WO2016039124A1 - Detection device and detection method - Google Patents

Detection device and detection method Download PDF

Info

Publication number
WO2016039124A1
WO2016039124A1 PCT/JP2015/073670 JP2015073670W WO2016039124A1 WO 2016039124 A1 WO2016039124 A1 WO 2016039124A1 JP 2015073670 W JP2015073670 W JP 2015073670W WO 2016039124 A1 WO2016039124 A1 WO 2016039124A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
heating
liquid
temperature
amount
Prior art date
Application number
PCT/JP2015/073670
Other languages
French (fr)
Japanese (ja)
Inventor
恵美 福永
藤岡 一志
伸佳 石野
義裕 假家
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2016547339A priority Critical patent/JPWO2016039124A1/en
Publication of WO2016039124A1 publication Critical patent/WO2016039124A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • This disclosure relates to a detection apparatus and a detection method, and more particularly, to a detection apparatus and a detection method for detecting biological particles in a liquid.
  • particles in the liquid are collected as the first step, and particles derived from the organism are detected from the collected material as the second step.
  • a method of evaporating a liquid portion by mist-forming a specimen in the first stage and performing measurement by staining with a fluorescent labeling reagent in the second stage is disclosed in International Publication No. 2013/132630 (Patent Document 1).
  • Patent Document 2 As another method for collecting particles in a liquid, there is a method for filtering a specimen as disclosed in JP 2013-15512 A (Patent Document 2).
  • the method of performing the measurement by staining with a fluorescent labeling reagent may involve a complicated reagent spraying process, an expensive reagent, and a complicated apparatus structure. It is a problem.
  • a method disclosed in International Publication No. 2011/104770 Patent Document 3 can be employed.
  • the collected particles are heated, and the difference between the fluorescence intensities from the preceding and succeeding particles is applied to the relationship between the difference in fluorescence intensity stored in advance and the amount of biological particles.
  • the amount of living organism-derived particles can be calculated.
  • this detection method is also referred to as “heated fluorescence detection method”. Since this method does not involve the use or spraying of reagents, the above-described problems can be solved.
  • Patent Document 2 since the method disclosed in Patent Document 2 is not a collection method for the heating fluorescence detection method, there is a problem that it is not suitable for heating after collection and measurement of fluorescence intensity.
  • This indication is made in view of such a problem, and one of the purposes is detection which can detect particles derived from living organisms with high accuracy by collecting particles from liquid with high accuracy.
  • An apparatus and detection method are provided.
  • the detection device is a detection device for detecting biological particles in a liquid, and collects particles contained in the liquid, a light emitting element, a light receiving element for receiving fluorescence. And a computing device for measuring the fluorescence intensity before and after heating of the particles collected by the collection mechanism and calculating the amount of biologically derived particles in the liquid based on the amount of change in fluorescence intensity before and after heating With.
  • the collection mechanism includes separation means for separating particles from the liquid.
  • the separating means includes a heater that can be heated at a temperature at which the liquid collected by the collecting mechanism can be heated and evaporated.
  • the separation means performs heating and evaporation at the first temperature and performs heating for calculating the amount of particles at the second temperature, and the first temperature is lower than the second temperature.
  • the first temperature is 100 ° C. or lower and the second temperature is higher than 100 ° C.
  • the separation means includes a filter capable of separating particles from the liquid by filtration.
  • the detection method is a method for detecting biologically-derived particles in a liquid, the step of collecting particles, the step of measuring the fluorescence intensity of the collected particles, and the collected particles The step of measuring the fluorescence intensity of the collected particles after heating, and the step of calculating the amount of biologically derived particles in the liquid based on the amount of change in the fluorescence intensity of the particles before and after heating.
  • particles in a liquid can be collected with high accuracy, and biological particles among the particles can be detected with high accuracy.
  • FIG. 1 is a schematic diagram for explaining a configuration of a detection apparatus 100 according to the present embodiment.
  • the detection device 100 includes a light receiving element 9, a signal processing unit 30, a heater 91, and a measurement unit 40.
  • the light receiving element 9 receives light emitted from the surface of the collecting plate 12 which is a part of the collecting mechanism.
  • the collection plate 12 can collect particles in the liquid.
  • the signal processing unit 30 is electrically connected to the light receiving element 9 and processes a sensor signal from the light receiving element 9.
  • the heater 91 heats the particles collected on the surface of the collection plate 12.
  • the measurement unit 40 is electrically connected to the heater 91 and the signal processing unit 30 and measures the amount of biological particles by controlling the entire detection device 100.
  • the surface of the collecting plate 12 is irradiated with light from the light emitting element 6.
  • the light emitting element 6 is preferably a semiconductor laser or an LED (Light Emitting Diode) element.
  • the wavelength of the light emitted from the light emitting element 6 may be any wavelength as long as biological particles can be excited to emit fluorescence, and may be in the ultraviolet or visible region.
  • the wavelength of light emitted from the light emitting element 6 is preferably 300 nm to 450 nm.
  • the light receiving element 9 receives the fluorescence from the surface of the collecting plate 12 by irradiating the surface of the collecting plate 12 with light having such a wavelength.
  • the light emitting element 6 is also connected to the measurement unit 40, and the light emission is controlled by the measurement unit 40.
  • a lens and an aperture are arranged in front of the light emitting element 6 in the irradiation direction.
  • the width of the light from the light emitting element 6 is uniform or the light has a predetermined size.
  • a condensing lens for condensing the fluorescence from the surface of the collecting plate 12 onto the light receiving element 9 and the irradiation light entering the light receiving element 9.
  • a filter for preventing is arranged.
  • the particles collected on the surface of the collecting plate 12 are heated by the heater 91. Heating of the heater 91 is controlled by the measurement unit 40.
  • a ceramic heater, a far infrared heater, a far infrared lamp, or the like is preferably used as the heater 91.
  • the heater 91 is disposed on the surface (back surface) opposite to the surface on which the particles are collected with respect to the collection plate 12, and heats the collection plate 12 from the back surface side.
  • apparatuses such as the light emitting element 6 and the light receiving element 9 which are arrange
  • the detection principle of the biological particle in the detection apparatus 100 will be described with reference to FIGS.
  • the biological particles refer to particles derived from microorganisms, fungi such as mold, and organisms including pollen and mites.
  • the particles in the liquid are also referred to as mixed particles.
  • the mixed particles When the mixed particles are irradiated with ultraviolet light or blue light, the biological particles emit fluorescence.
  • the mixed particles include chemical fiber dust (hereinafter also referred to as dust) that emits fluorescence, in addition to biological particles. Therefore, the amount of biologically derived particles cannot be measured only by detecting the fluorescence emitted from the mixed particles.
  • the detection method previously developed by the applicant of the present application and disclosed in Patent Document 3 is adopted. This method uses the fact that the fluorescence intensity (fluorescence amount) changes when biological particles are heated, but the fluorescence intensity does not change even when dust such as chemical fibers is heated.
  • FIG. 2 is a graph showing the fluorescence intensity of biological particles before and after heating.
  • FIG. 3 is a graph showing the fluorescence intensity of the dust before and after heating. 2 and 3 show the fluorescence intensity on the vertical axis and the wavelength of the fluorescent light on the horizontal axis.
  • the amount of fluorescence after heating is remarkably increased in comparison with the amount of fluorescence before heating in a wide wavelength range.
  • the amount of fluorescence after heating and the amount of fluorescence before heating are substantially the same.
  • the amount of biological particles contained in the mixed particles can be calculated by measuring the amount of fluorescence before and after heating the mixed particles and obtaining the difference in the amount of fluorescence before and after heating.
  • the detection operation of the detection apparatus 100 includes a mixed particle collecting step, a mixed particle fluorescence measurement step before heating, a mixed particle heating step, a mixed particle fluorescence measurement step after heating, and the amount of biological particles. Including the step of calculating.
  • FIG. 4, FIG. 5 and FIG. 6 are schematic diagrams for explaining the collection process.
  • FIG. 7 is a schematic diagram for explaining the fluorescence measurement process before heating.
  • FIG. 8 is a schematic diagram for explaining the heating step.
  • FIG. 9 is a graph showing the correlation between the amount of increase in fluorescence due to heating and the concentration of biological particles. In FIG. 9, the vertical axis indicates the amount of increase in fluorescence due to heating, and the horizontal axis indicates the concentration of biological particles.
  • the detection device 100 detects biological particles contained in the liquid. Therefore, as shown in FIG. 4, in the collecting step, as an example, a liquid specimen is dropped onto the surface of the collecting plate 12.
  • the specimen includes mixed particles 600 including biological particles 600A and dust 600B such as chemical fiber dust.
  • the heater 91 may be used for heating the liquid on the surface of the collection plate 12, or another heater may be used, and the collection plate 12 after heating may be set in the detection device 100.
  • the liquid to be dropped is a concentrated liquid that is a specimen.
  • the concentration method may be based on general heating, or may be filtered once using a filter, and the mixed particles 600 may be detached from the filtered filter in a liquid containing a surfactant.
  • excitation light is irradiated toward the mixed particles 600 collected on the collection plate 12 from the light emitting element 6 such as a semiconductor laser.
  • the lens condenses the fluorescence emitted from the mixed particles 600 irradiated with the excitation light, and the light receiving element 9 receives the fluorescence.
  • the detection apparatus 100 heats the collection plate 12 with a heater 91 attached to the back surface of the collection plate 12, thereby collecting the mixed particles 600 collected on the collection plate 12. Heat. After heating, the collection plate 12 is air-cooled.
  • the excitation light is irradiated from the light emitting element 6 toward the mixed particles 600 collected on the collecting plate 12 as in the case of FIG.
  • the fluorescence emitted from the mixed particles 600 irradiated with the excitation light is collected by the lens and received by the light receiving element 9.
  • the detection apparatus 100 is based on the difference ⁇ F1 obtained by subtracting the fluorescence amount before heating from the fluorescence amount after heating based on the relationship between the increase amount ⁇ F of the fluorescence amount illustrated in FIG. 9 and the biological particle concentration N.
  • the concentration (particles / m 3 ) of biological particles is calculated. Note that the correlation between the increase ⁇ F and the biological particle concentration N is obtained by conducting an experiment in advance.
  • FIG. 10 is a block diagram illustrating an example of a functional configuration of the detection apparatus 100 for performing the above-described detection operation.
  • FIG. 10 shows a configuration example in which the function of the signal processing unit 30 is realized mainly by an electric circuit.
  • a configuration realized by a CPU (Central Processing Unit) included in the signal processing unit 30 executing a predetermined program may be used.
  • the measurement unit 40 is realized by software is shown.
  • some of these functions may be realized by a hardware configuration such as an electric circuit.
  • the signal processing unit 30 includes a current-voltage conversion circuit 34 connected to the light receiving element 9 and an amplification circuit 35 connected to the current-voltage conversion circuit 34.
  • the measurement unit 40 includes a control unit 41, a storage unit 42, a clock generation unit 43, and a drive unit 48.
  • the light receiving element 9 inputs the amount of received light to the signal processing unit 30.
  • the amount of received light is a current signal (sensor signal) corresponding to the fluorescence intensity on the surface of the collection plate 12.
  • the current signal is input to the current-voltage conversion circuit 34.
  • the current-voltage conversion circuit 34 detects the peak value of the current signal input from the light receiving element 9, that is, the peak current value H, and converts it into the voltage value Eh.
  • the voltage value Eh is amplified to a preset amplification factor by the amplifier circuit 35, and the amplified voltage value Eh is output to the measurement unit 40.
  • the control unit 41 of the measurement unit 40 receives an input of the voltage value Eh from the signal processing unit 30 and sequentially stores the voltage value Eh representing the fluorescence intensity in the storage unit 42.
  • the clock generation unit 43 generates a clock signal and outputs it to the control unit 41.
  • the control unit 41 outputs a control signal for controlling ON / OFF of heating of the heater 91 to the driving unit 48 at timing based on the clock signal, and controls ON / OFF of heating of the heater 91.
  • the control unit 41 is electrically connected to the light emitting element 6 as shown in FIG. 10, and also controls ON / OFF of the light emitting element 6 at a timing based on the clock signal.
  • control unit 41 also controls the heating temperature of the heater 91.
  • the control unit 41 performs heating at the first temperature T1 in order to vaporize the liquid on the collecting plate 12 in the collecting step.
  • the control unit 41 performs heating at the second temperature T2 in the above heating process as the second heating.
  • the temperature T1 and the temperature T2 have a relationship of T1 ⁇ T2. That is, the control unit 41 performs the first heating at a temperature lower than that of the second heating.
  • the temperature T1 is a temperature at which the liquid dropped on the collection plate 12 can be evaporated and is 100 ° C. or lower (T1 ⁇ 100 ° C.).
  • the temperature T2 is a temperature higher than 100 ° C.
  • the temperature T1 is 80 ° C. to 100 ° C. (80 ° C. ⁇ T1 ⁇ 100 ° C.), and the temperature T2 is 100 ° C. to 250 ° C. (100 ° C. ⁇ T2 ⁇ 250 ° C.).
  • the temperature T1 is a temperature range in which the effect expected in the heating step, that is, the fluorescence intensity from the biological particles can be expected to increase.
  • the control unit 41 includes a calculation unit 411.
  • the calculation unit 411 calculates the amount of biological particles in the liquid using the voltage value Eh stored in the storage unit 42. That is, the calculation unit 411 calculates the difference between the fluorescence intensity F1 before the second heating and the fluorescence intensity F2 after the second heating as the increase amount ⁇ F. As described above, the amount of increase ⁇ F is related to the amount of biological particles (number of particles, particle concentration, etc.).
  • the calculation unit 411 stores a correlation between the increase amount ⁇ F illustrated in FIG. 9 and the biological particle concentration N in advance. Then, the calculation unit 411 calculates the amount of biologically derived particles in the collected particles by substituting the calculated increase amount ⁇ F into the correlation.
  • the increase amount ⁇ F uses the difference in fluorescence intensity before and after the heat treatment for a predetermined heating amount (product of a predetermined heating temperature and a heating time ⁇ t). Instead of ⁇ F, the ratio of the fluorescence intensity before and after the heat treatment may be used.
  • FIG. 11 is a flowchart showing the flow of detection operation in the detection apparatus 100.
  • the detection apparatus 100 executes an operation of separating particles from the specimen that is a liquid (step S1).
  • the detection apparatus 100 heats the liquid dropped on the surface of the collection plate 12 at the first temperature T1.
  • the temperature T1 is lower than the second temperature T2, and is preferably 100 ° C. or lower (T1 ⁇ 100 ° C.). More preferably, the first temperature T1 is 80 ° C. to 100 ° C. (80 ° C. ⁇ T1 ⁇ 100 ° C.).
  • the detection apparatus 100 performs the operation
  • the cooling operation may also be performed after the second heating which is step S3 described later.
  • the detection apparatus 100 performs an operation of measuring the fluorescence intensity F1 before the second heating from the surface of the collection plate 12 (step S2). That is, the signal processing unit 30 converts the current signal from the light receiving element 9 into the voltage value Eh and inputs it to the measurement unit 40. Then, the measurement unit 40 stores the voltage value Eh representing the fluorescence intensity F1 in the storage unit 42.
  • the control unit 41 of the measurement unit 40 can control the light emitting element 6, in step S ⁇ b> 2, the control unit 41 further controls the light emitting element 6 to emit light.
  • the second temperature T2 is higher than the first temperature T1, and is preferably higher than 100 ° C. (T2> 100 ° C.). More preferably, the second temperature T2 is 100 ° C. to 250 ° C. (100 ° C. ⁇ T2 ⁇ 250 ° C.).
  • the detection apparatus 100 performs an operation of measuring the fluorescence intensity F2 after the second heating from the surface of the collection plate 12 (step S4).
  • the operation in step S4 is the same as that in step S2.
  • the detection apparatus 100 calculates the amount of biological particles collected on the collection plate 12 (step S5). More specifically, first, the control unit 41 of the measurement unit 40 calculates the difference (increase ⁇ F) between the fluorescence intensities F1 and F2 before and after the second heating from the surface of the collection plate 12 by the calculation unit 411. Subsequently, the control unit 41 stores in advance a correlation between the increase amount ⁇ F illustrated in FIG. 9 and the biological particle concentration N, and the increase amount ⁇ F calculated by the calculation unit 411 is stored in the correlation. By substituting into the relationship, the amount of biological particles in the collected particles is calculated.
  • the detection apparatus 100 By using the detection apparatus 100 according to the present embodiment, the difference in properties due to the heat treatment between the fluorescence from the biological particles and the fluorescence from the dust is utilized, and the biological particles are derived from the mixed particles contained in the liquid specimen. Particles can be detected. At this time, the detection apparatus 100 separates particles from the liquid by heating and vaporizing the liquid dropped on the surface of the collection plate 12. The method of collecting separately by this method can prevent the surrounding particles from mixing in and dissipate the particles and can collect the particles more accurately than the method of collecting by misting and spraying on the surface of the collecting plate. .
  • the detection apparatus 100 heats at a temperature lower than the heating for detecting the biological particles.
  • the detection apparatus 100 it is possible to detect biologically-derived particles contained in the specimen that is a liquid with high accuracy.
  • the detection principle of the first embodiment describes a case where a method of heating and evaporating a liquid is employed in the separation step of the mixed particle collecting step.
  • the separation step is not limited to the above method.
  • the method employed in the separation step of the present embodiment is a method of filtering using a filter as shown in FIG.
  • the liquid is filtered using the filter 21 that can be set on the collection plate 12.
  • the case where the filter 21 after filtration is set on the surface of the collection plate 12 is assumed to be collection on the collection plate 12.
  • the filter has fineness that can separate particles from the liquid.
  • step S1 the detection apparatus 100 receives a set of filters that can be set on the collection plate 12 after separating the particles from the liquid that is the specimen.
  • the method employed in the separation step of the present embodiment includes a step of filtering using a filter and a step of vaporizing the liquid by heating.
  • the particles are collected in a state of being completely separated from the liquid. Or it collects in the state by which the liquid component to which particle adheres was reduced significantly. Then, by passing through the process of heating and vaporizing a liquid, it can prevent that the heating efficiency in 2nd heating falls with the liquid adhering to particle
  • the separation method employed in the separation step is not limited to a specific method such as a method of heating and vaporizing a liquid, a method of filtering using a filter, and a method of combining them.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

In the present invention, a detection device collects particles within a liquid (S1) and measures the fluorescence intensity of the collected particles (S2). Then, the detection device heats the collected particles (S3) and measures the fluorescence intensity of the collected particles after such particles have been heated (S4). The detection device calculates the amount of organism-derived particles within the liquid on the basis of the amount of change, before and after heating, in the fluorescence intensity of the collected particles (S5).

Description

検出装置および検出方法Detection apparatus and detection method
 この開示は検出装置および検出方法に関し、特に、液体中の生物由来の粒子を検出するための検出装置および検出方法に関する。 This disclosure relates to a detection apparatus and a detection method, and more particularly, to a detection apparatus and a detection method for detecting biological particles in a liquid.
 液体中の微生物等の生物由来の粒子を検出する際には、第一段階として液体中の粒子を収集し、第二段階として収集物の中から生物由来の粒子を検出する。第一段階では検体をミスト化することで液体部分を蒸発させ、第二段階では蛍光標識試薬による染色を行ない測定する方法が国際公開第2013/132630号(特許文献1)に開示されている。 When detecting particles derived from organisms such as microorganisms in the liquid, particles in the liquid are collected as the first step, and particles derived from the organism are detected from the collected material as the second step. A method of evaporating a liquid portion by mist-forming a specimen in the first stage and performing measurement by staining with a fluorescent labeling reagent in the second stage is disclosed in International Publication No. 2013/132630 (Patent Document 1).
 液体中の粒子を収集する他の方法として、特開2013-15512号公報(特許文献2)に開示されているような、検体をろ過する方法がある。 As another method for collecting particles in a liquid, there is a method for filtering a specimen as disclosed in JP 2013-15512 A (Patent Document 2).
国際公開第2013/132630号International Publication No. 2013/132630 特開2013-15512号公報JP 2013-15512 A 国際公開第2011/104770号International Publication No. 2011/104770
 特許文献1の第二段階の検出工程では、蛍光標識試薬による染色を行ない測定する方法は、試薬の噴霧工程が煩雑であること、試薬が高価であること、装置の構造が複雑であることが課題である。当該課題を解決する為に、国際公開第2011/104770号(特許文献3)に開示された方法が採用できる。すなわち、収集された粒子を加熱し、その前後の粒子からの蛍光強度の差分を、予め記憶されている蛍光強度の差分と生物由来の粒子量との関係に適用することで、収集された粒子のうちの生物由来の粒子の量を算出することができる。以下の説明においては、この検出方法を「加熱蛍光検出法」とも称する。この方法は、試薬の使用や噴霧を伴わないため、上述の課題を解決することができる。 In the detection process in the second stage of Patent Document 1, the method of performing the measurement by staining with a fluorescent labeling reagent may involve a complicated reagent spraying process, an expensive reagent, and a complicated apparatus structure. It is a problem. In order to solve the problem, a method disclosed in International Publication No. 2011/104770 (Patent Document 3) can be employed. In other words, the collected particles are heated, and the difference between the fluorescence intensities from the preceding and succeeding particles is applied to the relationship between the difference in fluorescence intensity stored in advance and the amount of biological particles. The amount of living organism-derived particles can be calculated. In the following description, this detection method is also referred to as “heated fluorescence detection method”. Since this method does not involve the use or spraying of reagents, the above-described problems can be solved.
 しかしながら、加熱蛍光検出法に特許文献1の第一段階の収集方法を採用すると、噴霧の際に、液中の生物由来の粒子が液外に放出されてしまったり、空気中の生物由来の粒子が液中に混入してしまったりする可能性がある。そのため、検出精度が低下する可能性がある。 However, if the collection method of the first stage of Patent Document 1 is adopted for the heating fluorescence detection method, biological particles in the liquid may be released out of the liquid during spraying, or biological particles in the air. May get mixed in the liquid. As a result, the detection accuracy may be reduced.
 また、特許文献2に開示されている方法は加熱蛍光検出法のための収集方法ではないため、収集の後の加熱や蛍光強度の測定に不向きであるという問題がある。 Further, since the method disclosed in Patent Document 2 is not a collection method for the heating fluorescence detection method, there is a problem that it is not suitable for heating after collection and measurement of fluorescence intensity.
 本開示はこのような問題に鑑みてなされたものであって、その目的の1つは、液体から粒子を高精度で収集することで、高精度で生物由来の粒子を検出することができる検出装置および検出方法を提供することである。 This indication is made in view of such a problem, and one of the purposes is detection which can detect particles derived from living organisms with high accuracy by collecting particles from liquid with high accuracy. An apparatus and detection method are provided.
 一実施の形態に従うと、検出装置は液体中の生物由来の粒子を検出するための検出装置であって、発光素子と、蛍光を受光するための受光素子と、液体に含まれる粒子を収集するための収集機構と、収集機構に収集された粒子の加熱前後の蛍光強度を測定し、加熱前後の蛍光強度の変化量に基づいて、液体中の生物由来の粒子量を算出するための演算装置とを備える。 According to one embodiment, the detection device is a detection device for detecting biological particles in a liquid, and collects particles contained in the liquid, a light emitting element, a light receiving element for receiving fluorescence. And a computing device for measuring the fluorescence intensity before and after heating of the particles collected by the collection mechanism and calculating the amount of biologically derived particles in the liquid based on the amount of change in fluorescence intensity before and after heating With.
 好ましくは、収集機構は、液体から粒子を分離するための分離手段を含む。
 好ましくは、分離手段は、収集機構によって収集された前記液体を加熱蒸発させ得る温度で加熱可能なヒータを含む。
Preferably, the collection mechanism includes separation means for separating particles from the liquid.
Preferably, the separating means includes a heater that can be heated at a temperature at which the liquid collected by the collecting mechanism can be heated and evaporated.
 より好ましくは、分離手段は、加熱蒸発を第1の温度で行ない、粒子量を算出するための加熱を第2の温度で行ない、第1の温度は、第2の温度よりも低い。 More preferably, the separation means performs heating and evaporation at the first temperature and performs heating for calculating the amount of particles at the second temperature, and the first temperature is lower than the second temperature.
 より好ましくは、第1の温度は100℃以下であり、第2の温度は100℃よりも高い。 More preferably, the first temperature is 100 ° C. or lower and the second temperature is higher than 100 ° C.
 好ましくは、分離手段は、液体から粒子をろ過により分離可能なフィルタを含む。
 他の実施の形態に従うと、検出方法は液体中の生物由来の粒子を検出する方法であって、粒子を収集するステップと、収集された粒子の蛍光強度を測定するステップと、収集された粒子を加熱するステップと、加熱の後に、収集された粒子の蛍光強度を測定するステップと、加熱の前後における粒子の蛍光強度の変化量に基づいて、液体中の生物由来の粒子量を算出するステップとを備える。
Preferably, the separation means includes a filter capable of separating particles from the liquid by filtration.
According to another embodiment, the detection method is a method for detecting biologically-derived particles in a liquid, the step of collecting particles, the step of measuring the fluorescence intensity of the collected particles, and the collected particles The step of measuring the fluorescence intensity of the collected particles after heating, and the step of calculating the amount of biologically derived particles in the liquid based on the amount of change in the fluorescence intensity of the particles before and after heating. With.
 ある局面によると、液体中の粒子を高精度で収集し、その粒子のうちの生物由来の粒子を高精度で検出することができる。 According to a certain aspect, particles in a liquid can be collected with high accuracy, and biological particles among the particles can be detected with high accuracy.
実施の形態にかかる検出装置の構成を説明するための概略図である。It is the schematic for demonstrating the structure of the detection apparatus concerning embodiment. 加熱前および加熱後における生物由来の粒子の蛍光強度を示すグラフである。It is a graph which shows the fluorescence intensity of the particle | grains of biological origin before a heating and after a heating. 加熱前および加熱後における粉塵の蛍光強度を示すグラフである。It is a graph which shows the fluorescence intensity of the dust before a heating and after a heating. 収集工程を説明するための模式図である。It is a schematic diagram for demonstrating a collection process. 収集工程を説明するための模式図である。It is a schematic diagram for demonstrating a collection process. 収集工程を説明するための模式図である。It is a schematic diagram for demonstrating a collection process. 蛍光測定工程を説明するための模式図である。It is a schematic diagram for demonstrating a fluorescence measurement process. 加熱工程を説明するための模式図である。It is a schematic diagram for demonstrating a heating process. 加熱による蛍光量の増加量と生物由来の粒子の濃度との相関関係を示すグラフである。It is a graph which shows the correlation with the increase amount of the fluorescence amount by heating, and the density | concentration of the particle | grains of biological origin. 検出装置の機能構成の具体例を示すブロック図である。It is a block diagram which shows the specific example of a function structure of a detection apparatus. 検出装置での検出動作の流れを表わしたフローチャートである。It is a flowchart showing the flow of the detection operation in a detection apparatus.
 以下に、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。したがって、これらの説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts and components are denoted by the same reference numerals. Their names and functions are also the same. Therefore, these descriptions will not be repeated.
 [第1の実施の形態]
 <装置構成>
 図1は、本実施の形態にかかる検出装置100の構成を説明するための概略図である。検出装置100は、受光素子9と、信号処理部30と、ヒータ91と、測定部40とを含む。受光素子9は、収集機構の一部である捕集板12の表面からの発光を受光する。捕集板12は液体中の粒子を収集することができる。信号処理部30は、受光素子9と電気的に接続されて受光素子9からのセンサ信号を処理する。ヒータ91は、捕集板12の表面に収集された粒子を加熱する。測定部40は、ヒータ91および信号処理部30と電気的に接続され、検出装置100全体を制御することで生物由来の粒子の量を測定する。
[First Embodiment]
<Device configuration>
FIG. 1 is a schematic diagram for explaining a configuration of a detection apparatus 100 according to the present embodiment. The detection device 100 includes a light receiving element 9, a signal processing unit 30, a heater 91, and a measurement unit 40. The light receiving element 9 receives light emitted from the surface of the collecting plate 12 which is a part of the collecting mechanism. The collection plate 12 can collect particles in the liquid. The signal processing unit 30 is electrically connected to the light receiving element 9 and processes a sensor signal from the light receiving element 9. The heater 91 heats the particles collected on the surface of the collection plate 12. The measurement unit 40 is electrically connected to the heater 91 and the signal processing unit 30 and measures the amount of biological particles by controlling the entire detection device 100.
 捕集板12の表面には、発光素子6から光が照射される。発光素子6は、好ましくは、半導体レーザまたはLED(Light Emitting Diode)素子である。発光素子6から照射される光の波長は、生物由来の粒子が励起されて蛍光を発し得る波長であればよく、紫外または可視いずれの領域の波長でもよい。発光素子6から照射される光の波長は、好ましくは、300nm~450nmである。このような波長の光が発光素子6から捕集板12の表面に照射されることで、受光素子9は、捕集板12の表面からの蛍光を受光することになる。好ましくは、発光素子6もまた測定部40に接続され、その発光が測定部40によって制御される。 The surface of the collecting plate 12 is irradiated with light from the light emitting element 6. The light emitting element 6 is preferably a semiconductor laser or an LED (Light Emitting Diode) element. The wavelength of the light emitted from the light emitting element 6 may be any wavelength as long as biological particles can be excited to emit fluorescence, and may be in the ultraviolet or visible region. The wavelength of light emitted from the light emitting element 6 is preferably 300 nm to 450 nm. The light receiving element 9 receives the fluorescence from the surface of the collecting plate 12 by irradiating the surface of the collecting plate 12 with light having such a wavelength. Preferably, the light emitting element 6 is also connected to the measurement unit 40, and the light emission is controlled by the measurement unit 40.
 好ましくは、発光素子6の照射方向の前方には、レンズおよびアパーチャが配置される。これにより、発光素子6からの光の幅が均一、または光が所定の大きさとなる。また、好ましくは、受光素子9の受光方向の前方には、捕集板12の表面からの蛍光を受光素子9に集光するための集光レンズと、照射光が受光素子9に入り込むのを防ぐためのフィルタとが配置される。 Preferably, a lens and an aperture are arranged in front of the light emitting element 6 in the irradiation direction. Thereby, the width of the light from the light emitting element 6 is uniform or the light has a predetermined size. Preferably, in front of the light receiving element 9 in the light receiving direction, a condensing lens for condensing the fluorescence from the surface of the collecting plate 12 onto the light receiving element 9 and the irradiation light entering the light receiving element 9. A filter for preventing is arranged.
 捕集板12の表面に収集された粒子は、ヒータ91によって加熱される。ヒータ91の加熱は、測定部40によって制御される。ヒータ91には、好適には、セラミックヒータ、遠赤外線ヒータや遠赤外線ランプなどが用いられる。 The particles collected on the surface of the collecting plate 12 are heated by the heater 91. Heating of the heater 91 is controlled by the measurement unit 40. As the heater 91, a ceramic heater, a far infrared heater, a far infrared lamp, or the like is preferably used.
 好ましくは、ヒータ91は、捕集板12に対して、粒子が収集された表面の反対側の面(裏面)に配置されて、裏面側から捕集板12を加熱する。これにより、捕集板12の表面側に配置される発光素子6および受光素子9などの機器に対する熱の影響を抑えることができる。 Preferably, the heater 91 is disposed on the surface (back surface) opposite to the surface on which the particles are collected with respect to the collection plate 12, and heats the collection plate 12 from the back surface side. Thereby, the influence of the heat with respect to apparatuses, such as the light emitting element 6 and the light receiving element 9 which are arrange | positioned at the surface side of the collection board 12, can be suppressed.
 <検出原理>
 図2~図9を用いて、検出装置100での、生物由来の粒子の検出原理について説明する。なお、生物由来の粒子とは、微生物、カビなどの菌および花粉やダニを含む生物に由来する粒子を指す。
<Detection principle>
The detection principle of the biological particle in the detection apparatus 100 will be described with reference to FIGS. The biological particles refer to particles derived from microorganisms, fungi such as mold, and organisms including pollen and mites.
 液体中には、生物由来の粒子と鉱物等とが混在している。以下、液体中の粒子を混在粒子とも称する。この混在粒子に紫外光または青色光を照射すると、生物由来の粒子は蛍光を発する。しかしながら、混在粒子には、生物由来の粒子以外にも蛍光を発する化学繊維の埃など(以下、粉塵ともいう)が含まれている。そのため、混在粒子から発せられる蛍光を検出するのみでは、生物由来の粒子量を測定することができない。 In the liquid, biological particles and minerals are mixed. Hereinafter, the particles in the liquid are also referred to as mixed particles. When the mixed particles are irradiated with ultraviolet light or blue light, the biological particles emit fluorescence. However, the mixed particles include chemical fiber dust (hereinafter also referred to as dust) that emits fluorescence, in addition to biological particles. Therefore, the amount of biologically derived particles cannot be measured only by detecting the fluorescence emitted from the mixed particles.
 そこで、検出装置100では、本願出願人が先に開発し、特許文献3に開示された検出方法が採用される。当該方法は、生物由来の粒子が加熱されると蛍光強度(蛍光量)が変化するが、化学繊維などの埃は加熱されても蛍光強度が変化しないことを利用している。 Therefore, in the detection apparatus 100, the detection method previously developed by the applicant of the present application and disclosed in Patent Document 3 is adopted. This method uses the fact that the fluorescence intensity (fluorescence amount) changes when biological particles are heated, but the fluorescence intensity does not change even when dust such as chemical fibers is heated.
 図2は、加熱前および加熱後における生物由来の粒子の蛍光強度を示すグラフである。図3は、加熱前および加熱後における粉塵の蛍光強度を示すグラフである。図2,図3は、縦軸に蛍光強度、横軸に蛍光した光の波長を示している。 FIG. 2 is a graph showing the fluorescence intensity of biological particles before and after heating. FIG. 3 is a graph showing the fluorescence intensity of the dust before and after heating. 2 and 3 show the fluorescence intensity on the vertical axis and the wavelength of the fluorescent light on the horizontal axis.
 図2に示すように、生物由来の粒子の場合は、広い波長範囲において加熱後の蛍光量が加熱前の蛍光量に比較して著しく増加している。一方、図3に示すように、粉塵の場合は、加熱後の蛍光量と加熱前の蛍光量とが略同一である。 As shown in FIG. 2, in the case of biologically derived particles, the amount of fluorescence after heating is remarkably increased in comparison with the amount of fluorescence before heating in a wide wavelength range. On the other hand, as shown in FIG. 3, in the case of dust, the amount of fluorescence after heating and the amount of fluorescence before heating are substantially the same.
 よって、混在粒子の加熱前後の蛍光量を測定し、加熱前後の蛍光量の差分を求めることにより、混在粒子に含まれる生物由来の粒子の量を算出することができる。 Therefore, the amount of biological particles contained in the mixed particles can be calculated by measuring the amount of fluorescence before and after heating the mixed particles and obtaining the difference in the amount of fluorescence before and after heating.
 以下、検出装置100での検出動作の各工程について説明する。検出装置100での検出動作は、混在粒子の収集工程、加熱前の混在粒子の蛍光測定工程、混在粒子の加熱工程、加熱後の混在粒子の蛍光測定工程、および、生物由来の粒子の量を算出する工程を含む。 Hereinafter, each step of the detection operation in the detection apparatus 100 will be described. The detection operation of the detection apparatus 100 includes a mixed particle collecting step, a mixed particle fluorescence measurement step before heating, a mixed particle heating step, a mixed particle fluorescence measurement step after heating, and the amount of biological particles. Including the step of calculating.
 図4、図5および図6は、収集工程を説明するための模式図である。図7は、加熱前の蛍光測定工程を説明するための模式図である。図8は、加熱工程を説明するための模式図である。図9は、加熱による蛍光量の増加量と生物由来の粒子の濃度との相関関係を示すグラフである。図9は、縦軸に加熱による蛍光量の増加量、横軸に生物由来の粒子の濃度を示している。 FIG. 4, FIG. 5 and FIG. 6 are schematic diagrams for explaining the collection process. FIG. 7 is a schematic diagram for explaining the fluorescence measurement process before heating. FIG. 8 is a schematic diagram for explaining the heating step. FIG. 9 is a graph showing the correlation between the amount of increase in fluorescence due to heating and the concentration of biological particles. In FIG. 9, the vertical axis indicates the amount of increase in fluorescence due to heating, and the horizontal axis indicates the concentration of biological particles.
 検出装置100は、液体中に含まれる生物由来の粒子を検出する。そこで、図4に示すように、収集工程では、一例として、液体である検体が捕集板12の表面に滴下される。検体には、生物由来の粒子600Aと、化学繊維の埃などの粉塵600Bとを含む混在粒子600が含まれている。 The detection device 100 detects biological particles contained in the liquid. Therefore, as shown in FIG. 4, in the collecting step, as an example, a liquid specimen is dropped onto the surface of the collecting plate 12. The specimen includes mixed particles 600 including biological particles 600A and dust 600B such as chemical fiber dust.
 図5に示すように、捕集板12が加熱されることで液体が蒸発し、液体から混在粒子600が分離される。これにより、捕集板12上に混在粒子600が残留して収集される。捕集板12表面の液体の加熱にはヒータ91が用いられてもよいし、他のヒータが用いられ、加熱後の捕集板12が検出装置100にセットされてもよい。 As shown in FIG. 5, when the collection plate 12 is heated, the liquid evaporates and the mixed particles 600 are separated from the liquid. Thereby, the mixed particles 600 remain on the collecting plate 12 and are collected. The heater 91 may be used for heating the liquid on the surface of the collection plate 12, or another heater may be used, and the collection plate 12 after heating may be set in the detection device 100.
 好ましくは、滴下する液体は検体である液体が濃縮されたものである。濃縮方法は、一般的な加熱によるものであってもよいし、いったんフィルタを用いてろ過し、界面活性剤を含む液中でろ過後のフィルタから混在粒子600を離脱させてもよい。 Preferably, the liquid to be dropped is a concentrated liquid that is a specimen. The concentration method may be based on general heating, or may be filtered once using a filter, and the mixed particles 600 may be detached from the filtered filter in a liquid containing a surfactant.
 図7に示すように、加熱前の蛍光測定工程において、半導体レーザなどの発光素子6から捕集板12上に収集された混在粒子600に向けて励起光が照射される。レンズは励起光を照射された混在粒子600から発せられる蛍光を集光して、受光素子9が蛍光を受光する。 As shown in FIG. 7, in the fluorescence measurement step before heating, excitation light is irradiated toward the mixed particles 600 collected on the collection plate 12 from the light emitting element 6 such as a semiconductor laser. The lens condenses the fluorescence emitted from the mixed particles 600 irradiated with the excitation light, and the light receiving element 9 receives the fluorescence.
 図8に示すように、加熱工程において、検出装置100は、捕集板12の裏面に取り付けられたヒータ91により捕集板12を加熱することにより、捕集板12に収集された混在粒子600を加熱する。加熱後、捕集板12は空冷される。 As shown in FIG. 8, in the heating process, the detection apparatus 100 heats the collection plate 12 with a heater 91 attached to the back surface of the collection plate 12, thereby collecting the mixed particles 600 collected on the collection plate 12. Heat. After heating, the collection plate 12 is air-cooled.
 加熱後の蛍光測定工程は、図6の場合と同様に、発光素子6から捕集板12上に収集された混在粒子600に向けて励起光が照射される。励起光を照射された混在粒子600から発せられる蛍光はレンズで集光され、受光素子9にて受光される。 In the fluorescence measurement step after heating, the excitation light is irradiated from the light emitting element 6 toward the mixed particles 600 collected on the collecting plate 12 as in the case of FIG. The fluorescence emitted from the mixed particles 600 irradiated with the excitation light is collected by the lens and received by the light receiving element 9.
 検出装置100は、図9に例示された蛍光量の増加量△Fと生物由来の粒子濃度Nとの関係に基づき、加熱後の蛍光量から加熱前の蛍光量を引いた差分△F1から、生物由来の粒子の濃度(個/m3)を算出する。なお、増加量△Fと生物由来の粒子濃度Nとの相関関係は、予め実験を行なうことにより求められたものである。 The detection apparatus 100 is based on the difference ΔF1 obtained by subtracting the fluorescence amount before heating from the fluorescence amount after heating based on the relationship between the increase amount ΔF of the fluorescence amount illustrated in FIG. 9 and the biological particle concentration N. The concentration (particles / m 3 ) of biological particles is calculated. Note that the correlation between the increase ΔF and the biological particle concentration N is obtained by conducting an experiment in advance.
 <機能構成>
 図10は、上記の検出動作を行なうための検出装置100の機能構成の一例を示すブロック図である。図10では、信号処理部30の機能が主に電気回路で実現される構成例が示されている。しかしながら、これら機能の一部は、図示されていないが、信号処理部30が備えるCPU(Central Processing Unit)が所定のプログラムを実行することによって実現される構成であってもよい。また、測定部40がソフトウェアで実現される例が示されている。しかしながら、これら機能の一部は、電気回路などのハードウェア構成で実現されてもよい。
<Functional configuration>
FIG. 10 is a block diagram illustrating an example of a functional configuration of the detection apparatus 100 for performing the above-described detection operation. FIG. 10 shows a configuration example in which the function of the signal processing unit 30 is realized mainly by an electric circuit. However, although some of these functions are not illustrated, a configuration realized by a CPU (Central Processing Unit) included in the signal processing unit 30 executing a predetermined program may be used. In addition, an example in which the measurement unit 40 is realized by software is shown. However, some of these functions may be realized by a hardware configuration such as an electric circuit.
 図10において、信号処理部30は、受光素子9に接続される電流-電圧変換回路34と、電流-電圧変換回路34に接続される増幅回路35とを含む。 10, the signal processing unit 30 includes a current-voltage conversion circuit 34 connected to the light receiving element 9 and an amplification circuit 35 connected to the current-voltage conversion circuit 34.
 測定部40は、制御部41、記憶部42、クロック発生部43、および駆動部48を含む。 The measurement unit 40 includes a control unit 41, a storage unit 42, a clock generation unit 43, and a drive unit 48.
 受光素子9は、受光量を信号処理部30に入力する。受光量とは、捕集板12表面の蛍光強度に応じた電流信号(センサ信号)であるを。電流信号は、電流-電圧変換回路34に入力される。 The light receiving element 9 inputs the amount of received light to the signal processing unit 30. The amount of received light is a current signal (sensor signal) corresponding to the fluorescence intensity on the surface of the collection plate 12. The current signal is input to the current-voltage conversion circuit 34.
 電流-電圧変換回路34は、受光素子9から入力された電流信号のピーク値、すなわちピーク電流値Hを検出し、電圧値Ehに変換する。電圧値Ehは増幅回路35で予め設定した増幅率に増幅され、増幅された電圧値Ehが測定部40に対して出力される。測定部40の制御部41は信号処理部30から電圧値Ehの入力を受け付けて、順次、蛍光強度を表わす電圧値Ehを記憶部42に記憶させる。 The current-voltage conversion circuit 34 detects the peak value of the current signal input from the light receiving element 9, that is, the peak current value H, and converts it into the voltage value Eh. The voltage value Eh is amplified to a preset amplification factor by the amplifier circuit 35, and the amplified voltage value Eh is output to the measurement unit 40. The control unit 41 of the measurement unit 40 receives an input of the voltage value Eh from the signal processing unit 30 and sequentially stores the voltage value Eh representing the fluorescence intensity in the storage unit 42.
 クロック発生部43はクロック信号を発生させ、制御部41に対して出力する。制御部41は、クロック信号に基づいたタイミングで、ヒータ91の加熱のON/OFFを制御するための制御信号を駆動部48に対して出力して、ヒータ91の加熱のON/OFFを制御する。また、好ましくは、制御部41は、図10に示されたように発光素子6と電気的に接続され、クロック信号に基づいたタイミングで発光素子6のON/OFFも制御する。 The clock generation unit 43 generates a clock signal and outputs it to the control unit 41. The control unit 41 outputs a control signal for controlling ON / OFF of heating of the heater 91 to the driving unit 48 at timing based on the clock signal, and controls ON / OFF of heating of the heater 91. . Preferably, the control unit 41 is electrically connected to the light emitting element 6 as shown in FIG. 10, and also controls ON / OFF of the light emitting element 6 at a timing based on the clock signal.
 さらに、制御部41は、ヒータ91の加熱温度も制御する。制御部41は、第1の加熱として、上記収集工程で、捕集板12上の液体を気化させるために第1の温度T1で加熱を行なう。次に、制御部41は、第2の加熱として、上記加熱工程で、第2の温度T2で加熱を行なう。温度T1と温度T2は、T1<T2の関係を有する。つまり、制御部41は、第1の加熱を第2の加熱よりも低い温度で行なう。好ましくは、温度T1は、捕集板12上に滴下された液体を蒸発させ得る温度であって100℃以下(T1≦100℃)である。一方、温度T2は100℃よりも高い(T2>100℃)温度である。より好ましくは、温度T1は80℃~100℃であり(80℃≦T1≦100℃)、温度T2は100℃~250℃(100℃≦T2≦250℃)である。温度T1をこのような範囲とすることで、生物由来の粒子からの蛍光強度が増加することを抑制しつつ、捕集板12上の液体を気化させ、液体から粒子を分離することができる。一方、温度T2は、上記加熱工程で期待されている効果、すなわち、生物由来の粒子からの蛍光強度が増加することが期待できる温度範囲である。 Furthermore, the control unit 41 also controls the heating temperature of the heater 91. As the first heating, the control unit 41 performs heating at the first temperature T1 in order to vaporize the liquid on the collecting plate 12 in the collecting step. Next, the control unit 41 performs heating at the second temperature T2 in the above heating process as the second heating. The temperature T1 and the temperature T2 have a relationship of T1 <T2. That is, the control unit 41 performs the first heating at a temperature lower than that of the second heating. Preferably, the temperature T1 is a temperature at which the liquid dropped on the collection plate 12 can be evaporated and is 100 ° C. or lower (T1 ≦ 100 ° C.). On the other hand, the temperature T2 is a temperature higher than 100 ° C. (T2> 100 ° C.). More preferably, the temperature T1 is 80 ° C. to 100 ° C. (80 ° C. ≦ T1 ≦ 100 ° C.), and the temperature T2 is 100 ° C. to 250 ° C. (100 ° C. ≦ T2 ≦ 250 ° C.). By setting the temperature T1 in such a range, the liquid on the collection plate 12 can be vaporized and the particles can be separated from the liquid while suppressing an increase in the fluorescence intensity from the biological particles. On the other hand, the temperature T2 is a temperature range in which the effect expected in the heating step, that is, the fluorescence intensity from the biological particles can be expected to increase.
 制御部41は、計算部411を含む。計算部411は、記憶部42に記憶された電圧値Ehを用いて、液体中の生物由来の粒子量を算出する。すなわち、計算部411は、第2の加熱前の蛍光強度F1と第2の加熱後の蛍光強度F2との差分を増加量△Fとして算出する。上述のように、増加量△Fは生物由来の粒子量(粒子数または粒子濃度等)に関連している。計算部411は、予め、図9に例示された増加量△Fと生物由来の粒子濃度Nとの相関関係を記憶しておく。そして、計算部411は、算出された増加量△Fを該相関関係に代入することで、収集された粒子中の生物由来の粒子量を算出する。 The control unit 41 includes a calculation unit 411. The calculation unit 411 calculates the amount of biological particles in the liquid using the voltage value Eh stored in the storage unit 42. That is, the calculation unit 411 calculates the difference between the fluorescence intensity F1 before the second heating and the fluorescence intensity F2 after the second heating as the increase amount ΔF. As described above, the amount of increase ΔF is related to the amount of biological particles (number of particles, particle concentration, etc.). The calculation unit 411 stores a correlation between the increase amount ΔF illustrated in FIG. 9 and the biological particle concentration N in advance. Then, the calculation unit 411 calculates the amount of biologically derived particles in the collected particles by substituting the calculated increase amount ΔF into the correlation.
 なお、上述の例では増加量△Fには、所定の加熱量(所定の加熱温度と加熱時間△tとの積)の加熱処理の前後の蛍光強度の差分が用いられているが、増加量△Fに代えて加熱処理の前後の蛍光強度の比が用いられてもよい。 In the above example, the increase amount ΔF uses the difference in fluorescence intensity before and after the heat treatment for a predetermined heating amount (product of a predetermined heating temperature and a heating time Δt). Instead of ΔF, the ratio of the fluorescence intensity before and after the heat treatment may be used.
 <検出動作>
 図11は、検出装置100での検出動作の流れを表わしたフローチャートである。検出動作の開始が指示されると、はじめに、検出装置100は、液体である検体から粒子を分離する動作を実行する(ステップS1)。本実施の形態では、液体を気化させることで粒子を分離する動作が行なわれるものとする。ステップS1で、検出装置100は、捕集板12の表面に滴下された液体を第1の温度T1で加熱する。温度T1は上記の第2の温度T2よりも低い温度であり、好ましくは、100℃以下(T1≦100℃)である。より好ましくは、第1の温度T1は80℃~100℃(80℃≦T1≦100℃)である。
<Detection operation>
FIG. 11 is a flowchart showing the flow of detection operation in the detection apparatus 100. When the start of the detection operation is instructed, first, the detection apparatus 100 executes an operation of separating particles from the specimen that is a liquid (step S1). In the present embodiment, it is assumed that an operation of separating particles by vaporizing a liquid is performed. In step S1, the detection apparatus 100 heats the liquid dropped on the surface of the collection plate 12 at the first temperature T1. The temperature T1 is lower than the second temperature T2, and is preferably 100 ° C. or lower (T1 ≦ 100 ° C.). More preferably, the first temperature T1 is 80 ° C. to 100 ° C. (80 ° C. ≦ T1 ≦ 100 ° C.).
 なお、好ましくは、検出装置100は、上記ステップS1の第1の加熱の後、捕集板12を冷却する動作を実行する。冷却する動作は、後述のステップS3である第2の加熱の後にも行なわれてよい。 In addition, preferably, the detection apparatus 100 performs the operation | movement which cools the collection board 12 after the 1st heating of the said step S1. The cooling operation may also be performed after the second heating which is step S3 described later.
 次に、検出装置100は、捕集板12の表面からの第2の加熱前の蛍光強度F1を測定する動作を実行する(ステップS2)。すなわち、信号処理部30が受光素子9からの電流信号を電圧値Ehに変換し、測定部40に入力する。そして、測定部40は、蛍光強度F1を表わす電圧値Ehを、記憶部42に記憶する。測定部40の制御部41が発光素子6を制御可能な場合、ステップS2では、さらに、制御部41は、発光素子6が発光するよう制御する。 Next, the detection apparatus 100 performs an operation of measuring the fluorescence intensity F1 before the second heating from the surface of the collection plate 12 (step S2). That is, the signal processing unit 30 converts the current signal from the light receiving element 9 into the voltage value Eh and inputs it to the measurement unit 40. Then, the measurement unit 40 stores the voltage value Eh representing the fluorescence intensity F1 in the storage unit 42. When the control unit 41 of the measurement unit 40 can control the light emitting element 6, in step S <b> 2, the control unit 41 further controls the light emitting element 6 to emit light.
 次に、検出装置100は、捕集板12の表面に収集された粒子を加熱する第2の加熱動作を実行する(ステップS3)。第2の温度T2は、上記の第1の温度T1よりも高い温度であり、好ましくは、100℃よりも高い温度(T2>100℃)である。より好ましくは、第2の温度T2は100℃~250℃(100℃≦T2≦250℃)である。 Next, the detection apparatus 100 executes a second heating operation for heating the particles collected on the surface of the collection plate 12 (step S3). The second temperature T2 is higher than the first temperature T1, and is preferably higher than 100 ° C. (T2> 100 ° C.). More preferably, the second temperature T2 is 100 ° C. to 250 ° C. (100 ° C. ≦ T2 ≦ 250 ° C.).
 次に、検出装置100は、捕集板12の表面からの第2の加熱後の蛍光強度F2を測定する動作を実行する(ステップS4)。ステップS4の動作は上記ステップS2での動作と同じである。 Next, the detection apparatus 100 performs an operation of measuring the fluorescence intensity F2 after the second heating from the surface of the collection plate 12 (step S4). The operation in step S4 is the same as that in step S2.
 次に、検出装置100は、捕集板12に収集された、生物由来の粒子の量を算出する(ステップS5)。詳しく説明すると、まず、測定部40の制御部41は計算部411で、捕集板12の表面からの第2の加熱前後の蛍光強度F1,F2の差分(増加量△F)を算出する。続いて、制御部41は、図9に例示された増加量△Fと生物由来の粒子濃度Nとの相関関係を予め記憶しておき、計算部411で算出された増加量△Fを該相関関係に代入することで、収集された粒子中の生物由来の粒子量を算出する。 Next, the detection apparatus 100 calculates the amount of biological particles collected on the collection plate 12 (step S5). More specifically, first, the control unit 41 of the measurement unit 40 calculates the difference (increase ΔF) between the fluorescence intensities F1 and F2 before and after the second heating from the surface of the collection plate 12 by the calculation unit 411. Subsequently, the control unit 41 stores in advance a correlation between the increase amount ΔF illustrated in FIG. 9 and the biological particle concentration N, and the increase amount ΔF calculated by the calculation unit 411 is stored in the correlation. By substituting into the relationship, the amount of biological particles in the collected particles is calculated.
 <実施の形態の効果>
 本実施の形態にかかる検出装置100を用いることによって、生物由来の粒子からの蛍光と粉塵からの蛍光との加熱処理による性質の差を利用し、液体である検体に含まれる混在粒子から生物由来の粒子を検出することができる。このとき、検出装置100は、捕集板12の表面に滴下した液体を加熱して気化することで、液体から粒子を分離する。この方法によって分離して収集する方法は、ミスト化して捕集板の表面に吹き付けて収集する方法よりも、周囲の粒子の混入や粒子の散逸を防ぐことができ、精度よく収集することができる。さらにこのとき、検出装置100は、液体から粒子を分離して収集するために、生物由来の粒子を検出するための加熱よりも低い温度で加熱する。これにより、検出装置100を用いることによって、液体である検体に含まれる生物由来の粒子を高精度に検出することができる。
<Effect of Embodiment>
By using the detection apparatus 100 according to the present embodiment, the difference in properties due to the heat treatment between the fluorescence from the biological particles and the fluorescence from the dust is utilized, and the biological particles are derived from the mixed particles contained in the liquid specimen. Particles can be detected. At this time, the detection apparatus 100 separates particles from the liquid by heating and vaporizing the liquid dropped on the surface of the collection plate 12. The method of collecting separately by this method can prevent the surrounding particles from mixing in and dissipate the particles and can collect the particles more accurately than the method of collecting by misting and spraying on the surface of the collecting plate. . Furthermore, at this time, in order to separate and collect the particles from the liquid, the detection apparatus 100 heats at a temperature lower than the heating for detecting the biological particles. Thus, by using the detection apparatus 100, it is possible to detect biologically-derived particles contained in the specimen that is a liquid with high accuracy.
 [第2の実施の形態]
 第1の実施の形態の検出原理では、混在粒子の収集工程の分離工程で、液体を加熱して蒸発する方法が採用されている場合を説明している。しかしながら、分離工程は上記の方法に限定されない。
[Second Embodiment]
The detection principle of the first embodiment describes a case where a method of heating and evaporating a liquid is employed in the separation step of the mixed particle collecting step. However, the separation step is not limited to the above method.
 本実施の形態の分離工程で採用される方法は、図6に示したように、フィルタを用いてろ過する方法である。この場合、分離工程では、捕集板12にセット可能なフィルタ21を用いて液体がろ過される。ろ過後のフィルタ21を捕集板12表面にセットした場合を、捕集板12での収集とする。フィルタは、液体から粒子を分離できる目の細かさを有する。 The method employed in the separation step of the present embodiment is a method of filtering using a filter as shown in FIG. In this case, in the separation step, the liquid is filtered using the filter 21 that can be set on the collection plate 12. The case where the filter 21 after filtration is set on the surface of the collection plate 12 is assumed to be collection on the collection plate 12. The filter has fineness that can separate particles from the liquid.
 また、検出動作において、上記ステップS1で検出装置100は、検体である液体から粒子を分離した、捕集板12にセット可能なフィルタのセットを受け付ける。 In the detection operation, in step S1, the detection apparatus 100 receives a set of filters that can be set on the collection plate 12 after separating the particles from the liquid that is the specimen.
 [第3の実施の形態]
 本実施の形態の分離工程で採用される方法は、フィルタを用いてろ過する工程と、加熱して液体を気化する工程とを含む。分離工程にフィルタを用いてろ過する工程が含まれることで、粒子が液体から完全に分離された状態で収集される。あるいは、粒子が付着する液体分が大幅に削減された状態で収集される。その後、加熱して液体を気化する工程を経ることで、第2の加熱での加熱効率が粒子に付着した液体によって低下することを防止できる。それ故、分離工程に両工程が含まれることで、検出装置100での検出精度をより向上させることができる。
[Third Embodiment]
The method employed in the separation step of the present embodiment includes a step of filtering using a filter and a step of vaporizing the liquid by heating. By including the step of filtering using a filter in the separation step, the particles are collected in a state of being completely separated from the liquid. Or it collects in the state by which the liquid component to which particle adheres was reduced significantly. Then, by passing through the process of heating and vaporizing a liquid, it can prevent that the heating efficiency in 2nd heating falls with the liquid adhering to particle | grains. Therefore, the detection accuracy in the detection apparatus 100 can be further improved by including both steps in the separation step.
 このように、分離工程で採用される分離方法は、加熱して液体を気化する方法、フィルタを用いてろ過する方法、およびこれらを組み合わせた方法など、特定の方法には限定されない。 As described above, the separation method employed in the separation step is not limited to a specific method such as a method of heating and vaporizing a liquid, a method of filtering using a filter, and a method of combining them.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 6 発光素子、7 レンズ、9 受光素子、12 捕集板、21 フィルタ、30 信号処理部、34 電流-電圧変換回路、35 増幅回路、40 測定部、41 制御部、42 記憶部、43 クロック発生部、48 駆動部、91 ヒータ、100 検出装置、411 計算部、600 混在粒子、600A 生物由来の粒子、600B 粉塵。 6 light emitting element, 7 lens, 9 light receiving element, 12 collecting plate, 21 filter, 30 signal processing unit, 34 current-voltage conversion circuit, 35 amplification circuit, 40 measurement unit, 41 control unit, 42 storage unit, 43 clock generation Part, 48 drive part, 91 heater, 100 detection device, 411 calculation part, 600 mixed particles, 600A biological particles, 600B dust.

Claims (7)

  1.  液体中の生物由来の粒子を検出するための検出装置であって、
     発光素子と、
     蛍光を受光するための受光素子と、
     前記液体に含まれる粒子を収集するための収集機構と、
     前記収集機構に収集された粒子の加熱前後の蛍光強度を測定し、前記加熱前後の蛍光強度の変化量に基づいて、前記液体中の生物由来の粒子量を算出するための演算装置を備える、検出装置。
    A detection device for detecting biological particles in a liquid,
    A light emitting element;
    A light receiving element for receiving fluorescence;
    A collection mechanism for collecting particles contained in the liquid;
    Measure the fluorescence intensity before and after heating the particles collected in the collection mechanism, and based on the amount of change in fluorescence intensity before and after the heating, comprising an arithmetic unit for calculating the amount of biological particles in the liquid, Detection device.
  2.  前記収集機構は、前記液体から前記粒子を分離するための分離手段を含む、請求項1に記載の検出装置。 The detection device according to claim 1, wherein the collection mechanism includes a separation unit for separating the particles from the liquid.
  3.  前記分離手段は、前記収集機構によって収集された前記液体を加熱蒸発させ得る温度で加熱可能なヒータを含む、請求項2に記載の検出装置。 The detection device according to claim 2, wherein the separation unit includes a heater capable of being heated at a temperature at which the liquid collected by the collecting mechanism can be heated and evaporated.
  4.  前記分離手段は、前記液体から前記粒子をろ過により分離可能なフィルタを含む、請求項2に記載の検出装置。 The detection device according to claim 2, wherein the separation means includes a filter capable of separating the particles from the liquid by filtration.
  5.  前記分離手段は、前記加熱蒸発を第1の温度で行ない、前記粒子量を算出するための加熱を第2の温度で行ない、前記第1の温度は、前記第2の温度よりも低い、請求項3に記載の検出装置。 The separation means performs the heating and evaporation at a first temperature, performs heating for calculating the particle amount at a second temperature, and the first temperature is lower than the second temperature. Item 4. The detection device according to Item 3.
  6.  前記第1の温度は100℃以下であり、前記第2の温度は100℃よりも高い、請求項5に記載の検出装置。 The detection apparatus according to claim 5, wherein the first temperature is 100 ° C or lower and the second temperature is higher than 100 ° C.
  7.  液体中の生物由来の粒子を検出する方法であって、
     前記粒子を収集するステップと、
     収集された前記粒子の蛍光強度を測定するステップと、
     収集された前記粒子を加熱するステップと、
     前記加熱の後に、収集された前記粒子の蛍光強度を測定するステップと、
     前記加熱の前後における前記粒子の蛍光強度の変化量に基づいて、前記液体中の生物由来の粒子量を算出するステップとを備える、検出方法。
    A method for detecting biological particles in a liquid,
    Collecting the particles;
    Measuring the fluorescence intensity of the collected particles;
    Heating the collected particles;
    Measuring the fluorescence intensity of the collected particles after the heating;
    Calculating the amount of biologically derived particles in the liquid based on the amount of change in fluorescence intensity of the particles before and after the heating.
PCT/JP2015/073670 2014-09-11 2015-08-24 Detection device and detection method WO2016039124A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016547339A JPWO2016039124A1 (en) 2014-09-11 2015-08-24 Detection apparatus and detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-185019 2014-09-11
JP2014185019 2014-09-11

Publications (1)

Publication Number Publication Date
WO2016039124A1 true WO2016039124A1 (en) 2016-03-17

Family

ID=55458880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073670 WO2016039124A1 (en) 2014-09-11 2015-08-24 Detection device and detection method

Country Status (2)

Country Link
JP (1) JPWO2016039124A1 (en)
WO (1) WO2016039124A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347597A (en) * 2003-04-30 2004-12-09 Catalysts & Chem Ind Co Ltd Determining method for trace coarse particle, and fine particle product quality-controlled by use of the method
JP2006162343A (en) * 2004-12-03 2006-06-22 Kimoto Denshi Kogyo Kk Measuring device for suspended particulate matter
JP2010085351A (en) * 2008-10-02 2010-04-15 Sonac Kk Trapping method for particulate and measuring method for particulate using same
JP2013015512A (en) * 2011-06-07 2013-01-24 Metawater Co Ltd Water quality measuring apparatus and filtration unit
JP2013520639A (en) * 2010-02-26 2013-06-06 シャープ株式会社 Detection apparatus and detection method for detecting biological particles in air

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5134130B1 (en) * 2011-09-09 2013-01-30 シャープ株式会社 Particle detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347597A (en) * 2003-04-30 2004-12-09 Catalysts & Chem Ind Co Ltd Determining method for trace coarse particle, and fine particle product quality-controlled by use of the method
JP2006162343A (en) * 2004-12-03 2006-06-22 Kimoto Denshi Kogyo Kk Measuring device for suspended particulate matter
JP2010085351A (en) * 2008-10-02 2010-04-15 Sonac Kk Trapping method for particulate and measuring method for particulate using same
JP2013520639A (en) * 2010-02-26 2013-06-06 シャープ株式会社 Detection apparatus and detection method for detecting biological particles in air
JP2013015512A (en) * 2011-06-07 2013-01-24 Metawater Co Ltd Water quality measuring apparatus and filtration unit

Also Published As

Publication number Publication date
JPWO2016039124A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP4389991B2 (en) Method and apparatus for optical measurement of fine particles
Gabey et al. The fluorescence properties of aerosol larger than 0.8 μm in urban and tropical rainforest locations
US20170074760A1 (en) Assembling apparatus and assembling method, apparatus for manufacturing microscopic object assembly structure, apparatus for assembling and removing microorganism, apparatus for detecting detection target substance, apparatus for separating separation target substance, and apparatus for introducing introduction target substance
JP2012233796A (en) Detection device and detection method
US20120315666A1 (en) Detection apparatus and method for detecting airborne biological particles
US20150177143A1 (en) Particle detection device
JP2014524581A5 (en)
JP2014062822A (en) Fine particle analyzer and fine particle analyzing method
US20210259556A1 (en) Pathogen detection apparatus and pathogen detection method
JP7249543B2 (en) Pathogen detection device and pathogen detection method
US8981289B2 (en) Ultraviolet diode and atomic mass analysis ionization source collecting device using ultraviolet diode and an MCP
JP2013170970A (en) Detection device and detection method
JP2013530410A (en) Method and apparatus for detecting explosive particles in a gas stream
WO2016039124A1 (en) Detection device and detection method
US11435286B2 (en) Pathogen detection apparatus and pathogen detection method
Jung et al. Real-time fluorescence measurement of airborne bacterial particles using an aerosol fluorescence sensor with dual ultraviolet-and visible-fluorescence channels
JP2015206671A (en) Collector, detector, cleaner, collecting method, detection method and cleaning method
JP2013171030A (en) Particle detector and air conditioner
JP5925519B2 (en) Particle detector
WO2016139386A1 (en) A method for measuring the presence of an impurity substance in a liquid sample and a device for the same
CN110268246B (en) Optical particle sensor and sensing method
WO2002088673A3 (en) Detector for airborne biological particles
Jung et al. Distinguishing biotic and abiotic particles using an ultraviolet aerodynamic particle sizer for real-time detection of bacterial bioaerosols
JP2009171921A (en) Apparatus and method for detecting fluorescent amplified nucleic acid
WO2012081358A1 (en) Detection device and detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839325

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547339

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15839325

Country of ref document: EP

Kind code of ref document: A1