WO2016039142A1 - Internal combustion engine and separator for internal combustion engine - Google Patents

Internal combustion engine and separator for internal combustion engine Download PDF

Info

Publication number
WO2016039142A1
WO2016039142A1 PCT/JP2015/074017 JP2015074017W WO2016039142A1 WO 2016039142 A1 WO2016039142 A1 WO 2016039142A1 JP 2015074017 W JP2015074017 W JP 2015074017W WO 2016039142 A1 WO2016039142 A1 WO 2016039142A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
separator member
oil
suction port
Prior art date
Application number
PCT/JP2015/074017
Other languages
French (fr)
Japanese (ja)
Inventor
啓之 川合
芳行 鈴木
一矢 松島
大吾 宇佐
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014181948A external-priority patent/JP6413519B2/en
Priority claimed from JP2014182232A external-priority patent/JP6413520B2/en
Priority claimed from JP2014182144A external-priority patent/JP2016056712A/en
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Publication of WO2016039142A1 publication Critical patent/WO2016039142A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/04Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil

Definitions

  • the present invention relates to an internal combustion engine and a separator for an internal combustion engine.
  • an internal combustion engine provided with a separator member for gas-liquid separation of blow-by gas is known.
  • Such an internal combustion engine is disclosed in, for example, Japanese Patent Application Laid-Open No. 2009-174464.
  • Japanese Patent Application Laid-Open No. 2009-174464 discloses a crankshaft, a crankcase, a cylinder block which is disposed on the upper side of the crankcase and sandwiches the crankshaft with a mating surface with the crankcase, and an outer surface of the cylinder block on the upper side of the crankcase
  • An internal combustion engine is disclosed that includes an oil separation device (separator member) that is considered to be attached to the engine.
  • an oil storage part in which oil is stored and an internal space in which blow-by gas flows while being isolated from the oil storage part are formed. .
  • a gas outflow passage that connects the internal space of the crankcase and the oil separation device is integrally provided in the cylinder block on the upper side of the crankcase. Accordingly, the blow-by gas in the crankcase is configured to be supplied to the oil separator through the internal space of the crankcase and the gas outflow passage of the cylinder block.
  • the gas outflow passage is integrally provided in the cylinder block above the rotation axis (matching surface) of the crankshaft. It is considered that the cylinder block is also provided with a connection opening for connecting the gas outflow passage inside the cylinder and the suction port of the oil separator attached to the outer surface of the cylinder block. For this reason, there is a problem that the rigidity of the cylinder block is reduced by the provision of the connection opening.
  • a sliding member such as a piston of the internal combustion engine body slides, so high rigidity is required.
  • the present invention has been made to solve the above-described problems, and one object of the present invention is to suppress a decrease in the rigidity of the internal combustion engine body in a portion above the rotation axis of the crankshaft. It is an object to provide an internal combustion engine and an internal combustion engine separator that can be used.
  • an internal combustion engine is attached to an internal combustion engine body including a crankshaft and an oil storage part in which oil is stored, and an outer surface of the internal combustion engine body.
  • the main body of the internal combustion engine is disposed above the rotation axis of the crankshaft by disposing the suction port of the separator member below the rotation axis of the crankshaft. Since the suction port through which blow-by gas flows in is not arranged, the connection opening that connects the gas outlet passage for flowing blow-by gas and the suction port of the separator member is located closer to the rotation axis of the crankshaft of the internal combustion engine body. There is no need to provide it in the upper part. Thereby, it can suppress that the rigidity of the internal combustion engine main body in the part above the rotating shaft line of a crankshaft falls.
  • the shape of the internal combustion engine body can be changed significantly in the portion above the rotation axis of the crankshaft. Can be suppressed. Thereby, even after the shape of the internal combustion engine body in the portion above the rotation axis of the crankshaft (cylinder block or the like) is determined, a structure for the flow of blow-by gas can be provided in the internal combustion engine body relatively easily. Can be added.
  • the suction port of the separator member is disposed above the oil level of the oil stored in the oil storage portion, so that the suction port of the separator member is connected to the rotation axis of the crankshaft. Even if it is a case where it arrange
  • the separator member is attached to the outer surface of the internal combustion engine main body extending along the direction in which the crankshaft extends.
  • an intake device intake manifold
  • a separator member is attached to the outer surface of the internal combustion engine body even so, by disposing the suction port of the separator member below the rotation axis of the crankshaft, at a position different from the intake device or the like that is mainly disposed in the upper part of the rotation axis of the crankshaft, The separator member can be easily arranged.
  • the suction port is provided in a lower portion of the separator member, and the lower end of the suction port is disposed above the oil level of the oil stored in the oil storage unit. ing. If comprised in this way, even if oil is sucked into the inside of a separator member by providing a suction port in the lower part of a separator member, it will be easy from a suction mouth provided in the lower part of a separator member by the dead weight of oil. Can be discharged to the oil reservoir. In addition, by arranging the lower end of the suction port above the oil level of the oil stored in the oil storage part, the suction port of the separator member is surely above the oil level of the oil stored in the oil storage part. Can be arranged.
  • the suction port has a vertically long shape extending in the vertical direction. If comprised in this way, even when discharging
  • the separator member further includes a discharge port that is provided near the upper end of the separator member and discharges blow-by gas that has passed through the separator member.
  • the oil separated in the separator member is provided near the upper end of the separator member by utilizing the fact that the liquid oil is more susceptible to gravity than the gas blow-by gas. Can be suppressed. Thereby, it can suppress that oil is discharged
  • the suction port is provided in the lower part of the separator member, it is possible to perform gas-liquid separation of blow-by gas in a wide range from the lower part of the separator member to the discharge port provided in the vicinity of the upper end part. Therefore, the gas-liquid separation of blow-by gas can be performed efficiently.
  • control valve that is directly attached to the discharge port and controls the discharge amount of blow-by gas.
  • This configuration eliminates the need for a connection passage for connecting the control valve and the discharge port compared to the case where the control valve and the discharge port are indirectly connected via the connection passage. Can be reduced, and the structure can be simplified.
  • the discharge port is preferably formed at the upper end portion of the separator member, and the control valve is directly attached to the discharge port so as to protrude upward from the upper end portion. If comprised in this way, it can suppress effectively that the oil isolate
  • the separator member is attached to the outer side surface of the internal combustion engine body extending along the direction in which the crankshaft extends, and the outer side surface to which the separator member of the internal combustion engine body is attached.
  • An intake manifold is attached above the separator member, and further includes a blowby gas passage portion that guides the blowby gas discharged from the discharge port of the separator member to the intake manifold.
  • the separator member and the intake manifold attached above the separator member can be connected via the blow-by gas passage portion on the same outer surface of the internal combustion engine body.
  • the length of the path (blow-by gas passage part) leading to the manifold can be effectively shortened. Thereby, blow-by gas (combusted gas and unburned mixture) separated by gas and liquid by the separator member can be efficiently supplied (returned) to the intake manifold.
  • the internal combustion engine body includes a cylinder block and a crankcase disposed below the cylinder block, and the crankcase has a shape corresponding to the suction port of the separator member. And an opening communicating with the suction port is provided. If comprised in this way, the opening part connected easily with a suction inlet can be easily provided in the crankcase in which high rigidity is comparatively required compared with a cylinder block.
  • the opening of the crankcase having a shape corresponding to the suction port of the separator member to the suction port, it is possible to easily remove the suction port of the separator member from the main body of the internal combustion engine by simply attaching the suction port of the separator member to the opening of the crankcase.
  • the blowby gas can be circulated inside the separator member.
  • the separator member is formed so as to protrude inside the internal combustion engine body, and liquid oil in the internal combustion engine body flows into the oil separator through the suction port.
  • Including a liquid oil inflow regulating section for regulating With this configuration, the liquid oil flowing toward the suction port can be blocked by the liquid oil inflow restricting portion protruding inside the internal combustion engine body, so that the liquid oil flows into the separator member through the suction port. Can be regulated. Thereby, it can suppress that the consumption of oil increases.
  • liquid oil inflow restricting portion on the separator member attached to the outer surface of the internal combustion engine main body so as to protrude to the inside of the internal combustion engine main body, compared with the case where the liquid oil inflow restricting portion is provided in the internal combustion engine main body. It is not necessary to change the shape of the internal combustion engine body significantly. Thereby, the liquid oil inflow regulation part which regulates inflow of liquid oil can be easily provided in an internal-combustion engine.
  • the liquid oil inflow restricting portion is formed integrally with the separator member by projecting a part of the separator member to the inside of the internal combustion engine body. Yes. If comprised in this way, a number of parts can be reduced compared with the case where a separate liquid oil inflow control part is attached to a separator member.
  • the separator member is made of a material that is lighter than the material constituting the internal combustion engine body, the liquid oil inflow restriction portion is lighter than when the liquid oil inflow restriction portion is provided on the internal combustion engine body side. The separator member itself can be reduced in weight.
  • the liquid oil inflow restricting portion preferably has an eaves-shaped upper inflow restricting portion that covers the suction port from above. If comprised in this way, it can suppress reliably that liquid oil flows in into the inside of a separator member from the upper side of a suction inlet by an eaves-shaped upper side inflow control part.
  • the separator member includes a first suction path that communicates with the interior of the internal combustion engine body below the combustion chamber, and the interior of the intake device that introduces intake air into the internal combustion engine body. It is connected to a discharge path that communicates with a second suction path that communicates with the interior of the internal combustion engine body above the combustion chamber.
  • the second suction path is provided in a valve-closed state, and is connected to a negative suction passage in the oil separator.
  • a one-way valve is provided that is opened based on an increase in pressure.
  • the negative pressure on the intake device side is distributed to the first and second suction paths, so that the first suction path side is compared with the case where the second suction path is closed.
  • the ventilation performance of blowby gas will be reduced.
  • the one-way valve can be closed and the second suction path can be closed during normal times when the negative pressure in the separator member does not increase, Even when it is provided, the ventilation performance of the blow-by gas on the first intake path side can be maintained.
  • the internal combustion engine main body includes a cylinder head cover disposed above the combustion chamber, and the second suction path communicates with the inside of the cylinder head cover.
  • the second suction path can be easily connected to the cylinder head cover that facilitates the formation of the gas outlet port in the internal combustion engine body due to the layout of the internal combustion engine. Can be provided.
  • An internal combustion engine separator is an internal combustion engine separator that is attached to an outer surface of an internal combustion engine body that includes a crankshaft and an oil storage portion in which oil is stored. It includes a suction port through which blow-by gas flows, and includes a separator body for gas-liquid separation of blow-by gas from the internal combustion engine body.
  • the suction port of the separator body is below the rotation axis of the crankshaft and stores oil. It is arrange
  • the suction port of the separator body is disposed below the rotation axis of the crankshaft, so that the internal combustion engine is positioned above the rotation axis of the crankshaft. Since the suction port through which blow-by gas flows from the engine body is not disposed, the connection opening connecting the gas outlet passage for flowing blow-by gas and the suction port of the separator body is located above the rotation axis of the crankshaft. There is no need to provide a portion of the internal combustion engine body. As a result, it is possible to provide a separator for an internal combustion engine that can suppress a decrease in the rigidity of the internal combustion engine body in a portion above the rotation axis of the crankshaft.
  • the shape of the internal combustion engine body can be changed significantly in the portion above the rotation axis of the crankshaft. Can be suppressed. Thereby, even after the shape of the internal combustion engine body in the portion above the rotation axis of the crankshaft (cylinder block or the like) is determined, a structure for the flow of blow-by gas can be provided in the internal combustion engine body relatively easily. Can be added.
  • the suction port of the separator main body is disposed above the oil level of the oil stored in the oil reservoir, so that the suction port of the separator main body is rotated by the crankshaft. Even when it is arranged below the axis, oil can be prevented from flowing into the suction port of the internal combustion engine separator, so that the internal combustion engine separator is prevented from being blocked due to the oil that has flowed in. can do. Furthermore, since the suction port of the separator body can be brought close to the oil storage part of the internal combustion engine body, the heat of the oil stored in the oil storage part can be transmitted to the periphery of the suction port of the separator body, so that it can be used in cold regions, etc. When the vehicle is traveling, the water inside the separator for the internal combustion engine can be prevented from freezing around the suction port due to the cold traveling wind. As a result, it is possible to suppress the flow of blow-by gas from being inhibited in the separator body.
  • FIG. 1 is a perspective view showing a schematic overall configuration of an engine according to a first embodiment of the present invention.
  • 1 is a side view showing a schematic overall configuration of an engine according to a first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view taken along line 190-190 in FIG. It is the side view which showed the lower part of the engine main body by 1st Embodiment of this invention. It is the perspective view which showed the separator member by 1st Embodiment of this invention. It is the perspective view which showed the state which removed the cover part from the separator member shown in FIG. It is sectional drawing which showed a part of engine by 2nd Embodiment of this invention.
  • the configuration of an engine 100 composed of a gasoline engine according to the first embodiment of the present invention will be described with reference to FIGS.
  • the direction in which the crankshaft 10a extends is defined as the X-axis direction
  • the direction orthogonal to the crankshaft 10a is defined as the Y-axis direction
  • the direction in which the cylinder 21 (see FIG. 3) extends is defined as the Z-axis direction (vertical direction). I do.
  • the engine 100 is an example of the “internal combustion engine” in the present invention.
  • the engine 100 for automobiles includes an engine body 10 made of aluminum alloy including a cylinder head 1, a cylinder block 2 and a crankcase 3, as shown in FIGS. Note that the cylinder block 2 and the crankcase 3 are configured separately.
  • the in-line four-cylinder engine 100 includes a head cover 4 assembled on the upper side (Z1 side) of the cylinder head 1 and a crankshaft 10a disposed so as to penetrate the engine body 10 in the X-axis direction.
  • an intake manifold 5, a separator member 6, and a mount bracket 7 are provided on an outer surface 10b on one side (Y2 side) of the outer surface of the engine 100 that extends along the X-axis direction in which the crankshaft 10a extends. It is attached.
  • the engine main body 10 is an example of the “internal combustion engine main body” of the present invention
  • the separator member 6 is an example of the “internal combustion engine separator” of the present invention.
  • the intake manifold 5 includes a surge tank 5a and an intake port 5b that is arranged on the downstream side of the surge tank 5a and branches into four.
  • the intake manifold 5 has a function as an intake device that introduces intake air from the cylinder head 1 into combustion chambers (not shown) formed above a plurality of cylinders 21 (see FIG. 3) of the cylinder block 2.
  • Separator member 6 makes fine oil mist in blow-by gas flowing in from engine body 10 into droplets, thereby forming gas (combustion gas and unburned mixture) and liquid (engine oil (drop-like mixture). Liquid oil) (hereinafter simply referred to as oil)).
  • the mount bracket 7 is attached to fix the engine 100 to a vehicle body (not shown) via a mount insulator 7a (see FIG. 1) capable of absorbing shock. In FIG. 2, the mount insulator 7a is not shown for convenience.
  • a camshaft and a valve mechanism (not shown) are arranged inside the cylinder head 1 of the engine body 10. As shown in FIG. 3, four cylinders 21 in which the piston 22 reciprocates in the Z-axis direction are formed inside the cylinder block 2 connected to the lower side (Z2 side) of the cylinder head 1. The four cylinders 21 are configured to be supplied with intake air from four intake ports 5b (see FIG. 2).
  • a crank chamber 10c is formed inside the engine body 10 by the cylinder block 2 and the crankcase 3 connected to the lower side (Z2 side) of the cylinder block 2.
  • a crankshaft 10a that is rotatably connected around a rotation axis A extending along the X-axis direction (see FIG. 3) is disposed.
  • the crankshaft 10a is disposed on the mating surface between the cylinder block 2 and the crankcase 3.
  • the rotation axis A of the crankshaft 10a and the mating surface between the cylinder block 2 and the crankcase 3 are in the vertical direction. They are aligned at substantially the same height position in the (Z-axis direction).
  • the crankshaft 10a is shown in a substantially rod shape. However, in actuality, the crankshaft 10a has a crank pin (not shown) or a crank pin whose rotational axis is eccentric. A balance weight (not shown) sandwiched in the X-axis direction is provided.
  • the crankshaft 10a is connected to a piston 22 via a connecting rod (connecting rod) 12, and the crankshaft 10a is rotationally driven as the piston 22 reciprocates in the cylinder 21. At that time, blow-by gas leaks from the combustion chamber (not shown) vertically above the piston 22 into the crank chamber 10 c through a minute gap between the piston 22 and the cylinder 21.
  • the oil storage part 30 in which oil is stored is provided in the lower part (Z2 side) of the crank chamber 10c.
  • the oil is pumped from the oil reservoir 30 to the upper part of the engine body 10 by an oil pump (not shown), and lubricates sliding parts such as a valve timing system member (not shown) such as a cam shaft and the outer peripheral surface of the piston 22. After that, it is dropped by its own weight and returned to the oil reservoir 30.
  • the oil level of the oil stored in the oil storage unit 30 is located below the upper end of the crankcase 3 (the mating surface of the cylinder block 2 and the crankcase 3).
  • the oil level of the oil means the oil level of the oil when the oil level is positioned at the highest position in the vertical direction when the oil is injected into the engine body 10 to an allowable amount.
  • the outer surface 3a on the Y2 side of the crankcase 3 is provided with an opening 31 to which a suction port 62 of a separator member 6 described later is connected.
  • the opening 31 penetrates the outer surface 3a so as to connect the crank chamber 10c inside the crankcase 3 and the outside (separator member 6).
  • the opening 31 is formed in a vertically long oval shape having a major axis extending in the vertical direction and a minor axis extending in the X-axis direction.
  • the opening 31 is disposed at the approximate center of the protruding portion 3b that protrudes circumferentially toward the outside (Y2 side).
  • the outer surface 3a on the Y2 side of the crankcase 3 is formed with three screw holes 3c (see FIG. 3) for fixing the separator member 6, and the outer surface 2b of the cylinder block 2 on the Y2 side.
  • One screw hole 2c (see FIG. 3) for fixing the separator member 6 is formed.
  • the separator member 6 is composed of a resin having oil resistance, heat resistance, chemical resistance, and sufficient strength such as 6,6-nylon. Further, as shown in FIGS. 1 and 3, the separator member 6 is attached to the lower side (Z2 side) of the intake manifold 5 and the mounting bracket 7 on the outer side surface 10 b on the Y2 side of the engine body 10. Further, the separator member 6 is attached to the outer surface 10b of the engine body 10 so as to be disposed in a space S formed between the outer surface 10b and the mount insulator 7a.
  • the separator member 6 is disposed on the side of the crankcase 3 (Y1 side) and on the side opposite to the crankcase 3 (Y2 side). Is composed of a separator body including a body portion 61 fitted from the Y1 side. Further, the separator member 6 is manufactured by being integrated by vibration welding or the like in a state where the main body 61 is fitted in the lid 60.
  • a suction port 62 through which blow-by gas flows from the engine body 10 is formed at a lower portion (Z2 side) below the center in the vertical direction (Z direction) of the lid portion 60 of the separator member 6.
  • the suction port 62 is formed to correspond to the opening 31 of the crankcase 3 and has a vertically long oval shape having a major axis extending in the Z-axis direction and a minor axis extending in the X-axis direction.
  • the opening 31 of the crankcase 3 and the suction port 62 of the separator member 6 both have the rotation axis A of the crankshaft 10 a in the vertical direction (Z direction). It is arranged so as to be located below the (crank center) (Z2 side) and above the oil level of the oil stored in the oil reservoir 30 (Z1 side). That is, neither the opening 31 of the crankcase 3 nor the suction port 62 of the separator member 6 is arranged in the cylinder head 1 or the cylinder block 2 above the rotation axis A of the crankshaft 10a.
  • both the upper end 31a of the opening 31 and the upper end 62a of the suction port 62 are formed so as to be positioned below the rotation axis A of the crankshaft 10a by a distance D1.
  • the lower end 31b of the opening 31 is formed to be positioned above the oil level of the oil by a distance D2
  • the lower end 62b of the suction port 62 is above the oil level of the oil by a distance D3. It is formed to be located. Since the distance D2 is slightly larger than the distance D3, the lower end 31b of the opening 31 is formed at a position slightly away from the oil surface than the lower end 62b of the suction port 62. Further, as shown in FIGS. 2 and 3, the entire separator member 6 is configured to be positioned above the oil surface of the oil.
  • a long circumferential groove 60 a is formed on the crankcase 3 side (Y1 side) of the lid portion 60 of the separator member 6 so as to surround the suction port 62.
  • an O-ring 102 for suppressing oil from flowing out of the engine 100 is fitted in the groove 60 a.
  • a flow path R through which blow-by gas flows is provided inside the separator member 6.
  • the main body 61 is formed with a recess 61 a that is recessed on the opposite side (Y2 side) from the lid 60, and the flow path R is formed by the recess 61 a and the lid 60.
  • the blow-by gas that has passed through the flow path R is configured to be discharged from a discharge port 64 provided in the upper end portion 61b of the separator member 6 (main body portion 61).
  • the main body 61 is provided with a wall 61c that protrudes from the bottom surface of the recess 61a toward the Y1 side. Further, an inclined portion 61e (see FIG.
  • the blowby gas passes through a fourth flow path R4 formed by the wall portion 61c and the inner surface on the X1 side of the recess 61a and extends upward, and collides with the inner surface on the Z1 side of the recess 61a.
  • the blowby gas passes through the fifth flow path R5 extending in the lateral direction (X2 direction) along the wall portion 61c and reaches the discharge port 64.
  • the separator member 6 is formed with a bent flow path R having a labyrinth structure.
  • the oil mist is separated from the blow-by gas, so that the blow-by gas from which the oil mist is separated is discharged from the discharge port 64.
  • the separated liquid oil flows through the flow path R of the separator member 6 in the direction opposite to the flow direction of the blow-by gas by the weight of the oil, and enters the crank chamber 10c from the lower part of the vertically long suction port 62 and the opening 31. It is returned to the oil reservoir 30 (see FIG. 3).
  • the blow-by gas suction port 62 and the oil discharge port after separation are common.
  • the separator member 6 is configured such that the distance (flow path distance) of the flow path R from the suction port 62 to the discharge port 64 is as long as possible. Further, the separator member 6 is configured to prevent the flow rate of the blow-by gas flowing through the flow path R from becoming excessively large by ensuring a certain cross-sectional area of the flow path R.
  • a PCV (Positive Crankcase Ventilation) valve 8 is directly attached to the discharge port 64 of the separator member 6 so as to protrude upward (in the Z1 direction) from the upper end portion 61b of the separator member 6.
  • the opening degree of the PCV valve 8 is changed according to the pressure difference between the intake manifold 5 side and the separator member 6 side. The valve is opened when the intake manifold 5 side becomes low pressure, and is closed when the intake manifold 5 side becomes high pressure.
  • the PCV valve 8 has a function of controlling the discharge amount of the blow-by gas separated from the gas and liquid discharged from the discharge port 64.
  • the PCV valve 8 is an example of the “control valve” in the present invention.
  • the lower end of the tube member 9 (connection piping) is connected to the side (Z1 side) opposite to the connection side (Z2 side) to the discharge port 64 of the PCV valve 8. ing.
  • the tube member 9 is connected to the PCV valve 8 so as to extend in the vertical direction (Z direction).
  • the upper end of the tube member 9 is connected to the surge tank 5 a of the intake manifold 5. Therefore, the tube member 9 returns the blowby gas to the intake manifold 5 on the intake side by guiding the blowby gas discharged from the discharge port 64 (PCV valve 8) of the separator member 6 to the lower surface side in the vertical direction of the surge tank 5a. It fulfills the function of connecting piping.
  • the tube member 9 is an example of the “blow-by gas passage” in the present invention.
  • the tube member 9 is connected to the surge tank 5a through a through hole 7b formed in the mount bracket 7.
  • the length of the tube member 9 is suppressed and the exposed portion of the tube member 9 is reduced. It is suppressed that the water
  • blow-by gas is configured to be sucked into the suction port 62 of the separator member 6 by the negative pressure of the intake manifold 5.
  • the blow-by gas sucked into the suction port 62 is supplied to the intake manifold 5 through the separator member 6, the PCV valve 8 and the tube member 9, and is supplied to the cylinder 21 of the cylinder block 2 together with the intake air.
  • a PCV system including such a separator member 6 is provided in the engine 100.
  • the suction port 62 of the separator member 6 is disposed below (the Z2 side) the rotation axis A of the crankshaft 10a, so that it is above the rotation axis A of the crankshaft 10a ( Since the suction port 62 through which blow-by gas flows from the engine body 10 is not arranged in the cylinder head 1 or the cylinder block 2 on the Z1 side), the gas outlet passage for allowing blow-by gas to flow in is connected to the suction port of the separator member. There is no need to provide a connection opening in the cylinder head 1 or the cylinder block 2 above the rotation axis A of the crankshaft 10a.
  • the suction inlet 62 is arrange
  • the suction port 62 can be brought close to the oil storage unit 30 of the engine body 10, the heat of the oil stored in the oil storage unit 30 can be transmitted to the vicinity of the suction port 62.
  • the separator member 6 by attaching the separator member 6 to the outer side surface 10b of the engine body 10, the separator member 6 can be easily attached to the engine body 10 as compared with the case where the separator member is provided inside the engine body 10. Can do. Further, by attaching a separate separator member 6 to the outer side surface 10 b of the engine body 10, the separator member 6 damaged due to blockage or the like can be easily replaced with a new separator member 6.
  • the suction port 62 of the separator member 6 is more reliably stored by the oil storage part 30 by comprising so that the whole separator member 6 may be located above the oil level of oil.
  • the oil can be disposed above the oil level.
  • the suction port 62 of the separator member 6 is disposed below the rotation axis A of the crankshaft 10a on the outer surface 10b of the engine body 10 to which the intake manifold 5 and the mount bracket 7 are attached. Attach the separator member 6 to the plate. Thereby, the separator member 6 can be easily disposed at a position different from the intake manifold 5 and the mount bracket 7 disposed in the portion above the rotation axis A of the crankshaft 10a.
  • the suction port 62 is provided in the lower part of the separator member 6, so that even if oil is sucked into the separator member 6, the lower part of the separator member 6 is sucked by utilizing the weight of the oil.
  • the oil can be easily discharged from the port 62 to the oil reservoir 30.
  • the lower end 62 b of the suction port 62 of the separator member 6 is disposed above the oil level of the oil stored in the oil storage unit 30, so that the suction port 62 is reliably connected to the oil storage unit 30.
  • the oil stored in 30 can be disposed above the oil level.
  • the suction port 62 is formed in a vertically long oval shape having a major axis extending in the Z-axis direction (vertical direction) and a minor axis extending in the X-axis direction, so that the longitudinal suction port 62 is formed. Even when the oil separated from the lower portion of the gas is discharged, blow-by gas can be efficiently sucked from the upper portion of the suction port 62 having a vertically long shape and a large vertical length. Further, even if the oil in the oil reservoir 30 reaches the suction port 62 due to the inclination of the engine body 10 or the like, the entire suction port 62 is made of oil by the vertically long suction port 62 extending in the vertical direction. Occlusion can be suppressed. Thereby, it can suppress that the distribution
  • the discharge port 64 for discharging blow-by gas at the upper end portion 61 b of the separator member 6 it is utilized that liquid oil is more susceptible to gravity than gas blow-by gas.
  • the oil separated in the separator member 6 can be prevented from reaching the discharge port 64 provided in the vicinity of the upper end of the separator member 6.
  • the suction port 62 is provided in the lower portion of the separator member 6 and the discharge port 64 is provided in the upper end portion 61b of the separator member 6, so that the exhaust port provided in the upper end portion 61b from the lower portion of the separator member 6 is provided. Since the blow-by gas can be separated into gas and liquid in a wide range up to the outlet 64, the blow-by gas can be separated efficiently.
  • the blow-by gas is discharged upward of the PCV valve 8 by directly attaching the PCV valve 8 to the discharge port 64 so as to protrude upward from the upper end portion 61 b of the separator member 6. Therefore, blow-by gas can be easily supplied to the upper part of the engine body 10.
  • the intake manifold 5 is attached above the separator member 6, and the tube member 9 that guides the blow-by gas discharged from the discharge port 64 of the separator member 6 to the intake manifold 5 is provided.
  • the separator member 6 and the intake manifold 5 attached above the separator member 6 can be connected via the tube member 9 on the same outer side surface 10b of the engine body 10, the separator member 6 can be The length of the tube member 9 reaching the manifold 5 can be effectively shortened. Thereby, the blow-by gas separated by the separator member 6 can be efficiently supplied (returned) to the intake manifold 5.
  • the crankcase 3 is provided with an opening 31 having a shape corresponding to the suction port 62 of the separator member 6 and communicating with the suction port 62. Accordingly, the opening 31 that communicates with the suction port 62 can be easily provided in the crankcase 3 that does not require high rigidity as compared with the cylinder block 2.
  • the opening 31 having a shape corresponding to the suction port 62 of the separator member 6 to the suction port 62, it is possible to easily attach the suction port 62 of the separator member 6 to the opening 31 of the crankcase 3.
  • the blow-by gas from the engine body 10 can be circulated inside the separator member 6.
  • the separator member 6 is resin, compared with the case where a separator member is metal, since the heat conductivity of the separator member 6 can be reduced, in cold districts etc. During the traveling, it is possible to prevent the moisture inside the separator member 6 from freezing due to the cold traveling wind.
  • FIGS. 1-10 An engine 200 according to a second embodiment of the present invention will be described with reference to FIGS.
  • the engine 200 is an example of the “internal combustion engine” in the present invention.
  • a separator member 206 (a separator for an internal combustion engine) is attached to the outer surface 10b of the engine body 10.
  • the PCV valve 8 is attached in the horizontal direction (Y-axis direction) at the upper portion of the separator member 206 on the Y2 side.
  • the tube member 9 connected horizontally to the PCV valve 8 extends while changing its direction upward (in the direction of arrow Z1) and is connected to the surge tank 5a (see FIG. 1).
  • liquid oil adhering to the crankshaft 10a is scattered by turning of the crankshaft 10a. For this reason, it adheres to the inner surface 10 d of the engine body 10 vertically above the opening 31 and flows toward the opening 31 (the suction port 62 of the separator member 206) or scatters toward the opening 31.
  • the separator member 206 is provided with an upper inflow restricting portion 67 that restricts the liquid oil in the engine body 10 from flowing into the separator member 206 through the suction port 62.
  • the upper inflow restricting portion 67 is an example of the “liquid oil inflow restricting portion” in the present invention.
  • the suction port 62 penetrates the lid 60 of the separator member 206 in the Y-axis direction.
  • the portions other than the upper edge portion 63b constituting the upper portion of the suction port 62 in the vertical direction (Z-axis direction) constitute a part of an oval shape elongated in the vertical direction so as to correspond to the opening 31.
  • the upper edge portion 63b is formed so as to have a mountain shape where the line segment intersects with the upper end 63a in the vertical direction, not the semicircular shape constituting a part of the oval shape when viewed from the Y1 side.
  • the shape of the suction port 62 is formed by positioning a base portion 261b for forming the upper inflow restricting portion 67 in the upper part of the elliptical vertical direction.
  • the suction port 62 has a substantially mirror image symmetry with respect to a center line C extending in the vertical direction (vertical direction, Z-axis direction).
  • the upper inflow restricting portion 67 is integrally formed with the separator member 206 by projecting in the arrow Y1 direction from the base portion 261b in the vicinity of the upper edge 63b in the vertical direction of the suction port 62. Further, the upper inflow restricting portion 67 is formed in a mountain shape when viewed from the Y1 side so as to be along the upper edge portion 63b of the suction port 62, and the “eave shape” that covers the entire suction port 62 from the upper side in the vertical direction ( Umbrella shape).
  • the upper edge portion 63 b of the suction port 62 is positioned slightly inside the inner surface of the opening portion 31. Is formed.
  • the upper inflow restricting portion 67 is configured to pass through the opening 31 and protrude to the crank chamber 10 c inside (inside) the engine body 10.
  • the upper inflow restricting portion 67 protrudes from the inner side surface 10d of the crank chamber 10c by a length L1 in the arrow Y1 direction.
  • the upper inflow restricting portion 67 has substantially mirror image symmetry with respect to the center line C, similarly to the suction port 62.
  • the upper inflow restricting portion 67 is inclined in the direction of the arrow X1 that is away from the center line C and downward in the vertical direction (the direction of the arrow Z2) in the inclined portion 67b from the top 67a on the center line C toward the X1 side.
  • the inclined portion 67c is inclined in the arrow X2 direction away from the center line C and downward in the vertical direction.
  • the inclined portions 67b and 67c of the umbrella-shaped upper inflow restricting portion 67 extend substantially horizontally without being inclined downward in the vertical direction in the Y-axis direction. Further, at the lower ends in the vertical direction of the inclined portions 67b and 67c of the upper inflow restricting portion 67, wall portions 67d extending slightly downward in the vertical direction are formed. The wall portion 67d is formed to extend along straight portions formed on both sides of the suction port 62 in the X-axis direction.
  • the liquid oil that has dropped on the upper surface in the vertical direction of the inclined portion 67b or 67c of the upper inflow restricting portion 67 is separated from the center line C along the inclination of the inclined portion 67b or 67c (the direction of the arrow X1 or X2). ) And vertically downward. Then, the liquid oil falls from the wall portion 67d of the upper inflow restricting portion 67 to the outside of the suction port 62 in the X-axis direction.
  • the inclined portions 67b and 67c extend substantially horizontally without being inclined downward in the vertical direction in the Y-axis direction, so that the front side of the suction port 62 (opening 31) from the end on the Y1 side of the upper inflow restricting portion 67. It is suppressed that liquid oil falls to (a position overlapping in the Y-axis direction). Thereby, it is suppressed that the liquid oil which fell to the front of the suction inlet 62 is sucked into the separator member 206 by negative pressure.
  • the other configurations of the second embodiment are the same as those of the first embodiment.
  • the liquid oil in the engine body 10 is restricted from flowing into the separator member 206 through the suction port 62 so as to protrude into the crank chamber 10 c inside the engine body 10.
  • An upper inflow restricting portion 67 is provided.
  • the liquid oil heading toward the suction port 62 can be blocked by the upper inflow restricting portion 67 protruding to the inside of the engine body 10, so that the liquid oil flows into the separator member 206 through the suction port 62.
  • the upper inflow restricting portion 67 is provided on the separator member 206 attached to the outer side surface 10 b of the engine main body 10 so as to protrude into the crank chamber 10 c inside the engine main body 10. Compared with the case where it provides in, it is not necessary to change the shape of the engine main body 10 significantly. Thus, the upper inflow restricting portion 67 that restricts the inflow of liquid oil can be easily provided in the engine 200.
  • the upper inflow restricting portion 67 is integrally formed with the separator member 206 by projecting from the base portion 261b near the upper edge 63b in the vertical direction of the suction port 62 to the Y1 side.
  • the separator member 206 is made of a resin that is lighter than the aluminum alloy constituting the engine body 10, so that the upper inflow restricting portion 67 is lighter than the case where the upper inflow restricting portion 67 is provided on the engine body 10 side.
  • the separator member 206 itself can be reduced in weight.
  • the upper inflow restricting portion 67 protrudes from the base portion 261b near the upper edge 63b in the vertical direction of the suction port 62 to the Y1 side, and extends along the upper edge 63b of the suction port 62.
  • the suction port 62 is formed in a “eave shape” that covers the entire suction port 62 from the upper side in the vertical direction.
  • the “eave-shaped” upper inflow restricting portion 67 can reliably prevent the liquid oil from flowing into the separator member 206 from the upper side in the vertical direction of the suction port 62.
  • the liquid oil flows into the suction port 62 by projecting the “eave-shaped” upper inflow restricting portion 67 from the vicinity of the upper edge 63 b in the vertical direction of the suction port 62 to the inside of the engine body 10.
  • Inflow into the separator member 206 from the upper side in the vertical direction can be effectively suppressed in the vicinity of the upper side in the vertical direction of the suction port 62.
  • the X1 side inclined portion 67b of the upper inflow restricting portion 67 is in the direction of the arrow X1 spaced from the center line C with respect to the center line C extending in the vertical direction of the suction port 62, and vertically downward (in the direction of arrow Z2).
  • the inclined portion 67c on the X2 side of the upper inflow restricting portion 67 is formed so as to be inclined in the direction of the arrow X2 away from the center line C and downward in the vertical direction.
  • the separator member 216 of the engine 250 is attached to the outer surface 10 b of the engine body 10. Further, the structure of the separator member 216 (the separator for the internal combustion engine) is defined by the direction when the separator member 216 is attached to the outer surface 10b of the engine body 10.
  • the engine 250 is an example of the “internal combustion engine” in the present invention.
  • the suction port 262 of the separator member 216 is different from the suction port 62 (see FIGS. 8 and 9) of the second embodiment in that the base 261 b is not provided, thereby opening the opening 31.
  • the suction port 262 is configured so that the upper edge 263 b including the vertical upper end 263 a of the suction port 262 is located slightly below the inner surface of the opening 31 (Z2 side). It is formed in an oval shape slightly smaller than the opening 31.
  • the suction port 262 is formed so as to have a substantially mirror image symmetry with respect to a center line C extending in the vertical direction of the suction port 262.
  • the separator member 216 has an upper inflow that restricts the liquid oil in the engine body 10 from flowing into the flow path R inside the separator member 216 via the suction port 262.
  • a restricting portion 267 is provided.
  • the upper inflow restricting portion 267 is formed integrally with the lid portion 260 of the separator member 216 by projecting to the Y1 side between the groove portion 60a and the suction port 262 and from the lid portion 260 in the vicinity of the upper edge portion 263b. Has been.
  • the upper inflow restricting portion 267 is formed in a semicircular shape when viewed from the Y1 side along the semicircular upper edge 263b of the suction port 262, and the entire suction port 262 is formed on the upper side in the vertical direction (Z1 It has a “eave shape” that covers from the side.
  • the upper edge 263b of the suction port 262 is slightly lower than the inner surface of the opening 31 in the vertical direction (Z2 side).
  • the upper inflow restricting portion 267 is configured to pass through the opening 31 and protrude to the crank chamber 10 c inside (inside) the engine body 10.
  • the upper inflow restricting portion 267 protrudes from the inner side surface 10d of the crank chamber 10c by a length L2 in the arrow Y1 direction.
  • the upper inflow restricting portion 267 has a substantially mirror image symmetry with respect to the center line C, similarly to the suction port 262.
  • the upper inflow restricting portion 267 is, in the arc-shaped portion 267b from the top portion 267a on the center line C toward the X1 side, in the direction of the arrow X1 that is separated from the center line C and downward in the vertical direction (direction of the arrow Z2). It is formed in an arc shape so as to incline, and in the arc-shaped portion 267c from the top portion 267a on the center line C toward the X2 side, it inclines in the arrow X2 direction away from the center line C and downward in the vertical direction. It is formed in a circular arc shape. Further, the arc-shaped portions 267b and 267c of the upper inflow restricting portion 267 are formed to extend substantially horizontally without being inclined downward in the vertical direction in the Y-axis direction.
  • the liquid oil that has dropped on the upper surface in the vertical direction of the arc-shaped portion 267b or 267c of the upper inflow restricting portion 267 is separated from the center line C along the arc-shaped portion 267b or 267c (in the direction indicated by the arrow X1 or X2). Direction) and vertically downward. Then, the liquid oil falls from the upper inflow restricting portion 267 to the outside of the suction port 262 in the X-axis direction.
  • the arc-shaped portions 267b and 267c of the upper inflow restricting portion 267 are formed so as to extend substantially horizontally without inclining vertically downward in the Y-axis direction, so that the end of the upper inflow restricting portion 267 on the Y1 side
  • the liquid oil is suppressed from dropping from the portion to the front surface (position overlapping in the Y-axis direction) of the suction port 262 (opening 31). Thereby, it is suppressed that the liquid oil which fell to the front of the suction inlet 262 is sucked into the separator member 216 by negative pressure.
  • the other structure of the 1st modification of 2nd Embodiment is the same as that of the said 2nd Embodiment.
  • the liquid oil in the engine body 10 passes through the suction port 262 so as to protrude into the crank chamber 10 c inside the engine body 10.
  • An upper inflow restricting portion 267 that restricts the inflow into the air is provided.
  • it can suppress that the amount of oil consumption increases by the upper inflow control part 267.
  • FIG. 2 by providing the upper inflow restricting portion 267 so as to protrude into the crank chamber 10c inside the engine body 10 on the separator member 216 attached to the outer side surface 10b of the engine body 10, as in the second embodiment, An upper inflow restricting portion 267 that restricts the inflow of liquid oil can be easily provided in the engine 250.
  • the upper inflow restricting portion 267 is formed along the semicircular vertical upper edge portion 263b of the suction port 262.
  • the upper inflow restricting portion 267 can be formed so as to correspond to the opening 31, so that the gap between the opening 31 and the upper inflow restricting portion 267 can be reduced.
  • the amount of oil used to lubricate the sliding portion of the engine body 10 due to the liquid oil remaining in the gap between the opening 31 and the upper inflow restricting portion 267 is suppressed. Can do.
  • the remaining effects of the first modification of the second embodiment are similar to those of the aforementioned second embodiment.
  • a separator member 306 (a separator for an internal combustion engine) of the engine 300 is attached to the outer surface 10 b on the Y2 side of the engine body 10. Further, the structure of the separator member 306 is defined by the direction when the separator member 306 is attached to the outer surface 10 b of the engine body 10.
  • Engine 300 is an example of the “internal combustion engine” in the present invention.
  • the lid 360 of the separator member 306 is formed with an oval opening 360c that is long in the vertical direction (Z-axis direction) so as to correspond to the opening 31 of the engine body 10.
  • the opening part 31 and the opening part 360c of the cover part 360 are formed in substantially the same size.
  • the separator member 306 has a lower inflow restricting portion that restricts the liquid oil in the engine body 10 from flowing into the flow path R inside the separator member 306 via the suction port 362. 368 is provided.
  • the lower inflow restricting portion 368 is formed vertically upward (Z1 side) with respect to the oil level of the liquid oil in the oil reservoir 30, and is integrated with the lower portion in the vertical direction of the main body 361 of the separator member 306. Is formed.
  • the vertical upper surface 368a of the lower inflow restricting portion 368 communicates with the inclined portion 361a of the main body portion 361 of the separator member 306, and the engine main body 10 side.
  • the inclined portion 361a of the separator member 306 is inclined downward in the vertical direction so as to pass through the suction port 362 from the inside of the separator member 306 and protrude in the arrow Y1 direction, and the upper surface 368a of the lower inflow restricting portion 368. Doubles as
  • the upper portion and the central portion of the suction port 362 in the vertical direction are configured by the opening 360 c of the lid portion 360, and the lower portion of the suction port 362 in the vertical direction is the lower inflow restricting portion 368.
  • the upper surface 368a (inclined part 361a) of this is comprised. That is, the lower inflow restricting portion 368 is formed at the lower end of the suction port 362 in the vertical direction and in the vicinity thereof.
  • the end 368c on the engine body 10 side (Y1 side) of the lower inflow restricting portion 368 is vertically above the lower end in the vertical direction of the opening portion 360c of the lid portion 360 and the lower end in the vertical direction of the opening portion 31. Configured to be located.
  • the lower inflow restricting portion 368 is formed so as to pass through the opening 31 and protrude to the crank chamber 10 c inside (inside) the engine body 10. Note that the lower inflow restricting portion 368 protrudes from the inner surface 10d of the crank chamber 10c by a length L3 (see FIG. 13) in the arrow Y1 direction.
  • the lower surface 368b in the vertical direction of the lower inflow restricting portion 368 is formed substantially horizontally. Then, the liquid oil from the oil storage part 30 in the lower vertical direction collides with the lower surface 368b of the lower inflow restricting part 368, so that it is not sucked from the suction port 362 and is returned to the oil storage part 30 again. Has been.
  • the lower inflow restricting portion 368 protrudes in the arrow Y1 direction in a trapezoidal shape when viewed from above in the vertical direction (Z1 side). That is, the end portion 368c on the Y1 side of the lower inflow restricting portion 368 extends by a predetermined length in the X-axis direction. Further, the vertical upper surface 368a (inclined portion 361a) of the lower inflow restricting portion 368 is inclined in the arrow Y1 direction and vertically downward (Z2 direction), but not in the X-axis direction. As shown in FIG. 15, the suction port 362 and the lower inflow restricting portion 368 are formed so as to be substantially mirror-image symmetric with respect to the center line C. In addition, the other structure of 3rd Embodiment is the same as that of the said 2nd Embodiment.
  • the liquid oil in the engine body 10 flows into the separator member 306 through the suction port 362 so as to protrude into the crank chamber 10 c inside the engine body 10.
  • a lower inflow restricting portion 368 for restriction is provided.
  • the separator member 306 attached to the outer side surface 10b of the engine body 10 is provided with a lower inflow restricting portion 368 so as to protrude into the crank chamber 10c inside the engine body 10, so that the same as in the second embodiment.
  • the engine 300 can be easily provided with the lower inflow restricting portion 368 that restricts the inflow of liquid oil.
  • the lower inflow restricting portion 368 is formed vertically above the oil level of the liquid oil in the oil reservoir 30 and in the vicinity of the lower end of the suction port 362 in the vertical direction.
  • the liquid oil in the oil reservoir 30 is scattered toward the suction port 362 in the vertical direction due to the vibration of the engine body 10, or the liquid oil oil is tilted when the vehicle in which the engine 300 is disposed is inclined.
  • the lower inflow restricting portion 368 can reliably prevent the liquid oil from flowing into the separator member 306.
  • the main body 361 of the separator member 306 is inclined downward in the vertical direction from the inside of the separator member 306 through the suction port 362 to the crank chamber 10c inside the engine main body 10 and An inclined portion 361a constituting the upper surface 368a in the vertical direction of the inflow restricting portion 368 is formed.
  • the oil mist (liquid oil) liquefied in the separator member 306 is reliably returned to the oil reservoir 30 via the inclined portion 361a inclined downward in the vertical direction to the crank chamber 10c inside the engine body 10. be able to.
  • the remaining effects of the third embodiment are similar to those of the aforementioned second embodiment.
  • the engine 400 is an example of the “internal combustion engine” in the present invention.
  • the engine 400 has an intake manifold 5 and a separator member 406 attached to the outer side surface 10 b of the engine body 10.
  • the separator member 406 (internal combustion engine separator) is connected to the first suction path 406a, the discharge path 406b, and the second suction path 406c.
  • the intake manifold 5 includes a blow-by gas introduction port 53 provided on the lower surface of the surge tank 5a.
  • the intake manifold 5 is an example of the “intake device” in the present invention.
  • the separator member 406 includes a suction port 62 to which the first suction path 406a is connected, a discharge port (discharge port) 64 to which the discharge path 406b is connected, a suction port 62 and a discharge port. And a flow path R (see FIG. 18) connecting the The separator member 406 includes a connection port 464 to which the second suction path 406c is connected. Further, as shown in FIG. 19, the suction port 62 is provided at the lower end portion of the separator member 406. The suction port 62 communicates with the inside of the engine body 10 by being directly connected to the opening 31 formed in the engine body 10 without a piping member.
  • connection port 464 is disposed at a position closer to the discharge port 64 than the suction port 62 inside the separator member 406 (flow path R). In the fourth embodiment, the connection port 464 is arranged at the upper end portion (the other end portion) of the flow path R in the same manner as the discharge port 64.
  • the first suction path 406 a communicates the separator member 406 with the interior of the engine body 10 below the combustion chamber 15 formed in the upper part of the plurality (four) cylinders 21 of the cylinder block 2. It is provided to let you.
  • the first suction path 406 a is a gas conduction path for introducing blow-by gas inside the engine body 10 into the separator member 406.
  • the first suction path 406 a is connected to the opening 31 of the engine body 10. That is, in the fourth embodiment, the first suction path 406 a is a path that is directly connected by the opening 31 and the suction port 62.
  • the first suction path 406a may be a path in which the opening 31 and the suction port 62 are connected by piping or the like.
  • the discharge path 406b is provided so that the separator member 406 communicates with the inside of the intake manifold 5.
  • the discharge path 406b is a gas conduction path for reducing the blow-by gas in the separator member 406 to the intake manifold 5 on the intake side.
  • the discharge path 406 b connects the discharge port 64 (PCV valve 8) of the separator member 406 and the introduction port 53 of the intake manifold 5.
  • the discharge side of the PCV valve 8 provided at the discharge port 64 and the introduction port 53 are directly connected by the tube member 9. That is, the discharge path 406 b is a path in which the discharge port 64 (PCV valve 8) and the introduction port 53 are connected by the tube member 9.
  • the second suction path 406 c is provided so that the separator member 406 communicates with the interior of the engine body 10 above the combustion chamber 15.
  • the second suction path 406c is a bypass path that communicates when the negative pressure in the separator member 406 increases.
  • the second suction path 406 c communicates with the inside of the head cover 4.
  • the second suction path 406 c is provided so as to connect the connection port 464 of the separator member 406 and the lead-out port 41 of the head cover 4.
  • the connection port 464 of the separator member 406 and the outlet port 41 of the head cover 4 are directly connected by a bypass pipe 408. That is, in the fourth embodiment, the second suction path 406 c is a path in which the connection port 464 and the outlet port 41 are connected by the bypass pipe 408. As will be described later, the second suction path 406c is normally disconnected.
  • connection port 464 is disposed at the upper end of the flow path R that is the same as the discharge port 64, the second suction path 406 c connected to the connection port 464 is the suction of the flow path R.
  • the separator member 406 is connected at a position closer to the discharge port 64 than the port 62.
  • the bypass pipe 408 is formed of a pipe member formed separately from the engine body 10 and the separator member 406.
  • the second suction path 406c is provided with a one-way valve 466 that is provided in a valve-closed state and is opened based on an increase in negative pressure in the separator member 406.
  • the one-way valve 466 is attached to the separator member 406 at the end of the second suction path 406c on the separator member 406 side. That is, the one-way valve 466 is attached to the connection port 464 of the separator member 406, and the bypass pipe 408 is connected to the suction side of the one-way valve 466.
  • the one-way valve 466 includes, for example, a valve body 66a for opening and closing the valve, and an urging member 66b for urging the valve body 66a toward the valve closing side (head cover 4 side).
  • a tensile force that overcomes the urging force of the urging member 66b acts on the valve body 66a, so that the valve body 66a opens in the valve opening direction.
  • the one-way valve 466 is biased to a position (see a solid line in FIG.
  • the valve body 66a closes the connection port 464 in a normal state where the negative pressure in the separator member 406 is less than a predetermined threshold value.
  • the valve closing state is configured to be maintained.
  • the negative pressure in the separator member 406 is a differential pressure between the internal pressure on the head cover 4 side (internal pressure of the bypass pipe 408) that is the suction side of the one-way valve 466 and the internal pressure of the separator member 406.
  • the engine 400 according to the fourth embodiment is mounted on a vehicle 401 adopting, for example, an FR (front engine / rear drive) drive system.
  • the engine main body 10 is disposed so that the crankshaft 10 a extends along the front-rear direction of the vehicle 401 (see FIG. 20), and is attached to the vehicle 401 by the mount bracket 7.
  • the arrow X1 direction is the front of the vehicle 401
  • the arrow X2 direction is the rear of the vehicle 401.
  • Crankshaft 10 a is connected to the power transmission device of vehicle 401 from the rear side of engine 400. In this case, an air flow (traveling wind) taken into the vehicle 401 when the vehicle 401 travels flows from the vehicle front side (X1 side) in the direction of the arrow X2.
  • the second suction path 406c is provided so as to directly connect the engine body 10 and the separator member 406 to the intake manifold 5 through the rear side (X2 side) of the vehicle 401.
  • the bypass pipe 408 connects the outlet port 41 of the head cover 4 and the connection port 464 (one-way valve 466) of the separator member 406 through the rear side of the vehicle 401 to the intake manifold 5.
  • the bypass pipe 408 (second suction path 406 c) is connected to the one end 81 connected to the one-way valve 466 (connection port 464) of the separator member 406 and to the outlet port 41 of the head cover 4.
  • the mounting bracket 7 and the intake manifold 5 are provided so as to bypass the rear side (X2 side).
  • the mount bracket 7 is attached to the lower side (Z2 side) of the intake manifold 5 on the outer side surface 10b of the engine body 10 on the Y2 side.
  • the mount bracket 7 is disposed between the intake manifold 5 and the separator member 406.
  • the tube member 9 (connection piping) of the discharge path 406b directly connects the introduction port 53 and the PCV valve 8 through the through hole 7b provided in the mount bracket 7 as shown in FIG. .
  • the tube member 9 passes (through) the through hole 7b in a straight line in the vertical direction.
  • the tube member 9 of the discharge path 406b may be provided so as to bypass the rear side of the intake manifold 5 and the mount bracket 7 similarly to the bypass pipe 408.
  • an intake port 1 a and an exhaust port 1 b communicating with the cylinder 21 are provided inside the cylinder head 1.
  • the four cylinders 21 are respectively supplied with intake air from four distribution pipes 51 (see FIG. 17) via the intake port 1a.
  • a space surrounded by the upper end of the cylinder 21, the upper surface of the piston 22 at the top dead center position, and the recess of the cylinder head 1 is a combustion chamber 15.
  • the head cover 4 to which the second suction path 406c is connected has a lower end connected to the upper end (Z1 side) of the cylinder head 1 and is disposed above the combustion chamber 15.
  • the crankcase 3 (opening 31) to which the first suction path 406a is connected is disposed below the combustion chamber 15.
  • the operation of the second suction path 406c will be described.
  • blow-by gas is sucked into the suction port 62 of the separator member 406 by the negative pressure of the intake manifold 5.
  • the separator member 406 and the inside of the crank chamber 10c are in communication with each other via the first suction path 406a, and the negative pressure of the separator member 406 is maintained below the threshold value of the one-way valve 466. For this reason, the one-way valve 466 is maintained in a closed state, and the second suction path 406c is in a non-communication state.
  • the blow-by gas sucked into the suction port 62 is separated into gas and liquid by the separator member 406 and then returned to the surge tank 5a of the intake manifold 5 from the discharge path 406b.
  • the blow-by gas reduced into the surge tank 5a is supplied to the intake ports 1a through the distribution pipes 51 together with the intake air.
  • the opening 31 (suction) The mouth 62) may be blocked by oil.
  • both the first suction path 406a and the second suction path 406c are closed, so that the negative pressure temporarily increases.
  • the negative pressure of the separator member 406 increases to a value equal to or larger than the threshold value of the one-way valve 466
  • the one-way valve 466 is opened as shown by a two-dot chain line in FIG.
  • the inside of the separator member 406 and the inside of the head cover 4 are connected via the 2nd suction path 406c.
  • the gas HG from the head cover 4 is introduced into the separator member 406 from the connection port 464 through the second suction path 406c.
  • the gas HG introduced from the connection port 464 does not flow toward the suction port 62 in the flow path R, but is sucked out from the nearby discharge port 64 to the discharge path 406b.
  • the flow of the gas HG introduced from the connection port 464 is prevented from transporting oil droplets that block the suction port 62 to the discharge path 406b.
  • the first suction path 406 a that communicates with the interior of the engine body 10 below the combustion chamber 15, the discharge path 406 b that communicates with the interior of the intake manifold 5, and the combustion chamber 15
  • the separator member 406 is connected to the second suction path 406c communicating with the inside of the engine body 10 at the upper side, and the second suction path 406c is provided in a valve-closed state to increase the negative pressure in the separator member 406.
  • a one-way valve 466 is provided that is opened on the basis thereof.
  • the one-way valve 466 is opened to release the separator member 406 and the engine.
  • the inside of the main body 10 can be bypassed by the second suction path 406c.
  • the increase in the negative pressure in the separator member 406 can be quickly eliminated. Accordingly, even when the blow-by gas suction port 62 in the first suction path 406a is blocked by oil, it is possible to suppress the suction of oil droplets to the intake manifold 5 side.
  • the one-way valve 466 can be closed during the normal state so that the second suction path 406c can be closed, so the second suction path 406c is provided. Even in this case, the ventilation performance of the blow-by gas on the first intake path 6a side can be maintained.
  • the second suction path 406 c is provided so as to communicate with the inside of the head cover 4.
  • the second suction path 406c can be easily provided because the second suction path 406c can be connected to the head cover 4 in which the lead-out port 41 can be easily formed.
  • the second suction path 406c is connected to the head cover 4 separated from the oil reservoir 30, it is possible to prevent the second suction path 406c from being blocked by oil.
  • the one-way valve 466 is attached to the separator member 406 at the end of the second suction path 406c on the separator member 406 side. Thereby, the one-way valve 466 can be brought close to the inside of the separator member 406. As a result, since the responsiveness to the pressure change in the separator member 406 can be improved, the second suction path 406c can be opened and closed quickly.
  • the second suction path 406c is provided so that the engine body 10 and the separator member 406 are directly connected to the intake manifold 5 through the rear side (X2 side) of the vehicle 401.
  • the intake manifold 5 is disposed in front of the second suction path 406c, so that the traveling wind of the traveling vehicle 401 is prevented from hitting the second suction path 406c.
  • the vehicle 401 travels in a cold environment, it is possible to prevent water contained in the gas in the second suction path 406c from being frozen by the travel wind.
  • the engine body 10 is provided with an opening 31 disposed below the rotational axis A of the crankshaft 10a. Then, the first suction path 406 a of the separator member 406 is connected to the opening 31. Thereby, the opening part 31 can be arrange
  • the opening 31 is arranged in the vicinity of the oil surface.
  • the blow-by gas suction port 62 is blocked by oil, It is possible to suppress sucking up the droplets.
  • the second suction path 506c passes the engine body 10 and the separator member 406 through the front side (X1 side) of the vehicle 401 (see FIG. 20) with respect to the intake manifold 5.
  • the bypass pipe 508 is provided so as to directly connect the lead-out port 541 of the head cover 4 and the connection port 564 of the separator member 406 to the intake manifold 5 through the front side of the vehicle 401.
  • the mounting bracket 7 is not shown.
  • Engine 500 is an example of the “internal combustion engine” in the present invention.
  • the bypass pipe 508 (second suction path 506 c) is provided so as to bypass the front side of the intake manifold 5 between the one end 81 and the other end 82.
  • the connection port 564 is provided on the upper surface (side surface on the Z1 side) of the separator member 406, and one end 81 of the bypass pipe 508 is connected to the one-way valve 466 from the Z1 side.
  • a lead-out port 541 is provided at a position on the front side of the head cover 4 (X1 side portion) in front of the intake manifold 5, and the other end 82 of the bypass pipe 508 is connected to the lead-out port 541. Yes.
  • the engine 500 is particularly effective in a case where an installation space for the auxiliary devices 502 is provided on the front side (X1 side) of the intake manifold 5.
  • the bypass pipe 508 (second suction path 506c) is provided so as to pass on the front side (X1 side) of the intake manifold 5 and on the rear side (X2 side) of the installation space for the auxiliary devices 502. .
  • the bypass pipe 508 (second suction path 506c) is disposed on the downstream side (X2 side) of the auxiliary devices 502 with respect to the traveling wind flowing in the arrow X2 direction.
  • the remaining configuration of the fifth embodiment is similar to that of the aforementioned fourth embodiment.
  • the increase in the negative pressure in the separator member 406 can be quickly eliminated, so the blow-by gas suction port 62 in the first suction path 406a. Even when the oil is blocked by oil, it is possible to prevent the oil droplets from being sucked into the intake manifold 5 side.
  • the traveling wind of the vehicle 401 traveling by these auxiliary devices 502 is bypass piping 508. It can suppress hitting (2nd suction path 506c). As a result, even when the vehicle 401 travels in a cold environment, it is possible to prevent water in the bypass pipe 508 (second suction path 506c) from freezing due to traveling wind.
  • the remaining effects of the fifth embodiment are similar to those of the aforementioned fourth embodiment.
  • FIGS. 20 and 22 a sixth embodiment will be described with reference to FIGS. 20 and 22.
  • the second suction path 606c passes through the intake manifold 605 and passes through the engine.
  • An example in which the main body 10 and the separator member 406 are provided so as to be directly connected will be described.
  • symbol is attached
  • the intake manifold 605 is an example of the “intake device” in the present invention.
  • the second suction path 606c is provided so as to pass through the intake manifold 605 and directly connect the engine body 10 and the separator member 406.
  • the engine 600 is an example of the “internal combustion engine” in the present invention.
  • the intake manifold 605 includes a relay passage portion 651 constituting a part of the second suction passage 606c.
  • the relay passage portion 651 is a gas passage provided so as to connect the first connection port 652 provided on the lower surface of the intake manifold 605 and the second connection port 653 provided on the upper surface of the intake manifold 605. Further, the relay passage portion 651 is provided independently without being connected to the distribution pipe 51 and the surge tank 5a.
  • the first connection port 652 is provided downward on the lower surface of the surge tank 5a.
  • the relay passage part 651 extends along the peripheral wall part of the surge tank 5 a and is provided so as to pass between the two distribution pipes 51 at the center among the four distribution pipes 51.
  • the second connection port 653 is provided upward at a position between the two distribution pipes 51 at the center.
  • the second suction path 606c includes a first portion 661 that connects the separator member 406 and one end (first connection port 652) of the relay passage portion 651, the other end (second connection port 653) of the relay passage portion 651, and the engine. And a second portion 662 connecting the main body 10.
  • the 1st part 661 and the 2nd part 662 consist of a pipe member similar to the bypass piping 408 of the said 4th Embodiment, respectively. More specifically, one end of the first portion 661 is connected to the one-way valve 466 of the connection port 664 from the Z1 side, and the other end of the first portion 661 is connected to the first connection port 652 from the Z2 side.
  • the second suction path 606 c allows the inside of the head cover 4 and the separator member 406 to communicate with each other via the lead-out port 641.
  • the lead-out port 641 is disposed at the center of the head cover 4 in the X-axis direction, and the position in the X-axis direction corresponds to the position of the second connection port 653 in the X-axis direction.
  • the second suction path 606c is configured by the first portion 661, the second portion 662, and the relay passage portion 651. The remaining configuration of the sixth embodiment is similar to that of the aforementioned fourth embodiment.
  • the increase in the negative pressure in the separator member 406 can be quickly eliminated, so the blow-by gas suction port 62 in the first suction path 406a. Even when the oil is blocked by oil, it is possible to prevent the oil droplets from being sucked up to the intake manifold 605 side.
  • the relay passage portion 651 that constitutes a part of the second suction path 606c is formed inside the intake manifold 605. Then, a first portion 661 that connects the separator member 406 and the first connection port 652 of the relay passage portion 651, and a second portion 662 that connects the second connection port 653 of the relay passage portion 651 and the engine body 10 are provided. A second suction path 606c is provided. Accordingly, since the second suction path 606c passes through the intake manifold 605, it is possible to suppress the traveling wind of the traveling vehicle 401 from hitting the second suction path 606c. As a result, when the vehicle 401 travels in a cold environment, moisture contained in the gas in the second suction path 606c can be prevented from freezing by the traveling wind.
  • the remaining effects of the sixth embodiment are similar to those of the aforementioned fourth embodiment.
  • the separator member 6 is attached to the outer surface 10b on the Y2 side of the engine body 10 (the cylinder block 2 and the crankcase 3), but the present invention is not limited to this.
  • the separator member 6 is attached to the outer surface 3a on the Y2 side of the crankcase 203, while being attached to the outer surface 2b of the cylinder block 202. It does not have to be attached. Thereby, it is possible to reliably suppress a decrease in the rigidity of the cylinder block 202.
  • the separator member 6 as a whole can be arranged in the vicinity of the oil stored in the crankcase 203, when traveling in a cold district or the like, moisture inside the separator member 6 is caused by the cold traveling wind. It is possible to suppress freezing. At this time, it is necessary to dispose the suction port 62 of the separator member 6 above the oil surface of the oil, and the tube member 209 (connection piping) corresponding to the disposition of the separator member 6 below the first embodiment. Need to be longer.
  • the engine 150 and the engine body 210 are examples of the “internal combustion engine” and the “internal combustion engine body” of the present invention, respectively, and the tube member 209 is an example of the “blow-by gas passage portion” of the present invention. Note that the above modification can also be applied to the second to sixth embodiments.
  • the tube member 9 is provided so as to guide the blow-by gas discharged from the discharge port 64 of the separator member 6 into the surge tank 5a.
  • the blow-by gas discharged from the discharge port 364 (see FIG. 25) of the separator member 126 is used as the surge tank of the intake manifold 305 as in the engine 160 of the second modification of the first embodiment shown in FIG.
  • the tube member 309 may be configured to lead to each of the intake ports 305b branched into four instead of 305a.
  • the tube member 309 includes a lower part 309a attached to the PCV valve 308 and an upper part 309b branched from the lower part 309a into four parts.
  • the engine 160 and the separator member 126 are examples of the “internal combustion engine” and the “separator for the internal combustion engine” of the present invention, respectively.
  • the PCV valve 308 and the tube member 309 are examples of the “control valve” and the “blow-by gas passage portion” of the present invention, respectively.
  • the discharge port 364 of the main body 126a of the separator member 126 is Y2 near the upper end on the Z1 side of the separator member 126 (main body 126a). It is formed in the side part of the side.
  • the PCV valve 308 is directly attached to the discharge port 364 so as to protrude from the lateral side portion of the separator member 126 on the Y2 side in the lateral direction (arrow Y2 direction).
  • the tube member 309 can be easily routed so as to avoid the mount bracket 307, so that it is not necessary to provide a through hole in the mount bracket 307.
  • the discharge port 64 of the separator member 6 is provided in the upper end part 61b of the separator member 6, and the example which attaches the PCV valve
  • the discharge port 364 of the separator member 126 is provided in the lateral side portion on the Y2 side near the upper end on the Z1 side of the separator member 126 (main body portion 126a), and the PCV valve 308 is provided.
  • the separator member 126 is attached to the discharge port 364 so as to protrude from the lateral side portion on the Y2 side of the separator member 126 in the lateral direction (Y2 direction), but the present invention is not limited to this.
  • the discharge port 464 (shown by a broken line) of the separator member 136 is connected to the Z1 side of the separator member 136 (main body portion 136a).
  • the PCV valve 708 may be attached to the discharge port 464 so as to protrude in the lateral direction (arrow X2 direction) from the lateral side portion of the separator member 136 on the X2 side.
  • the separator member 136 and the PCV valve 708 are examples of the “separator for an internal combustion engine” and the “control valve” of the present invention, respectively.
  • the engine body 10 includes the cylinder head 1, the cylinder block 2, and the crankcase 3.
  • a ladder frame may be inserted between the cylinder block and the crankcase, or an oil pan may be provided below the crankcase. That is, if the suction port of the separator member is disposed below the rotation axis A of the crankshaft and above the oil level of the oil stored in the oil reservoir,
  • the configuration is not particularly limited.
  • the PCV valve 8 is directly attached to the discharge port 64 of the separator member 6 .
  • the present invention is not limited to this.
  • the PCV valve may be indirectly attached to the outlet of the separator member via a member such as a tube.
  • the cylinder block 2 and the crankcase 3 are configured separately, but the present invention is not limited to this.
  • the cylinder block and the crankcase may be configured integrally.
  • a sliding member such as a piston slides in a portion above the rotation axis A of the crankshaft corresponding to the cylinder block, high rigidity is required, and as a result, the shape change is It's not easy.
  • the configuration of the present invention it is possible to prevent the shape of the engine body from changing significantly in the portion above the rotation axis A of the crankshaft.
  • the opening 31 of the crankcase 3 and the suction port 62 of the separator member 6 are both formed in a vertically long oval shape, but the present invention is not limited to this.
  • the opening of the crankcase and the inlet of the separator member may be formed in a vertically long oval shape or may be formed in a vertically long rectangular shape.
  • the opening of the crankcase and the inlet of the separator member may be formed in a perfect circle.
  • the separator member 6 is attached to the outer surface 10b of the engine body 10 to which the intake manifold 5 and the mount bracket 7 are attached.
  • a separator member may be attached to the outer surface of the engine body to which an exhaust device such as an exhaust manifold is attached.
  • the present invention is not limited to this. That is, if it is an internal combustion engine, the present invention may be applied to gas engines other than gasoline engines (internal combustion engines such as diesel engines and gas engines). Further, the present invention may be applied to an internal combustion engine that is installed as a drive source (power source) of equipment other than an automobile, for example.
  • the oil separator 6 (206) is provided with an upper inflow restricting portion 67 (267).
  • the oil separator 306 has a lower side.
  • the inflow restricting portion 368 is provided, the present invention is not limited to this.
  • the oil separator 226 is provided with an upper inflow restricting portion 67 and a lower inflow restricting portion that protrude into the crank chamber 10c inside the engine body 10. Both parts 368 may be provided.
  • the upper inflow restricting portion 67 (267, liquid oil inflow restricting portion) is integrally provided in the oil separator 6 (226), and the third embodiment described above.
  • the lower inflow restricting portion 368 (liquid oil inflow restricting portion) is integrally provided in the oil separator 306, but the present invention is not limited to this.
  • the liquid oil inflow restricting portion may be provided separately from the oil separator. That is, the liquid oil inflow restricting portion that is separate from the oil separator may be provided on the oil separator by screwing or the like.
  • the upper inflow restricting portion 67 (267) is in the vertical direction in the Y-axis direction (through direction of the opening 31 and the suction port 62 (262)).
  • the present invention is not limited to this.
  • the upper inflow restricting portion may be formed so as to be inclined in the vertical direction in the direction of penetration of the opening and the suction port.
  • the upper inflow restricting portion is formed on the side opposite to the engine main body (Y2 side in FIG. 7) and inclined downward in the vertical direction, the upper inflow restricting portion is liquid at the end of the upper inflow restricting portion on the engine main body side. Since the oil can be prevented from being guided, it is possible to suppress the liquid oil from falling on the front surface of the suction port (opening).
  • the upper inflow restricting portion 67 is substantially mirror-symmetric with respect to the center line C extending in the vertical direction of the suction port 62 (262).
  • the inclined portions 67b and 67c (arc-shaped portions 267b and 267c) are formed so as to be inclined in the direction away from the center line C and downward in the vertical direction (Z2 direction). Is not limited to this.
  • the upper inflow restricting portion may be formed so as to have an “eave shape” that covers the suction port from the upper side in the vertical direction.
  • the upper inflow restricting portion 67 (267) is formed in an “eave shape” that covers the entire suction port 62 (262) from the upper side in the vertical direction.
  • the present invention is not limited to this.
  • the upper inflow restricting portion may be formed so as to cover only a part of the suction port from the upper side in the vertical direction.
  • the example which formed the upper inflow control part 67 (267, liquid oil inflow control part) in the perpendicular direction upper side of the suction inlet 62 (262) is shown.
  • the example in which the lower inflow restricting portion 368 (liquid oil inflow restricting portion) is provided on the lower side in the vertical direction of the suction port 362 is shown, but the present invention is not limited to this. In the present invention, the liquid oil inflow restricting portion may be formed only on the side of the suction port.
  • the engine mounted on the FR drive type vehicle 401 is exemplified, but the present invention is not limited to this. You may apply this invention to the engine mounted in the vehicle of what kind of drive system. In addition, the present invention may be applied to an engine mounted on any vehicle, not limited to an automobile, and the present invention may be applied to an internal combustion engine used for purposes other than a vehicle.
  • the oil separator (inertial collision type oil separator) having the separation portion including the flow path R having the labyrinth structure is shown, but the present invention is not limited to this.
  • a centrifugal oil separator that creates a swirling flow of blow-by gas in an oil separator and performs gas-liquid separation by centrifugal force, or a filter built-in type oil separator that performs gas-liquid separation by a filter that passes blow-by gas It may be.
  • the oil separator may be comprised by the combination of these several types of separation parts.
  • the second suction path may be connected to the cylinder head.
  • the second suction path may be provided so as to communicate with the interior of the engine body above the combustion chamber.
  • the first suction path is connected to the crankcase 3 (opening 31)
  • the present invention is not limited to this.
  • the first suction path may be connected to the cylinder block.
  • the first suction path only needs to be provided below the combustion chamber so as to communicate with the interior of the engine body.

Abstract

This internal combustion engine comprises: an internal combustion engine body which includes a crankshaft and an oil sump for storing oil; and a separator member which is mounted to an outer surface of the internal combustion engine body, includes a suction opening for allowing blow-by gas from the internal combustion engine body to flow therein, and separates the blow-by gas, which flows from the internal combustion engine body, into gas and liquid. The suction opening of the separator member is disposed below the rotation axis of the crankshaft and above the level of the oil stored in the oil sump.

Description

内燃機関および内燃機関用セパレータInternal combustion engine and separator for internal combustion engine
 本発明は、内燃機関および内燃機関用セパレータに関する。 The present invention relates to an internal combustion engine and a separator for an internal combustion engine.
 従来、ブローバイガスを気液分離するためのセパレータ部材を備えた内燃機関が知られている。このような内燃機関は、たとえば、特開2009-174464号公報に開示されている。 Conventionally, an internal combustion engine provided with a separator member for gas-liquid separation of blow-by gas is known. Such an internal combustion engine is disclosed in, for example, Japanese Patent Application Laid-Open No. 2009-174464.
 特開2009-174464号公報には、クランクシャフトと、クランクケースと、クランクケースの上側に配置され、クランクケースとの合わせ面でクランクシャフトを挟み込むシリンダブロックと、クランクケースの上側のシリンダブロックの外面に取り付けられていると考えられるオイル分離装置(セパレータ部材)とを備える内燃機関が開示されている。この特開2009-174464号公報に記載の内燃機関のクランクケースには、オイルが貯留されるオイル貯留部と、オイル貯留部から隔離された状態でブローバイガスが流れる内部空間とが形成されている。また、クランクケースの上側のシリンダブロックの内部には、クランクケースの内部空間とオイル分離装置とを接続するガス流出通路が一体的に設けられている。これにより、クランクケース内のブローバイガスが、クランクケースの内部空間およびシリンダブロックのガス流出通路を流通して、オイル分離装置に供給されるように構成されている。 Japanese Patent Application Laid-Open No. 2009-174464 discloses a crankshaft, a crankcase, a cylinder block which is disposed on the upper side of the crankcase and sandwiches the crankshaft with a mating surface with the crankcase, and an outer surface of the cylinder block on the upper side of the crankcase An internal combustion engine is disclosed that includes an oil separation device (separator member) that is considered to be attached to the engine. In the crankcase of the internal combustion engine described in Japanese Patent Application Laid-Open No. 2009-174464, an oil storage part in which oil is stored and an internal space in which blow-by gas flows while being isolated from the oil storage part are formed. . A gas outflow passage that connects the internal space of the crankcase and the oil separation device is integrally provided in the cylinder block on the upper side of the crankcase. Accordingly, the blow-by gas in the crankcase is configured to be supplied to the oil separator through the internal space of the crankcase and the gas outflow passage of the cylinder block.
特開2009-174464号公報JP 2009-174464 A
 しかしながら、特開2009-174464号公報に記載された内燃機関では、クランクシャフトの回転軸線(合わせ面)よりも上側のシリンダブロックの内部にガス流出通路が一体的に設けられているため、シリンダブロックの内部のガス流出通路とシリンダブロックの外面に取り付けられたオイル分離装置の吸込口とを接続する接続用開口部もシリンダブロックに設けられていると考えられる。このため、この接続用開口部が設けられる分、シリンダブロックの剛性が低下するという問題点がある。なお、内燃機関本体のクランクシャフトの回転軸線よりも上側の部分(シリンダブロック)では、内燃機関本体のピストンなどの摺動部材が摺動するため、高い剛性が必要とされる。 However, in the internal combustion engine described in Japanese Patent Application Laid-Open No. 2009-174464, the gas outflow passage is integrally provided in the cylinder block above the rotation axis (matching surface) of the crankshaft. It is considered that the cylinder block is also provided with a connection opening for connecting the gas outflow passage inside the cylinder and the suction port of the oil separator attached to the outer surface of the cylinder block. For this reason, there is a problem that the rigidity of the cylinder block is reduced by the provision of the connection opening. In addition, in a portion (cylinder block) above the rotation axis of the crankshaft of the internal combustion engine body, a sliding member such as a piston of the internal combustion engine body slides, so high rigidity is required.
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、クランクシャフトの回転軸線よりも上側の部分における内燃機関本体の剛性が低下するのを抑制することが可能な内燃機関および内燃機関用セパレータを提供することである。 The present invention has been made to solve the above-described problems, and one object of the present invention is to suppress a decrease in the rigidity of the internal combustion engine body in a portion above the rotation axis of the crankshaft. It is an object to provide an internal combustion engine and an internal combustion engine separator that can be used.
 上記目的を達成するために、この発明の第1の局面における内燃機関は、クランクシャフトと、オイルが貯留されるオイル貯留部とを含む内燃機関本体と、内燃機関本体の外側面に取り付けられ、内燃機関本体からブローバイガスが流入する吸込口を含み、内燃機関本体からのブローバイガスを気液分離するためのセパレータ部材とを備え、セパレータ部材の吸込口は、クランクシャフトの回転軸線よりも下方で、かつ、オイル貯留部に貯留されたオイルの油面よりも上方に配置されている。 In order to achieve the above object, an internal combustion engine according to a first aspect of the present invention is attached to an internal combustion engine body including a crankshaft and an oil storage part in which oil is stored, and an outer surface of the internal combustion engine body. A separator member for gas-liquid separation of the blow-by gas from the internal combustion engine body, the suction port of the separator member being below the rotation axis of the crankshaft And it is arrange | positioned above the oil level of the oil stored by the oil storage part.
 この発明の第1の局面による内燃機関では、上記のように、セパレータ部材の吸込口をクランクシャフトの回転軸線よりも下方に配置することによって、クランクシャフトの回転軸線よりも上方には内燃機関本体からブローバイガスが流入する吸込口が配置されないので、ブローバイガスを流入させるためのガス流出通路とセパレータ部材の吸込口とを接続する接続用開口部を、内燃機関本体のクランクシャフトの回転軸線よりも上側の部分に設ける必要がない。これにより、クランクシャフトの回転軸線よりも上側の部分における内燃機関本体の剛性が低下するのを抑制することができる。さらに、クランクシャフトの回転軸線よりも上側の部分にガス流出通路および接続用開口部を設ける必要がないので、内燃機関本体のクランクシャフトの回転軸線よりも上側の部分において大幅に形状変更するのを抑制することができる。これにより、クランクシャフトの回転軸線よりも上側の部分(シリンダブロックなど)における内燃機関本体の形状が確定した後であっても、比較的容易にブローバイガスの流通のための構造を内燃機関本体に追加することができる。 In the internal combustion engine according to the first aspect of the present invention, as described above, the main body of the internal combustion engine is disposed above the rotation axis of the crankshaft by disposing the suction port of the separator member below the rotation axis of the crankshaft. Since the suction port through which blow-by gas flows in is not arranged, the connection opening that connects the gas outlet passage for flowing blow-by gas and the suction port of the separator member is located closer to the rotation axis of the crankshaft of the internal combustion engine body. There is no need to provide it in the upper part. Thereby, it can suppress that the rigidity of the internal combustion engine main body in the part above the rotating shaft line of a crankshaft falls. Furthermore, since it is not necessary to provide a gas outflow passage and a connection opening in a portion above the rotation axis of the crankshaft, the shape of the internal combustion engine body can be changed significantly in the portion above the rotation axis of the crankshaft. Can be suppressed. Thereby, even after the shape of the internal combustion engine body in the portion above the rotation axis of the crankshaft (cylinder block or the like) is determined, a structure for the flow of blow-by gas can be provided in the internal combustion engine body relatively easily. Can be added.
 また、上記第1の局面による内燃機関では、セパレータ部材の吸込口をオイル貯留部に貯留されたオイルの油面よりも上方に配置することによって、セパレータ部材の吸込口をクランクシャフトの回転軸線よりも下方に配置した場合であっても、オイルがセパレータ部材の吸込口に流れ込むのを抑制することができる。さらに、セパレータ部材の吸込口を内燃機関本体のオイル貯留部に近づけることができるので、オイル貯留部に貯留されたオイルの熱をセパレータ部材の吸込口周辺に伝達させることができる。これにより、寒冷地などでの走行時において、冷たい走行風に起因してセパレータ部材の内部の水分が吸込口周辺において凍結するのを抑制することができる。これらの結果、セパレータ部材においてブローバイガスの流通が阻害されるのを抑制することができる。 Further, in the internal combustion engine according to the first aspect, the suction port of the separator member is disposed above the oil level of the oil stored in the oil storage portion, so that the suction port of the separator member is connected to the rotation axis of the crankshaft. Even if it is a case where it arrange | positions below, it can suppress that oil flows into the suction inlet of a separator member. Furthermore, since the suction port of the separator member can be brought close to the oil storage part of the internal combustion engine body, the heat of the oil stored in the oil storage part can be transmitted to the vicinity of the suction port of the separator member. Thereby, when traveling in a cold district or the like, it is possible to suppress the moisture inside the separator member from being frozen around the suction port due to the cold traveling wind. As a result, it is possible to suppress the flow of blow-by gas from being inhibited in the separator member.
 上記第1の局面による内燃機関において、好ましくは、セパレータ部材は、クランクシャフトの延びる方向に沿って延びる内燃機関本体の外側面に取り付けられている。ここで、クランクシャフトの延びる方向に沿って延びる内燃機関本体の外側面の上部には、吸気装置(インテークマニホールド)などが接続されるため、内燃機関本体の外側面にセパレータ部材が取り付けられた場合であっても、セパレータ部材の吸込口をクランクシャフトの回転軸線よりも下方に配置することによって、クランクシャフトの回転軸線よりも上側の部分に主に配置される吸気装置などとは異なる位置に、セパレータ部材を容易に配置することができる。 In the internal combustion engine according to the first aspect, preferably, the separator member is attached to the outer surface of the internal combustion engine main body extending along the direction in which the crankshaft extends. Here, since an intake device (intake manifold) or the like is connected to the upper portion of the outer surface of the internal combustion engine body extending along the direction in which the crankshaft extends, a separator member is attached to the outer surface of the internal combustion engine body Even so, by disposing the suction port of the separator member below the rotation axis of the crankshaft, at a position different from the intake device or the like that is mainly disposed in the upper part of the rotation axis of the crankshaft, The separator member can be easily arranged.
 上記第1の局面による内燃機関において、好ましくは、吸込口は、セパレータ部材の下部に設けられており、吸込口の下端は、オイル貯留部に貯留されたオイルの油面よりも上方に配置されている。このように構成すれば、吸込口をセパレータ部材の下部に設けることによって、たとえオイルがセパレータ部材の内部に吸い込まれたとしても、オイルの自重により、セパレータ部材の下部に設けられた吸込口から容易にオイル貯留部に排出することができる。また、吸込口の下端をオイル貯留部に貯留されたオイルの油面よりも上方に配置することにより、確実に、セパレータ部材の吸込口をオイル貯留部に貯留されたオイルの油面よりも上方に配置することができる。 In the internal combustion engine according to the first aspect, preferably, the suction port is provided in a lower portion of the separator member, and the lower end of the suction port is disposed above the oil level of the oil stored in the oil storage unit. ing. If comprised in this way, even if oil is sucked into the inside of a separator member by providing a suction port in the lower part of a separator member, it will be easy from a suction mouth provided in the lower part of a separator member by the dead weight of oil. Can be discharged to the oil reservoir. In addition, by arranging the lower end of the suction port above the oil level of the oil stored in the oil storage part, the suction port of the separator member is surely above the oil level of the oil stored in the oil storage part. Can be arranged.
 上記第1の局面による内燃機関において、好ましくは、吸込口は、上下方向に延びる縦長形状を有している。このように構成すれば、縦長形状の吸込口の下部から分離したオイルを排出する場合にも、縦長形状で上下方向の長さが大きい上部から効率的にブローバイガスを吸い込むことができる。 In the internal combustion engine according to the first aspect, preferably, the suction port has a vertically long shape extending in the vertical direction. If comprised in this way, even when discharging | emitting the oil isolate | separated from the lower part of the vertically long suction inlet, blow-by gas can be efficiently inhaled from the upper part which is vertically long and has a long vertical length.
 上記第1の局面による内燃機関において、好ましくは、セパレータ部材は、セパレータ部材の上端近傍に設けられ、セパレータ部材内を通過したブローバイガスを排出する排出口をさらに含む。このように構成すれば、気体のブローバイガスに比べて液体のオイルが重力の影響を受けやすいことを利用して、セパレータ部材内で分離されたオイルがセパレータ部材の上端近傍に設けられた排出口に到達するのを抑制することができる。これにより、オイルがブローバイガスと共に排出口から排出されるのを抑制することができる。また、吸込口がセパレータ部材の下部に設けられている場合には、セパレータ部材の下部から上端部近傍に設けられた排出口に至るまでの広い範囲において、ブローバイガスの気液分離を行うことができるので、効率的にブローバイガスの気液分離を行うことができる。 In the internal combustion engine according to the first aspect, preferably, the separator member further includes a discharge port that is provided near the upper end of the separator member and discharges blow-by gas that has passed through the separator member. With this configuration, the oil separated in the separator member is provided near the upper end of the separator member by utilizing the fact that the liquid oil is more susceptible to gravity than the gas blow-by gas. Can be suppressed. Thereby, it can suppress that oil is discharged | emitted from a discharge port with blow-by gas. In addition, when the suction port is provided in the lower part of the separator member, it is possible to perform gas-liquid separation of blow-by gas in a wide range from the lower part of the separator member to the discharge port provided in the vicinity of the upper end part. Therefore, the gas-liquid separation of blow-by gas can be performed efficiently.
 この場合、好ましくは、排出口に直接的に取り付けられ、ブローバイガスの排出量を制御する制御弁をさらに備える。このように構成すれば、制御弁と排出口とを接続通路を介して間接的に接続する場合と比べて、制御弁と排出口とを接続するための接続通路が不要になるので、部品点数を削減することができるとともに、構造を簡素化することができる。 In this case, it is preferable to further include a control valve that is directly attached to the discharge port and controls the discharge amount of blow-by gas. This configuration eliminates the need for a connection passage for connecting the control valve and the discharge port compared to the case where the control valve and the discharge port are indirectly connected via the connection passage. Can be reduced, and the structure can be simplified.
 上記制御弁を備える構成において、好ましくは、排出口は、セパレータ部材の上端部に形成されており、制御弁は、上端部から上方に突出するように排出口に直接的に取り付けられている。このように構成すれば、排出口をセパレータ部材の最上部に設けることにより、セパレータ部材内で分離されたオイルがブローバイガスと共に排出口から排出されるのを効果的に抑制することができる。また、制御弁が上端部から上方に突出することによって、制御弁の上方に向かってブローバイガスを排出することができるので、内燃機関本体の上部にブローバイガスを容易に供給することができる。 In the configuration including the control valve, the discharge port is preferably formed at the upper end portion of the separator member, and the control valve is directly attached to the discharge port so as to protrude upward from the upper end portion. If comprised in this way, it can suppress effectively that the oil isolate | separated within the separator member is discharged | emitted from a discharge port with blow-by gas by providing a discharge port in the uppermost part of a separator member. Further, since the control valve protrudes upward from the upper end portion, the blow-by gas can be discharged toward the upper side of the control valve, so that the blow-by gas can be easily supplied to the upper part of the internal combustion engine body.
 上記セパレータ部材が排出口を含む構成において、好ましくは、セパレータ部材は、クランクシャフトの延びる方向に沿って延びる内燃機関本体の外側面に取り付けられており、内燃機関本体のセパレータ部材が取り付けられる外側面のうちのセパレータ部材よりも上方にインテークマニホールドが取り付けられており、セパレータ部材の排出口から排出されたブローバイガスをインテークマニホールドに導くブローバイガス通路部をさらに備える。このように構成すれば、内燃機関本体の同じ外側面において、セパレータ部材と、セパレータ部材の上方に取り付けられたインテークマニホールドとをブローバイガス通路部を介して接続することができるので、セパレータ部材からインテークマニホールドに至る経路(ブローバイガス通路部)の長さを効果的に短くすることができる。これにより、セパレータ部材により気液分離したブローバイガス(燃焼ガスと未燃焼の混合気)を効率よくインテークマニホールドに供給する(戻す)ことができる。 In the configuration in which the separator member includes the discharge port, preferably, the separator member is attached to the outer side surface of the internal combustion engine body extending along the direction in which the crankshaft extends, and the outer side surface to which the separator member of the internal combustion engine body is attached. An intake manifold is attached above the separator member, and further includes a blowby gas passage portion that guides the blowby gas discharged from the discharge port of the separator member to the intake manifold. According to this configuration, the separator member and the intake manifold attached above the separator member can be connected via the blow-by gas passage portion on the same outer surface of the internal combustion engine body. The length of the path (blow-by gas passage part) leading to the manifold can be effectively shortened. Thereby, blow-by gas (combusted gas and unburned mixture) separated by gas and liquid by the separator member can be efficiently supplied (returned) to the intake manifold.
 上記第1の局面による内燃機関において、好ましくは、内燃機関本体は、シリンダブロックと、シリンダブロックの下方に配置されるクランクケースとを含み、クランクケースには、セパレータ部材の吸込口に対応する形状を有し、吸込口と連通する開口部が設けられている。このように構成すれば、シリンダブロックに比べて高い剛性が比較的要求されないクランクケースに容易に吸込口と連通する開口部を設けることができる。また、セパレータ部材の吸込口に対応する形状を有するクランクケースの開口部を吸込口と連通させることによって、クランクケースの開口部にセパレータ部材の吸込口を取り付けるだけで、容易に、内燃機関本体からのブローバイガスをセパレータ部材の内部に流通させることができる。 In the internal combustion engine according to the first aspect, preferably, the internal combustion engine body includes a cylinder block and a crankcase disposed below the cylinder block, and the crankcase has a shape corresponding to the suction port of the separator member. And an opening communicating with the suction port is provided. If comprised in this way, the opening part connected easily with a suction inlet can be easily provided in the crankcase in which high rigidity is comparatively required compared with a cylinder block. Further, by connecting the opening of the crankcase having a shape corresponding to the suction port of the separator member to the suction port, it is possible to easily remove the suction port of the separator member from the main body of the internal combustion engine by simply attaching the suction port of the separator member to the opening of the crankcase. The blowby gas can be circulated inside the separator member.
 上記第1の局面による内燃機関において、好ましくは、セパレータ部材は、内燃機関本体の内側に突出するように形成され、吸込口を介して内燃機関本体内の液状オイルがオイルセパレータの内部に流入するのを規制する液状オイル流入規制部を含む。このように構成すれば、内燃機関本体の内側に突出する液状オイル流入規制部により吸込口に向かう液状オイルを遮ることができるので、吸込口を介して液状オイルがセパレータ部材の内部に流入するのを規制することができる。これにより、オイルの消費量が増加するのを抑制することができる。また、内燃機関本体の外側面に取り付けられるセパレータ部材に、内燃機関本体の内側に突出するように液状オイル流入規制部を設けることによって、液状オイル流入規制部を内燃機関本体に設ける場合と比べて、内燃機関本体の形状を大幅に変更する必要がない。これにより、液状オイルの流入を規制する液状オイル流入規制部を内燃機関に容易に設けることができる。 In the internal combustion engine according to the first aspect, preferably, the separator member is formed so as to protrude inside the internal combustion engine body, and liquid oil in the internal combustion engine body flows into the oil separator through the suction port. Including a liquid oil inflow regulating section for regulating With this configuration, the liquid oil flowing toward the suction port can be blocked by the liquid oil inflow restricting portion protruding inside the internal combustion engine body, so that the liquid oil flows into the separator member through the suction port. Can be regulated. Thereby, it can suppress that the consumption of oil increases. Further, by providing the liquid oil inflow restricting portion on the separator member attached to the outer surface of the internal combustion engine main body so as to protrude to the inside of the internal combustion engine main body, compared with the case where the liquid oil inflow restricting portion is provided in the internal combustion engine main body. It is not necessary to change the shape of the internal combustion engine body significantly. Thereby, the liquid oil inflow regulation part which regulates inflow of liquid oil can be easily provided in an internal-combustion engine.
 上記セパレータ部材が液状オイル流入規制部を含む構成において、好ましくは、液状オイル流入規制部は、セパレータ部材の一部が内燃機関本体の内側に突出することによって、セパレータ部材と一体的に形成されている。このように構成すれば、セパレータ部材に別体の液状オイル流入規制部を取り付ける場合と比べて、部品点数を削減することができる。また、セパレータ部材が内燃機関本体を構成する素材よりも軽量な素材から構成されている場合には、液状オイル流入規制部を内燃機関本体側に設ける場合と比べて、液状オイル流入規制部を軽量化することができるとともに、セパレータ部材自体も軽量化することができる。 In the configuration in which the separator member includes the liquid oil inflow restricting portion, preferably, the liquid oil inflow restricting portion is formed integrally with the separator member by projecting a part of the separator member to the inside of the internal combustion engine body. Yes. If comprised in this way, a number of parts can be reduced compared with the case where a separate liquid oil inflow control part is attached to a separator member. In addition, when the separator member is made of a material that is lighter than the material constituting the internal combustion engine body, the liquid oil inflow restriction portion is lighter than when the liquid oil inflow restriction portion is provided on the internal combustion engine body side. The separator member itself can be reduced in weight.
 上記セパレータ部材が液状オイル流入規制部を含む構成において、好ましくは、液状オイル流入規制部は、吸込口を上側から覆う、ひさし形状の上側流入規制部を有する。このように構成すれば、ひさし形状の上側流入規制部によって、液状オイルが吸込口の上側からセパレータ部材の内部に流入するのを確実に抑制することができる。 In the configuration in which the separator member includes the liquid oil inflow restricting portion, the liquid oil inflow restricting portion preferably has an eaves-shaped upper inflow restricting portion that covers the suction port from above. If comprised in this way, it can suppress reliably that liquid oil flows in into the inside of a separator member from the upper side of a suction inlet by an eaves-shaped upper side inflow control part.
 上記第1の局面による内燃機関において、好ましくは、セパレータ部材は、燃焼室よりも下方で内燃機関本体の内部と連通する第1吸込経路と、内燃機関本体に吸気を導入する吸気装置の内部と連通する吐出経路と、燃焼室よりも上方で内燃機関本体の内部と連通する第2吸込経路とに接続されており、第2吸込経路には、閉弁状態で設けられ、オイルセパレータ内の負圧の増大に基づいて開放される一方向バルブが設けられている。このように構成すれば、燃焼室よりも下方の第1吸込経路がオイルにより閉塞され、セパレータ部材内の負圧が一時的に増大した場合に、一方向バルブを開放させてセパレータ部材と内燃機関本体の内部とを第2吸込経路によってバイパスさせることができる。この結果、オイルの液滴を吸気装置側に吸い上げるような大きな負圧状態が一時的に発生しても、セパレータ部材内の負圧の増大を速やかに解消することができる。これにより、第1吸込経路におけるブローバイガスの吸込口がオイルによって塞がれる場合にも、吸気装置側にオイルの液滴を吸い上げることを抑制することができる。 In the internal combustion engine according to the first aspect, preferably, the separator member includes a first suction path that communicates with the interior of the internal combustion engine body below the combustion chamber, and the interior of the intake device that introduces intake air into the internal combustion engine body. It is connected to a discharge path that communicates with a second suction path that communicates with the interior of the internal combustion engine body above the combustion chamber. The second suction path is provided in a valve-closed state, and is connected to a negative suction passage in the oil separator. A one-way valve is provided that is opened based on an increase in pressure. If comprised in this way, when the 1st suction path below a combustion chamber will be obstruct | occluded with oil and the negative pressure in a separator member will increase temporarily, a one-way valve will be opened and a separator member and an internal combustion engine The inside of the main body can be bypassed by the second suction path. As a result, even if a large negative pressure state in which oil droplets are sucked up to the intake device side temporarily occurs, the increase in the negative pressure in the separator member can be quickly eliminated. Thereby, even when the blow-by gas suction port in the first suction path is blocked by the oil, it is possible to prevent the oil droplets from being sucked to the intake device side.
 また、第2吸込経路を常時連通状態とすると、吸気装置側の負圧が第1および第2吸込経路に分散されるため、第2吸込経路を閉鎖する場合と比べて第1吸込経路側でのブローバイガスの換気性能が低下することになる。これに対して、本発明によれば、セパレータ部材内の負圧が増大しない通常時には一方向バルブを閉弁状態にして第2吸込経路を閉鎖しておくことができるので、第2吸込経路を設けた場合でも第1吸気経路側でのブローバイガスの換気性能を維持することができる。 In addition, when the second suction path is always in a communication state, the negative pressure on the intake device side is distributed to the first and second suction paths, so that the first suction path side is compared with the case where the second suction path is closed. The ventilation performance of blowby gas will be reduced. On the other hand, according to the present invention, since the one-way valve can be closed and the second suction path can be closed during normal times when the negative pressure in the separator member does not increase, Even when it is provided, the ventilation performance of the blow-by gas on the first intake path side can be maintained.
 この場合、好ましくは、内燃機関本体は、燃焼室よりも上方に配置されたシリンダヘッドカバーを含み、第2吸込経路は、シリンダヘッドカバーの内部と連通している。このように構成すれば、内燃機関のレイアウト上、内燃機関本体内のガスの導出ポートなどの形成が容易なシリンダヘッドカバーに第2吸込経路を接続することができるので、第2吸込経路を容易に設けることができる。また、第2吸込経路をオイル貯留部から離間したシリンダヘッドカバーに接続することにより、第2吸込経路がオイルなどにより閉塞されることを防ぐことができる。 In this case, preferably, the internal combustion engine main body includes a cylinder head cover disposed above the combustion chamber, and the second suction path communicates with the inside of the cylinder head cover. According to this configuration, the second suction path can be easily connected to the cylinder head cover that facilitates the formation of the gas outlet port in the internal combustion engine body due to the layout of the internal combustion engine. Can be provided. Moreover, it is possible to prevent the second suction path from being blocked by oil or the like by connecting the second suction path to the cylinder head cover separated from the oil reservoir.
 この発明の第2の局面における内燃機関用セパレータは、クランクシャフトと、オイルが貯留されるオイル貯留部とを含む内燃機関本体の外側面に取り付けられる内燃機関用セパレータであって、内燃機関本体からブローバイガスが流入する吸込口を含み、内燃機関本体からのブローバイガスを気液分離するためのセパレータ本体を備え、セパレータ本体の吸込口は、クランクシャフトの回転軸線よりも下方で、かつ、オイル貯留部に貯留されたオイルの油面よりも上方に配置されている。 An internal combustion engine separator according to a second aspect of the present invention is an internal combustion engine separator that is attached to an outer surface of an internal combustion engine body that includes a crankshaft and an oil storage portion in which oil is stored. It includes a suction port through which blow-by gas flows, and includes a separator body for gas-liquid separation of blow-by gas from the internal combustion engine body. The suction port of the separator body is below the rotation axis of the crankshaft and stores oil. It is arrange | positioned above the oil level of the oil stored by the part.
 この発明の第2の局面による内燃機関用セパレータでは、上記のように、セパレータ本体の吸込口をクランクシャフトの回転軸線よりも下方に配置することによって、クランクシャフトの回転軸線よりも上方には内燃機関本体からブローバイガスが流入する吸込口が配置されないので、ブローバイガスを流入させるためのガス流出通路とセパレータ本体の吸込口とを接続する接続用開口部を、クランクシャフトの回転軸線よりも上側の部分の内燃機関本体に設ける必要がない。これにより、クランクシャフトの回転軸線よりも上側の部分における内燃機関本体の剛性が低下するのを抑制することが可能な内燃機関用セパレータを提供することができる。さらに、クランクシャフトの回転軸線よりも上側の部分にガス流出通路および接続用開口部を設ける必要がないので、内燃機関本体のクランクシャフトの回転軸線よりも上側の部分において大幅に形状変更するのを抑制することができる。これにより、クランクシャフトの回転軸線よりも上側の部分(シリンダブロックなど)における内燃機関本体の形状が確定した後であっても、比較的容易にブローバイガスの流通のための構造を内燃機関本体に追加することができる。 In the internal combustion engine separator according to the second aspect of the present invention, as described above, the suction port of the separator body is disposed below the rotation axis of the crankshaft, so that the internal combustion engine is positioned above the rotation axis of the crankshaft. Since the suction port through which blow-by gas flows from the engine body is not disposed, the connection opening connecting the gas outlet passage for flowing blow-by gas and the suction port of the separator body is located above the rotation axis of the crankshaft. There is no need to provide a portion of the internal combustion engine body. As a result, it is possible to provide a separator for an internal combustion engine that can suppress a decrease in the rigidity of the internal combustion engine body in a portion above the rotation axis of the crankshaft. Furthermore, since it is not necessary to provide a gas outflow passage and a connection opening in a portion above the rotation axis of the crankshaft, the shape of the internal combustion engine body can be changed significantly in the portion above the rotation axis of the crankshaft. Can be suppressed. Thereby, even after the shape of the internal combustion engine body in the portion above the rotation axis of the crankshaft (cylinder block or the like) is determined, a structure for the flow of blow-by gas can be provided in the internal combustion engine body relatively easily. Can be added.
 また、上記第2の局面による内燃機関用セパレータでは、セパレータ本体の吸込口をオイル貯留部に貯留されたオイルの油面よりも上方に配置することによって、セパレータ本体の吸込口をクランクシャフトの回転軸線よりも下方に配置した場合であっても、オイルが内燃機関用セパレータの吸込口に流れ込むのを抑制することができるので、流入したオイルに起因して内燃機関用セパレータが閉塞するのを抑制することができる。さらに、セパレータ本体の吸込口を内燃機関本体のオイル貯留部に近づけることができるので、オイル貯留部に貯留されたオイルの熱をセパレータ本体の吸込口周辺に伝達させることができるので、寒冷地などでの走行時において、冷たい走行風に起因して内燃機関用セパレータの内部の水分が吸込口周辺において凍結するのを抑制することができる。これらの結果、セパレータ本体においてブローバイガスの流通が阻害されるのを抑制することができる。 In the separator for an internal combustion engine according to the second aspect, the suction port of the separator main body is disposed above the oil level of the oil stored in the oil reservoir, so that the suction port of the separator main body is rotated by the crankshaft. Even when it is arranged below the axis, oil can be prevented from flowing into the suction port of the internal combustion engine separator, so that the internal combustion engine separator is prevented from being blocked due to the oil that has flowed in. can do. Furthermore, since the suction port of the separator body can be brought close to the oil storage part of the internal combustion engine body, the heat of the oil stored in the oil storage part can be transmitted to the periphery of the suction port of the separator body, so that it can be used in cold regions, etc. When the vehicle is traveling, the water inside the separator for the internal combustion engine can be prevented from freezing around the suction port due to the cold traveling wind. As a result, it is possible to suppress the flow of blow-by gas from being inhibited in the separator body.
 本発明によれば、上記のように、クランクシャフトの回転軸線よりも上側の部分における内燃機関本体の剛性が低下するのを抑制することができる。 According to the present invention, as described above, it is possible to suppress a decrease in the rigidity of the internal combustion engine body in the portion above the rotation axis of the crankshaft.
本発明の第1実施形態によるエンジンの概略的な全体構成を示した斜視図である。1 is a perspective view showing a schematic overall configuration of an engine according to a first embodiment of the present invention. 本発明の第1実施形態によるエンジンの概略的な全体構成を示した側面図である。1 is a side view showing a schematic overall configuration of an engine according to a first embodiment of the present invention. 図2の190-190線に沿った断面図である。FIG. 3 is a cross-sectional view taken along line 190-190 in FIG. 本発明の第1実施形態によるエンジン本体の下部を示した側面図である。It is the side view which showed the lower part of the engine main body by 1st Embodiment of this invention. 本発明の第1実施形態によるセパレータ部材を示した斜視図である。It is the perspective view which showed the separator member by 1st Embodiment of this invention. 図5に示したセパレータ部材から蓋部を取り外した状態を示した斜視図である。It is the perspective view which showed the state which removed the cover part from the separator member shown in FIG. 本発明の第2実施形態によるエンジンの一部を示した断面図である。It is sectional drawing which showed a part of engine by 2nd Embodiment of this invention. 本発明の第2実施形態によるエンジンのセパレータ部材を示した斜視図である。It is the perspective view which showed the separator member of the engine by 2nd Embodiment of this invention. 本発明の第2実施形態によるエンジンのセパレータ部材を蓋部側から見た図である。It is the figure which looked at the separator member of the engine by 2nd Embodiment of this invention from the cover part side. 本発明の第2実施形態の第1変形例によるエンジンの一部を示した断面図である。It is sectional drawing which showed a part of engine by the 1st modification of 2nd Embodiment of this invention. 本発明の第2実施形態の第1変形例によるセパレータ部材を示した斜視図である。It is the perspective view which showed the separator member by the 1st modification of 2nd Embodiment of this invention. 本発明の第2実施形態の第1変形例によるセパレータ部材を蓋部側から見た図である。It is the figure which looked at the separator member by the 1st modification of 2nd Embodiment of this invention from the cover part side. 本発明の第3実施形態によるエンジンの一部を示した断面図である。It is sectional drawing which showed a part of engine by 3rd Embodiment of this invention. 本発明の第3実施形態によるセパレータ部材を示した斜視図である。It is the perspective view which showed the separator member by 3rd Embodiment of this invention. 本発明の第3実施形態によるセパレータ部材を蓋部側から見た側面図である。It is the side view which looked at the separator member by 3rd Embodiment of this invention from the cover part side. 本発明の第3実施形態によるセパレータ部材を鉛直方向上方から見た平面図である。It is the top view which looked at the separator member by 3rd Embodiment of this invention from the perpendicular direction upper direction. 本発明の第4実施形態によるエンジンの概略的な全体構成を示した斜視図である。It is the perspective view which showed the schematic whole structure of the engine by 4th Embodiment of this invention. 本発明の第4実施形態によるエンジンの装置構成を示した概念図である。It is the conceptual diagram which showed the apparatus structure of the engine by 4th Embodiment of this invention. 本発明の第4実施形態によるセパレータ部材の内部構造を説明するための断面図である。It is sectional drawing for demonstrating the internal structure of the separator member by 4th Embodiment of this invention. FR駆動方式の車両の一例を示す模式図である。It is a schematic diagram which shows an example of the vehicle of FR drive system. 本発明の第5実施形態によるエンジンの概略的な全体構成を示した斜視図である。It is the perspective view which showed the schematic whole structure of the engine by 5th Embodiment of this invention. 本発明の第6実施形態によるエンジンの概略的な全体構成を示した斜視図である。It is the perspective view which showed the schematic whole structure of the engine by 6th Embodiment of this invention. 本発明の第1実施形態の第1変形例によるエンジンの全体構成を示した側面図である。It is the side view which showed the whole engine structure by the 1st modification of 1st Embodiment of this invention. 本発明の第1実施形態の第2変形例によるエンジンの全体構成を示した側面図である。It is the side view which showed the whole engine structure by the 2nd modification of 1st Embodiment of this invention. 本発明の第1実施形態の第2変形例によるセパレータ部材を示した斜視図である。It is the perspective view which showed the separator member by the 2nd modification of 1st Embodiment of this invention. 本発明の第1実施形態の第3変形例によるセパレータ部材を示した斜視図である。It is the perspective view which showed the separator member by the 3rd modification of 1st Embodiment of this invention. 本発明の第2実施形態の第2変形例によるエンジンの一部を示した断面図である。It is sectional drawing which showed a part of engine by the 2nd modification of 2nd Embodiment of this invention.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 [第1実施形態]
 まず、図1~図6を参照して、本発明の第1実施形態によるガソリン機関からなるエンジン100の構成について説明する。また、以下では、クランクシャフト10aの延びる方向をX軸方向とし、クランクシャフト10aに直交する方向をY軸方向とし、シリンダ21(図3参照)の延びる方向をZ軸方向(上下方向)として説明を行う。なお、エンジン100は、本発明の「内燃機関」の一例である。
[First Embodiment]
First, the configuration of an engine 100 composed of a gasoline engine according to the first embodiment of the present invention will be described with reference to FIGS. In the following description, the direction in which the crankshaft 10a extends is defined as the X-axis direction, the direction orthogonal to the crankshaft 10a is defined as the Y-axis direction, and the direction in which the cylinder 21 (see FIG. 3) extends is defined as the Z-axis direction (vertical direction). I do. The engine 100 is an example of the “internal combustion engine” in the present invention.
 本発明の第1実施形態による自動車用のエンジン100は、図1および図2に示すように、シリンダヘッド1、シリンダブロック2およびクランクケース3を含むアルミニウム合金製のエンジン本体10を備える。なお、シリンダブロック2とクランクケース3とは、別体として構成されている。また、直列4気筒のエンジン100は、シリンダヘッド1の上側(Z1側)に組み付けられるヘッドカバー4と、エンジン本体10内をX軸方向に貫通するように配置されるクランクシャフト10aとを備える。また、エンジン100の外側面のうち、クランクシャフト10aが延びるX軸方向に沿って延びる一方側(Y2側)の外側面10bには、インテークマニホールド5と、セパレータ部材6と、マウントブラケット7とが取り付けられている。なお、エンジン本体10は、本発明の「内燃機関本体」の一例であり、セパレータ部材6は、本発明の「内燃機関用セパレータ」の一例である。 The engine 100 for automobiles according to the first embodiment of the present invention includes an engine body 10 made of aluminum alloy including a cylinder head 1, a cylinder block 2 and a crankcase 3, as shown in FIGS. Note that the cylinder block 2 and the crankcase 3 are configured separately. The in-line four-cylinder engine 100 includes a head cover 4 assembled on the upper side (Z1 side) of the cylinder head 1 and a crankshaft 10a disposed so as to penetrate the engine body 10 in the X-axis direction. In addition, an intake manifold 5, a separator member 6, and a mount bracket 7 are provided on an outer surface 10b on one side (Y2 side) of the outer surface of the engine 100 that extends along the X-axis direction in which the crankshaft 10a extends. It is attached. The engine main body 10 is an example of the “internal combustion engine main body” of the present invention, and the separator member 6 is an example of the “internal combustion engine separator” of the present invention.
 インテークマニホールド5は、サージタンク5aと、サージタンク5aの下流側に配置され、4本に分岐した吸気ポート5bとを含む。インテークマニホールド5は、シリンダブロック2の複数のシリンダ21(図3参照)の上方にそれぞれ形成される燃焼室(図示せず)に、シリンダヘッド1から吸気を導入する吸気装置としての機能を有する。セパレータ部材6は、エンジン本体10から流入したブローバイガス中の微細なオイルミストを液滴状にすることによって、気体(燃焼ガスおよび未燃焼の混合気)と、液体(エンジンオイル(液滴状の液状オイル)(以下、単にオイルと呼ぶ))とに気液分離する機能を有する。マウントブラケット7は、衝撃吸収可能なマウントインシュレータ7a(図1参照)を介してエンジン100を図示しない車体に固定するために取り付けられている。なお、図2においては、マウントインシュレータ7aの図示を便宜的に省略している。 The intake manifold 5 includes a surge tank 5a and an intake port 5b that is arranged on the downstream side of the surge tank 5a and branches into four. The intake manifold 5 has a function as an intake device that introduces intake air from the cylinder head 1 into combustion chambers (not shown) formed above a plurality of cylinders 21 (see FIG. 3) of the cylinder block 2. Separator member 6 makes fine oil mist in blow-by gas flowing in from engine body 10 into droplets, thereby forming gas (combustion gas and unburned mixture) and liquid (engine oil (drop-like mixture). Liquid oil) (hereinafter simply referred to as oil)). The mount bracket 7 is attached to fix the engine 100 to a vehicle body (not shown) via a mount insulator 7a (see FIG. 1) capable of absorbing shock. In FIG. 2, the mount insulator 7a is not shown for convenience.
 エンジン本体10におけるシリンダヘッド1の内部には、カムシャフトおよびバルブ機構(図示せず)などが配置されている。シリンダヘッド1の下方(Z2側)に接続されるシリンダブロック2の内部には、図3に示すように、ピストン22がZ軸方向に往復動する4個のシリンダ21が形成されている。この4個のシリンダ21には、4本の吸気ポート5b(図2参照)から、それぞれ吸気が供給されるように構成されている。 A camshaft and a valve mechanism (not shown) are arranged inside the cylinder head 1 of the engine body 10. As shown in FIG. 3, four cylinders 21 in which the piston 22 reciprocates in the Z-axis direction are formed inside the cylinder block 2 connected to the lower side (Z2 side) of the cylinder head 1. The four cylinders 21 are configured to be supplied with intake air from four intake ports 5b (see FIG. 2).
 また、シリンダブロック2とシリンダブロック2の下方(Z2側)に接続されるクランクケース3とによって、エンジン本体10の内部にクランク室10cが形成されている。クランク室10cには、X軸方向(図3参照)に沿って延びる回転軸線Aまわりに回転可能に接続されたクランクシャフト10aが配置されている。クランクシャフト10aは、シリンダブロック2とクランクケース3との合わせ面に配置されており、この結果、クランクシャフト10aの回転軸線Aと、シリンダブロック2とクランクケース3との合わせ面とは、上下方向(Z軸方向)に略同一の高さ位置に揃えられている。なお、図1~図3においては、クランクシャフト10aを概略棒形状に図示しているが、実際には、クランクシャフト10aは、回転軸が偏心されたクランクピン(図示せず)やクランクピンをX軸方向に挟み込むバランスウェイト(図示せず)を有する。なお、クランクシャフト10aは、コンロッド(コネクティングロッド)12を介してピストン22と連結されており、ピストン22がシリンダ21内を往復移動するのに伴ってクランクシャフト10aが回転駆動される。その際、ピストン22の鉛直方向上方の燃焼室(図示せず)からピストン22とシリンダ21との微小な隙間を介してブローバイガスがクランク室10cに漏れ出る。 Further, a crank chamber 10c is formed inside the engine body 10 by the cylinder block 2 and the crankcase 3 connected to the lower side (Z2 side) of the cylinder block 2. In the crank chamber 10c, a crankshaft 10a that is rotatably connected around a rotation axis A extending along the X-axis direction (see FIG. 3) is disposed. The crankshaft 10a is disposed on the mating surface between the cylinder block 2 and the crankcase 3. As a result, the rotation axis A of the crankshaft 10a and the mating surface between the cylinder block 2 and the crankcase 3 are in the vertical direction. They are aligned at substantially the same height position in the (Z-axis direction). 1 to 3, the crankshaft 10a is shown in a substantially rod shape. However, in actuality, the crankshaft 10a has a crank pin (not shown) or a crank pin whose rotational axis is eccentric. A balance weight (not shown) sandwiched in the X-axis direction is provided. The crankshaft 10a is connected to a piston 22 via a connecting rod (connecting rod) 12, and the crankshaft 10a is rotationally driven as the piston 22 reciprocates in the cylinder 21. At that time, blow-by gas leaks from the combustion chamber (not shown) vertically above the piston 22 into the crank chamber 10 c through a minute gap between the piston 22 and the cylinder 21.
 クランク室10cの下部(Z2側)には、オイルが貯留されるオイル貯留部30が設けられている。オイルは、図示しないオイルポンプによりオイル貯留部30からエンジン本体10内の上部に汲み上げられてカムシャフトなどの動弁系タイミング部材(図示せず)やピストン22の外周面などの摺動部を潤滑にした後、自重により落下してオイル貯留部30に戻される。また、オイル貯留部30に貯留されたオイルの油面は、クランクケース3の上端(シリンダブロック2とクランクケース3との合わせ面)よりも下方に位置する。なお、オイルの油面とは、オイルがエンジン本体10内に許容量まで注入された場合において、油面が上下方向において最も高い位置に位置した際のオイルの油面を意味する。 The oil storage part 30 in which oil is stored is provided in the lower part (Z2 side) of the crank chamber 10c. The oil is pumped from the oil reservoir 30 to the upper part of the engine body 10 by an oil pump (not shown), and lubricates sliding parts such as a valve timing system member (not shown) such as a cam shaft and the outer peripheral surface of the piston 22. After that, it is dropped by its own weight and returned to the oil reservoir 30. In addition, the oil level of the oil stored in the oil storage unit 30 is located below the upper end of the crankcase 3 (the mating surface of the cylinder block 2 and the crankcase 3). The oil level of the oil means the oil level of the oil when the oil level is positioned at the highest position in the vertical direction when the oil is injected into the engine body 10 to an allowable amount.
 また、図3および図4に示すように、クランクケース3のY2側の外側面3aには、後述するセパレータ部材6の吸込口62が接続される開口部31が設けられている。開口部31は、クランクケース3の内部のクランク室10cと外部(セパレータ部材6)とを接続するように外側面3aを貫通している。また、開口部31は、図4に示すように、上下方向に延びる長径とX軸方向に延びる短径とを有する縦長の長円形状に形成されている。 3 and 4, the outer surface 3a on the Y2 side of the crankcase 3 is provided with an opening 31 to which a suction port 62 of a separator member 6 described later is connected. The opening 31 penetrates the outer surface 3a so as to connect the crank chamber 10c inside the crankcase 3 and the outside (separator member 6). As shown in FIG. 4, the opening 31 is formed in a vertically long oval shape having a major axis extending in the vertical direction and a minor axis extending in the X-axis direction.
 また、開口部31は、外側(Y2側)に向かって周状に突出する突出部3bの略中央に配置されている。また、クランクケース3のY2側の外側面3aには、セパレータ部材6を固定するための3つのねじ穴3c(図3参照)が形成されているとともに、シリンダブロック2のY2側の外側面2bには、セパレータ部材6を固定するための1つのねじ穴2c(図3参照)が形成されている。 Further, the opening 31 is disposed at the approximate center of the protruding portion 3b that protrudes circumferentially toward the outside (Y2 side). The outer surface 3a on the Y2 side of the crankcase 3 is formed with three screw holes 3c (see FIG. 3) for fixing the separator member 6, and the outer surface 2b of the cylinder block 2 on the Y2 side. One screw hole 2c (see FIG. 3) for fixing the separator member 6 is formed.
 セパレータ部材6は、6,6-ナイロンなどの耐油性、耐熱性、耐薬品性、十分な強度を有する樹脂から構成されている。また、セパレータ部材6は、図1および図3に示すように、エンジン本体10のY2側の外側面10bにおいて、インテークマニホールド5およびマウントブラケット7よりも下方(Z2側)に取り付けられている。また、セパレータ部材6は、外側面10bとマウントインシュレータ7aとの間に形成される空間Sに配置されるように、エンジン本体10の外側面10bに取り付けられている。 The separator member 6 is composed of a resin having oil resistance, heat resistance, chemical resistance, and sufficient strength such as 6,6-nylon. Further, as shown in FIGS. 1 and 3, the separator member 6 is attached to the lower side (Z2 side) of the intake manifold 5 and the mounting bracket 7 on the outer side surface 10 b on the Y2 side of the engine body 10. Further, the separator member 6 is attached to the outer surface 10b of the engine body 10 so as to be disposed in a space S formed between the outer surface 10b and the mount insulator 7a.
 なお、図5および図6に示すように、セパレータ部材6には、クランクケース3の3つのねじ穴3cおよびシリンダブロック2の1つのねじ穴2c(図4参照)に対応する位置に、ねじ挿入穴6aがそれぞれ形成されている。そして、4個のねじ部材101(図2参照)が、各々、ねじ挿入穴6aを貫通した状態で、3つのねじ穴3cおよび1つのねじ穴2cにそれぞれ螺合することによって、図1に示すように、セパレータ部材6はエンジン本体10のY2側の外側面10bに取り付けられている。 As shown in FIGS. 5 and 6, screws are inserted into the separator member 6 at positions corresponding to the three screw holes 3 c of the crankcase 3 and one screw hole 2 c (see FIG. 4) of the cylinder block 2. Each hole 6a is formed. Then, the four screw members 101 (see FIG. 2) are respectively screwed into the three screw holes 3c and one screw hole 2c in a state of passing through the screw insertion holes 6a. Thus, the separator member 6 is attached to the outer surface 10b on the Y2 side of the engine body 10.
 セパレータ部材6は、図3および図5に示すように、クランクケース3側(Y1側)に配置された蓋部60と、クランクケース3とは反対側(Y2側)に配置され、蓋部60がY1側から嵌め込まれる本体部61とを含むセパレータ本体から構成されている。また、セパレータ部材6は、蓋部60に本体部61が嵌め込まれた状態で、振動溶着などによって一体化されることによって製造される。 As shown in FIGS. 3 and 5, the separator member 6 is disposed on the side of the crankcase 3 (Y1 side) and on the side opposite to the crankcase 3 (Y2 side). Is composed of a separator body including a body portion 61 fitted from the Y1 side. Further, the separator member 6 is manufactured by being integrated by vibration welding or the like in a state where the main body 61 is fitted in the lid 60.
 また、セパレータ部材6の蓋部60の上下方向(Z方向)の中央よりも下側(Z2側)の下部には、エンジン本体10からブローバイガスが流入する吸込口62が形成されている。吸込口62は、クランクケース3の開口部31に対応するように形成されており、Z軸方向に延びる長径とX軸方向に延びる短径とを有する縦長の長円形状を有する。 Further, a suction port 62 through which blow-by gas flows from the engine body 10 is formed at a lower portion (Z2 side) below the center in the vertical direction (Z direction) of the lid portion 60 of the separator member 6. The suction port 62 is formed to correspond to the opening 31 of the crankcase 3 and has a vertically long oval shape having a major axis extending in the Z-axis direction and a minor axis extending in the X-axis direction.
 ここで、第1実施形態では、図3に示すように、クランクケース3の開口部31およびセパレータ部材6の吸込口62は、共に、上下方向(Z方向)において、クランクシャフト10aの回転軸線A(クランクセンター)よりも下方(Z2側)で、かつ、オイル貯留部30に溜められたオイルの油面よりも上方(Z1側)に位置するように配置されている。つまり、クランクケース3の開口部31およびセパレータ部材6の吸込口62は、共に、クランクシャフト10aの回転軸線Aよりも上側のシリンダヘッド1やシリンダブロック2には配置されていない。具体的には、開口部31の上端31aおよび吸込口62の上端62aは、共に、クランクシャフト10aの回転軸線Aから距離D1だけ下方に位置するように形成されている。また、開口部31の下端31bは、オイルの油面よりも距離D2だけ上方に位置するように形成されているとともに、吸込口62の下端62bは、オイルの油面よりも距離D3だけ上方に位置するように形成されている。なお、距離D2が距離D3よりも若干大きいことにより、開口部31の下端31bは、吸込口62の下端62bよりも若干油面から遠ざかる位置に形成されている。また、図2および図3に示すように、セパレータ部材6の全体がオイルの油面よりも上方に位置するように構成されている。 Here, in the first embodiment, as shown in FIG. 3, the opening 31 of the crankcase 3 and the suction port 62 of the separator member 6 both have the rotation axis A of the crankshaft 10 a in the vertical direction (Z direction). It is arranged so as to be located below the (crank center) (Z2 side) and above the oil level of the oil stored in the oil reservoir 30 (Z1 side). That is, neither the opening 31 of the crankcase 3 nor the suction port 62 of the separator member 6 is arranged in the cylinder head 1 or the cylinder block 2 above the rotation axis A of the crankshaft 10a. Specifically, both the upper end 31a of the opening 31 and the upper end 62a of the suction port 62 are formed so as to be positioned below the rotation axis A of the crankshaft 10a by a distance D1. Further, the lower end 31b of the opening 31 is formed to be positioned above the oil level of the oil by a distance D2, and the lower end 62b of the suction port 62 is above the oil level of the oil by a distance D3. It is formed to be located. Since the distance D2 is slightly larger than the distance D3, the lower end 31b of the opening 31 is formed at a position slightly away from the oil surface than the lower end 62b of the suction port 62. Further, as shown in FIGS. 2 and 3, the entire separator member 6 is configured to be positioned above the oil surface of the oil.
 また、図5に示すように、セパレータ部材6の蓋部60のクランクケース3側(Y1側)には、吸込口62を囲うように長円周状の溝部60aが形成されている。この溝部60aには、図3に示すように、オイルがエンジン100の外部に流出するのを抑制するためのOリング102が嵌め込まれている。 Further, as shown in FIG. 5, a long circumferential groove 60 a is formed on the crankcase 3 side (Y1 side) of the lid portion 60 of the separator member 6 so as to surround the suction port 62. As shown in FIG. 3, an O-ring 102 for suppressing oil from flowing out of the engine 100 is fitted in the groove 60 a.
 また、図6に示すように、セパレータ部材6の内部には、ブローバイガスが流通する流路Rが設けられている。具体的には、本体部61には、蓋部60とは反対側(Y2側)に窪む凹部61aが形成されており、凹部61aと蓋部60とにより流路Rが形成されている。また、流路Rを通過したブローバイガスは、セパレータ部材6(本体部61)の上端部61bに設けられた排出口64から排出されるように構成されている。また、本体部61には、凹部61aの底面からY1側に突出する壁部61cが設けられている。また、本体部61の鉛直方向の下面には、吸込口62に向かう矢印Y1方向で、かつ、鉛直方向下方(矢印Z2方向)に傾斜する傾斜部61e(図3参照)が形成されている。ここで、図5および図6を参照して、流路Rにおけるブローバイガスの流通について説明する。 Further, as shown in FIG. 6, a flow path R through which blow-by gas flows is provided inside the separator member 6. Specifically, the main body 61 is formed with a recess 61 a that is recessed on the opposite side (Y2 side) from the lid 60, and the flow path R is formed by the recess 61 a and the lid 60. The blow-by gas that has passed through the flow path R is configured to be discharged from a discharge port 64 provided in the upper end portion 61b of the separator member 6 (main body portion 61). The main body 61 is provided with a wall 61c that protrudes from the bottom surface of the recess 61a toward the Y1 side. Further, an inclined portion 61e (see FIG. 3) is formed on the lower surface of the main body 61 in the vertical direction, which is inclined in the arrow Y1 direction toward the suction port 62 and downward in the vertical direction (arrow Z2 direction). Here, the flow of blow-by gas in the flow path R will be described with reference to FIGS. 5 and 6.
 クランク室10c(図3参照)から開口部31(図3参照)および吸込口62を介してセパレータ部材6に流入したブローバイガスは、吸込口62から凹部61aのY2側の底面までの第1流路R1を通過して凹部61aのY2側の底面に衝突する。その後、ブローバイガスは、上方向(Z1方向)に延びる第2流路R2を通過して壁部61cに衝突する。そして、ブローバイガスは、壁部61cに沿って横方向(X1方向)に延びる第3流路R3を通過して凹部61aのX1側の内側面に衝突する。その後、ブローバイガスは、壁部61cと凹部61aのX1側の内側面とにより形成され上方向に延びる第4流路R4を通過して凹部61aのZ1側の内側面に衝突する。最後に、ブローバイガスは、壁部61cに沿って横方向(X2方向)に延びる第5流路R5を通過して排出口64に到達する。セパレータ部材6には、ラビリンス構造からなる屈曲した流路Rが形成されている。 The blow-by gas that has flowed into the separator member 6 from the crank chamber 10c (see FIG. 3) through the opening 31 (see FIG. 3) and the suction port 62 flows from the suction port 62 to the bottom surface on the Y2 side of the recess 61a. It passes through the path R1 and collides with the bottom surface on the Y2 side of the recess 61a. Thereafter, the blow-by gas collides with the wall portion 61c through the second flow path R2 extending in the upward direction (Z1 direction). The blow-by gas then passes through the third flow path R3 extending in the lateral direction (X1 direction) along the wall portion 61c and collides with the inner side surface on the X1 side of the recess 61a. Thereafter, the blowby gas passes through a fourth flow path R4 formed by the wall portion 61c and the inner surface on the X1 side of the recess 61a and extends upward, and collides with the inner surface on the Z1 side of the recess 61a. Finally, the blowby gas passes through the fifth flow path R5 extending in the lateral direction (X2 direction) along the wall portion 61c and reaches the discharge port 64. The separator member 6 is formed with a bent flow path R having a labyrinth structure.
 そして、各々の衝突においてオイルミストがブローバイガスから分離されることによって、オイルミストが分離されたブローバイガスが排出口64から排出される。分離された液状のオイルは、オイルの自重によりセパレータ部材6の流路Rをブローバイガスの流通方向とは逆方向に流れて、縦長形状の吸込口62および開口部31の下部からクランク室10cのオイル貯留部30(図3参照)に戻される。また、セパレータ部材6では、ブローバイガスの吸込口62と、分離後のオイル排出口とが共通となっている。吸込口62と分離後のオイル排出口とを別々に設けた場合には、吸込口62と排出口とに圧力差が生じてブローバイガスの吸気側への還元効率に悪影響を及ぼすことがある。吸込口62とオイルの排出口とを共通にすることによって、この圧力差が発生しない構造となっている。 In each collision, the oil mist is separated from the blow-by gas, so that the blow-by gas from which the oil mist is separated is discharged from the discharge port 64. The separated liquid oil flows through the flow path R of the separator member 6 in the direction opposite to the flow direction of the blow-by gas by the weight of the oil, and enters the crank chamber 10c from the lower part of the vertically long suction port 62 and the opening 31. It is returned to the oil reservoir 30 (see FIG. 3). In the separator member 6, the blow-by gas suction port 62 and the oil discharge port after separation are common. When the suction port 62 and the separated oil discharge port are provided separately, a pressure difference may be generated between the suction port 62 and the discharge port, which may adversely affect the reduction efficiency of the blow-by gas to the intake side. By making the suction port 62 and the oil discharge port in common, the pressure difference is not generated.
 また、上記のように流路Rを形成することによって、セパレータ部材6では、吸込口62から排出口64までの流路Rの距離(流路距離)が極力長くなるように構成されている。さらに、セパレータ部材6では、流路Rの断面積を一定以上確保して流路Rを流れるブローバイガスの流速が過度に大きくなるのが抑制されるように構成されている。 Further, by forming the flow path R as described above, the separator member 6 is configured such that the distance (flow path distance) of the flow path R from the suction port 62 to the discharge port 64 is as long as possible. Further, the separator member 6 is configured to prevent the flow rate of the blow-by gas flowing through the flow path R from becoming excessively large by ensuring a certain cross-sectional area of the flow path R.
 また、セパレータ部材6の排出口64には、セパレータ部材6の上端部61bから上方(Z1方向)に向かって突出するようにPCV(Positive Crankcase Ventilation)バルブ8が直接的に取り付けられている。PCVバルブ8は、インテークマニホールド5側とセパレータ部材6側の圧力差に応じて開度が変更される。インテークマニホールド5側が低圧となる場合に開弁し、インテークマニホールド5側が高圧となる場合には閉弁する。また、PCVバルブ8は、排出口64から排出される気液分離されたブローバイガスの排出量を制御する機能を有する。なお、PCVバルブ8は、本発明の「制御弁」の一例である。 Also, a PCV (Positive Crankcase Ventilation) valve 8 is directly attached to the discharge port 64 of the separator member 6 so as to protrude upward (in the Z1 direction) from the upper end portion 61b of the separator member 6. The opening degree of the PCV valve 8 is changed according to the pressure difference between the intake manifold 5 side and the separator member 6 side. The valve is opened when the intake manifold 5 side becomes low pressure, and is closed when the intake manifold 5 side becomes high pressure. Further, the PCV valve 8 has a function of controlling the discharge amount of the blow-by gas separated from the gas and liquid discharged from the discharge port 64. The PCV valve 8 is an example of the “control valve” in the present invention.
 また、図2および図3に示すように、PCVバルブ8の排出口64への接続側(Z2側)とは反対側(Z1側)には、チューブ部材9(接続配管)の下端が接続されている。チューブ部材9は、上下方向(Z方向)に延びるようにPCVバルブ8に接続されている。チューブ部材9の上端はインテークマニホールド5のサージタンク5aに接続されている。したがって、チューブ部材9は、セパレータ部材6の排出口64(PCVバルブ8)から排出されたブローバイガスをサージタンク5aの鉛直方向の下面側に導くことによってブローバイガスを吸気側のインテークマニホールド5に還元させる接続配管の機能を果たす。なお、チューブ部材9は、本発明の「ブローバイガス通路部」の一例である。 As shown in FIGS. 2 and 3, the lower end of the tube member 9 (connection piping) is connected to the side (Z1 side) opposite to the connection side (Z2 side) to the discharge port 64 of the PCV valve 8. ing. The tube member 9 is connected to the PCV valve 8 so as to extend in the vertical direction (Z direction). The upper end of the tube member 9 is connected to the surge tank 5 a of the intake manifold 5. Therefore, the tube member 9 returns the blowby gas to the intake manifold 5 on the intake side by guiding the blowby gas discharged from the discharge port 64 (PCV valve 8) of the separator member 6 to the lower surface side in the vertical direction of the surge tank 5a. It fulfills the function of connecting piping. The tube member 9 is an example of the “blow-by gas passage” in the present invention.
 また、チューブ部材9は、マウントブラケット7に形成された貫通孔7bを貫通してサージタンク5aに接続されている。これにより、マウントブラケット7を避けるようにチューブ部材9を取り回す場合と比べて、チューブ部材9の長さが大きくなるのが抑制されるとともに、チューブ部材9の露出部分が小さくなるので、寒冷地などでの走行時に冷たい走行風に起因してチューブ部材9の内部の水分が凍結するのが抑制されている。 Also, the tube member 9 is connected to the surge tank 5a through a through hole 7b formed in the mount bracket 7. As a result, as compared with the case where the tube member 9 is routed so as to avoid the mount bracket 7, the length of the tube member 9 is suppressed and the exposed portion of the tube member 9 is reduced. It is suppressed that the water | moisture content in the tube member 9 freezes resulting from the cold running wind at the time of driving | running | working.
 また、インテークマニホールド5の負圧によってセパレータ部材6の吸込口62にブローバイガスが吸い込まれるように構成されている。吸込口62に吸い込まれたブローバイガスは、セパレータ部材6、PCVバルブ8およびチューブ部材9を介してインテークマニホールド5に供給されて、シリンダブロック2のシリンダ21に吸気と共に供給される。このようなセパレータ部材6を含むPCVシステムがエンジン100に設けられている。 Further, the blow-by gas is configured to be sucked into the suction port 62 of the separator member 6 by the negative pressure of the intake manifold 5. The blow-by gas sucked into the suction port 62 is supplied to the intake manifold 5 through the separator member 6, the PCV valve 8 and the tube member 9, and is supplied to the cylinder 21 of the cylinder block 2 together with the intake air. A PCV system including such a separator member 6 is provided in the engine 100.
 第1実施形態では、以下のような効果を得ることができる。 In the first embodiment, the following effects can be obtained.
 第1実施形態では、上記のように、セパレータ部材6の吸込口62をクランクシャフト10aの回転軸線Aよりも下方(Z2側)に配置することによって、クランクシャフト10aの回転軸線Aよりも上方(Z1側)のシリンダヘッド1やシリンダブロック2にはエンジン本体10からブローバイガスが流入する吸込口62が配置されないので、ブローバイガスを流入させるためのガス流出通路とセパレータ部材の吸込口とを接続する接続用開口部をクランクシャフト10aの回転軸線Aよりも上側のシリンダヘッド1やシリンダブロック2に設ける必要がない。これにより、シリンダヘッド1やシリンダブロック2におけるエンジン本体10の剛性が低下するのを抑制することができる。さらに、シリンダヘッド1やシリンダブロック2にガス流出通路および接続用開口部を設ける必要がないので、シリンダヘッド1やシリンダブロック2の大幅な形状変更を抑制することができる。これにより、シリンダヘッド1やシリンダブロック2の形状が確定した後であっても、比較的容易にブローバイガスの流通のための構造をエンジン本体10に追加することができる。 In the first embodiment, as described above, the suction port 62 of the separator member 6 is disposed below (the Z2 side) the rotation axis A of the crankshaft 10a, so that it is above the rotation axis A of the crankshaft 10a ( Since the suction port 62 through which blow-by gas flows from the engine body 10 is not arranged in the cylinder head 1 or the cylinder block 2 on the Z1 side), the gas outlet passage for allowing blow-by gas to flow in is connected to the suction port of the separator member. There is no need to provide a connection opening in the cylinder head 1 or the cylinder block 2 above the rotation axis A of the crankshaft 10a. Thereby, it can suppress that the rigidity of the engine main body 10 in the cylinder head 1 or the cylinder block 2 falls. Furthermore, since it is not necessary to provide a gas outflow passage and a connection opening in the cylinder head 1 or the cylinder block 2, a significant change in the shape of the cylinder head 1 or the cylinder block 2 can be suppressed. Thereby, even after the shapes of the cylinder head 1 and the cylinder block 2 are determined, a structure for circulation of blow-by gas can be added to the engine body 10 relatively easily.
 また、第1実施形態では、セパレータ部材6の吸込口62をオイル貯留部30に貯留されたオイルの油面よりも上方に配置することによって、吸込口62をクランクシャフト10aの回転軸線Aよりも下方に配置した場合であっても、オイルが吸込口62に流れ込むのを抑制することができる。さらに、吸込口62をエンジン本体10のオイル貯留部30に近づけることができるので、オイル貯留部30に貯留されたオイルの熱を吸込口62周辺に伝達させることができる。これにより、寒冷地などでの走行時において、冷たい走行風に起因してセパレータ部材6の内部の水分が吸込口62周辺において凍結するのを抑制することができる。これらの結果、セパレータ部材6においてブローバイガスの流通が阻害されるのを抑制することができる。 Moreover, in 1st Embodiment, the suction inlet 62 is arrange | positioned above the oil level of the oil stored in the oil storage part 30 by arrange | positioning the suction inlet 62 of the separator member 6 rather than the rotating shaft A of the crankshaft 10a. Even if it is a case where it arrange | positions below, it can suppress that oil flows into the suction inlet 62. FIG. Furthermore, since the suction port 62 can be brought close to the oil storage unit 30 of the engine body 10, the heat of the oil stored in the oil storage unit 30 can be transmitted to the vicinity of the suction port 62. Thereby, when traveling in a cold district or the like, it is possible to suppress the moisture inside the separator member 6 from being frozen around the suction port 62 due to the cold traveling wind. As a result, the separator member 6 can be inhibited from obstructing the flow of blow-by gas.
 また、第1実施形態では、エンジン本体10の外側面10bにセパレータ部材6を取り付けることによって、エンジン本体10内側にセパレータ部材を設ける場合と比べて、容易にエンジン本体10にセパレータ部材6を取り付けることができる。また、エンジン本体10の外側面10bに別体のセパレータ部材6を取り付けることによって、閉塞などにより破損したセパレータ部材6を新たなセパレータ部材6に容易に交換することができる。 In the first embodiment, by attaching the separator member 6 to the outer side surface 10b of the engine body 10, the separator member 6 can be easily attached to the engine body 10 as compared with the case where the separator member is provided inside the engine body 10. Can do. Further, by attaching a separate separator member 6 to the outer side surface 10 b of the engine body 10, the separator member 6 damaged due to blockage or the like can be easily replaced with a new separator member 6.
 また、第1実施形態では、セパレータ部材6の全体をオイルの油面よりも上方に位置するように構成することによって、より確実に、セパレータ部材6の吸込口62をオイル貯留部30に貯留されたオイルの油面よりも上方に配置することができる。 Moreover, in 1st Embodiment, the suction port 62 of the separator member 6 is more reliably stored by the oil storage part 30 by comprising so that the whole separator member 6 may be located above the oil level of oil. The oil can be disposed above the oil level.
 また、第1実施形態では、インテークマニホールド5やマウントブラケット7が取り付けられるエンジン本体10の外側面10bにおいて、セパレータ部材6の吸込口62がクランクシャフト10aの回転軸線Aよりも下方に配置されるようにセパレータ部材6を取り付ける。これにより、クランクシャフト10aの回転軸線Aよりも上側の部分に配置されるインテークマニホールド5やマウントブラケット7とは異なる位置に、セパレータ部材6を容易に配置することができる。 In the first embodiment, the suction port 62 of the separator member 6 is disposed below the rotation axis A of the crankshaft 10a on the outer surface 10b of the engine body 10 to which the intake manifold 5 and the mount bracket 7 are attached. Attach the separator member 6 to the plate. Thereby, the separator member 6 can be easily disposed at a position different from the intake manifold 5 and the mount bracket 7 disposed in the portion above the rotation axis A of the crankshaft 10a.
 また、第1実施形態では、吸込口62をセパレータ部材6の下部に設けることにより、オイルがセパレータ部材6の内部に吸い込まれたとしても、オイルの自重を利用してセパレータ部材6の下部の吸込口62から容易にオイル貯留部30に排出することができる。 In the first embodiment, the suction port 62 is provided in the lower part of the separator member 6, so that even if oil is sucked into the separator member 6, the lower part of the separator member 6 is sucked by utilizing the weight of the oil. The oil can be easily discharged from the port 62 to the oil reservoir 30.
 また、第1実施形態では、セパレータ部材6の吸込口62の下端62bをオイル貯留部30に貯留されたオイルの油面よりも上方に配置することによって、確実に、吸込口62をオイル貯留部30に貯留されたオイルの油面よりも上方に配置することができる。 In the first embodiment, the lower end 62 b of the suction port 62 of the separator member 6 is disposed above the oil level of the oil stored in the oil storage unit 30, so that the suction port 62 is reliably connected to the oil storage unit 30. The oil stored in 30 can be disposed above the oil level.
 また、第1実施形態では、吸込口62をZ軸方向(上下方向)に延びる長径とX軸方向に延びる短径とを有する縦長の長円形状に形成することによって、縦長形状の吸込口62の下部から分離したオイルを排出する場合にも、縦長形状で上下方向の長さが大きい吸込口62の上部から効率的にブローバイガスを吸い込むことができる。さらに、たとえエンジン本体10が傾斜することなどに起因してオイル貯留部30のオイルが吸込口62に到達したとしても、上下方向に延びる縦長形状の吸込口62により、吸込口62全体がオイルにより閉塞されるのを抑制することができる。これにより、オイルに起因してセパレータ部材6でのブローバイガスの流通が阻害されるのを抑制することができる。 In the first embodiment, the suction port 62 is formed in a vertically long oval shape having a major axis extending in the Z-axis direction (vertical direction) and a minor axis extending in the X-axis direction, so that the longitudinal suction port 62 is formed. Even when the oil separated from the lower portion of the gas is discharged, blow-by gas can be efficiently sucked from the upper portion of the suction port 62 having a vertically long shape and a large vertical length. Further, even if the oil in the oil reservoir 30 reaches the suction port 62 due to the inclination of the engine body 10 or the like, the entire suction port 62 is made of oil by the vertically long suction port 62 extending in the vertical direction. Occlusion can be suppressed. Thereby, it can suppress that the distribution | circulation of the blow-by gas in the separator member 6 resulting from oil is inhibited.
 また、第1実施形態では、ブローバイガスを排出する排出口64をセパレータ部材6の上端部61bに設けることによって、気体のブローバイガスに比べて液体のオイルが重力の影響を受けやすいことを利用して、セパレータ部材6内で分離されたオイルがセパレータ部材6の上端近傍に設けられた排出口64に到達するのを抑制することができる。 Further, in the first embodiment, by providing the discharge port 64 for discharging blow-by gas at the upper end portion 61 b of the separator member 6, it is utilized that liquid oil is more susceptible to gravity than gas blow-by gas. Thus, the oil separated in the separator member 6 can be prevented from reaching the discharge port 64 provided in the vicinity of the upper end of the separator member 6.
 また、第1実施形態では、排出口64をセパレータ部材6の最上部である上端部61bに設けることにより、オイルがブローバイガスと共に排出口64から排出されるのを効果的に抑制することができる。 Moreover, in 1st Embodiment, by providing the discharge port 64 in the upper end part 61b which is the uppermost part of the separator member 6, it can suppress effectively that oil is discharged from the discharge port 64 with blow-by gas. .
 また、第1実施形態では、吸込口62をセパレータ部材6の下部に設け、排出口64をセパレータ部材6の上端部61bに設けることによって、セパレータ部材6の下部から上端部61bに設けられた排出口64に至るまでの広い範囲において、ブローバイガスの気液分離を行うことができるので、効率的にブローバイガスの気液分離を行うことができる。 In the first embodiment, the suction port 62 is provided in the lower portion of the separator member 6 and the discharge port 64 is provided in the upper end portion 61b of the separator member 6, so that the exhaust port provided in the upper end portion 61b from the lower portion of the separator member 6 is provided. Since the blow-by gas can be separated into gas and liquid in a wide range up to the outlet 64, the blow-by gas can be separated efficiently.
 また、第1実施形態では、PCVバルブ8をセパレータ部材6の排出口64に直接的に取り付けることによって、PCVバルブ8と排出口64とを接続通路を介して間接的に接続する場合と比べて、PCVバルブ8と排出口64とを接続するための接続通路が不要になるので、部品点数を削減することができるとともに、構造を簡素化することができる。 Moreover, in 1st Embodiment, compared with the case where the PCV valve 8 and the discharge port 64 are connected indirectly via a connection path by attaching the PCV valve 8 directly to the discharge port 64 of the separator member 6. Since no connection passage for connecting the PCV valve 8 and the discharge port 64 is required, the number of parts can be reduced and the structure can be simplified.
 また、第1実施形態では、PCVバルブ8をセパレータ部材6の上端部61bから上方に突出するように排出口64に直接的に取り付けることによって、PCVバルブ8の上方に向かってブローバイガスを排出することができるので、エンジン本体10の上部にブローバイガスを容易に供給することができる。 In the first embodiment, the blow-by gas is discharged upward of the PCV valve 8 by directly attaching the PCV valve 8 to the discharge port 64 so as to protrude upward from the upper end portion 61 b of the separator member 6. Therefore, blow-by gas can be easily supplied to the upper part of the engine body 10.
 また、第1実施形態では、セパレータ部材6よりも上方にインテークマニホールド5を取り付けるとともに、セパレータ部材6の排出口64から排出されたブローバイガスをインテークマニホールド5に導くチューブ部材9を設ける。これにより、エンジン本体10の同じ外側面10bにおいて、セパレータ部材6と、セパレータ部材6の上方に取り付けられたインテークマニホールド5とをチューブ部材9を介して接続することができるので、セパレータ部材6からインテークマニホールド5に至るチューブ部材9の長さを効果的に短くすることができる。これにより、セパレータ部材6により気液分離したブローバイガスを効率よくインテークマニホールド5に供給する(戻す)ことができる。 In the first embodiment, the intake manifold 5 is attached above the separator member 6, and the tube member 9 that guides the blow-by gas discharged from the discharge port 64 of the separator member 6 to the intake manifold 5 is provided. Thereby, since the separator member 6 and the intake manifold 5 attached above the separator member 6 can be connected via the tube member 9 on the same outer side surface 10b of the engine body 10, the separator member 6 can be The length of the tube member 9 reaching the manifold 5 can be effectively shortened. Thereby, the blow-by gas separated by the separator member 6 can be efficiently supplied (returned) to the intake manifold 5.
 また、第1実施形態では、セパレータ部材6の吸込口62に対応する形状を有し、吸込口62と連通する開口部31をクランクケース3に設ける。これにより、シリンダブロック2に比べて高い剛性が要求されないクランクケース3に容易に吸込口62と連通する開口部31を設けることができる。また、セパレータ部材6の吸込口62に対応する形状を有する開口部31を吸込口62と連通させることによって、クランクケース3の開口部31にセパレータ部材6の吸込口62を取り付けるだけで、容易に、エンジン本体10からのブローバイガスをセパレータ部材6の内部に流通させることができる。 In the first embodiment, the crankcase 3 is provided with an opening 31 having a shape corresponding to the suction port 62 of the separator member 6 and communicating with the suction port 62. Accordingly, the opening 31 that communicates with the suction port 62 can be easily provided in the crankcase 3 that does not require high rigidity as compared with the cylinder block 2. In addition, by connecting the opening 31 having a shape corresponding to the suction port 62 of the separator member 6 to the suction port 62, it is possible to easily attach the suction port 62 of the separator member 6 to the opening 31 of the crankcase 3. The blow-by gas from the engine body 10 can be circulated inside the separator member 6.
 また、第1実施形態では、セパレータ部材6が樹脂製であることによって、セパレータ部材が金属製である場合と比べて、セパレータ部材6の熱伝導性を低下させることができるので、寒冷地などでの走行時において、冷たい走行風に起因してセパレータ部材6の内部の水分が凍結するのを抑制することができる。 Moreover, in 1st Embodiment, since the separator member 6 is resin, compared with the case where a separator member is metal, since the heat conductivity of the separator member 6 can be reduced, in cold districts etc. During the traveling, it is possible to prevent the moisture inside the separator member 6 from freezing due to the cold traveling wind.
 [第2実施形態]
 図7~図10を参照して、本発明の第2実施形態によるエンジン200について説明する。なお、エンジン200は、本発明の「内燃機関」の一例である。
[Second Embodiment]
An engine 200 according to a second embodiment of the present invention will be described with reference to FIGS. The engine 200 is an example of the “internal combustion engine” in the present invention.
 エンジン200では、図7および図8に示すように、エンジン本体10の外側面10bにセパレータ部材206(内燃機関用セパレータ)が取り付けられている。また、PCVバルブ8は、セパレータ部材206のY2側の上部において水平方向(Y軸方向)に取り付けられている。そして、PCVバルブ8に水平に接続されたチューブ部材9は、上方向(矢印Z1方向)に向きを変えながら延びるとともにサージタンク5a(図1参照)に接続されている。 7 and 8, in the engine 200, a separator member 206 (a separator for an internal combustion engine) is attached to the outer surface 10b of the engine body 10. The PCV valve 8 is attached in the horizontal direction (Y-axis direction) at the upper portion of the separator member 206 on the Y2 side. The tube member 9 connected horizontally to the PCV valve 8 extends while changing its direction upward (in the direction of arrow Z1) and is connected to the surge tank 5a (see FIG. 1).
 ここで、エンジン本体10内(クランク室10c)では、クランクシャフト10aに付着した液状オイルがクランクシャフト10aの旋回によって飛散する。このため、開口部31の鉛直方向上側のエンジン本体10の内側面10dに付着して開口部31(セパレータ部材206の吸込口62)に向かって流れたり開口部31に向かって飛散したりする。 Here, in the engine body 10 (crank chamber 10c), liquid oil adhering to the crankshaft 10a is scattered by turning of the crankshaft 10a. For this reason, it adheres to the inner surface 10 d of the engine body 10 vertically above the opening 31 and flows toward the opening 31 (the suction port 62 of the separator member 206) or scatters toward the opening 31.
 そこで、第2実施形態では、セパレータ部材206に、吸込口62を介してエンジン本体10内の液状オイルがセパレータ部材206の内部に流入するのを規制する上側流入規制部67を設けている。なお、上側流入規制部67は、本発明の「液状オイル流入規制部」の一例である。以下に、セパレータ部材206の吸込口62および上側流入規制部67の構造について詳細に説明する。 Therefore, in the second embodiment, the separator member 206 is provided with an upper inflow restricting portion 67 that restricts the liquid oil in the engine body 10 from flowing into the separator member 206 through the suction port 62. The upper inflow restricting portion 67 is an example of the “liquid oil inflow restricting portion” in the present invention. Below, the structure of the suction inlet 62 of the separator member 206 and the upper side inflow control part 67 is demonstrated in detail.
 図8および図9に示すように、吸込口62は、セパレータ部材206の蓋部60をY軸方向に貫通する。また、吸込口62の鉛直方向(Z軸方向)の上側部分を構成する上側縁部63b以外の部分は、開口部31と対応するように鉛直方向に長い長円形状の一部を構成する一方、上側縁部63bは、Y1側から見て、長円形状の一部を構成する半円状ではなく、線分が鉛直方向の上端63aで交わる山形状になるように形成されている。吸込口62は、長円形状の鉛直方向の上部に、上側流入規制部67を形成するための基部261bが位置することによってその形状が形成されている。また、吸込口62は、鉛直方向(上下方向、Z軸方向)に延びる中心線Cに対して略鏡像対称を有している。 8 and 9, the suction port 62 penetrates the lid 60 of the separator member 206 in the Y-axis direction. Further, the portions other than the upper edge portion 63b constituting the upper portion of the suction port 62 in the vertical direction (Z-axis direction) constitute a part of an oval shape elongated in the vertical direction so as to correspond to the opening 31. The upper edge portion 63b is formed so as to have a mountain shape where the line segment intersects with the upper end 63a in the vertical direction, not the semicircular shape constituting a part of the oval shape when viewed from the Y1 side. The shape of the suction port 62 is formed by positioning a base portion 261b for forming the upper inflow restricting portion 67 in the upper part of the elliptical vertical direction. The suction port 62 has a substantially mirror image symmetry with respect to a center line C extending in the vertical direction (vertical direction, Z-axis direction).
 また、上側流入規制部67は、吸込口62の鉛直方向の上側縁部63b近傍の基部261bから矢印Y1方向に突出することによって、セパレータ部材206と一体的に形成されている。また、上側流入規制部67は、吸込口62の上側縁部63bに沿うようにY1側から見て山形状に形成されており、吸込口62の全体を鉛直方向上側から覆う「ひさし形状」(傘形状)を有している。 Further, the upper inflow restricting portion 67 is integrally formed with the separator member 206 by projecting in the arrow Y1 direction from the base portion 261b in the vicinity of the upper edge 63b in the vertical direction of the suction port 62. Further, the upper inflow restricting portion 67 is formed in a mountain shape when viewed from the Y1 side so as to be along the upper edge portion 63b of the suction port 62, and the “eave shape” that covers the entire suction port 62 from the upper side in the vertical direction ( Umbrella shape).
 また、図7に示すように、セパレータ部材206がエンジン本体10の外側面10bに取り付けられた際に、吸込口62の上側縁部63bが開口部31の内面よりも若干内側に位置するように形成されている。これにより、上側流入規制部67は、開口部31を通過して、エンジン本体10の内側(内部)のクランク室10cまで突出するように構成されている。なお、上側流入規制部67は、クランク室10cの内側面10dから矢印Y1方向に長さL1だけ突出している。 Further, as shown in FIG. 7, when the separator member 206 is attached to the outer side surface 10 b of the engine body 10, the upper edge portion 63 b of the suction port 62 is positioned slightly inside the inner surface of the opening portion 31. Is formed. As a result, the upper inflow restricting portion 67 is configured to pass through the opening 31 and protrude to the crank chamber 10 c inside (inside) the engine body 10. The upper inflow restricting portion 67 protrudes from the inner side surface 10d of the crank chamber 10c by a length L1 in the arrow Y1 direction.
 また、図9に示すように、上側流入規制部67は、吸込口62と同様に、中心線Cに対して略鏡像対称を有している。そして、上側流入規制部67は、中心線C上の頂部67aからX1側に向かう傾斜部67bにおいては、中心線Cから離間する矢印X1方向で、かつ、鉛直方向下方(矢印Z2方向)に傾斜して形成されており、中心線C上の頂部67aからX2側に向かう傾斜部67cにおいては、中心線Cから離間する矢印X2方向で、かつ、鉛直方向下方に傾斜して形成されている。一方、傘形状の上側流入規制部67の傾斜部67bおよび67cは、Y軸方向においては、鉛直方向下方に傾斜せずに略水平に伸びている。また、上側流入規制部67の傾斜部67bおよび67cの鉛直方向の下端には、若干鉛直方向下方に延びる壁部67dがそれぞれ形成されている。この壁部67dは、吸込口62のX軸方向の両側に形成された直線部分に沿って延びるように形成されている。 Further, as shown in FIG. 9, the upper inflow restricting portion 67 has substantially mirror image symmetry with respect to the center line C, similarly to the suction port 62. The upper inflow restricting portion 67 is inclined in the direction of the arrow X1 that is away from the center line C and downward in the vertical direction (the direction of the arrow Z2) in the inclined portion 67b from the top 67a on the center line C toward the X1 side. In the inclined portion 67c from the top portion 67a on the center line C toward the X2 side, the inclined portion 67c is inclined in the arrow X2 direction away from the center line C and downward in the vertical direction. On the other hand, the inclined portions 67b and 67c of the umbrella-shaped upper inflow restricting portion 67 extend substantially horizontally without being inclined downward in the vertical direction in the Y-axis direction. Further, at the lower ends in the vertical direction of the inclined portions 67b and 67c of the upper inflow restricting portion 67, wall portions 67d extending slightly downward in the vertical direction are formed. The wall portion 67d is formed to extend along straight portions formed on both sides of the suction port 62 in the X-axis direction.
 これにより、上側流入規制部67の傾斜部67bまたは67cの鉛直方向の上面に落下した液状オイルは、傾斜部67bまたは67cの傾斜に沿って中心線Cから離間する方向(矢印X1方向またはX2方向)でかつ鉛直方向下方に導かれる。そして、液状オイルは、上側流入規制部67の壁部67dから吸込口62のX軸方向の外側に落下する。一方、傾斜部67bおよび67cがY軸方向には鉛直方向下方に傾斜せずに略水平に伸びることによって、上側流入規制部67のY1側の端部から吸込口62(開口部31)の正面(Y軸方向に重なる位置)に液状オイルが落下するのが抑制される。これにより、吸込口62の正面に落下した液状オイルが負圧によりセパレータ部材206の内部に吸い込まれるのが抑制されている。なお、第2実施形態その他の構成は、上記第1実施形態と同様である。 Thereby, the liquid oil that has dropped on the upper surface in the vertical direction of the inclined portion 67b or 67c of the upper inflow restricting portion 67 is separated from the center line C along the inclination of the inclined portion 67b or 67c (the direction of the arrow X1 or X2). ) And vertically downward. Then, the liquid oil falls from the wall portion 67d of the upper inflow restricting portion 67 to the outside of the suction port 62 in the X-axis direction. On the other hand, the inclined portions 67b and 67c extend substantially horizontally without being inclined downward in the vertical direction in the Y-axis direction, so that the front side of the suction port 62 (opening 31) from the end on the Y1 side of the upper inflow restricting portion 67. It is suppressed that liquid oil falls to (a position overlapping in the Y-axis direction). Thereby, it is suppressed that the liquid oil which fell to the front of the suction inlet 62 is sucked into the separator member 206 by negative pressure. The other configurations of the second embodiment are the same as those of the first embodiment.
 第2実施形態では、以下のような効果を得ることができる。 In the second embodiment, the following effects can be obtained.
 第2実施形態では、上記のように、エンジン本体10の内側のクランク室10cに突出するように、吸込口62を介してエンジン本体10内の液状オイルがセパレータ部材206に流入するのを規制する上側流入規制部67を設ける。これにより、エンジン本体10の内側に突出する上側流入規制部67により吸込口62に向かう液状オイルを遮ることができるので、吸込口62を介して液状オイルがセパレータ部材206の内部に流入するのを規制することができる。したがって、オイルの消費量(持ち去り量)が増加するのを抑制することができる。また、エンジン本体10の外側面10bに取り付けられるセパレータ部材206に、エンジン本体10の内側のクランク室10cに突出するように上側流入規制部67を設けることによって、上側流入規制部67をエンジン本体10に設ける場合と比べて、エンジン本体10の形状を大幅に変更する必要がない。これにより、液状オイルの流入を規制する上側流入規制部67をエンジン200に容易に設けることができる。 In the second embodiment, as described above, the liquid oil in the engine body 10 is restricted from flowing into the separator member 206 through the suction port 62 so as to protrude into the crank chamber 10 c inside the engine body 10. An upper inflow restricting portion 67 is provided. As a result, the liquid oil heading toward the suction port 62 can be blocked by the upper inflow restricting portion 67 protruding to the inside of the engine body 10, so that the liquid oil flows into the separator member 206 through the suction port 62. Can be regulated. Therefore, it is possible to suppress an increase in oil consumption (amount taken away). Further, the upper inflow restricting portion 67 is provided on the separator member 206 attached to the outer side surface 10 b of the engine main body 10 so as to protrude into the crank chamber 10 c inside the engine main body 10. Compared with the case where it provides in, it is not necessary to change the shape of the engine main body 10 significantly. Thus, the upper inflow restricting portion 67 that restricts the inflow of liquid oil can be easily provided in the engine 200.
 また、第2実施形態では、吸込口62の鉛直方向の上側縁部63b近傍の基部261bからY1側に突出させることによって、上側流入規制部67をセパレータ部材206と一体的に形成する。これにより、セパレータ部材206に別体の上側流入規制部67を取り付ける場合と比べて部品点数を削減することができる。また、エンジン本体10を構成するアルミニウム合金よりも軽量な樹脂にてセパレータ部材206を構成することによって、上側流入規制部67をエンジン本体10側に設ける場合と比べて、上側流入規制部67を軽量化することができるとともに、セパレータ部材206自体も軽量化することができる。 In the second embodiment, the upper inflow restricting portion 67 is integrally formed with the separator member 206 by projecting from the base portion 261b near the upper edge 63b in the vertical direction of the suction port 62 to the Y1 side. Thereby, compared with the case where the separate upper inflow restriction part 67 is attached to the separator member 206, the number of parts can be reduced. Further, the separator member 206 is made of a resin that is lighter than the aluminum alloy constituting the engine body 10, so that the upper inflow restricting portion 67 is lighter than the case where the upper inflow restricting portion 67 is provided on the engine body 10 side. The separator member 206 itself can be reduced in weight.
 また、第2実施形態では、上側流入規制部67を、吸込口62の鉛直方向の上側縁部63b近傍の基部261bからY1側に突出させるとともに、吸込口62の上側縁部63bに沿うように吸込口62の全体を鉛直方向上側から覆う「ひさし形状」に形成する。これにより、「ひさし形状」の上側流入規制部67によって、液状オイルが吸込口62の鉛直方向上側からセパレータ部材206の内部に流入するのを確実に抑制することができる。 In the second embodiment, the upper inflow restricting portion 67 protrudes from the base portion 261b near the upper edge 63b in the vertical direction of the suction port 62 to the Y1 side, and extends along the upper edge 63b of the suction port 62. The suction port 62 is formed in a “eave shape” that covers the entire suction port 62 from the upper side in the vertical direction. As a result, the “eave-shaped” upper inflow restricting portion 67 can reliably prevent the liquid oil from flowing into the separator member 206 from the upper side in the vertical direction of the suction port 62.
 また、第2実施形態では、「ひさし形状」の上側流入規制部67を、吸込口62の鉛直方向の上側縁部63b近傍からエンジン本体10の内側に突出させることによって、液状オイルが吸込口62の鉛直方向上側からセパレータ部材206の内部に流入するのを、吸込口62の鉛直方向上側の近傍で効果的に抑制することができる。また、上側流入規制部67のX1側の傾斜部67bを、吸込口62の上下方向に延びる中心線Cに対して中心線Cから離間する矢印X1方向で、かつ、鉛直方向下方(矢印Z2方向)に傾斜させるとともに、上側流入規制部67のX2側の傾斜部67cを中心線Cから離間する矢印X2方向で、かつ、鉛直方向下方に傾斜するように形成する。これにより、吸込口62と重ならない位置(開口部31および吸込口62のY1側の正面からずれた位置)に液状オイルを流す(逃がす)ことができるので、吸込口62と重なる位置(吸込口62の正面)に液状オイルが導かれることに起因して液状オイルが吸込口62に流入するのを抑制することができる。 Further, in the second embodiment, the liquid oil flows into the suction port 62 by projecting the “eave-shaped” upper inflow restricting portion 67 from the vicinity of the upper edge 63 b in the vertical direction of the suction port 62 to the inside of the engine body 10. Inflow into the separator member 206 from the upper side in the vertical direction can be effectively suppressed in the vicinity of the upper side in the vertical direction of the suction port 62. In addition, the X1 side inclined portion 67b of the upper inflow restricting portion 67 is in the direction of the arrow X1 spaced from the center line C with respect to the center line C extending in the vertical direction of the suction port 62, and vertically downward (in the direction of arrow Z2). ) And the inclined portion 67c on the X2 side of the upper inflow restricting portion 67 is formed so as to be inclined in the direction of the arrow X2 away from the center line C and downward in the vertical direction. Thereby, since liquid oil can be flowed to the position which does not overlap with the suction port 62 (the position shifted from the front of the opening 31 and the suction port 62 on the Y1 side), the position overlapping the suction port 62 (suction port) The liquid oil can be prevented from flowing into the suction port 62 due to the liquid oil being guided to the front of 62.
 [第2実施形態の第1変形例]
 次に、図10~図12を参照して、第2実施形態の第1変形例について説明する。この第2実施形態の第1変形例では、山形状に形成された上側流入規制部67と異なり、上側流入規制部267を半円状に形成した例について説明する。なお、上記第2実施形態と同様の構成については、同じ符号を付して説明を省略する。また、上側流入規制部267は、本発明の「液状オイル流入規制部」の一例である。
[First Modification of Second Embodiment]
Next, a first modification of the second embodiment will be described with reference to FIGS. In the first modification of the second embodiment, an example will be described in which the upper inflow restricting portion 267 is formed in a semicircular shape, unlike the upper inflow restricting portion 67 formed in a mountain shape. In addition, about the structure similar to the said 2nd Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted. The upper inflow restricting portion 267 is an example of the “liquid oil inflow restricting portion” in the present invention.
 図10に示すように、エンジン250のセパレータ部材216は、エンジン本体10の外側面10bに取り付けられている。また、セパレータ部材216(内燃機関用セパレータ)の構造については、エンジン本体10の外側面10bに取り付けられた際における方向で規定している。なお、エンジン250は、本発明の「内燃機関」の一例である。 As shown in FIG. 10, the separator member 216 of the engine 250 is attached to the outer surface 10 b of the engine body 10. Further, the structure of the separator member 216 (the separator for the internal combustion engine) is defined by the direction when the separator member 216 is attached to the outer surface 10b of the engine body 10. The engine 250 is an example of the “internal combustion engine” in the present invention.
 セパレータ部材216の吸込口262は、図11および図12に示すように、上記第2実施形態の吸込口62(図8および図9参照)とは異なり基部261bを設けないことによって、開口部31に対応するように鉛直方向(Z軸方向)に延びる長円形状に形成されている。つまり、吸込口262の鉛直方向の上側部分を構成する上側縁部263bは、長円形状の一部を構成する半円状に形成されている。一方、図10に示すように、吸込口262の鉛直方向の上端263aを含む上側縁部263bが開口部31の内面よりも若干鉛直方向下方(Z2側)に位置するように、吸込口262は開口部31よりも若干小さな長円形状に形成されている。なお、吸込口262の鉛直方向に延びる中心線Cに対して、吸込口262は、略鏡像対称を有するように形成されている。 As shown in FIGS. 11 and 12, the suction port 262 of the separator member 216 is different from the suction port 62 (see FIGS. 8 and 9) of the second embodiment in that the base 261 b is not provided, thereby opening the opening 31. Are formed in an oval shape extending in the vertical direction (Z-axis direction). That is, the upper edge portion 263b constituting the upper portion of the suction port 262 in the vertical direction is formed in a semicircular shape constituting a part of an oval shape. On the other hand, as illustrated in FIG. 10, the suction port 262 is configured so that the upper edge 263 b including the vertical upper end 263 a of the suction port 262 is located slightly below the inner surface of the opening 31 (Z2 side). It is formed in an oval shape slightly smaller than the opening 31. Note that the suction port 262 is formed so as to have a substantially mirror image symmetry with respect to a center line C extending in the vertical direction of the suction port 262.
 また、図11および図12に示すように、セパレータ部材216には、吸込口262を介してエンジン本体10内の液状オイルがセパレータ部材216の内部の流路Rに流入するのを規制する上側流入規制部267が設けられている。上側流入規制部267は、溝部60aと吸込口262との間で、かつ、上側縁部263b近傍の蓋部260からY1側に突出することによって、セパレータ部材216の蓋部260と一体的に形成されている。また、上側流入規制部267は、吸込口262の半円状の上側縁部263bに沿うようにY1側から見て半円状に形成されており、吸込口262の全体を鉛直方向上側(Z1側)から覆う「ひさし形状」を有している。 As shown in FIGS. 11 and 12, the separator member 216 has an upper inflow that restricts the liquid oil in the engine body 10 from flowing into the flow path R inside the separator member 216 via the suction port 262. A restricting portion 267 is provided. The upper inflow restricting portion 267 is formed integrally with the lid portion 260 of the separator member 216 by projecting to the Y1 side between the groove portion 60a and the suction port 262 and from the lid portion 260 in the vicinity of the upper edge portion 263b. Has been. Further, the upper inflow restricting portion 267 is formed in a semicircular shape when viewed from the Y1 side along the semicircular upper edge 263b of the suction port 262, and the entire suction port 262 is formed on the upper side in the vertical direction (Z1 It has a “eave shape” that covers from the side.
 また、図10に示すように、セパレータ部材216がエンジン本体10の外側面10bに取り付けられた際に、吸込口262の上側縁部263bが開口部31の内面よりも若干鉛直方向下方(Z2側)に位置するように形成されている。これにより、上側流入規制部267は、開口部31を通過して、エンジン本体10の内側(内部)のクランク室10cまで突出するように構成されている。なお、上側流入規制部267は、クランク室10cの内側面10dから矢印Y1方向に長さL2だけ突出している。 10, when the separator member 216 is attached to the outer side surface 10b of the engine body 10, the upper edge 263b of the suction port 262 is slightly lower than the inner surface of the opening 31 in the vertical direction (Z2 side). ). Thus, the upper inflow restricting portion 267 is configured to pass through the opening 31 and protrude to the crank chamber 10 c inside (inside) the engine body 10. The upper inflow restricting portion 267 protrudes from the inner side surface 10d of the crank chamber 10c by a length L2 in the arrow Y1 direction.
 また、図12に示すように、上側流入規制部267は、吸込口262と同様に、中心線Cに対して略鏡像対称を有する。そして、上側流入規制部267は、中心線C上の頂部267aからX1側に向かう円弧状部267bにおいては、中心線Cから離間する矢印X1方向で、かつ、鉛直方向下方(矢印Z2方向)に傾斜するように円弧状に形成されており、中心線C上の頂部267aからX2側に向かう円弧状部267cにおいては、中心線Cから離間する矢印X2方向で、かつ、鉛直方向下方に傾斜するように円弧状に形成されている。また、上側流入規制部267の円弧状部267bおよび267cは、Y軸方向においては、鉛直方向下方に傾斜せずに略水平に伸びるように形成されている。 Also, as shown in FIG. 12, the upper inflow restricting portion 267 has a substantially mirror image symmetry with respect to the center line C, similarly to the suction port 262. The upper inflow restricting portion 267 is, in the arc-shaped portion 267b from the top portion 267a on the center line C toward the X1 side, in the direction of the arrow X1 that is separated from the center line C and downward in the vertical direction (direction of the arrow Z2). It is formed in an arc shape so as to incline, and in the arc-shaped portion 267c from the top portion 267a on the center line C toward the X2 side, it inclines in the arrow X2 direction away from the center line C and downward in the vertical direction. It is formed in a circular arc shape. Further, the arc-shaped portions 267b and 267c of the upper inflow restricting portion 267 are formed to extend substantially horizontally without being inclined downward in the vertical direction in the Y-axis direction.
 これにより、上側流入規制部267の円弧状部267bまたは267cの鉛直方向の上面に落下した液状オイルは、円弧状部267bまたは267cに沿って、中心線Cから離間する方向(矢印X1方向またはX2方向)で、かつ、鉛直方向下方に導かれる。そして、液状オイルは、上側流入規制部267から吸込口262のX軸方向の外側に落下する。一方、上側流入規制部267の円弧状部267bおよび267cがY軸方向において鉛直方向下方に傾斜せずに略水平に伸びるように形成されていることによって、上側流入規制部267のY1側の端部から吸込口262(開口部31)の正面(Y軸方向に重なる位置)に液状オイルが落下するのが抑制される。これにより、吸込口262の正面に落下した液状オイルが負圧によりセパレータ部材216の内部に吸い込まれるのが抑制される。なお、第2実施形態の第1変形例のその他の構成は、上記第2実施形態と同様である。 As a result, the liquid oil that has dropped on the upper surface in the vertical direction of the arc-shaped portion 267b or 267c of the upper inflow restricting portion 267 is separated from the center line C along the arc-shaped portion 267b or 267c (in the direction indicated by the arrow X1 or X2). Direction) and vertically downward. Then, the liquid oil falls from the upper inflow restricting portion 267 to the outside of the suction port 262 in the X-axis direction. On the other hand, the arc-shaped portions 267b and 267c of the upper inflow restricting portion 267 are formed so as to extend substantially horizontally without inclining vertically downward in the Y-axis direction, so that the end of the upper inflow restricting portion 267 on the Y1 side The liquid oil is suppressed from dropping from the portion to the front surface (position overlapping in the Y-axis direction) of the suction port 262 (opening 31). Thereby, it is suppressed that the liquid oil which fell to the front of the suction inlet 262 is sucked into the separator member 216 by negative pressure. In addition, the other structure of the 1st modification of 2nd Embodiment is the same as that of the said 2nd Embodiment.
 第2実施形態の第1変形例では、上記のように、エンジン本体10の内側のクランク室10cに突出するように、吸込口262を介してエンジン本体10内の液状オイルがセパレータ部材216の内部に流入するのを規制する上側流入規制部267を設ける。これにより、上記第2実施形態と同様に、上側流入規制部267によって、オイルの消費量が増加するのを抑制することができる。また、エンジン本体10の外側面10bに取り付けられるセパレータ部材216に、エンジン本体10の内側のクランク室10cに突出するように上側流入規制部267を設けることによって、上記第2実施形態と同様に、液状オイルの流入を規制する上側流入規制部267をエンジン250に容易に設けることができる。 In the first modification of the second embodiment, as described above, the liquid oil in the engine body 10 passes through the suction port 262 so as to protrude into the crank chamber 10 c inside the engine body 10. An upper inflow restricting portion 267 that restricts the inflow into the air is provided. Thereby, similarly to the said 2nd Embodiment, it can suppress that the amount of oil consumption increases by the upper inflow control part 267. FIG. Further, by providing the upper inflow restricting portion 267 so as to protrude into the crank chamber 10c inside the engine body 10 on the separator member 216 attached to the outer side surface 10b of the engine body 10, as in the second embodiment, An upper inflow restricting portion 267 that restricts the inflow of liquid oil can be easily provided in the engine 250.
 また、第2実施形態の第1変形例では、上側流入規制部267を、吸込口262の半円状の鉛直方向の上側縁部263bに沿うように形成する。これにより、開口部31に対応するように上側流入規制部267を形成することができるので、開口部31と上側流入規制部267との隙間を小さくすることができる。これにより、開口部31と上側流入規制部267との隙間に液状オイルが留まることに起因してエンジン本体10の摺動部を潤滑するために用いられるオイルの量が減少するのを抑制することができる。なお、第2実施形態の第1変形例のその他の効果は、上記第2実施形態と同様である。 In the first modification of the second embodiment, the upper inflow restricting portion 267 is formed along the semicircular vertical upper edge portion 263b of the suction port 262. As a result, the upper inflow restricting portion 267 can be formed so as to correspond to the opening 31, so that the gap between the opening 31 and the upper inflow restricting portion 267 can be reduced. As a result, the amount of oil used to lubricate the sliding portion of the engine body 10 due to the liquid oil remaining in the gap between the opening 31 and the upper inflow restricting portion 267 is suppressed. Can do. The remaining effects of the first modification of the second embodiment are similar to those of the aforementioned second embodiment.
 [第3実施形態]
 次に、図13~図16を参照して、第3実施形態について説明する。この第3実施形態では、上側流入規制部67が設けられた上記第2実施形態とは異なり、下側流入規制部368を設けた例について説明する。なお、上記第2実施形態と同様の構成については、同じ符号を付して説明を省略する。また、下側流入規制部368は、本発明の「液状オイル流入規制部」の一例である。
[Third Embodiment]
Next, a third embodiment will be described with reference to FIGS. In the third embodiment, an example in which the lower inflow restricting portion 368 is provided will be described, unlike the second embodiment in which the upper inflow restricting portion 67 is provided. In addition, about the structure similar to the said 2nd Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted. The lower inflow restricting portion 368 is an example of the “liquid oil inflow restricting portion” in the present invention.
 図13に示すように、エンジン300のセパレータ部材306(内燃機関用セパレータ)は、エンジン本体10のY2側の外側面10bに取り付けられている。また、セパレータ部材306の構造については、エンジン本体10の外側面10bに取り付けられた際における方向で規定している。なお、エンジン300は、本発明の「内燃機関」の一例である。 As shown in FIG. 13, a separator member 306 (a separator for an internal combustion engine) of the engine 300 is attached to the outer surface 10 b on the Y2 side of the engine body 10. Further, the structure of the separator member 306 is defined by the direction when the separator member 306 is attached to the outer surface 10 b of the engine body 10. Engine 300 is an example of the “internal combustion engine” in the present invention.
 セパレータ部材306の蓋部360には、エンジン本体10の開口部31と対応するように鉛直方向(Z軸方向)に長い長円形状の開口部360cが形成されている。なお、開口部31と蓋部360の開口部360cとは、略同じ大きさに形成されている。 The lid 360 of the separator member 306 is formed with an oval opening 360c that is long in the vertical direction (Z-axis direction) so as to correspond to the opening 31 of the engine body 10. In addition, the opening part 31 and the opening part 360c of the cover part 360 are formed in substantially the same size.
 ここで、第3実施形態では、セパレータ部材306には、吸込口362を介してエンジン本体10内の液状オイルがセパレータ部材306の内部の流路Rに流入するのを規制する下側流入規制部368が設けられている。この下側流入規制部368は、オイル貯留部30の液状オイルの油面よりも鉛直方向上方(Z1側)に形成されているとともに、セパレータ部材306の本体部361の鉛直方向の下部と一体的に形成されている。 Here, in the third embodiment, the separator member 306 has a lower inflow restricting portion that restricts the liquid oil in the engine body 10 from flowing into the flow path R inside the separator member 306 via the suction port 362. 368 is provided. The lower inflow restricting portion 368 is formed vertically upward (Z1 side) with respect to the oil level of the liquid oil in the oil reservoir 30, and is integrated with the lower portion in the vertical direction of the main body 361 of the separator member 306. Is formed.
 また、図13~図15に示すように、下側流入規制部368の鉛直方向の上面368aは、セパレータ部材306の本体部361の傾斜する傾斜部361aと連通しているとともに、エンジン本体10側の矢印Y1方向で、かつ、鉛直方向下方(矢印Z2方向)に傾斜している。つまり、セパレータ部材306の傾斜部361aは、セパレータ部材306の内部から吸込口362を通過して矢印Y1方向に突出するように鉛直方向下方に傾斜しており、下側流入規制部368の上面368aを兼ねている。 13 to 15, the vertical upper surface 368a of the lower inflow restricting portion 368 communicates with the inclined portion 361a of the main body portion 361 of the separator member 306, and the engine main body 10 side. In the direction of the arrow Y1, and downward in the vertical direction (the direction of the arrow Z2). That is, the inclined portion 361a of the separator member 306 is inclined downward in the vertical direction so as to pass through the suction port 362 from the inside of the separator member 306 and protrude in the arrow Y1 direction, and the upper surface 368a of the lower inflow restricting portion 368. Doubles as
 なお、第3実施形態では、吸込口362の鉛直方向の上部および中央部は、蓋部360の開口部360cにより構成されており、吸込口362の鉛直方向の下部は、下側流入規制部368の上面368a(傾斜部361a)により構成されている。つまり、下側流入規制部368は、吸込口362の鉛直方向の下端およびその近傍に形成されている。 In the third embodiment, the upper portion and the central portion of the suction port 362 in the vertical direction are configured by the opening 360 c of the lid portion 360, and the lower portion of the suction port 362 in the vertical direction is the lower inflow restricting portion 368. The upper surface 368a (inclined part 361a) of this is comprised. That is, the lower inflow restricting portion 368 is formed at the lower end of the suction port 362 in the vertical direction and in the vicinity thereof.
 また、下側流入規制部368のエンジン本体10側(Y1側)の端部368cは、蓋部360の開口部360cの鉛直方向の下端および開口部31の鉛直方向の下端よりも鉛直方向上方に位置するように構成されている。これにより、下側流入規制部368は、開口部31を通過して、エンジン本体10の内側(内部)のクランク室10cまで突出するように形成されている。なお、下側流入規制部368は、クランク室10cの内側面10dから矢印Y1方向に長さL3(図13参照)だけ突出している。 Further, the end 368c on the engine body 10 side (Y1 side) of the lower inflow restricting portion 368 is vertically above the lower end in the vertical direction of the opening portion 360c of the lid portion 360 and the lower end in the vertical direction of the opening portion 31. Configured to be located. As a result, the lower inflow restricting portion 368 is formed so as to pass through the opening 31 and protrude to the crank chamber 10 c inside (inside) the engine body 10. Note that the lower inflow restricting portion 368 protrudes from the inner surface 10d of the crank chamber 10c by a length L3 (see FIG. 13) in the arrow Y1 direction.
 また、図13に示すように、下側流入規制部368の鉛直方向の下面368bは、略水平に形成されている。そして、鉛直方向下方のオイル貯留部30からの液状オイルは、下側流入規制部368の下面368bに衝突することによって、吸込口362から吸い込まれずに、再度オイル貯留部30に戻されるように構成されている。 Also, as shown in FIG. 13, the lower surface 368b in the vertical direction of the lower inflow restricting portion 368 is formed substantially horizontally. Then, the liquid oil from the oil storage part 30 in the lower vertical direction collides with the lower surface 368b of the lower inflow restricting part 368, so that it is not sucked from the suction port 362 and is returned to the oil storage part 30 again. Has been.
 また、下側流入規制部368は、図16に示すように、鉛直方向上方(Z1側)から見て、台形状に矢印Y1方向に突出している。つまり、下側流入規制部368のY1側の端部368cは、X軸方向に所定の長さだけ延びている。さらに、下側流入規制部368の鉛直方向の上面368a(傾斜部361a)は、矢印Y1方向で、かつ、鉛直方向下方(Z2方向)に傾斜している一方、X軸方向には傾斜しない。また、図15に示すように、吸込口362および下側流入規制部368は、中心線Cに対して略鏡像対称になるように形成されている。なお、第3実施形態のその他の構成は、上記第2実施形態と同様である。 Further, as shown in FIG. 16, the lower inflow restricting portion 368 protrudes in the arrow Y1 direction in a trapezoidal shape when viewed from above in the vertical direction (Z1 side). That is, the end portion 368c on the Y1 side of the lower inflow restricting portion 368 extends by a predetermined length in the X-axis direction. Further, the vertical upper surface 368a (inclined portion 361a) of the lower inflow restricting portion 368 is inclined in the arrow Y1 direction and vertically downward (Z2 direction), but not in the X-axis direction. As shown in FIG. 15, the suction port 362 and the lower inflow restricting portion 368 are formed so as to be substantially mirror-image symmetric with respect to the center line C. In addition, the other structure of 3rd Embodiment is the same as that of the said 2nd Embodiment.
 第3実施形態では、以下のような効果を得ることができる。 In the third embodiment, the following effects can be obtained.
 第3実施形態では、上記のように、エンジン本体10の内側のクランク室10cに突出するように、吸込口362を介してエンジン本体10内の液状オイルがセパレータ部材306の内部に流入するのを規制する下側流入規制部368を設ける。これにより、上記第2実施形態と同様に、下側流入規制部368によって、オイルの消費量が増加するのを抑制することができる。また、エンジン本体10の外側面10bに取り付けられるセパレータ部材306に、エンジン本体10の内側のクランク室10cに突出するように下側流入規制部368を設けることによって、上記第2実施形態と同様に、液状オイルの流入を規制する下側流入規制部368をエンジン300に容易に設けることができる。 In the third embodiment, as described above, the liquid oil in the engine body 10 flows into the separator member 306 through the suction port 362 so as to protrude into the crank chamber 10 c inside the engine body 10. A lower inflow restricting portion 368 for restriction is provided. Thereby, similarly to the said 2nd Embodiment, it can suppress that the amount of oil consumption increases by the lower inflow control part 368. FIG. In addition, the separator member 306 attached to the outer side surface 10b of the engine body 10 is provided with a lower inflow restricting portion 368 so as to protrude into the crank chamber 10c inside the engine body 10, so that the same as in the second embodiment. The engine 300 can be easily provided with the lower inflow restricting portion 368 that restricts the inflow of liquid oil.
 また、第3実施形態では、下側流入規制部368を、オイル貯留部30の液状オイルの油面よりも鉛直方向上方かつ吸込口362の鉛直方向の下端近傍に形成する。これにより、エンジン本体10の振動に起因してオイル貯留部30の液状オイルが鉛直方向上方の吸込口362に向かって飛散したり、エンジン300が配置された車両が傾斜することにより液状オイルの油面が吸込口362近傍に到達した場合にも、下側流入規制部368により、液状オイルがセパレータ部材306の内部に流入するのを確実に抑制することができる。 In the third embodiment, the lower inflow restricting portion 368 is formed vertically above the oil level of the liquid oil in the oil reservoir 30 and in the vicinity of the lower end of the suction port 362 in the vertical direction. As a result, the liquid oil in the oil reservoir 30 is scattered toward the suction port 362 in the vertical direction due to the vibration of the engine body 10, or the liquid oil oil is tilted when the vehicle in which the engine 300 is disposed is inclined. Even when the surface reaches the vicinity of the suction port 362, the lower inflow restricting portion 368 can reliably prevent the liquid oil from flowing into the separator member 306.
 また、第3実施形態では、セパレータ部材306の本体部361に、セパレータ部材306の内部から吸込口362を通過してエンジン本体10の内側のクランク室10cまで鉛直方向下方に傾斜するとともに、下側流入規制部368の鉛直方向の上面368aを構成する傾斜部361aを形成する。これにより、セパレータ部材306において液状化されたオイルミスト(液状オイル)を、エンジン本体10の内側のクランク室10cまで鉛直方向下方に傾斜する傾斜部361aを介して、確実にオイル貯留部30に戻すことができる。なお、第3実施形態のその他の効果は、上記第2実施形態と同様である。 In the third embodiment, the main body 361 of the separator member 306 is inclined downward in the vertical direction from the inside of the separator member 306 through the suction port 362 to the crank chamber 10c inside the engine main body 10 and An inclined portion 361a constituting the upper surface 368a in the vertical direction of the inflow restricting portion 368 is formed. As a result, the oil mist (liquid oil) liquefied in the separator member 306 is reliably returned to the oil reservoir 30 via the inclined portion 361a inclined downward in the vertical direction to the crank chamber 10c inside the engine body 10. be able to. The remaining effects of the third embodiment are similar to those of the aforementioned second embodiment.
 [第4実施形態]
 次に、図17~図20を参照して、本発明の第4実施形態によるエンジン400の構成について説明する。なお、エンジン400は、本発明の「内燃機関」の一例である。
[Fourth Embodiment]
Next, the configuration of the engine 400 according to the fourth embodiment of the present invention will be described with reference to FIGS. The engine 400 is an example of the “internal combustion engine” in the present invention.
 エンジン400は、図17に示すように、エンジン本体10の外側面10bにインテークマニホールド5とセパレータ部材406とが取り付けられている。そして、セパレータ部材406(内燃機関用セパレータ)は、第1吸込経路406aと、吐出経路406bと、第2吸込経路406cとに接続されている。また、図18に示すように、インテークマニホールド5は、サージタンク5aの下面に設けられたブローバイガスの導入ポート53を含む。なお、インテークマニホールド5は、本発明の「吸気装置」の一例である。 As shown in FIG. 17, the engine 400 has an intake manifold 5 and a separator member 406 attached to the outer side surface 10 b of the engine body 10. The separator member 406 (internal combustion engine separator) is connected to the first suction path 406a, the discharge path 406b, and the second suction path 406c. Further, as shown in FIG. 18, the intake manifold 5 includes a blow-by gas introduction port 53 provided on the lower surface of the surge tank 5a. The intake manifold 5 is an example of the “intake device” in the present invention.
 また、図17に示すように、セパレータ部材406は、第1吸込経路406aが接続される吸込口62と、吐出経路406bが接続される排出口(吐出口)64と、吸込口62と排出口64とを接続する流路R(図18参照)とを含む。また、セパレータ部材406は、第2吸込経路406cが接続される接続口464を含む。また、図19に示すように、吸込口62は、セパレータ部材406の下端部に設けられている。吸込口62は、エンジン本体10に形成された開口部31に配管部材を介することなく直接接続されることにより、エンジン本体10の内部に連通している。また、排出口64は、セパレータ部材406の上端部に設けられている。接続口464は、セパレータ部材406の内部(流路R)において、吸込口62よりも排出口64に近い位置に配置されている。第4実施形態では、接続口464は、排出口64と同じく流路Rの上端部(他端部)に配置されている。 Further, as shown in FIG. 17, the separator member 406 includes a suction port 62 to which the first suction path 406a is connected, a discharge port (discharge port) 64 to which the discharge path 406b is connected, a suction port 62 and a discharge port. And a flow path R (see FIG. 18) connecting the The separator member 406 includes a connection port 464 to which the second suction path 406c is connected. Further, as shown in FIG. 19, the suction port 62 is provided at the lower end portion of the separator member 406. The suction port 62 communicates with the inside of the engine body 10 by being directly connected to the opening 31 formed in the engine body 10 without a piping member. Further, the discharge port 64 is provided at the upper end portion of the separator member 406. The connection port 464 is disposed at a position closer to the discharge port 64 than the suction port 62 inside the separator member 406 (flow path R). In the fourth embodiment, the connection port 464 is arranged at the upper end portion (the other end portion) of the flow path R in the same manner as the discharge port 64.
 第1吸込経路406aは、図18に示すように、セパレータ部材406をシリンダブロック2の複数(4つ)のシリンダ21の上部に形成される燃焼室15よりも下方でエンジン本体10の内部と連通させるように設けられている。第1吸込経路406aは、エンジン本体10の内部のブローバイガスをセパレータ部材406に導入するためのガス導通経路である。第1吸込経路406aは、エンジン本体10の開口部31に接続されている。すなわち、第4実施形態では、第1吸込経路406aは、開口部31と吸込口62とによって直接接続された経路である。なお、第1吸込経路406aは、開口部31と吸込口62とを配管などによって接続した経路であってもよい。 As shown in FIG. 18, the first suction path 406 a communicates the separator member 406 with the interior of the engine body 10 below the combustion chamber 15 formed in the upper part of the plurality (four) cylinders 21 of the cylinder block 2. It is provided to let you. The first suction path 406 a is a gas conduction path for introducing blow-by gas inside the engine body 10 into the separator member 406. The first suction path 406 a is connected to the opening 31 of the engine body 10. That is, in the fourth embodiment, the first suction path 406 a is a path that is directly connected by the opening 31 and the suction port 62. The first suction path 406a may be a path in which the opening 31 and the suction port 62 are connected by piping or the like.
 吐出経路406bは、セパレータ部材406をインテークマニホールド5の内部と連通させるように設けられている。吐出経路406bは、セパレータ部材406内のブローバイガスを吸気側のインテークマニホールド5に還元させるためのガス導通経路である。吐出経路406bは、セパレータ部材406の排出口64(PCVバルブ8)と、インテークマニホールド5の導入ポート53とを接続している。第4実施形態では、図17に示すように、排出口64に設けられたPCVバルブ8の吐出側と導入ポート53とが、チューブ部材9によって直接接続されている。すなわち、吐出経路406bは、チューブ部材9によって排出口64(PCVバルブ8)と導入ポート53とが接続された経路である。 The discharge path 406b is provided so that the separator member 406 communicates with the inside of the intake manifold 5. The discharge path 406b is a gas conduction path for reducing the blow-by gas in the separator member 406 to the intake manifold 5 on the intake side. The discharge path 406 b connects the discharge port 64 (PCV valve 8) of the separator member 406 and the introduction port 53 of the intake manifold 5. In the fourth embodiment, as shown in FIG. 17, the discharge side of the PCV valve 8 provided at the discharge port 64 and the introduction port 53 are directly connected by the tube member 9. That is, the discharge path 406 b is a path in which the discharge port 64 (PCV valve 8) and the introduction port 53 are connected by the tube member 9.
 第2吸込経路406cは、図18に示すように、セパレータ部材406を燃焼室15よりも上方でエンジン本体10の内部と連通させるように設けられている。第2吸込経路406cは、セパレータ部材406内の負圧が増大した場合に連通するバイパス経路である。第2吸込経路406cは、ヘッドカバー4の内部と連通している。具体的には、第2吸込経路406cは、セパレータ部材406の接続口464と、ヘッドカバー4の導出ポート41とを接続するように設けられている。第4実施形態では、図17に示すように、セパレータ部材406の接続口464と、ヘッドカバー4の導出ポート41とが、バイパス配管408によって直接接続されている。すなわち、第4実施形態では、第2吸込経路406cは、バイパス配管408によって接続口464と導出ポート41とが接続された経路である。後述するように、第2吸込経路406cは、通常時は非連通状態となっている。 As shown in FIG. 18, the second suction path 406 c is provided so that the separator member 406 communicates with the interior of the engine body 10 above the combustion chamber 15. The second suction path 406c is a bypass path that communicates when the negative pressure in the separator member 406 increases. The second suction path 406 c communicates with the inside of the head cover 4. Specifically, the second suction path 406 c is provided so as to connect the connection port 464 of the separator member 406 and the lead-out port 41 of the head cover 4. In the fourth embodiment, as shown in FIG. 17, the connection port 464 of the separator member 406 and the outlet port 41 of the head cover 4 are directly connected by a bypass pipe 408. That is, in the fourth embodiment, the second suction path 406 c is a path in which the connection port 464 and the outlet port 41 are connected by the bypass pipe 408. As will be described later, the second suction path 406c is normally disconnected.
 なお、図19に示すように、接続口464は、排出口64と同じ流路Rの上端部に配置されるため、接続口464に接続された第2吸込経路406cは、流路Rの吸込口62よりも排出口64に近い位置でセパレータ部材406に接続されている。バイパス配管408は、エンジン本体10やセパレータ部材406とは別体で形成された管部材からなる。 As shown in FIG. 19, since the connection port 464 is disposed at the upper end of the flow path R that is the same as the discharge port 64, the second suction path 406 c connected to the connection port 464 is the suction of the flow path R. The separator member 406 is connected at a position closer to the discharge port 64 than the port 62. The bypass pipe 408 is formed of a pipe member formed separately from the engine body 10 and the separator member 406.
 第4実施形態では、第2吸込経路406cには、閉弁状態で設けられ、セパレータ部材406内の負圧の増大に基づいて開放される一方向バルブ466が設けられている。一方向バルブ466は、第2吸込経路406cのセパレータ部材406側の端部において、セパレータ部材406に取り付けられている。すなわち、一方向バルブ466は、セパレータ部材406の接続口464に取り付けられており、一方向バルブ466の吸込側にバイパス配管408が接続されている。 In the fourth embodiment, the second suction path 406c is provided with a one-way valve 466 that is provided in a valve-closed state and is opened based on an increase in negative pressure in the separator member 406. The one-way valve 466 is attached to the separator member 406 at the end of the second suction path 406c on the separator member 406 side. That is, the one-way valve 466 is attached to the connection port 464 of the separator member 406, and the bypass pipe 408 is connected to the suction side of the one-way valve 466.
 一方向バルブ466は、たとえば、バルブを開閉するための弁体66aと、弁体66aを閉弁側(ヘッドカバー4側)に付勢する付勢部材66bとを含む。一方向バルブ466は、セパレータ部材406内の負圧が閾値以上の大きさになると、付勢部材66bの付勢力に打ち勝つ引張力が弁体66aに作用することにより、弁体66aが開弁方向に移動(図19の二点鎖線の位置)して開弁状態(連通状態)となる。一方向バルブ466は、セパレータ部材406内の負圧が所定の閾値未満の大きさの通常状態では、弁体66aが接続口464を塞ぐ位置(図19の実線参照)に付勢されることにより、閉弁状態を維持するように構成されている。なお、正確には、セパレータ部材406内の負圧とは、一方向バルブ466の吸込側であるヘッドカバー4側の内圧(バイパス配管408の内圧)とセパレータ部材406の内圧との差圧である。 The one-way valve 466 includes, for example, a valve body 66a for opening and closing the valve, and an urging member 66b for urging the valve body 66a toward the valve closing side (head cover 4 side). In the one-way valve 466, when the negative pressure in the separator member 406 becomes greater than a threshold value, a tensile force that overcomes the urging force of the urging member 66b acts on the valve body 66a, so that the valve body 66a opens in the valve opening direction. To the valve opening position (communication state). The one-way valve 466 is biased to a position (see a solid line in FIG. 19) where the valve body 66a closes the connection port 464 in a normal state where the negative pressure in the separator member 406 is less than a predetermined threshold value. The valve closing state is configured to be maintained. To be precise, the negative pressure in the separator member 406 is a differential pressure between the internal pressure on the head cover 4 side (internal pressure of the bypass pipe 408) that is the suction side of the one-way valve 466 and the internal pressure of the separator member 406.
 ここで、第4実施形態によるエンジン400は、図20に示すように、たとえばFR(フロントエンジン・リアドライブ)駆動方式が採用された車両401に搭載される。エンジン本体10は、図17に示すように、クランクシャフト10aが車両401(図20参照)の前後方向に沿うよう配置されて、マウントブラケット7により車両401に取り付けられている。矢印X1方向が車両401の前方であり、矢印X2方向が車両401の後方である。クランクシャフト10aは、エンジン400の後部側から車両401の動力伝達装置と接続される。この場合、車両401の走行時に車両401内に取り込まれる空気流(走行風)が、車両前側(X1側)から矢印X2方向に向けて流れることになる。 Here, as shown in FIG. 20, the engine 400 according to the fourth embodiment is mounted on a vehicle 401 adopting, for example, an FR (front engine / rear drive) drive system. As shown in FIG. 17, the engine main body 10 is disposed so that the crankshaft 10 a extends along the front-rear direction of the vehicle 401 (see FIG. 20), and is attached to the vehicle 401 by the mount bracket 7. The arrow X1 direction is the front of the vehicle 401, and the arrow X2 direction is the rear of the vehicle 401. Crankshaft 10 a is connected to the power transmission device of vehicle 401 from the rear side of engine 400. In this case, an air flow (traveling wind) taken into the vehicle 401 when the vehicle 401 travels flows from the vehicle front side (X1 side) in the direction of the arrow X2.
 第4実施形態では、第2吸込経路406cは、エンジン本体10とセパレータ部材406とを、インテークマニホールド5に対して車両401の後方側(X2側)を通って直接接続するように設けられている。すなわち、バイパス配管408が、ヘッドカバー4の導出ポート41とセパレータ部材406の接続口464(一方向バルブ466)とを、インテークマニホールド5に対して車両401の後方側を通って接続している。より具体的には、バイパス配管408(第2吸込経路406c)は、セパレータ部材406の一方向バルブ466(接続口464)に接続された一端81と、ヘッドカバー4の導出ポート41に接続された他端82との間で、マウントブラケット7およびインテークマニホールド5の後方側(X2側)を迂回するように設けられている。 In the fourth embodiment, the second suction path 406c is provided so as to directly connect the engine body 10 and the separator member 406 to the intake manifold 5 through the rear side (X2 side) of the vehicle 401. . That is, the bypass pipe 408 connects the outlet port 41 of the head cover 4 and the connection port 464 (one-way valve 466) of the separator member 406 through the rear side of the vehicle 401 to the intake manifold 5. More specifically, the bypass pipe 408 (second suction path 406 c) is connected to the one end 81 connected to the one-way valve 466 (connection port 464) of the separator member 406 and to the outlet port 41 of the head cover 4. Between the end 82, the mounting bracket 7 and the intake manifold 5 are provided so as to bypass the rear side (X2 side).
 マウントブラケット7は、エンジン本体10のY2側の外側面10bにおいてインテークマニホールド5よりも下方(Z2側)に取り付けられている。マウントブラケット7は、インテークマニホールド5とセパレータ部材406との間に配置されている。また、吐出経路406bのチューブ部材9(接続配管)は、図17に示すように、マウントブラケット7に設けられた貫通孔7bを貫通して導入ポート53とPCVバルブ8とを直接接続している。チューブ部材9は、貫通孔7bを上下方向に直線状に通過(貫通)している。図示はしないが、吐出経路406bのチューブ部材9をバイパス配管408と同様に、インテークマニホールド5およびマウントブラケット7の後方を迂回するように設けてもよい。 The mount bracket 7 is attached to the lower side (Z2 side) of the intake manifold 5 on the outer side surface 10b of the engine body 10 on the Y2 side. The mount bracket 7 is disposed between the intake manifold 5 and the separator member 406. Moreover, the tube member 9 (connection piping) of the discharge path 406b directly connects the introduction port 53 and the PCV valve 8 through the through hole 7b provided in the mount bracket 7 as shown in FIG. . The tube member 9 passes (through) the through hole 7b in a straight line in the vertical direction. Although not shown, the tube member 9 of the discharge path 406b may be provided so as to bypass the rear side of the intake manifold 5 and the mount bracket 7 similarly to the bypass pipe 408.
 次に、エンジン本体10の構造について説明する。図18に示すように、シリンダヘッド1の内部には、シリンダ21に連通する吸気ポート1aと排気ポート1bとが設けられている。4個のシリンダ21には、吸気ポート1aを介して4本の分配配管51(図17参照)から各々吸気が供給される。また、シリンダ21の上端部と上死点位置におけるピストン22の上面とシリンダヘッド1の凹部とにより囲まれた空間が、燃焼室15である。第2吸込経路406cが接続されるヘッドカバー4は、下端がシリンダヘッド1の上端(Z1側)に接続されており燃焼室15よりも上方に配置されている。第1吸込経路406aが接続されるクランクケース3(開口部31)は燃焼室15よりも下方に配置されている。 Next, the structure of the engine body 10 will be described. As shown in FIG. 18, an intake port 1 a and an exhaust port 1 b communicating with the cylinder 21 are provided inside the cylinder head 1. The four cylinders 21 are respectively supplied with intake air from four distribution pipes 51 (see FIG. 17) via the intake port 1a. A space surrounded by the upper end of the cylinder 21, the upper surface of the piston 22 at the top dead center position, and the recess of the cylinder head 1 is a combustion chamber 15. The head cover 4 to which the second suction path 406c is connected has a lower end connected to the upper end (Z1 side) of the cylinder head 1 and is disposed above the combustion chamber 15. The crankcase 3 (opening 31) to which the first suction path 406a is connected is disposed below the combustion chamber 15.
 次に、第2吸込経路406cの作用について説明する。図18に示すように、通常時は、インテークマニホールド5の負圧によって、セパレータ部材406の吸込口62にブローバイガスが吸い込まれる。セパレータ部材406とクランク室10cの内部とは、第1吸込経路406aを介して連通状態にあり、セパレータ部材406の負圧は一方向バルブ466の閾値未満に維持される。このため、一方向バルブ466は閉弁状態に維持され、第2吸込経路406cは非連通状態となる。そして、吸込口62に吸い込まれたブローバイガスは、セパレータ部材406で気液分離された後、吐出経路406bからインテークマニホールド5のサージタンク5a内に還元される。サージタンク5a内に還元されたブローバイガスは、各分配配管51を経て各吸気ポート1aに吸気と共に供給される。 Next, the operation of the second suction path 406c will be described. As shown in FIG. 18, normally, blow-by gas is sucked into the suction port 62 of the separator member 406 by the negative pressure of the intake manifold 5. The separator member 406 and the inside of the crank chamber 10c are in communication with each other via the first suction path 406a, and the negative pressure of the separator member 406 is maintained below the threshold value of the one-way valve 466. For this reason, the one-way valve 466 is maintained in a closed state, and the second suction path 406c is in a non-communication state. The blow-by gas sucked into the suction port 62 is separated into gas and liquid by the separator member 406 and then returned to the surge tank 5a of the intake manifold 5 from the discharge path 406b. The blow-by gas reduced into the surge tank 5a is supplied to the intake ports 1a through the distribution pipes 51 together with the intake air.
 一方、たとえば、車両401の登坂、降坂、旋回時などで油面が傾いた場合や、振動によってオイルの液滴が跳ね上げられた場合などに、第1吸込経路406aの開口部31(吸込口62)がオイルによって塞がれる可能性がある。この場合、セパレータ部材406内では、第1吸込経路406aおよび第2吸込経路406cの両方が閉鎖されることにより、一時的に負圧が増大する。この結果、セパレータ部材406の負圧が一方向バルブ466の閾値以上の大きさになるまで増大すると、図19において二点鎖線で示したように、一方向バルブ466が開弁する。そして、セパレータ部材406内とヘッドカバー4内とが、第2吸込経路406cを介して連通する。 On the other hand, for example, when the oil surface is tilted when the vehicle 401 is climbing, descending or turning, or when an oil droplet is splashed by vibration, the opening 31 (suction) The mouth 62) may be blocked by oil. In this case, in the separator member 406, both the first suction path 406a and the second suction path 406c are closed, so that the negative pressure temporarily increases. As a result, when the negative pressure of the separator member 406 increases to a value equal to or larger than the threshold value of the one-way valve 466, the one-way valve 466 is opened as shown by a two-dot chain line in FIG. And the inside of the separator member 406 and the inside of the head cover 4 are connected via the 2nd suction path 406c.
 ヘッドカバー4からのガスHGは、第2吸込経路406cを通って接続口464からセパレータ部材406内に導入される。この結果、セパレータ部材406内の負圧増大が速やかに解消される。接続口464から導入されたガスHGは、流路R内の吸込口62側に流れることなく、近傍の排出口64から吐出経路406bに吸い出されることになる。この結果、接続口464から導入されたガスHGの流れが、吸込口62を閉塞したオイルの液滴を吐出経路406bに運ぶことを抑制するようになる。またオイルによる閉塞が解消されてセパレータ部材406内の負圧が所定の閾値未満に戻ると、一方向バルブ466が閉弁して第2吸込経路406cが閉鎖される。 The gas HG from the head cover 4 is introduced into the separator member 406 from the connection port 464 through the second suction path 406c. As a result, the increase in negative pressure in the separator member 406 is quickly eliminated. The gas HG introduced from the connection port 464 does not flow toward the suction port 62 in the flow path R, but is sucked out from the nearby discharge port 64 to the discharge path 406b. As a result, the flow of the gas HG introduced from the connection port 464 is prevented from transporting oil droplets that block the suction port 62 to the discharge path 406b. When the blockage by the oil is eliminated and the negative pressure in the separator member 406 returns below a predetermined threshold value, the one-way valve 466 is closed and the second suction path 406c is closed.
 第4実施形態では、以下のような効果を得ることができる。 In the fourth embodiment, the following effects can be obtained.
 第4実施形態では、上記のように、燃焼室15よりも下方でエンジン本体10の内部と連通する第1吸込経路406aと、インテークマニホールド5の内部と連通する吐出経路406bと、燃焼室15よりも上方でエンジン本体10の内部と連通する第2吸込経路406cとにセパレータ部材406を接続するとともに、第2吸込経路406cに、閉弁状態で設けられ、セパレータ部材406内の負圧の増大に基づいて開放される一方向バルブ466を設ける。これにより、燃焼室15よりも下方の第1吸込経路406aがオイルにより閉塞され、セパレータ部材406内の負圧が一時的に増大した場合に、一方向バルブ466を開放させてセパレータ部材406とエンジン本体10の内部とを第2吸込経路406cによってバイパスさせることができる。この結果、オイルの液滴をインテークマニホールド5側に吸い上げるような大きな負圧状態が一時的に発生しても、セパレータ部材406内の負圧の増大を速やかに解消することができる。これにより、第1吸込経路406aにおけるブローバイガスの吸込口62がオイルによって塞がれる場合にも、インテークマニホールド5側にオイルの液滴を吸い上げることを抑制することができる。 In the fourth embodiment, as described above, the first suction path 406 a that communicates with the interior of the engine body 10 below the combustion chamber 15, the discharge path 406 b that communicates with the interior of the intake manifold 5, and the combustion chamber 15 In addition, the separator member 406 is connected to the second suction path 406c communicating with the inside of the engine body 10 at the upper side, and the second suction path 406c is provided in a valve-closed state to increase the negative pressure in the separator member 406. A one-way valve 466 is provided that is opened on the basis thereof. As a result, when the first suction path 406a below the combustion chamber 15 is blocked by oil and the negative pressure in the separator member 406 temporarily increases, the one-way valve 466 is opened to release the separator member 406 and the engine. The inside of the main body 10 can be bypassed by the second suction path 406c. As a result, even if a large negative pressure state in which oil droplets are sucked toward the intake manifold 5 temporarily occurs, the increase in the negative pressure in the separator member 406 can be quickly eliminated. Accordingly, even when the blow-by gas suction port 62 in the first suction path 406a is blocked by oil, it is possible to suppress the suction of oil droplets to the intake manifold 5 side.
 また、第2吸込経路406cを常時連通状態とすると、インテークマニホールド5側の負圧が第1吸込経路406aおよび第2吸込経路406cに分散されるため、その分ブローバイガスの換気性能が低下することになる。これに対して、第1実施形態のエンジン100によれば、通常時には一方向バルブ466を閉弁状態にして第2吸込経路406cを閉鎖しておくことができるので、第2吸込経路406cを設けた場合でも第1吸気経路6a側でのブローバイガスの換気性能を維持することができる。 In addition, if the second suction path 406c is always in a communication state, the negative pressure on the intake manifold 5 side is distributed to the first suction path 406a and the second suction path 406c, so that the ventilation performance of the blow-by gas decreases accordingly. become. On the other hand, according to the engine 100 of the first embodiment, the one-way valve 466 can be closed during the normal state so that the second suction path 406c can be closed, so the second suction path 406c is provided. Even in this case, the ventilation performance of the blow-by gas on the first intake path 6a side can be maintained.
 また、第4実施形態では、ヘッドカバー4の内部と連通するように第2吸込経路406cを設ける。これにより、導出ポート41の形成が容易なヘッドカバー4に第2吸込経路406cを接続することができるので、第2吸込経路406cを容易に設けることができる。また、第2吸込経路406cをオイル貯留部30から離間したヘッドカバー4に接続することにより、第2吸込経路406cがオイルにより閉塞されるのを防ぐことができる。 In the fourth embodiment, the second suction path 406 c is provided so as to communicate with the inside of the head cover 4. Thereby, the second suction path 406c can be easily provided because the second suction path 406c can be connected to the head cover 4 in which the lead-out port 41 can be easily formed. Further, by connecting the second suction path 406c to the head cover 4 separated from the oil reservoir 30, it is possible to prevent the second suction path 406c from being blocked by oil.
 また、第4実施形態では、第2吸込経路406cのセパレータ部材406側の端部において、一方向バルブ466をセパレータ部材406に取り付ける。これにより、一方向バルブ466をセパレータ部材406の内部に近接させることができる。この結果、セパレータ部材406内の圧力変化に対する応答性を向上させることができるので、第2吸込経路406cの開閉を速やかに行うことができる。 In the fourth embodiment, the one-way valve 466 is attached to the separator member 406 at the end of the second suction path 406c on the separator member 406 side. Thereby, the one-way valve 466 can be brought close to the inside of the separator member 406. As a result, since the responsiveness to the pressure change in the separator member 406 can be improved, the second suction path 406c can be opened and closed quickly.
 また、第4実施形態では、インテークマニホールド5に対して車両401の後方側(X2側)を通ってエンジン本体10とセパレータ部材406とを直接接続するように第2吸込経路406cを設ける。これにより、第2吸込経路406cの前方にインテークマニホールド5が配置されるので、走行中の車両401の走行風が第2吸込経路406cに当たるのが抑制される。この結果、寒冷環境で車両401が走行する場合に、第2吸込経路406c内のガスに含まれる水分が走行風により凍結することを抑制することができる。 In the fourth embodiment, the second suction path 406c is provided so that the engine body 10 and the separator member 406 are directly connected to the intake manifold 5 through the rear side (X2 side) of the vehicle 401. As a result, the intake manifold 5 is disposed in front of the second suction path 406c, so that the traveling wind of the traveling vehicle 401 is prevented from hitting the second suction path 406c. As a result, when the vehicle 401 travels in a cold environment, it is possible to prevent water contained in the gas in the second suction path 406c from being frozen by the travel wind.
 また、第4実施形態では、クランクシャフト10aの回転軸線Aよりも下方に配置された開口部31をエンジン本体10に設ける。そして、セパレータ部材406の第1吸込経路406aを、開口部31に接続する。これにより、ブローバイガスが漏れ出す位置に開口部31を近づけて配置することができる。その結果、第1吸込経路406aから効率よくブローバイガスを吸引することができるので、エンジン400内部の換気性を向上させることができる。この場合、開口部31が油面近傍に配置されるが、エンジン400によれば、上述したように、ブローバイガスの吸込口62がオイルによって塞がれる場合にも、インテークマニホールド5側にオイルの液滴を吸い上げることを抑制することができる。 In the fourth embodiment, the engine body 10 is provided with an opening 31 disposed below the rotational axis A of the crankshaft 10a. Then, the first suction path 406 a of the separator member 406 is connected to the opening 31. Thereby, the opening part 31 can be arrange | positioned close to the position where blowby gas leaks. As a result, the blow-by gas can be efficiently sucked from the first suction path 406a, so that the ventilation inside the engine 400 can be improved. In this case, the opening 31 is arranged in the vicinity of the oil surface. However, according to the engine 400, as described above, even when the blow-by gas suction port 62 is blocked by oil, It is possible to suppress sucking up the droplets.
 [第5実施形態]
 次に、図20および図21を参照して、第5実施形態について説明する。この第5実施形態では、第2吸込経路406cを、インテークマニホールド5の後方側を通ってエンジン本体10とセパレータ部材406とを直接接続するように設けた上記第4実施形態と異なり、第2吸込経路506cを、インテークマニホールド5の前方側を通ってエンジン本体10とセパレータ部材406とを直接接続するように設けた例について説明する。なお、上記第4実施形態と同様の構成については、同じ符号を付して説明を省略する。
[Fifth Embodiment]
Next, a fifth embodiment will be described with reference to FIGS. In the fifth embodiment, unlike the fourth embodiment in which the second suction passage 406c is provided so as to directly connect the engine body 10 and the separator member 406 through the rear side of the intake manifold 5, the second suction path An example in which the path 506c is provided so as to directly connect the engine body 10 and the separator member 406 through the front side of the intake manifold 5 will be described. In addition, about the structure similar to the said 4th Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 エンジン500では、図21に示すように、第2吸込経路506cは、エンジン本体10とセパレータ部材406とを、インテークマニホールド5に対して車両401(図20参照)の前方側(X1側)を通って直接接続するように設けられている。すなわち、バイパス配管508が、ヘッドカバー4の導出ポート541とセパレータ部材406の接続口564とを、インテークマニホールド5に対して車両401の前方側を通って直接接続するように設けられている。なお、図21では、マウントブラケット7の図示を省略している。なお、エンジン500は、本発明の「内燃機関」の一例である。 In the engine 500, as shown in FIG. 21, the second suction path 506c passes the engine body 10 and the separator member 406 through the front side (X1 side) of the vehicle 401 (see FIG. 20) with respect to the intake manifold 5. Are provided for direct connection. That is, the bypass pipe 508 is provided so as to directly connect the lead-out port 541 of the head cover 4 and the connection port 564 of the separator member 406 to the intake manifold 5 through the front side of the vehicle 401. In FIG. 21, the mounting bracket 7 is not shown. Engine 500 is an example of the “internal combustion engine” in the present invention.
 バイパス配管508(第2吸込経路506c)は、一端81と他端82との間でインテークマニホールド5の前方側を迂回するように設けられている。具体的には、接続口564がセパレータ部材406の上面(Z1側の側面)に設けられており、バイパス配管508の一端81が一方向バルブ466にZ1側から接続されている。また、導出ポート541がヘッドカバー4の前方側の部分(X1側の部分)でインテークマニホールド5よりも前方側の位置に設けられており、バイパス配管508の他端82が導出ポート541に接続されている。 The bypass pipe 508 (second suction path 506 c) is provided so as to bypass the front side of the intake manifold 5 between the one end 81 and the other end 82. Specifically, the connection port 564 is provided on the upper surface (side surface on the Z1 side) of the separator member 406, and one end 81 of the bypass pipe 508 is connected to the one-way valve 466 from the Z1 side. A lead-out port 541 is provided at a position on the front side of the head cover 4 (X1 side portion) in front of the intake manifold 5, and the other end 82 of the bypass pipe 508 is connected to the lead-out port 541. Yes.
 エンジン500は、インテークマニホールド5の前方側(X1側)に、補器類502の設置スペースが設けられるケースにおいて特に有効である。この場合、バイパス配管508(第2吸込経路506c)は、インテークマニホールド5の前方側(X1側)で、かつ、補器類502の設置スペースよりも後方側(X2側)を通るように設けられる。この結果、バイパス配管508(第2吸込経路506c)は、矢印X2方向に流れる走行風に対して、補器類502の下流側(X2側)に配置される。なお、第5実施形態のその他の構成は、上記第4実施形態と同様である。 The engine 500 is particularly effective in a case where an installation space for the auxiliary devices 502 is provided on the front side (X1 side) of the intake manifold 5. In this case, the bypass pipe 508 (second suction path 506c) is provided so as to pass on the front side (X1 side) of the intake manifold 5 and on the rear side (X2 side) of the installation space for the auxiliary devices 502. . As a result, the bypass pipe 508 (second suction path 506c) is disposed on the downstream side (X2 side) of the auxiliary devices 502 with respect to the traveling wind flowing in the arrow X2 direction. The remaining configuration of the fifth embodiment is similar to that of the aforementioned fourth embodiment.
 第5実施形態では、以下のような効果を得ることができる。 In the fifth embodiment, the following effects can be obtained.
 第5実施形態では、大きな負圧状態が一時的に発生しても、セパレータ部材406内の負圧の増大を速やかに解消することができるので、第1吸込経路406aにおけるブローバイガスの吸込口62がオイルによって塞がれる場合にも、インテークマニホールド5側にオイルの液滴を吸い上げることを抑制することができる。 In the fifth embodiment, even if a large negative pressure state temporarily occurs, the increase in the negative pressure in the separator member 406 can be quickly eliminated, so the blow-by gas suction port 62 in the first suction path 406a. Even when the oil is blocked by oil, it is possible to prevent the oil droplets from being sucked into the intake manifold 5 side.
 また、インテークマニホールド5に対して車両401の前方側(X1側)に補器類502などが配置される場合には、これらの補器類502によって走行中の車両401の走行風がバイパス配管508(第2吸込経路506c)に当たることを抑制することができる。その結果、寒冷環境で車両401が走行する場合にも、走行風によってバイパス配管508(第2吸込経路506c)内の水分が凍結するのを抑制することができる。なお、第5実施形態のその他の効果は、上記第4実施形態と同様である。 Further, when the auxiliary devices 502 and the like are arranged on the front side (X1 side) of the vehicle 401 with respect to the intake manifold 5, the traveling wind of the vehicle 401 traveling by these auxiliary devices 502 is bypass piping 508. It can suppress hitting (2nd suction path 506c). As a result, even when the vehicle 401 travels in a cold environment, it is possible to prevent water in the bypass pipe 508 (second suction path 506c) from freezing due to traveling wind. The remaining effects of the fifth embodiment are similar to those of the aforementioned fourth embodiment.
 [第6実施形態]
 次に、図20および図22を参照して、第6実施形態について説明する。この第6実施形態では、第2吸込経路406c(506c)がインテークマニホールド5を迂回する上記第4および第5実施形態と異なり、第2吸込経路606cを、インテークマニホールド605の内部を通過してエンジン本体10とセパレータ部材406とを直接接続するように設けた例について説明する。なお、上記第4または第5実施形態と同様の構成については、同じ符号を付して説明を省略する。なお、インテークマニホールド605は、本発明の「吸気装置」の一例である。
[Sixth Embodiment]
Next, a sixth embodiment will be described with reference to FIGS. 20 and 22. In the sixth embodiment, unlike the fourth and fifth embodiments in which the second suction path 406c (506c) bypasses the intake manifold 5, the second suction path 606c passes through the intake manifold 605 and passes through the engine. An example in which the main body 10 and the separator member 406 are provided so as to be directly connected will be described. In addition, about the structure similar to the said 4th or 5th embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted. The intake manifold 605 is an example of the “intake device” in the present invention.
 エンジン600では、第2吸込経路606cは、インテークマニホールド605の内部を通過してエンジン本体10とセパレータ部材406とを直接接続するように設けられている。なお、エンジン600は、本発明の「内燃機関」の一例である。 In the engine 600, the second suction path 606c is provided so as to pass through the intake manifold 605 and directly connect the engine body 10 and the separator member 406. The engine 600 is an example of the “internal combustion engine” in the present invention.
 具体的には、インテークマニホールド605は、第2吸込経路606cの一部を構成する中継通路部651を内部に含む。中継通路部651は、インテークマニホールド605の下面に設けられた第1接続ポート652と、インテークマニホールド605の上面に設けられた第2接続ポート653とを接続するように設けられたガス通路である。また、中継通路部651は、分配配管51およびサージタンク5aとは連通せずに独立して設けられている。第1接続ポート652は、サージタンク5aの下面に下向きに設けられている。中継通路部651は、サージタンク5aの周壁部に沿って延びるとともに、4本の分配配管51のうち、中央の2本の分配配管51の間を通るように設けられている。第2接続ポート653は、中央の2本の分配配管51の間の位置で、上方に向けて設けられている。 Specifically, the intake manifold 605 includes a relay passage portion 651 constituting a part of the second suction passage 606c. The relay passage portion 651 is a gas passage provided so as to connect the first connection port 652 provided on the lower surface of the intake manifold 605 and the second connection port 653 provided on the upper surface of the intake manifold 605. Further, the relay passage portion 651 is provided independently without being connected to the distribution pipe 51 and the surge tank 5a. The first connection port 652 is provided downward on the lower surface of the surge tank 5a. The relay passage part 651 extends along the peripheral wall part of the surge tank 5 a and is provided so as to pass between the two distribution pipes 51 at the center among the four distribution pipes 51. The second connection port 653 is provided upward at a position between the two distribution pipes 51 at the center.
 第2吸込経路606cは、セパレータ部材406と中継通路部651の一端(第1接続ポート652)とを接続する第1部分661と、中継通路部651の他端(第2接続ポート653)とエンジン本体10とを接続する第2部分662とを含む。なお、第1部分661および第2部分662は、それぞれ、上記第4実施形態のバイパス配管408と同様の管部材からなる。より具体的には、第1部分661の一端が接続口664の一方向バルブ466にZ1側から接続され、第1部分661の他端が第1接続ポート652にZ2側から接続されている。 The second suction path 606c includes a first portion 661 that connects the separator member 406 and one end (first connection port 652) of the relay passage portion 651, the other end (second connection port 653) of the relay passage portion 651, and the engine. And a second portion 662 connecting the main body 10. In addition, the 1st part 661 and the 2nd part 662 consist of a pipe member similar to the bypass piping 408 of the said 4th Embodiment, respectively. More specifically, one end of the first portion 661 is connected to the one-way valve 466 of the connection port 664 from the Z1 side, and the other end of the first portion 661 is connected to the first connection port 652 from the Z2 side.
 また、第2部分662の一端が第2接続ポート653にZ1側から接続され、第2部分662の他端がヘッドカバー4の導出ポート641に接続されている。これにより、第2吸込経路606cは、導出ポート641を介してヘッドカバー4の内部とセパレータ部材406とを連通させている。導出ポート641は、ヘッドカバー4のX軸方向の中央部に配置されており、X軸方向の位置を第2接続ポート653のX軸方向の位置に対応させている。このようにして、第6実施形態では、第2吸込経路606cは、第1部分661および第2部分662と、中継通路部651とによって構成されている。なお、第6実施形態のその他の構成は、上記第4実施形態と同様である。 Also, one end of the second portion 662 is connected to the second connection port 653 from the Z1 side, and the other end of the second portion 662 is connected to the outlet port 641 of the head cover 4. As a result, the second suction path 606 c allows the inside of the head cover 4 and the separator member 406 to communicate with each other via the lead-out port 641. The lead-out port 641 is disposed at the center of the head cover 4 in the X-axis direction, and the position in the X-axis direction corresponds to the position of the second connection port 653 in the X-axis direction. Thus, in the sixth embodiment, the second suction path 606c is configured by the first portion 661, the second portion 662, and the relay passage portion 651. The remaining configuration of the sixth embodiment is similar to that of the aforementioned fourth embodiment.
 第6実施形態では、以下のような効果を得ることができる。 In the sixth embodiment, the following effects can be obtained.
 第6実施形態では、大きな負圧状態が一時的に発生しても、セパレータ部材406内の負圧の増大を速やかに解消することができるので、第1吸込経路406aにおけるブローバイガスの吸込口62がオイルによって塞がれる場合にも、インテークマニホールド605側にオイルの液滴を吸い上げることを抑制することができる。 In the sixth embodiment, even if a large negative pressure state temporarily occurs, the increase in the negative pressure in the separator member 406 can be quickly eliminated, so the blow-by gas suction port 62 in the first suction path 406a. Even when the oil is blocked by oil, it is possible to prevent the oil droplets from being sucked up to the intake manifold 605 side.
 また、第6実施形態では、第2吸込経路606cの一部を構成する中継通路部651をインテークマニホールド605の内部に形成する。そして、セパレータ部材406と中継通路部651の第1接続ポート652とを接続する第1部分661と、中継通路部651の第2接続ポート653とエンジン本体10とを接続する第2部分662とを含む第2吸込経路606cを設ける。これにより、第2吸込経路606cがインテークマニホールド605内を通過するので、走行中の車両401の走行風が第2吸込経路606cに当たることを抑制することができる。その結果、寒冷環境で車両401が走行する場合に、第2吸込経路606c内のガスに含まれる水分が走行風によって凍結することを抑制することができる。なお、第6実施形態のその他の効果は、上記第4実施形態と同様である。 In the sixth embodiment, the relay passage portion 651 that constitutes a part of the second suction path 606c is formed inside the intake manifold 605. Then, a first portion 661 that connects the separator member 406 and the first connection port 652 of the relay passage portion 651, and a second portion 662 that connects the second connection port 653 of the relay passage portion 651 and the engine body 10 are provided. A second suction path 606c is provided. Accordingly, since the second suction path 606c passes through the intake manifold 605, it is possible to suppress the traveling wind of the traveling vehicle 401 from hitting the second suction path 606c. As a result, when the vehicle 401 travels in a cold environment, moisture contained in the gas in the second suction path 606c can be prevented from freezing by the traveling wind. The remaining effects of the sixth embodiment are similar to those of the aforementioned fourth embodiment.
 [変形例]
 今回開示された実施形態は、全ての点で例示であり制限的なものではないと考えられるべきである。本発明の範囲は上記実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内での全ての変更(変形例)が含まれる。
[Modification]
It should be thought that embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is shown not by the description of the above-described embodiment but by the scope of claims for patent, and further includes all modifications (modifications) within the meaning and scope equivalent to the scope of claims for patent.
 たとえば、上記第1実施形態では、セパレータ部材6をエンジン本体10(シリンダブロック2およびクランクケース3)のY2側の外側面10bに取り付けたが、本発明はこれに限られない。本発明では、図23に示す第1実施形態の第1変形例のエンジン150のように、セパレータ部材6をクランクケース203のY2側の外側面3aに取り付ける一方、シリンダブロック202の外側面2bに取り付けなくてもよい。これにより、シリンダブロック202の剛性が低下するのを確実に抑制することが可能である。また、シリンダブロック202にセパレータ部材6を取り付けるための設計変更をなくすことができるので、より容易にブローバイガスの流通のための構造をエンジン本体210に追加することが可能である。さらに、セパレータ部材6の全体をクランクケース203に貯留されたオイルの近傍に配置することができるので、寒冷地などでの走行時において、冷たい走行風に起因してセパレータ部材6の内部の水分が凍結するのを抑制することが可能である。この際、セパレータ部材6の吸込口62をオイルの油面よりも上方に配置する必要があるとともに、セパレータ部材6を上記第1実施形態よりも下方に配置する分、チューブ部材209(接続配管)をより長くする必要がある。なお、エンジン150およびエンジン本体210は、それぞれ、本発明の「内燃機関」および「内燃機関本体」の一例であり、チューブ部材209は、本発明の「ブローバイガス通路部」の一例である。なお、上記変形例は、上記第2~第6実施形態にも適用可能である。 For example, in the first embodiment, the separator member 6 is attached to the outer surface 10b on the Y2 side of the engine body 10 (the cylinder block 2 and the crankcase 3), but the present invention is not limited to this. In the present invention, like the engine 150 of the first modified example of the first embodiment shown in FIG. 23, the separator member 6 is attached to the outer surface 3a on the Y2 side of the crankcase 203, while being attached to the outer surface 2b of the cylinder block 202. It does not have to be attached. Thereby, it is possible to reliably suppress a decrease in the rigidity of the cylinder block 202. Further, since the design change for attaching the separator member 6 to the cylinder block 202 can be eliminated, it is possible to more easily add a structure for circulation of blow-by gas to the engine body 210. Furthermore, since the separator member 6 as a whole can be arranged in the vicinity of the oil stored in the crankcase 203, when traveling in a cold district or the like, moisture inside the separator member 6 is caused by the cold traveling wind. It is possible to suppress freezing. At this time, it is necessary to dispose the suction port 62 of the separator member 6 above the oil surface of the oil, and the tube member 209 (connection piping) corresponding to the disposition of the separator member 6 below the first embodiment. Need to be longer. The engine 150 and the engine body 210 are examples of the “internal combustion engine” and the “internal combustion engine body” of the present invention, respectively, and the tube member 209 is an example of the “blow-by gas passage portion” of the present invention. Note that the above modification can also be applied to the second to sixth embodiments.
 また、上記第1実施形態では、セパレータ部材6の排出口64から排出されたブローバイガスをサージタンク5aの内部に導くようにチューブ部材9を設けたが、本発明はこれに限られない。本発明では、図24に示す第1実施形態の第2変形例のエンジン160のように、セパレータ部材126の排出口364(図25参照)から排出されたブローバイガスを、インテークマニホールド305のサージタンク305aではなく、4本に分岐した吸気ポート305bの各々に導くようにチューブ部材309を構成してもよい。この際、チューブ部材309は、PCVバルブ308に取り付けられる下部309aと、下部309aから4本に分岐する上部309bとを含んでいる。そして、分岐する4本の上部309bが、それぞれ、対応する4本の吸気ポート305bに接続される。なお、エンジン160およびセパレータ部材126は、それぞれ、本発明の「内燃機関」および「内燃機関用セパレータ」の一例である。また、PCVバルブ308およびチューブ部材309は、それぞれ、本発明の「制御弁」および「ブローバイガス通路部」の一例である。 In the first embodiment, the tube member 9 is provided so as to guide the blow-by gas discharged from the discharge port 64 of the separator member 6 into the surge tank 5a. However, the present invention is not limited to this. In the present invention, the blow-by gas discharged from the discharge port 364 (see FIG. 25) of the separator member 126 is used as the surge tank of the intake manifold 305 as in the engine 160 of the second modification of the first embodiment shown in FIG. The tube member 309 may be configured to lead to each of the intake ports 305b branched into four instead of 305a. At this time, the tube member 309 includes a lower part 309a attached to the PCV valve 308 and an upper part 309b branched from the lower part 309a into four parts. Then, the four branched upper portions 309b are respectively connected to the corresponding four intake ports 305b. The engine 160 and the separator member 126 are examples of the “internal combustion engine” and the “separator for the internal combustion engine” of the present invention, respectively. The PCV valve 308 and the tube member 309 are examples of the “control valve” and the “blow-by gas passage portion” of the present invention, respectively.
 また、上記第1実施形態の第2変形例では、図25に示すように、セパレータ部材126の本体部126aの排出口364は、セパレータ部材126(本体部126a)のZ1側の上端近傍のY2側の横側部に形成されている。そして、PCVバルブ308は、セパレータ部材126のY2側の横側部から横方向(矢印Y2方向)に突出するように排出口364に直接的に取り付けられている。これにより、図24に示すように、マウントブラケット307を避けるようにチューブ部材309を容易に取り回すことができるので、マウントブラケット307に貫通孔を設ける必要がなくなる。 In the second modification of the first embodiment, as shown in FIG. 25, the discharge port 364 of the main body 126a of the separator member 126 is Y2 near the upper end on the Z1 side of the separator member 126 (main body 126a). It is formed in the side part of the side. The PCV valve 308 is directly attached to the discharge port 364 so as to protrude from the lateral side portion of the separator member 126 on the Y2 side in the lateral direction (arrow Y2 direction). As a result, as shown in FIG. 24, the tube member 309 can be easily routed so as to avoid the mount bracket 307, so that it is not necessary to provide a through hole in the mount bracket 307.
 また、上記第1実施形態では、セパレータ部材6の排出口64をセパレータ部材6の上端部61bに設け、PCVバルブ8を上方(Z1方向)に向けて突出するように排出口64に取り付ける例を示し、上記第1実施形態の第2変形例では、セパレータ部材126の排出口364をセパレータ部材126(本体部126a)のZ1側の上端近傍のY2側の横側部に設け、PCVバルブ308をセパレータ部材126のY2側の横側部から横方向(Y2方向)に突出するように排出口364に取り付けたが、本発明はこれに限られない。本発明では、図26に示す第1実施形態の第3変形例のセパレータ部材136のように、セパレータ部材136の排出口464(破線で示す)を、セパレータ部材136(本体部136a)のZ1側の上端近傍のX2側の横側部に設けるとともに、PCVバルブ708をセパレータ部材136のX2側の横側部から横方向(矢印X2方向)に突出するように排出口464に取り付けてもよい。なお、セパレータ部材136およびPCVバルブ708は、それぞれ、本発明の「内燃機関用セパレータ」および「制御弁」の一例である。 Moreover, in the said 1st Embodiment, the discharge port 64 of the separator member 6 is provided in the upper end part 61b of the separator member 6, and the example which attaches the PCV valve | bulb 8 to the discharge port 64 so that it protrudes toward upper direction (Z1 direction). In the second modification of the first embodiment, the discharge port 364 of the separator member 126 is provided in the lateral side portion on the Y2 side near the upper end on the Z1 side of the separator member 126 (main body portion 126a), and the PCV valve 308 is provided. The separator member 126 is attached to the discharge port 364 so as to protrude from the lateral side portion on the Y2 side of the separator member 126 in the lateral direction (Y2 direction), but the present invention is not limited to this. In the present invention, like the separator member 136 of the third modification of the first embodiment shown in FIG. 26, the discharge port 464 (shown by a broken line) of the separator member 136 is connected to the Z1 side of the separator member 136 (main body portion 136a). The PCV valve 708 may be attached to the discharge port 464 so as to protrude in the lateral direction (arrow X2 direction) from the lateral side portion of the separator member 136 on the X2 side. The separator member 136 and the PCV valve 708 are examples of the “separator for an internal combustion engine” and the “control valve” of the present invention, respectively.
 また、上記第1~第6実施形態では、エンジン本体10がシリンダヘッド1、シリンダブロック2およびクランクケース3を含んだが、本発明はこれに限られない。シリンダブロックとクランクケースの間にラダーフレームを挿入してもよいし、クランクケースの下側にオイルパンを設けてもよい。つまり、セパレータ部材の吸込口が、クランクシャフトの回転軸線Aよりも下方で、かつ、オイル貯留部に溜められたオイルの油面よりも上方に位置するように配置されていれば、エンジン本体の構成は、特に限定されない。 In the first to sixth embodiments, the engine body 10 includes the cylinder head 1, the cylinder block 2, and the crankcase 3. However, the present invention is not limited to this. A ladder frame may be inserted between the cylinder block and the crankcase, or an oil pan may be provided below the crankcase. That is, if the suction port of the separator member is disposed below the rotation axis A of the crankshaft and above the oil level of the oil stored in the oil reservoir, The configuration is not particularly limited.
 また、上記第1~第6実施形態では、PCVバルブ8をセパレータ部材6の排出口64に直接的に取り付ける例を示したが、本発明はこれに限られない。本発明では、PCVバルブをセパレータ部材の排出口にチューブなどの部材を介して間接的に取り付けてもよい。 In the first to sixth embodiments, the example in which the PCV valve 8 is directly attached to the discharge port 64 of the separator member 6 has been described. However, the present invention is not limited to this. In the present invention, the PCV valve may be indirectly attached to the outlet of the separator member via a member such as a tube.
 また、上記第1~第6実施形態では、シリンダブロック2とクランクケース3とを別体として構成したが、本発明はこれに限られない。本発明では、シリンダブロックとクランクケースとを一体として構成してもよい。この場合にも、シリンダブロックに対応するクランクシャフトの回転軸線Aよりも上側の部分では、ピストンなどの摺動部材が摺動するため、高い剛性が必要とされ、その結果、形状変更するのは容易ではない。しかしながら、本発明の構成を適用することにより、エンジン本体のクランクシャフトの回転軸線Aよりも上側の部分において大幅に形状変更するのを抑制することが可能である。 In the first to sixth embodiments, the cylinder block 2 and the crankcase 3 are configured separately, but the present invention is not limited to this. In the present invention, the cylinder block and the crankcase may be configured integrally. Also in this case, since a sliding member such as a piston slides in a portion above the rotation axis A of the crankshaft corresponding to the cylinder block, high rigidity is required, and as a result, the shape change is It's not easy. However, by applying the configuration of the present invention, it is possible to prevent the shape of the engine body from changing significantly in the portion above the rotation axis A of the crankshaft.
 また、上記第1~第6実施形態では、クランクケース3の開口部31およびセパレータ部材6の吸込口62を共に縦長の長円形状に形成したが、本発明はこれに限られない。たとえば、クランクケースの開口部およびセパレータ部材の吸込口を、縦長の楕円形状に形成してもよいし、縦長の長方形形状に形成してもよい。さらに、クランクケースの開口部およびセパレータ部材の吸込口を、真円状に形成してもよい。 In the first to sixth embodiments, the opening 31 of the crankcase 3 and the suction port 62 of the separator member 6 are both formed in a vertically long oval shape, but the present invention is not limited to this. For example, the opening of the crankcase and the inlet of the separator member may be formed in a vertically long oval shape or may be formed in a vertically long rectangular shape. Furthermore, the opening of the crankcase and the inlet of the separator member may be formed in a perfect circle.
 また、上記第1~第6実施形態では、インテークマニホールド5やマウントブラケット7が取り付けられるエンジン本体10の外側面10bにセパレータ部材6を取り付けたが、本発明はこれに限られない。本発明では、たとえば、エキゾーストマニホールドなどの排気装置が取り付けられたエンジン本体の外側面にセパレータ部材を取り付けてもよい。 In the first to sixth embodiments, the separator member 6 is attached to the outer surface 10b of the engine body 10 to which the intake manifold 5 and the mount bracket 7 are attached. However, the present invention is not limited to this. In the present invention, for example, a separator member may be attached to the outer surface of the engine body to which an exhaust device such as an exhaust manifold is attached.
 また、上記第1~第6実施形態では、ガソリン機関からなる自動車用のエンジンに本発明を適用した例について示したが、本発明はこれに限られない。すなわち、内燃機関であるならば、ガソリン機関以外のガス機関(ディーゼルエンジンおよびガスエンジンなどの内燃機関)に対して本発明を適用してもよい。また、自動車以外のたとえば設備機器の駆動源(動力源)として設置されるような内燃機関に対して本発明を適用してもよい。 In the first to sixth embodiments, the example in which the present invention is applied to an automobile engine including a gasoline engine has been described. However, the present invention is not limited to this. That is, if it is an internal combustion engine, the present invention may be applied to gas engines other than gasoline engines (internal combustion engines such as diesel engines and gas engines). Further, the present invention may be applied to an internal combustion engine that is installed as a drive source (power source) of equipment other than an automobile, for example.
 また、上記第2実施形態および第2実施形態の第1変形例では、オイルセパレータ6(206)に上側流入規制部67(267)を設け、上記第3実施形態では、オイルセパレータ306に下側流入規制部368を設けたが、本発明はこれに限られない。本発明では、たとえば、図27に示す第2実施形態の第2変形例のように、オイルセパレータ226に、エンジン本体10の内側のクランク室10cに突出する上側流入規制部67および下側流入規制部368の両方を設けてもよい。また、上側流入規制部と下側流入規制部とを接続するように吸込口の両側方に壁状の液状オイル流入規制部をそれぞれ設けてもよい。つまり、吸込口の全周に亘ってのクランク室に突出する液状オイル流入規制部を設けてもよい。 In the second embodiment and the first modification of the second embodiment, the oil separator 6 (206) is provided with an upper inflow restricting portion 67 (267). In the third embodiment, the oil separator 306 has a lower side. Although the inflow restricting portion 368 is provided, the present invention is not limited to this. In the present invention, for example, as in the second modification of the second embodiment shown in FIG. 27, the oil separator 226 is provided with an upper inflow restricting portion 67 and a lower inflow restricting portion that protrude into the crank chamber 10c inside the engine body 10. Both parts 368 may be provided. Moreover, you may provide a wall-like liquid oil inflow control part in the both sides of a suction inlet so that an upper inflow control part and a lower inflow control part may be connected. That is, you may provide the liquid oil inflow control part which protrudes in the crank chamber over the perimeter of a suction inlet.
 また、上記第2実施形態および第2実施形態の第1変形例では、オイルセパレータ6(226)に上側流入規制部67(267、液状オイル流入規制部)を一体的に設け、上記3実施形態では、オイルセパレータ306に下側流入規制部368(液状オイル流入規制部)を一体的に設けた例を示したが、本発明はこれに限られない。本発明では、液状オイル流入規制部をオイルセパレータとは別個に設けてもよい。つまり、オイルセパレータとは別体の液状オイル流入規制部をねじ留めするなどしてオイルセパレータに設けてもよい。 In the second embodiment and the first modification of the second embodiment, the upper inflow restricting portion 67 (267, liquid oil inflow restricting portion) is integrally provided in the oil separator 6 (226), and the third embodiment described above. In the above example, the lower inflow restricting portion 368 (liquid oil inflow restricting portion) is integrally provided in the oil separator 306, but the present invention is not limited to this. In the present invention, the liquid oil inflow restricting portion may be provided separately from the oil separator. That is, the liquid oil inflow restricting portion that is separate from the oil separator may be provided on the oil separator by screwing or the like.
 また、上記第2実施形態および第2実施形態の第1変形例では、上側流入規制部67(267)をY軸方向(開口部31および吸込口62(262)の貫通方向)には鉛直方向(矢印Z方向)に傾斜しないように構成したが、本発明はこれに限られない。本発明では、上側流入規制部を開口部および吸込口の貫通方向において鉛直方向に傾斜するように形成してもよい。この際、上側流入規制部をエンジン本体とは反対側(図7においてY2側)で、かつ、鉛直方向下方に傾斜するように形成すれば、上側流入規制部のエンジン本体側の端部に液状オイルが導かれるのを抑制することができるので、吸込口(開口部)の正面に液状オイルが落下するのを抑制することが可能である。 Further, in the second embodiment and the first modification of the second embodiment, the upper inflow restricting portion 67 (267) is in the vertical direction in the Y-axis direction (through direction of the opening 31 and the suction port 62 (262)). Although configured not to tilt in the direction of arrow Z, the present invention is not limited to this. In the present invention, the upper inflow restricting portion may be formed so as to be inclined in the vertical direction in the direction of penetration of the opening and the suction port. At this time, if the upper inflow restricting portion is formed on the side opposite to the engine main body (Y2 side in FIG. 7) and inclined downward in the vertical direction, the upper inflow restricting portion is liquid at the end of the upper inflow restricting portion on the engine main body side. Since the oil can be prevented from being guided, it is possible to suppress the liquid oil from falling on the front surface of the suction port (opening).
 また、上記第2実施形態および第2実施形態の第1変形例では、上側流入規制部67(267)を、吸込口62(262)の鉛直方向に延びる中心線Cに対して略鏡像対称になるように形成するとともに、中心線Cから離間する方向で、かつ、鉛直方向下方(Z2方向)に傾斜するように傾斜部67bおよび67c(円弧状部267bおよび267c)を形成したが、本発明はこれに限られない。たとえば、上側流入規制部を、吸込口の中心線と直交する方向(図9においてX軸方向)の一方端部側から他方端部側に向かって鉛直方向下方に傾斜するように形成することによって、吸込口を鉛直方向上側から覆う「ひさし形状」を有するように上側流入規制部を形成してもよい。 In the second embodiment and the first modification of the second embodiment, the upper inflow restricting portion 67 (267) is substantially mirror-symmetric with respect to the center line C extending in the vertical direction of the suction port 62 (262). The inclined portions 67b and 67c (arc-shaped portions 267b and 267c) are formed so as to be inclined in the direction away from the center line C and downward in the vertical direction (Z2 direction). Is not limited to this. For example, by forming the upper inflow restricting portion so as to incline downward in the vertical direction from one end side in the direction orthogonal to the center line of the suction port (X-axis direction in FIG. 9) toward the other end side. The upper inflow restricting portion may be formed so as to have an “eave shape” that covers the suction port from the upper side in the vertical direction.
 また、上記第2実施形態および第2実施形態の第1変形例では、上側流入規制部67(267)を、吸込口62(262)の全体を鉛直方向上側から覆う「ひさし形状」に形成した例を示したが、本発明はこれに限られない。本発明では、上側流入規制部を、吸込口の一部のみを鉛直方向上側から覆うように形成してもよい。 Further, in the second embodiment and the first modification of the second embodiment, the upper inflow restricting portion 67 (267) is formed in an “eave shape” that covers the entire suction port 62 (262) from the upper side in the vertical direction. Although an example is shown, the present invention is not limited to this. In the present invention, the upper inflow restricting portion may be formed so as to cover only a part of the suction port from the upper side in the vertical direction.
 また、上記第2実施形態および第2実施形態の第1変形例では、吸込口62(262)の鉛直方向上側に上側流入規制部67(267、液状オイル流入規制部)を形成した例を示し、上記第3実施形態では、吸込口362の鉛直方向下側に下側流入規制部368(液状オイル流入規制部)を設けた例を示したが、本発明はこれに限られない。本発明では、吸込口の側方にのみ液状オイル流入規制部を形成してもよい。 Moreover, in the said 2nd Embodiment and the 1st modification of 2nd Embodiment, the example which formed the upper inflow control part 67 (267, liquid oil inflow control part) in the perpendicular direction upper side of the suction inlet 62 (262) is shown. In the third embodiment, the example in which the lower inflow restricting portion 368 (liquid oil inflow restricting portion) is provided on the lower side in the vertical direction of the suction port 362 is shown, but the present invention is not limited to this. In the present invention, the liquid oil inflow restricting portion may be formed only on the side of the suction port.
 また、上記第4~第6実施形態では、FR駆動方式の車両401に搭載するエンジンを例示したが、本発明はこれに限られない。どのような駆動方式の車両に搭載されるエンジンに本発明を適用してもよい。また自動車に限らず、どのような車両に搭載されるエンジンに本発明を適用してもよいし、車両以外の用途の内燃機関に本発明を適用してもよい。 In the fourth to sixth embodiments, the engine mounted on the FR drive type vehicle 401 is exemplified, but the present invention is not limited to this. You may apply this invention to the engine mounted in the vehicle of what kind of drive system. In addition, the present invention may be applied to an engine mounted on any vehicle, not limited to an automobile, and the present invention may be applied to an internal combustion engine used for purposes other than a vehicle.
 また、上記第1~第6実施形態では、ラビリンス構造の流路Rからなる分離部を有するオイルセパレータ(慣性衝突型のオイルセパレータ)を示したが、本発明はこれに限られない。本発明では、オイルセパレータ内でブローバイガスの旋回流を作り、遠心力によって気液分離を行う遠心分離型のオイルセパレータや、ブローバイガスを通過させるフィルタによって気液分離を行うフィルタ内蔵型のオイルセパレータであってもよい。また、オイルセパレータは、これらの複数方式の分離部の組み合わせにより構成されていてもよい。 In the first to sixth embodiments, the oil separator (inertial collision type oil separator) having the separation portion including the flow path R having the labyrinth structure is shown, but the present invention is not limited to this. In the present invention, a centrifugal oil separator that creates a swirling flow of blow-by gas in an oil separator and performs gas-liquid separation by centrifugal force, or a filter built-in type oil separator that performs gas-liquid separation by a filter that passes blow-by gas It may be. Moreover, the oil separator may be comprised by the combination of these several types of separation parts.
 また、上記第4~第6実施形態では、第2吸込経路をヘッドカバー4に接続する例を示したが、本発明はこれに限られない。本発明では、たとえば第2吸込経路をシリンダヘッドに接続してもよい。第2吸込経路は、燃焼室よりも上方でエンジン本体の内部と連通するように設けられていればよい。 In the fourth to sixth embodiments, the example in which the second suction path is connected to the head cover 4 has been described. However, the present invention is not limited to this. In the present invention, for example, the second suction path may be connected to the cylinder head. The second suction path may be provided so as to communicate with the interior of the engine body above the combustion chamber.
 また、上記第4~第6実施形態では、第1吸込経路をクランクケース3(開口部31)に接続する例を示したが、本発明はこれに限られない。本発明では、たとえば第1吸込経路をシリンダブロックに接続してもよい。第1吸込経路は、燃焼室よりも下方でエンジン本体の内部と連通するように設けられていればよい。 In the fourth to sixth embodiments, the example in which the first suction path is connected to the crankcase 3 (opening 31) is shown, but the present invention is not limited to this. In the present invention, for example, the first suction path may be connected to the cylinder block. The first suction path only needs to be provided below the combustion chamber so as to communicate with the interior of the engine body.
 2、202 シリンダブロック
 3 クランクケース
 4 ヘッドカバー(シリンダヘッドカバー)
 5、305、605 インテークマニホールド(吸気装置)
 6、126、136、206、216、306、406 セパレータ部材(内燃機関用セパレータ)
 8、308、708 PCVバルブ(制御弁)
 9、209、309 チューブ部材(ブローバイガス通路部)
 10、210 エンジン本体(内燃機関本体)
 10a クランクシャフト
 10b 外側面
 15 燃焼室
 30 オイル貯留部
 31 開口部
 61b 上端部
 62、262、362 吸込口
 62b 下端
 64、364、464 排出口
 67、267 上側流入規制部(液状オイル流入規制部)
 100、150、160、200、250、300、400、500、600 エンジン(内燃機関)
 368 下側流入規制部(液状オイル流入規制部)
 401 車両
 406a 第1吸込経路
 406b 吐出経路
 406c、506c、606c 第2吸込経路
 466 一方向バルブ
 A 回転軸線
2, 202 Cylinder block 3 Crankcase 4 Head cover (cylinder head cover)
5,305,605 Intake manifold (intake device)
6, 126, 136, 206, 216, 306, 406 Separator member (separator for internal combustion engine)
8, 308, 708 PCV valve (control valve)
9, 209, 309 Tube member (blow-by gas passage)
10, 210 Engine body (Internal combustion engine body)
DESCRIPTION OF SYMBOLS 10a Crankshaft 10b Outer side surface 15 Combustion chamber 30 Oil storage part 31 Opening part 61b Upper end part 62,262,362 Suction port 62b Lower end 64,364,464 Discharge port 67,267 Upper inflow regulation part (liquid oil inflow regulation part)
100, 150, 160, 200, 250, 300, 400, 500, 600 engine (internal combustion engine)
368 Lower inflow restriction part (liquid oil inflow restriction part)
401 Vehicle 406a First suction path 406b Discharge path 406c, 506c, 606c Second suction path 466 One-way valve A Rotation axis

Claims (15)

  1.  クランクシャフトと、オイルが貯留されるオイル貯留部とを含む内燃機関本体と、
     前記内燃機関本体の外側面に取り付けられ、前記内燃機関本体からブローバイガスが流入する吸込口を含み、前記内燃機関本体からのブローバイガスを気液分離するためのセパレータ部材とを備え、
     前記セパレータ部材の前記吸込口は、前記クランクシャフトの回転軸線よりも下方で、かつ、前記オイル貯留部に貯留されたオイルの油面よりも上方に配置されている、内燃機関。
    An internal combustion engine body including a crankshaft and an oil storage part in which oil is stored;
    A separator member attached to an outer surface of the internal combustion engine main body, including a suction port through which blow-by gas flows from the internal combustion engine main body; and a separator member for gas-liquid separation of the blow-by gas from the internal combustion engine main body,
    The internal combustion engine, wherein the suction port of the separator member is disposed below a rotation axis of the crankshaft and above an oil level of oil stored in the oil storage part.
  2.  前記セパレータ部材は、前記クランクシャフトの延びる方向に沿って延びる前記内燃機関本体の前記外側面に取り付けられている、請求項1に記載の内燃機関。 2. The internal combustion engine according to claim 1, wherein the separator member is attached to the outer side surface of the internal combustion engine main body extending along a direction in which the crankshaft extends.
  3.  前記吸込口は、前記セパレータ部材の下部に設けられており、
     前記吸込口の下端は、前記オイル貯留部に貯留されたオイルの油面よりも上方に配置されている、請求項1または2に記載の内燃機関。
    The suction port is provided in the lower part of the separator member,
    The internal combustion engine according to claim 1 or 2, wherein a lower end of the suction port is disposed above an oil level of oil stored in the oil storage section.
  4.  前記吸込口は、上下方向に延びる縦長形状を有している、請求項1~3のいずれか1項に記載の内燃機関。 The internal combustion engine according to any one of claims 1 to 3, wherein the suction port has a vertically long shape extending in a vertical direction.
  5.  前記セパレータ部材は、前記セパレータ部材の上端近傍に設けられ、前記セパレータ部材内を通過したブローバイガスを排出する排出口をさらに含む、請求項1~4のいずれか1項に記載の内燃機関。 The internal combustion engine according to any one of claims 1 to 4, wherein the separator member further includes a discharge port that is provided near an upper end of the separator member and discharges blow-by gas that has passed through the separator member.
  6.  前記排出口に直接的に取り付けられ、ブローバイガスの排出量を制御する制御弁をさらに備える、請求項5に記載の内燃機関。 The internal combustion engine according to claim 5, further comprising a control valve that is directly attached to the discharge port and controls a discharge amount of blow-by gas.
  7.  前記排出口は、前記セパレータ部材の上端部に形成されており、
     前記制御弁は、前記上端部から上方に突出するように前記排出口に直接的に取り付けられている、請求項6に記載の内燃機関。
    The discharge port is formed at the upper end of the separator member,
    The internal combustion engine according to claim 6, wherein the control valve is directly attached to the discharge port so as to protrude upward from the upper end portion.
  8.  前記セパレータ部材は、前記クランクシャフトの延びる方向に沿って延びる前記内燃機関本体の前記外側面に取り付けられており、
     前記内燃機関本体の前記セパレータ部材が取り付けられる前記外側面のうちの前記セパレータ部材よりも上方にインテークマニホールドが取り付けられており、
     前記セパレータ部材の前記排出口から排出されたブローバイガスを前記インテークマニホールドに導くブローバイガス通路部をさらに備える、請求項5~7のいずれか1項に記載の内燃機関。
    The separator member is attached to the outer surface of the internal combustion engine body extending along a direction in which the crankshaft extends;
    An intake manifold is attached above the separator member of the outer surface to which the separator member of the internal combustion engine body is attached;
    The internal combustion engine according to any one of claims 5 to 7, further comprising a blow-by gas passage portion that guides the blow-by gas discharged from the discharge port of the separator member to the intake manifold.
  9.  前記内燃機関本体は、シリンダブロックと、シリンダブロックの下方に配置されるクランクケースとを含み、
     前記クランクケースには、前記セパレータ部材の前記吸込口に対応する形状を有し、前記吸込口と連通する開口部が設けられている、請求項1~8のいずれか1項に記載の内燃機関。
    The internal combustion engine body includes a cylinder block and a crankcase disposed below the cylinder block,
    The internal combustion engine according to any one of claims 1 to 8, wherein the crankcase has a shape corresponding to the suction port of the separator member, and is provided with an opening communicating with the suction port. .
  10.  前記セパレータ部材は、前記内燃機関本体の内側に突出するように形成され、前記吸込口を介して前記内燃機関本体内の液状オイルが前記セパレータ部材の内部に流入するのを規制する液状オイル流入規制部を含む、請求項1~9のいずれか1項に記載の内燃機関。 The separator member is formed so as to protrude to the inside of the internal combustion engine body, and the liquid oil inflow regulation that restricts the liquid oil in the internal combustion engine body from flowing into the separator member through the suction port The internal combustion engine according to any one of claims 1 to 9, further comprising a portion.
  11.  前記液状オイル流入規制部は、前記セパレータ部材の一部が前記内燃機関本体の内側に突出することによって、前記セパレータ部材と一体的に形成されている、請求項10に記載の内燃機関。 11. The internal combustion engine according to claim 10, wherein the liquid oil inflow restricting portion is formed integrally with the separator member by projecting a part of the separator member inside the main body of the internal combustion engine.
  12.  前記液状オイル流入規制部は、前記吸込口を上側から覆う、ひさし形状の上側流入規制部を有する、請求項10または11に記載の内燃機関。 The internal combustion engine according to claim 10 or 11, wherein the liquid oil inflow restricting portion includes an eaves-shaped upper inflow restricting portion that covers the suction port from above.
  13.  前記セパレータ部材は、前記燃焼室よりも下方で前記内燃機関本体の内部と連通する第1吸込経路と、前記内燃機関本体に吸気を導入する吸気装置の内部と連通する吐出経路と、前記燃焼室よりも上方で前記内燃機関本体の内部と連通する第2吸込経路とに接続されており、
     前記第2吸込経路には、閉弁状態で設けられ、前記セパレータ部材内の負圧の増大に基づいて開放される一方向バルブが設けられている、請求項1~12のいずれか1項に記載の内燃機関。
    The separator member includes a first suction path that communicates with the interior of the internal combustion engine body below the combustion chamber, a discharge path that communicates with the interior of an intake device that introduces intake air into the internal combustion engine body, and the combustion chamber Connected to a second suction path communicating with the inside of the internal combustion engine body above
    The one-way valve according to any one of claims 1 to 12, wherein the second suction path is provided with a one-way valve that is provided in a valve-closed state and is opened based on an increase in negative pressure in the separator member. The internal combustion engine described.
  14.  前記内燃機関本体は、前記燃焼室よりも上方に配置されたシリンダヘッドカバーを含み、
     前記第2吸込経路は、前記シリンダヘッドカバーの内部と連通している、請求項13に記載の内燃機関。
    The internal combustion engine main body includes a cylinder head cover disposed above the combustion chamber,
    The internal combustion engine according to claim 13, wherein the second suction path communicates with the inside of the cylinder head cover.
  15.  クランクシャフトと、オイルが貯留されるオイル貯留部とを含む内燃機関本体の外側面に取り付けられる内燃機関用セパレータであって、
     前記内燃機関本体からブローバイガスが流入する吸込口を含み、前記内燃機関本体からのブローバイガスを気液分離するためのセパレータ本体を備え、
     前記セパレータ本体の前記吸込口は、前記クランクシャフトの回転軸線よりも下方で、かつ、前記オイル貯留部に貯留されたオイルの油面よりも上方に配置されている、内燃機関用セパレータ。
    A separator for an internal combustion engine that is attached to an outer surface of an internal combustion engine main body including a crankshaft and an oil storage portion in which oil is stored,
    Including a suction port through which blow-by gas flows from the internal combustion engine body, comprising a separator body for gas-liquid separation of blow-by gas from the internal combustion engine body;
    The separator for an internal combustion engine, wherein the suction port of the separator body is disposed below the rotation axis of the crankshaft and above the oil level of the oil stored in the oil reservoir.
PCT/JP2015/074017 2014-09-08 2015-08-26 Internal combustion engine and separator for internal combustion engine WO2016039142A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014181948A JP6413519B2 (en) 2014-09-08 2014-09-08 Internal combustion engine
JP2014-181948 2014-09-08
JP2014182232A JP6413520B2 (en) 2014-09-08 2014-09-08 Internal combustion engine and oil separator
JP2014-182144 2014-09-08
JP2014182144A JP2016056712A (en) 2014-09-08 2014-09-08 Internal combustion engine separator
JP2014-182232 2014-09-08

Publications (1)

Publication Number Publication Date
WO2016039142A1 true WO2016039142A1 (en) 2016-03-17

Family

ID=55458897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074017 WO2016039142A1 (en) 2014-09-08 2015-08-26 Internal combustion engine and separator for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2016039142A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110295969A (en) * 2018-03-23 2019-10-01 丰田自动车株式会社 Internal combustion engine and its manufacturing method
US10823019B2 (en) * 2018-07-31 2020-11-03 Ford Global Technologies, Llc Ducted positive crankcase ventilation plenum
CN114251156A (en) * 2020-09-21 2022-03-29 深圳臻宇新能源动力科技有限公司 Oil-gas separator
JP7371518B2 (en) 2020-02-12 2023-10-31 マツダ株式会社 Oil separation structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190109A (en) * 1985-02-19 1986-08-23 Yanmar Diesel Engine Co Ltd Blazer mechanism of tiltable internal-combustion engine
JPH0252912U (en) * 1988-10-11 1990-04-17
JPH0673307U (en) * 1993-03-26 1994-10-18 株式会社クボタ Breather device for air-cooled vertical axis gasoline engine
JPH08246831A (en) * 1995-03-10 1996-09-24 Toyota Motor Corp Dual system lubricating type internal combustion engine
JPH10274024A (en) * 1997-03-28 1998-10-13 Kubota Corp Breather device for engine
JP2008106627A (en) * 2006-10-23 2008-05-08 Mazda Motor Corp Intake device for engine
JP2009156226A (en) * 2007-12-27 2009-07-16 Toyota Motor Corp Internal combustion engine
JP2012158994A (en) * 2011-01-29 2012-08-23 Mazda Motor Corp Front part structure of engine for vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190109A (en) * 1985-02-19 1986-08-23 Yanmar Diesel Engine Co Ltd Blazer mechanism of tiltable internal-combustion engine
JPH0252912U (en) * 1988-10-11 1990-04-17
JPH0673307U (en) * 1993-03-26 1994-10-18 株式会社クボタ Breather device for air-cooled vertical axis gasoline engine
JPH08246831A (en) * 1995-03-10 1996-09-24 Toyota Motor Corp Dual system lubricating type internal combustion engine
JPH10274024A (en) * 1997-03-28 1998-10-13 Kubota Corp Breather device for engine
JP2008106627A (en) * 2006-10-23 2008-05-08 Mazda Motor Corp Intake device for engine
JP2009156226A (en) * 2007-12-27 2009-07-16 Toyota Motor Corp Internal combustion engine
JP2012158994A (en) * 2011-01-29 2012-08-23 Mazda Motor Corp Front part structure of engine for vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110295969A (en) * 2018-03-23 2019-10-01 丰田自动车株式会社 Internal combustion engine and its manufacturing method
CN110295969B (en) * 2018-03-23 2021-11-05 丰田自动车株式会社 Internal combustion engine and method for manufacturing the same
US10823019B2 (en) * 2018-07-31 2020-11-03 Ford Global Technologies, Llc Ducted positive crankcase ventilation plenum
JP7371518B2 (en) 2020-02-12 2023-10-31 マツダ株式会社 Oil separation structure
CN114251156A (en) * 2020-09-21 2022-03-29 深圳臻宇新能源动力科技有限公司 Oil-gas separator

Similar Documents

Publication Publication Date Title
CN102076933B (en) Internal combustion engine oil tank arrangement
WO2016039142A1 (en) Internal combustion engine and separator for internal combustion engine
US7556029B2 (en) Oil separator for an engine
JP2009013941A (en) Breather device of engine
JP2017219014A (en) Gas-liquid separation device for blow-by gas of engine
JP4486582B2 (en) Internal combustion engine
JP2006220149A (en) Ventilating device in crank chamber of combustion engine and, especially, combustion engine having v-shaped cylinder structure
JP2009156226A (en) Internal combustion engine
KR100339509B1 (en) Engine crankcase ventilation system including a blowby gas passage defined between crankcase members
JP5906758B2 (en) Oil separator for blow-by gas processing equipment
JP6010011B2 (en) Breather system for internal combustion engines
JP5516112B2 (en) Blow-by gas reduction device
CN108952886B (en) Blowby gas treatment device for internal combustion engine
JP6414150B2 (en) Engine oil supply device
JP2009068405A (en) Lubrication device for engine
WO2016039143A1 (en) Internal combustion engine
JP4661862B2 (en) Oil supply structure for internal combustion engine
JP6413520B2 (en) Internal combustion engine and oil separator
RU2461725C1 (en) Internal combustion engine oil tank
JPH053692Y2 (en)
JP6413519B2 (en) Internal combustion engine
JP3331763B2 (en) Blow-by gas ventilation system for internal combustion engine
JP2009052421A (en) Lubricating device of engine
JP2020197156A (en) Water pump integrated internal combustion engine for motor vehicle
JP2016098645A (en) Internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15839492

Country of ref document: EP

Kind code of ref document: A1