WO2016039197A1 - Method and device for speed change control of a bicycle - Google Patents

Method and device for speed change control of a bicycle Download PDF

Info

Publication number
WO2016039197A1
WO2016039197A1 PCT/JP2015/074630 JP2015074630W WO2016039197A1 WO 2016039197 A1 WO2016039197 A1 WO 2016039197A1 JP 2015074630 W JP2015074630 W JP 2015074630W WO 2016039197 A1 WO2016039197 A1 WO 2016039197A1
Authority
WO
WIPO (PCT)
Prior art keywords
bicycle
speed change
pedaling
shift
gear
Prior art date
Application number
PCT/JP2015/074630
Other languages
French (fr)
Japanese (ja)
Inventor
田川哲也
Original Assignee
株式会社次世代技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社次世代技術研究所 filed Critical 株式会社次世代技術研究所
Publication of WO2016039197A1 publication Critical patent/WO2016039197A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/60Inputs being a function of ambient conditions
    • F16H59/66Road conditions, e.g. slope, slippery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M25/00Actuators for gearing speed-change mechanisms specially adapted for cycles
    • B62M25/08Actuators for gearing speed-change mechanisms specially adapted for cycles with electrical or fluid transmitting systems

Definitions

  • the present invention relates to a bicycle shift control method and apparatus.
  • Patent Document 1 Synchronous shift (Patent Document 2) that shifts the rear gear (or reverses the front / rear operation) in conjunction with the shift operation of the front gear, which was difficult with conventional mechanical shift control, It can be easily realized with a transmission that is controlled automatically.
  • synchro shift one gear shift operation can synchronize the front and rear gear shifts to optimize the front / rear gear ratio and improve pedaling efficiency.
  • the swing of a bicycle / person occurring at the time of pedaling is measured, and a change in the swing is detected to automatically perform a shift, thereby eliminating the need for button operation during the shift.
  • the efficiency of bicycle training is improved by showing the driver the timing of the pedaling efficiency and the timing of the shift from the state of swinging.
  • pedaling of a bicycle is classified into a stepping angle range (mainly from 2 o'clock to 3 o'clock angle) and a pulling angle range (from 8 o'clock to 10 o'clock) according to the rotation angle of the crank.
  • a stepping angle range mainly from 2 o'clock to 3 o'clock angle
  • a pulling angle range from 8 o'clock to 10 o'clock
  • a force pulling in the circumferential direction is applied (so-called winding leg), and near the top dead center (angle from 11 o'clock to 1 o'clock)
  • pedaling can be made more efficient depending on the driving situation (hill climb, high-speed cruise, etc.) by applying a force pushing in the circumferential direction (so-called push foot).
  • Equation 1 q is a generalized coordinate
  • the first term on the left side is the inertia term
  • the second term on the left side is the center / Coriolis force term
  • the third term on the left side is the gravity term.
  • is generalization force
  • Fc is restraining force, restraining wheel on the ground
  • Coriolis force due to wheel rotation weight on driver's hand on handle, force on foot from pedal, sitting on saddle
  • This represents the resultant force of the force that is generated due to the state of contact.
  • the efficiency of movement may be reduced by applying a force to consciously or unconsciously suppress the swinging of both hands on the handle, but the point is that natural swinging occurs so as not to decrease.
  • An expression in the case of modeling as a two-degree-of-freedom inverted pendulum limitedly is shown in Patent Document 2 and the like.
  • Wq, i (s) and Wq ⁇ dot, i (s) represent weighting functions (s is a variable of Laplace transform).
  • the weighting includes a time constant (filter) and weighting for each term, and changes depending on road conditions (gradient / paving conditions, etc.) and pedaling conditions (acceleration / deceleration, dancing, etc.).
  • the bicycle handle When dancing (so-called standing) or sprinting, the bicycle handle may be slightly swung to ensure efficient pedaling. In these cases, since the hand is holding the handle, it is difficult to move the hand or finger to the position of the shift switch.
  • FIG. 1 shows a bicycle and a driver wearing a gyroscope.
  • a gyroscope In order to measure the swing of a bicycle or person, it is sufficient that at least one gyroscope is attached. However, since there is a movable part between the handle and the bicycle frame, in FIG. Wearing.
  • An acceleration sensor and a three-axis gyroscope vibrating gyroscope
  • two gyroscopes are worn to capture the movement of the driver's upper body and head.
  • a power meter and a crank tachometer are installed.
  • the signal processing unit in the control device 3 processes the sensor data, and the control unit outputs shift signals for the front and rear gears.
  • Accelerometers and vibratory gyroscopes are smaller and less expensive (especially manufactured with MEMS technology), and can detect angular velocities and accelerations in two or even three axes in one package. Acceleration / deceleration, gradient, etc. can be measured with an acceleration sensor. The measurement data is evaluated and used by a threshold filter or an evaluation function based on statistics. The sensor signal is analyzed by digital filter (IIR filter, etc.) or frequency analysis (Fourier transform).
  • a sensor such as a touch panel is attached to the handle, frame, saddle, or pedal, and the movement of the hand or body in contact with the sensor is detected to control the speed change operation or the electric brake.
  • the touch panel can technically realize a curved sensor that matches the handle and the vehicle body, and has the advantage that the sensor can be mounted while maintaining the aerodynamic performance of the bicycle.
  • Formula 4 is illustrated for the case where the calculation formula (Formula 2) of the swing index is simplified.
  • t is time [second]
  • ⁇ n ⁇ dot is angular velocity [radian / second] at time t (time differentiation of angle ⁇ from the upright state of the frame shown in FIG. 1).
  • the evaluation function ⁇ can be expressed as in Equation 5.
  • Equation 5 In this equation, t is the time [second]
  • is the angle [radian] from the upright state of the frame
  • W1, W2,... Wn are weighting functions. It is possible to mount on a small portable terminal by suppressing the calculation cost by a simple evaluation function such as Equation 5.
  • the evaluation function ⁇ is illustrated in FIG.
  • Automatic shift is performed by this evaluation function ⁇ and a threshold value (initial value or user set value).
  • a threshold value initial value or user set value
  • ⁇ 1 to ⁇ 4 and ⁇ 0 are threshold values and are given as preset values / user set values.
  • An area where automatic shifting is not possible can be set near the origin.
  • Formula 2 swing calculation formula and Formula 3 evaluation function ⁇ a plurality of “automatic shift regions” are set according to the function form.
  • Non-Patent Document 1 shows the relationship between the front and rear gears of a bicycle and the gear ratio, and the relationship between the gear ratio and power transmission efficiency. For example, when shifting in a state where the heart rate is fully raised during hill climbing, it is necessary to suppress pedaling power, and therefore the gears before and after are shifted (downshifted) in synchronization so that the gear ratio becomes small. Further, when the pedaling power is continuously changing in a more necessary direction during sprinting or the like, the front and rear gears are shifted (upshifted) in synchronization so that the gear ratio is increased.
  • the traveling speed of the bicycle can be determined from the relationship between the yaw rate (turning speed), curvature (steering angle), and forward speed, as well as the speed measured by the vehicle speed sensor and the GPS received data.
  • the steering angle and the yaw rate are measured by a gyro attached to the steering wheel and the frame, and the forward speed is obtained from the relational expression.
  • a gear ratio deviation as shown in FIG. 3 occurs depending on the combination of the front and rear gears.
  • the gear ratio divergence is combined so as to simply minimize the gear ratio divergence, but even when the gear ratio divergence increases, pedaling more efficiently depending on the driving situation (gradient, etc.).
  • Select a possible gear ratio For example, a gear ratio with good power transmission efficiency is selected from the shift map during hill climbing.
  • the shift map is based on data created in advance corresponding to the number of gears and the number of teeth of the front gear and the number of gears and the number of teeth of the rear gear.
  • FIG. 4 shows a flowchart of the signal processing unit in the control device.
  • the gear matched to the road gradient is selected at the time of the sync shift. If the gear shift is synchronized to the same gear ratio as when flat when the vehicle is climbing up (power output decreases during the shift), the pedaling power required after the shift increases, so a gear ratio lighter by one is selected from the shift map. On the other hand, when the slope is down, the gear ratio that is the same as that at the time of flatness or one heavier is selected.
  • FIG. 5 shows a flowchart of the control processing unit in the control device.
  • Bicycle and human rocking can also be measured by analyzing video from an in-vehicle camera such as an action camera.
  • the motion analysis of an automobile is performed by analyzing the image of an in-vehicle camera and the optical flow.
  • FIG. 6 shows an example of the optical flow of swinging the bicycle.
  • the rocking index E is calculated by replacing q and q ⁇ dot in Equation 2 with the matrix v.
  • braking is performed by an electric brake.
  • the power output can be used as a kind of data on the driving situation for selecting the transmission gear. For example, when automatically shifting at 300W (Watt), it is close to the upper limit load of a general cyclist.
  • This threshold value depends on preset values or user settings.
  • Equation 6 The rocking index E for the touch operation is calculated from Equation 6.
  • the industrial applicability of the present invention is useful for automating bicycle shift control.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Control Of Transmission Device (AREA)

Abstract

In a conventional speed change control method, a speed change operation is performed by pushing a bar-shaped switch fixed to a handlebar of a bicycle. However, during such an operation, it is necessary to move a hand and move a finger to the position of the switch. When an operator is concentrating on pedaling a bicycle such as during a hill climb, movement of the body accompanying such an operation or temporary distraction due to a button operation may lead to stress. The timing for a speed change operation is also determined sensorially by an operator, but in terms of improving movement efficiency, the timing for a speed change operation is preferably determined on the basis of an objective physical indicator. In the present invention, a speed change is performed automatically by measuring the rocking of a bicycle/person generated during pedaling and detecting a change in the rocking, and thereby a button operation during a speed change is unnecessary. Further, the pedaling efficiency and the speed change timing are indicated to the operator on the basis of the rocking condition, and thus the bicycle training efficiency is improved.

Description

自転車の変速制御方法及び装置Bicycle shift control method and apparatus
 本発明は、自転車の変速制御方法及び装置に関する。 The present invention relates to a bicycle shift control method and apparatus.
近年、自転車の変速機を電気的に制御する装置が実用化されている(特許文献1)。従来の機械式の変速制御では難しかったフロント側ギアの変速操作に連動して、リア側ギアを変速する(又はそのフロント/リアが逆の操作を行う)シンクロシフト(特許文献2)は、電気的に制御する変速装置では容易に実現できる。シンクロシフトでは、一方のギア変速操作により、前後のギア変速を同期させることで前後ギア比を最適化し、ペダリング効率を向上することができる。 In recent years, a device for electrically controlling a bicycle transmission has been put into practical use (Patent Document 1). Synchronous shift (Patent Document 2) that shifts the rear gear (or reverses the front / rear operation) in conjunction with the shift operation of the front gear, which was difficult with conventional mechanical shift control, It can be easily realized with a transmission that is controlled automatically. In the synchro shift, one gear shift operation can synchronize the front and rear gear shifts to optimize the front / rear gear ratio and improve pedaling efficiency.
従来の変速制御方法では、自転車のハンドルに固定されたバー状のスイッチを押して変速操作を行うが、その操作時に手を動かして指をスイッチの位置に移動させる必要がある。ヒルクライム時などに集中して自転車を漕いでいる場合には、その操作に伴う体の動き(姿勢の変化・重心の移動)、またボタン操作に一時的に注意をとられることがストレスになる。変速操作のタイミングについても運転者が感覚的に決めているが、運動効率を向上する上では客観性のある物理的な指標に基づいて変速操作のタイミングを決めることが望ましい。また、シンクロシフトが実装されている場合はフロント/リアのギアの一方の変速操作を行ったとき、前後ギアの変速比を調整するために一回の操作で前後ギアの変速を行うようにプログラムされているので、シンクロシフトをキャンセル又は変更する場合は再度スイッチ操作を行う必要がある。 In the conventional shift control method, a bar-shaped switch fixed to a bicycle handle is pressed to perform a shift operation. At the time of the operation, it is necessary to move the hand to move the finger to the switch position. If you are struggling on a bicycle during a hill climb, you will be stressed by temporarily taking care of your body movements (changes in posture and movement of the center of gravity) and button operations. The driver also sensibly determines the timing of the speed change operation, but it is desirable to determine the timing of the speed change operation based on an objective physical index in order to improve exercise efficiency. In addition, when the synchro shift is installed, when one gear shift operation of the front / rear gear is performed, the program shifts the front / rear gear in one operation to adjust the gear ratio of the front / rear gear. Therefore, when canceling or changing the synchro shift, it is necessary to perform the switch operation again.
本発明では、ペダリング時に生じる自転車・人の揺動を測定し、その揺動の変化を検出して自動的に変速を行うことで変速時のボタン操作を不要にする。また、揺動の状況からペダリング効率の良し悪し・変速のタイミングを運転者に示し、自転車トレーニングの効率を向上させる。 In the present invention, the swing of a bicycle / person occurring at the time of pedaling is measured, and a change in the swing is detected to automatically perform a shift, thereby eliminating the need for button operation during the shift. In addition, the efficiency of bicycle training is improved by showing the driver the timing of the pedaling efficiency and the timing of the shift from the state of swinging.
一般的に自転車のペダリングでは、クランクの回転角に応じて、,踏む角度域(主に時計の2時から3時の角度)、引く角度域(時計の8時から10時の角度)に分類し、それぞれの領域での踏む/引く力の強さを意識することでペダリング効率の向上を図ることができる。また、クランクの下死点付近(時計の5時から7時の角度域)では、円周方向に引く力を加える(いわゆる巻き足)、上死点付近(時計の11時から1時の角度域)では、円周方向に押す力を加える(いわゆる押し足)ことで、走行状況(ヒルクライム・高速巡航など)に応じてペダリングを効率化できる。 In general, pedaling of a bicycle is classified into a stepping angle range (mainly from 2 o'clock to 3 o'clock angle) and a pulling angle range (from 8 o'clock to 10 o'clock) according to the rotation angle of the crank. However, it is possible to improve pedaling efficiency by considering the strength of the stepping / pulling force in each area. Also, in the vicinity of the bottom dead center of the crank (angle range from 5 o'clock to 7 o'clock), a force pulling in the circumferential direction is applied (so-called winding leg), and near the top dead center (angle from 11 o'clock to 1 o'clock) In the area, pedaling can be made more efficient depending on the driving situation (hill climb, high-speed cruise, etc.) by applying a force pushing in the circumferential direction (so-called push foot).
ペダリング時は、クランク角に応じた力の変化、左右のクランク角のオフセット(一般的に180度)、左右の足の位置のずれ(Qファクター、フロント変速用ギアの有無等による)によって、自転車と人体に揺動が生じる。一定のペダリングが行われているときには、この揺動は横方向(進行方向に垂直な方向)の規則的な往復運動となる。また、この往復運動はクランク回転と同期する。人の運動が車体の揺動と連動するのは、車・バイクにはない特徴と言える。 When pedaling, the bicycle changes due to changes in force according to the crank angle, left and right crank angle offsets (generally 180 degrees), and left and right foot position shifts (depending on the Q factor, the presence or absence of the front shifting gear, etc.) And swinging in the human body. When constant pedaling is performed, this oscillation is a regular reciprocating motion in the lateral direction (direction perpendicular to the traveling direction). This reciprocating motion is synchronized with the crank rotation. It can be said that the movement of human beings linked with the swing of the car body is a feature not found in cars and motorcycles.
ペダリングに伴う車体の規則的な往復運動は、巡航状態の変化(加速・減速)や路面の変化(コーナー・坂道)によって規則性を失う。つまり運転者に加減速の意志が生じたり、路面状況が変化するタイミングでは、ペダリングに必要なパワーが増減するので、ペダリングに伴う自転車・人の揺動が変化する。
自転車・人の揺動の横ゆれ方向の運動を表す、Lagrangeの運動方程式を数1に示す。
[数1]
Figure JPOXMLDOC01-appb-I000001

ここでqは一般化座標、左辺第一項は慣性項、左辺第二項は中心・コリオリ力項、左辺第三項は重力項とする。τは一般化力、Fcは拘束力であり、車輪の地面上への拘束、車輪の回転によるコリオリ力、ハンドルに乗せた運転者の手にかかる体重、足からペダルにかかる力、サドルに座った状態などにより生じる力の合力を表す項である。ハンドル上の両手が意識的又は無意識に揺動を抑える力を加えることで運動効率が低下する場合があるが、低下しないように自然な揺動が生じるのがポイントとなる。
限定的に2自由度倒立振り子としてモデル化した場合の式は特許文献2などに示されている。
The regular reciprocating motion of the car body due to pedaling loses regularity due to changes in cruising conditions (acceleration / deceleration) and changes in the road surface (corners / slopes). That is, at the timing when the driver is willing to accelerate or decelerate or when the road surface condition changes, the power required for pedaling increases or decreases, so that the swing of the bicycle / person accompanying pedaling changes.
Lagrange's equation of motion, which expresses the movement of a bicycle or person swinging in the horizontal direction, is shown in Equation 1.
[Equation 1]
Figure JPOXMLDOC01-appb-I000001

Here, q is a generalized coordinate, the first term on the left side is the inertia term, the second term on the left side is the center / Coriolis force term, and the third term on the left side is the gravity term. τ is generalization force, Fc is restraining force, restraining wheel on the ground, Coriolis force due to wheel rotation, weight on driver's hand on handle, force on foot from pedal, sitting on saddle This is a term that represents the resultant force of the force that is generated due to the state of contact. The efficiency of movement may be reduced by applying a force to consciously or unconsciously suppress the swinging of both hands on the handle, but the point is that natural swinging occurs so as not to decrease.
An expression in the case of modeling as a two-degree-of-freedom inverted pendulum limitedly is shown in Patent Document 2 and the like.
加速時や坂道での上り勾配が大きくなるタイミングでは、ペダリングに必要なパワーが増加し、人・車体の揺動が増す。逆に減速時や下り坂ではペダリングに必要なパワーが減少し、人・車体の揺動が減る。急コーナーではペダリングを停止するので、車体の往復運動は生じない。揺動指数の算出式を数2に示す。特許文献3の式15は数2でn=2、q=θとした場合に対応する。
[数2]
Figure JPOXMLDOC01-appb-I000002


ここでWq,i(s)、Wq^dot,i(s)は重み付け関数を表す(sはラプラス変換の変数)。重み付けは時定数(フィルタ)や各項毎の重み付けを含み、道路状況(勾配・舗装状況など)やペダリング状態(加・減速、ダンシングなど)によって変化する。舗装が石畳のように粗い状況では、高周波数成分を除去する。
変速動作のための評価関数ψを数3により定義する。
[数3]
Figure JPOXMLDOC01-appb-I000003


この式で、tは時間[second]、W1,W2,....Wnは時系列(又はq'ごと)データの重み付け関数とする。時間tの増加に従って、n=1,2....,と増加する。この評価関数ψと閾値(初期値又はユーザ設定値)により変速動作する。
At the time of acceleration or when the climbing slope on the slope increases, the power required for pedaling increases and the swing of the person and the vehicle increases. Conversely, when decelerating or downhill, the power required for pedaling is reduced and the swinging of the person / body is reduced. Since pedaling stops at a sharp corner, the vehicle does not reciprocate. The formula for calculating the swing index is shown in Equation 2. Equation 15 in Patent Document 3 corresponds to the case where n = 2 and q = θ in Equation 2.
[Equation 2]
Figure JPOXMLDOC01-appb-I000002


Here, Wq, i (s) and Wq ^ dot, i (s) represent weighting functions (s is a variable of Laplace transform). The weighting includes a time constant (filter) and weighting for each term, and changes depending on road conditions (gradient / paving conditions, etc.) and pedaling conditions (acceleration / deceleration, dancing, etc.). When the pavement is rough like a stone pavement, high frequency components are removed.
An evaluation function ψ for the speed change operation is defined by Equation 3.
[Equation 3]
Figure JPOXMLDOC01-appb-I000003


In this equation, t is a time [second], and W1, W2,... Wn are time series (or q ′) weighting functions. As the time t increases, n = 1, 2... A speed change operation is performed by this evaluation function ψ and a threshold value (initial value or user set value).
本発明では、自転車・人の揺動を測定し、その変化を捉えて自動的に変速を行うことができる。一定レベルの加速後にはリア側ギアのアップシフト(増速、前/後ギアの変速比が大になる)又は、リア側ギアのアップシフト相当のフロント側ギアとリア側ギアのシンクロシフト、一定レベルの減速後にはリア側ギアのダウンシフト(減速、前/後ギア比が小さくなる)又は、リア側ギアのダウンシフト相当のフロント側ギアとリア側ギアのシンクロシフトを行う。坂道で上り勾配が大きくなるタイミングや心拍が上がりきっている状況では、ペダリングに必要なパワーの変化を抑えるようにリア側ギアのダウンシフト又は、リア側ギアのダウンシフト相当のフロント側ギアとリア側ギアのシンクロシフトを行う。坂道で上り勾配が小さくなるタイミングや、下り坂では逆のシフトを行う。また、変速後にはギア比の変化によって漕ぎにくいクランク回転速度(ケイデンス)域が生じるが、電動アシスト車の場合には、この回転速度域で電動アシストを加えることで漕ぎやすくすることができる。 In the present invention, it is possible to automatically change gears by measuring the swing of a bicycle / person and capturing the change. After a certain level of acceleration, rear side gear upshift (speed increase, front / rear gear speed ratio becomes large) or front side gear and rear side gear synchro shift equivalent to rear side gear upshift, constant After decelerating the level, the rear side gear is downshifted (deceleration, the front / rear gear ratio becomes smaller), or the front side gear and the rear side gear are synchronously shifted corresponding to the rear side gear downshift. In situations where the uphill slope is large on the slope or the heart rate is rising, the rear side gear downshift or the rear side gear downshift equivalent to the rear side gear downshift and the rear side gear downshift to suppress changes in power required for pedaling. Perform side gear synchro shift. The reverse shift is performed at the timing when the ascending slope becomes smaller on the slope and on the downhill. In addition, a crank rotation speed (cadence) region that is difficult to row due to a change in gear ratio occurs after a shift, but in the case of an electrically assisted vehicle, it can be made easy to row by adding electric assist in this rotation speed region.
ダンシング(いわゆる立ち漕ぎ)時やスプリント時には効率よくペダリングする為に自転車のハンドルを少し振ることがある。これらの場合、手はハンドルを掴んでいる状態なので、手や指を変速スイッチの位置に移動することが難しくなる。本発明では、運転者の手や体・頭の動きを検出し、ダンシング時やスプリント時であっても自動的な変速を可能にする。ブレーキ時には自動的に変速して(一般にブレーキ時は前/後ギアの変速比を小さくする=ダウンシフト)、ブレーキ後の漕ぎだしをスムーズにする。また、急制動するとき、運転者はペダリングをストップする等の動きが生じるので、その運転者・自転車の動きから急制動の意志を検知して電動ブレーキ(オプション)を制御する。電動ブレーキによる制動と変速(減速、ダウンシフト)を同期することで、ブレーキ後のペダリングをスムーズにできる。 When dancing (so-called standing) or sprinting, the bicycle handle may be slightly swung to ensure efficient pedaling. In these cases, since the hand is holding the handle, it is difficult to move the hand or finger to the position of the shift switch. In the present invention, the movement of the driver's hand, body or head is detected, and automatic shifting is possible even during dancing or sprinting. Shifts automatically when braking (generally, the gear ratio of the front / rear gear is reduced during down-shifting = downshifting) to smooth the starting after braking. Further, when braking suddenly, the driver moves such as stopping pedaling. Therefore, the intention of sudden braking is detected from the movement of the driver / bicycle, and the electric brake (option) is controlled. By synchronizing braking with electric brakes and shifting (deceleration, downshift), pedaling after braking can be performed smoothly.
以下、本発明の実施の形態について図面を参照して説明する。
図1はジャイロスコープを装着した自転車と運転者を示す。
自転車・人の揺動を測定するには、最低一つのジャイロスコープが装着されていれば良いが、ハンドルと自転車フレームの間に可動部があることから、図1ではハンドルとフレームそれぞれにジャイロスコープを装着している。自転車の速度変化や方位角変化を捉えるために、加速度センサと3軸ジャイロスコープ(振動型ジャイロスコープ)を利用する。加えて、運転者の上体と頭部の動きを捉えるために、2つのジャイロスコープを装着する。またオプションとして、パワーメータとクランクの回転計を装着する。制御装置3内の信号処理部でセンサデータの処理を行い、制御部で前後ギアの変速信号を出力する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a bicycle and a driver wearing a gyroscope.
In order to measure the swing of a bicycle or person, it is sufficient that at least one gyroscope is attached. However, since there is a movable part between the handle and the bicycle frame, in FIG. Wearing. An acceleration sensor and a three-axis gyroscope (vibrating gyroscope) are used to capture changes in bicycle speed and azimuth angle. In addition, two gyroscopes are worn to capture the movement of the driver's upper body and head. As an option, a power meter and a crank tachometer are installed. The signal processing unit in the control device 3 processes the sensor data, and the control unit outputs shift signals for the front and rear gears.
加速度センサと振動型ジャイロスコープは小型化・低価格化(特にMEMS技術で製造)され、1パッケージで2軸さらには3軸における角速度・加速度を検出できる。加速度センサにより、加減速・勾配等も測定できる。閾値フィルタや統計に基づく評価関数により測定データを評価・利用する。デジタルフィルタ(IIRフィルタ等)や周波数分析(フーリエ変換)によりセンサの信号を解析する。 Accelerometers and vibratory gyroscopes are smaller and less expensive (especially manufactured with MEMS technology), and can detect angular velocities and accelerations in two or even three axes in one package. Acceleration / deceleration, gradient, etc. can be measured with an acceleration sensor. The measurement data is evaluated and used by a threshold filter or an evaluation function based on statistics. The sensor signal is analyzed by digital filter (IIR filter, etc.) or frequency analysis (Fourier transform).
またオプションとして、タッチパネルのようなセンサをハンドル上やフレーム・サドル・ペダルに装着し、センサに接触する手や体の動きを検知して変速操作や電動ブレーキ等の制御を行う。タッチパネルはハンドルや車体に合わせた曲面状のセンサが技術的に実現可能で、自転車の空力性能を維持したままセンサを装着できるメリットがある。 Also, as an option, a sensor such as a touch panel is attached to the handle, frame, saddle, or pedal, and the movement of the hand or body in contact with the sensor is detected to control the speed change operation or the electric brake. The touch panel can technically realize a curved sensor that matches the handle and the vehicle body, and has the advantage that the sensor can be mounted while maintaining the aerodynamic performance of the bicycle.
ジャイロスコープやタッチパネルで人間の動作を検出する場合、自転車の運動に伴う動きにより検出する場合と、ジェスチャーのように意図的に自転車・体を動かす動作を検出する場合がある。いずれの場合でも、センサ測定データにより変速操作や電動ブレーキ等の制御を行う。 When a human motion is detected by a gyroscope or a touch panel, there are a case where the motion is detected due to a motion of the bicycle and a case where a motion of the bicycle / body is intentionally detected like a gesture. In any case, the shift operation, the electric brake, and the like are controlled by the sensor measurement data.
揺動指数の算出式(数2)を簡単化した場合について、数4を例示する。
[数4]
Figure JPOXMLDOC01-appb-I000004


この式で、tを時間[second]として、θn^dotは時刻tでの角速度[radian/second]とする(図1に示すフレームの正立状態からの角度θの時間微分)。評価関数ψを数5のように表せる。
[数5]
Figure JPOXMLDOC01-appb-I000005


この式で、tは時間[second]、θはフレームの正立状態からの角度[radian]、W1,W2,....Wnは重み付け関数とする。数5のような簡単な評価関数により計算コストを抑えることで小型の携帯端末に実装することが可能になる。
評価関数ψを図2に例示する。この評価関数ψと閾値(初期値又はユーザ設定値)により自動変速する。図2では、揺動が小さいとき、つまり評価関数ψの値が小さく、自転車の揺動が小刻みになっているとき(=θの値も小さい)と、揺動が大きいときを「自動変速領域」として図示している。ψ(θ)の引き出し線がある曲線以外の曲線がEnの値であり、図の場合はn=1~4まで図示している。θ1~θ4、ψ0は閾値でありプリセット値/ユーザ設定値で与えられる。原点付近には自動変速しない領域を設定できる。数2の揺動の算出式・数3の評価関数ψの場合にも、その関数形に応じて、複数の「自動変速領域」を設定する。
Formula 4 is illustrated for the case where the calculation formula (Formula 2) of the swing index is simplified.
[Equation 4]
Figure JPOXMLDOC01-appb-I000004


In this equation, t is time [second], and θn ^ dot is angular velocity [radian / second] at time t (time differentiation of angle θ from the upright state of the frame shown in FIG. 1). The evaluation function ψ can be expressed as in Equation 5.
[Equation 5]
Figure JPOXMLDOC01-appb-I000005


In this equation, t is the time [second], θ is the angle [radian] from the upright state of the frame, and W1, W2,... Wn are weighting functions. It is possible to mount on a small portable terminal by suppressing the calculation cost by a simple evaluation function such as Equation 5.
The evaluation function ψ is illustrated in FIG. Automatic shift is performed by this evaluation function ψ and a threshold value (initial value or user set value). In FIG. 2, when the swing is small, that is, when the value of the evaluation function ψ is small and the swing of the bicycle is small (= θ is also small), and when the swing is large, “automatic shift range” ". A curve other than the curve having the lead line of ψ (θ) is the value of En, and in the case of the figure, n = 1 to 4 are illustrated. θ1 to θ4 and ψ0 are threshold values and are given as preset values / user set values. An area where automatic shifting is not possible can be set near the origin. Also in the case of Formula 2 swing calculation formula and Formula 3 evaluation function ψ, a plurality of “automatic shift regions” are set according to the function form.
この自動変速領域では、前/後ギア比を大きくする(足にかかる力は重く感じる)か、又はギア比を小さくするように変速する。ある走行状況でペダリングパワーがより必要な方向に変化しつつあるときは、ギア比を大きくし、逆にペダリングパワーを抑える方向に変化しつつあるときは、ギア比を小さくする。自転車の前後のギアとギア比の関係性、ギア比と動力伝達効率の関係性が非特許文献1に示されている。例えば、ヒルクライム時に心拍が上がりきっている状況で変速するときは、ペダリングパワーを抑える必要があるのでギア比が小さくなるように、前後のギアを同期して変速(ダウンシフト)する。また、スプリント時などに、ペダリングパワーがより必要な方向に変化し続けている状況では、ギア比が大きくなるように、前後のギアを同期して変速(アップシフト)する。 In this automatic shift region, the front / rear gear ratio is increased (the force applied to the foot feels heavy) or the gear ratio is decreased. The gear ratio is increased when the pedaling power is changing in a more necessary direction in a certain driving situation, and conversely, the gear ratio is reduced when the pedaling power is changing in the direction of suppressing the pedaling power. Non-Patent Document 1 shows the relationship between the front and rear gears of a bicycle and the gear ratio, and the relationship between the gear ratio and power transmission efficiency. For example, when shifting in a state where the heart rate is fully raised during hill climbing, it is necessary to suppress pedaling power, and therefore the gears before and after are shifted (downshifted) in synchronization so that the gear ratio becomes small. Further, when the pedaling power is continuously changing in a more necessary direction during sprinting or the like, the front and rear gears are shifted (upshifted) in synchronization so that the gear ratio is increased.
自転車の走行速度は、車速センサによる速度、GPS受信データによる速度のほか、ヨーレート(回頭速度)と曲率(ステアリング角度)と前進速度の関係から速度を求めることが出来る。この場合、ハンドルとフレームに取り付けたジャイロによりステアリング角とヨーレートを測定し、関係式から前進速度を求める。 The traveling speed of the bicycle can be determined from the relationship between the yaw rate (turning speed), curvature (steering angle), and forward speed, as well as the speed measured by the vehicle speed sensor and the GPS received data. In this case, the steering angle and the yaw rate are measured by a gyro attached to the steering wheel and the frame, and the forward speed is obtained from the relational expression.
シンクロ変速では、前後のギアの組み合わせにより、図3のようなギア比の乖離が生じる。本発明では、このギア比の乖離を単純に最小化するように前後のギアを組み合わせる場合だけでなく、ギア比の乖離が大きくなっても、走行状況(勾配等)によっては、より効率よくペダリングできるギア比を選択する。例えば、ヒルクライム時には動力伝達効率の良いギア比を変速マップから選択する。変速マップは自転車に装着した前ギアの段数と歯数、後ろギアの段数と歯数に対応して予め作成したデータによる。 In the synchronized shift, a gear ratio deviation as shown in FIG. 3 occurs depending on the combination of the front and rear gears. In the present invention, not only when the gear ratio divergence is combined so as to simply minimize the gear ratio divergence, but even when the gear ratio divergence increases, pedaling more efficiently depending on the driving situation (gradient, etc.). Select a possible gear ratio. For example, a gear ratio with good power transmission efficiency is selected from the shift map during hill climbing. The shift map is based on data created in advance corresponding to the number of gears and the number of teeth of the front gear and the number of gears and the number of teeth of the rear gear.
図4に制御装置内の信号処理部のフローチャートを示す。
加速度センサにより勾配等も測定する場合、シンクロ変速時に道路勾配に合わせたギアを選択する。上り勾配の時に平坦時と同じギア比にシンクロ変速すると(変速中はパワー出力が低下)、変速後に必要なペダリングパワーが大きくなるので、一つ分軽いギア比を変速マップから選択する。逆に下り勾配の時は平坦時と同じ又は一つ分重いギア比を選択する。
図5に制御装置内の制御処理部のフローチャートを示す。
FIG. 4 shows a flowchart of the signal processing unit in the control device.
When measuring the gradient etc. with the acceleration sensor, the gear matched to the road gradient is selected at the time of the sync shift. If the gear shift is synchronized to the same gear ratio as when flat when the vehicle is climbing up (power output decreases during the shift), the pedaling power required after the shift increases, so a gear ratio lighter by one is selected from the shift map. On the other hand, when the slope is down, the gear ratio that is the same as that at the time of flatness or one heavier is selected.
FIG. 5 shows a flowchart of the control processing unit in the control device.
自転車・人の揺動はアクションカメラのような車載カメラの映像を解析することでも測定できる。非特許文献2では、自動車の運動分析を車載カメラの映像とオプティカルフローの解析により行っている。図6に自転車の揺動のオプティカルフローの例を示す。直進時には画像の中心付近に消失点があり、揺動による画素の動きベクトルv(行列)を矢印で示す。数2のq,q^dotを行列vに置き換え揺動指数Eを算出する。障害物を検出した場合には電動ブレーキにより制動する。 Bicycle and human rocking can also be measured by analyzing video from an in-vehicle camera such as an action camera. In Non-Patent Document 2, the motion analysis of an automobile is performed by analyzing the image of an in-vehicle camera and the optical flow. FIG. 6 shows an example of the optical flow of swinging the bicycle. When going straight, there is a vanishing point near the center of the image, and the motion vector v (matrix) of the pixel due to rocking is indicated by an arrow. The rocking index E is calculated by replacing q and q ^ dot in Equation 2 with the matrix v. When an obstacle is detected, braking is performed by an electric brake.
パワーメータを装着する場合、パワー出力を走行状況の一種のデータとして、変速ギアの選択に利用できる。例えば300W(ワット)で走行時に自動変速する場合、一般的なサイクリストの上限負荷に近いので、パワー出力を抑える方向にダウンシフトする。この閾値(勾配や風向など走行状況による。300Wなど)はプリセット値又はユーザ設定による。 When the power meter is attached, the power output can be used as a kind of data on the driving situation for selecting the transmission gear. For example, when automatically shifting at 300W (Watt), it is close to the upper limit load of a general cyclist. This threshold value (depending on driving conditions such as gradient and wind direction; 300W, etc.) depends on preset values or user settings.
オプションとして、タッチパネルのようなセンサをハンドル上に設置する場合(図7)、タッチパネル上の手・指の動きにより変速の意志を読み取ることが出来る。タッチパネル上の手・指の位置を左右に対応してp1, p2とすると、数2のq,q^dotをp1, p2に置き換え、数6を次式のように表せる。
[数6]
Figure JPOXMLDOC01-appb-I000006


数6からタッチ操作する場合の揺動指数Eを算出する。
As an option, when a sensor such as a touch panel is installed on the handle (FIG. 7), the intention of shifting can be read by the movement of the hand / finger on the touch panel. If the position of the hand / finger on the touch panel is p1 and p2 corresponding to the left and right, q and q ^ dot in Equation 2 can be replaced with p1 and p2, and Equation 6 can be expressed as follows.
[Equation 6]
Figure JPOXMLDOC01-appb-I000006


The rocking index E for the touch operation is calculated from Equation 6.
本発明の産業上の利用可能性は、自転車の変速制御の自動化に役立つ。 The industrial applicability of the present invention is useful for automating bicycle shift control.
自転車と各種センサ、運転者の関係を示す図である。It is a figure which shows the relationship between a bicycle, various sensors, and a driver | operator. 揺動指数と評価関数・変速の閾値の関係を示す図である。It is a figure which shows the relationship between a rocking | fluctuation index | exponent, the evaluation function, and the threshold value of a transmission. 変速マップの例を示す図である。It is a figure which shows the example of a transmission map. 変速の自動化のための信号処理方法を説明するフローチャートである。It is a flowchart explaining the signal processing method for automation of gear shifting. 制御部における処理を説明するフローチャートである。It is a flowchart explaining the process in a control part. 自転車の揺動のオプティカルフローの例を示す図である。It is a figure which shows the example of the optical flow of the rocking | fluctuation of a bicycle. タッチセンサと運転者の関係を示す図である。It is a figure which shows the relationship between a touch sensor and a driver | operator.
 1:車体 
 21、22,23:ジャイロセンサ
 3:制御装置
 4:クランク回転計
 5:速度計
 61、62:パワーメータ
 7:心拍計
 11:前ギア
 12:後ギア
1: Body
21, 22, 23: Gyro sensor 3: Control device 4: Crank tachometer 5: Speedometer 61, 62: Power meter 7: Heart rate monitor 11: Front gear 12: Rear gear
米国特許第7900946号明細書US Patent No. 7900946 特開2012-164061「軌道計画方法、軌道制御方法、軌道計画システム及び軌道計画・制御システム」JP 2012-164061 "Track Planning Method, Track Control Method, Track Planning System, and Track Planning / Control System" 特開2011-068216 「全方向移動車両の制御装置」JP 2011-068216 "Control device for omnidirectional vehicle"

Claims (6)

  1. 自転車の変速機を制御する装置であって、
    運転者と自転車の両方、またはいずれか一方の動作を検出するセンサ部と、
    前記センサ部で検出した前記動作から、変速を判断する信号処理部と、
    前記信号処理部における変速の判断データに基づいて前記変速機を作動させる制御部と、
    を備えることを特徴とする制御装置。
    A device for controlling a bicycle transmission,
    A sensor that detects movement of both the driver and the bicycle, or either,
    A signal processing unit for determining a shift from the operation detected by the sensor unit;
    A control unit that operates the transmission based on shift determination data in the signal processing unit;
    A control device comprising:
  2. 請求項1の制御装置において、前記信号処理部における変速の判断データを表示部に送信する手段を備えることを特徴とする制御装置。 2. The control device according to claim 1, further comprising means for transmitting shift determination data in the signal processing unit to a display unit.
  3. 請求項1の制御装置において、車載コンピュータとの間で前記データを送信と受信の両方、またはいずれか一方をする手段を備えることを特徴とする制御装置。 2. The control apparatus according to claim 1, further comprising means for transmitting and / or receiving the data from / to a vehicle-mounted computer.
  4. 請求項1の制御装置において、複数の前記変速機を同期して作動させる手段を備えることを特徴とする制御装置。 2. The control device according to claim 1, further comprising means for operating the plurality of transmissions in synchronization.
  5. 請求項1の自転車は電動ブレーキを備え、前記センサ部で検出した前記動作から、前記電動ブレーキをかける手段を備えることを特徴とする制御装置。 The control apparatus according to claim 1, wherein the bicycle includes an electric brake, and includes means for applying the electric brake from the operation detected by the sensor unit.
  6. 請求項1の自転車は電動ブレーキを備え、前記センサ部で検出した前記動作から、前記電動ブレーキと前記変速機を同期して作動させる手段とを備えることを特徴とする制御装置。 2. The control apparatus according to claim 1, further comprising an electric brake, and means for operating the electric brake and the transmission in synchronization with each other based on the operation detected by the sensor unit.
PCT/JP2015/074630 2014-09-08 2015-08-31 Method and device for speed change control of a bicycle WO2016039197A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014182789 2014-09-08
JP2014-182789 2014-09-08

Publications (1)

Publication Number Publication Date
WO2016039197A1 true WO2016039197A1 (en) 2016-03-17

Family

ID=55458949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074630 WO2016039197A1 (en) 2014-09-08 2015-08-31 Method and device for speed change control of a bicycle

Country Status (1)

Country Link
WO (1) WO2016039197A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019098859A (en) * 2017-11-30 2019-06-24 株式会社シマノ Shift control device and electric shift system
JP2019206250A (en) * 2018-05-29 2019-12-05 株式会社シマノ Control unit for man-powered vehicle
JP2020006836A (en) * 2018-07-09 2020-01-16 株式会社シマノ Creation apparatus, component control apparatus, creation method, component control method, computer program, and learning model
EP3653475A1 (en) * 2018-11-19 2020-05-20 Conti Temic microelectronic GmbH Method for operating an assistance system of a bicycle
JP2021003998A (en) * 2019-06-27 2021-01-14 株式会社シマノ Control device for man-power driven vehicle
US11046392B2 (en) 2018-03-29 2021-06-29 Shimano Inc. Human-powered vehicle control device
JP2022105209A (en) * 2021-12-22 2022-07-12 フォックスコン インターコネクト テクノロジー リミテッド Wireless control system and electric bicycle including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001347981A (en) * 2000-06-08 2001-12-18 Yukihiro Kitazawa Automatic bicycle brake
JP2002053089A (en) * 2000-08-08 2002-02-19 Sansha Electric Mfg Co Ltd Transmission device for bicycle
JP2005096537A (en) * 2003-09-24 2005-04-14 Shimano Inc Shift controller for bicycle
JP2005104286A (en) * 2003-09-30 2005-04-21 Shimano Inc Electronic control device for bicycle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001347981A (en) * 2000-06-08 2001-12-18 Yukihiro Kitazawa Automatic bicycle brake
JP2002053089A (en) * 2000-08-08 2002-02-19 Sansha Electric Mfg Co Ltd Transmission device for bicycle
JP2005096537A (en) * 2003-09-24 2005-04-14 Shimano Inc Shift controller for bicycle
JP2005104286A (en) * 2003-09-30 2005-04-21 Shimano Inc Electronic control device for bicycle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAESU PUBLISHING CO., LTD: "MTB-yo Component mo Tsuini Dendoka XTR Di2 Tojo!", 31 May 2014 (2014-05-31), Retrieved from the Internet <URL:http://www.cyclesports.jp/articles/detail/29097> [retrieved on 20151215] *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019098859A (en) * 2017-11-30 2019-06-24 株式会社シマノ Shift control device and electric shift system
CN110001863A (en) * 2017-11-30 2019-07-12 株式会社岛野 Speed-change control device and electric shift system
US11498645B2 (en) 2017-11-30 2022-11-15 Shimano Inc. Shifting control device and electric shifting system
US11046392B2 (en) 2018-03-29 2021-06-29 Shimano Inc. Human-powered vehicle control device
JP2019206250A (en) * 2018-05-29 2019-12-05 株式会社シマノ Control unit for man-powered vehicle
JP7454606B2 (en) 2018-05-29 2024-03-22 株式会社シマノ Control device for human-powered vehicles
JP2022113793A (en) * 2018-05-29 2022-08-04 株式会社シマノ Control device for human-powered vehicle
JP7091147B2 (en) 2018-05-29 2022-06-27 株式会社シマノ Control device for human-powered vehicles
US11312442B2 (en) 2018-07-09 2022-04-26 Shimano Inc. Creation device, component control device, creation method, component control method, computer program and learning model
JP7007244B2 (en) 2018-07-09 2022-01-24 株式会社シマノ Creation device, component control device, creation method, component control method, computer program and learning model
JP2020006836A (en) * 2018-07-09 2020-01-16 株式会社シマノ Creation apparatus, component control apparatus, creation method, component control method, computer program, and learning model
EP3653475A1 (en) * 2018-11-19 2020-05-20 Conti Temic microelectronic GmbH Method for operating an assistance system of a bicycle
JP2021003998A (en) * 2019-06-27 2021-01-14 株式会社シマノ Control device for man-power driven vehicle
JP7285149B2 (en) 2019-06-27 2023-06-01 株式会社シマノ Control device for man-powered vehicles
US11840316B2 (en) 2019-06-27 2023-12-12 Shimano Inc. Control device for human-powered vehicle
JP2022105209A (en) * 2021-12-22 2022-07-12 フォックスコン インターコネクト テクノロジー リミテッド Wireless control system and electric bicycle including the same
JP7319428B2 (en) 2021-12-22 2023-08-01 フォックスコン インターコネクト テクノロジー リミテッド Radio control system and electric bicycle equipped with the same

Similar Documents

Publication Publication Date Title
WO2016039197A1 (en) Method and device for speed change control of a bicycle
US8941482B1 (en) Automating turn indication systems
TWI732913B (en) Control device for bicycle
JP5619957B2 (en) Rider characteristic determination device, saddle riding type vehicle equipped with the same, and rider characteristic determination method
TWI678313B (en) Electric assisted bicycle and drive system
US20190315433A1 (en) Electric assist system and electric assist vehicle
EP4035981A1 (en) Leaning vehicle data output apparatus
TWI764773B (en) Controls for bicycles
JP7068770B2 (en) Methods, systems, and vehicles for analyzing rider abilities
KR20170055161A (en) Apparatus and method for automatic steering control in vehicle
JP2017021519A (en) Operation evaluation device and navigation apparatus
CN109466624A (en) Driver assistance system
JP7369938B2 (en) Control device and map generation method
CN107250621B (en) The speed-change control device of automatic transmission
JP7280968B2 (en) Real-time information presentation control device for lean vehicle
JP7109142B2 (en) Straddle-type vehicle information processing device and straddle-type vehicle information processing method
JP5541170B2 (en) Friction circle radius deriving device
EP4108535A1 (en) Processing device, motorcycle, and processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15840034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP