WO2016039196A1 - Brake control device - Google Patents

Brake control device Download PDF

Info

Publication number
WO2016039196A1
WO2016039196A1 PCT/JP2015/074629 JP2015074629W WO2016039196A1 WO 2016039196 A1 WO2016039196 A1 WO 2016039196A1 JP 2015074629 W JP2015074629 W JP 2015074629W WO 2016039196 A1 WO2016039196 A1 WO 2016039196A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic pressure
master cylinder
wheel cylinder
pressure
control device
Prior art date
Application number
PCT/JP2015/074629
Other languages
French (fr)
Japanese (ja)
Inventor
淳 松岡
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2016039196A1 publication Critical patent/WO2016039196A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force

Definitions

  • the present invention relates to a brake control device.
  • Patent Document 1 discloses a brake control device that uses a hydraulic pressure source to suck in brake fluid in a master cylinder or a reservoir and discharges it to the wheel cylinder to increase the wheel cylinder hydraulic pressure.
  • the brake stiffness degree of increase in the wheel cylinder hydraulic pressure (hereinafter referred to as the brake stiffness) with respect to the amount of brake fluid supplied to the wheel cylinder side
  • the brake stiffness degree of increase in the wheel cylinder hydraulic pressure
  • the amount of brake fluid pumped out from the master cylinder side decreases and the stroke of the brake pedal
  • An object of the present invention is to avoid a plate stepping phenomenon in a brake control device and to achieve a good pedal feeling.
  • An object of the present invention is to provide a brake control device capable of avoiding a plate stepping phenomenon and achieving good pedal feeling.
  • the target wheel cylinder hydraulic pressure corresponding to the stroke set according to the operation stroke of the driver's brake pedal and the target wheel cylinder hydraulic pressure corresponding to the master cylinder hydraulic pressure set according to the master cylinder hydraulic pressure The target wheel cylinder hydraulic pressure is calculated, the brake fluid is sucked from the master cylinder by the pump, and the wheel cylinder hydraulic pressure is increased to achieve the target wheel cylinder hydraulic pressure.
  • FIG. 1 is a block diagram of a brake control device according to a first embodiment. It is a control block diagram showing the concept of target foil cylinder liquid pressure setting of the present invention.
  • FIG. 2 is a control block diagram showing a control configuration of brake assist control according to the first embodiment.
  • FIG. 7 is a block diagram of a brake control device according to a second embodiment.
  • FIG. 7 is a block diagram of a brake control device according to a third embodiment.
  • FIG. 16 is a control block diagram illustrating a control configuration of brake assist control according to a fourth embodiment.
  • FIG. 1 is a block diagram of a brake control device according to a first embodiment.
  • the fluid pressure control unit HU adjusts the braking force applied to each wheel of the vehicle, and based on the command from the brake control unit BCU, the wheel cylinder W / C (RL) of the left rear wheel and the wheel cylinder of the right front wheel
  • the fluid pressures of W / C (FR), wheel cylinder W / C (FL) of the left front wheel, and wheel cylinder W / C (RR) of the right rear wheel are increased or decreased or held.
  • the fluid pressure control unit HU has a piping structure called X piping, which is composed of two systems of a P system and an S system.
  • the hydraulic control unit HU of the first embodiment uses a closed hydraulic circuit.
  • the “closed hydraulic circuit” refers to a hydraulic circuit that returns the brake fluid supplied to the wheel cylinder W / C to the reservoir tank RSV via the master cylinder M / C.
  • the "open hydraulic circuit” is a hydraulic circuit capable of returning the brake fluid supplied to the wheel cylinder W / C directly to the reservoir tank RSV without via the master cylinder M / C. It is said.
  • the brake pedal BP is connected to the master cylinder M / C via an input rod IR.
  • the pedal effort input to the brake pedal BP is boosted by the brake booster BB.
  • the brake booster BB has a negative pressure sensor 18 that detects a booster negative pressure.
  • Master cylinder M / C generates a brake fluid pressure boosted by brake booster BB.
  • the input rod IR has a stroke sensor 17 that detects the stroke amount of the brake pedal BP.
  • the wheel cylinder W / C (RL) of the left rear wheel RL and the wheel cylinder W / C (FR) of the right front wheel FR are connected to the S system, and the wheel cylinder W / C (left) of the left front wheel FL is connected to the P system. FL)
  • the wheel cylinder W / C (RR) of the right rear wheel RR is connected.
  • pumps PP and PS (hereinafter, sometimes collectively referred to as pump P) are provided in the P system and the S system.
  • the pumps PP and PS are driven by one motor M.
  • the motor M controls the motor rotational speed according to a desired drive amount.
  • the pumps PP and PS are plunger pumps. In addition, it may replace with a plunger pump and may employ
  • the conduit 2S branches into the conduits 2RL and 2FR, the conduit 2RL is connected to the wheel cylinder W / C (RL), and the conduit 2FR is connected to the wheel cylinder W / C (FR).
  • the conduit 2P branches into the conduits 2FL and 2RR, the conduit 2FL is connected to the wheel cylinder W / C (FL), and the conduit 2RR is connected to the wheel cylinder W / C (RR).
  • a gate-out valve 3 which is a normally open proportional control valve.
  • a master cylinder hydraulic pressure sensor 40 for detecting a master cylinder hydraulic pressure is provided at a position closer to the master cylinder than the gate out valve 3P of the pipeline 1P of the P system.
  • a pipe 4 is provided on the pipe 1 in parallel with the gate out valve 3.
  • a check valve 5 is provided on the conduit 4. The check valve 5 allows the flow of the brake fluid from the master cylinder M / C to the wheel cylinder W / C and prohibits the flow in the opposite direction.
  • a solenoid-in valve 6, which is a normally open proportional control valve corresponding to each wheel cylinder W / C, is provided on the conduit 2.
  • a pipeline 7 is provided on the pipeline 2 in parallel with the solenoid-in valve 6.
  • a check valve 8 is provided on the conduit 7. The check valve 8 permits the flow of brake fluid in the direction from the wheel cylinder W / C to the master cylinder M / C, and prohibits the flow in the opposite direction.
  • a discharge valve 10 is provided on the conduit 9.
  • the discharge valve 10 allows the flow of the brake fluid in the direction from the pump P toward the conduit 2 and prohibits the flow in the opposite direction.
  • the position on the master cylinder side of the gate-out valve 3 of the conduit 1 and the suction side of the pump P are connected by the conduit 11 and the conduit 12.
  • a pressure control reservoir 13 is provided between the conduit 11 and the conduit 12. A position closer to the wheel cylinder than the solenoid in valve 6 of the pipe line 2 and the pressure control reservoir 13 are connected by a pipe line 14.
  • the conduit 14S branches into the conduits 14RL and 14FR, and the conduit 14P branches into the conduits 14FL and 14RR and is connected to the corresponding wheel cylinder W / C.
  • the pressure control reservoir 13 is provided with a pressure sensitive check valve 16.
  • the check valve 16 prohibits the brake fluid from flowing into the pressure control reservoir 13 when the pressure in the conduit 11 becomes a high pressure exceeding a predetermined pressure, whereby a high pressure is applied to the suction side of the pump P To prevent
  • the check valve 16 is opened regardless of the pressure in the pipe line 11 when the pump P operates and the pressure in the pipe line 12 is lowered, and the pressure of the brake fluid in the pressure control reservoir 13 is reduced. Allow inflow.
  • ABS control The brake control unit BCU performs antilock brake (ABS) control as brake control.
  • ABS control detects that the wheel has a tendency to lock during the driver's brake operation, the wheel cylinder hydraulic pressure is reduced, maintained, increased to prevent maximum lock while preventing lock of the wheel. It is control which repeats pressure.
  • ABS pressure reduction control the solenoid in valve 6 is closed and the solenoid out valve 15 is opened from the state of FIG. 1 to release the brake fluid of the wheel cylinder W / C to the pressure control reservoir 13 to reduce the wheel cylinder hydraulic pressure.
  • ABS holding control the wheel cylinder hydraulic pressure is held by closing the solenoid in valve 6 and the solenoid out valve 15 together.
  • the solenoid in valve 6 is controlled in the opening direction and the solenoid out valve 15 is closed, and the wheel cylinder hydraulic pressure is increased by supplying the brake fluid from the master cylinder M / C to the wheel cylinder W / C.
  • the hydraulic control unit HU of the first embodiment operates the respective valves and the pump P as brake control to detect that the oversteer tendency or the understeer tendency has become stronger at the time of turning of the vehicle.
  • Vehicle behavior stabilization control to control the wheel cylinder fluid pressure of the wheel to stabilize the vehicle behavior, the wheel cylinder W / C generates a pressure higher than the pressure actually generated by the master cylinder M / C when the driver operates the brake It is possible to implement automatic brake control such as control for automatically generating a braking force according to the relative relationship with the preceding vehicle by brake assist control and auto cruise control.
  • the brake control unit BCU uses signals from other vehicle sensors (wheel speed sensor, steering angle sensor, yaw rate sensor, lateral acceleration sensor, etc.) in addition to the master cylinder hydraulic pressure sensor 40 and the stroke sensor 17. A target fluid pressure of the wheel cylinder W / C is generated on the basis of this. Then, the respective valves of the hydraulic control unit HU and the motor M are driven such that the wheel cylinder hydraulic pressure matches the target hydraulic pressure. The motor M, the gate out valve 3 and the solenoid in valve 6 perform PWM control at a fixed control cycle. The solenoid out valve 15 is on / off controlled.
  • the brake control unit BCU has a motor drive unit 20 that drives the motor M.
  • the brake assist control of the first embodiment will be described.
  • the negative pressure of the engine has tended to decrease from the viewpoint of improving fuel consumption. Therefore, a scene where the boosting function by the brake booster BB can not be sufficiently secured is assumed. Therefore, there is expected a brake assist control that drives the pump P in accordance with the driver's brake pedal operation state and compensates for the decrease in the boosting function by the brake booster BB.
  • the gate out valve 3 is closed (or closed with an electromagnetic force that generates a necessary differential pressure by balance control), and controlled so as to overcome the electromagnetic force and open when the required differential pressure is exceeded.
  • the brake fluid in the master cylinder M / C is pumped up by the pump P and supplied to the wheel cylinder W / C. This secures the stroke when the driver depresses the brake pedal and assists the brake pedal operating force.
  • the pressure in the conduit 12 is lowered and the check valve 16 is automatically opened regardless of the pressure in the conduit 11 and the master cylinder M is opened via the pressure control reservoir 13.
  • the brake fluid flows into the suction side of the pump P from C / C.
  • movement of the brake fluid occurs from the master cylinder M / C side to the wheel cylinder W / C side.
  • the target wheel cylinder hydraulic pressure is calculated according to the stroke amount of the brake pedal and the pump P is operated.
  • a target wheel cylinder is set according to a certain stroke amount and the pump P is driven, it is possible to generate a wheel cylinder pressure according to the stroke amount.
  • the brake stiffness between the fluid pressure control unit HU and the wheel cylinder W / C can not be said to be constant due to manufacturing variations or aging. For example, when the brake stiffness is low, it is necessary to pump a large amount of brake fluid from the master cylinder M / C in order to achieve the target wheel cylinder hydraulic pressure.
  • the brake pedal BP may be inhaled and an excessive stroke may occur, so that the driver's braking intention can not be accurately reflected, and the pedal feeling may be deteriorated.
  • the brake stiffness is high, the amount of brake fluid pumped up from the master cylinder M / C to achieve the target wheel cylinder hydraulic pressure is small. In this case, the brake fluid in the master cylinder M / C does not decrease, and there is a possibility that a plate depression phenomenon that the stroke of the brake pedal BP can not be secured may occur, and the driver's braking intention can not be accurately reflected. Deterioration is a concern.
  • the master cylinder hydraulic pressure correspondence based on the master cylinder hydraulic pressure Pmc.
  • FIG. 2 is a control block diagram showing the concept of target wheel cylinder hydraulic pressure setting according to the present invention.
  • the stroke-corresponding target wheel cylinder hydraulic pressure calculation unit 101 calculates a stroke-corresponding target wheel cylinder hydraulic pressure P1 * corresponding to the stroke amount STR detected by the stroke sensor 17.
  • Master cylinder hydraulic pressure corresponding target wheel cylinder hydraulic pressure calculation unit 102 multiplies master cylinder hydraulic pressure Pmc detected by master cylinder hydraulic pressure sensor 40 by a conversion coefficient K to obtain master cylinder hydraulic pressure corresponding target wheel cylinder hydraulic pressure P2 *
  • the target wheel cylinder hydraulic pressure calculation unit 103 calculates the final target wheel cylinder hydraulic pressure P * by adding the target wheel cylinder hydraulic pressure P1 * for the stroke and the target wheel cylinder P2 * for the master cylinder hydraulic pressure.
  • the target wheel cylinder hydraulic pressure P * is output to the motor control unit (motor drive unit) 20 in the brake control unit BCU, the pump P is driven by the motor M.
  • the motor control is not particularly limited as long as the existing motor control logic is used appropriately.
  • FIG. 3 is a control block diagram showing a control configuration of brake assist control according to the first embodiment.
  • the configuration shown in FIG. 3 takes into consideration the negative pressure of the brake booster BB in applying the concept shown in FIG. 2 to an actual brake control device.
  • the stroke-corresponding target wheel cylinder hydraulic pressure calculation unit 201 calculates a stroke-corresponding target wheel cylinder hydraulic pressure P1 * corresponding to the stroke amount STR detected by the stroke sensor 17.
  • the target master cylinder hydraulic pressure calculation unit 202 the target master cylinder hydraulic pressure Pmc * becomes higher as the stroke amount STR detected by the stroke sensor 17 and the negative pressure of the brake booster BB detected by the negative pressure sensor 18 increase.
  • the deviation calculation unit 203 calculates a deviation ⁇ Pmc between the target master cylinder hydraulic pressure Pmc * and the master cylinder hydraulic pressure Pmc detected by the master cylinder hydraulic pressure sensor 40.
  • Master cylinder liquid pressure corresponding target wheel cylinder liquid pressure calculation unit 204 multiplies deviation ⁇ Pmc by conversion coefficient K1 to calculate master cylinder liquid pressure corresponding target wheel cylinder liquid pressure P2 *.
  • the target wheel cylinder hydraulic pressure calculation unit 205 adds the target wheel cylinder hydraulic pressure P1 * corresponding to the stroke and the target wheel cylinder hydraulic pressure P2 * corresponding to the master cylinder hydraulic pressure, and calculates the final target wheel cylinder hydraulic pressure P *. calculate.
  • the target wheel hydraulic pressure corresponding to master cylinder hydraulic pressure P2 * is small means that the deviation ⁇ Pmc between the target master cylinder hydraulic pressure Pmc * and the master cylinder hydraulic pressure Pmc becomes negative. That is, it is a case where it is necessary to raise master cylinder liquid pressure Pmc. In order to raise the master cylinder hydraulic pressure Pmc, it is necessary to weaken the action of pumping the brake fluid from the master cylinder M / C to the wheel cylinder W / C side by the pump P (or to stop the pump P).
  • the amount of subtraction from the target foil cylinder hydraulic pressure P1 * corresponding to the stroke becomes larger (the amount of addition becomes negative) as the target wheel cylinder hydraulic pressure P2 * corresponding to the master cylinder hydraulic pressure decreases.
  • the final target wheel cylinder hydraulic pressure P * becomes smaller, and the pressure increasing action by the pump P is weakened. Therefore, the phenomenon in which the brake pedal BP is sucked can be suppressed, and a good pedal feeling can be obtained.
  • the target wheel hydraulic pressure corresponding to master cylinder hydraulic pressure P2 * is large means that the deviation ⁇ Pmc between the target master cylinder hydraulic pressure Pmc * and the master cylinder hydraulic pressure Pmc is positive. That is, there is no need to raise the master cylinder hydraulic pressure Pmc so much.
  • the configuration is such that the addition amount to the stroke-corresponding target wheel cylinder hydraulic pressure P1 * is increased as the target wheel cylinder liquid pressure P2 * corresponding to the master cylinder hydraulic pressure is larger.
  • (1-1) Stroke sensor 17 (stroke calculation unit) that calculates the operation stroke of the driver's brake pedal, and master cylinder liquid pressure sensor 40 (master cylinder liquid pressure calculation that calculates the liquid pressure Pmc of the master cylinder M / C And a target wheel cylinder hydraulic pressure corresponding to the master cylinder hydraulic pressure set according to the stroke corresponding target wheel cylinder hydraulic pressure P1 * set according to the calculated operation stroke and the calculated master cylinder hydraulic pressure Pmc P2 * and a pump P that sucks in brake fluid from the master cylinder M / C and boosts the wheel cylinder hydraulic pressure so as to achieve target wheel cylinder hydraulic pressure, and the target wheel cylinder hydraulic pressure P * corresponds to the stroke
  • a brake control device which is calculated based on a target wheel cylinder hydraulic pressure P1 * and a target wheel hydraulic pressure corresponding to a master cylinder hydraulic pressure P2 *. Therefore, a good pedal feeling can be obtained.
  • the target wheel cylinder hydraulic pressure Pmc * corresponds to the target wheel cylinder hydraulic pressure P1 * corresponding to the stroke and the target wheel cylinder hydraulic pressure P2 * corresponding to the master cylinder hydraulic pressure.
  • the brake control apparatus characterized by adding and calculating (refer FIG. 2). Therefore, a good pedal feeling can be obtained.
  • the brake control device further including: a brake booster BB (booster) for amplifying a driver's brake pedal operation force; A brake control device (see FIG. 3), which is calculated based on the negative pressure (amplification characteristic) of S, the calculated stroke amount STR (operation stroke), and the calculated hydraulic pressure Pmc of the master cylinder.
  • a brake booster BB may be the negative pressure booster of the first embodiment, or may be an electromagnetic booster that assists the operating force of the brake pedal BP by electrical control.
  • an electromagnetic booster is employ
  • the brake booster BB is a negative pressure booster that amplifies the brake pedal operating force by using a negative pressure generated by an engine. Brake control device. Therefore, the present invention can be applied to a vehicle equipped with a negative pressure booster that is often mounted on existing vehicles. In addition, even when the negative pressure is unstable, a good pedal feeling can be obtained.
  • the brake control device further including: a brake booster BB (booster) for amplifying the brake pedal operation force of the driver, and the target wheel cylinder hydraulic pressure calculation unit 103
  • a brake control apparatus characterized by correcting a stroke-corresponding target wheel cylinder hydraulic pressure P1 * based on a negative pressure (amplification characteristic) of BB, a calculated stroke amount STR, and a calculated hydraulic pressure Pmc of a master cylinder. .
  • the brake booster BB may be the negative pressure booster of the first embodiment, or may be an electromagnetic booster that assists the operating force of the brake pedal BP by electrical control.
  • an electromagnetic booster is employ
  • the brake booster BB is a negative pressure booster that amplifies the brake pedal operating force by using the negative pressure generated by the engine. Brake control device. Therefore, the present invention can be applied to a vehicle equipped with a negative pressure booster that is often mounted on existing vehicles. In addition, even when the negative pressure is unstable, a good pedal feeling can be obtained.
  • the target wheel cylinder hydraulic pressure calculation unit 205 calculates the target master cylinder hydraulic pressure Pmc * with respect to the calculated stroke amount STR. Calculate (target master cylinder hydraulic pressure calculation unit 202), and correct the target wheel cylinder hydraulic pressure based on the difference between the calculated target master cylinder hydraulic pressure Pmc * and the calculated master cylinder hydraulic pressure Pmc (master cylinder hydraulic pressure A corresponding target wheel cylinder hydraulic pressure calculation unit 204). Therefore, the target wheel cylinder fluid pressure can be achieved while securing an appropriate master cylinder fluid pressure, and a good pedal feeling can be obtained.
  • the master cylinder hydraulic pressure control unit controls the target wheel cylinder hydraulic pressure calculation unit 205 to calculate the stroke amount STR and the master cylinder calculated.
  • Target wheel cylinder hydraulic pressure P * is corrected based on the hydraulic pressure Pmc of the target (target wheel cylinder hydraulic pressure correction unit), and the pump drive amount is determined so that the corrected target wheel cylinder hydraulic pressure P * is achieved.
  • a brake control device characterized by reducing master cylinder fluid pressure Pmc by sucking out brake fluid in a master cylinder. Therefore, the master cylinder hydraulic pressure Pmc can be reduced by enhancing the pressure increasing action of the pump P, and a good pedal feeling can be obtained while avoiding the plate stepping phenomenon.
  • the master cylinder hydraulic pressure control unit is configured to calculate the target wheel cylinder based on the calculated stroke amount STR and the calculated hydraulic pressure Pmc of the master cylinder.
  • the fluid pressure P * is corrected (corresponding to the target wheel cylinder fluid pressure calculation unit 205), and the corrected target wheel cylinder fluid pressure P * is set as the set target wheel cylinder fluid pressure, and the brake fluid in the master cylinder is sucked by the pump P
  • FIG. 4 is a block diagram of a brake control device according to a second embodiment.
  • the pressure control reservoir 13 provided with the check valve 16 was provided.
  • reservoirs 130S and 130P (hereinafter collectively referred to as a reservoir 130) not having the check valve 16 are provided, and a master cylinder M / C
  • gate-in valves 50S and 50P (hereinafter collectively referred to as gate-in valve 50) are provided on the pipe line 11 connecting the suction side of the pump P.
  • the gate-in valve 50 is a normally closed type that closes when not energized.
  • the first check valve 30S which allows the flow of the brake fluid from the reservoir 130 to the suction side of the pump P on the conduit 12 and prohibits the flow of the brake fluid from the suction side of the pump P to the reservoir 130 side
  • a second check valve disposed in series with the first check valve 30 between 30P hereinafter collectively referred to as the first check valve 30
  • the first check valve 30 disposed in series with the first check valve 30 between 30P
  • 31S and 31P hereinafter collectively referred to as the second check valve 31.
  • the conduit 11 is connected between the first check valve 30 and the second check valve 31. Even if the gate-in valve 50 is opened, the brake fluid does not flow into the reservoir 130 from the master cylinder M / C side. Is configured.
  • the gate-in valve 50 is opened, and the driving state of the pump P is controlled based on the target wheel cylinder hydraulic pressure P * and the target master cylinder hydraulic pressure Pmc * as in the first embodiment.
  • the solenoid out valve 15 is opened, and the wheel cylinder W / C is switched to the reservoir 130. Allow the brake fluid to drain.
  • the pipe line 14 (decompression oil path) connecting the wheel cylinder W / C and the reservoir 130 and the solenoid out valve provided in the pipe line 14
  • the master cylinder fluid pressure control unit opens the solenoid out valve 15 to reduce the wheel cylinder fluid pressure, and reduces the pressure in the master cylinder M / C to the wheel cylinder W / C that has been reduced in pressure. And a master cylinder hydraulic pressure Pmc is reduced. That is, by operating the solenoid out valve 15, a good pedal feeling can be obtained while avoiding the plate stepping phenomenon.
  • FIG. 5 is a block diagram of a brake control device according to a third embodiment.
  • the first check valve 30 is provided to prevent the brake fluid of the master cylinder M / C from flowing into the reservoir 130.
  • the point which eliminated the 1st check valve 30 differs.
  • the conduit 11 is connected to the conduit 12 closer to the reservoir 130 than the second check valve 31. Pipes on the pump P side from this connection point are suction oil path portions 12S1 and 12P1, and pipes on the reservoir 130 side from the connection point are pressure reduction oil path portions 12S2 and 12P2.
  • the brake fluid can be directly supplied from the master cylinder M / C to the reservoir 130, it is not necessary to open the solenoid out valve 15 as in the second embodiment.
  • the driving amount of the pump P is smaller than the driving amount according to the driver's brake pedal operation, and the master cylinder hydraulic pressure Pmc becomes high, the hydraulic pressure of the suction oil passage portions 12S1, 12P1 becomes high.
  • the brake fluid automatically flows into the reservoir 130 through the pressure reducing oil passage portions 12S2 and 12P2, and the pedal stroke can be secured. Therefore, the board stepping phenomenon can be suppressed.
  • the pipe line 1 (first oil path) connecting the master cylinder M / C and the wheel cylinder W / C and the pipe line 1 are branched
  • the conduit 11 (second oil passage) and the conduit 11 are provided with suction oil passage portions 12S1 and 12P1 connected to the pump P and pressure reducing oil passage portions 12S2 and 12P2 connected to the reservoir 130, and the inside of the master cylinder M / C
  • the brake control device is characterized in that the brake fluid is supplied to the pump P and the reservoir 130 by the pipe line 11.
  • the brake fluid in the master cylinder M / C automatically flows into the reservoir 130, so that the plate stepping phenomenon can be prevented.
  • FIG. 6 is a control block diagram showing a control configuration of brake assist control according to a fourth embodiment.
  • the brake assist control configuration of the fourth embodiment includes the storage device 301 formed of a non-volatile memory capable of retaining information even when the power is off.
  • the storage device 301 stores the signal from the ignition switch IGN, the stroke amount STR output from the stroke sensor 17, and the target wheel cylinder hydraulic pressure P * with respect to the stroke amount STR.
  • the stroke corresponding target wheel cylinder hydraulic pressure P1 * is corrected according to the negative pressure of the brake booster BB and the master cylinder hydraulic pressure Pmc, and the corrected final target wheel cylinder hydraulic pressure P * is calculated as the stroke amount STR And store it in correspondence.
  • the brake control device includes the storage device 301 (target wheel cylinder hydraulic pressure storage unit) for storing the calculated target wheel cylinder hydraulic pressure P *, and the pump P
  • the value stored only when the ignition switch IGN changes from OFF to ON is used. However, once correction control is performed, a predetermined change such as, for example, aging does not occur.
  • Control may be performed continuously using the value of the storage device 301 for a period (for a predetermined number of days or a predetermined travel distance).
  • the storage device 301 (target wheel cylinder hydraulic pressure storage unit) for storing the calculated target wheel cylinder hydraulic pressure P * is provided, and the target wheel cylinder A brake control device characterized in that the hydraulic pressure calculation unit 103 (assist amount correction unit) determines the drive amount of the pump P so as to be the target wheel cylinder hydraulic pressure stored after correction. Therefore, by using the stored target wheel cylinder hydraulic pressure, control can be performed without waiting for correction processing, and a decrease in control responsiveness can be suppressed.
  • A1 a brake control device, A stroke calculation unit that calculates an operation stroke of a driver's brake pedal; A master cylinder fluid pressure calculation unit that calculates the fluid pressure of the master cylinder; A stroke corresponding target wheel cylinder hydraulic pressure calculating unit that calculates a stroke corresponding target wheel cylinder hydraulic pressure according to the calculated operation stroke; A target wheel hydraulic pressure corresponding target wheel cylinder hydraulic pressure calculation unit for calculating a target wheel hydraulic pressure corresponding to the master cylinder hydraulic pressure according to the calculated master cylinder hydraulic pressure; A target wheel cylinder hydraulic pressure calculation unit that calculates a target wheel cylinder hydraulic pressure based on the stroke target wheel cylinder hydraulic pressure and the target cylinder hydraulic pressure corresponding to the master cylinder hydraulic pressure, and a pump are driven to generate the master cylinder.
  • a pump drive unit which sucks in the brake fluid from the pump by the pump and pressurizes the fluid pressure of the wheel cylinder so as to achieve the target wheel cylinder fluid pressure;
  • Brake control device comprising: (A2) In the brake control device according to (a1), The brake control device, wherein the target wheel cylinder hydraulic pressure calculation unit calculates the target wheel cylinder hydraulic pressure by adding the target wheel cylinder hydraulic pressure corresponding to the stroke and the target wheel cylinder hydraulic pressure corresponding to the master cylinder hydraulic pressure. .
  • a booster that amplifies the driver's brake pedal operation force is connected to the master cylinder,
  • the target cylinder hydraulic pressure corresponding target cylinder hydraulic pressure calculation unit for the master cylinder hydraulic pressure is the target corresponding to the master cylinder hydraulic pressure based on the amplification characteristic of the booster, the calculated operation stroke, and the calculated hydraulic pressure of the master cylinder.
  • a target wheel cylinder hydraulic pressure storage unit that stores the calculated operation stroke in correspondence with the calculated target wheel cylinder hydraulic pressure; The brake control device, wherein the pump drive unit increases the fluid pressure of the wheel cylinder so as to achieve the stored target wheel cylinder fluid pressure corresponding to the calculated operation stroke.
  • the brake control device wherein the target wheel cylinder hydraulic pressure storage unit is a non-volatile memory.
  • the hydraulic control unit further includes a hydraulic control unit that connects the wheel silider and the master cylinder, and the hydraulic control unit includes the pump.
  • a brake control device wherein the suction side of the pump is connected to the master cylinder via a pressure control reservoir including a pressure sensitive check valve, and the discharge side of the pump is connected to the wheel cylinder.
  • the target wheel cylinder hydraulic pressure corresponding to the master cylinder hydraulic pressure calculates a target master cylinder hydraulic pressure according to the calculated operation stroke, A pressure reducing oil passage connecting the wheel cylinder and the reservoir; A pressure reducing valve provided in the pressure reducing oil passage; When the calculated master cylinder fluid pressure becomes larger than the target master cylinder fluid pressure by a predetermined value or more, the pressure reducing valve is opened to reduce the wheel cylinder fluid pressure, and the wheel is decompressed from within the master cylinder And a master cylinder hydraulic pressure control unit that supplies brake fluid to a cylinder and reduces the master cylinder hydraulic pressure.
  • (A9) In the brake control device according to any one of (a1) to (a6), A first oil passage connecting the master cylinder and the wheel cylinder; And a second oil passage branched from the first oil passage, The second oil passage includes a suction oil passage connected to the pump and a pressure reduction oil passage connected to a reservoir.
  • the brake control device wherein the brake fluid in the master cylinder is supplied to the pump and the reservoir by the second oil passage.
  • A10 a brake control device, A pump that sucks in brake fluid from the master cylinder to increase the wheel cylinder fluid pressure; A stroke calculation unit that calculates an operation stroke of a driver's brake pedal; A master cylinder fluid pressure calculation unit that calculates the fluid pressure of the master cylinder; An assist amount calculation unit that calculates a basic assist amount for assisting the pressure increase of the wheel cylinder hydraulic pressure by the pump, and calculates the basic assist amount based on the calculated operation stroke; , A target wheel cylinder hydraulic pressure calculating unit that calculates a target wheel cylinder hydraulic pressure by correcting the basic assist amount based on the operation stroke and the calculated hydraulic pressure of the master cylinder; A pump drive unit configured to set a drive amount of the pump such that a fluid pressure of the wheel cylinder becomes the target wheel cylinder fluid pressure.
  • a booster that amplifies the driver's brake pedal operation force is connected to the master cylinder,
  • the target wheel cylinder hydraulic pressure calculation unit corrects the basic assist amount based on the amplification characteristic of the booster, the calculated operation stroke, and the calculated hydraulic pressure of the master cylinder.
  • the brake control device, wherein the booster is a negative pressure booster that amplifies the brake pedal operating force using a negative pressure generated by an engine.
  • the target wheel cylinder hydraulic pressure calculation unit calculates a target master cylinder hydraulic pressure for the calculated operation stroke, and based on the difference between the calculated target master cylinder hydraulic pressure and the calculated master cylinder hydraulic pressure.
  • a brake control device that corrects the assist amount and calculates the target wheel cylinder hydraulic pressure.
  • a target wheel cylinder hydraulic pressure storage unit that stores the calculated operation stroke in correspondence with the corrected target wheel cylinder hydraulic pressure;
  • the pump control unit determines the drive amount of the pump so that the fluid pressure of the wheel cylinder becomes the corresponding stored target wheel cylinder fluid pressure according to the calculated operation stroke.
  • the brake control device, wherein the target wheel cylinder hydraulic pressure storage unit is a non-volatile memory.
  • A16 a brake control device, A target wheel cylinder hydraulic pressure calculation unit that calculates an operation stroke of a driver's brake pedal and calculates a target wheel cylinder hydraulic pressure according to the calculated operation stroke;
  • a pump drive unit which drives a pump, sucks a brake fluid from the master cylinder by the pump, and increases the hydraulic pressure of the wheel cylinder so as to achieve the target wheel cylinder hydraulic pressure;
  • a master cylinder fluid pressure calculation unit that calculates the fluid pressure of the master cylinder;
  • a target master cylinder hydraulic pressure calculating unit that calculates a target master cylinder hydraulic pressure calculated based on the calculated operation stroke;
  • the drive amount of the pump is determined so that the fluid pressure of the wheel cylinder becomes the target wheel cylinder fluid pressure, and the master cylinder fluid calculated with respect to the target master cylinder fluid pressure during pressure increase by the pump
  • a master cylinder fluid pressure control unit that reduces the master cylinder fluid pressure when the pressure increases;
  • the brake control apparatus characterized by having.
  • the master cylinder hydraulic pressure control unit includes a target wheel cylinder hydraulic pressure correction unit that corrects the target wheel cylinder hydraulic pressure based on the calculated operation stroke and the calculated hydraulic pressure of the master cylinder.
  • the master cylinder fluid pressure control unit determines the driving amount of the pump so as to be the corrected target wheel cylinder fluid pressure, and sucks out the brake fluid in the master cylinder by the pump to thereby obtain the master cylinder fluid pressure.
  • a brake control unit that depressurizes.
  • the master cylinder hydraulic pressure control unit corrects the target wheel cylinder hydraulic pressure based on the calculated operation stroke and the calculated hydraulic pressure of the master cylinder, and the hydraulic pressure of the wheel cylinder is corrected after the correction.
  • a brake control device wherein a drive amount of the pump is determined so as to reach a target wheel cylinder hydraulic pressure, and brake fluid in the master cylinder is drawn by the pump to reduce the master cylinder hydraulic pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

A brake control device calculates a target wheel cylinder fluid pressure on the basis of a stroke-corresponding target wheel cylinder fluid pressure that is set in correspondence to the operation stroke of the brake pedal by the driver, and a master cylinder fluid pressure-corresponding target wheel cylinder fluid pressure that is set in correspondence to a master cylinder fluid pressure, suctions brake fluid from a master cylinder using a pump, and increases the wheel cylinder fluid pressure so as to achieve the target wheel cylinder fluid pressure.

Description

ブレーキ制御装置Brake control device
 本発明は、ブレーキ制御装置に関する。 The present invention relates to a brake control device.
 特許文献1には、マスタシリンダまたはリザーバ内のブレーキ液を液圧源で吸入し、ホイルシリンダへ吐出することでホイルシリンダ液圧を増圧するブレーキ制御装置が開示されている。 Patent Document 1 discloses a brake control device that uses a hydraulic pressure source to suck in brake fluid in a master cylinder or a reservoir and discharges it to the wheel cylinder to increase the wheel cylinder hydraulic pressure.
特開平10-329678号公報Japanese Patent Application Laid-Open No. 10-329678
 しかしながら、ホイルシリンダ側へ供給するブレーキ液量に対するホイルシリンダ液圧の上昇度合い(以下、ブレーキ剛性と記載する。)が高いと、マスタシリンダ側から汲み出すブレーキ液量が減少し、ブレーキペダルのストロークが制限される板踏み現象が発生するおそれがあった。 However, if the degree of increase in the wheel cylinder hydraulic pressure (hereinafter referred to as the brake stiffness) with respect to the amount of brake fluid supplied to the wheel cylinder side is high, the amount of brake fluid pumped out from the master cylinder side decreases and the stroke of the brake pedal There is a possibility that the board stepping phenomenon in which the
  本発明の目的は、ブレーキ制御装置において、板踏み現象を回避し、良好なペダルフィーリングを達成可能とすることにある。
  本発明の目的は、板踏み現象を回避し、良好なペダルフィーリングを達成可能なブレーキ制御装置を提供することにある。
An object of the present invention is to avoid a plate stepping phenomenon in a brake control device and to achieve a good pedal feeling.
An object of the present invention is to provide a brake control device capable of avoiding a plate stepping phenomenon and achieving good pedal feeling.
 本発明では、運転者のブレーキペダルの操作ストロークに応じて設定されるストローク対応目標ホイルシリンダ液圧と、マスタシリンダ液圧に応じて設定されるマスタシリンダ液圧対応目標ホイルシリンダ液圧とに基づき目標ホイルシリンダ液圧を算出し、ポンプによってマスタシリンダからブレーキ液を吸入し、目標ホイルシリンダ液圧となるようにホイルシリンダ液圧を増圧することとした。 In the present invention, the target wheel cylinder hydraulic pressure corresponding to the stroke set according to the operation stroke of the driver's brake pedal and the target wheel cylinder hydraulic pressure corresponding to the master cylinder hydraulic pressure set according to the master cylinder hydraulic pressure The target wheel cylinder hydraulic pressure is calculated, the brake fluid is sucked from the master cylinder by the pump, and the wheel cylinder hydraulic pressure is increased to achieve the target wheel cylinder hydraulic pressure.
実施例1のブレーキ制御装置の構成図である。FIG. 1 is a block diagram of a brake control device according to a first embodiment. 本発明の目標ホイルシリンダ液圧設定のコンセプトを表す制御ブロック図である。It is a control block diagram showing the concept of target foil cylinder liquid pressure setting of the present invention. 実施例1のブレーキアシスト制御の制御構成を表す制御ブロック図である。FIG. 2 is a control block diagram showing a control configuration of brake assist control according to the first embodiment. 実施例2のブレーキ制御装置の構成図である。FIG. 7 is a block diagram of a brake control device according to a second embodiment. 実施例3のブレーキ制御装置の構成図である。FIG. 7 is a block diagram of a brake control device according to a third embodiment. 実施例4のブレーキアシスト制御の制御構成を表す制御ブロック図である。FIG. 16 is a control block diagram illustrating a control configuration of brake assist control according to a fourth embodiment.
 〔実施例1〕
  図1は、実施例1のブレーキ制御装置の構成図である。液圧制御ユニットHUは、車両の各車輪に付与する制動力を調整するもので、ブレーキコントロールユニットBCUからの指令に基づき、左後輪のホイルシリンダW/C(RL)、右前輪のホイルシリンダW/C(FR)、左前輪のホイルシリンダW/C(FL)、右後輪のホイルシリンダW/C(RR)の各液圧を増減または保持する。
  液圧制御ユニットHUは、P系統とS系統との2系統からなる、X配管と呼ばれる配管構造を有している。X配管を採用することで、一方の配管系統が故障した場合であっても、他方の配管系統を用いて正常時の半分の制動力を発生させることができる。なお、図1に記載された各部位の符号の末尾に付けられたPはP系統、SはS系統を示し、RL,FR,FL,RRは左後輪、右前輪、左前輪、右後輪に対応することを示す。以下の説明では、P,S系統または各輪を区別しないとき、P,SまたはRL,FR,FL,RRの記載を省略する。
Example 1
FIG. 1 is a block diagram of a brake control device according to a first embodiment. The fluid pressure control unit HU adjusts the braking force applied to each wheel of the vehicle, and based on the command from the brake control unit BCU, the wheel cylinder W / C (RL) of the left rear wheel and the wheel cylinder of the right front wheel The fluid pressures of W / C (FR), wheel cylinder W / C (FL) of the left front wheel, and wheel cylinder W / C (RR) of the right rear wheel are increased or decreased or held.
The fluid pressure control unit HU has a piping structure called X piping, which is composed of two systems of a P system and an S system. By adopting the X piping, even if one of the piping systems fails, the other piping system can be used to generate half the braking force in the normal state. In addition, P attached to the end of the code of each part indicated in FIG. 1 shows P system, S shows S system, RL, FR, FL, RR show left rear wheel, right front wheel, left front wheel, right rear Indicates that it corresponds to the circle. In the following description, when the P, S systems or the respective wheels are not distinguished, the description of P, S or RL, FR, FL, RR is omitted.
 実施例1の液圧制御ユニットHUは、クローズド油圧回路を用いている。ここで、「クローズド油圧回路」とは、ホイルシリンダW/Cへ供給されたブレーキ液を、マスタシリンダM/Cを介してリザーバタンクRSVへと戻す油圧回路をいう。ちなみに、クローズド油圧回路に対し、ホイルシリンダW/Cへ供給されたブレーキ液を、マスタシリンダM/Cを介すことなく直接リザーバタンクRSVへ戻すことが可能な油圧回路を、「オープン油圧回路」という。
  ブレーキペダルBPは、インプットロッドIRを介してマスタシリンダM/Cに接続されている。ブレーキペダルBPへ入力されたペダル踏力は、ブレーキブースタBBによって倍力される。ブレーキブースタBBには、ブースタ負圧を検出する負圧センサ18を有する。マスタシリンダM/Cは、ブレーキブースタBBによって倍力されたブレーキ液圧を発生させる。インプットロッドIRには、ブレーキペダルBPのストローク量を検出するストロークセンサ17を有する。
  S系統には、左後輪RLのホイルシリンダW/C(RL)、右前輪FRのホイルシリンダW/C(FR)が接続され、P系統には、左前輪FLのホイルシリンダW/C(FL)、右後輪RRのホイルシリンダW/C(RR)が接続されている。また、P系統、S系統には、ポンプPP,PS(以下、総称してポンプPと記載することもある。)が設けられている。ポンプPP,PSは、1つのモータMにより駆動される。モータMは、所望の駆動量に応じてモータ回転数を制御する。また、ポンプPP,PSはプランジャポンプである。尚、プランジャポンプに代えて、ギヤポンプを採用してもよく、特に限定しない。
The hydraulic control unit HU of the first embodiment uses a closed hydraulic circuit. Here, the “closed hydraulic circuit” refers to a hydraulic circuit that returns the brake fluid supplied to the wheel cylinder W / C to the reservoir tank RSV via the master cylinder M / C. Incidentally, for the closed hydraulic circuit, the "open hydraulic circuit" is a hydraulic circuit capable of returning the brake fluid supplied to the wheel cylinder W / C directly to the reservoir tank RSV without via the master cylinder M / C. It is said.
The brake pedal BP is connected to the master cylinder M / C via an input rod IR. The pedal effort input to the brake pedal BP is boosted by the brake booster BB. The brake booster BB has a negative pressure sensor 18 that detects a booster negative pressure. Master cylinder M / C generates a brake fluid pressure boosted by brake booster BB. The input rod IR has a stroke sensor 17 that detects the stroke amount of the brake pedal BP.
The wheel cylinder W / C (RL) of the left rear wheel RL and the wheel cylinder W / C (FR) of the right front wheel FR are connected to the S system, and the wheel cylinder W / C (left) of the left front wheel FL is connected to the P system. FL) The wheel cylinder W / C (RR) of the right rear wheel RR is connected. Further, in the P system and the S system, pumps PP and PS (hereinafter, sometimes collectively referred to as pump P) are provided. The pumps PP and PS are driven by one motor M. The motor M controls the motor rotational speed according to a desired drive amount. The pumps PP and PS are plunger pumps. In addition, it may replace with a plunger pump and may employ | adopt a gear pump, and it does not specifically limit.
 マスタシリンダM/CとホイルシリンダW/Cは、管路1と管路2により接続される。管路2Sは、管路2RL,2FRに分岐し、管路2RLはホイルシリンダW/C(RL)と接続され、管路2FRはホイルシリンダW/C(FR)と接続される。管路2Pは、管路2FL,2RRに分岐し、管路2FLはホイルシリンダW/C(FL)と接続され、管路2RRはホイルシリンダW/C(RR)と接続される。
  管路1上には、常開型の比例制御弁であるゲートアウトバルブ3が設けられている。P系統の管路1Pのゲートアウトバルブ3Pよりもマスタシリンダ側の位置には、マスタシリンダ液圧を検出するマスタシリンダ液圧センサ40が設けられている。管路1上には、ゲートアウトバルブ3と並列に管路4が設けられている。管路4上には、チェックバルブ5が設けられている。チェックバルブ5は、マスタシリンダM/CからホイルシリンダW/Cへ向かうブレーキ液の流れを許容し、反対方向の流れを禁止する。
  管路2上には、各ホイルシリンダW/Cに対応する常開型の比例制御弁であるソレノイドインバルブ6が設けられている。管路2上には、ソレノイドインバルブ6と並列に管路7が設けられている。管路7上には、チェックバルブ8が設けられている。チェックバルブ8は、ホイルシリンダW/CからマスタシリンダM/Cへ向かう方向へのブレーキ液の流れを許容し、反対方向の流れを禁止する。
Master cylinder M / C and wheel cylinder W / C are connected by pipe line 1 and pipe line 2. The conduit 2S branches into the conduits 2RL and 2FR, the conduit 2RL is connected to the wheel cylinder W / C (RL), and the conduit 2FR is connected to the wheel cylinder W / C (FR). The conduit 2P branches into the conduits 2FL and 2RR, the conduit 2FL is connected to the wheel cylinder W / C (FL), and the conduit 2RR is connected to the wheel cylinder W / C (RR).
On the conduit 1 is provided a gate-out valve 3 which is a normally open proportional control valve. A master cylinder hydraulic pressure sensor 40 for detecting a master cylinder hydraulic pressure is provided at a position closer to the master cylinder than the gate out valve 3P of the pipeline 1P of the P system. A pipe 4 is provided on the pipe 1 in parallel with the gate out valve 3. A check valve 5 is provided on the conduit 4. The check valve 5 allows the flow of the brake fluid from the master cylinder M / C to the wheel cylinder W / C and prohibits the flow in the opposite direction.
A solenoid-in valve 6, which is a normally open proportional control valve corresponding to each wheel cylinder W / C, is provided on the conduit 2. A pipeline 7 is provided on the pipeline 2 in parallel with the solenoid-in valve 6. A check valve 8 is provided on the conduit 7. The check valve 8 permits the flow of brake fluid in the direction from the wheel cylinder W / C to the master cylinder M / C, and prohibits the flow in the opposite direction.
 ポンプPの吐出側と管路2とは、管路9により接続される。管路9上には、吐出バルブ10が設けられている。吐出バルブ10は、ポンプPから管路2へ向かう方向へのブレーキ液の流れを許容し、反対方向の流れを禁止する。
  管路1のゲートアウトバルブ3よりもマスタシリンダ側の位置と、ポンプPの吸入側とは、管路11と管路12により接続される。管路11と管路12との間には、調圧リザーバ13が設けられている。
  管路2のソレノイドインバルブ6よりもホイルシリンダ側の位置と調圧リザーバ13とは管路14により接続される。管路14Sは管路14RL,14FRに分岐し、管路14Pは管路14FL,14RRに分岐し、対応するホイルシリンダW/Cと接続される。
  管路14上には、常閉型の電磁弁であるソレノイドアウトバルブ15が設けられている。
  調圧リザーバ13は、圧力感応型のチェックバルブ16を備える。チェックバルブ16は、管路11内の圧力が所定圧を超える高圧となった場合、調圧リザーバ13内へのブレーキ液の流入を禁止することで、ポンプPの吸入側に高圧が印加されるのを防止する。なお、チェックバルブ16は、ポンプPが作動して管路12内の圧力が低くなった場合には、管路11内の圧力にかかわらず開弁し、調圧リザーバ13内へのブレーキ液の流入を許容する。
The discharge side of the pump P and the pipe 2 are connected by a pipe 9. A discharge valve 10 is provided on the conduit 9. The discharge valve 10 allows the flow of the brake fluid in the direction from the pump P toward the conduit 2 and prohibits the flow in the opposite direction.
The position on the master cylinder side of the gate-out valve 3 of the conduit 1 and the suction side of the pump P are connected by the conduit 11 and the conduit 12. A pressure control reservoir 13 is provided between the conduit 11 and the conduit 12.
A position closer to the wheel cylinder than the solenoid in valve 6 of the pipe line 2 and the pressure control reservoir 13 are connected by a pipe line 14. The conduit 14S branches into the conduits 14RL and 14FR, and the conduit 14P branches into the conduits 14FL and 14RR and is connected to the corresponding wheel cylinder W / C.
A solenoid-out valve 15, which is a normally closed solenoid valve, is provided on the conduit.
The pressure control reservoir 13 is provided with a pressure sensitive check valve 16. The check valve 16 prohibits the brake fluid from flowing into the pressure control reservoir 13 when the pressure in the conduit 11 becomes a high pressure exceeding a predetermined pressure, whereby a high pressure is applied to the suction side of the pump P To prevent The check valve 16 is opened regardless of the pressure in the pipe line 11 when the pump P operates and the pressure in the pipe line 12 is lowered, and the pressure of the brake fluid in the pressure control reservoir 13 is reduced. Allow inflow.
 [ブレーキ制御]
  ブレーキコントロールユニットBCUは、ブレーキ制御として、アンチロックブレーキ(ABS)制御を実施する。ABS制御は、ドライバのブレーキ操作時に車輪がロック傾向になったことを検知すると、当該車輪に対し、ロックを防止しつつ最大の制動力を発生させるためにホイルシリンダ液圧の減圧、保持、増圧を繰り返す制御である。ABS減圧制御時には、図1の状態からソレノイドインバルブ6を閉じると共にソレノイドアウトバルブ15を開き、ホイルシリンダW/Cのブレーキ液を調圧リザーバ13に逃がすことでホイルシリンダ液圧を低下させる。ABS保持制御では、ソレノイドインバルブ6およびソレノイドアウトバルブ15を共に閉じることでホイルシリンダ液圧を保持する。ABS増圧制御では、ソレノイドインバルブ6を開方向へ制御すると共にソレノイドアウトバルブ15を閉じ、マスタシリンダM/Cからブレーキ液をホイルシリンダW/Cへ供給することでホイルシリンダ液圧を増加させる。
  また、実施例1の液圧制御ユニットHUは、ブレーキ制御として、各バルブおよびポンプPを作動させることにより、車両旋回時にオーバーステア傾向やアンダーステア傾向が強くなったことを検出すると、所定の制御対象輪のホイルシリンダ液圧を制御して車両挙動安定化を図る車両挙動安定制御、ドライバのブレーキ操作時に実際にマスタシリンダM/Cで発生する圧力よりも高い圧力をホイルシリンダW/Cで発生させるブレーキアシスト制御、オートクルーズコントロールにより先行車との相対関係に応じて自動的に制動力を発生させる制御等の自動ブレーキ制御を実施可能である。
[Brake control]
The brake control unit BCU performs antilock brake (ABS) control as brake control. When ABS control detects that the wheel has a tendency to lock during the driver's brake operation, the wheel cylinder hydraulic pressure is reduced, maintained, increased to prevent maximum lock while preventing lock of the wheel. It is control which repeats pressure. At the time of ABS pressure reduction control, the solenoid in valve 6 is closed and the solenoid out valve 15 is opened from the state of FIG. 1 to release the brake fluid of the wheel cylinder W / C to the pressure control reservoir 13 to reduce the wheel cylinder hydraulic pressure. In the ABS holding control, the wheel cylinder hydraulic pressure is held by closing the solenoid in valve 6 and the solenoid out valve 15 together. In the ABS pressure increase control, the solenoid in valve 6 is controlled in the opening direction and the solenoid out valve 15 is closed, and the wheel cylinder hydraulic pressure is increased by supplying the brake fluid from the master cylinder M / C to the wheel cylinder W / C. .
Further, the hydraulic control unit HU of the first embodiment operates the respective valves and the pump P as brake control to detect that the oversteer tendency or the understeer tendency has become stronger at the time of turning of the vehicle. Vehicle behavior stabilization control to control the wheel cylinder fluid pressure of the wheel to stabilize the vehicle behavior, the wheel cylinder W / C generates a pressure higher than the pressure actually generated by the master cylinder M / C when the driver operates the brake It is possible to implement automatic brake control such as control for automatically generating a braking force according to the relative relationship with the preceding vehicle by brake assist control and auto cruise control.
 ブレーキコントロールユニットBCUは、上記各ブレーキ制御において、マスタシリンダ液圧センサ40やストロークセンサ17に加え、他の車載センサ(車輪速センサ、操舵角センサ、ヨーレイトセンサ、横加速度センサ等)からの信号に基づいてホイルシリンダW/Cの目標液圧を生成する。そして、ホイルシリンダ液圧が目標液圧と一致するように、液圧制御ユニットHUの各バルブおよびモータMを駆動する。モータMとゲートアウトバルブ3とソレノイドインバルブ6は一定の制御周期でPWM制御する。ソレノイドアウトバルブ15はON/OFF制御する。ブレーキコントロールユニットBCUは、モータMを駆動するモータ駆動部20を有する。 In each brake control, the brake control unit BCU uses signals from other vehicle sensors (wheel speed sensor, steering angle sensor, yaw rate sensor, lateral acceleration sensor, etc.) in addition to the master cylinder hydraulic pressure sensor 40 and the stroke sensor 17. A target fluid pressure of the wheel cylinder W / C is generated on the basis of this. Then, the respective valves of the hydraulic control unit HU and the motor M are driven such that the wheel cylinder hydraulic pressure matches the target hydraulic pressure. The motor M, the gate out valve 3 and the solenoid in valve 6 perform PWM control at a fixed control cycle. The solenoid out valve 15 is on / off controlled. The brake control unit BCU has a motor drive unit 20 that drives the motor M.
 (ブレーキアシスト制御について) 次に、実施例1のブレーキアシスト制御について説明する。近年、燃費向上の観点からエンジンの負圧が低下傾向にある。よって、ブレーキブースタBBによる倍力機能が十分に確保できない場面が想定される。そこで、運転者のブレーキペダル操作状態に応じてポンプPを駆動し、ブレーキブースタBBによる倍力機能の低下を補うブレーキアシスト制御が期待されている。ブレーキアシスト制御では、ゲートアウトバルブ3を閉じ(もしくは、釣合制御によって必要な差圧を発生させる電磁力で閉弁し、必要な差圧以上となると電磁力に打ち勝って開弁するように制御する。)、マスタシリンダM/C内のブレーキ液をポンプPにより汲み上げ、ホイルシリンダW/Cに供給する。これにより、運転者のブレーキペダル踏み込み時におけるストロークを確保すると共に、ブレーキペダル操作力をアシストする。尚、ポンプPが作動すると、管路12内の圧力が低くなることで管路11内の圧力にかかわらずチェックバルブ16は自動的に開弁し、調圧リザーバ13を経由してマスタシリンダM/CからポンプPの吸入側にブレーキ液が流れ込む。これにより、ブレーキアシスト制御時には、マスタシリンダM/C側からホイルシリンダW/C側にブレーキ液の移動が生じる。 (Regarding Brake Assist Control) Next, the brake assist control of the first embodiment will be described. In recent years, the negative pressure of the engine has tended to decrease from the viewpoint of improving fuel consumption. Therefore, a scene where the boosting function by the brake booster BB can not be sufficiently secured is assumed. Therefore, there is expected a brake assist control that drives the pump P in accordance with the driver's brake pedal operation state and compensates for the decrease in the boosting function by the brake booster BB. In the brake assist control, the gate out valve 3 is closed (or closed with an electromagnetic force that generates a necessary differential pressure by balance control), and controlled so as to overcome the electromagnetic force and open when the required differential pressure is exceeded. And the brake fluid in the master cylinder M / C is pumped up by the pump P and supplied to the wheel cylinder W / C. This secures the stroke when the driver depresses the brake pedal and assists the brake pedal operating force. When the pump P is operated, the pressure in the conduit 12 is lowered and the check valve 16 is automatically opened regardless of the pressure in the conduit 11 and the master cylinder M is opened via the pressure control reservoir 13. The brake fluid flows into the suction side of the pump P from C / C. Thus, during the brake assist control, movement of the brake fluid occurs from the master cylinder M / C side to the wheel cylinder W / C side.
 ここで、ブレーキペダルのストローク量に応じて目標ホイルシリンダ液圧を算出し、ポンプPを作動させる場合を想定する。あるストローク量に応じた目標ホイルシリンダを設定し、ポンプPを駆動すると、ストローク量に応じたホイルシリンダ圧を発生させることは可能である。しかし、液圧制御ユニットHUとホイルシリンダW/Cとの間のブレーキ剛性は、製造上のバラツキや、経年変化によって一定とは言えない。例えば、ブレーキ剛性が低い場合には、目標ホイルシリンダ液圧を達成するためにマスタシリンダM/Cから多くのブレーキ液を汲み上げる必要がある。この場合、ブレーキペダルBPが吸い込まれ、過剰なストロークが生じるおそれがあり、運転者の制動意図を正確に反映できず、ペダルフィーリングの悪化が懸念される。一方、ブレーキ剛性が高い場合には、目標ホイルシリンダ液圧を達成するためにマスタシリンダM/Cから汲み上げるブレーキ液が少ない。この場合、マスタシリンダM/C内のブレーキ液が減少せず、ブレーキペダルBPのストロークが確保できない板踏み現象が生じるおそれがあり、運転者の制動意図を正確に反映できず、ペダルフィーリングの悪化が懸念される。 Here, it is assumed that the target wheel cylinder hydraulic pressure is calculated according to the stroke amount of the brake pedal and the pump P is operated. When a target wheel cylinder is set according to a certain stroke amount and the pump P is driven, it is possible to generate a wheel cylinder pressure according to the stroke amount. However, the brake stiffness between the fluid pressure control unit HU and the wheel cylinder W / C can not be said to be constant due to manufacturing variations or aging. For example, when the brake stiffness is low, it is necessary to pump a large amount of brake fluid from the master cylinder M / C in order to achieve the target wheel cylinder hydraulic pressure. In this case, the brake pedal BP may be inhaled and an excessive stroke may occur, so that the driver's braking intention can not be accurately reflected, and the pedal feeling may be deteriorated. On the other hand, when the brake stiffness is high, the amount of brake fluid pumped up from the master cylinder M / C to achieve the target wheel cylinder hydraulic pressure is small. In this case, the brake fluid in the master cylinder M / C does not decrease, and there is a possibility that a plate depression phenomenon that the stroke of the brake pedal BP can not be secured may occur, and the driver's braking intention can not be accurately reflected. Deterioration is a concern.
 そこで、実施例1では、目標ホイルシリンダ液圧を設定するにあたり、ブレーキペダルのストローク量STRに基づくストローク対応目標ホイルシリンダ液圧P1*に加えて、マスタシリンダ液圧Pmcに基づくマスタシリンダ液圧対応目標ホイルシリンダ液圧P2*を算出し、ストローク対応目標ホイルシリンダ液圧P1*とマスタシリンダ対応目標ホイルシリンダ液圧P2*とに基づいて最終的な目標ホイルシリンダ液圧P*を算出することとした。 Therefore, in the first embodiment, in setting the target wheel cylinder hydraulic pressure, in addition to the stroke corresponding target wheel cylinder hydraulic pressure P1 * based on the stroke amount STR of the brake pedal, the master cylinder hydraulic pressure correspondence based on the master cylinder hydraulic pressure Pmc. Calculating a final target wheel cylinder hydraulic pressure P * based on the target wheel cylinder hydraulic pressure P2 * corresponding to the stroke and the target wheel cylinder hydraulic pressure P2 * corresponding to the master cylinder; did.
 図2は本発明の目標ホイルシリンダ液圧設定のコンセプトを表す制御ブロック図である。ストローク対応目標ホイルシリンダ液圧算出部101では、ストロークセンサ17により検出されたストローク量STRに応じたストローク対応目標ホイルシリンダ液圧P1*を算出する。マスタシリンダ液圧対応目標ホイルシリンダ液圧算出部102では、マスタシリンダ液圧センサ40により検出されたマスタシリンダ液圧Pmcに変換係数Kを乗算してマスタシリンダ液圧対応目標ホイルシリンダ液圧P2*を算出する。目標ホイルシリンダ液圧算出部103では、ストローク対応目標ホイルシリンダ液圧P1*とマスタシリンダ液圧対応目標ホイルシリンダP2*とを加算して、最終的な目標ホイルシリンダ液圧P*を算出する。目標ホイルシリンダ液圧P*がブレーキコントロールユニットBCU内のモータ制御部(モータ駆動部)20に出力されると、モータMによりポンプPが駆動する。尚、モータ制御は既存のモータ制御ロジックを適宜使用すればよく、特に限定しない。 FIG. 2 is a control block diagram showing the concept of target wheel cylinder hydraulic pressure setting according to the present invention. The stroke-corresponding target wheel cylinder hydraulic pressure calculation unit 101 calculates a stroke-corresponding target wheel cylinder hydraulic pressure P1 * corresponding to the stroke amount STR detected by the stroke sensor 17. Master cylinder hydraulic pressure corresponding target wheel cylinder hydraulic pressure calculation unit 102 multiplies master cylinder hydraulic pressure Pmc detected by master cylinder hydraulic pressure sensor 40 by a conversion coefficient K to obtain master cylinder hydraulic pressure corresponding target wheel cylinder hydraulic pressure P2 * Calculate The target wheel cylinder hydraulic pressure calculation unit 103 calculates the final target wheel cylinder hydraulic pressure P * by adding the target wheel cylinder hydraulic pressure P1 * for the stroke and the target wheel cylinder P2 * for the master cylinder hydraulic pressure. When the target wheel cylinder hydraulic pressure P * is output to the motor control unit (motor drive unit) 20 in the brake control unit BCU, the pump P is driven by the motor M. The motor control is not particularly limited as long as the existing motor control logic is used appropriately.
 ここで、上記構成により得られる作用について説明する。ブレーキ剛性が低い場合、ストローク量STRが増大するため、ストローク対応目標ホイルシリンダ液圧P1*は大きくなる。このとき、マスタシリンダ液圧Pmcは上昇しにくい状況であるため、マスタシリンダ液圧対応目標ホイルシリンダP2*は小さくなる。結果としてストローク量STRが過剰なときは、マスタシリンダM/Cが上昇しないことから過剰にブレーキ液を汲み上げることが無く、過剰ストロークを回避できる。一方、ブレーキ剛性が高い場合、ストローク量STRは増大しにくく、ストローク対応目標ホイルシリンダ液圧P1*はさほど増大しない。このとき、マスタシリンダ液圧Pmcは上昇しやすい状況であるため、マスタシリンダ液圧対応目標ホイルシリンダP2*は大きくなる。結果としてストローク量STRが不足しているときは、マスタシリンダ液圧の上昇に応じてブレーキ液を汲み上げるため、板踏み現象を回避し、適度なストローク量STRを確保できる。このように、ストローク量のみを用いて制御した場合に生じる過剰ストロークや板踏み現象を、マスタシリンダ液圧を用いて解消することで、ブレーキ剛性によらず運転者の制動意図を正確に反映しつつ、ペダルフィーリングが良好なブレーキ制御装置を提供できる。 Here, the operation obtained by the above configuration will be described. When the brake stiffness is low, the stroke amount target stroke increases, so the stroke-corresponding target wheel cylinder hydraulic pressure P1 * increases. At this time, since the master cylinder hydraulic pressure Pmc is hard to rise, the target wheel cylinder P2 * corresponding to the master cylinder hydraulic pressure becomes smaller. As a result, when the stroke amount STR is excessive, since the master cylinder M / C does not rise, the brake fluid is not excessively pumped up, and the excessive stroke can be avoided. On the other hand, when the brake stiffness is high, the stroke amount STR does not easily increase, and the stroke corresponding target wheel cylinder hydraulic pressure P1 * does not increase so much. At this time, since the master cylinder hydraulic pressure Pmc is apt to rise, the target wheel cylinder P2 * corresponding to the master cylinder hydraulic pressure becomes large. As a result, when the stroke amount STR is insufficient, the brake fluid is pumped up in response to the increase of the master cylinder fluid pressure, so that the plate depressing phenomenon can be avoided and an appropriate stroke amount STR can be secured. As described above, by using the master cylinder fluid pressure to eliminate the excessive stroke and the plate stepping phenomenon that occur when control is performed using only the stroke amount, the driver's braking intention is accurately reflected regardless of the brake rigidity. While, it is possible to provide a brake control device having a good pedal feeling.
 図3は実施例1のブレーキアシスト制御の制御構成を表す制御ブロック図である。図3に示す構成は、図2に示すコンセプトを実際のブレーキ制御装置に適用するにあたり、ブレーキブースタBBの負圧を考慮した。ストローク対応目標ホイルシリンダ液圧算出部201では、ストロークセンサ17により検出されたストローク量STRに応じたストローク対応目標ホイルシリンダ液圧P1*を算出する。目標マスタシリンダ液圧算出部202では、ストロークセンサ17により検出されたストローク量STRと負圧センサ18により検出されたブレーキブースタBBの負圧が大きいほど目標マスタシリンダ液圧Pmc*が高くなるように設定する。偏差算出部203では、目標マスタシリンダ液圧Pmc*とマスタシリンダ液圧センサ40により検出されたマスタシリンダ液圧Pmcとの偏差ΔPmcを算出する。マスタシリンダ液圧対応目標ホイルシリンダ液圧算出部204では、偏差ΔPmcに変換係数K1を乗算してマスタシリンダ液圧対応目標ホイルシリンダ液圧P2*を算出する。目標ホイルシリンダ液圧算出部205では、ストローク対応目標ホイルシリンダ液圧P1*と、マスタシリンダ液圧対応目標ホイルシリンダ液圧P2*とを加算して、最終的な目標ホイルシリンダ液圧P*を算出する。 FIG. 3 is a control block diagram showing a control configuration of brake assist control according to the first embodiment. The configuration shown in FIG. 3 takes into consideration the negative pressure of the brake booster BB in applying the concept shown in FIG. 2 to an actual brake control device. The stroke-corresponding target wheel cylinder hydraulic pressure calculation unit 201 calculates a stroke-corresponding target wheel cylinder hydraulic pressure P1 * corresponding to the stroke amount STR detected by the stroke sensor 17. In the target master cylinder hydraulic pressure calculation unit 202, the target master cylinder hydraulic pressure Pmc * becomes higher as the stroke amount STR detected by the stroke sensor 17 and the negative pressure of the brake booster BB detected by the negative pressure sensor 18 increase. Set The deviation calculation unit 203 calculates a deviation ΔPmc between the target master cylinder hydraulic pressure Pmc * and the master cylinder hydraulic pressure Pmc detected by the master cylinder hydraulic pressure sensor 40. Master cylinder liquid pressure corresponding target wheel cylinder liquid pressure calculation unit 204 multiplies deviation ΔPmc by conversion coefficient K1 to calculate master cylinder liquid pressure corresponding target wheel cylinder liquid pressure P2 *. The target wheel cylinder hydraulic pressure calculation unit 205 adds the target wheel cylinder hydraulic pressure P1 * corresponding to the stroke and the target wheel cylinder hydraulic pressure P2 * corresponding to the master cylinder hydraulic pressure, and calculates the final target wheel cylinder hydraulic pressure P *. calculate.
 ここで、マスタシリンダ液圧対応目標ホイルシリンダ液圧P2*が小さいとは、目標マスタシリンダ液圧Pmc*とマスタシリンダ液圧Pmcとの偏差ΔPmcが負になることを意味する。つまり、マスタシリンダ液圧Pmcを上昇させる必要がある場合である。マスタシリンダ液圧Pmcを上昇させるには、ポンプPによってマスタシリンダM/CからホイルシリンダW/C側へブレーキ液を汲み上げる作用を弱める(もしくはポンプPを停止する)必要がある。そこで、マスタシリンダ液圧対応目標ホイルシリンダ液圧P2*が小さいほど、ストローク対応目標ホイルシリンダ液圧P1*からの減算量が大きく(加算量が負に)なる構成とした。これにより、最終的な目標ホイルシリンダ液圧P*は小さくなり、ポンプPによる増圧作用は弱められるからである。よって、ブレーキペダルBPが吸い込まれる現象を抑制し、良好なペダルフィーリングを得ることができる。 Here, that the target wheel hydraulic pressure corresponding to master cylinder hydraulic pressure P2 * is small means that the deviation ΔPmc between the target master cylinder hydraulic pressure Pmc * and the master cylinder hydraulic pressure Pmc becomes negative. That is, it is a case where it is necessary to raise master cylinder liquid pressure Pmc. In order to raise the master cylinder hydraulic pressure Pmc, it is necessary to weaken the action of pumping the brake fluid from the master cylinder M / C to the wheel cylinder W / C side by the pump P (or to stop the pump P). Therefore, the amount of subtraction from the target foil cylinder hydraulic pressure P1 * corresponding to the stroke becomes larger (the amount of addition becomes negative) as the target wheel cylinder hydraulic pressure P2 * corresponding to the master cylinder hydraulic pressure decreases. As a result, the final target wheel cylinder hydraulic pressure P * becomes smaller, and the pressure increasing action by the pump P is weakened. Therefore, the phenomenon in which the brake pedal BP is sucked can be suppressed, and a good pedal feeling can be obtained.
 一方、マスタシリンダ液圧対応目標ホイルシリンダ液圧P2*が大きいとは、目標マスタシリンダ液圧Pmc*とマスタシリンダ液圧Pmcとの偏差ΔPmcが正になることを意味する。つまり、マスタシリンダ液圧Pmcをさほど上昇させる必要が無い場合である。マスタシリンダ液圧Pmcの上昇を抑制するには、ポンプPによってマスタシリンダM/CからホイルシリンダW/C側へブレーキ液を汲み上げる必要がある。そこで、マスタシリンダ液圧対応目標ホイルシリンダ液圧P2*が大きいほど、ストローク対応目標ホイルシリンダ液圧P1*への加算量が大きくなる構成とした。これにより、最終的な目標ホイルシリンダ液圧P*は大きくなり、ポンプPによる増圧作用が強められる。これにより、負圧に応じてペダルフィーリングを確保したブレーキアシスト制御を実現できる。よって、ブレーキペダルBPの板踏み現象を抑制し、良好なペダルフィーリングを得ることができる。 On the other hand, that the target wheel hydraulic pressure corresponding to master cylinder hydraulic pressure P2 * is large means that the deviation ΔPmc between the target master cylinder hydraulic pressure Pmc * and the master cylinder hydraulic pressure Pmc is positive. That is, there is no need to raise the master cylinder hydraulic pressure Pmc so much. In order to suppress the rise of the master cylinder hydraulic pressure Pmc, it is necessary to pump up the brake fluid from the master cylinder M / C to the wheel cylinder W / C side by the pump P. Therefore, the configuration is such that the addition amount to the stroke-corresponding target wheel cylinder hydraulic pressure P1 * is increased as the target wheel cylinder liquid pressure P2 * corresponding to the master cylinder hydraulic pressure is larger. As a result, the final target wheel cylinder hydraulic pressure P * increases, and the pressure increasing action of the pump P is intensified. Thus, brake assist control can be realized in which the pedal feeling is secured according to the negative pressure. Therefore, the plate depressing phenomenon of the brake pedal BP can be suppressed, and a good pedal feeling can be obtained.
 以上説明したように、実施例1にあっては下記に列挙する作用効果が得られる。
  (1-1)運転者のブレーキペダルの操作ストロークを算出するストロークセンサ17(ストローク算出部)と、マスタシリンダM/Cの液圧Pmcを算出するマスタシリンダ液圧センサ40(マスタシリンダ液圧算出部)と、算出された操作ストロークに応じて設定されるストローク対応目標ホイルシリンダ液圧P1*と、算出されたマスタシリンダ液圧Pmcに応じて設定されるマスタシリンダ液圧対応目標ホイルシリンダ液圧P2*と、マスタシリンダM/Cからブレーキ液を吸入し目標ホイルシリンダ液圧となるようにホイルシリンダ液圧を増圧するポンプPと、を有し、目標ホイルシリンダ液圧P*は、ストローク対応目標ホイルシリンダ液圧P1*とマスタシリンダ液圧対応目標ホイルシリンダ液圧P2*とに基づき算出することを特徴とするブレーキ制御装置。 よって、良好なペダルフィーリングを得ることができる。
As described above, in the first embodiment, the following advantages can be obtained.
(1-1) Stroke sensor 17 (stroke calculation unit) that calculates the operation stroke of the driver's brake pedal, and master cylinder liquid pressure sensor 40 (master cylinder liquid pressure calculation that calculates the liquid pressure Pmc of the master cylinder M / C And a target wheel cylinder hydraulic pressure corresponding to the master cylinder hydraulic pressure set according to the stroke corresponding target wheel cylinder hydraulic pressure P1 * set according to the calculated operation stroke and the calculated master cylinder hydraulic pressure Pmc P2 * and a pump P that sucks in brake fluid from the master cylinder M / C and boosts the wheel cylinder hydraulic pressure so as to achieve target wheel cylinder hydraulic pressure, and the target wheel cylinder hydraulic pressure P * corresponds to the stroke A brake control device, which is calculated based on a target wheel cylinder hydraulic pressure P1 * and a target wheel hydraulic pressure corresponding to a master cylinder hydraulic pressure P2 *. Therefore, a good pedal feeling can be obtained.
 (2-2)上記(1-1)に記載のブレーキ制御装置において、目標ホイルシリンダ液圧Pmc*はストローク対応目標ホイルシリンダ液圧P1*とマスタシリンダ液圧対応目標ホイルシリンダ液圧P2*を加算して算出することを特徴とするブレーキ制御装置(図2参照)。 よって、良好なペダルフィーリングを得ることができる。 (2-2) In the brake control device described in (1-1) above, the target wheel cylinder hydraulic pressure Pmc * corresponds to the target wheel cylinder hydraulic pressure P1 * corresponding to the stroke and the target wheel cylinder hydraulic pressure P2 * corresponding to the master cylinder hydraulic pressure. The brake control apparatus characterized by adding and calculating (refer FIG. 2). Therefore, a good pedal feeling can be obtained.
 (3-3)上記(1-1)に記載のブレーキ制御装置において、 運転者のブレーキペダル操作力を増幅するブレーキブースタBB(ブースタ)を備え、目標ホイルシリンダ液圧P*は、ブレーキブースタBBの負圧(増幅特性)と、算出されたストローク量STR(操作ストローク)と、算出されたマスタシリンダの液圧Pmcとに基づき算出されることを特徴とするブレーキ制御装置(図3参照)。 ブレーキブースタBBの増幅特性である負圧を考慮することで、より良好なペダルフィーリングを得ることができる。尚、ブレーキブースタBBとして、実施例1の負圧ブースタでもよいし、電気的な制御によってブレーキペダルBPの操作力をアシストする電磁ブースタであってもよい。尚、電磁ブースタを採用した場合は、負圧ではなく電磁力によって補正することで、良好なペダルフィーリングを得ることができる。 (3-3) The brake control device according to (1-1), further including: a brake booster BB (booster) for amplifying a driver's brake pedal operation force; A brake control device (see FIG. 3), which is calculated based on the negative pressure (amplification characteristic) of S, the calculated stroke amount STR (operation stroke), and the calculated hydraulic pressure Pmc of the master cylinder. By considering the negative pressure which is the amplification characteristic of the brake booster BB, a better pedal feeling can be obtained. The brake booster BB may be the negative pressure booster of the first embodiment, or may be an electromagnetic booster that assists the operating force of the brake pedal BP by electrical control. In addition, when an electromagnetic booster is employ | adopted, a favorable pedal feeling can be obtained by correct | amending not with a negative pressure but with an electromagnetic force.
 (4-4)上記(3-3)に記載のブレーキ制御装置において、ブレーキブースタBBは、エンジンにより発生した負圧を利用して前記ブレーキペダル操作力を増幅する負圧ブースタであることを特徴とするブレーキ制御装置。 よって、既存の車両に多く搭載されている負圧ブースタを備えた車両に適用できる。また、負圧が不安定な状態であっても良好なペダルフィーリングを得ることができる。 (4-4) In the brake control device according to (3-3), the brake booster BB is a negative pressure booster that amplifies the brake pedal operating force by using a negative pressure generated by an engine. Brake control device. Therefore, the present invention can be applied to a vehicle equipped with a negative pressure booster that is often mounted on existing vehicles. In addition, even when the negative pressure is unstable, a good pedal feeling can be obtained.
 (5-7)マスタシリンダM/Cからブレーキ液を吸入しホイルシリンダ液圧を増圧するポンプPと、運転者のブレーキペダルBPのストローク量STR(操作ストローク)を算出するストロークセンサ17(ストローク算出部)と、算出されたストローク量STRに応じて設定された目標ホイルシリンダ液圧P*となるようポンプPによりホイルシリンダ液圧の増圧をアシストするためのストローク対応目標ホイルシリンダ液圧P1*(基本アシスト量)と、基本アシスト量であるストローク対応目標ホイルシリンダ液圧P1*を補正する目標ホイルシリンダ液圧算出部103(アシスト量補正部)と、マスタシリンダM/Cの液圧を算出するマスタシリンダ液圧センサ40(マスタシリンダ液圧算出部)を備え、目標ホイルシリンダ液圧算出部103は、算出されたストローク量STRと、算出されたマスタシリンダの液圧Pmcとに基づきストローク対応目標ホイルシリンダ液圧P1*を補正し、補正した目標ホイルシリンダ液圧を設定された目標ホイルシリンダ液圧P*としたことを特徴とするブレーキ制御装置。 よって、ホイルシリンダ液圧の増圧をアシストする際に、良好なペダルフィーリングを得ることができる。 (5-7) The pump P which sucks in the brake fluid from the master cylinder M / C and increases the wheel cylinder hydraulic pressure, and the stroke sensor 17 (stroke calculation) which calculates the stroke amount STR (operation stroke) of the brake pedal BP of the driver. Stroke target target wheel cylinder hydraulic pressure P1 * for assisting the pressure increase of the wheel cylinder hydraulic pressure by the pump P to achieve the target wheel cylinder hydraulic pressure P * set according to the calculated stroke amount STR (Basic assist amount) and target wheel cylinder hydraulic pressure calculation unit 103 (assist amount correction unit) for correcting the target wheel cylinder hydraulic pressure P1 * corresponding to a stroke, which is the basic assist amount, and the hydraulic pressure of the master cylinder M / C Master cylinder hydraulic pressure sensor 40 (master cylinder hydraulic pressure calculation unit), the target wheel cylinder hydraulic pressure calculation unit 103 calculates the calculated stroke amount STR, and The target wheel cylinder hydraulic pressure corrected for stroke based on the hydraulic pressure Pmc of the master cylinder and the corrected target wheel cylinder hydraulic pressure is set as the set target wheel cylinder hydraulic pressure P *. Brake control apparatus. Therefore, when assisting the pressure increase of the wheel cylinder hydraulic pressure, a good pedal feeling can be obtained.
 (6-8)上記(5-7)に記載のブレーキ制御装置において、運転者のブレーキペダル操作力を増幅するブレーキブースタBB(ブースタ)を備え、目標ホイルシリンダ液圧算出部103は、ブレーキブースタBBの負圧(増幅特性)と、算出されたストローク量STRと、算出されたマスタシリンダの液圧Pmcとに基づきストローク対応目標ホイルシリンダ液圧P1*を補正することを特徴とするブレーキ制御装置。 ブレーキブースタBBの増幅特性である負圧を考慮することで、より良好なペダルフィーリングを得ることができる。尚、ブレーキブースタBBとして、実施例1の負圧ブースタでもよいし、電気的な制御によってブレーキペダルBPの操作力をアシストする電磁ブースタであってもよい。尚、電磁ブースタを採用した場合は、負圧ではなく電磁力によって補正することで、良好なペダルフィーリングを得ることができる。 (6-8) The brake control device according to (5-7), further including: a brake booster BB (booster) for amplifying the brake pedal operation force of the driver, and the target wheel cylinder hydraulic pressure calculation unit 103 A brake control apparatus characterized by correcting a stroke-corresponding target wheel cylinder hydraulic pressure P1 * based on a negative pressure (amplification characteristic) of BB, a calculated stroke amount STR, and a calculated hydraulic pressure Pmc of a master cylinder. . By considering the negative pressure which is the amplification characteristic of the brake booster BB, a better pedal feeling can be obtained. The brake booster BB may be the negative pressure booster of the first embodiment, or may be an electromagnetic booster that assists the operating force of the brake pedal BP by electrical control. In addition, when an electromagnetic booster is employ | adopted, a favorable pedal feeling can be obtained by correct | amending not with a negative pressure but with an electromagnetic force.
 (7-9)上記(6-8)に記載のブレーキ制御装置において、ブレーキブースタBBはエンジンにより発生した負圧を利用してブレーキペダル操作力を増幅する負圧ブースタであることを特徴とするブレーキ制御装置。 よって、既存の車両に多く搭載されている負圧ブースタを備えた車両に適用できる。また、負圧が不安定な状態であっても良好なペダルフィーリングを得ることができる。 (7-9) In the brake control device according to (6-8), the brake booster BB is a negative pressure booster that amplifies the brake pedal operating force by using the negative pressure generated by the engine. Brake control device. Therefore, the present invention can be applied to a vehicle equipped with a negative pressure booster that is often mounted on existing vehicles. In addition, even when the negative pressure is unstable, a good pedal feeling can be obtained.
 (8-10)上記(7-9)に記載のブレーキ制御装置において、目標ホイルシリンダ液圧算出部205(アシスト量補正部)は、算出されたストローク量STRに対する目標マスタシリンダ液圧Pmc*を算出し(目標マスタシリンダ液圧算出部202)、算出した目標マスタシリンダ液圧Pmc*と、算出されたマスタシリンダ液圧Pmcとの差分に基づき目標ホイルシリンダ液圧を補正する(マスタシリンダ液圧対応目標ホイルシリンダ液圧算出部204)ことを特徴とするブレーキ制御装置。 よって、適切なマスタシリンダ液圧を確保しつつ目標ホイルシリンダ液圧を達成することができ、良好なペダルフィーリングを得ることができる。 (8-10) In the brake control device according to (7-9), the target wheel cylinder hydraulic pressure calculation unit 205 (assist amount correction unit) calculates the target master cylinder hydraulic pressure Pmc * with respect to the calculated stroke amount STR. Calculate (target master cylinder hydraulic pressure calculation unit 202), and correct the target wheel cylinder hydraulic pressure based on the difference between the calculated target master cylinder hydraulic pressure Pmc * and the calculated master cylinder hydraulic pressure Pmc (master cylinder hydraulic pressure A corresponding target wheel cylinder hydraulic pressure calculation unit 204). Therefore, the target wheel cylinder fluid pressure can be achieved while securing an appropriate master cylinder fluid pressure, and a good pedal feeling can be obtained.
 (9-13)運転者のブレーキペダルBPのストローク量STR(操作ストローク)を算出し、算出されたストローク量STRに応じて設定される目標ホイルシリンダ液圧P*と、マスタシリンダM/Cからブレーキ液を吸入し目標ホイルシリンダ液圧P*となるようにホイルシリンダ液圧を増圧するポンプPと、マスタシリンダM/Cの液圧を算出するマスタシリンダ液圧センサ40(マスタシリンダ液圧算出部)と、算出されたストローク量STRに基づき算出される目標マスタシリンダ液圧Pmc*を算出する目標マスタシリンダ液圧算出部202と、ポンプPによる増圧中に目標マスタシリンダ液圧Pmc*に対して、算出されたマスタシリンダ液圧Pmcが高くなるとマスタシリンダ液圧を減圧する(以下、マスタシリンダ液圧制御部と記載する。)ことを特徴とするブレーキ制御装置。 よって、マスタシリンダ液圧Pmcが高いときは、マスタシリンダ液圧が減圧されるため、板踏み現象を回避して良好なペダルフィーリングを得ることができる。 (9-13) From driver's brake pedal BP stroke amount STR (operation stroke) calculated, target wheel cylinder hydraulic pressure P * set according to the calculated stroke amount STR, and from master cylinder M / C A pump P that sucks the brake fluid and increases the wheel cylinder fluid pressure so that the target wheel cylinder fluid pressure P * is achieved, and a master cylinder fluid pressure sensor 40 that calculates the fluid pressure of the master cylinder M / C (master cylinder fluid pressure calculation And a target master cylinder hydraulic pressure calculation unit 202 that calculates a target master cylinder hydraulic pressure Pmc * that is calculated based on the calculated stroke amount STR; On the other hand, when the calculated master cylinder hydraulic pressure Pmc becomes high, the master cylinder hydraulic pressure is reduced (hereinafter referred to as a master cylinder hydraulic pressure control unit). Therefore, when the master cylinder hydraulic pressure Pmc is high, the master cylinder hydraulic pressure is reduced, so that it is possible to obtain a good pedal feeling by avoiding the plate stepping phenomenon.
 (10-14)上記(9-13)に記載のブレーキ制御装置において、マスタシリンダ液圧制御部は、目標ホイルシリンダ液圧算出部205において、算出されたストローク量STRと、算出されたマスタシリンダの液圧Pmcとに基づき目標ホイルシリンダ液圧P*を補正し(目標ホイルシリンダ液圧補正部)、補正された目標ホイルシリンダ液圧P*になるようポンプ駆動量を決定し、ポンプPによりマスタシリンダ内のブレーキ液を吸い出すことでマスタシリンダ液圧Pmcを減圧することを特徴とするブレーキ制御装置。 よって、ポンプPによる増圧作用を高めることでマスタシリンダ液圧Pmcを減圧することができ、板踏み現象を回避して良好なペダルフィーリングを得ることができる。 (10-14) In the brake control device according to (9-13), the master cylinder hydraulic pressure control unit controls the target wheel cylinder hydraulic pressure calculation unit 205 to calculate the stroke amount STR and the master cylinder calculated. Target wheel cylinder hydraulic pressure P * is corrected based on the hydraulic pressure Pmc of the target (target wheel cylinder hydraulic pressure correction unit), and the pump drive amount is determined so that the corrected target wheel cylinder hydraulic pressure P * is achieved. A brake control device characterized by reducing master cylinder fluid pressure Pmc by sucking out brake fluid in a master cylinder. Therefore, the master cylinder hydraulic pressure Pmc can be reduced by enhancing the pressure increasing action of the pump P, and a good pedal feeling can be obtained while avoiding the plate stepping phenomenon.
 (11-15)上記(9-14)に記載のブレーキ制御装置において、マスタシリンダ液圧制御部は、算出されたストローク量STRと、算出されたマスタシリンダの液圧Pmcとに基づき目標ホイルシリンダ液圧P*を補正(目標ホイルシリンダ液圧算出部205に相当)し、補正した目標ホイルシリンダ液圧P*を設定された目標ホイルシリンダ液圧としマスタシリンダ内のブレーキ液をポンプPにより吸出しマスタシリンダ液圧Pmcを減圧することを特徴とするブレーキ制御装置。 よって、マスタシリンダ液圧Pmcに基づいて目標ホイルシリンダ液圧P*を補正するため、板踏み現象を回避して良好なペダルフィーリングを得ることができる。 (11-15) In the brake control device described in (9-14) above, the master cylinder hydraulic pressure control unit is configured to calculate the target wheel cylinder based on the calculated stroke amount STR and the calculated hydraulic pressure Pmc of the master cylinder. The fluid pressure P * is corrected (corresponding to the target wheel cylinder fluid pressure calculation unit 205), and the corrected target wheel cylinder fluid pressure P * is set as the set target wheel cylinder fluid pressure, and the brake fluid in the master cylinder is sucked by the pump P A brake control apparatus characterized by reducing master cylinder hydraulic pressure Pmc. Therefore, since the target wheel cylinder hydraulic pressure P * is corrected based on the master cylinder hydraulic pressure Pmc, a good pedal feeling can be obtained while avoiding the plate stepping phenomenon.
 (実施例2) 次に実施例2について説明する。基本的な構成は実施例1と同じであるため、異なる点についてのみ説明する。図4は実施例2のブレーキ制御装置の構成図である。実施例1では、チェックバルブ16を備えた調圧リザーバ13を備えていた。これに対し、実施例2では、調圧リザーバ13に代えて、チェックバルブ16を備えていないリザーバ130S,130P(以下、総称してリザーバ130と記載する。)を備え、マスタシリンダM/CとポンプPの吸入側とを結ぶ管路11上にゲートインバルブ50S,50P(以下、総称してゲートインバルブ50と記載する。)を備えた点が異なる。このゲートインバルブ50は非通電時において閉弁するノーマルクローズタイプである。また、管路12上に、リザーバ130からポンプPの吸入側へのブレーキ液の流れを許容し、ポンプPの吸入側からリザーバ130側へのブレーキ液の流れを禁止する第1チェックバルブ30S,30P(以下、総称して第1チェックバルブ30と記載する。)と、この第1チェックバルブ30とポンプPの吸入側との間において第1チェックバルブ30と直列に配置された第2チェックバルブ31S,31P(以下、総称して第2チェックバルブ31と記載する。)とを備えた。管路11は、第1チェックバルブ30と第2チェックバルブ31との間に接続され、ゲートインバルブ50が開弁したとしても、マスタシリンダM/C側からリザーバ130にブレーキ液が流れ込まないように構成されている。 Example 2 Next, Example 2 will be described. Since the basic configuration is the same as that of the first embodiment, only different points will be described. FIG. 4 is a block diagram of a brake control device according to a second embodiment. In the first embodiment, the pressure control reservoir 13 provided with the check valve 16 was provided. On the other hand, in the second embodiment, in place of the pressure control reservoir 13, reservoirs 130S and 130P (hereinafter collectively referred to as a reservoir 130) not having the check valve 16 are provided, and a master cylinder M / C The difference is that gate-in valves 50S and 50P (hereinafter collectively referred to as gate-in valve 50) are provided on the pipe line 11 connecting the suction side of the pump P. The gate-in valve 50 is a normally closed type that closes when not energized. Further, the first check valve 30S which allows the flow of the brake fluid from the reservoir 130 to the suction side of the pump P on the conduit 12 and prohibits the flow of the brake fluid from the suction side of the pump P to the reservoir 130 side, A second check valve disposed in series with the first check valve 30 between 30P (hereinafter collectively referred to as the first check valve 30) and the first check valve 30 and the suction side of the pump P. 31S and 31P (hereinafter collectively referred to as the second check valve 31). The conduit 11 is connected between the first check valve 30 and the second check valve 31. Even if the gate-in valve 50 is opened, the brake fluid does not flow into the reservoir 130 from the master cylinder M / C side. Is configured.
 ブレーキアシスト制御時は、ゲートインバルブ50を開き、実施例1と同様に目標ホイルシリンダ液圧P*と目標マスタシリンダ液圧Pmc*とに基づいてポンプPの駆動状態を制御して、マスタシリンダM/C側からホイルシリンダW/C側にブレーキ液を供給する。ここで、実施例2では、マスタシリンダ液圧Pmc*に対して実マスタシリンダ液圧Pmcが所定値以上大きくなった場合には、ソレノイドアウトバルブ15を開き、ホイルシリンダW/Cからリザーバ130にブレーキ液を流出させる。これにより、マスタシリンダM/CからポンプPによって汲み出されるブレーキ液を増大させ、マスタシリンダ液圧Pmcを減少させて目標マスタシリンダ液圧Pmc*を達成する。これにより、実施例2では、実施例1と同様の作用効果に加えて下記の作用効果が得られる。 At the time of brake assist control, the gate-in valve 50 is opened, and the driving state of the pump P is controlled based on the target wheel cylinder hydraulic pressure P * and the target master cylinder hydraulic pressure Pmc * as in the first embodiment. Supply brake fluid from the M / C side to the wheel cylinder W / C side. Here, in the second embodiment, when the actual master cylinder hydraulic pressure Pmc becomes larger than the master cylinder hydraulic pressure Pmc * by a predetermined value or more, the solenoid out valve 15 is opened, and the wheel cylinder W / C is switched to the reservoir 130. Allow the brake fluid to drain. Thereby, the brake fluid pumped out from the master cylinder M / C by the pump P is increased, and the master cylinder hydraulic pressure Pmc is decreased to achieve the target master cylinder hydraulic pressure Pmc *. Thus, in the second embodiment, in addition to the same effects as the first embodiment, the following effects can be obtained.
 (12-16)上記(9-13)に記載のブレーキ制御装置において、ホイルシリンダW/Cとリザーバ130を接続する管路14(減圧油路)と、管路14に設けられたソレノイドアウトバルブ15(減圧弁)を備え、マスタシリンダ液圧制御部は、ソレノイドアウトバルブ15を開弁しホイルシリンダ液圧を減圧するとともに、マスタシリンダM/C内から減圧したホイルシリンダW/Cへブレーキ液を供給し、マスタシリンダ液圧Pmcを減圧することを特徴とするブレーキ制御装置。 すなわち、ソレノイドアウトバルブ15を作動させることで、板踏み現象を回避して良好なペダルフィーリングを得ることができる。 (12-16) In the brake control device according to (9-13) above, the pipe line 14 (decompression oil path) connecting the wheel cylinder W / C and the reservoir 130 and the solenoid out valve provided in the pipe line 14 The master cylinder fluid pressure control unit opens the solenoid out valve 15 to reduce the wheel cylinder fluid pressure, and reduces the pressure in the master cylinder M / C to the wheel cylinder W / C that has been reduced in pressure. And a master cylinder hydraulic pressure Pmc is reduced. That is, by operating the solenoid out valve 15, a good pedal feeling can be obtained while avoiding the plate stepping phenomenon.
 (実施例3) 次に、実施例3について説明する。基本的な構成は実施例2と同じであるため、異なる点について説明する。図5は実施例3のブレーキ制御装置の構成図である。実施例2では、第1チェックバルブ30を備え、マスタシリンダM/Cのブレーキ液がリザーバ130に流れ込まないように構成した。これに対し、実施例3では、第1チェックバルブ30を廃止した点が異なる。管路11は、第2チェックバルブ31よりもリザーバ130側の管路12に接続されている。この接続点からポンプP側の管路を吸入油路部12S1,12P1とし、接続点からリザーバ130側の管路を減圧油路部12S2,12P2とする。 Example 3 Next, Example 3 will be described. The basic configuration is the same as that of the second embodiment, so only the differences will be described. FIG. 5 is a block diagram of a brake control device according to a third embodiment. In the second embodiment, the first check valve 30 is provided to prevent the brake fluid of the master cylinder M / C from flowing into the reservoir 130. On the other hand, in Example 3, the point which eliminated the 1st check valve 30 differs. The conduit 11 is connected to the conduit 12 closer to the reservoir 130 than the second check valve 31. Pipes on the pump P side from this connection point are suction oil path portions 12S1 and 12P1, and pipes on the reservoir 130 side from the connection point are pressure reduction oil path portions 12S2 and 12P2.
 実施例3では、マスタシリンダM/Cからリザーバ130に直接ブレーキ液を供給できるため、実施例2のようにソレノイドアウトバルブ15を開く必要が無い。ポンプPの駆動量が運転者のブレーキペダル操作に応じた駆動量よりも少なく、マスタシリンダ液圧Pmcが高くなると、吸入油路部12S1,12P1の液圧が高くなる。そうすると、自動的に減圧油路部12S2,12P2を通ってリザーバ130にブレーキ液が流れ込み、ペダルストロークを確保できる。よって、板踏み現象を抑制できる。 In the third embodiment, since the brake fluid can be directly supplied from the master cylinder M / C to the reservoir 130, it is not necessary to open the solenoid out valve 15 as in the second embodiment. When the driving amount of the pump P is smaller than the driving amount according to the driver's brake pedal operation, and the master cylinder hydraulic pressure Pmc becomes high, the hydraulic pressure of the suction oil passage portions 12S1, 12P1 becomes high. Then, the brake fluid automatically flows into the reservoir 130 through the pressure reducing oil passage portions 12S2 and 12P2, and the pedal stroke can be secured. Therefore, the board stepping phenomenon can be suppressed.
 (13-17)上記(9-13)に記載のブレーキ制御装置において、マスタシリンダM/CとホイルシリンダW/Cを接続する管路1(第1油路)と、管路1から分岐する管路11(第2油路)と、管路11はポンプPに接続する吸入油路部12S1,12P1とリザーバ130に接続する減圧油路部12S2,12P2を備え、マスタシリンダM/C内のブレーキ液は管路11によってポンプPとリザーバ130に供給されることを特徴とするブレーキ制御装置。 マスタシリンダ液圧Pmcが上昇すると、自動的にマスタシリンダM/C内のブレーキ液がリザーバ130に流れ込むため、板踏み現象を防止できる。 (13-17) In the brake control device described in (9-13) above, the pipe line 1 (first oil path) connecting the master cylinder M / C and the wheel cylinder W / C and the pipe line 1 are branched The conduit 11 (second oil passage) and the conduit 11 are provided with suction oil passage portions 12S1 and 12P1 connected to the pump P and pressure reducing oil passage portions 12S2 and 12P2 connected to the reservoir 130, and the inside of the master cylinder M / C The brake control device is characterized in that the brake fluid is supplied to the pump P and the reservoir 130 by the pipe line 11. When the master cylinder hydraulic pressure Pmc rises, the brake fluid in the master cylinder M / C automatically flows into the reservoir 130, so that the plate stepping phenomenon can be prevented.
 (実施例4) 次に、実施例4について説明する。基本的な構成は実施例1と同様であるため、異なる点についてのみ説明する。図6は実施例4のブレーキアシスト制御の制御構成を表す制御ブロック図である。実施例4のブレーキアシスト制御構成には、電源OFF時であっても情報を保持可能な不揮発メモリからなる記憶装置301を有する。この記憶装置301は、イグニッションスイッチIGNからの信号と、ストロークセンサ17から出力されたストローク量STRと、そのストローク量STRに対する目標ホイルシリンダ液圧P*とを記憶する。言い換えると、ストローク対応目標ホイルシリンダ液圧P1*を、ブレーキブースタBBの負圧やマスタシリンダ液圧Pmcに応じて補正し、その補正された最終的な目標ホイルシリンダ液圧P*をストローク量STRと対応させて記憶する。 Example 4 Next, Example 4 will be described. Since the basic configuration is the same as that of the first embodiment, only different points will be described. FIG. 6 is a control block diagram showing a control configuration of brake assist control according to a fourth embodiment. The brake assist control configuration of the fourth embodiment includes the storage device 301 formed of a non-volatile memory capable of retaining information even when the power is off. The storage device 301 stores the signal from the ignition switch IGN, the stroke amount STR output from the stroke sensor 17, and the target wheel cylinder hydraulic pressure P * with respect to the stroke amount STR. In other words, the stroke corresponding target wheel cylinder hydraulic pressure P1 * is corrected according to the negative pressure of the brake booster BB and the master cylinder hydraulic pressure Pmc, and the corrected final target wheel cylinder hydraulic pressure P * is calculated as the stroke amount STR And store it in correspondence.
 通常、イグニッションスイッチIGNがOFFとなると、各制御構成内の値は初期化される。よって、次回のイグニッションスイッチIGNのON時には、負圧やマスタシリンダ圧Pmcを改めて読み込み、その後に補正された最終的な目標ホイルシリンダ液圧P*を算出する必要がある。そのため、適正な目標ホイルシリンダ液圧P*を出力するまでに遅れが生じるおそれがある。そこで、記憶装置301内に、前回の制御時において記憶されたストローク量STRと目標ホイルシリンダ液圧P*との対応関係を記憶しておく。そして、イグニッションスイッチIGNがOFFからONとなったときは、ストロークセンサ17が出力するストローク量STRに対応する記憶された目標ホイルシリンダ液圧P*を、初期値として出力する。これにより、イグニッションスイッチIGNがONとなった直後から適正な制御を実施することができる。イグニッションスイッチIGNがONとなってから所定周期経過後は、通常の制御処理に切り替える。 Normally, when the ignition switch IGN is turned off, the values in each control configuration are initialized. Therefore, when the ignition switch IGN is turned on next time, it is necessary to read the negative pressure and the master cylinder pressure Pmc again and calculate the final target wheel cylinder hydraulic pressure P * corrected thereafter. Therefore, there is a possibility that a delay may occur before outputting the appropriate target wheel cylinder hydraulic pressure P *. Therefore, the correspondence relationship between the stroke amount STR and the target wheel cylinder hydraulic pressure P * stored in the previous control is stored in the storage device 301. Then, when the ignition switch IGN is switched from OFF to ON, the stored target wheel cylinder hydraulic pressure P * corresponding to the stroke amount STR output by the stroke sensor 17 is output as an initial value. Thus, appropriate control can be performed immediately after the ignition switch IGN is turned on. After a predetermined period has elapsed since the ignition switch IGN was turned on, the control is switched to normal control processing.
 以上説明したように、実施例4にあっては下記の作用効果が得られる。 (14-5)上記(1-1)に記載のブレーキ制御装置において、算出された目標ホイルシリンダ液圧P*を記憶する記憶装置301(目標ホイルシリンダ液圧記憶部)を備え、ポンプPは記憶した目標ホイルシリンダ液圧となるようにホイルシリンダ液圧を増圧することを特徴とするブレーキ制御装置。 よって、記憶された目標ホイルシリンダ液圧を用いることで、算出処理を待つことなく制御を実行でき、制御応答性の低下を抑制できる。実施例4では、イグニッションスイッチIGNがOFFからONに変わった時のみ記憶された値を用いることとしたが、一旦補正制御が行われた後は、例えば経年変化等の大きな変化が生じない所定の期間(所定日数や所定走行距離の間)、継続的に記憶装置301の値を用いて制御してもよい。
 (15-6)上記(14-5)に記載のブレーキ制御装置において、記憶装置301は不揮発性メモリであることを特徴とするブレーキ制御装置。 よって、次回、イグニッションスイッチIGNがOFFからONとなったときに、マスタシリンダ圧に基づく算出処理を待つことなくブレーキアシスト制御を開始できる。
As described above, in the fourth embodiment, the following effects can be obtained. (14-5) The brake control device according to (1-1) includes the storage device 301 (target wheel cylinder hydraulic pressure storage unit) for storing the calculated target wheel cylinder hydraulic pressure P *, and the pump P A brake control apparatus characterized by increasing a wheel cylinder hydraulic pressure so as to achieve a target wheel cylinder hydraulic pressure stored. Therefore, by using the stored target wheel cylinder hydraulic pressure, control can be performed without waiting for calculation processing, and a decrease in control responsiveness can be suppressed. In the fourth embodiment, the value stored only when the ignition switch IGN changes from OFF to ON is used. However, once correction control is performed, a predetermined change such as, for example, aging does not occur. Control may be performed continuously using the value of the storage device 301 for a period (for a predetermined number of days or a predetermined travel distance).
(15-6) The brake control device according to (14-5), wherein the storage device 301 is a non-volatile memory. Therefore, when the ignition switch IGN is switched from OFF to ON next time, brake assist control can be started without waiting for calculation processing based on the master cylinder pressure.
 (16-11)上記(5-7)に記載のブレーキ制御装置において、算出された目標ホイルシリンダ液圧P*を記憶する記憶装置301(目標ホイルシリンダ液圧記憶部)を備え、目標ホイルシリンダ液圧算出部103(アシスト量補正部)は、補正後に記憶した目標ホイルシリンダ液圧となるようにポンプPの駆動量を決定することを特徴とするブレーキ制御装置。 よって、記憶された目標ホイルシリンダ液圧を用いることで、補正処理を待つことなく制御を実行でき、制御応答性の低下を抑制できる。
 (17-12)上記(16-11)に記載のブレーキ制御装置において、記憶装置301は不揮発性メモリであることを特徴とするブレーキ制御装置。 よって、次回、イグニッションスイッチIGNがOFFからONとなったときに、マスタシリンダ圧に基づく補正を待つことなくブレーキアシスト制御を開始できる。
(16-11) In the brake control device according to (5-7), the storage device 301 (target wheel cylinder hydraulic pressure storage unit) for storing the calculated target wheel cylinder hydraulic pressure P * is provided, and the target wheel cylinder A brake control device characterized in that the hydraulic pressure calculation unit 103 (assist amount correction unit) determines the drive amount of the pump P so as to be the target wheel cylinder hydraulic pressure stored after correction. Therefore, by using the stored target wheel cylinder hydraulic pressure, control can be performed without waiting for correction processing, and a decrease in control responsiveness can be suppressed.
(17-12) A brake control apparatus according to the above (16-11), wherein the storage device 301 is a non-volatile memory. Therefore, when the ignition switch IGN is switched from OFF to ON next time, brake assist control can be started without waiting for correction based on the master cylinder pressure.
 以下に、実施例から把握される技術的思想の一例について説明する。
 (a1) ブレーキ制御装置であって、
 運転者のブレーキペダルの操作ストロークを算出するストローク算出部と、
 マスタシリンダの液圧を算出するマスタシリンダ液圧算出部と、
 前記算出された操作ストロークに応じてストローク対応目標ホイルシリンダ液圧を算出するストローク対応目標ホイルシリンダ液圧算出部と、
 前記算出されたマスタシリンダ液圧に応じてマスタシリンダ液圧対応目標ホイルシリンダ液圧を算出するマスタシリンダ液圧対応目標ホイルシリンダ液圧算出部と、
 前記ストローク対応目標ホイルシリンダ液圧と、前記マスタシリンダ液圧対応目標ホイルシリンダ液圧とに基づき、目標ホイルシリンダ液圧を算出する目標ホイルシリンダ液圧算出部と
 ポンプを駆動して、前記マスタシリンダからブレーキ液を前記ポンプにより吸入し、前記目標ホイルシリンダ液圧となるように前記ホイルシリンダの液圧を増圧するポンプ駆動部と、
 を備えるブレーキ制御装置。
 (a2) 上記(a1)に記載のブレーキ制御装置において、
 前記目標ホイルシリンダ液圧算出部は、前記ストローク対応目標ホイルシリンダ液圧と、前記マスタシリンダ液圧対応目標ホイルシリンダ液圧とを加算して、前記目標ホイルシリンダ液圧を算出する、ブレーキ制御装置。
 (a3) 上記(a1)又は(a2)に記載のブレーキ制御装置において、
 前記マスタシリンダに、前記運転者のブレーキペダル操作力を増幅するブースタが接続されており、
 前記マスタシリンダ液圧対応目標ホイルシリンダ液圧算出部は、前記ブースタの増幅特性と、前記算出された操作ストロークと、前記算出されたマスタシリンダの液圧とに基づき、前記マスタシリンダ液圧対応目標ホイルシリンダ液圧を算出する、ブレーキ制御装置。
 (a4) 上記(a3)に記載のブレーキ制御装置において、
 前記ブースタはエンジンにより発生した負圧を利用して前記ブレーキペダル操作力を増幅する負圧ブースタである、ブレーキ制御装置。
 (a5) 上記(a1)乃至(a4)の何れかに記載のブレーキ制御装置において、
 前記算出された操作ストロークと、前記算出された目標ホイルシリンダ液圧とを対応させて記憶する目標ホイルシリンダ液圧記憶部を備え、
 前記ポンプ駆動部は、前記算出された操作ストロークに応じて、対応する前記記憶した目標ホイルシリンダ液圧となるように、前記ホイルシリンダの液圧を増圧する、ブレーキ制御装置。
 (a6) 上記(a5)に記載のブレーキ制御装置において、
 前記目標ホイルシリンダ液圧記憶部は不揮発性メモリである、ブレーキ制御装置。
 (a7) 上記(a1)乃至(a6)の何れかに記載のブレーキ制御装置において、
 前記ホイルシリダと前記マスタシリンダとを接続する液圧制御ユニットを更に備え、前記液圧制御ユニットは、前記ポンプを有し、
 前記ポンプの吸入側が、圧力感応型のチェックバルブを備える調圧リザーバを介して前記マスタシリンダに接続され、前記ポンプの吐出側が、前記ホイルシリンダに接続されている、ブレーキ制御装置。
 (a8) 上記(a1)乃至(a6)の何れかに記載のブレーキ制御装置において、
 前記マスタシリンダ液圧対応目標ホイルシリンダ液圧算出部は、前記算出された操作ストロークに応じて目標マスタシリンダ液圧を算出し、
 前記ホイルシリンダとリザーバを接続する減圧油路と、
 前記減圧油路に設けられた減圧弁と、
 前記算出されたマスタシリンダ液圧が前記目標マスタシリンダ液圧よりも所定値以上大きくなったとき、前記減圧弁を開弁し前記ホイルシリンダ液圧を減圧するとともに、前記マスタシリンダ内から減圧したホイルシリンダへブレーキ液を供給し、前記マスタシリンダ液圧を減圧する、マスタシリンダ液圧制御部とを更に備える、ブレーキ制御装置。
 (a9) 上記(a1)乃至(a6)の何れかに記載のブレーキ制御装置において、
 前記マスタシリンダと前記ホイルシリンダを接続する第1油路と、
 前記第1油路から分岐する第2油路と、を備え、
 前記第2油路は、前記ポンプに接続する吸入油路部と、リザーバに接続する減圧油路部を備え、
 前記マスタシリンダ内のブレーキ液は、前記第2油路によって前記ポンプと前記リザーバとに供給される、ブレーキ制御装置。
Below, an example of the technical thought grasped from an example is explained.
(A1) a brake control device,
A stroke calculation unit that calculates an operation stroke of a driver's brake pedal;
A master cylinder fluid pressure calculation unit that calculates the fluid pressure of the master cylinder;
A stroke corresponding target wheel cylinder hydraulic pressure calculating unit that calculates a stroke corresponding target wheel cylinder hydraulic pressure according to the calculated operation stroke;
A target wheel hydraulic pressure corresponding target wheel cylinder hydraulic pressure calculation unit for calculating a target wheel hydraulic pressure corresponding to the master cylinder hydraulic pressure according to the calculated master cylinder hydraulic pressure;
A target wheel cylinder hydraulic pressure calculation unit that calculates a target wheel cylinder hydraulic pressure based on the stroke target wheel cylinder hydraulic pressure and the target cylinder hydraulic pressure corresponding to the master cylinder hydraulic pressure, and a pump are driven to generate the master cylinder. A pump drive unit which sucks in the brake fluid from the pump by the pump and pressurizes the fluid pressure of the wheel cylinder so as to achieve the target wheel cylinder fluid pressure;
Brake control device comprising:
(A2) In the brake control device according to (a1),
The brake control device, wherein the target wheel cylinder hydraulic pressure calculation unit calculates the target wheel cylinder hydraulic pressure by adding the target wheel cylinder hydraulic pressure corresponding to the stroke and the target wheel cylinder hydraulic pressure corresponding to the master cylinder hydraulic pressure. .
(A3) In the brake control device according to (a1) or (a2),
A booster that amplifies the driver's brake pedal operation force is connected to the master cylinder,
The target cylinder hydraulic pressure corresponding target cylinder hydraulic pressure calculation unit for the master cylinder hydraulic pressure is the target corresponding to the master cylinder hydraulic pressure based on the amplification characteristic of the booster, the calculated operation stroke, and the calculated hydraulic pressure of the master cylinder. A brake control device that calculates the wheel cylinder fluid pressure.
(A4) In the brake control device according to (a3),
The brake control device, wherein the booster is a negative pressure booster that amplifies the brake pedal operating force using a negative pressure generated by an engine.
(A5) In the brake control device according to any one of (a1) to (a4),
A target wheel cylinder hydraulic pressure storage unit that stores the calculated operation stroke in correspondence with the calculated target wheel cylinder hydraulic pressure;
The brake control device, wherein the pump drive unit increases the fluid pressure of the wheel cylinder so as to achieve the stored target wheel cylinder fluid pressure corresponding to the calculated operation stroke.
(A6) In the brake control device according to (a5),
The brake control device, wherein the target wheel cylinder hydraulic pressure storage unit is a non-volatile memory.
(A7) In the brake control device according to any one of (a1) to (a6),
The hydraulic control unit further includes a hydraulic control unit that connects the wheel silider and the master cylinder, and the hydraulic control unit includes the pump.
A brake control device, wherein the suction side of the pump is connected to the master cylinder via a pressure control reservoir including a pressure sensitive check valve, and the discharge side of the pump is connected to the wheel cylinder.
(A8) In the brake control device according to any one of (a1) to (a6),
The target wheel cylinder hydraulic pressure corresponding to the master cylinder hydraulic pressure calculates a target master cylinder hydraulic pressure according to the calculated operation stroke,
A pressure reducing oil passage connecting the wheel cylinder and the reservoir;
A pressure reducing valve provided in the pressure reducing oil passage;
When the calculated master cylinder fluid pressure becomes larger than the target master cylinder fluid pressure by a predetermined value or more, the pressure reducing valve is opened to reduce the wheel cylinder fluid pressure, and the wheel is decompressed from within the master cylinder And a master cylinder hydraulic pressure control unit that supplies brake fluid to a cylinder and reduces the master cylinder hydraulic pressure.
(A9) In the brake control device according to any one of (a1) to (a6),
A first oil passage connecting the master cylinder and the wheel cylinder;
And a second oil passage branched from the first oil passage,
The second oil passage includes a suction oil passage connected to the pump and a pressure reduction oil passage connected to a reservoir.
The brake control device, wherein the brake fluid in the master cylinder is supplied to the pump and the reservoir by the second oil passage.
 (a10) ブレーキ制御装置であって、
 マスタシリンダからブレーキ液を吸入しホイルシリンダ液圧を増圧するポンプと、
 運転者のブレーキペダルの操作ストロークを算出するストローク算出部と、
 前記マスタシリンダの液圧を算出するマスタシリンダ液圧算出部と、
 前記ポンプにより前記ホイルシリンダ液圧の増圧をアシストするための基本アシスト量を算出するアシスト量算出部であって、前記算出された操作ストロークに基づいて基本アシスト量を算出するアシスト量算出部と、
 前記操作ストローク及び前記算出されたマスタシリンダの液圧に基づいて前記基本アシスト量を補正することによって、目標ホイルシリンダ液圧を算出する目標ホイルシリンダ液圧算出部と、
 前記ホイルシリンダの液圧が前記目標ホイルシリンダ液圧となるように、前記ポンプの駆動量を設定するポンプ駆動部と、を備えるブレーキ制御装置。
 (a11) 上記(a10)に記載のブレーキ制御装置において、
 前記マスタシリンダに、前記運転者のブレーキペダル操作力を増幅するブースタが接続されており、
 前記目標ホイルシリンダ液圧算出部は、前記ブースタの増幅特性と、前記算出された操作ストロークと、前記算出されたマスタシリンダの液圧とに基づき前記基本アシスト量を補正する、ブレーキ制御装置。
 (a12) 上記(a11)に記載のブレーキ制御装置において、
 前記ブースタはエンジンにより発生した負圧を利用して前記ブレーキペダル操作力を増幅する負圧ブースタである、ブレーキ制御装置。
 (a13) 上記(a10)に記載のブレーキ制御装置において、
 前記目標ホイルシリンダ液圧算出部は、前記算出された操作ストロークに対する目標マスタシリンダ液圧を算出し、前記算出した目標マスタシリンダ液圧と、前記算出されたマスタシリンダ液圧との差分に基づいて前記アシスト量を補正し、前記目標ホイルシリンダ液圧を算出する、ブレーキ制御装置。
 (a14) 上記(a10)乃至(a13)の何れかに記載のブレーキ制御装置において、
 前記算出された操作ストロークと、前記補正された目標ホイルシリンダ液圧とを対応させて記憶する目標ホイルシリンダ液圧記憶部を備え、
 前記ポンプ駆動部は、前記算出された操作ストロークに応じて、前記ホイルシリンダの液圧が、対応する前記記憶した目標ホイルシリンダ液圧となるよう前記ポンプの駆動量を決定する、ブレーキ制御装置。
 (a15) 上記(a14)に記載のブレーキ制御装置において、
 前記目標ホイルシリンダ液圧記憶部は不揮発性メモリである、ブレーキ制御装置。
(A10) a brake control device,
A pump that sucks in brake fluid from the master cylinder to increase the wheel cylinder fluid pressure;
A stroke calculation unit that calculates an operation stroke of a driver's brake pedal;
A master cylinder fluid pressure calculation unit that calculates the fluid pressure of the master cylinder;
An assist amount calculation unit that calculates a basic assist amount for assisting the pressure increase of the wheel cylinder hydraulic pressure by the pump, and calculates the basic assist amount based on the calculated operation stroke; ,
A target wheel cylinder hydraulic pressure calculating unit that calculates a target wheel cylinder hydraulic pressure by correcting the basic assist amount based on the operation stroke and the calculated hydraulic pressure of the master cylinder;
A pump drive unit configured to set a drive amount of the pump such that a fluid pressure of the wheel cylinder becomes the target wheel cylinder fluid pressure.
(A11) In the brake control device according to (a10),
A booster that amplifies the driver's brake pedal operation force is connected to the master cylinder,
The target wheel cylinder hydraulic pressure calculation unit corrects the basic assist amount based on the amplification characteristic of the booster, the calculated operation stroke, and the calculated hydraulic pressure of the master cylinder.
(A12) In the brake control device according to (a11),
The brake control device, wherein the booster is a negative pressure booster that amplifies the brake pedal operating force using a negative pressure generated by an engine.
(A13) In the brake control device according to (a10),
The target wheel cylinder hydraulic pressure calculation unit calculates a target master cylinder hydraulic pressure for the calculated operation stroke, and based on the difference between the calculated target master cylinder hydraulic pressure and the calculated master cylinder hydraulic pressure. A brake control device that corrects the assist amount and calculates the target wheel cylinder hydraulic pressure.
(A14) In the brake control device according to any one of (a10) to (a13),
A target wheel cylinder hydraulic pressure storage unit that stores the calculated operation stroke in correspondence with the corrected target wheel cylinder hydraulic pressure;
The pump control unit determines the drive amount of the pump so that the fluid pressure of the wheel cylinder becomes the corresponding stored target wheel cylinder fluid pressure according to the calculated operation stroke.
(A15) In the brake control device according to (a14),
The brake control device, wherein the target wheel cylinder hydraulic pressure storage unit is a non-volatile memory.
 (a16) ブレーキ制御装置であって、
 運転者のブレーキペダルの操作ストロークを算出し、前記算出された操作ストロークに応じて目標ホイルシリンダ液圧を算出する目標ホイルシリンダ液圧算出部と、
 ポンプを駆動し、マスタシリンダからブレーキ液をポンプにより吸入し、前記目標ホイルシリンダ液圧となるようにホイルシリンダの液圧を増圧するポンプ駆動部と、
 前記マスタシリンダの液圧を算出するマスタシリンダ液圧算出部と、
 算出された前記操作ストロークに基づき算出される目標マスタシリンダ液圧を算出する目標マスタシリンダ液圧算出部と、
 前記ホイルシリンダの液圧が、前記目標ホイルシリンダ液圧になるよう前記ポンプの駆動量を決定するとともに、前記ポンプによる増圧中に前記目標マスタシリンダ液圧に対して前記算出されたマスタシリンダ液圧が高くなると前記マスタシリンダ液圧を減圧するマスタシリンダ液圧制御部と、
 を備えたことを特徴とするブレーキ制御装置。
 (a17) 上記(a16)に記載のブレーキ制御装置において、
 前記マスタシリンダ液圧制御部は、前記算出された操作ストロークと前記算出されたマスタシリンダの液圧とに基づき、前記目標ホイルシリンダ液圧を補正する目標ホイルシリンダ液圧補正部を備え、
 前記マスタシリンダ液圧制御部は、前記補正された目標ホイルシリンダ液圧になるよう前記ポンプの駆動量を決定し、前記ポンプにより前記マスタシリンダ内のブレーキ液を吸い出すことで前記マスタシリンダ液圧を減圧する、ブレーキ制御装置。
 (a18) 上記(a16)請求項16に記載のブレーキ制御装置において、
 前記マスタシリンダ液圧制御部は、前記算出された操作ストロークと前記算出されたマスタシリンダの液圧とに基づき、前記目標ホイルシリンダ液圧を補正し、前記ホイルシリンダの液圧が前記補正後の目標ホイルシリンダ液圧になるよう前記ポンプの駆動量を決定し、前記マスタシリンダ内のブレーキ液を前記ポンプにより吸出し前記マスタシリンダ液圧を減圧する、ブレーキ制御装置。
 (a19) 上記(a16)に記載のブレーキ制御装置において、
 前記ホイルシリンダとリザーバを接続する減圧油路と、
 前記減圧油路に設けられた減圧弁を備え、
 前記マスタシリンダ液圧制御部は、前記減圧弁を開弁し前記ホイルシリンダ液圧を減圧するとともに、前記マスタシリンダ内から減圧したホイルシリンダへブレーキ液を供給し、前記マスタシリンダ液圧を減圧する、ブレーキ制御装置。
 (a20) 上記(a16)に記載のブレーキ制御装置において、
 前記マスタシリンダと前記ホイルシリンダを接続する第1油路と、
 前記第1油路から分岐する第2油路と、を備え、
 前記第2油路は、前記ポンプに接続する吸入油路部と、リザーバに接続する減圧油路部を備え、
 前記マスタシリンダ内のブレーキ液は、前記第2油路によって前記ポンプと前記リザーバとに供給される、ブレーキ制御装置。
(A16) a brake control device,
A target wheel cylinder hydraulic pressure calculation unit that calculates an operation stroke of a driver's brake pedal and calculates a target wheel cylinder hydraulic pressure according to the calculated operation stroke;
A pump drive unit which drives a pump, sucks a brake fluid from the master cylinder by the pump, and increases the hydraulic pressure of the wheel cylinder so as to achieve the target wheel cylinder hydraulic pressure;
A master cylinder fluid pressure calculation unit that calculates the fluid pressure of the master cylinder;
A target master cylinder hydraulic pressure calculating unit that calculates a target master cylinder hydraulic pressure calculated based on the calculated operation stroke;
The drive amount of the pump is determined so that the fluid pressure of the wheel cylinder becomes the target wheel cylinder fluid pressure, and the master cylinder fluid calculated with respect to the target master cylinder fluid pressure during pressure increase by the pump A master cylinder fluid pressure control unit that reduces the master cylinder fluid pressure when the pressure increases;
The brake control apparatus characterized by having.
(A17) In the brake control device according to (a16),
The master cylinder hydraulic pressure control unit includes a target wheel cylinder hydraulic pressure correction unit that corrects the target wheel cylinder hydraulic pressure based on the calculated operation stroke and the calculated hydraulic pressure of the master cylinder.
The master cylinder fluid pressure control unit determines the driving amount of the pump so as to be the corrected target wheel cylinder fluid pressure, and sucks out the brake fluid in the master cylinder by the pump to thereby obtain the master cylinder fluid pressure. A brake control unit that depressurizes.
(A18) In the brake control device according to (16),
The master cylinder hydraulic pressure control unit corrects the target wheel cylinder hydraulic pressure based on the calculated operation stroke and the calculated hydraulic pressure of the master cylinder, and the hydraulic pressure of the wheel cylinder is corrected after the correction. A brake control device, wherein a drive amount of the pump is determined so as to reach a target wheel cylinder hydraulic pressure, and brake fluid in the master cylinder is drawn by the pump to reduce the master cylinder hydraulic pressure.
(A19) In the brake control device according to (a16),
A pressure reducing oil passage connecting the wheel cylinder and the reservoir;
A pressure reducing valve provided in the pressure reducing oil passage;
The master cylinder fluid pressure control unit opens the pressure reducing valve to reduce the wheel cylinder fluid pressure, supplies brake fluid to the wheel cylinder that has been reduced in pressure from the master cylinder, and reduces the fluid pressure of the master cylinder. , Brake control device.
(A20) In the brake control device according to (a16),
A first oil passage connecting the master cylinder and the wheel cylinder;
And a second oil passage branched from the first oil passage,
The second oil passage includes a suction oil passage connected to the pump and a pressure reduction oil passage connected to a reservoir.
The brake control device, wherein the brake fluid in the master cylinder is supplied to the pump and the reservoir by the second oil passage.
 上記実施形態によれば、良好なペダルフィーリングを得ることができる。 According to the above embodiment, a good pedal feeling can be obtained.
 以上、本発明の幾つかの実施形態のみを説明したが、本発明の新規の教示や利点から実質的に外れることなく例示の実施形態に、多様な変更または改良を加えることが可能であることが当業者には容易に理解できるであろう。従って、その様な変更または改良を加えた形態も本発明の技術的範囲に含むことを意図する。
 以上、いくつかの例に基づいて本発明の実施形態について説明してきたが、上記した発明の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明には、その均等物が含まれることはもちろんである。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。
While only certain embodiments of the invention have been described above, it will be appreciated that various changes and modifications may be made to the illustrated embodiments without departing substantially from the novel teachings and advantages of the invention. Will be readily understood by those skilled in the art. Accordingly, it is intended that the embodiments added with such alterations or improvements are also included in the technical scope of the present invention.
Although the embodiments of the present invention have been described above based on several examples, the above-described embodiments of the present invention are for the purpose of facilitating the understanding of the present invention, and are not intended to limit the present invention. . The present invention can be modified and improved without departing from the gist thereof, and the present invention naturally includes the equivalents thereof. In addition, any combination or omission of each component described in the claims and the specification is possible within a range in which at least a part of the above-mentioned problems can be solved, or in a range that exerts at least a part of the effect. It is.
 本願は、2014年9月9日出願の日本国特許出願番号2014-183075号に基づく優先権を主張する。2014年9月9日出願の日本国特許出願番号2014-183075号の明細書、特許請求の範囲、図面及び要約書を含む全ての開示内容は、参照により全体として本願に援用される。
 特開平10-329678号公報(特許文献1)の明細書、特許請求の範囲、図面及び要約書を含む全ての開示は、参照により全体として本願に組み込まれる。
This application claims the priority based on Japanese Patent Application No. 2014-183075 filed on Sep. 9, 2014. The disclosure of Japanese Patent Application No. 2014-183075 filed on Sep. 9, 2014, including the specification, claims, drawings and abstract is incorporated herein by reference in its entirety.
The entire disclosure, including the specification, claims, drawings and abstract of JP 10-329678 A, is incorporated herein by reference in its entirety.
1  管路3  ゲートアウトバルブ5  チェックバルブ6  ソレノイドインバルブ11  管路12  管路12S1,12P1  吸入油路部12S2,12P2  減圧油路部13  調圧リザーバ14  管路15  ソレノイドアウトバルブ16  チェックバルブ17  ストロークセンサ18  負圧センサ20  モータ駆動部30  第1チェックバルブ31  第2チェックバルブ40  マスタシリンダ液圧センサ50  ゲートインバルブ101  ストローク対応目標ホイルシリンダ液圧算出部102  マスタシリンダ液圧対応目標ホイルシリンダ液圧算出部103  目標ホイルシリンダ液圧算出部130  リザーバ201  ストローク対応目標ホイルシリンダ液圧算出部202  目標マスタシリンダ液圧算出部203  偏差算出部204  マスタシリンダ液圧対応目標ホイルシリンダ液圧算出部205  目標ホイルシリンダ液圧算出部301  記憶装置BB  ブレーキブースタBCU  ブレーキコントロールユニットBP  ブレーキペダルHU  液圧制御ユニットIGN  イグニッションスイッチM  モータM/C  マスタシリンダP  ポンプW/C  ホイルシリンダRSV  リザーバタンク Reference Signs List 1 pipe 3 gate out valve 5 check valve 6 solenoid in valve 11 pipe 12 pipe 12S1, 12P1 suction oil path 12S2, 12P2 pressure reducing oil path 13 pressure control reservoir 14 pipe 15 solenoid out valve 16 check valve 17 stroke Sensor 18 Negative pressure sensor 20 Motor drive unit 30 First check valve 31 Second check valve 40 Master cylinder hydraulic pressure sensor 50 Gate in valve 101 Stroke corresponding target wheel cylinder hydraulic pressure calculation unit 102 Master cylinder hydraulic pressure corresponding target foil cylinder hydraulic pressure Calculation unit 103 Target wheel cylinder hydraulic pressure calculation unit 130 Reservoir 201 Target wheel cylinder hydraulic pressure calculation unit 202 corresponding to stroke Target master cylinder hydraulic pressure calculation unit 203 Deviation calculation unit 204 Target wheel cylinder hydraulic pressure calculation unit 205 corresponding to master cylinder hydraulic pressure Target wheel cylinder pressure calculating section 301 storage device BB brake booster BCU brake control unit BP brake pedal HU fluid pressure control unit IGN ignition switch M the motor M / C master cylinder P Pump W / C wheel cylinder RSV reservoir tank

Claims (20)

  1.  ブレーキ制御装置であって、
     運転者のブレーキペダルの操作ストロークを算出するストローク算出部と、
     マスタシリンダの液圧を算出するマスタシリンダ液圧算出部と、
     前記算出された操作ストロークに応じてストローク対応目標ホイルシリンダ液圧を算出するストローク対応目標ホイルシリンダ液圧算出部と、
     前記算出されたマスタシリンダ液圧に応じてマスタシリンダ液圧対応目標ホイルシリンダ液圧を算出するマスタシリンダ液圧対応目標ホイルシリンダ液圧算出部と、
     前記ストローク対応目標ホイルシリンダ液圧と、前記マスタシリンダ液圧対応目標ホイルシリンダ液圧とに基づき、目標ホイルシリンダ液圧を算出する目標ホイルシリンダ液圧算出部と
     ポンプを駆動して、前記マスタシリンダからブレーキ液を前記ポンプにより吸入し、前記目標ホイルシリンダ液圧となるように前記ホイルシリンダの液圧を増圧するポンプ駆動部と、
     を備えるブレーキ制御装置。
    A brake control device,
    A stroke calculation unit that calculates an operation stroke of a driver's brake pedal;
    A master cylinder fluid pressure calculation unit that calculates the fluid pressure of the master cylinder;
    A stroke corresponding target wheel cylinder hydraulic pressure calculating unit that calculates a stroke corresponding target wheel cylinder hydraulic pressure according to the calculated operation stroke;
    A target wheel hydraulic pressure corresponding target wheel cylinder hydraulic pressure calculation unit for calculating a target wheel hydraulic pressure corresponding to the master cylinder hydraulic pressure according to the calculated master cylinder hydraulic pressure;
    A target wheel cylinder hydraulic pressure calculation unit that calculates a target wheel cylinder hydraulic pressure based on the stroke target wheel cylinder hydraulic pressure and the target cylinder hydraulic pressure corresponding to the master cylinder hydraulic pressure, and a pump are driven to generate the master cylinder. A pump drive unit which sucks in the brake fluid from the pump by the pump and pressurizes the fluid pressure of the wheel cylinder so as to achieve the target wheel cylinder fluid pressure;
    Brake control device comprising:
  2.  請求項1に記載のブレーキ制御装置において、
     前記目標ホイルシリンダ液圧算出部は、前記ストローク対応目標ホイルシリンダ液圧と、前記マスタシリンダ液圧対応目標ホイルシリンダ液圧とを加算して、前記目標ホイルシリンダ液圧を算出する、ブレーキ制御装置。
    In the brake control device according to claim 1,
    The brake control device, wherein the target wheel cylinder hydraulic pressure calculation unit calculates the target wheel cylinder hydraulic pressure by adding the target wheel cylinder hydraulic pressure corresponding to the stroke and the target wheel cylinder hydraulic pressure corresponding to the master cylinder hydraulic pressure. .
  3.  請求項1に記載のブレーキ制御装置において、
     前記マスタシリンダに、前記運転者のブレーキペダル操作力を増幅するブースタが接続されており、
     前記マスタシリンダ液圧対応目標ホイルシリンダ液圧算出部は、前記ブースタの増幅特性と、前記算出された操作ストロークと、前記算出されたマスタシリンダの液圧とに基づき、前記マスタシリンダ液圧対応目標ホイルシリンダ液圧を算出する、ブレーキ制御装置。
    In the brake control device according to claim 1,
    A booster that amplifies the driver's brake pedal operation force is connected to the master cylinder,
    The target cylinder hydraulic pressure corresponding target cylinder hydraulic pressure calculation unit for the master cylinder hydraulic pressure is the target corresponding to the master cylinder hydraulic pressure based on the amplification characteristic of the booster, the calculated operation stroke, and the calculated hydraulic pressure of the master cylinder. A brake control device that calculates the wheel cylinder fluid pressure.
  4.  請求項3に記載のブレーキ制御装置において、
     前記ブースタはエンジンにより発生した負圧を利用して前記ブレーキペダル操作力を増幅する負圧ブースタである、ブレーキ制御装置。
    In the brake control device according to claim 3,
    The brake control device, wherein the booster is a negative pressure booster that amplifies the brake pedal operating force using a negative pressure generated by an engine.
  5.  請求項1に記載のブレーキ制御装置において、
     前記算出された操作ストロークと、前記算出された目標ホイルシリンダ液圧とを対応させて記憶する目標ホイルシリンダ液圧記憶部を備え、
     前記ポンプ駆動部は、前記算出された操作ストロークに応じて、対応する前記記憶した目標ホイルシリンダ液圧となるように、前記ホイルシリンダの液圧を増圧する、ブレーキ制御装置。
    In the brake control device according to claim 1,
    A target wheel cylinder hydraulic pressure storage unit that stores the calculated operation stroke in correspondence with the calculated target wheel cylinder hydraulic pressure;
    The brake control device, wherein the pump drive unit increases the fluid pressure of the wheel cylinder so as to achieve the stored target wheel cylinder fluid pressure corresponding to the calculated operation stroke.
  6.  請求項5に記載のブレーキ制御装置において、
     前記目標ホイルシリンダ液圧記憶部は不揮発性メモリである、ブレーキ制御装置。
    In the brake control device according to claim 5,
    The brake control device, wherein the target wheel cylinder hydraulic pressure storage unit is a non-volatile memory.
  7.  請求項1に記載のブレーキ制御装置において、
     前記ホイルシリダと前記マスタシリンダとを接続する液圧制御ユニットを更に備え、前記液圧制御ユニットは、前記ポンプを有し、
     前記ポンプの吸入側が、圧力感応型のチェックバルブを備える調圧リザーバを介して前記マスタシリンダに接続され、前記ポンプの吐出側が、前記ホイルシリンダに接続されている、ブレーキ制御装置。
    In the brake control device according to claim 1,
    The hydraulic control unit further includes a hydraulic control unit that connects the wheel silider and the master cylinder, and the hydraulic control unit includes the pump.
    A brake control device, wherein the suction side of the pump is connected to the master cylinder via a pressure control reservoir including a pressure sensitive check valve, and the discharge side of the pump is connected to the wheel cylinder.
  8.  請求項1に記載のブレーキ制御装置において、
     前記マスタシリンダ液圧対応目標ホイルシリンダ液圧算出部は、前記算出された操作ストロークに応じて目標マスタシリンダ液圧を算出し、
     前記ホイルシリンダとリザーバを接続する減圧油路と、
     前記減圧油路に設けられた減圧弁と、
     前記算出されたマスタシリンダ液圧が前記目標マスタシリンダ液圧よりも所定値以上大きくなったとき、前記減圧弁を開弁し前記ホイルシリンダ液圧を減圧するとともに、前記マスタシリンダ内から減圧したホイルシリンダへブレーキ液を供給し、前記マスタシリンダ液圧を減圧する、マスタシリンダ液圧制御部とを更に備える、ブレーキ制御装置。
    In the brake control device according to claim 1,
    The target wheel cylinder hydraulic pressure corresponding to the master cylinder hydraulic pressure calculates a target master cylinder hydraulic pressure according to the calculated operation stroke,
    A pressure reducing oil passage connecting the wheel cylinder and the reservoir;
    A pressure reducing valve provided in the pressure reducing oil passage;
    When the calculated master cylinder fluid pressure becomes larger than the target master cylinder fluid pressure by a predetermined value or more, the pressure reducing valve is opened to reduce the wheel cylinder fluid pressure, and the wheel is decompressed from within the master cylinder And a master cylinder hydraulic pressure control unit that supplies brake fluid to a cylinder and reduces the master cylinder hydraulic pressure.
  9.  請求項1に記載のブレーキ制御装置において、
     前記マスタシリンダと前記ホイルシリンダを接続する第1油路と、
     前記第1油路から分岐する第2油路と、を備え、
     前記第2油路は、前記ポンプに接続する吸入油路部と、リザーバに接続する減圧油路部を備え、
     前記マスタシリンダ内のブレーキ液は、前記第2油路によって前記ポンプと前記リザーバとに供給される、ブレーキ制御装置。
    In the brake control device according to claim 1,
    A first oil passage connecting the master cylinder and the wheel cylinder;
    And a second oil passage branched from the first oil passage,
    The second oil passage includes a suction oil passage connected to the pump and a pressure reduction oil passage connected to a reservoir.
    The brake control device, wherein the brake fluid in the master cylinder is supplied to the pump and the reservoir by the second oil passage.
  10.  ブレーキ制御装置であって、
     マスタシリンダからブレーキ液を吸入しホイルシリンダ液圧を増圧するポンプと、
     運転者のブレーキペダルの操作ストロークを算出するストローク算出部と、
     前記マスタシリンダの液圧を算出するマスタシリンダ液圧算出部と、
     前記ポンプにより前記ホイルシリンダ液圧の増圧をアシストするための基本アシスト量を算出するアシスト量算出部であって、前記算出された操作ストロークに基づいて基本アシスト量を算出するアシスト量算出部と、
     前記操作ストローク及び前記算出されたマスタシリンダの液圧に基づいて前記基本アシスト量を補正することによって、目標ホイルシリンダ液圧を算出する目標ホイルシリンダ液圧算出部と、
     前記ホイルシリンダの液圧が前記目標ホイルシリンダ液圧となるように、前記ポンプの駆動量を設定するポンプ駆動部と、を備えるブレーキ制御装置。
    A brake control device,
    A pump that sucks in brake fluid from the master cylinder to increase the wheel cylinder fluid pressure;
    A stroke calculation unit that calculates an operation stroke of a driver's brake pedal;
    A master cylinder fluid pressure calculation unit that calculates the fluid pressure of the master cylinder;
    An assist amount calculation unit that calculates a basic assist amount for assisting the pressure increase of the wheel cylinder hydraulic pressure by the pump, and calculates the basic assist amount based on the calculated operation stroke; ,
    A target wheel cylinder hydraulic pressure calculating unit that calculates a target wheel cylinder hydraulic pressure by correcting the basic assist amount based on the operation stroke and the calculated hydraulic pressure of the master cylinder;
    A pump drive unit configured to set a drive amount of the pump such that a fluid pressure of the wheel cylinder becomes the target wheel cylinder fluid pressure.
  11.  請求項10に記載のブレーキ制御装置において、
     前記マスタシリンダに、前記運転者のブレーキペダル操作力を増幅するブースタが接続されており、
     前記目標ホイルシリンダ液圧算出部は、前記ブースタの増幅特性と、前記算出された操作ストロークと、前記算出されたマスタシリンダの液圧とに基づき前記基本アシスト量を補正する、ブレーキ制御装置。
    In the brake control device according to claim 10,
    A booster that amplifies the driver's brake pedal operation force is connected to the master cylinder,
    The target wheel cylinder hydraulic pressure calculation unit corrects the basic assist amount based on the amplification characteristic of the booster, the calculated operation stroke, and the calculated hydraulic pressure of the master cylinder.
  12.  請求項11に記載のブレーキ制御装置において、
     前記ブースタはエンジンにより発生した負圧を利用して前記ブレーキペダル操作力を増幅する負圧ブースタである、ブレーキ制御装置。
    In the brake control device according to claim 11,
    The brake control device, wherein the booster is a negative pressure booster that amplifies the brake pedal operating force using a negative pressure generated by an engine.
  13.  請求項10に記載のブレーキ制御装置において、
     前記目標ホイルシリンダ液圧算出部は、前記算出された操作ストロークに対する目標マスタシリンダ液圧を算出し、前記算出した目標マスタシリンダ液圧と、前記算出されたマスタシリンダ液圧との差分に基づいて前記アシスト量を補正し、前記目標ホイルシリンダ液圧を算出する、ブレーキ制御装置。
    In the brake control device according to claim 10,
    The target wheel cylinder hydraulic pressure calculation unit calculates a target master cylinder hydraulic pressure for the calculated operation stroke, and based on the difference between the calculated target master cylinder hydraulic pressure and the calculated master cylinder hydraulic pressure. A brake control device that corrects the assist amount and calculates the target wheel cylinder hydraulic pressure.
  14.  請求項10に記載のブレーキ制御装置において、
     前記算出された操作ストロークと、前記補正された目標ホイルシリンダ液圧とを対応させて記憶する目標ホイルシリンダ液圧記憶部を備え、
     前記ポンプ駆動部は、前記算出された操作ストロークに応じて、前記ホイルシリンダの液圧が、対応する前記記憶した目標ホイルシリンダ液圧となるよう前記ポンプの駆動量を決定する、ブレーキ制御装置。
    In the brake control device according to claim 10,
    A target wheel cylinder hydraulic pressure storage unit that stores the calculated operation stroke in correspondence with the corrected target wheel cylinder hydraulic pressure;
    The pump control unit determines the drive amount of the pump so that the fluid pressure of the wheel cylinder becomes the corresponding stored target wheel cylinder fluid pressure according to the calculated operation stroke.
  15.  請求項14に記載のブレーキ制御装置において、
     前記目標ホイルシリンダ液圧記憶部は不揮発性メモリである、ブレーキ制御装置。
    In the brake control device according to claim 14,
    The brake control device, wherein the target wheel cylinder hydraulic pressure storage unit is a non-volatile memory.
  16.  ブレーキ制御装置であって、
     運転者のブレーキペダルの操作ストロークを算出し、前記算出された操作ストロークに応じて目標ホイルシリンダ液圧を算出する目標ホイルシリンダ液圧算出部と、
     ポンプを駆動し、マスタシリンダからブレーキ液をポンプにより吸入し、前記目標ホイルシリンダ液圧となるようにホイルシリンダの液圧を増圧するポンプ駆動部と、
     前記マスタシリンダの液圧を算出するマスタシリンダ液圧算出部と、
     算出された前記操作ストロークに基づき算出される目標マスタシリンダ液圧を算出する目標マスタシリンダ液圧算出部と、
     前記ホイルシリンダの液圧が、前記目標ホイルシリンダ液圧になるよう前記ポンプの駆動量を決定するとともに、前記ポンプによる増圧中に前記目標マスタシリンダ液圧に対して前記算出されたマスタシリンダ液圧が高くなると前記マスタシリンダ液圧を減圧するマスタシリンダ液圧制御部と、
     を備えたことを特徴とするブレーキ制御装置。
    A brake control device,
    A target wheel cylinder hydraulic pressure calculation unit that calculates an operation stroke of a driver's brake pedal and calculates a target wheel cylinder hydraulic pressure according to the calculated operation stroke;
    A pump drive unit which drives a pump, sucks a brake fluid from the master cylinder by the pump, and increases the hydraulic pressure of the wheel cylinder so as to achieve the target wheel cylinder hydraulic pressure;
    A master cylinder fluid pressure calculation unit that calculates the fluid pressure of the master cylinder;
    A target master cylinder hydraulic pressure calculating unit that calculates a target master cylinder hydraulic pressure calculated based on the calculated operation stroke;
    The drive amount of the pump is determined so that the fluid pressure of the wheel cylinder becomes the target wheel cylinder fluid pressure, and the master cylinder fluid calculated with respect to the target master cylinder fluid pressure during pressure increase by the pump A master cylinder fluid pressure control unit that reduces the master cylinder fluid pressure when the pressure increases;
    The brake control apparatus characterized by having.
  17.  請求項16に記載のブレーキ制御装置において、
     前記マスタシリンダ液圧制御部は、前記算出された操作ストロークと前記算出されたマスタシリンダの液圧とに基づき、前記目標ホイルシリンダ液圧を補正する目標ホイルシリンダ液圧補正部を備え、
     前記マスタシリンダ液圧制御部は、前記補正された目標ホイルシリンダ液圧になるよう前記ポンプの駆動量を決定し、前記ポンプにより前記マスタシリンダ内のブレーキ液を吸い出すことで前記マスタシリンダ液圧を減圧する、ブレーキ制御装置。
    In the brake control device according to claim 16,
    The master cylinder hydraulic pressure control unit includes a target wheel cylinder hydraulic pressure correction unit that corrects the target wheel cylinder hydraulic pressure based on the calculated operation stroke and the calculated hydraulic pressure of the master cylinder.
    The master cylinder fluid pressure control unit determines the driving amount of the pump so as to be the corrected target wheel cylinder fluid pressure, and sucks out the brake fluid in the master cylinder by the pump to thereby obtain the master cylinder fluid pressure. A brake control unit that depressurizes.
  18.  請求項16に記載のブレーキ制御装置において、
     前記マスタシリンダ液圧制御部は、前記算出された操作ストロークと前記算出されたマスタシリンダの液圧とに基づき、前記目標ホイルシリンダ液圧を補正し、前記ホイルシリンダの液圧が前記補正後の目標ホイルシリンダ液圧になるよう前記ポンプの駆動量を決定し、前記マスタシリンダ内のブレーキ液を前記ポンプにより吸出し前記マスタシリンダ液圧を減圧する、ブレーキ制御装置。
    In the brake control device according to claim 16,
    The master cylinder hydraulic pressure control unit corrects the target wheel cylinder hydraulic pressure based on the calculated operation stroke and the calculated hydraulic pressure of the master cylinder, and the hydraulic pressure of the wheel cylinder is corrected after the correction. A brake control device, wherein a drive amount of the pump is determined so as to reach a target wheel cylinder hydraulic pressure, and brake fluid in the master cylinder is drawn by the pump to reduce the master cylinder hydraulic pressure.
  19.  請求項16に記載のブレーキ制御装置において、
     前記ホイルシリンダとリザーバを接続する減圧油路と、
     前記減圧油路に設けられた減圧弁を備え、
     前記マスタシリンダ液圧制御部は、前記減圧弁を開弁し前記ホイルシリンダ液圧を減圧するとともに、前記マスタシリンダ内から減圧したホイルシリンダへブレーキ液を供給し、前記マスタシリンダ液圧を減圧する、ブレーキ制御装置。
    In the brake control device according to claim 16,
    A pressure reducing oil passage connecting the wheel cylinder and the reservoir;
    A pressure reducing valve provided in the pressure reducing oil passage;
    The master cylinder fluid pressure control unit opens the pressure reducing valve to reduce the wheel cylinder fluid pressure, supplies brake fluid to the wheel cylinder that has been reduced in pressure from the master cylinder, and reduces the fluid pressure of the master cylinder. , Brake control device.
  20.  請求項16に記載のブレーキ制御装置において、
     前記マスタシリンダと前記ホイルシリンダを接続する第1油路と、
     前記第1油路から分岐する第2油路と、を備え、
     前記第2油路は、前記ポンプに接続する吸入油路部と、リザーバに接続する減圧油路部を備え、
     前記マスタシリンダ内のブレーキ液は、前記第2油路によって前記ポンプと前記リザーバとに供給される、ブレーキ制御装置。
    In the brake control device according to claim 16,
    A first oil passage connecting the master cylinder and the wheel cylinder;
    And a second oil passage branched from the first oil passage,
    The second oil passage includes a suction oil passage connected to the pump and a pressure reduction oil passage connected to a reservoir.
    The brake control device, wherein the brake fluid in the master cylinder is supplied to the pump and the reservoir by the second oil passage.
PCT/JP2015/074629 2014-09-09 2015-08-31 Brake control device WO2016039196A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014183075A JP2016055739A (en) 2014-09-09 2014-09-09 Brake control device
JP2014-183075 2014-09-09

Publications (1)

Publication Number Publication Date
WO2016039196A1 true WO2016039196A1 (en) 2016-03-17

Family

ID=55458948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074629 WO2016039196A1 (en) 2014-09-09 2015-08-31 Brake control device

Country Status (2)

Country Link
JP (1) JP2016055739A (en)
WO (1) WO2016039196A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10329678A (en) * 1997-06-02 1998-12-15 Toyota Motor Corp Braking device
JP2007001385A (en) * 2005-06-22 2007-01-11 Nissan Motor Co Ltd Brake control device
JP2012001169A (en) * 2010-06-21 2012-01-05 Toyota Motor Corp Braking device for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10329678A (en) * 1997-06-02 1998-12-15 Toyota Motor Corp Braking device
JP2007001385A (en) * 2005-06-22 2007-01-11 Nissan Motor Co Ltd Brake control device
JP2012001169A (en) * 2010-06-21 2012-01-05 Toyota Motor Corp Braking device for vehicle

Also Published As

Publication number Publication date
JP2016055739A (en) 2016-04-21

Similar Documents

Publication Publication Date Title
US7527339B2 (en) Brake control system for a motor vehicle
US9758139B2 (en) Method for operating a brake system, and brake system in which the method is carried out
US20130154343A1 (en) Method for operating a regenerative braking system of a vehicle and control unit for a regenerative braking system
JPWO2019187807A1 (en) Electric brake system, hydraulic pressure control circuit, and liquid level control circuit
JP5109826B2 (en) Braking force control device
JP6069149B2 (en) Brake control device
JP4462038B2 (en) Brake hydraulic pressure control device
JP5453752B2 (en) Braking force control device
US20220332301A1 (en) Brake device for vehicle
JP2009166754A (en) Brake control device
JP5998649B2 (en) Braking control device
US9085289B2 (en) Method of operating an electrically controllable brake system and brake system which is operated according to the method
JP2009274684A (en) Electric booster hydraulic brake device
WO2016039196A1 (en) Brake control device
JP5103917B2 (en) Vehicle motion control device
JP2002067917A (en) Braking control device for vehicle
JPH11227585A (en) Brake device
JP4667399B2 (en) Brake control device
JP3754994B2 (en) Brake control device
JP2005096701A (en) Brake device
JP5044583B2 (en) Brake control device
JP2017149378A (en) Brake device
JP5071031B2 (en) Braking control device
JP5446685B2 (en) Vehicle motion control device
JP2008260417A (en) Brake boosting control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15839175

Country of ref document: EP

Kind code of ref document: A1