [XII] (lacosamide) or a salt thereof can be produced by benzylamidating compound [XI] or a salt thereof. Specifically, compound [XI] or a salt thereof is reacted with an activator in the presence or absence of a base, and then reacted with benzylamine to give compound [XII] (lacosamide) or a salt thereof. To manufacture.
  • the activator alkyl chlorocarbonates such as methyl chlorocarbonate, ethyl chlorocarbonate, isobutyl chlorocarbonate, CDI, DCC, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride and the like can be used.
  • the amount of the activator used is 1 mmol to 10 mmol, preferably 1 mmol to 2 mmol, relative to 1 mmol of compound [XI] or a salt thereof.
  • the base N-methylmorpholine, triethylamine, N-methylimidazole and the like can be used, and these may be used in combination.
  • the amount of the base used is 1 mmol to 10 mmol, preferably 1 mmol to 2 mmol, relative to 1 mmol of compound [XI] or a salt thereof.
  • the temperature for the reaction with the activator is usually ⁇ 50 ° C. to 100 ° C., preferably ⁇ 25 ° C. to 25 ° C.
  • the reaction time is usually 0.1 hour to 24 hours, preferably 0.5 hour to 5 hours.
  • the pressure during the reaction is usually atmospheric pressure.
  • the amount of benzylamine used is 1 mmol to 10 mmol, preferably 1 mmol to 3 mmol, relative to 1 mmol of compound [XI] or a salt thereof.
  • the temperature for the reaction with benzylamine is usually ⁇ 50 ° C. to 100 ° C., preferably ⁇ 25 ° C. to 40 ° C.
  • the reaction time is usually 0.1 hour to 24 hours, preferably 0.5 hour to 10 hours.
  • the pressure during the reaction is usually atmospheric pressure.
  • Step 9 Production of compound [XIII] or a salt thereof
  • Compound [XIII] or a salt thereof can be produced by acetylating compound [II] or a salt thereof. Specifically, compound [II] or a salt thereof is reacted with an acetylating agent in the presence of a base.
  • an acetylating agent acetic anhydride, acetyl chloride, N-acetylimidazole, acetic acid and the like can be used, and these may be used in combination.
  • the amount of the acetylating agent to be used is 1 mmol to 10 mmol, preferably 1 mmol to 3 mmol, relative to 1 mmol of compound [II] or a salt thereof.
  • the base triethylamine, sodium hydroxide, potassium carbonate and the like can be used, and these may be used in combination.
  • the amount of the base used is 1 mmol to 10 mmol, preferably 1 mmol to 3 mmol, relative to 1 mmol of compound [II] or a salt thereof.
  • the reaction can also be carried out in the presence of a solvent.
  • a solvent water, THF, toluene, ethyl acetate or the like can be used.
  • the amount of the solvent used is 1 mL to 20 mL, preferably 3 mL to 10 mL, relative to 1 mmol of compound [II] or a salt thereof.
  • the reaction temperature is usually ⁇ 10 ° C.
  • the reaction time is usually 0.5 hours to 48 hours, preferably 3 hours to 30 hours.
  • the pressure during the reaction is usually atmospheric pressure.
  • the salt of compound [XIII] is preferably an acid salt, for example, hydrochloride, sulfate, p-toluenesulfonate, camphorsulfonate, tartrate, mandelate, and amine salts such as dicyclohexylamine. Can also be obtained as
  • Step 10 Production of Compound [XII] (Lacosamide) or a Salt thereof (Part 2)
  • Compound [XII] (lacosamide) or a salt thereof can be produced by benzylamidating compound [XIII] or a salt thereof. Specifically, compound [XIII] or a salt thereof is reacted with benzylamine in the presence of a catalyst.
  • a catalyst As the catalyst, boronic acid, methylboronic acid, phenylboronic acid, 3,4,5-trifluorophenylboronic acid, phenylboronic acid having a substituent such as 2-iodophenylboronic acid, copper (II) acetate, etc. are used. These may be used as a mixture.
  • the amount of the catalyst used is 0.01 mmol to 1 mmol, preferably 0.05 mmol to 0.3 mmol, relative to 1 mmol of compound [XIII] or a salt thereof.
  • the amount of benzylamine to be used is 1 mmol to 10 mmol, preferably 1 mmol to 3 mmol, relative to 1 mmol of compound [XIII] or a salt thereof.
  • the reaction temperature is usually 10 ° C. to 200 ° C., preferably 25 ° C. to 150 ° C.
  • the reaction time is usually 1 hour to 48 hours, preferably 5 hours to 30 hours.
  • the pressure during the reaction is usually atmospheric pressure.
  • compound [XII] (lacosamide) or a salt thereof can be produced from compound [I] or a salt thereof by the following method C (steps 11 ⁇ 12 ⁇ 13 ⁇ 14).
  • Method C steps 11 ⁇ 12 ⁇ 13 ⁇ 14>
  • Step 11 Production of compound [XIV] or a salt thereof
  • Compound [XIV] or a salt thereof can be produced by reacting compound [I] or a salt thereof with an acid.
  • an acid hydrochloric acid, sulfuric acid, hydrobromic acid, methanesulfonic acid and the like can be used, and these may be used in combination. Hydrochloric acid is preferred.
  • the amount of hydrochloric acid to be used is generally 1 mmol-100 mmol, preferably 1 mmol-10 mmol, per 1 mmol of compound [I] or a salt thereof.
  • the reaction can be carried out in the presence of a solvent.
  • the solvent is not particularly limited as long as the reaction proceeds, but water, dioxane, acetic acid and the like can be used, and these may be used as a mixture. Preferably it is water.
  • the amount of the solvent (preferably water) to be used is generally 0.1 mL to 30 mL, preferably 0.5 mL to 3 mL, relative to 1 mmol of compound [I] or a salt thereof.
  • the reaction temperature is usually 5 ° C to 200 ° C, preferably 25 ° C to 120 ° C.
  • the reaction time is usually 0.5 to 72 hours, preferably 5 to 48 hours.
  • the pressure during the reaction is usually atmospheric pressure.
  • Step 12 Production of compound [XV] or a salt thereof
  • Compound [XV] or a salt thereof can be produced by benzylamidation of compound [XIV] or a salt thereof. Specifically, compound [XV] or a salt thereof is reacted with benzylamine in the presence of a base and a condensing agent to produce compound [XV] or a salt thereof.
  • a base N-methylmorpholine, triethylamine, N-methylimidazole and the like can be used, and these may be used in combination. N-methylmorpholine is preferred.
  • the amount of the base to be used is generally 1 mmol-5 mmol, preferably 1 mmol-3 mmol, relative to 1 mmol of compound [XIV] or a salt thereof.
  • the condensing agent alkyl chlorocarbonates such as methyl chlorocarbonate, ethyl chlorocarbonate, isobutyl chlorocarbonate, EDC hydrochloride, CDI, DCC and the like can be used, and these may be used in combination. EDC hydrochloride is preferable.
  • the amount of the condensing agent to be used is generally 1 mmol-5 mmol, preferably 1 mmol-3 mmol, relative to 1 mmol of compound [XIV] or a salt thereof.
  • HOBt (1-hydroxybenzotriazole), HOSu (N-hydroxysuccinimide), and the like. These additives can promote condensation and suppress side reactions. HOBt is preferable.
  • the amount of the additive to be used is generally 1 mmol-5 mmol, preferably 1 mmol-3 mmol, relative to 1 mmol of compound [XIV] or a salt thereof.
  • the amount of benzylamine to be used is generally 1 mmol-5 mmol, preferably 1 mmol-3 mmol, relative to 1 mmol of compound [XIV] or a salt thereof.
  • the reaction can be carried out in the presence of a solvent.
  • the solvent is not particularly limited as long as the reaction proceeds, but DCM, toluene, THF, ethyl acetate and the like can be used. DCM is preferred.
  • the amount of the solvent to be used is generally 0.1 mL to 30 mL, preferably 0.5 mL to 3 mL, per 1 mmol of compound [XIV] or a salt thereof.
  • the reaction temperature is generally ⁇ 20 ° C. to 100 ° C., preferably ⁇ 10 ° C. to 40 ° C.
  • the reaction time is usually 0.5 to 72 hours, preferably 5 to 48 hours.
  • the pressure during the reaction is usually atmospheric pressure.
  • Step 13 Production of compound [XVI] or a salt thereof
  • Compound [XVI] or a salt thereof can be produced by reducing or acid-treating compound [XV] or a salt thereof.
  • the reduction is preferably performed in the presence of a noble metal catalyst.
  • a noble metal catalyst palladium carbon, palladium black, palladium barium sulfate, palladium calcium carbonate, platinum carbon, rhodium carbon, ruthenium carbon and the like can be used, and preferably palladium carbon.
  • the amount of the noble metal catalyst used is 0.0001 mmol to 1 mmol, preferably 0.0005 mmol to 0.05 mmol, relative to 1 mmol of compound [XV] or a salt thereof.
  • a reducing agent used for the reduction of compound [XV] or a salt thereof hydrogen, formic acid, ammonium formate, triethylammonium formate, or the like can be used.
  • hydrogen used as a reducing agent
  • compound [XV] or a salt thereof can be reduced by reacting in the presence of a noble metal catalyst in a hydrogen atmosphere.
  • the hydrogen pressure is usually 1 atm to 100 atm, preferably 1 atm to 20 atm.
  • compound [XV] or a salt thereof can be reduced by reacting these reducing agents with a noble metal catalyst.
  • the amount of formic acid, ammonium formate, or triethylammonium formate to be used is 1 mmol-100 mmol, preferably 1 mmol-20 mmol, relative to 1 mmol of compound [XV] or a salt thereof.
  • the reduction can be performed in the presence of a solvent.
  • the solvent is not particularly limited as long as the reaction proceeds, but water, methanol, ethanol, isopropanol, THF, dioxane, toluene, xylene, methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, etc., preferably water, methanol Ethanol or isopropanol. You may mix and use a solvent.
  • the amount of the solvent to be used is generally 0 mL to 100 mL, preferably 0.1 mL to 50 mL, per 1 mmol of compound [XV] or a salt thereof.
  • the temperature during the reduction is usually ⁇ 10 ° C. to 150 ° C., preferably 25 ° C. to 110 ° C.
  • the reduction time is usually 0.1 to 96 hours, preferably 6 to 36 hours.
  • the reduction can be performed in the presence or absence of an acid. When reducing in the presence of an acid, hydrochloric acid, sulfuric acid, phosphoric acid or acetic acid can be used as the acid.
  • the amount of the acid used is 0.1 mmol to 100 mmol, preferably 1 mmol to 10 mmol, relative to 1 mmol of compound [XV] or a salt thereof.
  • Examples of the acid used for the acid treatment of the compound [XV] or a salt thereof include hydrochloric acid, sulfuric acid, hydrobromic acid, methanesulfonic acid, trifluoromethanesulfonic acid, acetic acid, trifluoroacetic acid, etc., preferably hydrochloric acid or sulfuric acid It is.
  • the amount of the acid to be used is generally 0.1 mmol-100 mmol, preferably 1 mmol-10 mmol, per 1 mmol of compound [XV] or a salt thereof.
  • the temperature during the acid treatment is usually ⁇ 10 ° C. to 110 ° C., preferably 0 ° C. to 60 ° C.
  • the acid treatment time is usually 0.1 hour to 48 hours, preferably 1 hour to 24 hours.
  • the pressure during the acid treatment is usually normal pressure.
  • Step 14 Production of Compound [XII] (Lacosamide) or a Salt thereof (Part 3)
  • Compound [XII] (lacosamide) or a salt thereof can be produced by reacting compound [XVI] or a salt thereof with an acetylating agent.
  • an acetylating agent acetic anhydride, acetyl chloride, N-acetylimidazole, acetic acid and the like can be used.
  • acetic anhydride, acetyl chloride or N-acetylimidazole is used as the acetylating agent, it can be carried out in the presence of a base.
  • Examples of the base include triethylamine, pyridine, and p- (N, N-dimethylamino) pyridine.
  • acetic acid When acetic acid is used as the acetylating agent, it can be carried out in the presence of an organic compound such as DCC, EDC hydrochloride, or isobutyl chlorocarbonate.
  • This reaction can be performed using a solvent.
  • the solvent is not particularly limited as long as the reaction proceeds, but water, methanol, ethanol, isopropanol, THF, dioxane, toluene, xylene, methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, methylene chloride, and the like can be used.
  • You may mix and use a solvent Preferred are water, THF, methylene chloride, a mixture of water and THF, and a mixture of water and methylene chloride.
  • the amount of the solvent to be used is generally 0 mL to 100 mL, preferably 0.1 mL to 50 mL, per 1 mmol of compound [XVI] or a salt thereof.
  • the reaction temperature is -75 ° C to 120 ° C, preferably -25 ° C to 50 ° C.
  • the reaction time is 0.1 to 96 hours, preferably 0.2 to 24 hours.
  • the pressure during the reaction is usually atmospheric pressure.
  • the obtained compound [XII] (lacosamide) or a salt thereof can be recrystallized after completion of the reaction.
  • the solvent for recrystallization include DMF, DMA, NMP, acetonitrile, methanol, ethanol, isopropanol, THF, dioxane, toluene, xylene, methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, and the like, preferably ethyl acetate or Butyl acetate.
  • the amount of solvent used for recrystallization is 0.1 mL to 100 mL, preferably 3 mL to 12 mL, relative to 1 mmol of compound [XII] or a salt thereof.
  • the recrystallization temperature is usually ⁇ 10 ° C. to 120 ° C., preferably ⁇ 5 ° C. to 50 ° C.
  • the recrystallization time is usually 0.1 hour to 96 hours, preferably 1 hour to 36 hours.
  • the compound obtained by each of the above production methods can be used in the next production method as it is as a reaction mixture or as a crude product, but can also be isolated from the reaction mixture according to a conventional method and recrystallized. It can be easily purified by separation means such as distillation, chromatography and the like.
  • Compounds [I], [II], [III], [V], [VII], [VIII], [IX], [X], [XI], [XII], [XIII], [XIV] of the present invention ], [XV] and [XVI] include, for example, metal salts, ammonium salts, salts with organic bases, salts with inorganic acids, salts with organic acids, salts with basic or acidic amino acids, etc. Can be mentioned.
  • the metal salt include alkali metal salts such as sodium salt and potassium salt; alkaline earth metal salts such as calcium salt, magnesium salt and barium salt; aluminum salt and the like.
  • the salt with organic base include, for example, trimethylamine, triethylamine, pyridine, picoline, 2,6-lutidine, ethanolamine, diethanolamine, triethanolamine, cyclohexylamine, dicyclohexylamine, N, N′-dibenzyl.
  • Examples include salts with ethylenediamine and the like.
  • Preferable examples of the salt with inorganic acid include salts with hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, phosphoric acid and the like.
  • salt with organic acid examples include, for example, formic acid, acetic acid, trifluoroacetic acid, phthalic acid, fumaric acid, oxalic acid, tartaric acid, maleic acid, citric acid, succinic acid, malic acid, methanesulfonic acid, benzene And salts with sulfonic acid, p-toluenesulfonic acid, camphorsulfonic acid, mandelic acid and the like.
  • salts with basic amino acids include salts with arginine, lysine, ornithine and the like
  • salts with acidic amino acids include salts with aspartic acid, glutamic acid and the like. Is mentioned.
  • solvates include hydrates and alcohol solvates (eg, methanol solvates and ethanol solvates).
  • a more preferable production method of lacosamide includes the following synthesis route (a), (b) or (c).
  • Lacosamide obtained by the production method of the present invention can be obtained by using usual dosage forms such as tablets, capsules, pills, granules, capsules, troches, syrups, solutions and injections (hereinafter referred to as “the present invention”). Can also be administered orally or parenterally.
  • the pharmaceutical preparation of the present invention can be prepared by a usual method using a pharmacologically acceptable carrier.
  • Examples of the above-mentioned “pharmacologically acceptable carrier” include various organic or inorganic carrier substances that are commonly used as pharmaceutical materials. For example, excipients, lubricants, binders and disintegrants in solid preparations, or liquid preparations Solvents, solubilizers, suspending agents, isotonic agents, buffering agents, soothing agents and the like. Further, if necessary, additives such as conventional preservatives, antioxidants, colorants, sweeteners, adsorbents, wetting agents and the like can be used in appropriate amounts.
  • excipients include lactose, sucrose, D-mannitol, D-sorbitol, starch, ⁇ -starch, corn starch, dextrin, crystalline cellulose, low-substituted hydroxypropylcellulose, sodium carboxymethylcellulose, gum arabic, pullulan, light anhydrous
  • excipients include silicic acid, synthetic aluminum silicate, magnesium aluminate metasilicate, and the like.
  • lubricant include magnesium stearate, calcium stearate, talc, colloidal silica and the like.
  • binder examples include ⁇ -starch, crystalline cellulose, sucrose, gum arabic, D-mannitol, trehalose, dextrin, pullulan, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyvinylpyrrolidone, starch, sucrose, gelatin, methylcellulose, carboxymethylcellulose. And sodium carboxymethyl cellulose.
  • disintegrant examples include lactose, sucrose, starch, carboxymethyl cellulose, carboxymethyl cellulose calcium, croscarmellose sodium, carboxymethyl starch sodium, light anhydrous silicic acid, low-substituted hydroxypropyl cellulose, and the like.
  • solvent examples include water for injection, physiological saline, Ringer's solution, alcohol, propylene glycol, polyethylene glycol, macrogol, sesame oil, corn oil, olive oil, cottonseed oil and the like.
  • solubilizer examples include polyethylene glycol, propylene glycol, D-mannitol, trehalose, benzyl benzoate, ethanol, trisaminomethane, cholesterol, triethanolamine, sodium carbonate, sodium citrate, sodium salicylate, sodium acetate and the like. It is done.
  • suspending agent examples include surfactants such as stearyltriethanolamine, sodium lauryl sulfate, laurylaminopropionic acid, lecithin, benzalkonium chloride, benzethonium chloride, and glyceryl monostearate; for example, polyvinyl alcohol, polyvinylpyrrolidone, carboxy
  • hydrophilic polymers such as sodium methylcellulose, methylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, polysorbate, and polyoxyethylene hydrogenated castor oil.
  • isotonic agent examples include glucose, D-sorbitol, sodium chloride, glycerin, D-mannitol and the like.
  • Examples of the buffer include buffer solutions of phosphate, acetate, carbonate, citrate and the like.
  • Examples of soothing agents include benzyl alcohol.
  • Examples of the preservative include p-hydroxybenzoates, chlorobutanol, benzyl alcohol, phenethyl alcohol, dehydroacetic acid, sorbic acid and the like.
  • Examples of the antioxidant include sulfite, ascorbic acid, ⁇ -tocopherol and the like.
  • Examples of the colorant include water-soluble edible tar dyes (eg, edible red Nos. 2 and 3, edible yellow Nos. 4 and 5, edible blue Nos.
  • water-insoluble lake dyes eg, the above-mentioned water-soluble Edible tar pigment aluminum salts
  • natural pigments eg, ⁇ -carotene, chlorophyll, bengara
  • sweetening agent include saccharin sodium, dipotassium glycyrrhizinate, aspartame, stevia and the like.
  • the content of lacosamide in the pharmaceutical preparation of the present invention varies depending on the dosage form, the dose of lacosamide, etc., and is, for example, about 1% to 100% by weight, preferably about 8% to 40% by weight of the whole pharmaceutical preparation. It is.
  • the dose of lacosamide varies depending on the administration subject, administration route, target disease, symptom, etc., but is usually about 0.1 mg / kg body weight to about 10 mg / kg body weight, preferably about 0 when administered orally to patients with epilepsy. .5 mg / kg body weight to about 10 mg / kg body weight, more preferably about 1 mg / kg body weight to about 4 mg / kg body weight, and the dosage thereof is about once to several times a day (eg, 1 Preferably 3 to 3 times).
  • R-PEA (265 g, 2.185 mol) was added at the same temperature over 15 minutes, and then the temperature was raised to 25 ° C. and stirred for 30 minutes.
  • CAA ⁇ MAA CAA (50.0 g, 401.4 mmol) was added dropwise to a 30% sodium methoxide methanol solution (237.4 mL, 1204.2 mmol) at 70 ° C. to 75 ° C. and stirred for 15 minutes.
  • the reaction solution was heated to 110 ° C. to 115 ° C. and stirred until the concentration of CAA was 0.5% or less.
  • the reaction solution is cooled to room temperature, methanol is removed by distillation under reduced pressure (temperature: 30 ° C to 85 ° C, pressure: 200 Torr to 205 Torr) and atmospheric distillation (temperature: 25 ° C to 110 ° C), and MAA as a colorless liquid Obtained (30.0 g, yield 55.18%).
  • MAA ⁇ PMAN A mixed solution of concentrated hydrochloric acid (14.2 mL) and water (126 mL) was cooled to 15 ° C. to 20 ° C., and MAA (10.0 g, 83.23 mmol) obtained in the above step was added dropwise over 10 minutes. The reaction was stirred at 25 ° C. for 5 hours. The reaction solution was cooled to 10 ° C. to 15 ° C., 20% aqueous sodium hydroxide solution was added to adjust the pH to 7.5, and the mixture was stirred at the same temperature for 15 minutes. To this reaction solution, R-PEA (10.6 g, 87.23 mmol) was added dropwise over 10 minutes.
  • the diastereomer ratio was measured by HPLC under the following conditions.
  • Buffer solution: acetonitrile / water 90/10
  • Mobile phase B: acetonitrile / water 90/10
  • the obtained mixture was extracted with toluene (550 mL), and the organic layer was washed with water (100 mL) and then concentrated under reduced pressure to obtain an aziridine derivative.
  • the obtained aziridine derivative was dissolved in methanol (100 mL), and a methanol solution (900 mL) of methanesulfonic acid (53.1 g, 0.55 mol) was added dropwise at 2 ° C. over 0.5 hours.
  • the reaction solution was heated to 40 ° C. over 0.5 hours and stirred at the same temperature for 6 hours.
  • the reaction solution was concentrated under reduced pressure to distill off methanol.
  • Toluene (500 mL) was added to the resulting mixture and neutralized by adding 2 mol / L sodium hydroxide solution at 5 ° C. The aqueous layer was extracted with toluene (300 mL), and the toluene layer was washed with water and concentrated under reduced pressure. 28% aqueous ammonia (1000 g) was added to the residue, and the mixture was stirred at 25 ° C. for 21 hours. The resulting mixture was concentrated under reduced pressure. Toluene was added to the residue and concentrated under reduced pressure to remove ammonia.
  • lacosamide having high optical purity can be industrially produced with high yield, inexpensively and safely.
  • an intermediate useful in the production of lacosamide can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

The purpose of the present invention is to provide a method for high-yield, inexpensive, and safe industrial production of a lacosamide having high optical purity. The present invention addresses said issue by providing a method for high-yield, inexpensive, and safe industrial production of a lacosamide having high optical purity, as a result of using a specific intermediate body. Also provided is an intermediate body useful in the production of lacosamide.

Description

アミノ酸誘導体の製造方法Method for producing amino acid derivative
 本発明は、アミノ酸誘導体及びその中間体の製造方法に関する。具体的には、(R)-N-ベンジル-2-アセチルアミノ-3-メトキシプロピオン酸アミド(ラコサミド)及びその中間体の製造方法に関する。 The present invention relates to an amino acid derivative and a method for producing an intermediate thereof. Specifically, the present invention relates to a method for producing (R) -N-benzyl-2-acetylamino-3-methoxypropionic acid amide (lacosamide) and an intermediate thereof.
 ラコサミドは、てんかんや疼痛の治療に有用な薬剤である。
 特許文献1、2及び非特許文献1には、O-メチル化剤としてヨウ化メチル及び酸化銀を使用するラコサミドの製造方法が開示されている。また、特許文献3には、O-メチル化剤として硫酸ジメチルを使用する方法が開示されている。さらに、特許文献4及び5には、水酸基のメチル化の前にアミノ基を保護する方法が開示されている。
 これらの方法は、いずれも出発物質として高価なD-セリン及びその誘導体を使用しており、また、高価なO-メチル化剤や保護化のための試薬を使用していることや、保護基の導入・脱保護の工程が必要であること等から、工業的により安価に製造できる方法が望まれている。また、特許文献3に記載の方法は、ラコサミドを工業的に大規模に生産する場合には硫酸ジメチルを大量に使用することから、安全上又は環境上問題を生じるおそれがあり、より安全でかつ環境にやさしい製造方法が望まれている。
Lacosamide is a useful drug for treating epilepsy and pain.
Patent Documents 1 and 2 and Non-Patent Document 1 disclose a method for producing lacosamide using methyl iodide and silver oxide as O-methylating agents. Patent Document 3 discloses a method using dimethyl sulfate as an O-methylating agent. Furthermore, Patent Documents 4 and 5 disclose a method for protecting an amino group before methylation of a hydroxyl group.
All of these methods use expensive D-serine and its derivatives as starting materials, use expensive O-methylating agents and reagents for protection, Therefore, there is a demand for a method that can be manufactured industrially at a lower cost. Further, the method described in Patent Document 3 uses a large amount of dimethyl sulfate when industrially producing lacosamide on a large scale, which may cause safety or environmental problems, and is safer. An environmentally friendly manufacturing method is desired.
 特許文献6、7及び8には、ラセミ体のラコサミド又はその中間体を製造し、これを光学分割する方法や、SMB(Simulated Moving Bed)分離装置で光学異性体を分離する方法が開示されている。しかしながら、これらの方法は、収率や光学純度の面で満足できるものではなく、また、特殊な分離装置が必要であること等から、工業的により効率よく安価に製造できる方法が望まれている。 Patent Documents 6, 7 and 8 disclose a method of producing a racemic lacosamide or an intermediate thereof and optically resolving the same, or a method of separating optical isomers using an SMB (Simulated Moving Bed) separation apparatus. Yes. However, these methods are not satisfactory in terms of yield and optical purity, and since a special separation device is necessary, a method that can be produced more efficiently and inexpensively is desired. .
米国再発行特許第RE38551号明細書US Reissue Patent RE38551 Specification 米国特許第6,048,899号明細書U.S. Patent No. 6,048,899 国際公開第2006/037574号International Publication No. 2006/037574 米国特許第8,093,426号明細書U.S. Patent No. 8,093,426 国際公開第2011/039781号International Publication No. 2011/039781 国際公開第2010/052011号International Publication No. 2010/052011 国際公開第2012/065891号International Publication No. 2012/065891 国際公開第2011/092559号International Publication No. 2011/092559
 本発明は、光学純度の高いラコサミドを、高収率で、安価かつ安全に工業的に製造する方法を提供することを課題とする。 An object of the present invention is to provide a method for industrially producing lacosamide having high optical purity in a high yield, inexpensively and safely.
 本発明者は、鋭意検討した結果、特定の中間体を経る効率的かつ経済的なラコサミドの製造方法を見出し、本発明を完成した。
 すなわち、本発明は以下のとおりである。
[1]一般式[I]:
As a result of intensive studies, the present inventor found an efficient and economical method for producing lacosamide through a specific intermediate, and completed the present invention.
That is, the present invention is as follows.
[1] General formula [I]:
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
[式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である。)である。]
で表される化合物(以下、化合物[I]ともいう)又はその塩。
[2]一般式[III]:
Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
Or a salt thereof (hereinafter also referred to as compound [I]).
[2] General formula [III]:
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
[式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である。)である。]
で表される化合物(以下、化合物[III]ともいう)又はその塩をアミド化する工程を含むことを特徴とする、一般式[I]:
Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
A compound represented by general formula [I], comprising a step of amidating a compound represented by formula (hereinafter also referred to as compound [III]) or a salt thereof:
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
[式中、R及びRは前記と同義である。]
で表される化合物又はその塩の製造方法。
[3]一般式[III]:
[Wherein, R 3 and R 4 have the same meanings as described above. ]
The manufacturing method of the compound represented by these, or its salt.
[3] General formula [III]:
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
[式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である。)である。]
で表される化合物又はその塩が、一般式[IV]:
Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
Or a salt thereof represented by the general formula [IV]:
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
[式中、R及びRは、それぞれ独立して、アルキル基又はアラルキル基であり、R及びRはアルキル鎖で連結されていてもよい。]
で表される化合物(以下、化合物[IV]ともいう)を酸と反応させた後、得られた化合物を一般式[V]:
[Wherein, R 1 and R 2 are each independently an alkyl group or an aralkyl group, and R 1 and R 2 may be linked by an alkyl chain. ]
After reacting a compound represented by the formula (hereinafter also referred to as compound [IV]) with an acid, the resulting compound is represented by the general formula [V]:
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
[式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である)である。]
で表される化合物(以下、化合物[V]ともいう)又はその塩と反応させることにより得られたものであることを特徴とする、[2]に記載の製造方法。
[4]一般式[IV]:
Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
The production method according to [2], wherein the compound is obtained by reacting with a compound represented by formula (hereinafter also referred to as compound [V]) or a salt thereof.
[4] General formula [IV]:
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
[式中、R及びRは、それぞれ独立して、アルキル基又はアラルキル基であり、R及びRはアルキル鎖で連結されていてもよい。]
で表される化合物が、一般式[VI]:
[Wherein, R 1 and R 2 are each independently an alkyl group or an aralkyl group, and R 1 and R 2 may be linked by an alkyl chain. ]
A compound represented by general formula [VI]:
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
[式中、R及びRは、前記と同義である。]
で表される化合物(以下、化合物[VI]ともいう)とナトリウムメトキシドを反応させることにより得られたものであることを特徴とする、[3]に記載の製造方法。
[5]一般式[IV]:
[Wherein, R 1 and R 2 have the same meanings as described above. ]
The production method according to [3], which is obtained by reacting a compound represented by formula (hereinafter also referred to as compound [VI]) with sodium methoxide.
[5] General formula [IV]:
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
[式中、R及びRは、それぞれ独立して、アルキル基又はアラルキル基であり、R及びRはアルキル鎖で連結されていてもよい。]
で表される化合物を酸と反応させた後、得られた化合物を一般式[V]:
[Wherein, R 1 and R 2 are each independently an alkyl group or an aralkyl group, and R 1 and R 2 may be linked by an alkyl chain. ]
The compound represented by general formula [V]:
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
[式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である)である。]
で表される化合物又はその塩と反応させる工程を含むことを特徴とする、一般式[III]:
Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
Which comprises reacting with a compound represented by the formula or a salt thereof:
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
[式中、R及びRは、前記と同義である。]
で表される化合物又はその塩の製造方法。
[6]式[VII]:
[Wherein, R 3 and R 4 have the same meanings as described above. ]
The manufacturing method of the compound represented by these, or its salt.
[6] Formula [VII]:
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
で表される化合物(以下、化合物[VII]ともいう)又はその塩をハロゲン化した後、得られた化合物を一般式[V]: After halogenating a compound represented by formula (hereinafter also referred to as compound [VII]) or a salt thereof, the obtained compound is represented by the general formula [V]:
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
[式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である)である。]
で表される化合物又はその塩と反応させる工程を含むことを特徴とする、一般式[I]:
Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
The method includes a step of reacting with a compound represented by the formula:
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
[式中、R及びRは、前記と同義である。]
で表される化合物又はその塩の製造方法。
[7]一般式[III]:
[Wherein, R 3 and R 4 have the same meanings as described above. ]
The manufacturing method of the compound represented by these, or its salt.
[7] General formula [III]:
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
[式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である。)である。]
で表される化合物又はその塩をアミド化して、一般式[I]:
Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
Or a salt thereof is amidated to give a general formula [I]:
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
[式中、R及びRは前記と同義である。]
で表される化合物又はその塩を製造する工程を含むことを特徴とする、式[XII]:
[Wherein, R 3 and R 4 have the same meanings as described above. ]
Which comprises a step of producing a compound represented by the formula or a salt thereof: [XII]:
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
で表される化合物(以下、化合物[XII]ともいう)又はその塩の製造方法。
[8]一般式[III]:
Or a salt thereof (hereinafter also referred to as compound [XII]).
[8] General formula [III]:
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
[式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である。)である。]
で表される化合物又はその塩が、一般式[IV]:
Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
Or a salt thereof represented by the general formula [IV]:
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
[式中、R及びRは、それぞれ独立して、アルキル基又はアラルキル基であり、R及びRはアルキル鎖で連結されていてもよい。]
で表される化合物を酸と反応させた後、得られた化合物を一般式[V]:
[Wherein, R 1 and R 2 are each independently an alkyl group or an aralkyl group, and R 1 and R 2 may be linked by an alkyl chain. ]
The compound represented by general formula [V]:
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
[式中、R及びRは、前記と同義である。]
で表される化合物又はその塩と反応させることにより得られたものであることを特徴とする、[7]に記載の製造方法。
[9]式[VII]:
[Wherein, R 3 and R 4 have the same meanings as described above. ]
The production method according to [7], which is obtained by reacting with a compound represented by the formula:
[9] Formula [VII]:
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
で表される化合物又はその塩をハロゲン化した後、得られた化合物を一般式[V]: After halogenating the compound represented by the formula or a salt thereof, the obtained compound is represented by the general formula [V]:
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
[式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である)である。]
で表される化合物又はその塩と反応させて、一般式[I]:
Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
And a compound represented by the general formula [I]:
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
[式中、R及びRは、前記と同義である。]
で表される化合物又はその塩を製造する工程を含むことを特徴とする、式[XII]:
[Wherein, R 3 and R 4 have the same meanings as described above. ]
Which comprises a step of producing a compound represented by the formula or a salt thereof: [XII]:
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
で表される化合物又はその塩の製造方法。
[10]一般式[I]:
The manufacturing method of the compound represented by these, or its salt.
[10] General formula [I]:
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
[式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である。)である。]
で表される化合物又はその塩を還元して、式[II]:
Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
Is reduced to a compound represented by formula [II]:
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
で表される化合物(以下、化合物[II]ともいう)又はその塩を製造する工程を含むことを特徴とする、式[XII]: A process for producing a compound represented by the formula (hereinafter also referred to as compound [II]) or a salt thereof:
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
で表される化合物又はその塩の製造方法。
[11](1)式[II]:
The manufacturing method of the compound represented by these, or its salt.
[11] (1) Formula [II]:
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
で表される化合物又はその塩を加水分解して、式[X]: The compound represented by the formula or a salt thereof is hydrolyzed to form the formula [X]
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
で表される化合物(以下、化合物[X]ともいう)又はその塩を製造する工程、
(2)式[X]で表される化合物又はその塩をアセチル化剤と反応させて、式[XI]:
A process for producing a compound represented by formula (hereinafter also referred to as compound [X]) or a salt thereof,
(2) A compound represented by the formula [X] or a salt thereof is reacted with an acetylating agent to form a formula [XI]:
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
で表される化合物(以下、化合物[XI]ともいう)又はその塩を製造する工程、及び
(3)式[XI]で表される化合物又はその塩をベンジルアミド化する工程をさらに含むことを特徴とする、[10]に記載の製造方法。
[12](1’)式[II]:
And a step of producing a compound represented by formula (hereinafter also referred to as compound [XI]) or a salt thereof, and (3) a step of benzylamidating the compound represented by formula [XI] or a salt thereof. The production method according to [10], which is characterized.
[12] (1 ′) Formula [II]:
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
で表される化合物又はその塩をアセチル化剤と反応させて、式[XIII]: Or a salt thereof is reacted with an acetylating agent to produce a compound of the formula [XIII]:
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
で表される化合物(以下、化合物[XIII]ともいう)又はその塩を製造する工程、及び
(2’)式[XIII]で表される化合物又はその塩をベンジルアミド化する工程をさらに含むことを特徴とする、[10]に記載の製造方法。
[13]一般式[I]:
A step of producing a compound represented by formula (hereinafter also referred to as compound [XIII]) or a salt thereof, and (2 ′) a step of benzylamidating the compound represented by formula [XIII] or a salt thereof. [10] The production method according to [10].
[13] General formula [I]:
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
[式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である。)である。]
で表される化合物又はその塩を加水分解して、一般式[XIV]:
Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
A compound represented by the formula or a salt thereof is hydrolyzed to give a general formula [XIV]:
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
[式中、R及びRは、前記と同義である。]
で表される化合物(以下、化合物[XIV]ともいう)又はその塩を製造する工程を含むことを特徴とする、式[XII]:
[Wherein, R 3 and R 4 have the same meanings as described above. ]
Which comprises a step of producing a compound represented by the formula (hereinafter also referred to as compound [XIV]) or a salt thereof:
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
で表される化合物又はその塩の製造方法。
[14]一般式[XIV]:
The manufacturing method of the compound represented by these, or its salt.
[14] General formula [XIV]:
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
[式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である。)である。]
で表される化合物又はその塩をベンジルアミド化して、一般式[XV]:
Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
Or a salt thereof is benzylamidated to give a general formula [XV]:
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
[式中、R及びRは、前記と同義である。]
で表される化合物(以下、化合物[XV]ともいう)又はその塩を製造する工程をさらに含むことを特徴とする、[13]に記載の製造方法。
[15]一般式[XV]:
[Wherein, R 3 and R 4 have the same meanings as described above. ]
The production method according to [13], further comprising a step of producing a compound represented by formula (hereinafter also referred to as compound [XV]) or a salt thereof.
[15] General formula [XV]:
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
[式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である。)である。]
で表される化合物又はその塩を還元して、式[XVI]:
Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
The compound represented by the formula or a salt thereof is reduced to give the formula [XVI]:
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
で表される化合物(以下、化合物[XVI]ともいう)又はその塩を製造する工程をさらに含むことを特徴とする、[14]に記載の製造方法。
[16][7]~[15]のいずれかに記載の製造方法により得られた式[XII]:
The method according to [14], further comprising a step of producing a compound represented by formula (hereinafter also referred to as compound [XVI]) or a salt thereof.
[16] Formula [XII] obtained by the production method according to any one of [7] to [15]:
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
で表される化合物又はその塩を有効成分として含有する医薬製剤。
[17]一般式[III]:
Or a salt thereof as an active ingredient.
[17] General formula [III]:
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
[式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である。)である。]
で表される化合物又はその塩。
[18]一般式[XIV]:
Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
Or a salt thereof.
[18] General formula [XIV]:
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
[式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である。)である。]
で表される化合物又はその塩。
[19]式[XIII]:
Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
Or a salt thereof.
[19] Formula [XIII]:
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
で表される化合物又はその塩。 Or a salt thereof.
 本発明によれば、光学純度の高いラコサミドを、高収率で、安価かつ安全に工業的に製造することができる。また、ラコサミドの製造において有用な中間体を提供することができる。 According to the present invention, high optical purity lacosamide can be industrially produced in a high yield, inexpensively and safely. In addition, an intermediate useful in the production of lacosamide can be provided.
 本発明において用いられる記号及び用語の定義について、以下に詳述する。
 本明細書中、「PMAD」とは、(1’R,2R)-2-(1-メチルベンジル)アミノ-3-メトキシプロピオン酸アミドを意味する。「PMAD」は、一般式[I]で表される化合物の一例である。
 本明細書中、「MAD」とは、(R)-2-アミノ-3-メトキシプロピオン酸アミドを意味する。
 本明細書中、「PMAN」とは、(1’R)-2-(1’-メチルベンジル)アミノ-3-メトキシプロピオニトリルを意味する。「PMAN」は、一般式[III]で表される化合物の一例である。
 本明細書中、「MAA」とは、メトキシアセトアルデヒド ジメチルアセタールを意味する。「MAA」は、一般式[IV]で表される化合物の一例である。
 本明細書中、「CAA」とは、クロロアセトアルデヒド ジメチルアセタールを意味する。「CAA」は、一般式[VI]で表される化合物の一例である。
 本明細書中、「AME」とは、アクリル酸メチルを意味する。
 本明細書中、「MCA」とは、(R)-2-アミノ-3-メトキシプロピオン酸を意味する。
 本明細書中、「AMCA」とは、(R)-2-アセチルアミノ-3-メトキシプロピオン酸を意味する。
 本明細書中、「LACO」とは、(R)-2-アセトアミノ-3-メトキシ-N-ベンジルプロピオン酸アミド(ラコサミド)を意味する。
 本明細書中、「AMAD」とは、(R)-2-アセチルアミノ-3-メトキシプロピオンアミドを意味する。
 本明細書中、「PMCA」とは、(2R,1’R)-2-(1’-メチルベンジル)アミノ-3-メトキシプロピオン酸を意味する。「PMCA」は、一般式[XIV]で表される化合物の一例である。
 本明細書中、「PMBA」とは、(2R,1’R)-N-ベンジル-2-(1’-メチルベンジル)アミノ-3-メトキシプロピオン酸アミドを意味する。「PMBA」は、一般式[XV]で表される化合物の一例である。
 本明細書中、「HMBA」とは、(R)-N-ベンジル-2-アミノ-3-メトキシプロピオン酸アミドを意味する。
 本明細書中、「PEA」とは、α-メチルベンジルアミンを意味する。「PEA」は、一般式[V]で表される化合物の一例である。PEAの絶対配置は、R体でもS体でもよいが、R体(R-PEA)が好ましい。
 本明細書中、「DCM」とは、ジクロロメタンを意味する。
 本明細書中、「DMF」とは、N,N’-ジメチルホルムアミドを意味する。
 本明細書中、「DMA」とは、N,N-ジメチルアセトアミドを意味する。
 本明細書中、「DMSO」とは、ジメチルスルホキシドを意味する。
 本明細書中、「NMP」とは、N-メチル-2-ピロリドンを意味する。
 本明細書中、「THF」とは、テトラヒドロフランを意味する。
 本明細書中、「DCC」とは、N,N’-ジシクロヘキシルカルボジイミドを意味する。
 本明細書中、「EDC」とは、1,2-ジクロロエタンを意味する。
 本明細書中、「CDI」とは、1,1-カルボニルジイミダゾールを意味する。
 本明細書中、「Me」とは、メチル基を意味する。
 本明細書中、「Et」とは、エチル基を意味する。
 本明細書中、「Ac」とは、アセチル基を意味する。
 本明細書中、「Bn」とは、ベンジル基を意味する
Definitions of symbols and terms used in the present invention will be described in detail below.
In the present specification, “PMAD” means (1′R, 2R) -2- (1-methylbenzyl) amino-3-methoxypropionic acid amide. “PMAD” is an example of a compound represented by the general formula [I].
In the present specification, “MAD” means (R) -2-amino-3-methoxypropionic acid amide.
In the present specification, “PMAN” means (1′R) -2- (1′-methylbenzyl) amino-3-methoxypropionitrile. “PMAN” is an example of a compound represented by the general formula [III].
In the present specification, “MAA” means methoxyacetaldehyde dimethyl acetal. “MAA” is an example of a compound represented by the general formula [IV].
In the present specification, “CAA” means chloroacetaldehyde dimethyl acetal. “CAA” is an example of a compound represented by the general formula [VI].
In the present specification, “AME” means methyl acrylate.
In the present specification, “MCA” means (R) -2-amino-3-methoxypropionic acid.
In the present specification, “AMCA” means (R) -2-acetylamino-3-methoxypropionic acid.
In the present specification, “LACO” means (R) -2-acetamino-3-methoxy-N-benzylpropionic acid amide (lacosamide).
In the present specification, “AMAD” means (R) -2-acetylamino-3-methoxypropionamide.
In the present specification, “PMCA” means (2R, 1′R) -2- (1′-methylbenzyl) amino-3-methoxypropionic acid. “PMCA” is an example of a compound represented by the general formula [XIV].
In the present specification, “PMBA” means (2R, 1′R) -N-benzyl-2- (1′-methylbenzyl) amino-3-methoxypropionic acid amide. “PMBA” is an example of a compound represented by the general formula [XV].
In the present specification, “HMBA” means (R) —N-benzyl-2-amino-3-methoxypropionic acid amide.
In the present specification, “PEA” means α-methylbenzylamine. “PEA” is an example of a compound represented by the general formula [V]. The absolute configuration of PEA may be R-form or S-form, but R-form (R-PEA) is preferred.
In the present specification, “DCM” means dichloromethane.
In the present specification, “DMF” means N, N′-dimethylformamide.
In the present specification, “DMA” means N, N-dimethylacetamide.
In the present specification, “DMSO” means dimethyl sulfoxide.
In the present specification, “NMP” means N-methyl-2-pyrrolidone.
In the present specification, “THF” means tetrahydrofuran.
In the present specification, “DCC” means N, N′-dicyclohexylcarbodiimide.
In the present specification, “EDC” means 1,2-dichloroethane.
In the present specification, “CDI” means 1,1-carbonyldiimidazole.
In the present specification, “Me” means a methyl group.
In the present specification, “Et” means an ethyl group.
In the present specification, “Ac” means an acetyl group.
In the present specification, “Bn” means a benzyl group.
 本明細書中、「アルキル基」としては、特に断りのない限り、炭素数1~12の直鎖状又は分岐状のアルキル基が挙げられ、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基などが挙げられる。好ましくは、炭素数1~6の低級アルキル基であり、特に好ましくはメチル基又はエチル基である。
 本明細書中、「アルコキシ基」としては、特に断りのない限り、炭素数1~12の直鎖状又は分岐状のアルコキシ基が挙げられ、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基などが挙げられる。
 本明細書中、「アリール基」としては、特に断りのない限り、炭素数6~14のアリール基が挙げられ、例えば、フェニル基、1-ナフチル基、2-ナフチル基、2-アンスリル基などが挙げられる。
 本明細書中、「アリールオキシ基」としては、特に断りのない限り、炭素数6~14のアリールオキシ基が挙げられ、例えば、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基などが挙げられる。
 本明細書中、「アラルキル基」としては、特に断りのない限り、炭素数7~40のアラルキル基が挙げられ、例えば、ベンジル基、フェネチル基、1-ナフチルメチル基、2-ナフチルメチル基、2-アンスリルメチル基、トリチル基などが挙げられる。
 本明細書中、「アルキル鎖」としては、特に断りのない限り、炭素数1~12のアルキル鎖が挙げられ、例えば、メチレン基、エチレン基、イソプロピリデン基などが挙げられる。
 本明細書中、「アセチル化剤」としては、無水酢酸、塩化アセチル、N-アセチルイミダゾール、酢酸等が挙げられる。
In the present specification, unless otherwise specified, examples of the “alkyl group” include linear or branched alkyl groups having 1 to 12 carbon atoms, such as a methyl group, an ethyl group, a propyl group, and an isopropyl group. Butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, hexyl, heptyl, octyl, nonyl, decyl and the like. A lower alkyl group having 1 to 6 carbon atoms is preferable, and a methyl group or an ethyl group is particularly preferable.
In the present specification, unless otherwise specified, examples of the “alkoxy group” include linear or branched alkoxy groups having 1 to 12 carbon atoms, such as methoxy group, ethoxy group, propoxy group, isopropoxy group. Group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, isopentyloxy group, neopentyloxy group, hexyloxy group, heptyloxy group, octyloxy group, nonyloxy group, decyloxy group, etc. Is mentioned.
In the present specification, unless otherwise specified, examples of the “aryl group” include aryl groups having 6 to 14 carbon atoms, such as phenyl group, 1-naphthyl group, 2-naphthyl group, 2-anthryl group and the like. Is mentioned.
In the present specification, unless otherwise specified, examples of the “aryloxy group” include aryloxy groups having 6 to 14 carbon atoms, such as phenoxy group, 1-naphthyloxy group, 2-naphthyloxy group and the like. Can be mentioned.
In the present specification, unless otherwise specified, examples of the “aralkyl group” include aralkyl groups having 7 to 40 carbon atoms, such as benzyl group, phenethyl group, 1-naphthylmethyl group, 2-naphthylmethyl group, Examples include 2-anthrylmethyl group and trityl group.
In the present specification, unless otherwise specified, examples of the “alkyl chain” include an alkyl chain having 1 to 12 carbon atoms, such as a methylene group, an ethylene group, and an isopropylidene group.
In the present specification, examples of the “acetylating agent” include acetic anhydride, acetyl chloride, N-acetylimidazole, acetic acid and the like.
 本明細書中、R及びRは、それぞれ独立して、アルキル基又はアラルキル基であり、R及びRはアルキル鎖で連結されていてもよい。R及びRは、好ましくは共にメチル基である。
 本明細書中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基は、Rが結合しているベンゼン環と縮合していてもよい。「該アリール基は、Rが結合しているベンゼン環と縮合していてもよい」場合におけるRとしては、例えば、ビフェニレニル基、フルオレニル基などが挙げられる。Rは、好ましくは水素原子である。
 本明細書中、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である。)。Rは、好ましくはメチル基である。
In the present specification, R 1 and R 2 are each independently an alkyl group or an aralkyl group, and R 1 and R 2 may be linked by an alkyl chain. R 1 and R 2 are preferably both methyl groups.
In the present specification, R 3 is a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, and the aryl group may be condensed with a benzene ring to which R 3 is bonded. The R 3 in the case where "the aryl group, R 3 may be condensed with the benzene ring which is bonded", for example, biphenylenyl group, and a fluorenyl group. R 3 is preferably a hydrogen atom.
In the present specification, R 4 is an alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group) .) R 4 is preferably a methyl group.
 次に、本発明の製造方法について説明する。
工程1:化合物[II]又はその塩の製造
Next, the manufacturing method of this invention is demonstrated.
Step 1: Production of compound [II] or a salt thereof
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
[式中、各記号は前記と同義である。]
 化合物[II]又はその塩は、化合物[I]又はその塩を還元することにより、製造することができる。還元は、貴金属触媒の存在下に行うことが好ましい。
 化合物[I]又は[II]の塩としては、酸塩が好ましく、例えば、塩酸塩、硫酸塩、p-トルエンスルホン酸塩、カンファースルホン酸塩、酒石酸塩、マンデル酸塩を用いることができ、好ましくは塩酸塩である。
 貴金属触媒としては、パラジウム炭素、パラジウムブラック、パラジウム硫酸バリウム、パラジウム炭酸カルシウム、白金炭素、ロジウム炭素、ルテニウム炭素等を用いることができ、好ましくはパラジウム炭素である。
 貴金属触媒の使用量は、化合物[I]又はその塩1mmolに対して、0.05mmol~10mmol、好ましくは0.1mmol~0.5mmolである。
 化合物[I]又はその塩の還元に使用する還元剤としては、水素、ギ酸、ギ酸アンモニウム、ギ酸トリエチルアンモニウム等を用いることができ、好ましくは水素である。
 水素を還元剤として用いる場合は、例えば、化合物[I]又はその塩を、水素雰囲気下で貴金属触媒存在下に反応させることにより還元することができる。水素圧としては、通常1気圧~100気圧であり、好ましくは3気圧~15気圧である。
 ギ酸、ギ酸アンモニウム又はギ酸トリエチルアンモニウムを還元剤として用いる場合は、化合物[I]又はその塩を、これらの還元剤と貴金属触媒の存在下に反応させることにより還元することができる。
 ギ酸、ギ酸アンモニウム又はギ酸トリエチルアンモニウムの使用量は、化合物[I]又はその塩1mmolに対して1mmol~100mmol、好ましくは1mmol~20mmolである。
 還元は、溶媒の存在下に行うことができる。溶媒は、反応が進行する限り特に限定されないが、水、メタノール、エタノール、イソプロパノール、THF、ジオキサン、トルエン、キシレン、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル等が挙げられ、好ましくは水、メタノール、エタノール又はイソプロパノールである。溶媒は混合して用いてもよい。
 溶媒の使用量は、化合物[I]又はその塩1mmolに対して、通常1mL~20mL、好ましくは3mL~10mLである。
 還元時の温度としては、通常5℃~200℃、好ましくは40℃~100℃である。
 還元時間としては、通常0.5時間~48時間、好ましくは1時間~24時間である。
 また、還元は、酸の存在下又は非存在下に行うことができる。酸の存在下に還元する場合、酸としては、酢酸、ブタン酸、トリフルオロ酢酸、塩酸、硫酸、メタンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸、カンファースルホン酸、酒石酸、マンデル酸等を使用することができ、これらは混合して使用してもよい。好ましくは塩酸、硫酸又はメタンスルホン酸であり、特に好ましくは塩酸である。
 酸の使用量は、化合物[I]又はその塩1mmolに対して0.05mmol~10mmol、好ましくは0.1mmol~0.5mmolである。
 反応時の圧力は、通常、常圧である。
[Wherein the symbols are as defined above. ]
Compound [II] or a salt thereof can be produced by reducing compound [I] or a salt thereof. The reduction is preferably performed in the presence of a noble metal catalyst.
As the salt of compound [I] or [II], an acid salt is preferred, and for example, hydrochloride, sulfate, p-toluenesulfonate, camphorsulfonate, tartrate, mandelate can be used, Hydrochloride is preferable.
As the noble metal catalyst, palladium carbon, palladium black, palladium barium sulfate, palladium calcium carbonate, platinum carbon, rhodium carbon, ruthenium carbon and the like can be used, and preferably palladium carbon.
The amount of the noble metal catalyst used is 0.05 to 10 mmol, preferably 0.1 to 0.5 mmol, relative to 1 mmol of compound [I] or a salt thereof.
Hydrogen, formic acid, ammonium formate, triethylammonium formate, etc. can be used as the reducing agent used for the reduction of compound [I] or a salt thereof, preferably hydrogen.
When hydrogen is used as a reducing agent, for example, compound [I] or a salt thereof can be reduced by reacting in the presence of a noble metal catalyst in a hydrogen atmosphere. The hydrogen pressure is usually 1 atm to 100 atm, preferably 3 atm to 15 atm.
When formic acid, ammonium formate, or triethylammonium formate is used as a reducing agent, compound [I] or a salt thereof can be reduced by reacting these reducing agents with a noble metal catalyst.
The amount of formic acid, ammonium formate, or triethylammonium formate to be used is 1 mmol-100 mmol, preferably 1 mmol-20 mmol, relative to 1 mmol of compound [I] or a salt thereof.
The reduction can be performed in the presence of a solvent. The solvent is not particularly limited as long as the reaction proceeds, but water, methanol, ethanol, isopropanol, THF, dioxane, toluene, xylene, methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, etc., preferably water, methanol Ethanol or isopropanol. You may mix and use a solvent.
The amount of the solvent to be used is generally 1 mL to 20 mL, preferably 3 mL to 10 mL, per 1 mmol of compound [I] or a salt thereof.
The temperature during the reduction is usually 5 ° C. to 200 ° C., preferably 40 ° C. to 100 ° C.
The reduction time is usually 0.5 hours to 48 hours, preferably 1 hour to 24 hours.
The reduction can be performed in the presence or absence of an acid. When reducing in the presence of an acid, examples of the acid include acetic acid, butanoic acid, trifluoroacetic acid, hydrochloric acid, sulfuric acid, methanesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid, camphorsulfonic acid, tartaric acid, mandelic acid, etc. These may be used as a mixture. Preferred is hydrochloric acid, sulfuric acid or methanesulfonic acid, and particularly preferred is hydrochloric acid.
The amount of the acid used is 0.05 to 10 mmol, preferably 0.1 to 0.5 mmol, relative to 1 mmol of compound [I] or a salt thereof.
The pressure during the reaction is usually atmospheric pressure.
工程2:化合物[I]又はその塩の製造(その1) Step 2: Production of Compound [I] or a Salt thereof (Part 1)
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
[式中、各記号は前記と同義である。]
 化合物[I]又はその塩は、化合物[III]又はその塩をアミド化することにより製造することができる。具体的には、アルカリ金属炭酸塩の存在下、過酸化水素と反応させることにより製造することができる。
 化合物[III]の塩としては、酸塩が好ましく、例えば、塩酸塩、硫酸塩、p-トルエンスルホン酸塩、カンファースルホン酸塩、酒石酸塩、マンデル酸塩等を用いることができ、好ましくは塩酸塩である。
 アルカリ金属炭酸塩としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウムが好ましく、特に炭酸カリウムが好ましい。
 アルカリ金属炭酸塩の使用量は、化合物[III]又はその塩1mmolに対して、0.01mmol~10mmol、好ましくは0.1mmol~0.5mmolである。
 過酸化水素としては、濃度5%~45%、好ましくは濃度20%~30%の水溶液を使用することができる。
 過酸化水素の使用量は、化合物[III]又はその塩1mmolに対して、1mmol~10mmol、好ましくは1.5mmol~3mmolである。
 アミド化は、溶媒の存在下に行うことが好ましい。溶媒は、アミド化が進行する限り特に限定されないが、DMSO、塩化メチレン、トルエン、クロロベンゼン等を用いることができ、特にDMSOが好ましい。また、DMSOと塩化メチレン、トルエン、クロロベンゼン等の溶媒を混合して使用してもよい。
 溶媒の使用量は、化合物[III]又はその塩1mmolに対して、通常、0.5mL~100mL,好ましくは1mL~3mLである。
 反応温度としては、通常-10℃~100℃、好ましくは5℃~50℃である。
 反応時間としては、通常0.1時間~48時間、好ましくは0.5時間~30時間である。
 反応時の圧力は、通常、常圧である。
 化合物[I]又はその塩は、ラコサミドを製造するための出発原料又は中間体として有用である。
[Wherein the symbols are as defined above. ]
Compound [I] or a salt thereof can be produced by amidating compound [III] or a salt thereof. Specifically, it can be produced by reacting with hydrogen peroxide in the presence of an alkali metal carbonate.
As the salt of compound [III], an acid salt is preferable. For example, hydrochloride, sulfate, p-toluenesulfonate, camphorsulfonate, tartrate, mandelate and the like can be used, preferably hydrochloric acid. Salt.
As the alkali metal carbonate, lithium carbonate, sodium carbonate, and potassium carbonate are preferable, and potassium carbonate is particularly preferable.
The amount of alkali metal carbonate used is 0.01 mmol to 10 mmol, preferably 0.1 mmol to 0.5 mmol, relative to 1 mmol of compound [III] or a salt thereof.
As hydrogen peroxide, an aqueous solution having a concentration of 5% to 45%, preferably 20% to 30% can be used.
The amount of hydrogen peroxide to be used is 1 mmol to 10 mmol, preferably 1.5 mmol to 3 mmol, relative to 1 mmol of compound [III] or a salt thereof.
The amidation is preferably performed in the presence of a solvent. The solvent is not particularly limited as long as amidation proceeds, but DMSO, methylene chloride, toluene, chlorobenzene and the like can be used, and DMSO is particularly preferable. Further, DMSO and a solvent such as methylene chloride, toluene, or chlorobenzene may be mixed and used.
The amount of the solvent to be used is generally 0.5 mL to 100 mL, preferably 1 mL to 3 mL, relative to 1 mmol of compound [III] or a salt thereof.
The reaction temperature is usually −10 ° C. to 100 ° C., preferably 5 ° C. to 50 ° C.
The reaction time is usually 0.1 hour to 48 hours, preferably 0.5 hour to 30 hours.
The pressure during the reaction is usually atmospheric pressure.
Compound [I] or a salt thereof is useful as a starting material or an intermediate for producing lacosamide.
工程3:化合物[III]又はその塩の製造 Step 3: Production of compound [III] or a salt thereof
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
[式中、各記号は前記と同義である。]
 化合物[III]又はその塩は、化合物[IV]を酸と反応させた後、得られた化合物を化合物[V]又はその塩と反応させることにより製造することができる(ストレッカー反応)。具体的には、(工程3-1)化合物[IV]を酸と反応させて、メトキシアセトアルデヒドを生成させ、(工程3-2)生成したアルデヒドを無機シアン化合物及び化合物[V]又はその塩と反応させることにより製造することができる。
 化合物[V]の塩としては、酸塩が好ましく、例えば、塩酸塩、硫酸塩、p-トルエンスルホン酸塩、カンファースルホン酸塩、酒石酸塩、マンデル酸塩が好ましい。
[Wherein the symbols are as defined above. ]
Compound [III] or a salt thereof can be produced by reacting compound [IV] with an acid and then reacting the obtained compound with compound [V] or a salt thereof (Strecker reaction). Specifically, (Step 3-1) reacting compound [IV] with an acid to produce methoxyacetaldehyde, (Step 3-2) the produced aldehyde with an inorganic cyanide compound and compound [V] or a salt thereof. It can be produced by reacting.
The salt of compound [V] is preferably an acid salt, and for example, hydrochloride, sulfate, p-toluenesulfonate, camphorsulfonate, tartrate, and mandelate are preferable.
工程3-1
 酸としては、酢酸、ブタン酸、トリフルオロ酢酸、塩酸、硫酸、メタンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸、カンファースルホン酸、酒石酸、マンデル酸等を使用することができ、これらは混合して使用してもよい。好ましくは塩酸である。
 酸の使用量は、化合物[IV]1mmolに対して、通常0.1mmol~10mmol、好ましくは1mmol~3mmolである。
 反応系中の酸の濃度としては、通常0.01mol/L~16mol/L、好ましくは0.5mol/L~6mol/Lである。
 反応は、溶媒の存在下に行うことができる。溶媒は、反応が進行する限り特に限定されないが、メタノール、エタノール、イソプロパノール等のアルコール、酢酸メチル、酢酸エチル、アセトニトリル、トルエン、DCM、DMF、DMA、NMP、水等を用いることができ、特に水が好ましい。また、水と水以外の溶媒を混合して使用してもよい。
 溶媒の使用量は、化合物[IV]1mmolに対して、通常1mL~100mL、好ましくは5mL~20mLである。
 反応温度としては、通常0℃~100℃、好ましくは10℃~40℃である。
 反応時間としては、通常0.5時間~24時間、好ましくは1時間~5時間である。
 反応時の圧力は、通常、常圧である。
 化合物[III]又はその塩は、ラコサミドを製造するための出発原料又は中間体として有用である。
Step 3-1
As the acid, acetic acid, butanoic acid, trifluoroacetic acid, hydrochloric acid, sulfuric acid, methanesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid, camphorsulfonic acid, tartaric acid, mandelic acid and the like can be used. You may mix and use. Hydrochloric acid is preferred.
The amount of the acid to be used is generally 0.1 mmol-10 mmol, preferably 1 mmol-3 mmol, relative to 1 mmol of compound [IV].
The concentration of the acid in the reaction system is usually 0.01 mol / L to 16 mol / L, preferably 0.5 mol / L to 6 mol / L.
The reaction can be carried out in the presence of a solvent. The solvent is not particularly limited as long as the reaction proceeds, but alcohols such as methanol, ethanol, and isopropanol, methyl acetate, ethyl acetate, acetonitrile, toluene, DCM, DMF, DMA, NMP, water, and the like can be used. Is preferred. Further, water and a solvent other than water may be mixed and used.
The amount of the solvent to be used is generally 1 mL to 100 mL, preferably 5 mL to 20 mL, per 1 mmol of compound [IV].
The reaction temperature is usually 0 ° C. to 100 ° C., preferably 10 ° C. to 40 ° C.
The reaction time is usually 0.5 to 24 hours, preferably 1 to 5 hours.
The pressure during the reaction is usually atmospheric pressure.
Compound [III] or a salt thereof is useful as a starting material or an intermediate for producing lacosamide.
工程3-2
 工程3-1の反応後、さらに無機シアン化合物、及び化合物[V]又はその塩を添加する。これにより、工程3-1で生成したアルデヒドを、無機シアン化合物及び化合物[V]又はその塩と酸の存在下又は非存在下に反応させ、化合物[III]又はその塩を製造することができる。
 無機シアン化合物としては、シアン化水素、シアン化リチウム、シアン化ナトリウム、シアン化カリウム等を使用することができ、安全性及び経済性の点から、好ましくはシアン化リチウム、シアン化ナトリウム、シアン化カリウムであり、特に好ましくは、シアン化ナトリウムである。
 無機シアン化合物の使用量は、化合物[IV]1mmolに対して、1mmol~10mmol、好ましくは1mmol~2mmolである。
 化合物[V]又はその塩の使用量は、化合物[IV]1mmolに対して、1mmol~10mmol、好ましくは1mmol~2mmolである。
 酸としては、酢酸、ブタン酸、トリフルオロ酢酸、塩酸、硫酸、メタンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸、カンファースルホン酸、酒石酸、マンデル酸等を使用することができ、これらは混合して使用してもよい。好ましくは塩酸である。
 酸を用いる場合の使用量は、無機シアン化合物1mmolに対して、1mmol~10mmol、好ましくは1mmol~2mmolである。また、酸は前工程から反応系に存在していてもよい。
 反応は、溶媒の存在下に行うことができる。溶媒は、反応が進行する限り特に限定されないが、メタノール、エタノール、イソプロパノール等のアルコール、酢酸メチル、酢酸エチル、アセトニトリル、トルエン、DCM、DMF、DMA、NMP、水等を用いることができ、特に水が好ましい。また、水と水以外の溶媒を混合して使用してもよい。
 溶媒の使用量は、化合物[V]又はその塩1mmolに対して、通常1mL~100mL、好ましくは5mL~20mLである。
 反応温度は、通常-50℃~120℃、好ましくは10℃~80℃である。
 反応時間は、通常0.1時間~168時間、好ましくは1時間~48時間である。
 反応時の圧力は、通常、常圧である。
 化合物[IV]は市販のものを用いることができるが、下記工程4のように、化合物[VI]をメトキシ化することによって、より安価に製造することもできる。
Step 3-2
After the reaction in Step 3-1, an inorganic cyanide compound and compound [V] or a salt thereof are further added. Thus, the compound [III] or a salt thereof can be produced by reacting the aldehyde produced in Step 3-1 with an inorganic cyanide compound and the compound [V] or a salt thereof in the presence or absence of an acid. .
As the inorganic cyanide compound, hydrogen cyanide, lithium cyanide, sodium cyanide, potassium cyanide and the like can be used. From the viewpoint of safety and economy, lithium cyanide, sodium cyanide and potassium cyanide are preferable, and particularly preferable. Is sodium cyanide.
The amount of the inorganic cyanide compound used is 1 mmol to 10 mmol, preferably 1 mmol to 2 mmol, relative to 1 mmol of the compound [IV].
The amount of compound [V] or a salt thereof used is 1 mmol to 10 mmol, preferably 1 mmol to 2 mmol, relative to 1 mmol of compound [IV].
As the acid, acetic acid, butanoic acid, trifluoroacetic acid, hydrochloric acid, sulfuric acid, methanesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid, camphorsulfonic acid, tartaric acid, mandelic acid and the like can be used. You may mix and use. Hydrochloric acid is preferred.
When the acid is used, the amount used is 1 mmol to 10 mmol, preferably 1 mmol to 2 mmol, with respect to 1 mmol of the inorganic cyanide compound. Further, the acid may be present in the reaction system from the previous step.
The reaction can be carried out in the presence of a solvent. The solvent is not particularly limited as long as the reaction proceeds, but alcohols such as methanol, ethanol, and isopropanol, methyl acetate, ethyl acetate, acetonitrile, toluene, DCM, DMF, DMA, NMP, water, and the like can be used. Is preferred. Further, water and a solvent other than water may be mixed and used.
The amount of the solvent to be used is generally 1 mL to 100 mL, preferably 5 mL to 20 mL, per 1 mmol of compound [V] or a salt thereof.
The reaction temperature is usually −50 ° C. to 120 ° C., preferably 10 ° C. to 80 ° C.
The reaction time is usually 0.1 hour to 168 hours, preferably 1 hour to 48 hours.
The pressure during the reaction is usually atmospheric pressure.
Compound [IV] can be commercially available, but can also be produced at lower cost by methoxylation of compound [VI] as in Step 4 below.
工程4:化合物[IV]の製造 Step 4: Production of compound [IV]
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
[式中、各記号は前記と同義である。]
 具体的には、市販の化合物[VI]、例えばクロロアセトアルデヒド ジメチルアセタールをナトリウムメトキシドと反応させることにより化合物[IV]を製造することができる。
 ナトリウムメトキシドの使用量は、化合物[VI]1mmolに対して、通常1mmol~100mmol、好ましくは1mmol~10mmolである。
 溶媒は、反応が進行する限り特に限定されないが、メタノール、THF、トルエン等を用いることができる。溶媒は混合して用いてもよい。好ましくは、メタノール又はTHFであり、特に好ましくはメタノールである。
 溶媒の使用量は、化合物[VI]1mmolに対して、通常0.1mL~100mL、好ましくは0.5mL~5mL、特に好ましくは1mL~3mLである。
 反応温度は、通常0℃~150℃、好ましくは10℃~120℃である。
 反応時間は、通常0.1時間~48時間、好ましくは1時間~24時間である。
 反応時の圧力は、通常、常圧である。
[Wherein the symbols are as defined above. ]
Specifically, compound [IV] can be produced by reacting commercially available compound [VI] such as chloroacetaldehyde dimethyl acetal with sodium methoxide.
The amount of sodium methoxide to be used is generally 1 mmol-100 mmol, preferably 1 mmol-10 mmol, relative to 1 mmol of compound [VI].
The solvent is not particularly limited as long as the reaction proceeds, but methanol, THF, toluene and the like can be used. You may mix and use a solvent. Preferred is methanol or THF, and particularly preferred is methanol.
The amount of the solvent to be used is generally 0.1 mL to 100 mL, preferably 0.5 mL to 5 mL, particularly preferably 1 mL to 3 mL, relative to 1 mmol of compound [VI].
The reaction temperature is usually 0 ° C. to 150 ° C., preferably 10 ° C. to 120 ° C.
The reaction time is usually 0.1 hour to 48 hours, preferably 1 hour to 24 hours.
The pressure during the reaction is usually atmospheric pressure.
 また、化合物[I]又はその塩は、以下の方法(工程5)によっても製造することができる。
工程5:化合物[I]又はその塩の製造(その2)
Compound [I] or a salt thereof can also be produced by the following method (Step 5).
Step 5: Production of Compound [I] or a Salt thereof (Part 2)
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
[式中、各記号は前記と同義である。]
 化合物[VII]又はその塩をハロゲン化した後、化合物[V]又はその塩と反応させることにより、化合物[I]又はその塩を製造することができる。
 具体的には、まず、化合物[VII]又はその塩をハロゲンと反応させる。ハロゲンとしては、臭素が特に好ましい。
 ハロゲンの使用量は、化合物[VII]又はその塩1mmolに対して、通常1mmol~5mmol、好ましくは1mmol~2mmol、特に好ましくは1mmol~1.5mmolである。
 反応は、溶媒の存在下に行うことができる。溶媒は、反応が進行する限り特に限定されないが、メタノール、DCM、クロロホルム、トルエン等が挙げられる。溶媒は混合して用いてもよい。
 反応温度は、通常-10℃~100℃、好ましくは5℃~40℃である。
 反応時間は、通常0.1時間~24時間、好ましくは0.5時間~5時間である。
 反応時の圧力は、通常、常圧である。
 次いで、生成したハロゲン化物[VIII]又はその塩を化合物[V]又はその塩と反応させることにより、化合物[I]又はその塩を製造する。反応は、塩基の存在下に、行うことが好ましい。
 化合物[V]又はその塩は、化合物[VII]又はその塩1mmolに対して、通常1mmol~10mmol、好ましくは1mmol~5mmol、特に好ましくは1mmol~2mmolである。
 塩基としては、トリエチルアミン、ピリジン、炭酸カリウム、水酸化ナトリウム等が挙げられる。
 塩基の使用量は、化合物[VII]又はその塩1mmolに対して、通常2mmol~10mmol、好ましくは2mmol~6mmol、特に好ましくは2mmol~4mmolである。
 反応は、溶媒の存在下に行うことができる。溶媒は、反応が進行する限り特に限定されないが、メタノール、エタノール、イソプロパノール、DCM、クロロホルム、トルエン、THF等が挙げられる。溶媒は混合して用いてもよい。
 反応温度は、通常-10℃~100℃、好ましくは0℃~80℃である。
 反応時間は、通常0.1時間~72時間、好ましくは1時間~8時間である。
 反応時の圧力は、通常、常圧である。
[Wherein the symbols are as defined above. ]
Compound [I] or a salt thereof can be produced by halogenating compound [VII] or a salt thereof and then reacting with compound [V] or a salt thereof.
Specifically, first, compound [VII] or a salt thereof is reacted with a halogen. As the halogen, bromine is particularly preferable.
The amount of halogen to be used is generally 1 mmol-5 mmol, preferably 1 mmol-2 mmol, particularly preferably 1 mmol-1.5 mmol, relative to 1 mmol of compound [VII] or a salt thereof.
The reaction can be carried out in the presence of a solvent. The solvent is not particularly limited as long as the reaction proceeds, and examples thereof include methanol, DCM, chloroform, toluene and the like. You may mix and use a solvent.
The reaction temperature is usually −10 ° C. to 100 ° C., preferably 5 ° C. to 40 ° C.
The reaction time is usually 0.1 hour to 24 hours, preferably 0.5 hour to 5 hours.
The pressure during the reaction is usually atmospheric pressure.
Next, compound [I] or a salt thereof is produced by reacting the produced halide [VIII] or a salt thereof with compound [V] or a salt thereof. The reaction is preferably performed in the presence of a base.
Compound [V] or a salt thereof is generally 1 mmol to 10 mmol, preferably 1 mmol to 5 mmol, particularly preferably 1 mmol to 2 mmol, relative to 1 mmol of compound [VII] or a salt thereof.
Examples of the base include triethylamine, pyridine, potassium carbonate, sodium hydroxide and the like.
The amount of the base to be used is generally 2 mmol to 10 mmol, preferably 2 mmol to 6 mmol, particularly preferably 2 mmol to 4 mmol, relative to 1 mmol of compound [VII] or a salt thereof.
The reaction can be carried out in the presence of a solvent. The solvent is not particularly limited as long as the reaction proceeds, and examples thereof include methanol, ethanol, isopropanol, DCM, chloroform, toluene, and THF. You may mix and use a solvent.
The reaction temperature is usually −10 ° C. to 100 ° C., preferably 0 ° C. to 80 ° C.
The reaction time is usually 0.1 hour to 72 hours, preferably 1 hour to 8 hours.
The pressure during the reaction is usually atmospheric pressure.
 本発明においては、以下の方法A(工程6→7→8)、又は方法B(工程9→10)により、化合物[II]又はその塩から化合物[XII](ラコサミド)又はその塩を製造することができる。
<方法A:工程6→7→8>
工程6:化合物[X]又はその塩の製造
In the present invention, compound [XII] (lacosamide) or a salt thereof is produced from compound [II] or a salt thereof by the following method A (step 6 → 7 → 8) or method B (step 9 → 10). be able to.
<Method A: Step 6 → 7 → 8>
Step 6: Production of compound [X] or a salt thereof
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
 化合物[II]又はその塩を加水分解することにより、化合物[X]又はその塩を製造することができる。具体的には、化合物[II]又はその塩を酸と反応させて加水分解する。
 酸としては、酢酸、ブタン酸、トリフルオロ酢酸、塩酸、硫酸、メタンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸、カンファースルホン酸、酒石酸、マンデル酸等を使用することができ、これらは混合して使用してもよい。好ましくは塩酸又は硫酸である。使用する酸の濃度は、通常1%~98%である。
 酸の使用量は、化合物[II]又はその塩1mmolに対して1mmol~1000mmol、好ましくは2mmol~100mmol、特に好ましくは3mmol~10mmolである。
 反応温度は、通常0℃~200℃、好ましくは40℃~120℃である。
 反応時間は、通常0.5時間~48時間、好ましくは5時間~30時間である。
 反応時の圧力は、通常、常圧である。
 化合物[X]の塩としては、酸塩が好ましく、例えば、塩酸塩、硫酸塩、p-トルエンスルホン酸塩、カンファースルホン酸塩、酒石酸塩、マンデル酸塩が好ましい。
 得られた化合物[X]又はその塩は、粗体のまま次工程に供することもできるが、精製した後、次工程に供してもよい。精製は、従来公知の方法を採用することができ、Dowex 50X4等のイオン交換樹脂を用いて精製することが好ましい。
Compound [X] or a salt thereof can be produced by hydrolyzing compound [II] or a salt thereof. Specifically, compound [II] or a salt thereof is reacted with an acid to be hydrolyzed.
As the acid, acetic acid, butanoic acid, trifluoroacetic acid, hydrochloric acid, sulfuric acid, methanesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid, camphorsulfonic acid, tartaric acid, mandelic acid and the like can be used. You may mix and use. Preferred is hydrochloric acid or sulfuric acid. The concentration of the acid used is usually 1% to 98%.
The amount of the acid used is 1 mmol to 1000 mmol, preferably 2 mmol to 100 mmol, particularly preferably 3 mmol to 10 mmol, relative to 1 mmol of compound [II] or a salt thereof.
The reaction temperature is usually 0 ° C. to 200 ° C., preferably 40 ° C. to 120 ° C.
The reaction time is usually 0.5 hours to 48 hours, preferably 5 hours to 30 hours.
The pressure during the reaction is usually atmospheric pressure.
The salt of compound [X] is preferably an acid salt, and for example, hydrochloride, sulfate, p-toluenesulfonate, camphorsulfonate, tartrate, and mandelate are preferable.
The obtained compound [X] or a salt thereof can be used in the next step as it is, but may be used in the next step after purification. For the purification, a conventionally known method can be adopted, and it is preferable to purify using an ion exchange resin such as Dowex 50X4.
工程7:化合物[XI]又はその塩の製造 Step 7: Production of compound [XI] or a salt thereof
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
 化合物[X]又はその塩をアセチル化することにより、化合物[XI]又はその塩を製造することができる。具体的には、化合物[X]又はその塩を塩基の存在下にアセチル化剤と反応させる。
 アセチル化剤としては、無水酢酸、塩化アセチル、N-アセチルイミダゾール、酢酸等を使用することができ、これらは混合して使用してもよい。特に、無水酢酸又は塩化アセチルが好ましい。
 アセチル化剤の使用量は、化合物[X]又はその塩1mmolに対して1mmol~10mmol、好ましくは1mmol~3mmolである。
 塩基としては、トリエチルアミン、ピリジン、4-N,N-ジメチルアミノピリジン、N-メチルモルホリン、N-メチルイミダゾール、水酸化ナトリウム、炭酸カリウム等を使用することができ、これらは混合して使用してもよい。
 塩基の使用量は、化合物[X]又はその塩1mmolに対して1mmol~10mmol、好ましくは1mmol~3mmolである。
 反応は溶媒の存在下に行うこともできる。溶媒としては、水、THF、トルエン、酢酸エチル等を使用することができる。溶媒を使用する場合、溶媒の使用量は、化合物[X]又はその塩1mmolに対して、1mL~20mL好ましくは3mL~10mLである。
 反応温度は、通常-10℃~80℃、好ましくは-5℃~30℃である。
 反応時間は、通常0.5時間~48時間、好ましくは3時間~10時間である。
 反応時の圧力は、通常、常圧である。
 化合物[XI]の塩としては、酸塩が好ましく、例えば、塩酸塩、硫酸塩、p-トルエンスルホン酸塩、カンファースルホン酸塩、酒石酸塩、マンデル酸塩が好ましいが、ジシクロヘキシルアミン等のアミン塩として得ることもできる。
Compound [XI] or a salt thereof can be produced by acetylating compound [X] or a salt thereof. Specifically, compound [X] or a salt thereof is reacted with an acetylating agent in the presence of a base.
As the acetylating agent, acetic anhydride, acetyl chloride, N-acetylimidazole, acetic acid and the like can be used, and these may be used in combination. In particular, acetic anhydride or acetyl chloride is preferred.
The amount of the acetylating agent to be used is 1 mmol to 10 mmol, preferably 1 mmol to 3 mmol, relative to 1 mmol of compound [X] or a salt thereof.
As the base, triethylamine, pyridine, 4-N, N-dimethylaminopyridine, N-methylmorpholine, N-methylimidazole, sodium hydroxide, potassium carbonate, etc. can be used. Also good.
The amount of the base used is 1 mmol to 10 mmol, preferably 1 mmol to 3 mmol, relative to 1 mmol of compound [X] or a salt thereof.
The reaction can also be carried out in the presence of a solvent. As the solvent, water, THF, toluene, ethyl acetate or the like can be used. When a solvent is used, the amount of the solvent used is 1 mL to 20 mL, preferably 3 mL to 10 mL, relative to 1 mmol of compound [X] or a salt thereof.
The reaction temperature is usually −10 ° C. to 80 ° C., preferably −5 ° C. to 30 ° C.
The reaction time is usually 0.5 hours to 48 hours, preferably 3 hours to 10 hours.
The pressure during the reaction is usually atmospheric pressure.
The salt of compound [XI] is preferably an acid salt, for example, hydrochloride, sulfate, p-toluenesulfonate, camphorsulfonate, tartrate, and mandelate, but an amine salt such as dicyclohexylamine is preferred. Can also be obtained as
工程8:化合物[XII](ラコサミド)又はその塩の製造(その1) Step 8: Production of Compound [XII] (Lacosamide) or a Salt thereof (Part 1)
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
 化合物[XI]又はその塩をベンジルアミド化することにより、化合物[XII](ラコサミド)又はその塩を製造することができる。具体的には、化合物[XI]又はその塩を、塩基の存在下又は非存在下に活性化剤と反応させた後、ベンジルアミンと反応させて、化合物[XII](ラコサミド)又はその塩を製造する。
 活性化剤としては、クロロ炭酸メチル、クロロ炭酸エチル、クロロ炭酸イソブチル等のクロロ炭酸アルキル、CDI、DCC、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩等を使用することができ、これらは混合して使用してもよい。
 活性化剤の使用量は、化合物[XI]又はその塩1mmolに対して1mmol~10mmol、好ましくは1mmol~2mmolである。
 塩基としては、N-メチルモルホリン、トリエチルアミン、N-メチルイミダゾール等を使用することができ、これらは混合して使用してもよい。
 塩基を使用する場合、塩基の使用量は、化合物[XI]又はその塩1mmolに対して1mmol~10mmol、好ましくは1mmol~2mmolである。
 活性化剤と反応させる際の温度は、通常-50℃~100℃、好ましくは-25℃~25℃である。
 反応時間は、通常0.1時間~24時間、好ましくは0.5時間~5時間である。
 反応時の圧力は、通常、常圧である。
 活性化剤と反応させた後、さらにベンジルアミンと反応させる。
 ベンジルアミンの使用量は、化合物[XI]又はその塩1mmolに対して1mmol~10mmol、好ましくは1mmol~3mmolである。
 ベンジルアミンと反応させる際の温度は、通常-50℃~100℃、好ましくは-25℃~40℃である。
 反応時間は、通常0.1時間~24時間、好ましくは0.5時間~10時間である。
 反応時の圧力は、通常、常圧である。
Compound [XII] (lacosamide) or a salt thereof can be produced by benzylamidating compound [XI] or a salt thereof. Specifically, compound [XI] or a salt thereof is reacted with an activator in the presence or absence of a base, and then reacted with benzylamine to give compound [XII] (lacosamide) or a salt thereof. To manufacture.
As the activator, alkyl chlorocarbonates such as methyl chlorocarbonate, ethyl chlorocarbonate, isobutyl chlorocarbonate, CDI, DCC, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride and the like can be used. These may be used as a mixture.
The amount of the activator used is 1 mmol to 10 mmol, preferably 1 mmol to 2 mmol, relative to 1 mmol of compound [XI] or a salt thereof.
As the base, N-methylmorpholine, triethylamine, N-methylimidazole and the like can be used, and these may be used in combination.
When a base is used, the amount of the base used is 1 mmol to 10 mmol, preferably 1 mmol to 2 mmol, relative to 1 mmol of compound [XI] or a salt thereof.
The temperature for the reaction with the activator is usually −50 ° C. to 100 ° C., preferably −25 ° C. to 25 ° C.
The reaction time is usually 0.1 hour to 24 hours, preferably 0.5 hour to 5 hours.
The pressure during the reaction is usually atmospheric pressure.
After reacting with an activator, it is further reacted with benzylamine.
The amount of benzylamine used is 1 mmol to 10 mmol, preferably 1 mmol to 3 mmol, relative to 1 mmol of compound [XI] or a salt thereof.
The temperature for the reaction with benzylamine is usually −50 ° C. to 100 ° C., preferably −25 ° C. to 40 ° C.
The reaction time is usually 0.1 hour to 24 hours, preferably 0.5 hour to 10 hours.
The pressure during the reaction is usually atmospheric pressure.
<方法B:工程9→10>
工程9:化合物[XIII]又はその塩の製造
<Method B: Step 9 → 10>
Step 9: Production of compound [XIII] or a salt thereof
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
 化合物[II]又はその塩をアセチル化することにより、化合物[XIII]又はその塩を製造することができる。具体的には、化合物[II]又はその塩を塩基の存在下にアセチル化剤と反応させる。
 アセチル化剤としては、無水酢酸、塩化アセチル、N-アセチルイミダゾール、酢酸等を使用することができ、これらは混合して使用してもよい。
 アセチル化剤の使用量は、化合物[II]又はその塩1mmolに対して1mmol~10mmol、好ましくは1mmol~3mmolである。
 塩基としては、トリエチルアミン、水酸化ナトリウム、炭酸カリウム等を使用することができ、これらは混合して使用してもよい。
 塩基の使用量は、化合物[II]又はその塩1mmolに対して1mmol~10mmol、好ましくは1mmol~3mmolである。
 反応は溶媒の存在下に行うこともできる。溶媒としては、水、THF、トルエン、酢酸エチル等を使用することができる。溶媒を使用する場合、溶媒の使用量は、化合物[II]又はその塩1mmolに対して、1mL~20mL好ましくは3mL~10mLである。
 反応温度は、通常-10℃~80℃、好ましくは0℃~40℃である。
 反応時間は、通常0.5時間~48時間、好ましくは3時間~30時間である。
 反応時の圧力は、通常、常圧である。
 化合物[XIII]の塩としては、酸塩が好ましく、例えば、塩酸塩、硫酸塩、p-トルエンスルホン酸塩、カンファースルホン酸塩、酒石酸塩、マンデル酸塩が好ましいが、ジシクロヘキシルアミン等のアミン塩として得ることもできる。
Compound [XIII] or a salt thereof can be produced by acetylating compound [II] or a salt thereof. Specifically, compound [II] or a salt thereof is reacted with an acetylating agent in the presence of a base.
As the acetylating agent, acetic anhydride, acetyl chloride, N-acetylimidazole, acetic acid and the like can be used, and these may be used in combination.
The amount of the acetylating agent to be used is 1 mmol to 10 mmol, preferably 1 mmol to 3 mmol, relative to 1 mmol of compound [II] or a salt thereof.
As the base, triethylamine, sodium hydroxide, potassium carbonate and the like can be used, and these may be used in combination.
The amount of the base used is 1 mmol to 10 mmol, preferably 1 mmol to 3 mmol, relative to 1 mmol of compound [II] or a salt thereof.
The reaction can also be carried out in the presence of a solvent. As the solvent, water, THF, toluene, ethyl acetate or the like can be used. When a solvent is used, the amount of the solvent used is 1 mL to 20 mL, preferably 3 mL to 10 mL, relative to 1 mmol of compound [II] or a salt thereof.
The reaction temperature is usually −10 ° C. to 80 ° C., preferably 0 ° C. to 40 ° C.
The reaction time is usually 0.5 hours to 48 hours, preferably 3 hours to 30 hours.
The pressure during the reaction is usually atmospheric pressure.
The salt of compound [XIII] is preferably an acid salt, for example, hydrochloride, sulfate, p-toluenesulfonate, camphorsulfonate, tartrate, mandelate, and amine salts such as dicyclohexylamine. Can also be obtained as
工程10:化合物[XII](ラコサミド)又はその塩の製造(その2) Step 10: Production of Compound [XII] (Lacosamide) or a Salt thereof (Part 2)
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
 化合物[XIII]又はその塩をベンジルアミド化することにより、化合物[XII](ラコサミド)又はその塩を製造することができる。具体的には、化合物[XIII]又はその塩を、触媒の存在下にベンジルアミンと反応させる。
 触媒としては、ボロン酸、メチルボロン酸、フェニルボロン酸、3,4,5-トリフルオロフェニルボロン酸、2-ヨードフェニルボロン酸等の置換基を有するフェニルボロン酸、酢酸銅(II)等を使用することができ、これらは混合して使用してもよい。
 触媒の使用量は、化合物[XIII]又はその塩1mmolに対して、0.01mmol~1mmol、好ましくは0.05mmol~0.3mmolである。
 ベンジルアミンの使用量は、化合物[XIII]又はその塩1mmolに対して1mmol~10mmol、好ましくは1mmol~3mmolである。
 反応温度は、通常10℃~200℃、好ましくは25℃~150℃である。
 反応時間は、通常1時間~48時間、好ましくは5時間~30時間である。
 反応時の圧力は、通常、常圧である。
Compound [XII] (lacosamide) or a salt thereof can be produced by benzylamidating compound [XIII] or a salt thereof. Specifically, compound [XIII] or a salt thereof is reacted with benzylamine in the presence of a catalyst.
As the catalyst, boronic acid, methylboronic acid, phenylboronic acid, 3,4,5-trifluorophenylboronic acid, phenylboronic acid having a substituent such as 2-iodophenylboronic acid, copper (II) acetate, etc. are used. These may be used as a mixture.
The amount of the catalyst used is 0.01 mmol to 1 mmol, preferably 0.05 mmol to 0.3 mmol, relative to 1 mmol of compound [XIII] or a salt thereof.
The amount of benzylamine to be used is 1 mmol to 10 mmol, preferably 1 mmol to 3 mmol, relative to 1 mmol of compound [XIII] or a salt thereof.
The reaction temperature is usually 10 ° C. to 200 ° C., preferably 25 ° C. to 150 ° C.
The reaction time is usually 1 hour to 48 hours, preferably 5 hours to 30 hours.
The pressure during the reaction is usually atmospheric pressure.
 また、本発明においては、以下の方法C(工程11→12→13→14)により、化合物[I]又はその塩から化合物[XII](ラコサミド)又はその塩を製造することができる。
<方法C:工程11→12→13→14>
In the present invention, compound [XII] (lacosamide) or a salt thereof can be produced from compound [I] or a salt thereof by the following method C (steps 11 → 12 → 13 → 14).
<Method C: Step 11 → 12 → 13 → 14>
工程11:化合物[XIV]又はその塩の製造 Step 11: Production of compound [XIV] or a salt thereof
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
[式中、各記号は前記と同義である。]
 化合物[XIV]又はその塩は、化合物[I]又はその塩を酸と反応させることにより、製造することができる。
 酸としては、塩酸、硫酸、臭化水素酸、メタンスルホン酸等を使用することができ、これらは混合して使用してもよい。好ましくは塩酸である。
 塩酸の使用量は、化合物[I]又はその塩1mmolに対して、通常1mmol~100mmol、好ましくは1mmol~10mmolである。
 反応は、溶媒の存在下に行うことができる。溶媒は、反応が進行する限り特に限定されないが、水、ジオキサン、酢酸等を用いることができ、これらは混合して使用してもよい。好ましくは水である。
 溶媒(好ましくは、水)の使用量は、化合物[I]又はその塩1mmolに対して、通常0.1mL~30mL、好ましくは0.5mL~3mLである。
 反応温度としては、通常5℃~200℃、好ましくは25℃~120℃である。
 反応時間としては、通常0.5時間~72時間、好ましくは5時間~48時間である。
 反応時の圧力は、通常、常圧である。
[Wherein the symbols are as defined above. ]
Compound [XIV] or a salt thereof can be produced by reacting compound [I] or a salt thereof with an acid.
As the acid, hydrochloric acid, sulfuric acid, hydrobromic acid, methanesulfonic acid and the like can be used, and these may be used in combination. Hydrochloric acid is preferred.
The amount of hydrochloric acid to be used is generally 1 mmol-100 mmol, preferably 1 mmol-10 mmol, per 1 mmol of compound [I] or a salt thereof.
The reaction can be carried out in the presence of a solvent. The solvent is not particularly limited as long as the reaction proceeds, but water, dioxane, acetic acid and the like can be used, and these may be used as a mixture. Preferably it is water.
The amount of the solvent (preferably water) to be used is generally 0.1 mL to 30 mL, preferably 0.5 mL to 3 mL, relative to 1 mmol of compound [I] or a salt thereof.
The reaction temperature is usually 5 ° C to 200 ° C, preferably 25 ° C to 120 ° C.
The reaction time is usually 0.5 to 72 hours, preferably 5 to 48 hours.
The pressure during the reaction is usually atmospheric pressure.
工程12:化合物[XV]又はその塩の製造 Step 12: Production of compound [XV] or a salt thereof
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
[式中、各記号は前記と同義である。]
 化合物[XIV]又はその塩をベンジルアミド化することにより、化合物[XV]又はその塩を製造することができる。具体的には、化合物[XIV]又はその塩を、塩基及び縮合剤の存在下、ベンジルアミンと反応させて、化合物[XV]又はその塩を製造する。
 塩基としては、N-メチルモルホリン、トリエチルアミン、N-メチルイミダゾール等を使用することができ、これらは混合して使用してもよい。好ましくはN-メチルモルホリンである。
 塩基の使用量は、化合物[XIV]又はその塩1mmolに対して、通常1mmol~5mmol、好ましくは1mmol~3mmolである。
 縮合剤としては、クロロ炭酸メチル、クロロ炭酸エチル、クロロ炭酸イソブチル等のクロロ炭酸アルキル、EDC塩酸塩、CDI、DCC等を使用することができ、これらは混合して使用してもよい。好ましくはEDC塩酸塩である。
 縮合剤の使用量は、化合物[XIV]又はその塩1mmolに対して、通常1mmol~5mmol、好ましくは1mmol~3mmolである。
 また、縮合剤と共に、HOBt(1-ヒドロキシベンゾトリアゾール)、HOSu(N-ヒドロキシコハク酸イミド)等の添加剤を使用することが好ましい。これらの添加剤は、縮合を促進させ、副反応を抑制することができる。好ましくはHOBtである。
 添加剤の使用量は、化合物[XIV]又はその塩1mmolに対して、通常1mmol~5mmol、好ましくは1mmol~3mmolである。
 ベンジルアミンの使用量は、化合物[XIV]又はその塩1mmolに対して、通常1mmol~5mmol、好ましくは1mmol~3mmolである。
 反応は、溶媒の存在下に行うことができる。溶媒は、反応が進行する限り特に限定されないが、DCM、トルエン、THF、酢酸エチル等を用いることができる。好ましくはDCMである。
 溶媒の使用量は、化合物[XIV]又はその塩1mmolに対して、通常0.1mL~30mL、好ましくは0.5mL~3mLである。
 反応温度としては、通常-20℃~100℃、好ましくは-10℃~40℃である。
 反応時間としては、通常0.5時間~72時間、好ましくは5時間~48時間である。
 反応時の圧力は、通常、常圧である。
[Wherein the symbols are as defined above. ]
Compound [XV] or a salt thereof can be produced by benzylamidation of compound [XIV] or a salt thereof. Specifically, compound [XV] or a salt thereof is reacted with benzylamine in the presence of a base and a condensing agent to produce compound [XV] or a salt thereof.
As the base, N-methylmorpholine, triethylamine, N-methylimidazole and the like can be used, and these may be used in combination. N-methylmorpholine is preferred.
The amount of the base to be used is generally 1 mmol-5 mmol, preferably 1 mmol-3 mmol, relative to 1 mmol of compound [XIV] or a salt thereof.
As the condensing agent, alkyl chlorocarbonates such as methyl chlorocarbonate, ethyl chlorocarbonate, isobutyl chlorocarbonate, EDC hydrochloride, CDI, DCC and the like can be used, and these may be used in combination. EDC hydrochloride is preferable.
The amount of the condensing agent to be used is generally 1 mmol-5 mmol, preferably 1 mmol-3 mmol, relative to 1 mmol of compound [XIV] or a salt thereof.
In addition to the condensing agent, it is preferable to use additives such as HOBt (1-hydroxybenzotriazole), HOSu (N-hydroxysuccinimide), and the like. These additives can promote condensation and suppress side reactions. HOBt is preferable.
The amount of the additive to be used is generally 1 mmol-5 mmol, preferably 1 mmol-3 mmol, relative to 1 mmol of compound [XIV] or a salt thereof.
The amount of benzylamine to be used is generally 1 mmol-5 mmol, preferably 1 mmol-3 mmol, relative to 1 mmol of compound [XIV] or a salt thereof.
The reaction can be carried out in the presence of a solvent. The solvent is not particularly limited as long as the reaction proceeds, but DCM, toluene, THF, ethyl acetate and the like can be used. DCM is preferred.
The amount of the solvent to be used is generally 0.1 mL to 30 mL, preferably 0.5 mL to 3 mL, per 1 mmol of compound [XIV] or a salt thereof.
The reaction temperature is generally −20 ° C. to 100 ° C., preferably −10 ° C. to 40 ° C.
The reaction time is usually 0.5 to 72 hours, preferably 5 to 48 hours.
The pressure during the reaction is usually atmospheric pressure.
工程13:化合物[XVI]又はその塩の製造 Step 13: Production of compound [XVI] or a salt thereof
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
[式中、各記号は前記と同義である。]
 化合物[XVI]又はその塩は、化合物[XV]又はその塩を、還元又は酸処理することにより、製造することができる。還元は、貴金属触媒の存在下に行うことが好ましい。
 貴金属触媒としては、パラジウム炭素、パラジウムブラック、パラジウム硫酸バリウム、パラジウム炭酸カルシウム、白金炭素、ロジウム炭素、ルテニウム炭素等を用いることができ、好ましくはパラジウム炭素である。
 貴金属触媒の使用量は、化合物[XV]又はその塩1mmolに対して、0.0001mmol~1mmol、好ましくは0.0005mmol~0.05mmolである。
[Wherein the symbols are as defined above. ]
Compound [XVI] or a salt thereof can be produced by reducing or acid-treating compound [XV] or a salt thereof. The reduction is preferably performed in the presence of a noble metal catalyst.
As the noble metal catalyst, palladium carbon, palladium black, palladium barium sulfate, palladium calcium carbonate, platinum carbon, rhodium carbon, ruthenium carbon and the like can be used, and preferably palladium carbon.
The amount of the noble metal catalyst used is 0.0001 mmol to 1 mmol, preferably 0.0005 mmol to 0.05 mmol, relative to 1 mmol of compound [XV] or a salt thereof.
 化合物[XV]又はその塩の還元に使用する還元剤としては、水素、ギ酸、ギ酸アンモニウム、ギ酸トリエチルアンモニウム等を用いることができる。
 水素を還元剤として用いる場合は、例えば、化合物[XV]又はその塩を、水素雰囲気下で貴金属触媒存在下に反応させることにより還元することができる。水素圧としては、通常1気圧~100気圧であり、好ましくは1気圧~20気圧である。
 ギ酸、ギ酸アンモニウム又はギ酸トリエチルアンモニウムを還元剤として用いる場合は、化合物[XV]又はその塩をこれらの還元剤と貴金属触媒の存在下に反応させることにより還元することができる。
 ギ酸、ギ酸アンモニウム又はギ酸トリエチルアンモニウムの使用量は、化合物[XV]又はその塩1mmolに対して1mmol~100mmol、好ましくは1mmol~20mmolである。
 還元は、溶媒の存在下に行うことができる。溶媒は、反応が進行する限り特に限定されないが、水、メタノール、エタノール、イソプロパノール、THF、ジオキサン、トルエン、キシレン、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル等が挙げられ、好ましくは水、メタノール、エタノール又はイソプロパノールである。溶媒は混合して用いてもよい。
 溶媒の使用量は、化合物[XV]又はその塩1mmolに対して、通常0mL~100mL、好ましくは0.1mL~50mLである。
 還元時の温度としては、通常-10℃~150℃、好ましくは25℃~110℃である。
 還元時間としては、通常0.1時間~96時間、好ましくは6時間~36時間である。
 また、還元は、酸の存在下又は非存在下に行うことができる。酸の存在下に還元する場合、酸としては、塩酸、硫酸、リン酸又は酢酸を用いることができる。酸の使用量は、化合物[XV]又はその塩1mmolに対して0.1mmol~100mmol、好ましくは1mmol~10mmolである。
As a reducing agent used for the reduction of compound [XV] or a salt thereof, hydrogen, formic acid, ammonium formate, triethylammonium formate, or the like can be used.
When hydrogen is used as a reducing agent, for example, compound [XV] or a salt thereof can be reduced by reacting in the presence of a noble metal catalyst in a hydrogen atmosphere. The hydrogen pressure is usually 1 atm to 100 atm, preferably 1 atm to 20 atm.
When formic acid, ammonium formate, or triethylammonium formate is used as a reducing agent, compound [XV] or a salt thereof can be reduced by reacting these reducing agents with a noble metal catalyst.
The amount of formic acid, ammonium formate, or triethylammonium formate to be used is 1 mmol-100 mmol, preferably 1 mmol-20 mmol, relative to 1 mmol of compound [XV] or a salt thereof.
The reduction can be performed in the presence of a solvent. The solvent is not particularly limited as long as the reaction proceeds, but water, methanol, ethanol, isopropanol, THF, dioxane, toluene, xylene, methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, etc., preferably water, methanol Ethanol or isopropanol. You may mix and use a solvent.
The amount of the solvent to be used is generally 0 mL to 100 mL, preferably 0.1 mL to 50 mL, per 1 mmol of compound [XV] or a salt thereof.
The temperature during the reduction is usually −10 ° C. to 150 ° C., preferably 25 ° C. to 110 ° C.
The reduction time is usually 0.1 to 96 hours, preferably 6 to 36 hours.
The reduction can be performed in the presence or absence of an acid. When reducing in the presence of an acid, hydrochloric acid, sulfuric acid, phosphoric acid or acetic acid can be used as the acid. The amount of the acid used is 0.1 mmol to 100 mmol, preferably 1 mmol to 10 mmol, relative to 1 mmol of compound [XV] or a salt thereof.
 化合物[XV]又はその塩の酸処理に使用する酸としては、塩酸、硫酸、臭化水素酸、メタンスルホン酸、トリフルオロメタンスルホン酸、酢酸、トリフルオロ酢酸等が挙げられ、好ましくは塩酸又は硫酸である。
 酸の使用量は、化合物[XV]又はその塩1mmolに対して、通常0.1mmol~100mmol、好ましくは1mmol~10mmolである。
 酸処理時の温度は、通常-10℃~110℃、好ましくは0℃~60℃である。
 酸処理時間は、通常0.1時間~48時間、好ましくは1時間~24時間である。
 酸処理時の圧力は、通常、常圧である。
Examples of the acid used for the acid treatment of the compound [XV] or a salt thereof include hydrochloric acid, sulfuric acid, hydrobromic acid, methanesulfonic acid, trifluoromethanesulfonic acid, acetic acid, trifluoroacetic acid, etc., preferably hydrochloric acid or sulfuric acid It is.
The amount of the acid to be used is generally 0.1 mmol-100 mmol, preferably 1 mmol-10 mmol, per 1 mmol of compound [XV] or a salt thereof.
The temperature during the acid treatment is usually −10 ° C. to 110 ° C., preferably 0 ° C. to 60 ° C.
The acid treatment time is usually 0.1 hour to 48 hours, preferably 1 hour to 24 hours.
The pressure during the acid treatment is usually normal pressure.
工程14:化合物[XII](ラコサミド)又はその塩の製造(その3) Step 14: Production of Compound [XII] (Lacosamide) or a Salt thereof (Part 3)
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
 化合物[XVI]又はその塩をアセチル化剤と反応させることにより、化合物[XII](ラコサミド)又はその塩を製造することができる。例えば、WO2006/037574号、米国特許第6048899号に記載された方法により製造することができる。
 アセチル化剤としては、無水酢酸、塩化アセチル、N-アセチルイミダゾール、酢酸等を用いることができる。
 アセチル化剤として、無水酢酸、塩化アセチル又はN-アセチルイミダゾールを用いる場合は、塩基の存在下に行うことができる。塩基としては、トリエチルアミン、ピリジン、p-(N,N-ジメチルアミノ)ピリジンが挙げられる。
 アセチル化剤として、酢酸を用いる場合は、DCC、EDC塩酸塩、クロロ炭酸イソブチル等の有機化合物の存在下に行うことができる。
 この反応は、溶媒を用いて行うことができる。溶媒は、反応が進行する限り特に限定されないが、水、メタノール、エタノール、イソプロパノール、THF、ジオキサン、トルエン、キシレン、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル、塩化メチレン等を用いることができる。溶媒は混合して用いてもよい。好ましくは、水、THF、塩化メチレン、水とTHFの混合物、水と塩化メチレンの混合物である。
 溶媒の使用量は、化合物[XVI]又はその塩1mmolに対して、通常0mL~100mL、好ましくは0.1mL~50mLである。
 反応温度は、-75℃~120℃、好ましくは-25℃~50℃である。
 反応時間は、0.1時間~96時間、好ましくは0.2時間~24時間である。
 反応時の圧力は、通常、常圧である。
Compound [XII] (lacosamide) or a salt thereof can be produced by reacting compound [XVI] or a salt thereof with an acetylating agent. For example, it can be produced by the method described in WO2006 / 037574 and US Pat. No. 6048899.
As the acetylating agent, acetic anhydride, acetyl chloride, N-acetylimidazole, acetic acid and the like can be used.
When acetic anhydride, acetyl chloride or N-acetylimidazole is used as the acetylating agent, it can be carried out in the presence of a base. Examples of the base include triethylamine, pyridine, and p- (N, N-dimethylamino) pyridine.
When acetic acid is used as the acetylating agent, it can be carried out in the presence of an organic compound such as DCC, EDC hydrochloride, or isobutyl chlorocarbonate.
This reaction can be performed using a solvent. The solvent is not particularly limited as long as the reaction proceeds, but water, methanol, ethanol, isopropanol, THF, dioxane, toluene, xylene, methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, methylene chloride, and the like can be used. You may mix and use a solvent. Preferred are water, THF, methylene chloride, a mixture of water and THF, and a mixture of water and methylene chloride.
The amount of the solvent to be used is generally 0 mL to 100 mL, preferably 0.1 mL to 50 mL, per 1 mmol of compound [XVI] or a salt thereof.
The reaction temperature is -75 ° C to 120 ° C, preferably -25 ° C to 50 ° C.
The reaction time is 0.1 to 96 hours, preferably 0.2 to 24 hours.
The pressure during the reaction is usually atmospheric pressure.
 化合物[XII]又はその塩の純度を向上させるために、反応終了後、得られた化合物[XII](ラコサミド)又はその塩を再結晶することができる。
 再結晶の溶媒としては、DMF、DMA、NMP、アセトニトリル、メタノール、エタノール、イソプロパノール、THF、ジオキサン、トルエン、キシレン、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル等が挙げられ、好ましくは酢酸エチル又は酢酸ブチルである。
 再結晶の溶媒使用量は、化合物[XII]又はその塩1mmolに対して、0.1mL~100mL、好ましくは3mL~12mLである。
 再結晶の温度は、通常-10℃~120℃、好ましくは-5℃~50℃である。
 再結晶の時間は、通常0.1時間~96時間、好ましくは1時間~36時間である。
In order to improve the purity of the compound [XII] or a salt thereof, the obtained compound [XII] (lacosamide) or a salt thereof can be recrystallized after completion of the reaction.
Examples of the solvent for recrystallization include DMF, DMA, NMP, acetonitrile, methanol, ethanol, isopropanol, THF, dioxane, toluene, xylene, methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, and the like, preferably ethyl acetate or Butyl acetate.
The amount of solvent used for recrystallization is 0.1 mL to 100 mL, preferably 3 mL to 12 mL, relative to 1 mmol of compound [XII] or a salt thereof.
The recrystallization temperature is usually −10 ° C. to 120 ° C., preferably −5 ° C. to 50 ° C.
The recrystallization time is usually 0.1 hour to 96 hours, preferably 1 hour to 36 hours.
 上述の各製造方法で得られた化合物は反応混合物のまま、又は粗生成物として得た後に次の製造方法に用いることもできるが、常法に従って反応混合物から単離することもでき、再結晶、蒸留、クロマトグラフィー等の分離手段により容易に精製することができる。 The compound obtained by each of the above production methods can be used in the next production method as it is as a reaction mixture or as a crude product, but can also be isolated from the reaction mixture according to a conventional method and recrystallized. It can be easily purified by separation means such as distillation, chromatography and the like.
 本発明の化合物[I]、[II]、[III]、[V]、[VII]、[VIII]、[IX]、[X]、[XI]、[XII]、[XIII]、[XIV]、[XV]及び[XVI]の塩としては、例えば、金属塩、アンモニウム塩、有機塩基との塩、無機酸との塩、有機酸との塩、塩基性又は酸性アミノ酸との塩等が挙げられる。金属塩の好適な例としては、例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩;カルシウム塩、マグネシウム塩、バリウム塩等のアルカリ土類金属塩;アルミニウム塩等が挙げられる。有機塩基との塩の好適な例としては、例えば、トリメチルアミン、トリエチルアミン、ピリジン、ピコリン、2,6-ルチジン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、シクロヘキシルアミン、ジシクロヘキシルアミン、N,N’-ジベンジルエチレンジアミン等との塩が挙げられる。無機酸との塩の好適な例としては、例えば、塩酸、臭化水素酸、硝酸、硫酸、リン酸等との塩が挙げられる。有機酸との塩の好適な例としては、例えば、ギ酸、酢酸、トリフルオロ酢酸、フタル酸、フマル酸、シュウ酸、酒石酸、マレイン酸、クエン酸、コハク酸、リンゴ酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、カンファースルホン酸、マンデル酸等との塩が挙げられる。塩基性アミノ酸との塩の好適な例としては、例えば、アルギニン、リジン、オルニチン等との塩が挙げられ、酸性アミノ酸との塩の好適な例としては、例えば、アスパラギン酸、グルタミン酸等との塩が挙げられる。 Compounds [I], [II], [III], [V], [VII], [VIII], [IX], [X], [XI], [XII], [XIII], [XIV] of the present invention ], [XV] and [XVI] include, for example, metal salts, ammonium salts, salts with organic bases, salts with inorganic acids, salts with organic acids, salts with basic or acidic amino acids, etc. Can be mentioned. Preferable examples of the metal salt include alkali metal salts such as sodium salt and potassium salt; alkaline earth metal salts such as calcium salt, magnesium salt and barium salt; aluminum salt and the like. Preferable examples of the salt with organic base include, for example, trimethylamine, triethylamine, pyridine, picoline, 2,6-lutidine, ethanolamine, diethanolamine, triethanolamine, cyclohexylamine, dicyclohexylamine, N, N′-dibenzyl. Examples include salts with ethylenediamine and the like. Preferable examples of the salt with inorganic acid include salts with hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, phosphoric acid and the like. Preferable examples of the salt with organic acid include, for example, formic acid, acetic acid, trifluoroacetic acid, phthalic acid, fumaric acid, oxalic acid, tartaric acid, maleic acid, citric acid, succinic acid, malic acid, methanesulfonic acid, benzene And salts with sulfonic acid, p-toluenesulfonic acid, camphorsulfonic acid, mandelic acid and the like. Preferable examples of salts with basic amino acids include salts with arginine, lysine, ornithine and the like, and preferable examples of salts with acidic amino acids include salts with aspartic acid, glutamic acid and the like. Is mentioned.
 本発明の化合物[I]、[II]、[III]、[V]、[VII]、[VIII]、[IX]、[X]、[XI]、[XII]、[XIII]、[XIV]、[XV]もしくは[XVI]又はそれらの塩は、溶媒和物を含む。溶媒和物としては、例えば、水和物、アルコール和物(例、メタノール和物、エタノール和物)が挙げられる。 Compounds [I], [II], [III], [V], [VII], [VIII], [IX], [X], [XI], [XII], [XIII], [XIV] of the present invention ], [XV] or [XVI] or salts thereof include solvates. Examples of solvates include hydrates and alcohol solvates (eg, methanol solvates and ethanol solvates).
 本発明において、ラコサミドのより好ましい製造方法としては、以下の合成ルート(a)、(b)又は(c)が挙げられる。 In the present invention, a more preferable production method of lacosamide includes the following synthesis route (a), (b) or (c).
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
 本発明の製造方法で得られたラコサミドは、例えば、錠剤、カプセル剤、丸剤、顆粒剤、カプセル剤、トローチ剤、シロップ剤、液剤、注射剤等の通常の剤形(以下、「本発明の医薬製剤」ともいう)に調製し、経口的又は非経口的に投与することができる。この場合、本発明の医薬製剤は、薬理学的に許容される担体を用い、通常の方法によって調製することができる。 Lacosamide obtained by the production method of the present invention can be obtained by using usual dosage forms such as tablets, capsules, pills, granules, capsules, troches, syrups, solutions and injections (hereinafter referred to as “the present invention”). Can also be administered orally or parenterally. In this case, the pharmaceutical preparation of the present invention can be prepared by a usual method using a pharmacologically acceptable carrier.
 上記「薬理学的に許容される担体」としては、製剤素材として慣用の各種有機又は無機担体物質が挙げられ、例えば固形製剤における賦形剤、滑沢剤、結合剤及び崩壊剤、又は液状製剤における溶剤、溶解補助剤、懸濁化剤、等張化剤、緩衝剤及び無痛化剤等が挙げられる。さらに必要に応じ、通常の防腐剤、抗酸化剤、着色剤、甘味剤、吸着剤、湿潤剤等の添加物を適宜、適量用いることもできる。 Examples of the above-mentioned “pharmacologically acceptable carrier” include various organic or inorganic carrier substances that are commonly used as pharmaceutical materials. For example, excipients, lubricants, binders and disintegrants in solid preparations, or liquid preparations Solvents, solubilizers, suspending agents, isotonic agents, buffering agents, soothing agents and the like. Further, if necessary, additives such as conventional preservatives, antioxidants, colorants, sweeteners, adsorbents, wetting agents and the like can be used in appropriate amounts.
 賦形剤としては、例えば乳糖、白糖、D-マンニトール、D-ソルビトール、デンプン、α-デンプン、コーンスターチ、デキストリン、結晶セルロース、低置換度ヒドロキシプロピルセルロース、カルボキシメチルセルロースナトリウム、アラビアゴム、プルラン、軽質無水ケイ酸、合成ケイ酸アルミニウム、メタケイ酸アルミン酸マグネシウム等が挙げられる。
 滑沢剤としては、例えばステアリン酸マグネシウム、ステアリン酸カルシウム、タルク、コロイドシリカ等が挙げられる。
 結合剤としては、例えばα-デンプン、結晶セルロース、白糖、アラビアゴム、D-マンニトール、トレハロース、デキストリン、プルラン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルピロリドン、デンプン、ショ糖、ゼラチン、メチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム等が挙げられる。
 崩壊剤としては、例えば乳糖、ショ糖、デンプン、カルボキシメチルセルロース、カルボキシメチルセルロースカルシウム、クロスカルメロースナトリウム、カルボキシメチルスターチナトリウム、軽質無水ケイ酸、低置換度ヒドロキシプロピルセルロース等が挙げられる。
 溶剤としては、例えば注射用水、生理食塩水、リンガー液、アルコール、プロピレングリコール、ポリエチレングリコール、マクロゴール、ゴマ油、トウモロコシ油、オリーブ油、綿実油等が挙げられる。
 溶解補助剤としては、例えばポリエチレングリコール、プロピレングリコール、D-マンニトール、トレハロース、安息香酸ベンジル、エタノール、トリスアミノメタン、コレステロール、トリエタノールアミン、炭酸ナトリウム、クエン酸ナトリウム、サリチル酸ナトリウム、酢酸ナトリウム等が挙げられる。
 懸濁化剤としては、例えばステアリルトリエタノールアミン、ラウリル硫酸ナトリウム、ラウリルアミノプロピオン酸、レシチン、塩化ベンザルコニウム、塩化ベンゼトニウム、モノステアリン酸グリセリン等の界面活性剤;例えばポリビニルアルコール、ポリビニルピロリドン、カルボキシメチルセルロースナトリウム、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ポリソルベート、ポリオキシエチレン硬化ヒマシ油等の親水性高分子等が挙げられる。
 等張化剤としては、例えばブドウ糖、D-ソルビトール、塩化ナトリウム、グリセリン、D-マンニトール等が挙げられる。
 緩衝剤としては、例えばリン酸塩、酢酸塩、炭酸塩、クエン酸塩等の緩衝液等が挙げられる。
 無痛化剤としては、例えばベンジルアルコール等が挙げられる。
 防腐剤としては、例えばパラオキシ安息香酸エステル類、クロロブタノール、ベンジルアルコール、フェネチルアルコール、デヒドロ酢酸、ソルビン酸等が挙げられる。
 抗酸化剤としては、例えば亜硫酸塩、アスコルビン酸、α-トコフェロール等が挙げられる。
 着色剤としては、例えば水溶性の食用タール色素(例、食用赤色2号及び3号、食用黄色4号及び5号、食用青色1号及び2号)、水不溶性のレーキ色素(例、上記水溶性の食用タール色素のアルミニウム塩)、天然色素(例、β-カロテン、クロロフィル、ベンガラ)等が挙げられる。
 甘味剤としては、例えばサッカリンナトリウム、グリチルリチン酸ジカリウム、アスパルテーム、ステビア等が挙げられる。
Examples of excipients include lactose, sucrose, D-mannitol, D-sorbitol, starch, α-starch, corn starch, dextrin, crystalline cellulose, low-substituted hydroxypropylcellulose, sodium carboxymethylcellulose, gum arabic, pullulan, light anhydrous Examples thereof include silicic acid, synthetic aluminum silicate, magnesium aluminate metasilicate, and the like.
Examples of the lubricant include magnesium stearate, calcium stearate, talc, colloidal silica and the like.
Examples of the binder include α-starch, crystalline cellulose, sucrose, gum arabic, D-mannitol, trehalose, dextrin, pullulan, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyvinylpyrrolidone, starch, sucrose, gelatin, methylcellulose, carboxymethylcellulose. And sodium carboxymethyl cellulose.
Examples of the disintegrant include lactose, sucrose, starch, carboxymethyl cellulose, carboxymethyl cellulose calcium, croscarmellose sodium, carboxymethyl starch sodium, light anhydrous silicic acid, low-substituted hydroxypropyl cellulose, and the like.
Examples of the solvent include water for injection, physiological saline, Ringer's solution, alcohol, propylene glycol, polyethylene glycol, macrogol, sesame oil, corn oil, olive oil, cottonseed oil and the like.
Examples of the solubilizer include polyethylene glycol, propylene glycol, D-mannitol, trehalose, benzyl benzoate, ethanol, trisaminomethane, cholesterol, triethanolamine, sodium carbonate, sodium citrate, sodium salicylate, sodium acetate and the like. It is done.
Examples of the suspending agent include surfactants such as stearyltriethanolamine, sodium lauryl sulfate, laurylaminopropionic acid, lecithin, benzalkonium chloride, benzethonium chloride, and glyceryl monostearate; for example, polyvinyl alcohol, polyvinylpyrrolidone, carboxy Examples include hydrophilic polymers such as sodium methylcellulose, methylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, polysorbate, and polyoxyethylene hydrogenated castor oil.
Examples of the isotonic agent include glucose, D-sorbitol, sodium chloride, glycerin, D-mannitol and the like.
Examples of the buffer include buffer solutions of phosphate, acetate, carbonate, citrate and the like.
Examples of soothing agents include benzyl alcohol.
Examples of the preservative include p-hydroxybenzoates, chlorobutanol, benzyl alcohol, phenethyl alcohol, dehydroacetic acid, sorbic acid and the like.
Examples of the antioxidant include sulfite, ascorbic acid, α-tocopherol and the like.
Examples of the colorant include water-soluble edible tar dyes (eg, edible red Nos. 2 and 3, edible yellow Nos. 4 and 5, edible blue Nos. 1 and 2), water-insoluble lake dyes (eg, the above-mentioned water-soluble Edible tar pigment aluminum salts), natural pigments (eg, β-carotene, chlorophyll, bengara) and the like.
Examples of the sweetening agent include saccharin sodium, dipotassium glycyrrhizinate, aspartame, stevia and the like.
 本発明の医薬製剤中のラコサミドの含有量は、剤形、ラコサミドの投与量等により異なるが、例えば、医薬製剤全体の約1重量%~100重量%、好ましくは約8重量%~40重量%である。 The content of lacosamide in the pharmaceutical preparation of the present invention varies depending on the dosage form, the dose of lacosamide, etc., and is, for example, about 1% to 100% by weight, preferably about 8% to 40% by weight of the whole pharmaceutical preparation. It is.
 ラコサミドの投与量は、投与対象、投与経路、対象疾患、症状等により異なるが、例えばてんかんの患者に経口投与する場合、通常約0.1mg/kg体重~約10mg/kg体重、好ましくは約0.5mg/kg体重~約10mg/kg体重、さらに好ましくは約1mg/kg体重~約4mg/kg体重であり、これらの服用量を症状に応じて1日約1回~数回(例、1回~3回)投与するのが望ましい。 The dose of lacosamide varies depending on the administration subject, administration route, target disease, symptom, etc., but is usually about 0.1 mg / kg body weight to about 10 mg / kg body weight, preferably about 0 when administered orally to patients with epilepsy. .5 mg / kg body weight to about 10 mg / kg body weight, more preferably about 1 mg / kg body weight to about 4 mg / kg body weight, and the dosage thereof is about once to several times a day (eg, 1 Preferably 3 to 3 times).
 以下に実施例を挙げて、本発明を更に具体的に説明するが、これによって本発明が限定されるものではない。
 以下の実施例において、濃度及び含有量における「%」は、特段の記載がない限り「重量%」を示す。混合溶媒において示した比は、特段の記載がない限り「容量比」を示す。
The present invention will be described more specifically with reference to examples below, but the present invention is not limited thereto.
In the following examples, “%” in concentration and content represents “% by weight” unless otherwise specified. The ratio shown in the mixed solvent indicates “volume ratio” unless otherwise specified.
実施例1(PMANの製造) Example 1 (Manufacture of PMAN)
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
 濃塩酸(106.32g、2.914mol)及び水(3.167L)の混合液を15℃~20℃に冷却し、市販のMAA(250.0g、2.081mol)を15分間かけて添加した後、25℃で5時間撹拌した。反応液を10℃~15℃に冷却し、49%水酸化ナトリウム水溶液を加えてpHを7.5に調整した。この反応液に、同温でR-PEA(265g、2.185mol)を15分間かけて添加した後、25℃まで昇温して30分間撹拌した。この反応液にシアン化ナトリウム(102g、2.081mol)及び水(250mL)を加えて、25℃で60時間撹拌した。反応液を塩化メチレンで抽出した(500mL×1回、250mL×4回)。有機層を合わせて水洗した(250mL×2)。有機層を40℃で減圧濃縮して、目的物を褐色液体として得た(396g、収率93.2%、HPLC純度88.54%、ジアステレオマー比(PMAN:ジアステレオマー)=37.6:57.6)。
1H NMR (CDCl3): δ 7.38-7.24 (m, 5H), 3.96-3.86 (m, 1H), 3.5-3.45 (m, 2H), 3.39-3.28 (m, 4H), 3.07-2.86 (m, 1H), 1.35-1.18 (m, 3H)
Mass [M+H]+: 205 amu;
HRMS: [M+Na] Calculated 227.1160, observed 227.117
A mixture of concentrated hydrochloric acid (106.32 g, 2.914 mol) and water (3.167 L) was cooled to 15 ° C. to 20 ° C., and commercially available MAA (250.0 g, 2.081 mol) was added over 15 minutes, then at 25 ° C. Stir for 5 hours. The reaction solution was cooled to 10 ° C. to 15 ° C., and a 49% aqueous sodium hydroxide solution was added to adjust the pH to 7.5. To this reaction solution, R-PEA (265 g, 2.185 mol) was added at the same temperature over 15 minutes, and then the temperature was raised to 25 ° C. and stirred for 30 minutes. Sodium cyanide (102 g, 2.081 mol) and water (250 mL) were added to the reaction solution, and the mixture was stirred at 25 ° C. for 60 hours. The reaction solution was extracted with methylene chloride (500 mL × 1 time, 250 mL × 4 times). The organic layers were combined and washed with water (250 mL × 2). The organic layer was concentrated under reduced pressure at 40 ° C. to obtain the desired product as a brown liquid (396 g, yield 93.2%, HPLC purity 88.54%, diastereomer ratio (PMAN: diastereomer) = 37.6: 57.6).
1 H NMR (CDCl 3 ): δ 7.38-7.24 (m, 5H), 3.96-3.86 (m, 1H), 3.5-3.45 (m, 2H), 3.39-3.28 (m, 4H), 3.07-2.86 (m , 1H), 1.35-1.18 (m, 3H)
Mass [M + H] + : 205 amu;
HRMS: [M + Na] Calculated 227.1160, observed 227.117
 HPLC純度及びジアステレオマー比は、以下の条件でのHPLCにより測定した。
 カラム:Unisole C18 (150mm×4.6mm, 3μm)
 緩衝液:アセトニトリル/水=90/10
 移動相A:0.7708 g NH4OAc in 1000mL H2O
 移動相B:90% aq. CH3CN
 グラジエントプログラム:0分(A液/B液=97/3)、25分(A液/B液=5/95)、37分~10分(A液/B液=97/3)
 流量:0.8mL/分
 注入量:5μL
 検出波長:215nm
 カラム温度:40℃
HPLC purity and diastereomer ratio were measured by HPLC under the following conditions.
Column: Unisole C18 (150mm × 4.6mm, 3μm)
Buffer solution: acetonitrile / water = 90/10
Mobile phase A: 0.7708 g NH 4 OAc in 1000 mL H 2 O
Mobile phase B: 90% aq. CH 3 CN
Gradient program: 0 minutes (A liquid / B liquid = 97/3), 25 minutes (A liquid / B liquid = 5/95), 37 minutes to 10 minutes (A liquid / B liquid = 97/3)
Flow rate: 0.8mL / min Injection volume: 5μL
Detection wavelength: 215nm
Column temperature: 40 ° C
実施例2(PMANの製造) Example 2 (Production of PMAN)
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000105
CAA→MAA
 30%ナトリウムメトキシド メタノール溶液(237.4mL、1204.2mmol)にCAA(50.0g、401.4mmol)を70℃~75℃で滴下し15分間撹拌した。反応液を110℃~115℃まで昇温して、CAAの濃度が0.5%以下になるまで撹拌した。反応液を室温まで冷却し、減圧蒸留(温度:30℃~85℃、圧力:200Torr~205Torr)及び常圧蒸留(温度:25℃~110℃)してメタノールを除去し、MAAを無色液体として得た(30.0g、収率55.18%)。
CAA → MAA
CAA (50.0 g, 401.4 mmol) was added dropwise to a 30% sodium methoxide methanol solution (237.4 mL, 1204.2 mmol) at 70 ° C. to 75 ° C. and stirred for 15 minutes. The reaction solution was heated to 110 ° C. to 115 ° C. and stirred until the concentration of CAA was 0.5% or less. The reaction solution is cooled to room temperature, methanol is removed by distillation under reduced pressure (temperature: 30 ° C to 85 ° C, pressure: 200 Torr to 205 Torr) and atmospheric distillation (temperature: 25 ° C to 110 ° C), and MAA as a colorless liquid Obtained (30.0 g, yield 55.18%).
MAA→PMAN
 濃塩酸(14.2mL)及び水(126mL)の混合液を15℃~20℃に冷却し、上記工程で得られたMAA(10.0g、83.23mmol)を10分間かけて滴下した。反応液を25℃で5時間撹拌した。反応液を10℃~15℃に冷却し、20%水酸化ナトリウム水溶液を加えてpHを7.5に調整し、同温で15分間撹拌した。この反応液にR-PEA(10.6g、87.23mmol)を10分かけて滴下した。ここへシアン化ナトリウム(4.10g、83.23mmol)を加えて10℃~15℃で15分間撹拌した後、20℃以下に維持しながら濃塩酸(10.12mL)を滴下した。反応液を25℃で48時間撹拌した。反応終了後、反応液を塩化メチレンで抽出した(25mL×4回)。有機層を合わせて水洗し(20mL×2回)、硫酸ナトリウム上で乾燥した後、減圧濃縮してPMANを褐色液体として得た(11.8g、収率69.41%、ジアステレオマー比(PMAN:ジアステレオマー)=34.9:64.2)。
1H NMR (CDCl3):δ7.38-7.24 (m, 5H), 3.96-3.86 (m, 1H), 3.5-3.45 (m, 2H), 3.39-3.28 (m, 4H), 3.07-2.86 (m, 1H), 1.35-1.18(m, 3H)
Mass [M+H]+: 205 amu
HRMS: [M+Na] Calculated 227.1160, observed 227.117
MAA → PMAN
A mixed solution of concentrated hydrochloric acid (14.2 mL) and water (126 mL) was cooled to 15 ° C. to 20 ° C., and MAA (10.0 g, 83.23 mmol) obtained in the above step was added dropwise over 10 minutes. The reaction was stirred at 25 ° C. for 5 hours. The reaction solution was cooled to 10 ° C. to 15 ° C., 20% aqueous sodium hydroxide solution was added to adjust the pH to 7.5, and the mixture was stirred at the same temperature for 15 minutes. To this reaction solution, R-PEA (10.6 g, 87.23 mmol) was added dropwise over 10 minutes. To this was added sodium cyanide (4.10 g, 83.23 mmol), and the mixture was stirred at 10 ° C. to 15 ° C. for 15 minutes, and concentrated hydrochloric acid (10.12 mL) was added dropwise while maintaining the temperature at 20 ° C. or lower. The reaction was stirred at 25 ° C. for 48 hours. After completion of the reaction, the reaction solution was extracted with methylene chloride (25 mL × 4 times). The organic layers were combined, washed with water (2 × 20 mL), dried over sodium sulfate, and concentrated under reduced pressure to give PMAN as a brown liquid (11.8 g, 69.41% yield, diastereomer ratio (PMAN: dia). Stereomer) = 34.9: 64.2).
1 H NMR (CDCl 3 ): δ 7.38-7.24 (m, 5H), 3.96-3.86 (m, 1H), 3.5-3.45 (m, 2H), 3.39-3.28 (m, 4H), 3.07-2.86 ( m, 1H), 1.35-1.18 (m, 3H)
Mass [M + H] + : 205 amu
HRMS: [M + Na] Calculated 227.1160, observed 227.117
 ジアステレオマー比は、以下の条件でのHPLCにより測定した。
 カラム:Unisole C18 (150mm×4.6mm, 3μm)
 緩衝液:アセトニトリル/水=90/10
 移動相A:10mmol/L 酢酸アンモニウム
 移動相B:アセトニトリル/水=90/10
 グラジエントプログラム:0分(A液/B液=3/0)、5分(A液/B液=3/5)、10分(A液/B液=95/25)、15分(A液/B液=95/35)、20分(A液/B液=3/37)、25分(A液/B液=3/42)
 流量:0.8mL/分
 注入量:5μL
 検出波長:215nm
 カラム温度:40℃
The diastereomer ratio was measured by HPLC under the following conditions.
Column: Unisole C18 (150mm × 4.6mm, 3μm)
Buffer solution: acetonitrile / water = 90/10
Mobile phase A: 10 mmol / L ammonium acetate Mobile phase B: acetonitrile / water = 90/10
Gradient program: 0 minutes (A liquid / B liquid = 3/0), 5 minutes (A liquid / B liquid = 3/5), 10 minutes (A liquid / B liquid = 95/25), 15 minutes (A liquid) / B liquid = 95/35), 20 minutes (A liquid / B liquid = 3/37), 25 minutes (A liquid / B liquid = 3/42)
Flow rate: 0.8mL / min Injection volume: 5μL
Detection wavelength: 215nm
Column temperature: 40 ° C
実施例3(PMAD塩酸塩の製造) Example 3 (Production of PMAD hydrochloride)
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
PMAN→PMAD
 PMAN(394g、1.938mol)、炭酸カリウム(37.51g、0.2714mol)及びDMSO(594mL)の混合物に、25%過酸化水素水溶液(538mL、3.876mol)を20℃~25℃で3時間かけて添加し、同温で2時間撹拌した。TLC(thin-layer chromatography、展開溶媒:ヘキサン/酢酸エチル=8/2)で反応終了を確認した後、20℃~25℃で水(594mL)を60分間かけて滴下し、25℃で2時間撹拌した。反応液に塩化メチレン(594mL)を加えて、水層を塩化メチレンで抽出した(394mL×2回)。有機層を合わせて水洗後(394mL×3回)、減圧濃縮してPMADを白色固体として得た(455.0g、収率105.5%、HPLC純度77.78%、ジアステレオマー比(PMAD:ジアステレオマー)=57.99:39.06)。
1H NMR (CDCl3) (mixture of diastereomers):δ 7.41-7.21 (m, 7.3H), 5.76(s, 0.7H, exchangable), 3.80-3.70 (m ,1H), 3.56-3.50(m, 1H) , 3.40-3.35 (m, 1.3H), 3.22-3.10 (m, 3.7H), 1.45-1.35 (m, 3H)
Mass [M+H]+: 223
PMAN → PMAD
To a mixture of PMAN (394 g, 1.938 mol), potassium carbonate (37.51 g, 0.2714 mol) and DMSO (594 mL), 25% aqueous hydrogen peroxide (538 mL, 3.876 mol) was added over 3 hours at 20-25 ° C. And stirred at the same temperature for 2 hours. After confirming the completion of the reaction with TLC (thin-layer chromatography, eluent: hexane / ethyl acetate = 8/2), water (594 mL) was added dropwise over 20 minutes at 20 ° C to 25 ° C, and 2 hours at 25 ° C. Stir. Methylene chloride (594 mL) was added to the reaction solution, and the aqueous layer was extracted with methylene chloride (394 mL × 2 times). The organic layers were combined, washed with water (394 mL x 3 times), and concentrated under reduced pressure to obtain PMAD as a white solid (455.0 g, yield 105.5%, HPLC purity 77.78%, diastereomer ratio (PMAD: diastereomer) = 57.99: 39.06).
1 H NMR (CDCl 3 ) (mixture of diastereomers): δ 7.41-7.21 (m, 7.3H), 5.76 (s, 0.7H, exchangable), 3.80-3.70 (m, 1H), 3.56-3.50 (m, 1H ), 3.40-3.35 (m, 1.3H), 3.22-3.10 (m, 3.7H), 1.45-1.35 (m, 3H)
Mass [M + H] + : 223
PMAD→PMAD塩酸塩
 上記工程で得られたPMADにイソプロパノール(4.55L)を加えて15℃~20℃に冷却し、これに濃塩酸(364mL)を60分間かけて滴下した後、25℃で30分間撹拌した。TLC(展開溶媒:酢酸エチル)で反応終了を確認した後、反応液を30分間かけて70℃~75℃まで昇温した後、45分間かけて25℃まで冷却した。反応混合物を1時間かけて0℃~5℃まで冷却した後、濾過し、イソプロパノール(455mL)で洗浄してPMAD塩酸塩を白色固体として得た(246.5g、収率46.5%、HPLC純度97.83%、ジアステレオマー比(PMAD塩酸塩:ジアステレオマー)=97.41:2.16)。
融点: 227℃ 
1H NMR (DMSO):δ 9.46 (bs, 1H), 9.20 (bs, 1H), 7.8 (s, 1H), 7.71 (s, 1H), 7.47-7.42 (m, 5H), 4.3 (bs, 1H), 3.61-3.43 (m, 2H), 3.38 (s, 1H), 3.24 (s, 3H), 1.61 (d, J=8Hz, 3H)
13C NMR (DMSO):δ 166.9, 136.5, 129.0, 128.9, 128.1, 70.0, 58.4, 57.3, 57.0, 20.1
Mass [M+H]+: 223
PMAD → PMAD hydrochloride Isopropanol (4.55 L) was added to PMAD obtained in the above step and cooled to 15 ° C. to 20 ° C. Concentrated hydrochloric acid (364 mL) was added dropwise over 60 minutes, and then 30 ° C. at 25 ° C. Stir for minutes. After confirming the completion of the reaction with TLC (developing solvent: ethyl acetate), the reaction solution was heated to 70 ° C. to 75 ° C. over 30 minutes and then cooled to 25 ° C. over 45 minutes. The reaction mixture was cooled to 0 ° C.-5 ° C. over 1 hour, then filtered and washed with isopropanol (455 mL) to give PMAD hydrochloride as a white solid (246.5 g, 46.5% yield, HPLC purity 97.83%). , Diastereomeric ratio (PMAD hydrochloride: diastereomer) = 97.41: 2.16).
Melting point: 227 ℃
1 H NMR (DMSO): δ 9.46 (bs, 1H), 9.20 (bs, 1H), 7.8 (s, 1H), 7.71 (s, 1H), 7.47-7.42 (m, 5H), 4.3 (bs, 1H ), 3.61-3.43 (m, 2H), 3.38 (s, 1H), 3.24 (s, 3H), 1.61 (d, J = 8Hz, 3H)
13 C NMR (DMSO): δ 166.9, 136.5, 129.0, 128.9, 128.1, 70.0, 58.4, 57.3, 57.0, 20.1
Mass [M + H] + : 223
実施例4(PMAD塩酸塩の製造) Example 4 (Production of PMAD hydrochloride)
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000107
 市販のAME(50g、0.58mol)のメタノール(150mL)溶液に、臭素(88.0g、0.55mol)を2時間かけて滴下した。反応液を13時間撹拌した後、R-PEA(66.8g、0.55mol)を5℃で1時間かけて滴下した。さらに、トリエチルアミン(111g、1.1mol)のメタノール(110mL)溶液を5℃で1時間かけて滴下した後、25℃で2時間撹拌した。反応液に水(150mL)を加えて減圧濃縮しメタノールを留去した。得られた混合物をトルエン(550mL)で抽出し、有機層を水洗(100mL)した後、減圧濃縮してアジリジン誘導体を得た。
 得られたアジリジン誘導体をメタノール(100mL)に溶解させ、メタンスルホン酸(53.1g、0.55mol)のメタノール溶液(900mL)を2℃で0.5時間かけて滴下した。反応液を0.5時間かけて40℃まで昇温し、同温で6時間撹拌した。反応液を減圧濃縮してメタノールを留去した。得られた混合物にトルエン(500mL)を加えて、5℃で2mol/L水酸化ナトリウム溶液を加えて中和した。水層をトルエン(300mL)で抽出し、トルエン層を水洗した後、減圧濃縮した。残渣に28%アンモニア水(1000g)を加えて25℃で21時間撹拌した。得られた混合物を減圧濃縮した。残渣にトルエンを加えて減圧濃縮し、アンモニアを除去した。残渣に濃塩酸(97.8g)とイソプロパノール(1223mL)を加えて、30分間かけて70℃~75℃まで昇温して溶解させた後、45分間かけて25℃まで冷却し、さらに1時間かけて0℃~5℃まで冷却した。析出晶を濾取しイソプロパノール(50mL)で洗浄して、PMAD塩酸塩を得た(56.9g、収率40%)。
融点:227℃ 
1H NMR (DMSO):δ 9.46 (bs, 1H), 9.20 (bs, 1H), 7.8 (s, 1H), 7.71 (s, 1H), 7.47-7.42 (m, 5H), 4.3 (bs, 1H), 3.61-3.43 (m, 2H), 3.38 (s, 1H), 3.24 (s, 3H), 1.61 (d, J=8Hz, 3H)
13C NMR (DMSO):δ 166.9, 136.5, 129.0, 128.9, 128.1, 70.0, 58.4, 57.3, 57.0, 20.1
Mass [M+H]+: 223. 
Bromine (88.0 g, 0.55 mol) was added dropwise over 2 hours to a commercially available solution of AME (50 g, 0.58 mol) in methanol (150 mL). After stirring the reaction solution for 13 hours, R-PEA (66.8 g, 0.55 mol) was added dropwise at 5 ° C. over 1 hour. Further, a solution of triethylamine (111 g, 1.1 mol) in methanol (110 mL) was added dropwise at 5 ° C. over 1 hour, followed by stirring at 25 ° C. for 2 hours. Water (150 mL) was added to the reaction mixture, and the mixture was concentrated under reduced pressure to distill off methanol. The obtained mixture was extracted with toluene (550 mL), and the organic layer was washed with water (100 mL) and then concentrated under reduced pressure to obtain an aziridine derivative.
The obtained aziridine derivative was dissolved in methanol (100 mL), and a methanol solution (900 mL) of methanesulfonic acid (53.1 g, 0.55 mol) was added dropwise at 2 ° C. over 0.5 hours. The reaction solution was heated to 40 ° C. over 0.5 hours and stirred at the same temperature for 6 hours. The reaction solution was concentrated under reduced pressure to distill off methanol. Toluene (500 mL) was added to the resulting mixture and neutralized by adding 2 mol / L sodium hydroxide solution at 5 ° C. The aqueous layer was extracted with toluene (300 mL), and the toluene layer was washed with water and concentrated under reduced pressure. 28% aqueous ammonia (1000 g) was added to the residue, and the mixture was stirred at 25 ° C. for 21 hours. The resulting mixture was concentrated under reduced pressure. Toluene was added to the residue and concentrated under reduced pressure to remove ammonia. Concentrated hydrochloric acid (97.8 g) and isopropanol (1223 mL) were added to the residue, and the mixture was heated up to 70 ° C to 75 ° C over 30 minutes to dissolve, then cooled to 25 ° C over 45 minutes, and further over 1 hour And cooled to 0 ° C to 5 ° C. The precipitated crystals were collected by filtration and washed with isopropanol (50 mL) to obtain PMAD hydrochloride (56.9 g, yield 40%).
Melting point: 227 ° C
1 H NMR (DMSO): δ 9.46 (bs, 1H), 9.20 (bs, 1H), 7.8 (s, 1H), 7.71 (s, 1H), 7.47-7.42 (m, 5H), 4.3 (bs, 1H ), 3.61-3.43 (m, 2H), 3.38 (s, 1H), 3.24 (s, 3H), 1.61 (d, J = 8Hz, 3H)
13 C NMR (DMSO): δ 166.9, 136.5, 129.0, 128.9, 128.1, 70.0, 58.4, 57.3, 57.0, 20.1
Mass [M + H] + : 223.
実施例5(MAD塩酸塩の製造) Example 5 (Production of MAD hydrochloride)
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000108
 実施例3で得られたPMAD塩酸塩(10.0g、38.64mmol)のメタノール(100.0mL)溶液に10%パラジウム炭素(0.0058g、0.00385mmol)を加えてオートクレーブに仕込み、水素加圧下(10Kg/cm2~11Kg/cm2)、75℃で30時間撹拌した。反応液を25℃まで冷却し、セライト濾過した。濾過残渣をメタノールで洗浄した(15.0mL×2回)。濾液及び洗液を合わせて減圧濃縮して白色固体のMAD塩酸塩を得た(5.6g、収率94.6%)。
融点: 200.9℃
IR (KBr): νmax=1695.6cm-1 (C=O of amide)
1H NMR (DMSO):δ 8.31 (s, 3H), 8.08 (d, J=12Hz, 1H), 7.56 (s ,1H), 3.93 (t, J=8Hz, 1H), 3.71 (dd, J=4Hz, 2H), 3.29 (s, 3H)
13C NMR (DMSO):δ 168.0, 70.3, 58.4, 52.1
Mass [M+H]+: 119
10% palladium on carbon (0.0058 g, 0.00385 mmol) was added to a methanol (100.0 mL) solution of PMAD hydrochloride (10.0 g, 38.64 mmol) obtained in Example 3 and charged in an autoclave, under hydrogen pressure (10 Kg / cm 2 to 11 kg / cm 2 ) and stirred at 75 ° C. for 30 hours. The reaction was cooled to 25 ° C. and filtered through celite. The filtration residue was washed with methanol (15.0 mL × 2 times). The filtrate and washings were combined and concentrated under reduced pressure to obtain MAD hydrochloride as a white solid (5.6 g, yield 94.6%).
Melting point: 200.9 ℃
IR (KBr): ν max = 1695.6cm -1 (C = O of amide)
1 H NMR (DMSO): δ 8.31 (s, 3H), 8.08 (d, J = 12Hz, 1H), 7.56 (s, 1H), 3.93 (t, J = 8Hz, 1H), 3.71 (dd, J = 4Hz, 2H), 3.29 (s, 3H)
13 C NMR (DMSO): δ 168.0, 70.3, 58.4, 52.1
Mass [M + H] + : 119
実施例6(MCAの製造) Example 6 (Production of MCA)
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000109
 実施例5で得られたMAD塩酸塩(4.0g、25.86mmol)と0.7mol/L塩酸(20mL)をシールドチューブに仕込み、100℃で24時間撹拌した。TLC(展開溶媒:5%メタノール/塩化メチレン)で反応終了を確認した後、反応液を減圧濃縮し、粘着性のある黄色固体としてMCA塩酸塩の粗体(塩化アンモニウムとの混合物)を得た(6.3g)。
1H NMR (CD3OD):δ 3.39 (s, 3H), 3.65-3.84 (m, 3H)
Mass [M - HCl + H]+: 120
MAD hydrochloride (4.0 g, 25.86 mmol) obtained in Example 5 and 0.7 mol / L hydrochloric acid (20 mL) were charged into a shield tube and stirred at 100 ° C. for 24 hours. After confirming the completion of the reaction with TLC (developing solvent: 5% methanol / methylene chloride), the reaction solution was concentrated under reduced pressure to obtain a crude MCA hydrochloride (mixture with ammonium chloride) as a sticky yellow solid. (6.3g).
1 H NMR (CD 3 OD): δ 3.39 (s, 3H), 3.65-3.84 (m, 3H)
Mass [M-HCl + H] + : 120
 上記工程で得られたMCA塩酸塩の粗体(0.5 g)をイオン交換樹脂(Dowex 50X4、strongly acidic)にチャージし、溶出液が中性(pH7)になるまで水を流し、次いで、目的物(MCA)が溶出し終わるまで0.5%アンモニア水を流した。目的物を含むフラクションを集め、濃縮してMCA(0.27 g)を得た。
IR (KBr): νmax=3434, 1635, 1509, 1100
1H NMR (DMSO-d6):δ7.61-7.48 (bs, 3H), 3.67 (dd, J=10.4, 3.6Hz, 1H), 3.61-3.57 (m, 1H), 3.45 (dd, J=7.2, 3.6Hz, 1H), 3.27 (s, 3H)
Mass [M + H]+= 120
Charge the crude product of MCA hydrochloride (0.5 g) obtained in the above step to an ion exchange resin (Dowex 50X4, strongly acidic), flush with water until the eluate is neutral (pH 7), then target product 0.5% aqueous ammonia was allowed to flow until (MCA) was completely eluted. Fractions containing the desired product were collected and concentrated to obtain MCA (0.27 g).
IR (KBr): ν max = 3434, 1635, 1509, 1100
1 H NMR (DMSO-d 6 ): δ7.61-7.48 (bs, 3H), 3.67 (dd, J = 10.4, 3.6Hz, 1H), 3.61-3.57 (m, 1H), 3.45 (dd, J = 7.2, 3.6Hz, 1H), 3.27 (s, 3H)
Mass [M + H] + = 120
実施例7(AMCAの製造) Example 7 (Manufacture of AMCA)
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000110
 実施例6と同様にして得たMCA(15.0g、125.8mmol)、THF(90.0mL)及び水(10.0mL)の混合物を15℃~20℃に冷却した後、無水酢酸(15.42mL、151.06mmol)を15分間かけて滴下した。反応温度を25℃に昇温して6時間撹拌した。反応液を15℃~20℃に冷却して無水酢酸(6.42g、62.94mmol)を10分間かけて滴下した後、25℃で16時間撹拌した。反応液を減圧濃縮し、残渣に酢酸エチル(75.0mL)を加えて10分間撹拌した後、生成物を濾取し、酢酸エチル(30.0mL)で洗浄してAMCAを得た(20.3g、収率100%、HPLC純度97.08%、光学純度=99.0%ee)。
1H NMR (DMSO-d6):δ 12.69 (s, 1H, exchangeable), 8.19 (d, J=8.0Hz, 1H, exchangeable), 4.44-4.40 (m, 1H), 3.65-3.61 (m, 1H), 3.51-3.48 (m, 1H), 3.25 (s, 3H), 1.86 (s, 3H)
Mass [M+H]+: 162
A mixture of MCA (15.0 g, 125.8 mmol), THF (90.0 mL) and water (10.0 mL) obtained in the same manner as in Example 6 was cooled to 15 ° C. to 20 ° C., and then acetic anhydride (15.42 mL, 151.06 mmol). ) Was added dropwise over 15 minutes. The reaction temperature was raised to 25 ° C. and stirred for 6 hours. The reaction solution was cooled to 15 ° C. to 20 ° C. and acetic anhydride (6.42 g, 62.94 mmol) was added dropwise over 10 minutes, followed by stirring at 25 ° C. for 16 hours. The reaction solution was concentrated under reduced pressure, and ethyl acetate (75.0 mL) was added to the residue and stirred for 10 minutes. The product was collected by filtration and washed with ethyl acetate (30.0 mL) to obtain AMCA (20.3 g, yield). Rate 100%, HPLC purity 97.08%, optical purity = 99.0% ee).
1 H NMR (DMSO-d 6 ): δ 12.69 (s, 1H, exchangeable), 8.19 (d, J = 8.0Hz, 1H, exchangeable), 4.44-4.40 (m, 1H), 3.65-3.61 (m, 1H ), 3.51-3.48 (m, 1H), 3.25 (s, 3H), 1.86 (s, 3H)
Mass [M + H] + : 162
 HPLC純度は、以下の条件でのHPLCにより測定した。
 カラム:Unisole C18 (150mm×4.6mm, 3μm)
 緩衝液:アセトニトリル/水=90/10
 移動相A:10mmol/L 酢酸アンモニウム
 移動相B:アセトニトリル/水=90/10
 グラジエントプログラム:0分(A液/B液=3/0)、5分(A液/B液=3/5)、10分(A液/B液=95/25)、15分(A液/B液=95/35)、20分(A液/B液=3/37)、25分(A液/B液=3/42)
 流量:0.8mL/分
 注入量:5μL
 検出波長:215nm
 カラム温度:40℃
HPLC purity was measured by HPLC under the following conditions.
Column: Unisole C18 (150mm × 4.6mm, 3μm)
Buffer solution: acetonitrile / water = 90/10
Mobile phase A: 10 mmol / L ammonium acetate Mobile phase B: acetonitrile / water = 90/10
Gradient program: 0 minutes (A liquid / B liquid = 3/0), 5 minutes (A liquid / B liquid = 3/5), 10 minutes (A liquid / B liquid = 95/25), 15 minutes (A liquid) / B liquid = 95/35), 20 minutes (A liquid / B liquid = 3/37), 25 minutes (A liquid / B liquid = 3/42)
Flow rate: 0.8mL / min Injection volume: 5μL
Detection wavelength: 215nm
Column temperature: 40 ° C
 光学純度は、以下の条件でのHPLCにより測定した。
 カラム:ChiralPak AD-H (250mm×4.6mm, 5μm)
 移動相A:n-ヘキサン
 移動相B:エタノール
 A:B=90:10
 流量:1.0mL/分
 注入量:5μL
 検出波長:210nm
 カラム温度:40℃
The optical purity was measured by HPLC under the following conditions.
Column: ChiralPak AD-H (250mm × 4.6mm, 5μm)
Mobile phase A: n-hexane Mobile phase B: ethanol A: B = 90: 10
Flow rate: 1.0mL / min Injection volume: 5μL
Detection wavelength: 210nm
Column temperature: 40 ° C
実施例8(LACOの製造) Example 8 (Production of LACO)
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000111
 実施例7で得られたAMCA(12.0g、74.46mmol)をメタノール(240.0mL)に溶解し、-75℃に冷却して、N-メチルモルホリン(8.61g、9.4mL、81.91mmol)を15分間かけて滴下した。反応液を同温で15分間撹拌した後、クロロギ酸イソブチル(11.19g、10.7mL、81.91mmol)を-75℃を保ちながら30分間かけて滴下し、同温で45分間撹拌した。反応液にベンジルアミン(8.78g、9.0mL、81.91mmol)を45分間かけて滴下し、-75℃で18時間撹拌した。反応液を0℃~5℃に昇温して1mol/L塩酸(48.0mL)を添加した。水層を酢酸エチルで抽出した(36.0mL×3回)。有機層を合わせて飽和食塩水(48.0mL)で洗浄した後、減圧濃縮して粗体のLACOを得た(16.8g、収率90.32%、HPLC純度96.66%、光学純度98.1%)。[α]D 25 +15.05o (c 1.0, MeOH) AMCA (12.0 g, 74.46 mmol) obtained in Example 7 was dissolved in methanol (240.0 mL), cooled to −75 ° C., and N-methylmorpholine (8.61 g, 9.4 mL, 81.91 mmol) was added for 15 minutes. It was dripped over. After stirring the reaction solution at the same temperature for 15 minutes, isobutyl chloroformate (11.19 g, 10.7 mL, 81.91 mmol) was added dropwise over 30 minutes while maintaining -75 ° C., and the mixture was stirred at the same temperature for 45 minutes. Benzylamine (8.78 g, 9.0 mL, 81.91 mmol) was added dropwise to the reaction mixture over 45 minutes, and the mixture was stirred at −75 ° C. for 18 hours. The reaction solution was heated to 0 ° C. to 5 ° C. and 1 mol / L hydrochloric acid (48.0 mL) was added. The aqueous layer was extracted with ethyl acetate (36.0 mL × 3 times). The organic layers were combined, washed with saturated brine (48.0 mL), and concentrated under reduced pressure to obtain crude LACO (16.8 g, yield 90.32%, HPLC purity 96.66%, optical purity 98.1%). [α] D 25 +15.05 o (c 1.0, MeOH)
 HPLC純度は、以下の条件でのHPLCにより測定した。
 カラム:Unisole C18 (150mm×4.6mm, 3μm)
 緩衝液:アセトニトリル/水=90/10
 移動相A:10mmol/L 酢酸アンモニウム
 移動相B:アセトニトリル/水=90/10
 グラジエントプログラム:0分(A液/B液=3/0)、5分(A液/B液=3/5)、10分(A液/B液=95/25)、15分(A液/B液=95/35)、20分(A液/B液=3/37)、25分(A液/B液=3/42)
 流量:0.8mL/分
 注入量:5μL
 検出波長:215nm
 カラム温度:40℃
HPLC purity was measured by HPLC under the following conditions.
Column: Unisole C18 (150mm × 4.6mm, 3μm)
Buffer solution: acetonitrile / water = 90/10
Mobile phase A: 10 mmol / L ammonium acetate Mobile phase B: acetonitrile / water = 90/10
Gradient program: 0 minutes (A liquid / B liquid = 3/0), 5 minutes (A liquid / B liquid = 3/5), 10 minutes (A liquid / B liquid = 95/25), 15 minutes (A liquid) / B liquid = 95/35), 20 minutes (A liquid / B liquid = 3/37), 25 minutes (A liquid / B liquid = 3/42)
Flow rate: 0.8mL / min Injection volume: 5μL
Detection wavelength: 215nm
Column temperature: 40 ° C
 光学純度は、以下の条件でのHPLCにより測定した。
 カラム:Chiral cel OD-H (250mm×4.6mm, 5μm)
 移動相A:n-ヘキサン
 移動相B:イソプロパノール
 A:B=75:25
 流量:0.7mL/分
 注入量:5μL
 検出波長:210nm
 カラム温度:30℃
The optical purity was measured by HPLC under the following conditions.
Column: Chiral cel OD-H (250mm × 4.6mm, 5μm)
Mobile phase A: n-hexane Mobile phase B: isopropanol A: B = 75: 25
Flow rate: 0.7mL / min Injection volume: 5μL
Detection wavelength: 210nm
Column temperature: 30 ° C
実施例9(PMCA塩酸塩の製造) Example 9 (Production of PMCA hydrochloride)
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000112
 実施例3と同様にして得られたPMAD塩酸塩(30.0g、115.90mmol)と0.7mol/L塩酸(300mL)の混合物を100℃~105℃で24時間撹拌した。反応液を25℃に冷却した後、pHを5.7に調整し、析出した固体を濾過してPMCA塩酸塩を得た(15.0g、収率57.96%)。
IR (KBr):νmax=3031, 2986, 2871, 1631, 1574, 1357, 1119, 701 cm-1
1H NMR (MeOH-d4):δ7.45-7.42 (m, 5H), 4.59 (q, J=6.8Hz, 1H), 3.69-3.57 (m, 2H),3.34-3.30 (m, 1H), 3.27 (s, 3H), 1.70 (d, J=6.8Hz, 3H)
13C-NMR (DMSO-d6):δ 171.6, 142.8, 128.4, 127.4, 127.0, 72.8, 59.0, 58.2, 56.1, 23.5
HRMS: [M+H] calcd for C12H17NO3Na 246.1106, found 246.1101
LC-MS [M+H]+: 224
A mixture of PMAD hydrochloride (30.0 g, 115.90 mmol) obtained in the same manner as in Example 3 and 0.7 mol / L hydrochloric acid (300 mL) was stirred at 100 to 105 ° C. for 24 hours. After the reaction solution was cooled to 25 ° C., the pH was adjusted to 5.7, and the precipitated solid was filtered to obtain PMCA hydrochloride (15.0 g, yield 57.96%).
IR (KBr): ν max = 3031, 2986, 2871, 1631, 1574, 1357, 1119, 701 cm -1
1 H NMR (MeOH-d 4 ): δ7.45-7.42 (m, 5H), 4.59 (q, J = 6.8Hz, 1H), 3.69-3.57 (m, 2H), 3.34-3.30 (m, 1H) , 3.27 (s, 3H), 1.70 (d, J = 6.8Hz, 3H)
13 C-NMR (DMSO-d 6 ): δ 171.6, 142.8, 128.4, 127.4, 127.0, 72.8, 59.0, 58.2, 56.1, 23.5
HRMS: [M + H] calcd for C 12 H 17 NO 3 Na 246.1106, found 246.1101
LC-MS [M + H] + : 224
実施例10(PMBAの製造) Example 10 (Production of PMBA)
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000113
 1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(0.55g、2.89mmol)と塩化メチレン(2.5mL)の混合物を0℃~5℃に冷却し、この混合物にN-メチルモルホリン(0.29g、2.89mmol)を5分間かけて加えた。別の容器に、実施例9で得られたPMCA塩酸塩(0.5g、1.92mmol)、塩化メチレン(10mL)、1-ヒドロキシベンゾトリアゾール(0.39g、2.89mmol)及びベンジルアミン(1.24g、11.55mmol)を加えて0℃に冷却し、この混合物に先に調製した混合物を同温で加えた。反応液を25℃までゆっくり昇温した後、20時間撹拌した。反応液を0~5℃に冷却して、水(15mL)を加えた。水層を塩化メチレンで抽出した(5mL×2回)。有機層を合わせて水洗した後(10mL×2回)、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(0.1%メタノール/塩化メチレン溶液)で精製して、黄色オイル状のPMBAを得た(0.27g、収率45.0%)。
IR (KBr):νmax=3327, 2925, 1652, 1518, 1453, 1111, 761, 699 cm-1
1H NMR (DMSO-d6):δ 8.44 (t, J=6.0Hz, 1H exchangeable), 7.35-7.29 (m, 6H), 7.26-7.19 (m, 4H), 4.32 (dd, J=6.0, 2.4Hz, 2H), 3.63 (q, J=6.4Hz, 1H), 3.45-3.38 (m, 1H), 3.33-3.31 (m, 1H), 3.16 (s, 3H), 3.00 (m, 1H), 2.42 (bs, 1H exchangeable), 1.23 (d, J=6.4Hz, 3H)
13C-NMR (DMSO-d6):δ 172.1, 145.5, 139.6, 128.2, 128.1, 126.9, 126.7, 126.6, 126.5, 73.8, 59.5, 58.1, 55.9, 42.0, 24.9
HRMS: [M+H]+ calcd for C19H24N2O2H 313.1916, found 313.1916
Mass [M+H]+: 313
A mixture of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (0.55 g, 2.89 mmol) and methylene chloride (2.5 mL) was cooled to 0 ° C. to 5 ° C., and N-methylmorpholine ( 0.29 g, 2.89 mmol) was added over 5 minutes. In a separate container, PMCA hydrochloride obtained in Example 9 (0.5 g, 1.92 mmol), methylene chloride (10 mL), 1-hydroxybenzotriazole (0.39 g, 2.89 mmol) and benzylamine (1.24 g, 11.55 mmol). ) Was added and cooled to 0 ° C., and the previously prepared mixture was added to this mixture at the same temperature. The reaction solution was slowly warmed to 25 ° C. and then stirred for 20 hours. The reaction was cooled to 0-5 ° C. and water (15 mL) was added. The aqueous layer was extracted with methylene chloride (2 × 5 mL). The organic layers were combined, washed with water (2 × 10 mL), and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (0.1% methanol / methylene chloride solution) to obtain yellow oily PMBA (0.27 g, yield 45.0%).
IR (KBr): ν max = 3327, 2925, 1652, 1518, 1453, 1111, 761, 699 cm -1
1 H NMR (DMSO-d 6 ): δ 8.44 (t, J = 6.0Hz, 1H exchangeable), 7.35-7.29 (m, 6H), 7.26-7.19 (m, 4H), 4.32 (dd, J = 6.0, 2.4Hz, 2H), 3.63 (q, J = 6.4Hz, 1H), 3.45-3.38 (m, 1H), 3.33-3.31 (m, 1H), 3.16 (s, 3H), 3.00 (m, 1H), 2.42 (bs, 1H exchangeable), 1.23 (d, J = 6.4Hz, 3H)
13 C-NMR (DMSO-d 6 ): δ 172.1, 145.5, 139.6, 128.2, 128.1, 126.9, 126.7, 126.6, 126.5, 73.8, 59.5, 58.1, 55.9, 42.0, 24.9
HRMS: [M + H] + calcd for C 19 H 24 N 2 O 2 H 313.1916, found 313.1916
Mass [M + H] + : 313
参考例1(HMBAの製造) Reference Example 1 (Manufacture of HMBA)
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000114
 PMBA(12.0g、38.4mmol)、メタノール(100mL)及び10%パラジウム炭素(0.41g、0.19mmol)の混合物を、70℃~75℃において、水素加圧下(10kg/cm2~11kg/cm2)で22時間撹拌した。反応液を25℃まで冷却した後、セライト濾過した。セライトをメタノール(48mL)で洗浄した。濾液及び洗液を合わせて、100mlまで減圧濃縮後、10%パラジウム炭素(0.41g、0.19mmol)を加えて、70℃~75℃において、水素加圧下(10 kg/cm2~11kg/cm2)で10時間撹拌した。反応液を25℃まで冷却した後、セライト濾過した。セライトをメタノール(48mL)で洗浄した。濾液及び洗液を合わせて減圧濃縮することによりオイル状のHMBAを得た(6.9g、収率86%)。
1H NMR (DMSO-d6):δ 8.44 (t, 1H exchangeable), 7.35-7.29(m, 5H), 4.32(d, 2H), 3.50-3.20(m, 8H)
Mass m/z: 209[M + H]+
A mixture of PMBA (12.0 g, 38.4 mmol), methanol (100 mL) and 10% palladium carbon (0.41 g, 0.19 mmol) at 70 ° C. to 75 ° C. under hydrogen pressure (10 kg / cm 2 to 11 kg / cm 2 ) For 22 hours. The reaction solution was cooled to 25 ° C. and then filtered through celite. Celite was washed with methanol (48 mL). The filtrate and washings were combined and concentrated under reduced pressure to 100 ml, 10% palladium on carbon (0.41 g, 0.19 mmol) was added, and hydrogen was applied at 70 ° C. to 75 ° C. (10 kg / cm 2 to 11 kg / cm 2). ) For 10 hours. The reaction solution was cooled to 25 ° C. and then filtered through celite. Celite was washed with methanol (48 mL). The filtrate and washings were combined and concentrated under reduced pressure to obtain oily HMBA (6.9 g, yield 86%).
1 H NMR (DMSO-d 6 ): δ 8.44 (t, 1H exchangeable), 7.35-7.29 (m, 5H), 4.32 (d, 2H), 3.50-3.20 (m, 8H)
Mass m / z: 209 [M + H] +
参考例2(LACOの製造) Reference Example 2 (LACO production)
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000115
 HMBA(1.54g、7.39mmol)、THF(9.3mL)、水(1.54mL)及びトリエチルアミン(0.82g、8.13mmol)の混合物を5分間撹拌し、25℃で無水酢酸(0.83g、8.13mmol)を加えて、同温で24時間撹拌した。反応終了後、反応液を減圧濃縮し、残渣に水(10.0mL)を加え、6mol/Lの塩酸水溶液を加えてpHを1~2に調整した。この混合物を酢酸エチルで抽出した(10mL×3回)。有機層を合わせて、水(2回×10.0mL)、飽和食塩水(10.0mL)で順次洗浄後、減圧濃縮することにより粗体のLACOを得た(2.2g、定量的)。得られた粗体のLACOを酢酸エチルから再結晶することにより、白色固体のLACOを得た(1.48g、収率80%、光学純度100%ee)。
[α]D 25+16.4o(c 1.0, MeOH)
1H NMR (CDCl3):δ7.24-7.40 (m, 5H), 6.78 (br s, 1H), 6.48 (br s, 1H), 4.51-4.60(m, 1H), 4.48 (d, J = 5.7 Hz, 2H), 3.81 (dd, J = 9.5, 4.2 Hz, 1H), 3.40-3.48 (m, 1H), 3.38 (s, 3H), 2.03 (s, 3H)
Mass: m/z 251 [M + H]+
 光学純度は、以下の条件でのHPLCにより測定した。
 カラム:Chiralcel OD-H (250mm×4.6mm, 5μm)
 移動相A:n-ヘキサン
 移動相B:イソプロパノール
 A:B=75:25
 流量:0.7mL/分
 注入量:5μL
 検出波長:210nm
 カラム温度:30℃
A mixture of HMBA (1.54 g, 7.39 mmol), THF (9.3 mL), water (1.54 mL) and triethylamine (0.82 g, 8.13 mmol) is stirred for 5 minutes and acetic anhydride (0.83 g, 8.13 mmol) is added at 25 ° C. In addition, the mixture was stirred at the same temperature for 24 hours. After completion of the reaction, the reaction solution was concentrated under reduced pressure, water (10.0 mL) was added to the residue, and a 6 mol / L aqueous hydrochloric acid solution was added to adjust the pH to 1-2. This mixture was extracted with ethyl acetate (3 × 10 mL). The organic layers were combined, washed successively with water (2 × 10.0 mL) and saturated brine (10.0 mL), and concentrated under reduced pressure to obtain crude LACO (2.2 g, quantitative). The obtained crude LACO was recrystallized from ethyl acetate to obtain LACO as a white solid (1.48 g, yield 80%, optical purity 100% ee).
[α] D 25 +16.4 o (c 1.0, MeOH)
1 H NMR (CDCl 3 ): δ7.24-7.40 (m, 5H), 6.78 (br s, 1H), 6.48 (br s, 1H), 4.51-4.60 (m, 1H), 4.48 (d, J = 5.7 Hz, 2H), 3.81 (dd, J = 9.5, 4.2 Hz, 1H), 3.40-3.48 (m, 1H), 3.38 (s, 3H), 2.03 (s, 3H)
Mass: m / z 251 [M + H] +
The optical purity was measured by HPLC under the following conditions.
Column: Chiralcel OD-H (250mm × 4.6mm, 5μm)
Mobile phase A: n-hexane Mobile phase B: isopropanol A: B = 75: 25
Flow rate: 0.7mL / min Injection volume: 5μL
Detection wavelength: 210nm
Column temperature: 30 ° C
 本発明は、光学純度の高いラコサミドを、高収率で、安価かつ安全に工業的に製造することができる。また、ラコサミドの製造において有用な中間体を提供することができる。
 本出願は、日本で出願された特願2014-184568(出願日2014年9月10日)を基礎としておりその内容は本明細書に全て包含されるものである。
INDUSTRIAL APPLICABILITY According to the present invention, lacosamide having high optical purity can be industrially produced with high yield, inexpensively and safely. In addition, an intermediate useful in the production of lacosamide can be provided.
This application is based on Japanese Patent Application No. 2014-184568 (filing date: September 10, 2014) filed in Japan, the contents of which are incorporated in full herein.

Claims (19)

  1.  一般式[I]:
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である。)である。]
    で表される化合物又はその塩。
    General formula [I]:
    Figure JPOXMLDOC01-appb-C000001
    Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
    Or a salt thereof.
  2.  一般式[III]:
    Figure JPOXMLDOC01-appb-C000002
    [式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である。)である。]
    で表される化合物又はその塩をアミド化する工程を含むことを特徴とする、一般式[I]

    Figure JPOXMLDOC01-appb-C000003
    [式中、R及びRは前記と同義である。]
    で表される化合物又はその塩の製造方法。
    General formula [III]:
    Figure JPOXMLDOC01-appb-C000002
    Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
    Comprising a step of amidating a compound represented by the formula:
    :
    Figure JPOXMLDOC01-appb-C000003
    [Wherein, R 3 and R 4 have the same meanings as described above. ]
    The manufacturing method of the compound represented by these, or its salt.
  3.  一般式[III]:
    Figure JPOXMLDOC01-appb-C000004
    [式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である。)である。]
    で表される化合物又はその塩が、一般式[IV]:
    Figure JPOXMLDOC01-appb-C000005
    [式中、R及びRは、それぞれ独立して、アルキル基又はアラルキル基であり、R及びRはアルキル鎖で連結されていてもよい。]
    で表される化合物を酸と反応させた後、得られた化合物を一般式[V]:
    Figure JPOXMLDOC01-appb-C000006
    [式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である)である。]
    で表される化合物又はその塩と反応させることにより得られたものであることを特徴とする、請求項2に記載の製造方法。
    General formula [III]:
    Figure JPOXMLDOC01-appb-C000004
    Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
    Or a salt thereof represented by the general formula [IV]:
    Figure JPOXMLDOC01-appb-C000005
    [Wherein, R 1 and R 2 are each independently an alkyl group or an aralkyl group, and R 1 and R 2 may be linked by an alkyl chain. ]
    The compound represented by general formula [V]:
    Figure JPOXMLDOC01-appb-C000006
    Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
    The production method according to claim 2, which is obtained by reacting with a compound represented by the formula:
  4.  一般式[IV]:
    Figure JPOXMLDOC01-appb-C000007
    [式中、R及びRは、それぞれ独立して、アルキル基又はアラルキル基であり、R及びRはアルキル鎖で連結されていてもよい。]
    で表される化合物が、一般式[VI]:
    Figure JPOXMLDOC01-appb-C000008
    [式中、R及びRは、前記と同義である。]
    で表される化合物とナトリウムメトキシドを反応させることにより得られたものであることを特徴とする、請求項3に記載の製造方法。
    General formula [IV]:
    Figure JPOXMLDOC01-appb-C000007
    [Wherein, R 1 and R 2 are each independently an alkyl group or an aralkyl group, and R 1 and R 2 may be linked by an alkyl chain. ]
    A compound represented by general formula [VI]:
    Figure JPOXMLDOC01-appb-C000008
    [Wherein, R 1 and R 2 have the same meanings as described above. ]
    The production method according to claim 3, wherein the compound is obtained by reacting a compound represented by formula (II) with sodium methoxide.
  5.  一般式[IV]:
    Figure JPOXMLDOC01-appb-C000009
    [式中、R及びRは、それぞれ独立して、アルキル基又はアラルキル基であり、R及びRはアルキル鎖で連結されていてもよい。]
    で表される化合物を酸と反応させた後、得られた化合物を一般式[V]:
    Figure JPOXMLDOC01-appb-C000010
    [式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である)である。]
    で表される化合物又はその塩と反応させる工程を含むことを特徴とする、一般式[III]

    Figure JPOXMLDOC01-appb-C000011
    [式中、R及びRは、前記と同義である。]
    で表される化合物又はその塩の製造方法。
    Formula [IV]:
    Figure JPOXMLDOC01-appb-C000009
    [Wherein, R 1 and R 2 are each independently an alkyl group or an aralkyl group, and R 1 and R 2 may be linked by an alkyl chain. ]
    The compound represented by general formula [V]:
    Figure JPOXMLDOC01-appb-C000010
    Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
    Comprising a step of reacting with a compound represented by the formula or a salt thereof:
    :
    Figure JPOXMLDOC01-appb-C000011
    [Wherein, R 3 and R 4 have the same meanings as described above. ]
    The manufacturing method of the compound represented by these, or its salt.
  6.  式[VII]:
    Figure JPOXMLDOC01-appb-C000012
    で表される化合物又はその塩をハロゲン化した後、得られた化合物を一般式[V]:
    Figure JPOXMLDOC01-appb-C000013
    [式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である)である。]
    で表される化合物又はその塩と反応させる工程を含むことを特徴とする、一般式[I]:
    Figure JPOXMLDOC01-appb-C000014
    [式中、R及びRは、前記と同義である。]
    で表される化合物又はその塩の製造方法。
    Formula [VII]:
    Figure JPOXMLDOC01-appb-C000012
    After halogenating the compound represented by the formula or a salt thereof, the obtained compound is represented by the general formula [V]:
    Figure JPOXMLDOC01-appb-C000013
    Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
    The method includes a step of reacting with a compound represented by the formula:
    Figure JPOXMLDOC01-appb-C000014
    [Wherein, R 3 and R 4 have the same meanings as described above. ]
    The manufacturing method of the compound represented by these, or its salt.
  7.  一般式[III]:
    Figure JPOXMLDOC01-appb-C000015
    [式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である。)である。]
    で表される化合物又はその塩をアミド化して、一般式[I]:
    Figure JPOXMLDOC01-appb-C000016
    [式中、R及びRは前記と同義である。]
    で表される化合物又はその塩を製造する工程を含むことを特徴とする、式[XII]:
    Figure JPOXMLDOC01-appb-C000017
    で表される化合物又はその塩の製造方法。
    General formula [III]:
    Figure JPOXMLDOC01-appb-C000015
    Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
    Or a salt thereof is amidated to give a general formula [I]:
    Figure JPOXMLDOC01-appb-C000016
    [Wherein, R 3 and R 4 have the same meanings as described above. ]
    Which comprises a step of producing a compound represented by the formula or a salt thereof: [XII]:
    Figure JPOXMLDOC01-appb-C000017
    The manufacturing method of the compound represented by these, or its salt.
  8.  一般式[III]:
    Figure JPOXMLDOC01-appb-C000018
    [式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である。)である。]
    で表される化合物又はその塩が、一般式[IV]:
    Figure JPOXMLDOC01-appb-C000019
    [式中、R及びRは、それぞれ独立して、アルキル基又はアラルキル基であり、R及びRはアルキル鎖で連結されていてもよい。]
    で表される化合物を酸と反応させた後、得られた化合物を一般式[V]:
    Figure JPOXMLDOC01-appb-C000020
    [式中、R及びRは、前記と同義である。]
    で表される化合物又はその塩と反応させることにより得られたものであることを特徴とする、請求項7に記載の製造方法。
    General formula [III]:
    Figure JPOXMLDOC01-appb-C000018
    Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
    Or a salt thereof represented by the general formula [IV]:
    Figure JPOXMLDOC01-appb-C000019
    [Wherein, R 1 and R 2 are each independently an alkyl group or an aralkyl group, and R 1 and R 2 may be linked by an alkyl chain. ]
    The compound represented by general formula [V]:
    Figure JPOXMLDOC01-appb-C000020
    [Wherein, R 3 and R 4 have the same meanings as described above. ]
    It is obtained by making it react with the compound or its salt represented by these, The manufacturing method of Claim 7 characterized by the above-mentioned.
  9.  式[VII]:
    Figure JPOXMLDOC01-appb-C000021
    で表される化合物又はその塩をハロゲン化した後、得られた化合物を一般式[V]:
    Figure JPOXMLDOC01-appb-C000022
    [式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である)である。]
    で表される化合物又はその塩と反応させて、一般式[I]:
    Figure JPOXMLDOC01-appb-C000023
    [式中、R及びRは、前記と同義である。]
    で表される化合物又はその塩を製造する工程を含むことを特徴とする、式[XII]:
    Figure JPOXMLDOC01-appb-C000024
    で表される化合物又はその塩の製造方法。
    Formula [VII]:
    Figure JPOXMLDOC01-appb-C000021
    After halogenating the compound represented by the formula or a salt thereof, the obtained compound is represented by the general formula [V]:
    Figure JPOXMLDOC01-appb-C000022
    Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
    And a compound represented by the general formula [I]:
    Figure JPOXMLDOC01-appb-C000023
    [Wherein, R 3 and R 4 have the same meanings as described above. ]
    Which comprises a step of producing a compound represented by the formula or a salt thereof: [XII]:
    Figure JPOXMLDOC01-appb-C000024
    The manufacturing method of the compound represented by these, or its salt.
  10.  一般式[I]:
    Figure JPOXMLDOC01-appb-C000025
    [式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である。)である。]
    で表される化合物又はその塩を還元して、式[II]:
    Figure JPOXMLDOC01-appb-C000026
    で表される化合物又はその塩を製造する工程を含むことを特徴とする、式[XII]:
    Figure JPOXMLDOC01-appb-C000027
    で表される化合物又はその塩の製造方法。
    General formula [I]:
    Figure JPOXMLDOC01-appb-C000025
    Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
    Is reduced to a compound represented by formula [II]:
    Figure JPOXMLDOC01-appb-C000026
    Which comprises a step of producing a compound represented by the formula or a salt thereof: [XII]:
    Figure JPOXMLDOC01-appb-C000027
    The manufacturing method of the compound represented by these, or its salt.
  11.  (1)式[II]:
    Figure JPOXMLDOC01-appb-C000028
    で表される化合物又はその塩を加水分解して、式[X]:
    Figure JPOXMLDOC01-appb-C000029
    で表される化合物又はその塩を製造する工程、
    (2)式[X]で表される化合物又はその塩をアセチル化剤と反応させて、式[XI]:
    Figure JPOXMLDOC01-appb-C000030
    で表される化合物又はその塩を製造する工程、及び
    (3)式[XI]で表される化合物又はその塩をベンジルアミド化する工程をさらに含むことを特徴とする、請求項10に記載の製造方法。
    (1) Formula [II]:
    Figure JPOXMLDOC01-appb-C000028
    The compound represented by the formula or a salt thereof is hydrolyzed to form the formula [X]:
    Figure JPOXMLDOC01-appb-C000029
    A process for producing a compound represented by the formula:
    (2) A compound represented by the formula [X] or a salt thereof is reacted with an acetylating agent to form a formula [XI]:
    Figure JPOXMLDOC01-appb-C000030
    11. The method according to claim 10, further comprising a step of producing a compound represented by the formula: or a salt thereof; and (3) a step of benzylamidating the compound represented by formula [XI] or a salt thereof: Production method.
  12.  (1’)式[II]:
    Figure JPOXMLDOC01-appb-C000031
    で表される化合物又はその塩をアセチル化剤と反応させて、式[XIII]:
    Figure JPOXMLDOC01-appb-C000032
    で表される化合物又はその塩を製造する工程、及び
    (2’)式[XIII]で表される化合物又はその塩をベンジルアミド化する工程をさらに含むことを特徴とする、請求項10に記載の製造方法。
    (1 ′) Formula [II]:
    Figure JPOXMLDOC01-appb-C000031
    Or a salt thereof is reacted with an acetylating agent to produce a compound of the formula [XIII]:
    Figure JPOXMLDOC01-appb-C000032
    11. The method according to claim 10, further comprising the step of producing a compound represented by the formula: or a salt thereof; and (2 ′) benzylamidating the compound represented by the formula [XIII] or a salt thereof. Manufacturing method.
  13.  一般式[I]:
    Figure JPOXMLDOC01-appb-C000033
    [式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である。)である。]
    で表される化合物又はその塩を加水分解して、一般式[XIV]:
    Figure JPOXMLDOC01-appb-C000034
    [式中、R及びRは、前記と同義である。]
    で表される化合物又はその塩を製造する工程を含むことを特徴とする、式[XII]:
    Figure JPOXMLDOC01-appb-C000035
    で表される化合物又はその塩の製造方法。
    General formula [I]:
    Figure JPOXMLDOC01-appb-C000033
    Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
    A compound represented by the formula or a salt thereof is hydrolyzed to give a general formula [XIV]:
    Figure JPOXMLDOC01-appb-C000034
    [Wherein, R 3 and R 4 have the same meanings as described above. ]
    Which comprises a step of producing a compound represented by the formula or a salt thereof: [XII]:
    Figure JPOXMLDOC01-appb-C000035
    The manufacturing method of the compound represented by these, or its salt.
  14.  一般式[XIV]:
    Figure JPOXMLDOC01-appb-C000036
    [式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である。)である。]
    で表される化合物又はその塩をベンジルアミド化して、一般式[XV]:
    Figure JPOXMLDOC01-appb-C000037
    [式中、R及びRは、前記と同義である。]
    で表される化合物又はその塩を製造する工程をさらに含むことを特徴とする、請求項13に記載の製造方法。
    General formula [XIV]:
    Figure JPOXMLDOC01-appb-C000036
    Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
    Or a salt thereof is benzylamidated to give a general formula [XV]:
    Figure JPOXMLDOC01-appb-C000037
    [Wherein, R 3 and R 4 have the same meanings as described above. ]
    The production method according to claim 13, further comprising a step of producing a compound represented by the formula:
  15.  一般式[XV]:
    Figure JPOXMLDOC01-appb-C000038
    [式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である。)である。]
    で表される化合物又はその塩を還元して、式[XVI]:
    Figure JPOXMLDOC01-appb-C000039
    で表される化合物又はその塩を製造する工程をさらに含むことを特徴とする、請求項14に記載の製造方法。
    General formula [XV]:
    Figure JPOXMLDOC01-appb-C000038
    Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
    The compound represented by the formula or a salt thereof is reduced to give the formula [XVI]:
    Figure JPOXMLDOC01-appb-C000039
    The production method according to claim 14, further comprising a step of producing a compound represented by the formula:
  16.  請求項7~15のいずれか一項に記載の製造方法により得られた式[XII]:
    Figure JPOXMLDOC01-appb-C000040
    で表される化合物又はその塩を有効成分として含有する医薬製剤。
    Formula [XII] obtained by the production method according to any one of claims 7 to 15:
    Figure JPOXMLDOC01-appb-C000040
    Or a salt thereof as an active ingredient.
  17.  一般式[III]:
    Figure JPOXMLDOC01-appb-C000041
    [式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である。)である。]
    で表される化合物又はその塩。
    General formula [III]:
    Figure JPOXMLDOC01-appb-C000041
    Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
    Or a salt thereof.
  18.  一般式[XIV]:
    Figure JPOXMLDOC01-appb-C000042
    [式中、Rは、水素原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基であり、該アリール基はRが結合しているベンゼン環と縮合していてもよく、Rは、アルキル基、アリール基、アラルキル基、-COOR又は-CONR(ここで、R、R及びRは、それぞれ独立して、アルキル基である。)である。]
    で表される化合物又はその塩。
    General formula [XIV]:
    Figure JPOXMLDOC01-appb-C000042
    Wherein, R 3 represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group, the aryl group may be condensed with a benzene ring bonded is R 3, R 4 is , An alkyl group, an aryl group, an aralkyl group, —COOR 5 or —CONR 6 R 7 (wherein R 5 , R 6 and R 7 are each independently an alkyl group). ]
    Or a salt thereof.
  19.  式[XIII]:
    Figure JPOXMLDOC01-appb-C000043
    で表される化合物又はその塩。
    Formula [XIII]:
    Figure JPOXMLDOC01-appb-C000043
    Or a salt thereof.
PCT/JP2015/075653 2014-09-10 2015-09-09 Production method for amino acid derivative WO2016039393A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016547484A JPWO2016039393A1 (en) 2014-09-10 2015-09-09 Method for producing amino acid derivative

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014184568 2014-09-10
JP2014-184568 2014-09-10

Publications (1)

Publication Number Publication Date
WO2016039393A1 true WO2016039393A1 (en) 2016-03-17

Family

ID=55459137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075653 WO2016039393A1 (en) 2014-09-10 2015-09-09 Production method for amino acid derivative

Country Status (2)

Country Link
JP (1) JPWO2016039393A1 (en)
WO (1) WO2016039393A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10975117B2 (en) 2015-11-13 2021-04-13 Api Corporation Method for producing lacosamide and intermediate thereof
CN116262688A (en) * 2021-12-14 2023-06-16 沈阳化工研究院有限公司 Method for preparing 1, 2-trimethoxy ethane at normal pressure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008514669A (en) * 2004-10-02 2008-05-08 シュヴァルツ・ファーマ・アーゲー Improved synthetic scheme for lacosamide
EP2067765A2 (en) * 2007-12-04 2009-06-10 Ranbaxy Laboratories Limited Intermediate compounds and their use in preparation of lacosamide
JP2013505931A (en) * 2009-09-25 2013-02-21 カディラ・ヘルスケア・リミテッド Method for preparing lacosamide and its intermediate
JP2013518092A (en) * 2010-01-29 2013-05-20 ユーティカルズ ソシエタ ペル アチオニ Methods for the synthesis of lacosamide
WO2013072330A1 (en) * 2011-11-15 2013-05-23 Sanofi-Aventis Deutschland Gmbh Process for the production of n-substituted 2-(acetylamino)-n'-benzyl-3-methoxypropanamides

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008514669A (en) * 2004-10-02 2008-05-08 シュヴァルツ・ファーマ・アーゲー Improved synthetic scheme for lacosamide
EP2067765A2 (en) * 2007-12-04 2009-06-10 Ranbaxy Laboratories Limited Intermediate compounds and their use in preparation of lacosamide
JP2013505931A (en) * 2009-09-25 2013-02-21 カディラ・ヘルスケア・リミテッド Method for preparing lacosamide and its intermediate
JP2013518092A (en) * 2010-01-29 2013-05-20 ユーティカルズ ソシエタ ペル アチオニ Methods for the synthesis of lacosamide
WO2013072330A1 (en) * 2011-11-15 2013-05-23 Sanofi-Aventis Deutschland Gmbh Process for the production of n-substituted 2-(acetylamino)-n'-benzyl-3-methoxypropanamides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOOK, CHEOL-MIN ET AL.: "Regiochemical pathway in the ring opening of 2-acylaziridines", BULLETIN OF THE KOREAN CHEMICAL SOCIETY, vol. 32, no. 8, 2011, pages 2879 - 2880 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10975117B2 (en) 2015-11-13 2021-04-13 Api Corporation Method for producing lacosamide and intermediate thereof
US11623943B2 (en) 2015-11-13 2023-04-11 Api Corporation Method for producing lacosamide and intermediate thereof
CN116262688A (en) * 2021-12-14 2023-06-16 沈阳化工研究院有限公司 Method for preparing 1, 2-trimethoxy ethane at normal pressure
CN116262688B (en) * 2021-12-14 2024-05-14 沈阳化工研究院有限公司 Method for preparing 1, 2-trimethoxy ethane at normal pressure

Also Published As

Publication number Publication date
JPWO2016039393A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
US9938239B2 (en) Method for preparing silodosin
WO2009064476A1 (en) Preparation of sitagliptin intermediate
US20160362391A1 (en) Improved Process for the Preparation of Pomalidomide and its Purification
WO2010056384A1 (en) Lenalidomide solvates and processes
JP6905937B2 (en) Method for producing lacosamide and its intermediates
WO2021093860A1 (en) Substituted bis-tricyclic compound, and pharmaceutical composition and use thereof
ES2756000T3 (en) New procedure
WO2003099772A1 (en) Phenylcyclohexylpropanolamine derivatives, preparation and therapeutic application thereof
WO2016039393A1 (en) Production method for amino acid derivative
JP2011511053A (en) New method for manufacturing vorinostat
KR20210080373A (en) Methods for preparing solid forms of BET bromodomain inhibitors
CN111051289A (en) Protected L-carnosine derivative, L-carnosine and method for producing crystalline L-carnosine zinc complex
WO2012004811A1 (en) Process for the preparation of 5-substsituted indole derivative
EP4163280A1 (en) Method for producing heterocyclic compound
WO2018041873A1 (en) Process for the preparation of (6s)-6-isopropyl-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid
KR20230088358A (en) Amino combretastatin derivatives and applications thereof
KR20130087485A (en) A process for the preparation of nateglinide
WO2016021711A1 (en) Method for producing amino acid derivative
CN103755624B (en) A kind of synthetic method of piperidine derivative
EP1511728B1 (en) Oxophenyl-cyclohexyl-propanolamine derivatives, production and use thereof in therapeutics
US20240239791A1 (en) Processes for the synthesis of valbenazine
JP4829418B2 (en) Optically active halohydrin derivative and method of using the same
WO2013187406A1 (en) Method for producing 4,4,7-trifluoro-1,2,3,4-tetrahydro-5h-1-benzazepine compound and intermediate for synthesis thereof
CN114195784A (en) Pabociclib related substance, preparation method and application thereof
CN116655605A (en) Phenylpyrazole compound, and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840575

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547484

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15840575

Country of ref document: EP

Kind code of ref document: A1