WO2016039063A1 - Photoelectric conversion element and organic semiconductor compound used in same - Google Patents

Photoelectric conversion element and organic semiconductor compound used in same Download PDF

Info

Publication number
WO2016039063A1
WO2016039063A1 PCT/JP2015/072746 JP2015072746W WO2016039063A1 WO 2016039063 A1 WO2016039063 A1 WO 2016039063A1 JP 2015072746 W JP2015072746 W JP 2015072746W WO 2016039063 A1 WO2016039063 A1 WO 2016039063A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
photoelectric conversion
conversion element
compound
semiconductor compound
Prior art date
Application number
PCT/JP2015/072746
Other languages
French (fr)
Japanese (ja)
Inventor
淳志 若宮
光 田中
一剛 萩谷
濱本 史朗
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2016502557A priority Critical patent/JP6699545B2/en
Publication of WO2016039063A1 publication Critical patent/WO2016039063A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a photoelectric conversion element having a structure in which a substrate, an anode, an active layer, and a cathode are arranged in this order, and a photoelectric conversion containing a polymer compound having a specific structural unit of a benzobisthiazole skeleton It relates to an element.
  • Organic semiconductor compounds are one of the most important materials in the field of organic electronics, and can be classified into electron-donating p-type organic semiconductor compounds and electron-accepting n-type organic semiconductor compounds.
  • Various elements can be manufactured by appropriately combining a p-type organic semiconductor compound and an n-type organic semiconductor compound.
  • excitons recombination of electrons and holes
  • organic electroluminescence that emits light by the action of excitons
  • organic thin-film solar cells that convert light into electric power
  • organic thin-film transistors that control the amount of current and voltage.
  • organic thin-film solar cells are useful for environmental conservation because they do not release carbon dioxide into the atmosphere, and demand is increasing because they are easy to manufacture with a simple structure.
  • the photoelectric conversion efficiency of the organic thin film solar cell is still not sufficient.
  • FF fill factor
  • the open circuit voltage (Voc) is proportional to the energy difference between the HOMO (highest occupied orbital) level of the p-type organic semiconductor compound and the LUMO (lowest unoccupied orbital) level of the n-type organic semiconductor compound. In order to improve (Voc), it is necessary to deepen (lower) the HOMO level of the p-type organic semiconductor.
  • the short circuit current density (Jsc) correlates with the amount of energy received by the organic semiconductor compound.
  • Jsc short circuit current density
  • the short circuit current density (Jsc) of the organic semiconductor compound from the visible region to the near infrared region. It is necessary to absorb light in a wide wavelength range. Of the light that can be absorbed by the organic semiconductor compound, the wavelength of the light with the lowest energy (the longest wavelength) is the absorption edge wavelength, and the energy corresponding to this wavelength corresponds to the band gap energy. Therefore, in order to absorb light in a wider wavelength range, it is necessary to narrow the band gap (energy difference between the HOMO level and the LUMO level of the p-type semiconductor).
  • Non-Patent Document 1 describes the co-polymerization of 4,4′-bis (2-ethylhexyl) dithieno [3,2-b; 2 ′, 3 ′,-d] silole and 2,1,3-benzothiadiazole. Coalescence has been proposed.
  • the p-type organic semiconductor compound described in Non-Patent Document 1 may not have a sufficiently deep HOMO level.
  • Non-Patent Document 2 proposes a p-type organic semiconductor compound having a benzodithiophene skeleton.
  • Patent Document 2 the p-type organic semiconductor compound described in Non-Patent Document 2 is limited in the skeleton and substituents that can be introduced due to problems in the synthesis method. Further, Patent Documents 1 and 2 each propose a compound having a benzobisthiazole skeleton, but the conversion efficiency is not clear.
  • An object of the present invention is to provide a photoelectric conversion element that exhibits a high open circuit voltage.
  • the capability of the photoelectric conversion element depends on the type and combination of the organic semiconductor compound, and since HOMO and the open circuit voltage are closely related to each other, more various skeletons and substituents can be introduced. It is providing the photoelectric conversion element using a high molecular compound.
  • the present inventors In order to improve the short-circuit current density (Jsc) while improving the open circuit voltage (Voc) in order to fabricate a photoelectric conversion element with high conversion efficiency, the present inventors have applied a wide wavelength to a p-type organic semiconductor compound. It has been found that the HOMO level is moderately deep while absorbing a range of light. And earnestly examined paying attention to the correlation of the HOMO level and chemical structure in a p-type organic-semiconductor compound. As a result, by using an organic semiconductor compound having a polymer compound with a specific structure, the HOMO level and the LUMO level can be adjusted to appropriate ranges, so that a photoelectric conversion element with a high open-circuit voltage (Voc) can be manufactured.
  • the headline and the present invention were completed.
  • the present invention is a photoelectric conversion element having a structure in which a substrate, an anode, an active layer, and a cathode are arranged in this order, and the active layer has a specific benzox represented by the formula (1). It contains a polymer compound having a structural unit of a bisthiazole skeleton (hereinafter sometimes referred to as “polymer compound (1)”).
  • a 1 and A 2 are each independently an alkoxy group, a thioalkoxy group, a thiophene ring optionally substituted with a hydrocarbon group, a thiazole ring optionally substituted with a hydrocarbon group or an organosilyl group, or It represents a phenyl group which may be substituted with a hydrocarbon group, an alkoxy group, a thioalkoxy group, an organosilyl group, a halogen atom, or a trifluoromethyl group.
  • each of A 1 and A 2 is preferably a group represented by the following formula.
  • R 21 to R 25 each independently represents a hydrocarbon group having 8 to 30 carbon atoms. * Represents a bond bonded to the benzene ring of benzobisthiazole. ]
  • the polymer compound (1) used in the photoelectric conversion element of the present invention is preferably a donor-acceptor type semiconductor polymer.
  • the active layer preferably further contains an n-type organic semiconductor compound, and the n-type semiconductor compound is preferably fullerene or a derivative thereof.
  • the photoelectric conversion element of the present invention preferably has a hole transport layer between the anode and the active layer, and preferably has an electron transport layer between the cathode and the active layer.
  • the anode is preferably a transparent electrode
  • the cathode is preferably a metal electrode.
  • the polymer compound (1) used in the present invention has a deep HOMO level and can absorb a wide range of light from the visible region to the near infrared region.
  • the photoelectric conversion element having the element structure shown in FIG. 1 can obtain a high open circuit voltage (Voc), and can obtain a high photoelectric conversion efficiency ⁇ .
  • Voc open circuit voltage
  • photoelectric conversion efficiency
  • FIG. 1 shows an element structure of a photoelectric conversion element in which a substrate, an anode, an active layer, and a cathode are arranged in this order.
  • the photoelectric conversion element according to the present invention is a photoelectric conversion element having a structure in which a substrate, an anode, an active layer, and a cathode are arranged in this order, and the active layer is represented by the formula (1).
  • a polymer compound having a benzobisthiazole structural unit represented is contained.
  • FIG. 1 shows a photoelectric conversion element (VII) according to an embodiment of the present invention.
  • FIG. 1 shows a photoelectric conversion element used for a general organic thin film solar cell, but the photoelectric conversion element according to the present invention is not limited to the configuration of FIG.
  • the photoelectric conversion element (VII) has a structure in which a substrate (I), an electrode (anode) (II), an active layer (IV), and an electrode (cathode) (VI) are arranged in this order.
  • the photoelectric conversion element (VII) preferably further has a buffer layer (hole transport layer) (III) and a buffer layer (electron transport layer) (V). That is, the photoelectric conversion element (VII) includes a base material (I), an anode (II), a buffer layer (hole transport layer) (III), an active layer (IV), and a buffer layer (electron transport layer) (V ) And the cathode (VI) are preferably arranged in this order.
  • the photoelectric conversion element according to the present invention may not have the hole transport layer (III) and the electron transport layer (V). Hereinafter, each of these parts will be described.
  • the active layer (IV) refers to a layer in which photoelectric conversion is performed, and usually includes a single or a plurality of p-type semiconductor compounds and a single or a plurality of n-type semiconductor compounds.
  • Specific examples of the p-type semiconductor compound include, but are not limited to, the polymer compound (1) and the organic semiconductor compound (10) described later. In the present invention, it is necessary to use at least the polymer compound (1) as the p-type semiconductor compound.
  • the photoelectric conversion element (VII) When the photoelectric conversion element (VII) receives light, the light is absorbed by the active layer (IV), electricity is generated at the interface between the p-type semiconductor compound and the n-type semiconductor compound, and the generated electricity is the anode (II) and It is taken out from the cathode (VI).
  • the polymer compound (1) is used as a p-type semiconductor compound.
  • the film thickness of the active layer (IV) is not particularly limited, but is preferably 70 nm or more, more preferably 90 nm or more, and may be 100 nm or more. On the other hand, the thickness of the active layer (IV) is preferably 1000 nm or less, more preferably 750 nm or less, and further preferably 500 nm or less.
  • the film thickness of the active layer (IV) is 70 nm or more, the conversion efficiency of the photoelectric conversion element (VII) can be expected to be improved. Moreover, it is also preferable that the film thickness of the active layer (IV) is 70 nm or more in that a through short circuit in the film can be prevented. It is preferable that the thickness of the active layer (IV) is 1000 nm or less because the internal resistance is small and the distance between the electrodes (II) and (VI) is not too far and the charge diffusion is good. Furthermore, it is preferable that the film thickness of the active layer (IV) be 70 nm or more and 1000 nm or less because the reproducibility in the process of producing the active layer (IV) is improved.
  • the thicker the active layer the longer the distance traveled by the charge generated in the active layer to the electrode or the electron transport layer or hole transport layer, thus hindering the transport of charge to the electrode. It is done.
  • the thickness of the active layer (IV) is 70 nm or more and 500 nm or less from the viewpoint of securing voltage and improving conversion efficiency.
  • the layer structure of the active layer (IV) As the layer structure of the active layer (IV), a thin film stacked type in which a p-type semiconductor compound and an n-type semiconductor compound are stacked, a bulk heterojunction type having a layer in which a p-type semiconductor compound and an n-type semiconductor compound are mixed, or the like. Is mentioned. Among these, a bulk heterojunction type active layer is preferable in that the photoelectric conversion efficiency can be further improved.
  • a bulk heterojunction active layer has a layer (i layer) in which a p-type semiconductor compound and an n-type semiconductor compound are mixed.
  • the i layer has a structure in which the p-type semiconductor compound and the n-type semiconductor compound are phase-separated, carrier separation occurs at the phase interface, and the generated carriers (holes and electrons) are transported to the electrode.
  • the p-type semiconductor compound contained in the i layer usually 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more is represented by the benzobisthiazole structural unit represented by the formula (1) and It is the high molecular compound (1) which consists of a copolymerization component (2) to do. Since the polymer compound (1) has properties suitable as a p-type semiconductor compound, it is particularly preferable that the p-type semiconductor compound contains only the polymer compound (1).
  • the weight ratio of the p-type semiconductor compound to the n-type semiconductor compound in the i layer is 0 from the viewpoint of improving the photoelectric conversion efficiency by obtaining a good phase separation structure. .5 or more is preferable, more preferably 1 or more, while 4 or less is preferable, 3 or less is more preferable, and 2 or less is particularly preferable.
  • the i layer can be formed by any method including a coating method and a vapor deposition method (for example, a co-evaporation method), but it is preferable to use the coating method because the i layer can be formed more easily. Since the polymer compound (1) according to the present invention has solubility in a solvent, it is preferable from the viewpoint of excellent coating film-forming properties.
  • a coating solution containing a p-type semiconductor compound and an n-type semiconductor compound may be prepared, and this coating solution may be applied.
  • the coating liquid containing the p-type semiconductor compound and the n-type semiconductor compound may be prepared by preparing and mixing a solution containing the p-type semiconductor compound and a solution containing the n-type semiconductor compound, respectively.
  • the compound and the n-type semiconductor compound may be dissolved.
  • the total concentration of the p-type semiconductor compound and the n-type semiconductor compound in the coating solution is not particularly limited, but is 1.0% by weight or more based on the entire coating solution from the viewpoint of forming an active layer having a sufficient film thickness. In view of sufficiently dissolving the semiconductor compound, it is preferably 4.0% by weight or less based on the entire coating solution.
  • any method can be used.
  • spin coating method inkjet method, doctor blade method, drop casting method, reverse roll coating method, gravure coating method, kiss coating method, roll brush method, spray coating method , Air knife coating method, wire barber coating method, pipe doctor method, impregnation / coating method or curtain coating method.
  • the solvent of the coating solution is not particularly limited as long as it can uniformly dissolve the p-type semiconductor compound and the n-type semiconductor compound.
  • aliphatic hydrocarbons such as hexane, heptane, octane, isooctane, nonane or decane.
  • Aromatic hydrocarbons such as toluene, xylene, mesitylene, cyclohexylbenzene, chlorobenzene, or orthodichlorobenzene; alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane, cycloheptane, cyclooctane, tetralin, or decalin; methanol Lower alcohols such as ethanol or propanol; aliphatic ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone (MIBK), cyclopentanone or cyclohexanone; acetophenone Or aromatic ketones such as propiophenone; esters such as ethyl acetate, isopropyl acetate, butyl acetate or methyl lactate; halogen hydrocarbons such as chloroform, methylene chloride, dichloroethan
  • aromatic hydrocarbons such as toluene, xylene, mesitylene, cyclohexylbenzene, chlorobenzene or orthodichlorobenzene; cycloaliphatic carbonization such as cyclopentane, cyclohexane, methylcyclohexane, cycloheptane, cyclooctane, tetralin or decalin Hydrogen; ketones such as acetone, methyl ethyl ketone, cyclopentanone or cyclohexanone; or ethers such as ethyl ether, tetrahydrofuran or dioxane.
  • aromatic hydrocarbons such as toluene, xylene, mesitylene, cyclohexylbenzene, chlorobenzene or orthodichlorobenzene
  • cycloaliphatic carbonization such as cyclopentane, cyclohexane, methylcyclo
  • an additive may be further added to a coating solution containing a p-type semiconductor compound and an n-type semiconductor compound.
  • the phase separation structure of the p-type semiconductor compound and the n-type semiconductor compound in the bulk heterojunction active layer has an influence on the light absorption process, the exciton diffusion process, the exciton separation (carrier separation) process, the carrier transport process, etc. is there. Therefore, it is considered that good photoelectric conversion efficiency can be realized by optimizing the phase separation structure.
  • an active layer having a preferable phase separation structure can be obtained, and the photoelectric conversion efficiency can be improved.
  • the additive is preferably solid or has a high boiling point in that the additive is less likely to be lost from the active layer (IV).
  • the melting point (1 atm) of the additive is usually 35 ° C. or higher, preferably 50 ° C. or higher, more preferably 80 ° C. or higher, more preferably 150 ° C. or higher. Particularly preferably, the temperature is 200 ° C. or higher.
  • the boiling point (1 atm) is 80 ° C. or higher, more preferably 100 ° C. or higher, and particularly preferably 150 ° C. or higher.
  • the additive examples include aliphatic hydrocarbons having 10 or more carbon atoms or aromatic compounds if solid. Specific examples include naphthalene compounds, and compounds in which 1 to 8 substituents are bonded to naphthalene are particularly preferable. Substituents bonded to naphthalene are halogen atoms, hydroxyl groups, cyano groups, amino groups, amide groups, carbonyloxy groups, carboxyl groups, carbonyl groups, oxycarbonyl groups, silyl groups, alkenyl groups, alkynyl groups, alkoxy groups. , Aryloxy group, alkylthio group, arylthio group or aromatic group.
  • the additive is liquid, examples thereof include aliphatic hydrocarbons or aromatic compounds having 8 or more carbon atoms. Specific examples include dihalogen hydrocarbon compounds, and compounds in which 1 to 8 substituents are bonded to octane are particularly preferable. Examples of the substituent bonded to octane include a halogen atom, a hydroxyl group, a thiol group, a cyano group, an amino group, an amide group, a carbonyloxy group, a carboxyl group, a carbonyl group, or an aromatic group. Another example of the additive is a benzene compound to which 4 or more and 6 or less halogen atoms are bonded.
  • the amount of the additive contained in the coating solution containing the p-type semiconductor compound and the n-type semiconductor compound is preferably 0.1% by weight or more, and more preferably 0.5% by weight or more with respect to the entire coating solution. Moreover, 10 weight% or less is preferable with respect to the whole coating liquid, and 5 weight% or less is more preferable. When the amount of the additive is within this range, a preferable phase separation structure can be obtained.
  • the active layer (IV) contains at least the polymer compound (1) as a p-type semiconductor compound.
  • polymer compound (1) The polymer compound used in the photoelectric conversion element of the present invention (hereinafter sometimes referred to as “polymer compound (1)”) is a kind of p-type semiconductor compound, and is a benzoate represented by the formula (1). It has a bis-thiazole structural unit (hereinafter sometimes referred to as “structural unit represented by formula (1)”).
  • a 1 and A 2 are each independently an alkoxy group, a thioalkoxy group, a thiophene ring optionally substituted with a hydrocarbon group, a thiazole ring optionally substituted with a hydrocarbon group or an organosilyl group, or It represents a phenyl group which may be substituted with a hydrocarbon group, an alkoxy group, a thioalkoxy group, an organosilyl group, a halogen atom, or a trifluoromethyl group.
  • the polymer compound used in the photoelectric conversion element of the present invention has a benzobisthiazole structural unit represented by the formula (1). Therefore, the band gap can be narrowed while deepening the HOMO level, which is advantageous in increasing the photoelectric conversion efficiency.
  • the polymer compound (1) is preferably a donor-acceptor type semiconductor polymer obtained by copolymerizing a structural unit represented by the formula (1) and a copolymerization component (2) described later.
  • the donor-acceptor type semiconductor polymer means a polymer compound in which donor units and acceptor units are alternately arranged.
  • the donor unit means an electron donating structural unit
  • the acceptor unit means an electron accepting structural unit.
  • the donor-acceptor type semiconductor polymer is preferably a polymer compound in which a structural unit represented by the formula (1) and a copolymer component (2) described later are alternately arranged. With such a structure, it can be suitably used as a p-type semiconductor compound.
  • a 1 and A 2 may be the same or different from each other, but are preferably the same from the viewpoint of easy production.
  • a 1 and A 2 are each preferably groups represented by the following formulas (a1) to (a4).
  • a 1 and A 2 are groups represented by the following formulas (a1) to (a4), light of a short wavelength can be absorbed, so that the photoelectric conversion efficiency can be further improved.
  • R 21 to R 25 each independently represents a hydrocarbon group having 8 to 30 carbon atoms. * Represents a bond bonded to the benzene ring of benzobisthiazole. ]
  • R 21 to R 25 are each a hydrocarbon group having 8 to 30 carbon atoms, preferably a branched hydrocarbon group, and more preferably a branched saturated hydrocarbon group. Since the hydrocarbon group of R 21 to R 25 has a branch, the solubility in an organic solvent can be increased, and appropriate crystallinity can be obtained. As the carbon number of the hydrocarbon group of A 1 and A 2 increases, the solubility in an organic solvent can be improved. However, if the carbon number is too large, the reactivity in the coupling reaction described later decreases. The synthesis of 1) may be difficult. Therefore, the carbon number of the hydrocarbon group of A 1 and A 2 is preferably 8 to 25, more preferably 8 to 20, and still more preferably 8 to 16.
  • Examples of the hydrocarbon group having 8 to 30 carbon atoms represented by R 21 to R 25 include an n-octyl group, 1-n-butylbutyl group, 1-n-propylpentyl group, 1-ethylhexyl group, 2- Such as ethylhexyl, 3-ethylhexyl, 4-ethylhexyl, 1-methylheptyl, 2-methylheptyl, 6-methylheptyl, 2,4,4-trimethylpentyl, 2,5-dimethylhexyl, etc.
  • alkyl group having 8 carbon atoms An alkyl group having 8 carbon atoms; n-nonyl group, 1-n-propylhexyl group, 2-n-propylhexyl group, 1-ethylheptyl group, 2-ethylheptyl group, 1-methyloctyl group, 2-methyloctyl group
  • An alkyl group having 9 carbon atoms such as a group, 6-methyloctyl group, 2,3,3,4-tetramethylpentyl group, 3,5,5-trimethylhexyl group; n-decyl group, 1 -N-pentylpentyl group, 1-n-butylhexyl group, 2-n-butylhexyl group, 1-n-propylheptyl group, 1-ethyloctyl group, 2-ethyloctyl group, 1-methylnonyl group, 2- C10 alkyl groups such as methylnonyl group and
  • An alkyl group having 8 to 20 carbon atoms is preferable, an alkyl group having 8 to 16 carbon atoms is more preferable, a branched alkyl group having 8 to 16 carbon atoms is further preferable, and n-octyl is particularly preferable.
  • a 1 and A 2 are each independently an alkoxy group, a thioalkoxy group, a hydrocarbon group, a thiophene ring, a hydrocarbon group or A thiazole ring optionally substituted with an organosilyl group, or a phenyl group optionally substituted with a hydrocarbon group, an alkoxy group, a thioalkoxy group, an organosilyl group, a halogen atom, or a trifluoromethyl group It is preferable.
  • the structural unit represented by the formula (1) has high planarity, so that Since ⁇ - ⁇ stacking is formed, the conversion efficiency can be further improved, which is more preferable.
  • a 1 and A 2 are more preferably a group represented by the formula (a1) or (a3) from the viewpoint of excellent planarity as a whole structural unit represented by the formula (1).
  • Groups represented by formulas (a1-5) and (3-1) to (3-10) are more preferred.
  • Formulas (a1-1) to (a1-3), (a3-1) to (a3-6) ) Is particularly preferred.
  • * represents a bond bonded to the benzene ring of benzobisthiazole.
  • Examples of the structural unit represented by the formula (1) include a group represented by the following formula.
  • the polymer compound (1) used in the present invention preferably contains a copolymer component (2) in combination with the structural unit represented by the formula (1).
  • a conventionally known structural unit can be used as a structural unit (donor unit or acceptor unit) that forms a donor-acceptor type semiconductor polymer.
  • specific examples include the following structural units, which can be used alone or in combination of two or more.
  • R 30 to R 49 each independently represents the same group as R 21 to R 25, and A 30 and A 31 each independently represent A 1 , A 2 And j represents an integer of 1 to 4.
  • represents a bond bonded to the thiazole ring of the structural unit represented by the formula (1).
  • the groups represented by the above formulas (b1) to (b12) are groups that act as acceptor units, and the groups represented by formulas (b14) to (b22) are groups that act as donor units. It is.
  • the group represented by the formula (b13) may act as an acceptor unit or may act as a donor unit depending on the types of A 30 and A 31 .
  • the repeating ratio of the structural unit represented by the formula (1) in the polymer compound (1) used in the present invention is not particularly limited, but is usually 1 mol% or more, preferably 5 mol% or more, more preferably It is 15 mol% or more, more preferably 30 mol% or more. On the other hand, it is usually 99 mol% or less, preferably 95 mol% or less, more preferably 85 mol% or less, and still more preferably 70 mol% or less.
  • the ratio of the repeating unit of the copolymer component (2) in the polymer compound (1) is not particularly limited, but is usually 1 mol% or more, preferably 5 mol% or more, more preferably 15 mol% or more, Preferably it is 30 mol% or more. On the other hand, it is usually 99 mol% or less, preferably 95 mol% or less, more preferably 85 mol% or less, and still more preferably 70 mol% or less.
  • the arrangement state of the structural unit represented by the formula (1) of the repeating unit and the copolymer component (2) may be any of alternating, block and random. That is, the polymer compound (1) according to the present invention may be an alternating copolymer, a block copolymer, or a random copolymer. Preferably, they are arranged alternately.
  • the structural unit represented by the formula (1) and the copolymer component (2) may each contain only one type. Moreover, 2 or more types of structural units represented by Formula (1) may be included, and 2 or more types of copolymerization components (2) may be included. Although there is no restriction
  • R 30 to R 49 represent n-octyl group, 2-ethylhexyl group, 3,7-dimethyloctyl group, 2-n-butyloctyl, 2-n-hexyldecyl group.
  • the polymer compound (1) includes a plurality of repeating units, the ratio of the number of each repeating unit is arbitrary.
  • the polymer compound (1) used in the present invention has absorption in a long wavelength region (600 nm or more). Moreover, the photoelectric conversion element using a high molecular compound (1) shows a high open circuit voltage (Voc), and shows a high photoelectric conversion characteristic.
  • Voc open circuit voltage
  • the polymer compound (1) is a p-type organic semiconductor compound and the fullerene compound is combined as an n-type organic semiconductor compound, particularly high photoelectric conversion characteristics are exhibited.
  • the polymer compound (1) according to the present invention has an advantage that it has a low HOMO energy level and is not easily oxidized.
  • the polymer compound (1) exhibits high solubility in a solvent, there is an advantage that coating film formation is easy.
  • a solvent suitable for film formation can be selected, and the film quality of the formed active layer can be improved. This is also considered to be a factor that the photoelectric conversion element using the polymer compound (1) according to the present invention exhibits high photoelectric conversion characteristics.
  • the weight average molecular weight and number average molecular weight of the polymer compound (1) of the present invention are preferably 2,000 or more and 1,000,000 or less, more preferably 3,000 or more, 500,000 or less. 000 or less.
  • the weight average molecular weight and number average molecular weight of the polymer compound (1) of the present invention can be calculated based on a calibration curve prepared using polystyrene as a standard sample using gel permeation chromatography.
  • the polymer compound (1) according to the present invention preferably has a light absorption maximum wavelength ( ⁇ max) of 400 nm or more, more preferably 450 nm or more, and is usually 1200 nm or less, preferably 1000 nm or less, more preferably 900 nm or less. is there. Moreover, a half value width is 10 nm or more normally, Preferably it is 20 nm or more, on the other hand, it is 300 nm or less normally. Moreover, it is desirable that the absorption wavelength region of the polymer compound (1) according to the present invention is closer to the absorption wavelength region of sunlight.
  • the solubility of the polymer compound (1) according to the present invention is not particularly limited, but preferably the solubility in chlorobenzene at 25 ° C. is usually 0.1% by weight or more, more preferably 0.4% by weight or more, more preferably On the other hand, it is usually 30% by weight or less, preferably 20% by weight. High solubility is preferable in that a thicker active layer can be formed.
  • the polymer compound (1) according to the present invention preferably interacts between molecules.
  • the interaction between molecules means that the distance between polymer chains is shortened due to the interaction of ⁇ - ⁇ stacking between molecules of the polymer compound.
  • the stronger the interaction the higher the polymer compound tends to exhibit higher carrier mobility and / or crystallinity. That is, in a polymer compound that interacts between molecules, charge transfer between molecules is likely to occur. Therefore, the p-type semiconductor compound (polymer compound (1)) in the active layer (IV) and the n-type semiconductor compound It is considered that holes generated at the interface can be efficiently transported to the anode (II).
  • the production method of the polymer compound (1) used in the present invention is not particularly limited.
  • a compound represented by the formula (3) using benzobisthiazole as a starting material for example, a compound represented by the formula (3) using benzobisthiazole as a starting material,
  • R 1 to R 6 each independently represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms.
  • a 1 and A 2 each represent the same group as described above.
  • M 1 and M 2 each independently represents a boron atom or a tin atom.
  • R 7 to R 10 each independently represents an aliphatic hydrocarbon group having 1 to 6 carbon atoms, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or an aryloxy group having 6 to 10 carbon atoms.
  • R 7 and R 8 may form a ring together with M 1
  • R 9 and R 10 may form a ring together with M 2 .
  • m and n each represents an integer of 1 or 2. When m and n are 2, the plurality of R 7 and R 9 may be the same or different.
  • the carbon number of the aliphatic hydrocarbon group of R 1 to R 6 is preferably 1 to 18, more preferably 1 to 8.
  • Examples of the aliphatic hydrocarbon group represented by R 1 to R 6 include a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, an isobutyl group, an octyl group, and an octadecyl group.
  • the carbon number of the aromatic hydrocarbon group of R 1 to R 6 is preferably 6 to 8, more preferably 6 to 7, and particularly preferably 6.
  • Examples of the aromatic hydrocarbon group represented by R 1 to R 6 include a phenyl group. Among these, as R 1 to R 6 , an aliphatic hydrocarbon group is preferable, an aliphatic hydrocarbon group having a branch is more preferable, and an isopropyl group is particularly preferable.
  • the compound of the above formula (7) can be produced, for example, as follows.
  • a 1 and A 2 each represent the same group as described above.
  • R 11 and R 12 each independently represents a hydrogen atom or * -M 3 (R 13 ) k R 14 .
  • R 13 and R 14 each independently represents an aliphatic hydrocarbon group having 1 to 6 carbon atoms, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or an aryloxy group having 6 to 10 carbon atoms.
  • M 3 represents a boron atom or a tin atom.
  • R 13 and R 14 may form a ring together with M 3 .
  • k represents an integer of 1 or 2. When k is 2, the plurality of R 13 may be the same or different.
  • the polymer compound (1) is combined with the structural unit represented by the formula (1) and the copolymerization component (2) alternately by a coupling reaction to form a donor-acceptor type. It can be produced as a polymer compound.
  • the coupling reaction can be performed by reacting the compound represented by the formula (6) with any one of the compounds represented by the following formulas (B1) to (B21) in the presence of a metal catalyst.
  • R 30 to R 49 each independently represents the same group as R 21 to R 25, and A 30 and A 31 each independently represent A 1 , A 2 Represents the same group.
  • X represents a halogen atom.
  • j represents an integer of 1 to 4.
  • the active layer (IV) contains at least the polymer compound (1) according to the present invention as a p-type semiconductor compound.
  • a p-type semiconductor compound different from the polymer compound (1) can be mixed and / or laminated with the polymer compound (1).
  • An organic-semiconductor compound (10) is mentioned.
  • the organic semiconductor compound (10) may be a high molecular organic semiconductor compound or a low molecular organic semiconductor compound, but is preferably a high molecular organic semiconductor.
  • Organic semiconductor compound (10) is not particularly limited, and is a conjugated copolymer semiconductor compound such as polythiophene, polyfluorene, polyphenylene vinylene, polythienylene vinylene, polyacetylene, or polyaniline; an oligothiophene substituted with an alkyl group or other substituent. And copolymer semiconductor compounds such as Moreover, the copolymer semiconductor compound which copolymerized 2 or more types of monomer units is also mentioned. Conjugated copolymers are described in, for example, Handbook of Conducting Polymers, 3rd Ed. (2 volumes in total), 2007, J.M. Polym. Sci. Part A: Polym. Chem.
  • the organic semiconductor compound (10) may be a single compound or a mixture of a plurality of compounds. By using the organic semiconductor compound (10), an increase in the amount of light absorption due to the addition of the absorption wavelength band can be expected.
  • organic semiconductor compound (10) examples include the following, but are not limited to the following.
  • the HOMO (highest occupied molecular orbital) energy level of the p-type semiconductor compound is not particularly limited and can be selected according to the type of the n-type semiconductor compound described later.
  • the HOMO energy level of the p-type semiconductor compound is usually ⁇ 5.9 eV or more, more preferably ⁇ 5.7 eV or more, while usually ⁇ 4.6 eV or less. Preferably, it is ⁇ 4.8 eV or less.
  • the HOMO energy level of the p-type semiconductor compound is ⁇ 5.9 eV or more, the characteristics as a p-type semiconductor are improved, and when the HOMO energy level of the p-type semiconductor compound is ⁇ 4.6 eV or less, the p-type semiconductor compound has p-type characteristics.
  • the stability of the semiconductor compound is improved and the open circuit voltage (Voc) is also improved.
  • the LUMO (lowest unoccupied molecular orbital) energy level of the p-type semiconductor compound is not particularly limited, but can be selected according to the type of the n-type semiconductor compound described later.
  • the LUMO energy level of the p-type semiconductor compound is usually ⁇ 4.5 eV or more, preferably ⁇ 4.3 eV or more.
  • it is usually ⁇ 2.5 eV or less, preferably ⁇ 2.7 eV or less.
  • the band gap is adjusted, light energy of a long wavelength can be effectively absorbed, and the short-circuit current density is improved.
  • the LUMO energy level of the p-type semiconductor compound is ⁇ 3.9 eV or more, electron transfer to the n-type semiconductor compound is likely to occur, and the short-circuit current density is improved.
  • the theoretically calculated values include semi-empirical molecular orbital methods and non-empirical molecular orbital methods.
  • Examples of the actual measurement method include ultraviolet-visible absorption spectrum measurement or measurement of ionization potential with an ultraviolet photoelectron analyzer (“AC-3”, manufactured by Riken Keiki Co., Ltd.) under normal temperature and normal pressure. Among them, AC-3 measurement is preferable, and the AC-3 measurement method is used in the present invention.
  • the n-type organic semiconductor compound is not particularly limited, but is generally a ⁇ -electron conjugated compound having a lowest unoccupied orbital (LUMO) level of 3.5 to 4.5 eV, such as fullerene or Perfluoro derivatives (eg, perfluoropentacene or perfluorophthalocyanine) in which hydrogen atoms of p-type organic semiconductor compounds are substituted with fluorine atoms, such as derivatives thereof, octaazaporphyrins, naphthalene tetracarboxylic acid anhydrides, naphthalene tetracarboxylic acid diimides, Examples thereof include aromatic carboxylic acid anhydrides such as perylenetetracarboxylic acid anhydride and perylenetetracarboxylic acid diimide, and polymer compounds containing the imidized product as a skeleton.
  • LUMO lowest unoccupied orbital
  • Perfluoro derivatives eg, perfluoropen
  • fullerene or a derivative thereof is preferable because charge separation can be performed at high speed and efficiently from the polymer compound (1) (p-type organic semiconductor compound) having the specific structural unit of the present invention.
  • fullerenes and derivatives thereof C60 fullerene, C70 fullerene, C76 fullerene, C78 fullerene, C84 fullerene, C240 fullerene, C540 fullerene, mixed fullerene, fullerene nanotubes, and some of them are hydrogen atoms, halogen atoms, substituted or non-substituted.
  • Examples include fullerene derivatives substituted with a substituted alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, cycloalkyl group, silyl group, ether group, thioether group, amino group, silyl group, and the like.
  • phenyl-C61-butyric acid ester diphenyl-C62-bis (butyric acid ester), phenyl-C71-butyric acid ester, phenyl-C85-butyric acid ester or thienyl-C61-butyric acid ester is preferable.
  • the carbon number of the alcohol moiety is preferably 1-30, more preferably 1-8, still more preferably 1-4, and most preferably 1.
  • Examples of preferred fullerene derivatives include phenyl-C61-butyric acid methyl ester ([60] PCBM), phenyl-C61-butyric acid n-butyl ester ([60] PCBnB), phenyl-C61-butyric acid isobutyl ester ([60] PCBiB).
  • Phenyl-C61-butyric acid n-hexyl ester [60] PCBH), phenyl-C61-butyric acid n-octyl ester ([60] PCBO), diphenyl-C62-bis (butyric acid methyl ester) (bis [60] PCBM) Phenyl-C71-butyric acid methyl ester ([70] PCBM), phenyl-C85-butyric acid methyl ester ([84] PCBM), thienyl-C61-butyric acid methyl ester ([60] ThCBM), C60 pyrrolidine tris acid, C60 pyrrolidine Tris acid ethyl ester N-methylfulleropyrrolidine (MP-C60), (1,2-methanofullerene C60) -61-carboxylic acid, (1,2-methanofullerene C60) -61-carboxylic acid t-butyl ester, JP2008- Metal
  • the anode (II) and the cathode (VI) have a function of collecting holes and electrons generated by light absorption. Therefore, it is preferable to use an electrode (VI) (cathode) suitable for collecting electrons and an electrode (II) (anode) suitable for collecting holes for the pair of electrodes. Any one of the pair of electrodes may be translucent, and both may be translucent. Translucency means that sunlight passes through 40% or more. Moreover, it is preferable that the translucent transparent electrode has a sunlight transmittance of 70% or more in order to allow light to reach the active layer (IV) through the transparent electrode. The light transmittance can be measured with a normal spectrophotometer.
  • the cathode (VI) is an electrode generally made of a conductive material having a work function smaller than that of the anode and having a function of smoothly extracting electrons generated in the active layer (IV).
  • Examples of the material of the cathode (VI) include metals such as platinum, gold, silver, copper, iron, tin, zinc, aluminum, indium, chromium, lithium, sodium, potassium, cesium, calcium or magnesium and alloys thereof; Examples include inorganic salts such as lithium fluoride and cesium fluoride; metal oxides such as nickel oxide, aluminum oxide, lithium oxide, and cesium oxide. These materials are preferable because they are materials having a small work function.
  • an n-type semiconductor compound such as zinc oxide having conductivity is used as a material for the electron transport layer (V)
  • a material having a large work function suitable for an anode such as indium tin oxide (ITO).
  • the material of the cathode 1 (VI) is preferably a metal such as platinum, gold, silver, copper, iron, tin, aluminum, calcium or indium and an alloy using these metals.
  • the film thickness of the cathode (VI) is not particularly limited, but is usually 10 nm or more, preferably 20 nm or more, more preferably 50 nm or more. On the other hand, it is usually 10 ⁇ m or less, preferably 1 ⁇ m or less, more preferably 500 nm or less.
  • the thickness of the cathode (VI) is 10 nm or more, the sheet resistance is suppressed, and when the thickness of the cathode (VI) is 10 ⁇ m or less, the light is efficiently supplied without reducing the light transmittance. Can be converted.
  • the cathode (VI) is used as a transparent electrode, it is necessary to select a film thickness that achieves both light transmittance and sheet resistance.
  • the sheet resistance of the cathode (VI) is not particularly limited, but is usually 1000 ⁇ / sq or less, preferably 500 ⁇ / sq or less, more preferably 100 ⁇ / sq or less. Although there is no restriction
  • a vacuum film forming method such as a vapor deposition method or a sputtering method, or a wet coating method in which an ink containing nanoparticles or a precursor is applied to form a film.
  • the anode (II) is an electrode generally made of a conductive material having a work function larger than that of the cathode and having a function of smoothly extracting holes generated in the active layer (IV).
  • Examples of materials for the anode (II) include conductive metals such as nickel oxide, tin oxide, indium oxide, indium tin oxide (ITO), indium-zirconium oxide (IZO), titanium oxide, indium oxide, and zinc oxide. Oxides; metals such as gold, platinum, silver, chromium or cobalt, or alloys thereof. These substances are preferable because they have a large work function, and more preferably, a conductive polymer material represented by PEDOT: PSS in which a polythiophene derivative is doped with polystyrene sulfonic acid can be laminated.
  • PEDOT PEDOT: PSS in which a polythiophene derivative is doped with polystyrene sulfonic acid
  • this conductive polymer material When laminating such a conductive polymer, the work function of this conductive polymer material is large, so it is suitable for cathodes such as aluminum and magnesium, even if it is not a material with a large work function as described above. Metals can also be widely used.
  • PEDOT PSS in which a polythiophene derivative is doped with polystyrene sulfonic acid, or a conductive polymer material in which polypyrrole or polyaniline is doped with iodine or the like can also be used as an anode material.
  • the anode (II) is a transparent electrode
  • a light-transmitting conductive metal oxide such as ITO, zinc oxide or tin oxide, and particularly preferably ITO.
  • the film thickness of the anode (II) is not particularly limited, but is usually 10 nm or more, preferably 20 nm or more, more preferably 50 nm or more. On the other hand, it is usually 10 ⁇ m or less, preferably 1 ⁇ m or less, more preferably 500 nm or less.
  • the film thickness of the anode (II) is 10 nm or more, the sheet resistance is suppressed, and when the film thickness of the anode (II) is 10 ⁇ m or less, the light is efficiently transferred without reducing the light transmittance. Can be converted.
  • the anode (II) is a transparent electrode, it is necessary to select a film thickness that can achieve both light transmittance and sheet resistance.
  • the sheet resistance of the anode (II) is not particularly limited, but is usually 1 ⁇ / sq or more, on the other hand, 1000 ⁇ / sq or less, preferably 500 ⁇ / sq or less, more preferably 100 ⁇ / sq or less.
  • Examples of the method for forming the anode (II) include a vacuum film forming method such as an evaporation method or a sputtering method, or a wet coating method in which an ink containing nanoparticles and a precursor is applied to form a film.
  • the cathode (VI) and the anode (II) may have a laminated structure of two or more layers. Further, the characteristics (electrical characteristics, wetting characteristics, etc.) may be improved by performing a surface treatment on the cathode (VI) and the anode (II).
  • a photoelectric conversion element (VII) has the base material (I) which becomes a support body normally. That is, the electrodes (II) and (VI) and the active layer (IV) are formed on the substrate.
  • the material for the substrate (I) is not particularly limited as long as the effects of the present invention are not significantly impaired.
  • the material of the substrate (I) include inorganic materials such as quartz, glass, sapphire and titania; polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyimide, nylon, polystyrene, polyvinyl alcohol, ethylene vinyl alcohol Organic materials such as copolymers, fluororesin films, polyolefins such as vinyl chloride or polyethylene, cellulose, polyvinylidene chloride, aramid, polyphenylene sulfide, polyurethane, polycarbonate, polyarylate, polynorbornene, or epoxy resins; paper or synthetic paper Paper materials; composite materials such as those obtained by coating or laminating a surface of a metal such as stainless steel, titanium, or aluminum to provide insulation;
  • glass examples include soda glass, blue plate glass, and non-alkali glass.
  • alkali-free glass is preferable in that there are few eluted ions from the glass.
  • base material (I) there is no restriction
  • limiting in the film thickness of base material (I) it is 5 micrometers or more normally, Preferably it is 20 micrometers or more, on the other hand, it is 20 mm or less normally, Preferably it is 10 mm or less.
  • the film thickness of the substrate (I) is preferably 5 ⁇ m or more because the possibility that the strength of the photoelectric conversion element is insufficient is reduced. It is preferable that the film thickness of the substrate (I) is 20 mm or less because the cost is suppressed and the weight does not increase.
  • the film thickness is usually 0.01 mm or more, preferably 0.1 mm or more, and is usually 1 cm or less, preferably 0.5 cm or less. It is preferable that the film thickness of the glass substrate (I) is 0.01 mm or more because the mechanical strength increases and it is difficult to break. Moreover, it is preferable that the film thickness of the glass substrate (I) is 0.5 cm or less because the weight does not increase.
  • the photoelectric conversion element (VII) includes an active layer (IV), an anode (II) (hereinafter also referred to as “electrode (II)”), and a cathode (VI) (hereinafter also referred to as “electrode (VI)”). It is preferable to have buffer layers (III) and (V) between them.
  • the buffer layer can be classified into an electron transport layer (V) and a hole transport layer (III). By providing the buffer layer, electrons or holes can be easily transferred between the active layer (IV) and the anode (II), and a short circuit between the electrodes can be prevented.
  • the buffer layers (III) and (V) may not exist.
  • the electron transport layer (V) and the hole transport layer (III) are arranged so as to sandwich the active layer (IV) between the pair of electrodes (II) and (VI). That is, when the photoelectric conversion element (VII) according to the present invention includes both the electron transport layer (V) and the hole transport layer (III), the cathode (VI), the electron transport layer (V), and the active layer (IV) , Hole transport layer (III), and anode (II) are arranged in this order.
  • the photoelectric conversion element (VII) includes the electron transport layer (V) and does not include the hole transport layer (III), the cathode (VI), the electron transport layer (V), the active layer (IV), and The anode (II) is arranged in this order.
  • the electron transport layer (V) is a layer for extracting electrons from the active layer (IV) to the cathode (VI), and is not particularly limited as long as it is an electron transport material that improves the efficiency of electron extraction.
  • a compound or an inorganic compound may be used, but an inorganic compound is preferable.
  • the inorganic compound material include alkali metal salts such as lithium, sodium, potassium, and cesium, alkaline earth metal salts such as calcium, and metal oxides.
  • the alkali metal salt is preferably a fluoride salt such as lithium fluoride, sodium fluoride, potassium fluoride or cesium fluoride
  • the metal oxide is titanium oxide (TiOx) or zinc oxide (ZnO).
  • a metal oxide having n-type semiconductor characteristics such as More preferable as the material of the inorganic compound is a metal oxide having n-type semiconductor properties such as titanium oxide (TiOx) or zinc oxide (ZnO). Particularly preferred is titanium oxide (TiOx).
  • the operation mechanism of such a material is unknown, but when combined with the cathode (VI), it is conceivable to reduce the work function and increase the voltage applied to the inside of the solar cell element.
  • the LUMO energy level of the material of the electron transport layer (V) is not particularly limited, but is usually ⁇ 4.0 eV or more, preferably ⁇ 3.9 eV or more. On the other hand, it is usually ⁇ 1.9 eV or less, preferably ⁇ 2.0 eV or less. It is preferable that the LUMO energy level of the material of the electron transport layer (V) is ⁇ 1.9 eV or less because charge transfer can be promoted. It is preferable that the LUMO energy level of the material of the electron transport layer (V) is ⁇ 4.0 eV or more because reverse electron transfer to the n-type semiconductor compound can be prevented.
  • the HOMO energy level of the material of the electron transport layer (V) is not particularly limited, but is usually ⁇ 9.0 eV or more, preferably ⁇ 8.0 eV or more. On the other hand, it is usually ⁇ 5.0 eV or less, preferably ⁇ 5.5 eV or less. It is preferable that the HOMO energy level of the material of the electron transport layer (V) is ⁇ 5.0 eV or less from the viewpoint that holes can be prevented from moving.
  • a method for calculating the LUMO energy level and the HOMO energy level of the material of the electron transport layer (V) a cyclic voltammogram measurement method may be mentioned.
  • the film thickness of the electron transport layer (V) is not particularly limited, but is usually 0.1 nm or more, preferably 0.5 nm or more, more preferably 1.0 nm or more. On the other hand, it is usually 100 nm or less, preferably 70 nm or less, more preferably 40 nm or less, and particularly preferably 20 nm or less.
  • the film thickness of the electron transport layer (V) is 0.1 nm or more, it functions as a buffer material.
  • the film thickness of the electron transport layer (V) is 100 nm or less, electrons are easily taken out. Thus, the photoelectric conversion efficiency can be improved.
  • the hole transport layer (III) is a layer that extracts holes from the active layer (IV) to the anode (II), and any material that can improve the hole extraction efficiency can be used.
  • any material that can improve the hole extraction efficiency can be used.
  • conductive polymers in which polythiophene, polypyrrole, polyacetylene, triphenylenediamine, polyaniline or the like is doped with sulfonic acid and / or iodine, polythiophene derivatives having a sulfonyl group as a substituent, conductive organic materials such as arylamine Examples include compounds, metal oxides having p-type semiconductor properties such as molybdenum trioxide, vanadium pentoxide, or nickel oxide, and the above-described p-type semiconductor compounds.
  • a conductive polymer doped with sulfonic acid is preferable, and poly (3,4-ethylenedioxythiophene) poly (styrenesulfonic acid) (PEDOT: PSS) in which a polythiophene derivative is doped with polystyrene sulfonic acid is more preferable.
  • PEDOT poly (3,4-ethylenedioxythiophene) poly (styrenesulfonic acid)
  • a thin film of metal such as gold, indium, silver or palladium can also be used.
  • a thin film of metal or the like may be formed alone or in combination with the above organic material.
  • the film thickness of the hole transport layer (III) is not particularly limited, but is usually 0.2 nm or more, preferably 0.5 nm or more, more preferably 1.0 nm or more. On the other hand, it is usually 400 nm or less, preferably 200 nm or less, more preferably 100 nm or less, and particularly preferably 70 nm or less.
  • the thickness of the hole transport layer 104 is 0.2 nm or more, it functions as a buffer material.
  • the thickness of the hole transport layer (III) is 400 nm or less, holes are easily extracted. The photoelectric conversion efficiency can be improved.
  • the method of forming the electron transport layer (V) and the hole transport layer (III) there is no limitation on the method of forming the electron transport layer (V) and the hole transport layer (III).
  • a material having sublimation property it can be formed by a vacuum deposition method or the like.
  • a material soluble in a solvent it can be formed by a wet coating method such as spin coating or inkjet.
  • the precursor may be converted into a semiconductor compound after forming a layer containing a semiconductor compound precursor, as in the active layer (IV).
  • PEDOT-PSS [poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid)
  • a hole transport layer was formed.
  • the active layer can be formed by carrying it in a glove box later, spin-coating a mixed solution of donor material and acceptor material in an inert gas atmosphere, and performing annealing treatment or drying under reduced pressure on a hot plate.
  • an electron transport layer in which tetraisopropyl orthotitanate in ethanol (about 0.3 v%) is spin-coated in the atmosphere and converted into titanium oxide by moisture in the atmosphere can be produced.
  • aluminum as an electrode is vapor-deposited to form a cathode, and a photoelectric conversion element can be obtained.
  • photoelectric conversion elements having different configurations for example, a photoelectric conversion element that does not have at least one of the hole transport layer (III) and the electron transport layer (V) can be manufactured by a similar method.
  • the photoelectric conversion characteristics of the photoelectric conversion element (VII) can be obtained as follows.
  • the photoelectric conversion element (VII) is irradiated with AM1.5G light with a solar simulator at an irradiation intensity of 100 mW / cm 2 and current-voltage characteristics are measured. From the obtained current-voltage curve, photoelectric conversion characteristics such as photoelectric conversion efficiency (PCE), short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF), series resistance, and shunt resistance can be obtained.
  • PCE photoelectric conversion efficiency
  • Jsc short circuit current density
  • Voc open circuit voltage
  • FF fill factor
  • series resistance series resistance
  • shunt resistance series resistance
  • the maintenance rate of photoelectric conversion efficiency before and after exposure to the atmosphere for one week is preferably 60% or more, more preferably 80% or more, and the higher the better.
  • the photoelectric conversion element (VII) according to the present invention is preferably used as a solar cell, particularly a solar cell element of an organic thin film solar cell.
  • the use of the organic thin-film solar cell according to the present invention is not limited and can be used for any purpose.
  • Examples of fields to which the organic thin film solar cell according to the present invention can be applied include building material solar cells, automotive solar cells, interior solar cells, railway solar cells, marine solar cells, airplane solar cells, and spacecrafts. Solar cells for home appliances, solar cells for home appliances, solar cells for mobile phones, solar cells for toys, and the like.
  • the organic thin film solar cell according to the present invention may be used as it is, or may be used as a solar cell module by installing a solar cell on the substrate (I). If a specific example is given, when using the board
  • the measurement method used in the synthesis example is as follows.
  • NMR spectrum measurement About the benzobis thiazole compound, NMR spectrum measurement was performed using the NMR spectrum measuring apparatus (Agilent (formerly Varian), "400MR”, and Bruker, "AVANCE500”).
  • the benzobisthiazole compound was subjected to high-resolution mass spectrum measurement (APCI: atmospheric pressure chemical ionization method) using a mass spectrometer (manufactured by Bruker Daltnics, “MicOTOF”).
  • APCI atmospheric pressure chemical ionization method
  • the molecular weight of the benzobisthiazole compound was measured using gel permeation chromatography (GPC).
  • GPC Gel permeation chromatography
  • the benzobisthiazole compound was dissolved in a mobile phase solvent (chloroform) so as to have a concentration of 0.5 g / L, measured under the following conditions, and based on a calibration curve prepared using polystyrene as a standard sample. By converting, the weight average molecular weight of the benzobisthiazole compound was calculated.
  • the GPC conditions in the measurement are as follows.
  • IR spectrum With respect to the benzobisthiazole compound, IR spectrum measurement was performed using an infrared spectrometer (manufactured by JASCO, “FT / IR-6100”).
  • UV-visible absorption spectrum The obtained benzobisthiazole compound was dissolved in chloroform so as to have a concentration of 0.03 g / L, and an ultraviolet / visible spectroscope (manufactured by Shimadzu Corporation, “UV-2450”, “UV-3150”), and The UV-visible absorption spectrum was measured using a cell having an optical path length of 1 cm.
  • melting point measurement The melting point of the benzobisthiazole compound was measured using a melting point measurement apparatus (manufactured by Buchi, “M-560”).
  • a benzobisthiazole compound was formed on a glass substrate so as to have a thickness of 50 nm to 100 nm.
  • the ionization potential of this membrane was measured with an ultraviolet photoelectron analyzer (“AC-3” manufactured by Riken Keiki Co., Ltd.) at room temperature and normal pressure.
  • polymer compound (1) used in this patent is shown below.
  • the polymer compound (1) used in the present invention is not limited by the following synthesis examples, and the synthesis method itself may be synthesized with appropriate modifications within a range that can meet the purpose described above and below. Of course it is possible.
  • “part” means “part by mass” and “%” means “mass%” unless otherwise specified.
  • DBTH benzo [1,2-d; 4,5-d ′] bisthiazole, 4 g, 20.8 mmol
  • tetrahydrofuran 160 mL
  • the solution 1.5M solution, 29.1 mL, 43.7 mmol
  • triisopropyl chloride 8.8 mL, 41.6 mmol
  • DI-DBTH-DT 4,8-diiodo-2,6-bis-triisopropylsilanylbenzo [1,2-d; 4,5-d ′] bisthiazole, 500 mg, 0 .66 mmol
  • tributyl (5-octylthiophen-2-yl) stannane
  • tris (dibenzylideneacetone) dipalladium (0) -chloroform adduct (62 mg, 0.06 mmol)
  • tris (2 -Furyl) phosphine 28 mg, 0.12 mmol
  • N, N-dimethylformamide (10 mL) were added, and the mixture was heated to 60 ° C.
  • DBTH-C8THO 4,8-bis (5-octylthiophen-2-yl) benzo [1, 2-d; 4,5-d ′] bisthiazole
  • DBTH-C8THO 4,8-bis (5-octylthiophen-2-yl) benzo [1, 2-d; 4,5-d ′] bisthiazole
  • DBTH-C8THO 180 mg, 0.31 mmol
  • tetrahydrofuran 6 mL
  • a lithium diisopropylamide solution 2 M solution, 0.33 mL, 0.65 mmol
  • the mixture was stirred at 0 ° C. for 30 minutes, cooled to ⁇ 80 ° C.
  • trimethyltin chloride (0.65 mL, 0.65 mmol) was added, and the mixture was warmed to room temperature and stirred for 2 hours.
  • DI-DBTH-DT 4,8-diiodo-2,6-bis-triisopropylsilanylbenzo [1,2-d; 4,5-d ′] bisthiazole, 3 g, 4.0 mmol
  • 2-hexyldecanol 5.8 g, 23.8 mmol
  • copper (I) iodide 151 mg, 0.79 mmol
  • 1,10-PHT 1,10-phenanthroline, 286 mg, 1.59 mmol
  • T-butoxy sodium (1.14 g, 11.9 mmol
  • 1,4-dioxane 30 mL
  • tetrabutylammonium fluoride (1M-tetrahydrofuran solution, 12.0 mL, 11.9 mmol) was added, and the mixture was further reacted at room temperature for 3 hours. After completion of the reaction, water was added and the organic layer obtained by extraction twice with chloroform was washed with water and dried over anhydrous magnesium sulfate.
  • DHD-DBTH 4,8-bis (2-hexyldecyloxy) benzo [1,2-d; 4,5-d ′] bisthiazole, 1 g, 1.49 mmol
  • tetrahydrofuran 20 mL
  • n-butyllithium 1.6 M hexane solution, 1.95 mL, 3.12 mmol
  • tributyltin chloride 0.87 mL, 3.19 mmol
  • Example 1> (Preparation of mixed solution of p-type semiconductor compound and n-type semiconductor compound)
  • a polymer compound having a structure of P-DBTH-C8TH-O-DPP [Chem. 28] was used as the p-type semiconductor compound.
  • PC61BM phenyl C61 butyric acid methyl ester, manufactured by Frontier Carbon Corporation, NS-
  • n-type semiconductor compound 1: 1 (weight). I let you.
  • This solution was stirred and mixed for 2 hours or more at a temperature of 100 ° C. on a hot stirrer. The solution after stirring and mixing was filtered through a 0.45 ⁇ m filter to obtain a mixed solution of a p-type semiconductor compound and an n-type semiconductor compound.
  • PEDOT-PSS [poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid)
  • a spin coater 5000 rpm, 60 seconds Annealed at 200 ° C. for 10 minutes.
  • n-type semiconductor compound a high molecular compound having a structure of P-DBTH-EHT-EH-DPP [Chemical 29] was used.
  • PCBM (C61) as an n-type semiconductor compound
  • p-type semiconductor compound: n-type semiconductor compound 1: 1 (weight)
  • chlorobenzene dissolved in chlorobenzene at a total concentration of 1.6 wt%
  • passed through a 0.45 ⁇ m filter A mixed solution was obtained.
  • a device was produced in the same manner as in Example 1. The obtained device evaluated the said photoelectric conversion element. The results are shown in Table 1.
  • n-type semiconductor compound 1: 2 (weight), 6% (v / v) 1,8-di at a total concentration of 3.0 wt% It was dissolved in orthodichlorobenzene containing iodooctane and passed through a 0.45 ⁇ m filter to obtain a mixed solution. Using the obtained mixed solution, a device was produced in the same manner as in Example 1. The obtained device evaluated the said photoelectric conversion element. The results are shown in Table 1.
  • n-type semiconductor compound a polymer compound having a structure of P-DHD-DBTH-DMO-DPP [Chemical Formula 32] was used.
  • PCBM (C61) as an n-type semiconductor compound
  • p-type semiconductor compound: n-type semiconductor compound 1: 1.5 (weight)
  • chlorobenzene at a total concentration of 2.5 wt% to form a 0.45 ⁇ m filter.
  • a mixed solution was obtained.
  • a device was produced in the same manner as in Example 1. The obtained device evaluated the said photoelectric conversion element. The results are shown in Table 1.
  • n-type semiconductor compound a polymer compound having a structure of P-DHD-DBTH-3HTDZT [Chemical Formula 33] was used.
  • PCBM (C61) as an n-type semiconductor compound
  • p-type semiconductor compound: n-type semiconductor compound 1: 2 (weight)
  • orthodichlorobenzene at a total concentration of 3.0 wt% to form a 0.45 ⁇ m filter.
  • a mixed solution was obtained.
  • a device was produced in the same manner as in Example 1. The obtained device evaluated the said photoelectric conversion element. The results are shown in Table 1.
  • n-type semiconductor compound a polymer compound having a structure of P-DDMO-DBTH-EH-BDT [Chemical Formula 35] was used.
  • PCBM (C61) as an n-type semiconductor compound
  • p-type semiconductor compound: n-type semiconductor compound 1: 2.0 (weight), dissolved in orthodichlorobenzene at a total concentration of 3.0 wt%, 0.45 ⁇ m The solution was passed through a filter.
  • a device was produced in the same manner as in Example 1. The obtained device evaluated the said photoelectric conversion element. The results are shown in Table 1.
  • p-type semiconductor compound a polymer compound having a structure of P-DHD-DBTH-TDZT [Chemical Formula 31] was used.
  • PCBM (C61) as an n-type semiconductor compound
  • p-type semiconductor compound: n-type semiconductor compound 1: 1.5 (weight)
  • chlorobenzene as an n-type semiconductor compound
  • a mixed solution of p-type semiconductor compound and n-type semiconductor compound was obtained.
  • PEDOT-PSS [poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid)
  • a spin coater 5000 rpm, 60 seconds Annealed at 200 ° C. for 10 minutes.
  • Lithium fluoride as an electron transfer layer was vapor-deposited with a vapor deposition machine, and then aluminum as an electrode was vapor-deposited to obtain a device.
  • the obtained device evaluated the said photoelectric conversion element. The results are shown in Table 1.
  • p-type semiconductor compound a polymer compound having a structure of P-DHD-DBTH-TDZT [Chemical Formula 31] was used.
  • PCBM (C61) as an n-type semiconductor compound
  • p-type semiconductor compound: n-type semiconductor compound 1: 1.5 (weight)
  • chlorobenzene as an n-type semiconductor compound
  • a mixed solution of p-type semiconductor compound and n-type semiconductor compound was obtained.
  • PEDOT-PSS [poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid) used as a hole transport layer was applied with a spin coater (5000 rpm for 60 seconds). Annealed at 200 ° C. for 10 minutes.
  • n-type semiconductor compound a polymer compound having a structure of P-DDMO-DBTH-EH-BDT [Chemical Formula 35] was used.
  • PCBM (C61) as an n-type semiconductor compound
  • p-type semiconductor compound: n-type semiconductor compound 1: 2.0 (weight), dissolved in orthodichlorobenzene at a total concentration of 3.0 wt%, 0.45 ⁇ m The solution was passed through a filter. A device was produced in the same manner as in Example 9 using the obtained mixed solution. The obtained device evaluated the said photoelectric conversion element. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

The present invention provides a photoelectric conversion element achieving a high open circuit voltage with use of a polymer compound into which various skeletons and substituents can be introduced. A photoelectric conversion element which has a structure wherein a base, an anode, an active layer and a cathode are sequentially arranged in this order, and which is characterized in that the active layer contains a polymer compound that has a benzobisthiazole structure unit represented by formula (1). (In formula (1), each of A1 and A2 independently represents an alkoxy group, a thioalkoxy group, a thiophene ring which may be substituted by a hydrocarbon group, a thiazole ring which may be substituted by a hydrocarbon group or an organosilyl group, or a phenyl group which may be substituted by a hydrocarbon group, an alkoxy group, a thioalkoxy group, an organosilyl group, a halogen atom or a trifluoromethyl group.)

Description

光電変換素子、およびこれに用いられる有機半導体化合物Photoelectric conversion element and organic semiconductor compound used therefor
 本発明は、基材と、アノードと、活性層と、カソードとがこの順に配置された構造を有する光電変換素子において、特定のベンゾビスチアゾール骨格の構造単位を有する高分子化合物を含有する光電変換素子に関する。 The present invention relates to a photoelectric conversion element having a structure in which a substrate, an anode, an active layer, and a cathode are arranged in this order, and a photoelectric conversion containing a polymer compound having a specific structural unit of a benzobisthiazole skeleton It relates to an element.
 有機半導体化合物は、有機エレクトロニクス分野において最も重要な材料の1つであり、電子供与性のp型有機半導体化合物や電子受容性のn型有機半導体化合物に分類することができる。p型有機半導体化合物やn型有機半導体化合物を適切に組合せることにより様々な素子を製造することができ、このような素子は、例えば、電子と正孔の再結合により形成される励起子(エキシトン)の作用により発光する有機エレクトロルミネッセンスや、光を電力に変換する有機薄膜太陽電池、電流量や電圧量を制御する有機薄膜トランジスタに応用されている。 Organic semiconductor compounds are one of the most important materials in the field of organic electronics, and can be classified into electron-donating p-type organic semiconductor compounds and electron-accepting n-type organic semiconductor compounds. Various elements can be manufactured by appropriately combining a p-type organic semiconductor compound and an n-type organic semiconductor compound. For example, such elements include excitons (recombination of electrons and holes) It is applied to organic electroluminescence that emits light by the action of excitons), organic thin-film solar cells that convert light into electric power, and organic thin-film transistors that control the amount of current and voltage.
 これらの中でも、有機薄膜太陽電池は、大気中への二酸化炭素放出がないため環境保全に有用であり、また簡単な構造で製造も容易であることから、需要が高まっている。しかしながら、有機薄膜太陽電池の光電変換効率はいまだ十分ではない。光電変換効率ηは短絡電流密度(Jsc)と開放電圧(Voc)、曲線因子(FF)の積「η=開放電圧(Voc)×短絡電流密度(Jsc)×曲線因子(FF)」で算出される値であり、光電変換効率を高めるためには、開放電圧(Voc)の向上に加え、短絡電流密度(Jsc)や曲線因子(FF)の向上も必要となる。 Among these, organic thin-film solar cells are useful for environmental conservation because they do not release carbon dioxide into the atmosphere, and demand is increasing because they are easy to manufacture with a simple structure. However, the photoelectric conversion efficiency of the organic thin film solar cell is still not sufficient. The photoelectric conversion efficiency η is calculated by the product “η = open circuit voltage (Voc) × short circuit current density (Jsc) × curve factor (FF)” of the short circuit current density (Jsc), the open circuit voltage (Voc), and the fill factor (FF). In order to increase the photoelectric conversion efficiency, it is necessary to improve the short circuit current density (Jsc) and the fill factor (FF) in addition to the improvement of the open circuit voltage (Voc).
 開放電圧(Voc)は、p型有機半導体化合物のHOMO(最高被占軌道)準位とn型有機半導体化合物のLUMO(最低空軌道)準位のエネルギー差に比例するものであるため、開放電圧(Voc)を向上するためには、p型有機半導体のHOMO準位を深くする(引き下げる)必要がある。 The open circuit voltage (Voc) is proportional to the energy difference between the HOMO (highest occupied orbital) level of the p-type organic semiconductor compound and the LUMO (lowest unoccupied orbital) level of the n-type organic semiconductor compound. In order to improve (Voc), it is necessary to deepen (lower) the HOMO level of the p-type organic semiconductor.
 また、短絡電流密度(Jsc)は、有機半導体化合物が受け取るエネルギーの量と相関するものであり、有機半導体化合物の短絡電流密度(Jsc)を向上するためには、可視領域から近赤外領域までの広い波長範囲の光を吸収させる必要がある。有機半導体化合物が吸収できる光のうち、もっとも低いエネルギーの光の波長(もっとも長い波長)が吸収端波長であり、この波長に対応したエネルギーがバンドギャップエネルギーに相当する。そのため、より広い波長範囲の光を吸収させるためにはバンドギャップ(p型半導体のHOMO準位とLUMO準位のエネルギー差)を狭くする必要がある。 The short circuit current density (Jsc) correlates with the amount of energy received by the organic semiconductor compound. In order to improve the short circuit current density (Jsc) of the organic semiconductor compound, from the visible region to the near infrared region. It is necessary to absorb light in a wide wavelength range. Of the light that can be absorbed by the organic semiconductor compound, the wavelength of the light with the lowest energy (the longest wavelength) is the absorption edge wavelength, and the energy corresponding to this wavelength corresponds to the band gap energy. Therefore, in order to absorb light in a wider wavelength range, it is necessary to narrow the band gap (energy difference between the HOMO level and the LUMO level of the p-type semiconductor).
 一方、p型有機半導体化合物の研究も盛んに行われている。例えば、非特許文献1には、4,4’-ビス(2-エチルヘキシル)ジチエノ[3,2-b;2’,3’,-d]シロールと2,1,3-ベンゾチアジアゾールの共重合体が提案されている。しかし、非特許文献1に記載のp型有機半導体化合物は、HOMO準位が十分に深くない場合がある。また、非特許文献2には、ベンゾジチオフェン骨格を有するp型有機半導体化合物が提案されている。しかし、非特許文献2に記載のp型有機半導体化合物は、合成法の問題から導入できる骨格や置換基が限定される。
 また、特許文献1、2では、それぞれベンゾビスチアゾール骨格を有する化合物が提案されているが、変換効率が明らかではない。
On the other hand, research on p-type organic semiconductor compounds is also actively conducted. For example, Non-Patent Document 1 describes the co-polymerization of 4,4′-bis (2-ethylhexyl) dithieno [3,2-b; 2 ′, 3 ′,-d] silole and 2,1,3-benzothiadiazole. Coalescence has been proposed. However, the p-type organic semiconductor compound described in Non-Patent Document 1 may not have a sufficiently deep HOMO level. Non-Patent Document 2 proposes a p-type organic semiconductor compound having a benzodithiophene skeleton. However, the p-type organic semiconductor compound described in Non-Patent Document 2 is limited in the skeleton and substituents that can be introduced due to problems in the synthesis method.
Further, Patent Documents 1 and 2 each propose a compound having a benzobisthiazole skeleton, but the conversion efficiency is not clear.
特開2007-238530号公報JP 2007-238530 A 特開2010-053093号公報JP 2010-053093 A
 本発明の課題は、高い開放電圧を発現する光電変換素子の提供にある。また、光電変換素子の能力は、有機半導体化合物の種類や組み合わせ等に依存し、有機半導体化合物ではHOMOと開放電圧とが密接に関連していることから、より多様な骨格や置換基を導入できる高分子化合物を用いた光電変換素子を提供することにある。 An object of the present invention is to provide a photoelectric conversion element that exhibits a high open circuit voltage. In addition, the capability of the photoelectric conversion element depends on the type and combination of the organic semiconductor compound, and since HOMO and the open circuit voltage are closely related to each other, more various skeletons and substituents can be introduced. It is providing the photoelectric conversion element using a high molecular compound.
 本発明者らは、変換効率の高い光電変換素子の作製のため、すなわち開放電圧(Voc)を向上しながら短絡電流密度(Jsc)を向上するためには、p型有機半導体化合物に広い波長の範囲の光を吸収させると同時にHOMO準位を適度に深くすることを見出した。そして、p型有機半導体化合物におけるHOMO準位と化学構造との相関に着目して鋭意検討を行った。その結果、特定の構造の高分子化合物を有する有機半導体化合物を用いることによって、HOMO準位やLUMO準位を適切な範囲に調整できるため、開放電圧(Voc)の高い光電変換素子を作製できることを見出し、本発明を完成した。 In order to improve the short-circuit current density (Jsc) while improving the open circuit voltage (Voc) in order to fabricate a photoelectric conversion element with high conversion efficiency, the present inventors have applied a wide wavelength to a p-type organic semiconductor compound. It has been found that the HOMO level is moderately deep while absorbing a range of light. And earnestly examined paying attention to the correlation of the HOMO level and chemical structure in a p-type organic-semiconductor compound. As a result, by using an organic semiconductor compound having a polymer compound with a specific structure, the HOMO level and the LUMO level can be adjusted to appropriate ranges, so that a photoelectric conversion element with a high open-circuit voltage (Voc) can be manufactured. The headline and the present invention were completed.
 すなわち、本発明は基材と、アノードと、活性層と、カソードとがこの順に配置された構造を有する光電変換素子であって、前記活性層に、式(1)で表される特定のベンゾビスチアゾール骨格の構造単位を有する高分子化合物(以下、「高分子化合物(1)」ということがある。)を含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000003
[式(1)中、
 A、Aは、それぞれ独立に、アルコキシ基、チオアルコキシ基、炭化水素基で置換されていてもよいチオフェン環、炭化水素基もしくはオルガノシリル基で置換されていてもよいチアゾール環、または、炭化水素基、アルコキシ基、チオアルコキシ基、オルガノシリル基、ハロゲン原子、もしくは、トリフルオロメチル基で置換されていてもよいフェニル基を表す。]
 上記式(1)において、A1、A2は、それぞれ、下記式で表される基であることが好ましい。
That is, the present invention is a photoelectric conversion element having a structure in which a substrate, an anode, an active layer, and a cathode are arranged in this order, and the active layer has a specific benzox represented by the formula (1). It contains a polymer compound having a structural unit of a bisthiazole skeleton (hereinafter sometimes referred to as “polymer compound (1)”).
Figure JPOXMLDOC01-appb-C000003
[In Formula (1),
A 1 and A 2 are each independently an alkoxy group, a thioalkoxy group, a thiophene ring optionally substituted with a hydrocarbon group, a thiazole ring optionally substituted with a hydrocarbon group or an organosilyl group, or It represents a phenyl group which may be substituted with a hydrocarbon group, an alkoxy group, a thioalkoxy group, an organosilyl group, a halogen atom, or a trifluoromethyl group. ]
In the above formula (1), each of A 1 and A 2 is preferably a group represented by the following formula.
Figure JPOXMLDOC01-appb-C000004
[式(a1)~(a4)中、R21~R25は、それぞれ独立に、炭素数8~30の炭化水素基を表す。*はベンゾビスチアゾールのベンゼン環に結合する結合手を表すものとする。]
Figure JPOXMLDOC01-appb-C000004
[In the formulas (a1) to (a4), R 21 to R 25 each independently represents a hydrocarbon group having 8 to 30 carbon atoms. * Represents a bond bonded to the benzene ring of benzobisthiazole. ]
 本発明の光電変換素子に用いられる高分子化合物(1)は、ドナー-アクセプター型半導体ポリマーであることが好ましい。 The polymer compound (1) used in the photoelectric conversion element of the present invention is preferably a donor-acceptor type semiconductor polymer.
 前記活性層には、さらにn型有機半導体化合物を含有することが好ましく、n型半導体化合物はフラーレンもしくはその誘導体であることが好ましい。 The active layer preferably further contains an n-type organic semiconductor compound, and the n-type semiconductor compound is preferably fullerene or a derivative thereof.
 本発明の光電変換素子は、前記アノードと前記活性層との間にホール輸送層を有することが好ましく、前記カソードと前記活性層との間に電子輸送層を有することが好ましい。また、前記アノードが透明電極であることが好ましく、前記カソードが金属電極であることが好ましい。 The photoelectric conversion element of the present invention preferably has a hole transport layer between the anode and the active layer, and preferably has an electron transport layer between the cathode and the active layer. The anode is preferably a transparent electrode, and the cathode is preferably a metal electrode.
 本発明に用いられる高分子化合物(1)は、深いHOMO準位を有し、可視領域から近赤外領域の幅広い光を吸収できる。これにより、図1に示される素子構造をもつ光電変換素子は高い開放電圧(Voc)得ることが可能となり、高い光電変換効率ηを得ることが可能である。また、本発明に用いられる高分子化合物(1)を構成するベンゾビスチアゾール骨格には、置換基として様々な置換基を導入することが可能であり、光電変換素子特性に様々な影響を与える材料の特性(結晶性、製膜性、吸収波長)を制御できる。 The polymer compound (1) used in the present invention has a deep HOMO level and can absorb a wide range of light from the visible region to the near infrared region. Thereby, the photoelectric conversion element having the element structure shown in FIG. 1 can obtain a high open circuit voltage (Voc), and can obtain a high photoelectric conversion efficiency η. In addition, it is possible to introduce various substituents as substituents into the benzobisthiazole skeleton constituting the polymer compound (1) used in the present invention, and materials that have various influences on the characteristics of photoelectric conversion elements Characteristics (crystallinity, film-forming property, absorption wavelength) can be controlled.
図1は基材と、アノードと、活性層と、カソードとがこの順に配置された光電変換素子の素子構造を示す。FIG. 1 shows an element structure of a photoelectric conversion element in which a substrate, an anode, an active layer, and a cathode are arranged in this order.
 以下に、本発明の実施の形態を詳細に説明する。以下に記載する構成要件の説明は、本発明の実施形態の一例(代表例)であり、本発明はその要旨を超えない限り、これらの内容に限定はされない。 Hereinafter, embodiments of the present invention will be described in detail. The description of the constituent requirements described below is an example (representative example) of the embodiment of the present invention, and the present invention is not limited to these contents unless it exceeds the gist.
1.光電変換素子
 本発明に係る光電変換素子は基材と、アノードと、活性層と、カソードとがこの順に配置された構造を有する光電変換素子であって、前記活性層は、式(1)で表されるベンゾビスチアゾール構造単位を有する高分子化合物を含有する。
Figure JPOXMLDOC01-appb-C000005
1. Photoelectric Conversion Element The photoelectric conversion element according to the present invention is a photoelectric conversion element having a structure in which a substrate, an anode, an active layer, and a cathode are arranged in this order, and the active layer is represented by the formula (1). A polymer compound having a benzobisthiazole structural unit represented is contained.
Figure JPOXMLDOC01-appb-C000005
 本発明の一実施形態に係る光電変換素子(VII)を図1に示す。図1は一般的な有機薄膜太陽電池に用いられる光電変換素子を表すが、本発明に係る光電変換素子が図1の構成に限られるわけではない。 FIG. 1 shows a photoelectric conversion element (VII) according to an embodiment of the present invention. FIG. 1 shows a photoelectric conversion element used for a general organic thin film solar cell, but the photoelectric conversion element according to the present invention is not limited to the configuration of FIG.
 光電変換素子(VII)は、基材(I)と、電極(アノード)(II)と、活性層(IV)と、電極(カソード)(VI)と、がこの順に配置された構造を有する。光電変換素子(VII)はさらに、バッファ層(ホール輸送層)(III)とバッファ層(電子輸送層)(V)とを有することが好ましい。すなわち光電変換素子(VII)は、基材(I)と、アノード(II)と、バッファ層(ホール輸送層)(III)と、活性層(IV)と、バッファ層(電子輸送層)(V)と、カソード(VI)と、がこの順に配置された構造を有することが好ましい。もっとも、本発明に係る光電変換素子は、ホール輸送層(III)および電子輸送層(V)を有さなくてもよい。以下、これらの各部について説明する。 The photoelectric conversion element (VII) has a structure in which a substrate (I), an electrode (anode) (II), an active layer (IV), and an electrode (cathode) (VI) are arranged in this order. The photoelectric conversion element (VII) preferably further has a buffer layer (hole transport layer) (III) and a buffer layer (electron transport layer) (V). That is, the photoelectric conversion element (VII) includes a base material (I), an anode (II), a buffer layer (hole transport layer) (III), an active layer (IV), and a buffer layer (electron transport layer) (V ) And the cathode (VI) are preferably arranged in this order. However, the photoelectric conversion element according to the present invention may not have the hole transport layer (III) and the electron transport layer (V). Hereinafter, each of these parts will be described.
<1.1 活性層(IV)>
 活性層(IV)は光電変換が行われる層を指し、通常、単独もしくは複数のp型半導体化合物と単独もしくは複数のn型半導体化合物を含む。p型半導体化合物の具体例として、高分子化合物(1)および、後述する有機半導体化合物(10)が挙げられるがこれらに限定されない。本発明では、p型半導体化合物として、少なくとも高分子化合物(1)を用いることが必要である。光電変換素子(VII)が光を受けると、光が活性層(IV)に吸収され、p型半導体化合物とn型半導体化合物との界面で電気が発生し、発生した電気がアノード(II)及びカソード(VI)から取り出される。本発明においては、高分子化合物(1)がp型半導体化合物として用いられる。
<1.1 Active layer (IV)>
The active layer (IV) refers to a layer in which photoelectric conversion is performed, and usually includes a single or a plurality of p-type semiconductor compounds and a single or a plurality of n-type semiconductor compounds. Specific examples of the p-type semiconductor compound include, but are not limited to, the polymer compound (1) and the organic semiconductor compound (10) described later. In the present invention, it is necessary to use at least the polymer compound (1) as the p-type semiconductor compound. When the photoelectric conversion element (VII) receives light, the light is absorbed by the active layer (IV), electricity is generated at the interface between the p-type semiconductor compound and the n-type semiconductor compound, and the generated electricity is the anode (II) and It is taken out from the cathode (VI). In the present invention, the polymer compound (1) is used as a p-type semiconductor compound.
 活性層(IV)の膜厚は、特に限定されないが、70nm以上が好ましく、より好ましくは90nm以上であり、100nm以上であってもよい。一方、活性層(IV)の膜厚は、1000nm以下であることが好ましく、より好ましくは750nm以下であり、さらに好ましくは500nm以下である。 The film thickness of the active layer (IV) is not particularly limited, but is preferably 70 nm or more, more preferably 90 nm or more, and may be 100 nm or more. On the other hand, the thickness of the active layer (IV) is preferably 1000 nm or less, more preferably 750 nm or less, and further preferably 500 nm or less.
 活性層(IV)の膜厚が70nm以上であることにより、光電変換素子(VII)の変換効率の向上が期待できる。また、活性層(IV)の膜厚が70nm以上であることは、膜内の貫通短絡を防止できる点でも好ましい。活性層(IV)の厚さが1000nm以下であることは、内部抵抗が小さくなり、かつ電極(II),(VI)間の距離が離れすぎず電荷の拡散が良好となるために好ましい。さらには、活性層(IV)の膜厚を70nm以上、1000nm以下にすることは、活性層(IV)を作製するプロセスにおける再現性が向上する点で好ましい。 When the film thickness of the active layer (IV) is 70 nm or more, the conversion efficiency of the photoelectric conversion element (VII) can be expected to be improved. Moreover, it is also preferable that the film thickness of the active layer (IV) is 70 nm or more in that a through short circuit in the film can be prevented. It is preferable that the thickness of the active layer (IV) is 1000 nm or less because the internal resistance is small and the distance between the electrodes (II) and (VI) is not too far and the charge diffusion is good. Furthermore, it is preferable that the film thickness of the active layer (IV) be 70 nm or more and 1000 nm or less because the reproducibility in the process of producing the active layer (IV) is improved.
 一般的に、活性層を厚くすればするほど、電極、又は電子輸送層若しくはホール輸送層までの、活性層中で発生した電荷の移動距離が増加することから、電荷の電極への輸送が妨げられる。このように、活性層(IV)が厚い場合、光を吸収できる領域は増えるものの、光吸収によって生じた電荷の輸送が困難であることから、光電変換効率が低下する。そのため、活性層(IV)の膜厚を70nm以上500nm以下にすることは電圧確保、変換効率向上の点からも好ましい。 In general, the thicker the active layer, the longer the distance traveled by the charge generated in the active layer to the electrode or the electron transport layer or hole transport layer, thus hindering the transport of charge to the electrode. It is done. As described above, when the active layer (IV) is thick, the region capable of absorbing light is increased, but it is difficult to transport charges generated by light absorption, so that the photoelectric conversion efficiency is lowered. Therefore, it is preferable that the thickness of the active layer (IV) is 70 nm or more and 500 nm or less from the viewpoint of securing voltage and improving conversion efficiency.
[1.1.1 活性層の層構成]
 活性層(IV)の層構成としては、p型半導体化合物とn型半導体化合物とが積層された薄膜積層型、又はp型半導体化合物とn型半導体化合物とが混合した層を有するバルクヘテロ接合型等が挙げられる。なかでも、光電変換効率がより向上しうる点で、バルクヘテロ接合型の活性層が好ましい。
[1.1.1 Layer structure of active layer]
As the layer structure of the active layer (IV), a thin film stacked type in which a p-type semiconductor compound and an n-type semiconductor compound are stacked, a bulk heterojunction type having a layer in which a p-type semiconductor compound and an n-type semiconductor compound are mixed, or the like. Is mentioned. Among these, a bulk heterojunction type active layer is preferable in that the photoelectric conversion efficiency can be further improved.
バルクヘテロ接合型の活性層
 バルクヘテロ接合型の活性層は、p型半導体化合物とn型半導体化合物とが混合された層(i層)を有する。i層はp型半導体化合物とn型半導体化合物とが相分離した構造を有し、相界面でキャリア分離が起こり、生じたキャリア(正孔及び電子)が電極まで輸送される。
Bulk heterojunction active layer A bulk heterojunction active layer has a layer (i layer) in which a p-type semiconductor compound and an n-type semiconductor compound are mixed. The i layer has a structure in which the p-type semiconductor compound and the n-type semiconductor compound are phase-separated, carrier separation occurs at the phase interface, and the generated carriers (holes and electrons) are transported to the electrode.
 i層に含まれるp型半導体化合物のうち、通常50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上が、式(1)で表されるベンゾビスチアゾール構造単位と、後述する共重合成分(2)からなる高分子化合物(1)である。該高分子化合物(1)はp型半導体化合物として好適な性質を有するため、p型半導体化合物に該高分子化合物(1)のみを含むことが特に好ましい。 Of the p-type semiconductor compound contained in the i layer, usually 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more is represented by the benzobisthiazole structural unit represented by the formula (1) and It is the high molecular compound (1) which consists of a copolymerization component (2) to do. Since the polymer compound (1) has properties suitable as a p-type semiconductor compound, it is particularly preferable that the p-type semiconductor compound contains only the polymer compound (1).
 i層中でのp型半導体化合物とn型半導体化合物との重量比(p型半導体化合物/n型半導体化合物)は、良好な相分離構造を得ることにより光電変換効率を向上させる観点から、0.5以上が好ましく、より好ましくは1以上であり、一方、4以下が好ましく、3以下がより好ましく、特に好ましくは2以下である。 The weight ratio of the p-type semiconductor compound to the n-type semiconductor compound in the i layer (p-type semiconductor compound / n-type semiconductor compound) is 0 from the viewpoint of improving the photoelectric conversion efficiency by obtaining a good phase separation structure. .5 or more is preferable, more preferably 1 or more, while 4 or less is preferable, 3 or less is more preferable, and 2 or less is particularly preferable.
 i層は、塗布法及び蒸着法(例えば共蒸着法)を含む任意の方法により形成することができるが、塗布法を用いることは、より簡単にi層を形成できるため好ましい。本発明に係る高分子化合物(1)は溶媒に対する溶解性を有するため、塗布成膜性に優れる点で好ましい。塗布法によりi層を作製する場合、p型半導体化合物及びn型半導体化合物を含む塗布液を調製し、この塗布液を塗布すればよい。p型半導体化合物及びn型半導体化合物を含む塗布液は、p型半導体化合物を含む溶液とn型半導体化合物を含む溶液をそれぞれ調製後混合して作製してもよく、後述する溶媒にp型半導体化合物及びn型半導体化合物を溶解して作製してもよい。 The i layer can be formed by any method including a coating method and a vapor deposition method (for example, a co-evaporation method), but it is preferable to use the coating method because the i layer can be formed more easily. Since the polymer compound (1) according to the present invention has solubility in a solvent, it is preferable from the viewpoint of excellent coating film-forming properties. When the i layer is produced by a coating method, a coating solution containing a p-type semiconductor compound and an n-type semiconductor compound may be prepared, and this coating solution may be applied. The coating liquid containing the p-type semiconductor compound and the n-type semiconductor compound may be prepared by preparing and mixing a solution containing the p-type semiconductor compound and a solution containing the n-type semiconductor compound, respectively. The compound and the n-type semiconductor compound may be dissolved.
 塗布液中のp型半導体化合物とn型半導体化合物との合計濃度は、特に限定されないが、十分な膜厚の活性層を形成する観点から塗布液全体に対して1.0重量%以上であることが好ましく、半導体化合物を十分に溶解させる観点から塗布液全体に対して4.0重量%以下であることが好ましい。 The total concentration of the p-type semiconductor compound and the n-type semiconductor compound in the coating solution is not particularly limited, but is 1.0% by weight or more based on the entire coating solution from the viewpoint of forming an active layer having a sufficient film thickness. In view of sufficiently dissolving the semiconductor compound, it is preferably 4.0% by weight or less based on the entire coating solution.
 塗布方法としては任意の方法を用いることができるが、例えば、スピンコート法、インクジェット法、ドクターブレード法、ドロップキャスティング法、リバースロールコート法、グラビアコート法、キスコート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーバーコート法、パイプドクター法、含浸・コート法又はカーテンコート法等が挙げられる。塗布液の塗布後に、加熱等による乾燥処理を行ってもよい。 As an application method, any method can be used. For example, spin coating method, inkjet method, doctor blade method, drop casting method, reverse roll coating method, gravure coating method, kiss coating method, roll brush method, spray coating method , Air knife coating method, wire barber coating method, pipe doctor method, impregnation / coating method or curtain coating method. You may perform the drying process by heating etc. after application | coating of a coating liquid.
 塗布液の溶媒としては、p型半導体化合物及びn型半導体化合物を均一に溶解できるものであれば特に限定されないが、例えば、ヘキサン、ヘプタン、オクタン、イソオクタン、ノナン若しくはデカン等の脂肪族炭化水素類;トルエン、キシレン、メシチレン、シクロヘキシルベンゼン、クロロベンゼン若しくはオルトジクロロベンゼン等の芳香族炭化水素類;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、シクロヘプタン、シクロオクタン、テトラリン若しくはデカリン等の脂環式炭化水素類;メタノール、エタノール若しくはプロパノール等の低級アルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン(MIBK)、シクロペンタノン若しくはシクロヘキサノン等の脂肪族ケトン類;アセトフェノン若しくはプロピオフェノン等の芳香族ケトン類;酢酸エチル、酢酸イソプロピル、酢酸ブチル若しくは乳酸メチル等のエステル類;クロロホルム、塩化メチレン、ジクロロエタン、トリクロロエタン若しくはトリクロロエチレン等のハロゲン炭化水素類;エチルエーテル、テトラヒドロフラン、シクロペンチルメチルエーテル若しくはジオキサン等のエーテル類;又は、ジメチルホルムアミド若しくはジメチルアセトアミド等のアミド類等が挙げられる。 The solvent of the coating solution is not particularly limited as long as it can uniformly dissolve the p-type semiconductor compound and the n-type semiconductor compound. For example, aliphatic hydrocarbons such as hexane, heptane, octane, isooctane, nonane or decane. Aromatic hydrocarbons such as toluene, xylene, mesitylene, cyclohexylbenzene, chlorobenzene, or orthodichlorobenzene; alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane, cycloheptane, cyclooctane, tetralin, or decalin; methanol Lower alcohols such as ethanol or propanol; aliphatic ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone (MIBK), cyclopentanone or cyclohexanone; acetophenone Or aromatic ketones such as propiophenone; esters such as ethyl acetate, isopropyl acetate, butyl acetate or methyl lactate; halogen hydrocarbons such as chloroform, methylene chloride, dichloroethane, trichloroethane or trichloroethylene; ethyl ether, tetrahydrofuran, Examples include ethers such as cyclopentyl methyl ether and dioxane; and amides such as dimethylformamide and dimethylacetamide.
 なかでも好ましくは、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン、クロロベンゼン若しくはオルトジクロロベンゼン等の芳香族炭化水素類;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、シクロヘプタン、シクロオクタン、テトラリン若しくはデカリン等の脂環式炭化水素類;アセトン、メチルエチルケトン、シクロペンタノン若しくはシクロヘキサノン等のケトン類;又は、エチルエーテル、テトラヒドロフラン若しくはジオキサン等のエーテル類である。 Among them, aromatic hydrocarbons such as toluene, xylene, mesitylene, cyclohexylbenzene, chlorobenzene or orthodichlorobenzene; cycloaliphatic carbonization such as cyclopentane, cyclohexane, methylcyclohexane, cycloheptane, cyclooctane, tetralin or decalin Hydrogen; ketones such as acetone, methyl ethyl ketone, cyclopentanone or cyclohexanone; or ethers such as ethyl ether, tetrahydrofuran or dioxane.
 バルクヘテロ接合型の活性層を塗布法によって形成する場合、p型半導体化合物とn型半導体化合物とを含む塗布液に、さらに添加剤を加えてもよい。バルクヘテロ接合型の活性層におけるp型半導体化合物とn型半導体化合物との相分離構造は、光吸収過程、励起子の拡散過程、励起子の乖離(キャリア分離)過程、キャリア輸送過程等に対する影響がある。したがって、相分離構造を最適化することにより、良好な光電変換効率を実現することができるものと考えられる。塗布液に、p型半導体化合物又はn型半導体化合物と親和性の高い添加剤を含有することにより、好ましい相分離構造を有する活性層が得られ、光電変換効率が向上しうる。 When a bulk heterojunction active layer is formed by a coating method, an additive may be further added to a coating solution containing a p-type semiconductor compound and an n-type semiconductor compound. The phase separation structure of the p-type semiconductor compound and the n-type semiconductor compound in the bulk heterojunction active layer has an influence on the light absorption process, the exciton diffusion process, the exciton separation (carrier separation) process, the carrier transport process, etc. is there. Therefore, it is considered that good photoelectric conversion efficiency can be realized by optimizing the phase separation structure. By containing an additive having a high affinity for the p-type semiconductor compound or the n-type semiconductor compound in the coating solution, an active layer having a preferable phase separation structure can be obtained, and the photoelectric conversion efficiency can be improved.
 添加剤が活性層(IV)から失われにくくなる点で、添加剤は固体もしくは高沸点であることが好ましい。 The additive is preferably solid or has a high boiling point in that the additive is less likely to be lost from the active layer (IV).
 具体的には、添加剤が固体である場合には、添加剤の融点(1気圧)は通常35℃以上であり、好ましくは50℃以上、より好ましくは80℃以上、さらに好ましくは150℃以上、特に好ましくは200℃以上である。 Specifically, when the additive is solid, the melting point (1 atm) of the additive is usually 35 ° C. or higher, preferably 50 ° C. or higher, more preferably 80 ° C. or higher, more preferably 150 ° C. or higher. Particularly preferably, the temperature is 200 ° C. or higher.
 添加剤が液体である場合の沸点(1気圧)は80℃以上、さらに好ましくは100℃以上、特に好ましくは150℃以上である。 When the additive is liquid, the boiling point (1 atm) is 80 ° C. or higher, more preferably 100 ° C. or higher, and particularly preferably 150 ° C. or higher.
 添加剤の例としては、固体であれば炭素数10以上の脂肪族炭化水素類又は芳香族化合物等が挙げられる。具体的な例としてはナフタレン化合物が挙げられ、特にナフタレンに1以上8以下の置換基が結合した化合物が好ましい。ナフタレンに結合している置換基としては、ハロゲン原子、水酸基、シアノ基、アミノ基、アミド基、カルボニルオキシ基、カルボキシル基、カルボニル基、オキシカルボニル基、シリル基、アルケニル基、アルキニル基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基又は芳香族基が挙げられる。 Examples of the additive include aliphatic hydrocarbons having 10 or more carbon atoms or aromatic compounds if solid. Specific examples include naphthalene compounds, and compounds in which 1 to 8 substituents are bonded to naphthalene are particularly preferable. Substituents bonded to naphthalene are halogen atoms, hydroxyl groups, cyano groups, amino groups, amide groups, carbonyloxy groups, carboxyl groups, carbonyl groups, oxycarbonyl groups, silyl groups, alkenyl groups, alkynyl groups, alkoxy groups. , Aryloxy group, alkylthio group, arylthio group or aromatic group.
 添加剤が液体であれば炭素数8以上の脂肪族炭化水素類又は芳香族化合物等が挙げられる。具体的な例としてはジハロゲン炭化水素化合物が挙げられ、特にオクタンに1以上8以下の置換基が結合した化合物が好ましい。オクタンに結合している置換基としては、ハロゲン原子、水酸基、チオール基、シアノ基、アミノ基、アミド基、カルボニルオキシ基、カルボキシル基、カルボニル基、又は芳香族基が挙げられる。添加剤の別の例としては、4以上6以下のハロゲン原子が結合しているベンゼン化合物が挙げられる。 If the additive is liquid, examples thereof include aliphatic hydrocarbons or aromatic compounds having 8 or more carbon atoms. Specific examples include dihalogen hydrocarbon compounds, and compounds in which 1 to 8 substituents are bonded to octane are particularly preferable. Examples of the substituent bonded to octane include a halogen atom, a hydroxyl group, a thiol group, a cyano group, an amino group, an amide group, a carbonyloxy group, a carboxyl group, a carbonyl group, or an aromatic group. Another example of the additive is a benzene compound to which 4 or more and 6 or less halogen atoms are bonded.
 p型半導体化合物とn型半導体化合物とを含む塗布液に含まれる添加剤の量は、塗布液全体に対して0.1重量%以上が好ましく、0.5重量%以上がさらに好ましい。また、塗布液全体に対して10重量%以下が好ましく、5重量%以下がさらに好ましい。添加剤の量がこの範囲にあることにより、好ましい相分離構造が得られうる。 The amount of the additive contained in the coating solution containing the p-type semiconductor compound and the n-type semiconductor compound is preferably 0.1% by weight or more, and more preferably 0.5% by weight or more with respect to the entire coating solution. Moreover, 10 weight% or less is preferable with respect to the whole coating liquid, and 5 weight% or less is more preferable. When the amount of the additive is within this range, a preferable phase separation structure can be obtained.
[1.1.2 p型半導体化合物]
 活性層(IV)は、p型半導体化合物として、高分子化合物(1)を少なくとも含有する。
[1.1.2 p-type semiconductor compound]
The active layer (IV) contains at least the polymer compound (1) as a p-type semiconductor compound.
(高分子化合物(1))
 本発明の光電変換素子に用いられる高分子化合物(以下、「高分子化合物(1)」ということがある。)は、p型半導体化合物の1種であり、式(1)で表されるベンゾビスチアゾール構造単位(以下、「式(1)で表される構造単位」ということがある。)を有する。
(Polymer compound (1))
The polymer compound used in the photoelectric conversion element of the present invention (hereinafter sometimes referred to as “polymer compound (1)”) is a kind of p-type semiconductor compound, and is a benzoate represented by the formula (1). It has a bis-thiazole structural unit (hereinafter sometimes referred to as “structural unit represented by formula (1)”).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
[式(1)中、
 A、Aは、それぞれ独立に、アルコキシ基、チオアルコキシ基、炭化水素基で置換されていてもよいチオフェン環、炭化水素基もしくはオルガノシリル基で置換されていてもよいチアゾール環、または、炭化水素基、アルコキシ基、チオアルコキシ基、オルガノシリル基、ハロゲン原子、もしくは、トリフルオロメチル基で置換されていてもよいフェニル基を表す。]
[In Formula (1),
A 1 and A 2 are each independently an alkoxy group, a thioalkoxy group, a thiophene ring optionally substituted with a hydrocarbon group, a thiazole ring optionally substituted with a hydrocarbon group or an organosilyl group, or It represents a phenyl group which may be substituted with a hydrocarbon group, an alkoxy group, a thioalkoxy group, an organosilyl group, a halogen atom, or a trifluoromethyl group. ]
 本発明の光電変換素子に用いられる高分子化合物は、式(1)で表されるベンゾビスチアゾール構造単位を有する。そのため、HOMO準位を深くしながらバンドギャップを狭めることができ、光電変換効率を高めるのに有利である。高分子化合物(1)は、好ましくは、式(1)で表される構造単位と、後述する共重合成分(2)とを共重合したドナー-アクセプター型半導体ポリマーである。ドナー-アクセプター型半導体ポリマーは、ドナー性ユニットとアクセプター性ユニットが交互に配置した高分子化合物を意味する。ドナー性ユニットは、電子供与性の構造単位を意味し、アクセプター性ユニットは、電子受容性の構造単位を意味する。前記ドナー-アクセプター型半導体ポリマーは、式(1)で表される構造単位と、後述する共重合成分(2)とが交互に配置した高分子化合物であることが好ましい。このような構造とすることで、p型半導体化合物として好適に用いることができる。 The polymer compound used in the photoelectric conversion element of the present invention has a benzobisthiazole structural unit represented by the formula (1). Therefore, the band gap can be narrowed while deepening the HOMO level, which is advantageous in increasing the photoelectric conversion efficiency. The polymer compound (1) is preferably a donor-acceptor type semiconductor polymer obtained by copolymerizing a structural unit represented by the formula (1) and a copolymerization component (2) described later. The donor-acceptor type semiconductor polymer means a polymer compound in which donor units and acceptor units are alternately arranged. The donor unit means an electron donating structural unit, and the acceptor unit means an electron accepting structural unit. The donor-acceptor type semiconductor polymer is preferably a polymer compound in which a structural unit represented by the formula (1) and a copolymer component (2) described later are alternately arranged. With such a structure, it can be suitably used as a p-type semiconductor compound.
 式(1)で表されるベンゾビスチアゾール構造単位では、A1、A2は互いに同一であっても異なっていてもよいが、製造が容易である観点からは、同一であることが好ましい。
 式(1)で表されるベンゾビスチアゾール構造単位においては、A1、A2は、それぞれ、下記式(a1)~(a4)で表される基であることが好ましい。A1、A2が下記式(a1)~(a4)で表される基であると、短波長の光を吸収することができるため、より一層光電変換効率を高めることができる。
In the benzobisthiazole structural unit represented by the formula (1), A 1 and A 2 may be the same or different from each other, but are preferably the same from the viewpoint of easy production.
In the benzobisthiazole structural unit represented by the formula (1), A 1 and A 2 are each preferably groups represented by the following formulas (a1) to (a4). When A 1 and A 2 are groups represented by the following formulas (a1) to (a4), light of a short wavelength can be absorbed, so that the photoelectric conversion efficiency can be further improved.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[式(a1)~(a4)中、R21~R25は、それぞれ独立に、炭素数8~30の炭化水素基を表す。*はベンゾビスチアゾールのベンゼン環に結合する結合手を表すものとする。] [In the formulas (a1) to (a4), R 21 to R 25 each independently represents a hydrocarbon group having 8 to 30 carbon atoms. * Represents a bond bonded to the benzene ring of benzobisthiazole. ]
 R21~R25は、炭素数8~30の炭化水素基であり、分岐を有する炭化水素基であることが好ましく、より好ましくは分岐鎖状飽和炭化水素基である。R21~R25の炭化水素基は、分岐を有することにより、有機溶剤への溶解度を上げることができ、適度な結晶性を得ることができる。A1、A2の炭化水素基の炭素数は、大きいほど有機溶剤への溶解度を向上させることができるが、大きくなり過ぎると後述するカップリング反応における反応性が低下するため、高分子化合物(1)の合成が困難となることがある。そのため、A1、A2の炭化水素基の炭素数は、好ましくは8~25であり、より好ましくは8~20であり、さらに好ましくは8~16である。 R 21 to R 25 are each a hydrocarbon group having 8 to 30 carbon atoms, preferably a branched hydrocarbon group, and more preferably a branched saturated hydrocarbon group. Since the hydrocarbon group of R 21 to R 25 has a branch, the solubility in an organic solvent can be increased, and appropriate crystallinity can be obtained. As the carbon number of the hydrocarbon group of A 1 and A 2 increases, the solubility in an organic solvent can be improved. However, if the carbon number is too large, the reactivity in the coupling reaction described later decreases. The synthesis of 1) may be difficult. Therefore, the carbon number of the hydrocarbon group of A 1 and A 2 is preferably 8 to 25, more preferably 8 to 20, and still more preferably 8 to 16.
 R21~R25で表される炭素数8~30の炭化水素基としては、例えば、n-オクチル基、1-n-ブチルブチル基、1-n-プロピルペンチル基、1-エチルヘキシル基、2-エチルヘキシル基、3-エチルヘキシル基、4-エチルヘキシル基、1-メチルヘプチル基、2-メチルヘプチル基、6-メチルヘプチル基、2,4,4-トリメチルペンチル基、2,5-ジメチルヘキシル基等の炭素数8のアルキル基;n-ノニル基、1-n-プロピルヘキシル基、2-n-プロピルヘキシル基、1-エチルヘプチル基、2-エチルヘプチル基、1-メチルオクチル基、2-メチルオクチル基、6-メチルオクチル基、2,3,3,4-テトラメチルペンチル基、3,5,5-トリメチルヘキシル基等の炭素数9のアルキル基;n-デシル基、1-n-ペンチルペンチル基、1-n-ブチルヘキシル基、2-n-ブチルヘキシル基、1-n-プロピルヘプチル基、1-エチルオクチル基、2-エチルオクチル基、1-メチルノニル基、2-メチルノニル基、3,7-ジメチルオクチル基等の炭素数10のアルキル基;n-ウンデシル基、1-n-ブチルヘプチル基、2-n-ブチルヘプチル基、1-n-プロピルオクチル基、2-n-プロピルオクチル基、1-エチルノニル基、2-エチルノニル基等の炭素数11のアルキル基;n-ドデシル基、1-n-ペンチルヘプチル基、2-n-ペンチルヘプチル基、1-n-ブチルオクチル基、2-n-ブチルオクチル基、1-n-プロピルノニル基、2-n-プロピルノニル基等の炭素数12のアルキル基;n-トリデシル基、1-n-ペンチルオクチル基、2-n-ペンチルオクチル基、1-n-ブチルノニル基、2-n-ブチルノニル基、1-メチルデシル基、2-メチルデシル基等の炭素数13のアルキル基;n-テトラデシル基、1-n-ヘプチルヘプチル基、1-n-ヘキシルオクチル基、2-n-ヘキシルオクチル基、1-n-ペンチルノニル基、2-n-ペンチルノニル基等の炭素数14のアルキル基;n-ペンタデシル基、1-n―ヘプチルオクチル基、1-n-ヘキシルノニル基、2-n-ヘキシルノニル基等の炭素数15のアルキル基;n-ヘキサデシル基、1-n-オクチルオクチル基、1-n-ヘプチルノニル基、2-n-ヘプチルノニル基、2-n-ヘキシルデシル基等の炭素数16のアルキル基;n―ヘプタデシル基、1-n-オクチルノニル基等の炭素数17のアルキル基;n-オクタデシル基、1-n-ノニルノニル基等の炭素数18のアルキル基;n-ノナデシル基等の炭素数19のアルキル基;n-エイコシル基等の炭素数20のアルキル基;n-ヘンエイコシル基等の炭素数21のアルキル基;n-ドコシル基等の炭素数22のアルキル基;n-トリコシル基等の炭素数23のアルキル基;n-テトラコシル基、2-デシルテトラデシル基等の炭素数24のアルキル基;等が挙げられる。好ましくは炭素数8~20のアルキル基であり、より好ましくは炭素数8~16のアルキル基であり、さらに好ましくは炭素数8~16の分岐鎖状アルキル基であり、特に好ましくはn-オクチル基、2-エチルヘキシル基、3,7-ジメチルオクチル基、2-n-ブチルオクチル、2-n-ヘキシルデシル基である。R21~R25が上記の基であると、高分子化合物(1)の、有機溶剤への溶解度が向上し、適度な結晶性を有するため好ましい。 Examples of the hydrocarbon group having 8 to 30 carbon atoms represented by R 21 to R 25 include an n-octyl group, 1-n-butylbutyl group, 1-n-propylpentyl group, 1-ethylhexyl group, 2- Such as ethylhexyl, 3-ethylhexyl, 4-ethylhexyl, 1-methylheptyl, 2-methylheptyl, 6-methylheptyl, 2,4,4-trimethylpentyl, 2,5-dimethylhexyl, etc. An alkyl group having 8 carbon atoms; n-nonyl group, 1-n-propylhexyl group, 2-n-propylhexyl group, 1-ethylheptyl group, 2-ethylheptyl group, 1-methyloctyl group, 2-methyloctyl group An alkyl group having 9 carbon atoms such as a group, 6-methyloctyl group, 2,3,3,4-tetramethylpentyl group, 3,5,5-trimethylhexyl group; n-decyl group, 1 -N-pentylpentyl group, 1-n-butylhexyl group, 2-n-butylhexyl group, 1-n-propylheptyl group, 1-ethyloctyl group, 2-ethyloctyl group, 1-methylnonyl group, 2- C10 alkyl groups such as methylnonyl group and 3,7-dimethyloctyl group; n-undecyl group, 1-n-butylheptyl group, 2-n-butylheptyl group, 1-n-propyloctyl group, 2- an alkyl group having 11 carbon atoms such as n-propyloctyl group, 1-ethylnonyl group, 2-ethylnonyl group; n-dodecyl group, 1-n-pentylheptyl group, 2-n-pentylheptyl group, 1-n-butyl 12 alkyl groups such as octyl, 2-n-butyloctyl, 1-n-propylnonyl, 2-n-propylnonyl, n-tridecyl, 1-n-pe An alkyl group having 13 carbon atoms such as tiloctyl group, 2-n-pentyloctyl group, 1-n-butylnonyl group, 2-n-butylnonyl group, 1-methyldecyl group, 2-methyldecyl group; n-tetradecyl group, 1- an alkyl group having 14 carbon atoms such as n-heptylheptyl group, 1-n-hexyloctyl group, 2-n-hexyloctyl group, 1-n-pentylnonyl group, 2-n-pentylnonyl group; n-pentadecyl group Alkyl groups having 15 carbon atoms such as 1-n-heptyloctyl group, 1-n-hexylnonyl group and 2-n-hexylnonyl group; n-hexadecyl group, 1-n-octyloctyl group, 1-n- C16 alkyl group such as heptylnonyl group, 2-n-heptylnonyl group, 2-n-hexyldecyl group; n-heptadecyl group, 1-n-octylnonyl group, etc. An alkyl group having 17 carbon atoms; an alkyl group having 18 carbon atoms such as an n-octadecyl group and a 1-n-nonylnonyl group; an alkyl group having 19 carbon atoms such as an n-nonadecyl group; a carbon group having 20 carbon atoms such as an n-eicosyl group An alkyl group; an alkyl group having 21 carbon atoms such as an n-heneicosyl group; an alkyl group having 22 carbon atoms such as an n-docosyl group; an alkyl group having 23 carbon atoms such as an n-tricosyl group; an n-tetracosyl group, 2-decyl; And an alkyl group having 24 carbon atoms such as a tetradecyl group. An alkyl group having 8 to 20 carbon atoms is preferable, an alkyl group having 8 to 16 carbon atoms is more preferable, a branched alkyl group having 8 to 16 carbon atoms is further preferable, and n-octyl is particularly preferable. Group, 2-ethylhexyl group, 3,7-dimethyloctyl group, 2-n-butyloctyl, 2-n-hexyldecyl group. It is preferable that R 21 to R 25 are the above groups because the solubility of the polymer compound (1) in an organic solvent is improved and it has appropriate crystallinity.
 式(1)で表されるベンゾビスチアゾール構造単位は、A、Aが、それぞれ独立に、アルコキシ基、チオアルコキシ基、炭化水素基で置換されていてもよいチオフェン環、炭化水素基もしくはオルガノシリル基で置換されていてもよいチアゾール環、または、炭化水素基、アルコキシ基、チオアルコキシ基、オルガノシリル基、ハロゲン原子、もしくは、トリフルオロメチル基で置換されていてもよいフェニル基であることが好ましい。特に、A1、A2の基が下記式(a1)~(a4)で表される基であると、式(1)で表される構造単位は高い平面性を有することから、効率的にπ-πスタッキングが形成されるため、変換効率を一層向上できるため、より好ましい。 In the benzobisthiazole structural unit represented by the formula (1), A 1 and A 2 are each independently an alkoxy group, a thioalkoxy group, a hydrocarbon group, a thiophene ring, a hydrocarbon group or A thiazole ring optionally substituted with an organosilyl group, or a phenyl group optionally substituted with a hydrocarbon group, an alkoxy group, a thioalkoxy group, an organosilyl group, a halogen atom, or a trifluoromethyl group It is preferable. In particular, when the groups A 1 and A 2 are groups represented by the following formulas (a1) to (a4), the structural unit represented by the formula (1) has high planarity, so that Since π-π stacking is formed, the conversion efficiency can be further improved, which is more preferable.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
[式(a1)~(a4)中、*は結合手を表し、R21~R24は、前記と同様の基を表す。*は、ベンゾビスチアゾールのベンゼン環に結合する結合手を表す。] [In formulas (a1) to (a4), * represents a bond, and R 21 to R 24 represent the same groups as described above. * Represents a bond bonded to the benzene ring of benzobisthiazole. ]
 A1、A2は、式(1)で表される構造単位全体として平面性に優れる観点から、式(a1)、または(a3)で表される基がより好ましく、式(a1-1)~(a1-5)、(3-1)~(3-10)で表される基がさらに好ましく、式(a1-1)~(a1-3)、(a3-1)~(a3-6)で表される基が特に好ましい。式中、*はベンゾビスチアゾールのベンゼン環に結合する結合手を表す。 A 1 and A 2 are more preferably a group represented by the formula (a1) or (a3) from the viewpoint of excellent planarity as a whole structural unit represented by the formula (1). Groups represented by formulas (a1-5) and (3-1) to (3-10) are more preferred. Formulas (a1-1) to (a1-3), (a3-1) to (a3-6) ) Is particularly preferred. In the formula, * represents a bond bonded to the benzene ring of benzobisthiazole.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(1)で表される構造単位としては、例えば、下記式で表される基が挙げられる。 Examples of the structural unit represented by the formula (1) include a group represented by the following formula.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(共重合成分(2))
 本発明に用いられる高分子化合物(1)は、前記式(1)で表される構造単位と組合せて、共重合成分(2)を含有することが好ましい。共重合成分(2)は、ドナー-アクセプター型半導体ポリマーを形成する構造単位(ドナー性ユニット、アクセプター性ユニット)として、従来公知の構造単位を用いることができる。特に限定されないが、具体的には、以下の構造単位を挙げることができ、これらを単独で、または2種以上を併用することができる。
(Copolymerization component (2))
The polymer compound (1) used in the present invention preferably contains a copolymer component (2) in combination with the structural unit represented by the formula (1). As the copolymerization component (2), a conventionally known structural unit can be used as a structural unit (donor unit or acceptor unit) that forms a donor-acceptor type semiconductor polymer. Although not particularly limited, specific examples include the following structural units, which can be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
[式(b1)~(b22)中、R30~R49は、それぞれ独立に、R21~R25と同様の基を表し、A30、A31は、それぞれ独立に、A1、A2と同様の基を表し、jは1~4の整数を表す。●は、式(1)で表される構造単位のチアゾール環に結合する結合手を表すものとする。] [In the formulas (b1) to (b22), R 30 to R 49 each independently represents the same group as R 21 to R 25, and A 30 and A 31 each independently represent A 1 , A 2 And j represents an integer of 1 to 4. ● represents a bond bonded to the thiazole ring of the structural unit represented by the formula (1). ]
 なお、上記式(b1)~(b12)で表される基は、アクセプター性ユニットとして作用する基であり、式(b14)~(b22)で表される基は、ドナー性ユニットとして作用する基である。式(b13)で表される基は、A30、A31の種類により、アクセプター性ユニットとして作用することもあれば、ドナー性ユニットとして作用することもある。 The groups represented by the above formulas (b1) to (b12) are groups that act as acceptor units, and the groups represented by formulas (b14) to (b22) are groups that act as donor units. It is. The group represented by the formula (b13) may act as an acceptor unit or may act as a donor unit depending on the types of A 30 and A 31 .
 本発明に用いる高分子化合物(1)中の式(1)で表される構造単位の繰り返し比率は、特段の制限は無いが、通常1モル%以上、好ましくは5モル%以上、より好ましくは15モル%以上、さらに好ましくは30モル%以上である。一方、通常99モル%以下、好ましくは95モル%以下、より好ましくは85モル%以下、さらに好ましくは70モル%以下である。 The repeating ratio of the structural unit represented by the formula (1) in the polymer compound (1) used in the present invention is not particularly limited, but is usually 1 mol% or more, preferably 5 mol% or more, more preferably It is 15 mol% or more, more preferably 30 mol% or more. On the other hand, it is usually 99 mol% or less, preferably 95 mol% or less, more preferably 85 mol% or less, and still more preferably 70 mol% or less.
 高分子化合物(1)中の共重合成分(2)の繰り返し単位の比率は、特段の制限は無いが、通常1モル%以上、好ましくは5モル%以上、より好ましくは15モル%以上、さらに好ましくは30モル%以上である。一方、通常99モル%以下、好ましくは95モル%以下、より好ましくは85モル%以下、さらに好ましくは70モル%以下である。 The ratio of the repeating unit of the copolymer component (2) in the polymer compound (1) is not particularly limited, but is usually 1 mol% or more, preferably 5 mol% or more, more preferably 15 mol% or more, Preferably it is 30 mol% or more. On the other hand, it is usually 99 mol% or less, preferably 95 mol% or less, more preferably 85 mol% or less, and still more preferably 70 mol% or less.
 本発明に係る高分子化合物(1)における、繰り返し単位の式(1)で表される構造単位と共重合成分(2)との配列状態は、交互、ブロック及びランダムのいずれでもよい。すなわち、本発明に係る高分子化合物(1)は、交互コポリマー、ブロックコポリマー、及びランダムコポリマーのいずれでもよい。好ましくは交互に配列しているものである。 In the polymer compound (1) according to the present invention, the arrangement state of the structural unit represented by the formula (1) of the repeating unit and the copolymer component (2) may be any of alternating, block and random. That is, the polymer compound (1) according to the present invention may be an alternating copolymer, a block copolymer, or a random copolymer. Preferably, they are arranged alternately.
 高分子化合物(1)中、式(1)で表される構造単位および共重合成分(2)は、それぞれ1種のみを含んでいてもよい。また、式(1)で表される構造単位を2種以上含んでいてもよいし、また、共重合成分(2)を2種以上含んでいてもよい。式(1)で表される構造単位および共重合成分(2)の種類に制限はないが、通常8以下、好ましくは5以下である。特に好ましくは式(1)で表される構成単位のうち1種と、共重合成分(2)のうち1種類を交互に含んでいる高分子化合物(1)であり、最も好ましくは式(1)で表される構成単位1種のみと、共重合成分(2)1種類のみを交互に含んでいる高分子化合物(1)である。 In the polymer compound (1), the structural unit represented by the formula (1) and the copolymer component (2) may each contain only one type. Moreover, 2 or more types of structural units represented by Formula (1) may be included, and 2 or more types of copolymerization components (2) may be included. Although there is no restriction | limiting in the kind of the structural unit represented by Formula (1) and the copolymerization component (2), Usually, it is 8 or less, Preferably it is 5 or less. Particularly preferred is a polymer compound (1) containing one type of structural unit represented by formula (1) and one type of copolymer component (2) alternately, and most preferred is formula (1). ) And a polymer compound (1) containing only one type of copolymer component (2) alternately.
 高分子化合物(1)の好ましい具体例を以下に示す。しかしながら、本発明に係る高分子化合物(1)は以下の例示に限られない。以下の具体例において、R30~R49はn-オクチル基、2-エチルヘキシル基、3,7-ジメチルオクチル基、2-n-ブチルオクチル、2-n-ヘキシルデシル基を表す。高分子化合物(1)が複数の繰り返し単位を含む場合は、各繰り返し単位の数の比率は任意である。 Preferred specific examples of the polymer compound (1) are shown below. However, the polymer compound (1) according to the present invention is not limited to the following examples. In the following specific examples, R 30 to R 49 represent n-octyl group, 2-ethylhexyl group, 3,7-dimethyloctyl group, 2-n-butyloctyl, 2-n-hexyldecyl group. When the polymer compound (1) includes a plurality of repeating units, the ratio of the number of each repeating unit is arbitrary.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
 本発明に用いる高分子化合物(1)は、長波長領域(600nm以上)に吸収を持つ。また、高分子化合物(1)を用いた光電変換素子は、高い開放電圧(Voc)を示し、高い光電変換特性を示す。高分子化合物(1)をp型有機半導体化合物とし、フラーレン化合物をn型有機半導体化合物として組み合わせると、特に高い光電変換特性を示す。また本発明に係る高分子化合物(1)は、HOMOエネルギー準位が低く酸化されにくい利点もある。 The polymer compound (1) used in the present invention has absorption in a long wavelength region (600 nm or more). Moreover, the photoelectric conversion element using a high molecular compound (1) shows a high open circuit voltage (Voc), and shows a high photoelectric conversion characteristic. When the polymer compound (1) is a p-type organic semiconductor compound and the fullerene compound is combined as an n-type organic semiconductor compound, particularly high photoelectric conversion characteristics are exhibited. Further, the polymer compound (1) according to the present invention has an advantage that it has a low HOMO energy level and is not easily oxidized.
 また、高分子化合物(1)は溶媒に対して高溶解性を示すために、塗布成膜が容易であるという利点がある。また、塗布成膜を行う際に溶媒の選択の幅が広がるために、成膜により適した溶媒を選択でき、形成された活性層の膜質を向上させることができる。このことも、本発明に係る高分子化合物(1)を用いた光電変換素子が高い光電変換特性を示す一因であると考えられる。 Also, since the polymer compound (1) exhibits high solubility in a solvent, there is an advantage that coating film formation is easy. In addition, since the range of choice of solvent is widened when performing coating film formation, a solvent suitable for film formation can be selected, and the film quality of the formed active layer can be improved. This is also considered to be a factor that the photoelectric conversion element using the polymer compound (1) according to the present invention exhibits high photoelectric conversion characteristics.
  本発明の高分子化合物(1)の重量平均分子量、および数平均分子量は、一般に、2,000以上、1,000,000以下であることが好ましくり、より好ましくは3,000以上、500,000以下である。本発明の高分子化合物(1)の重量平均分子量、数平均分子量は、ゲル浸透クロマトグラフィーを用い、ポリスチレンを標準試料として作成した較正曲線に基づいて算出することができる。 In general, the weight average molecular weight and number average molecular weight of the polymer compound (1) of the present invention are preferably 2,000 or more and 1,000,000 or less, more preferably 3,000 or more, 500,000 or less. 000 or less. The weight average molecular weight and number average molecular weight of the polymer compound (1) of the present invention can be calculated based on a calibration curve prepared using polystyrene as a standard sample using gel permeation chromatography.
 本発明に係る高分子化合物(1)は、好ましくは光吸収極大波長(λmax)が400nm以上、より好ましくは450nm以上にあり、一方、通常1200nm以下、好ましくは1000nm以下、より好ましくは900nm以下にある。また、半値幅が通常10nm以上、好ましくは20nm以上であり、一方、通常300nm以下である。また、本発明に係る高分子化合物(1)の吸収波長領域は太陽光の吸収波長領域に近いほど望ましい。 The polymer compound (1) according to the present invention preferably has a light absorption maximum wavelength (λmax) of 400 nm or more, more preferably 450 nm or more, and is usually 1200 nm or less, preferably 1000 nm or less, more preferably 900 nm or less. is there. Moreover, a half value width is 10 nm or more normally, Preferably it is 20 nm or more, on the other hand, it is 300 nm or less normally. Moreover, it is desirable that the absorption wavelength region of the polymer compound (1) according to the present invention is closer to the absorption wavelength region of sunlight.
 本発明に係る高分子化合物(1)の溶解度は、特に限定は無いが、好ましくは25℃におけるクロロベンゼンに対する溶解度が通常0.1重量%以上、より好ましくは0.4重量%以上、さらに好ましくは0.8重量%以上であり、一方、通常30重量%以下、好ましくは20重量%である。溶解性が高いことは、より厚い活性層を成膜することが可能となる点で好ましい。 The solubility of the polymer compound (1) according to the present invention is not particularly limited, but preferably the solubility in chlorobenzene at 25 ° C. is usually 0.1% by weight or more, more preferably 0.4% by weight or more, more preferably On the other hand, it is usually 30% by weight or less, preferably 20% by weight. High solubility is preferable in that a thicker active layer can be formed.
 本発明に係る高分子化合物(1)は分子間で相互作用するものであることが好ましい。本発明において、分子間で相互作用するということは、高分子化合物の分子間でのπ-πスタッキングの相互作用等によってポリマー鎖間の距離が短くなることを意味する。相互作用が強いほど、高分子化合物が高いキャリア移動度及び/又は結晶性を示す傾向がある。すなわち、分子間で相互作用する高分子化合物においては分子間での電荷移動が起こりやすいため、活性層(IV)内のp型半導体化合物(高分子化合物(1))とn型半導体化合物との界面で生成した正孔(ホール)を効率よくアノード(II)へ輸送できると考えられる。 The polymer compound (1) according to the present invention preferably interacts between molecules. In the present invention, the interaction between molecules means that the distance between polymer chains is shortened due to the interaction of π-π stacking between molecules of the polymer compound. The stronger the interaction, the higher the polymer compound tends to exhibit higher carrier mobility and / or crystallinity. That is, in a polymer compound that interacts between molecules, charge transfer between molecules is likely to occur. Therefore, the p-type semiconductor compound (polymer compound (1)) in the active layer (IV) and the n-type semiconductor compound It is considered that holes generated at the interface can be efficiently transported to the anode (II).
(高分子化合物(1)の製造方法)
 本発明に用いる高分子化合物(1)の製造方法には特に限定はないが、例えば、ベンゾビスチアゾールを出発原料として 式(3)で表される化合物、
(Production method of polymer compound (1))
The production method of the polymer compound (1) used in the present invention is not particularly limited. For example, a compound represented by the formula (3) using benzobisthiazole as a starting material,
Figure JPOXMLDOC01-appb-C000080

[式(3)中、R1~R6は、それぞれ独立に、炭素数1~20の脂肪族炭化水素基、または炭素数6~10の芳香族炭化水素基を表す。]
式(4)で表される化合物、
Figure JPOXMLDOC01-appb-C000080

[In Formula (3), R 1 to R 6 each independently represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms. ]
A compound represented by formula (4),
Figure JPOXMLDOC01-appb-C000081

[式(4)中、X、R1~R6は、上記と同様の基を表す。]
式(5)で表される化合物、
Figure JPOXMLDOC01-appb-C000081

[In the formula (4), X and R 1 to R 6 represent the same groups as described above. ]
A compound represented by formula (5),
Figure JPOXMLDOC01-appb-C000082

[式(5)中、A1、A、R~Rは、それぞれ上記と同様の基を表す。]
式(6)で表される化合物、および、
Figure JPOXMLDOC01-appb-C000082

[In the formula (5), A 1 , A 2 and R 1 to R 6 each represent the same group as described above. ]
A compound represented by formula (6), and
Figure JPOXMLDOC01-appb-C000083

[式(6)中、A1、Aは、それぞれ上記と同様の基を表す。]
式(7)で表される化合物
Figure JPOXMLDOC01-appb-C000083

[In the formula (6), A 1 and A 2 each represent the same group as described above. ]
Compound represented by formula (7)
Figure JPOXMLDOC01-appb-C000084

[式(7)中、A1、Aは、それぞれ上記と同様の基を表す。M1、Mはそれぞれ独立に、ホウ素原子または錫原子を表す。R7~R10は、それぞれ独立に、炭素数1~6の脂肪族炭化水素基、水酸基、炭素数1~6のアルコキシ基、または、炭素数6~10のアリールオキシ基を表す。R7、R8は、M1とともに環を形成していてもよく、R9、R10は、M2とともに環を形成していてもよい。m、nは、それぞれ、1または2の整数を表す。また、m、nが2のとき、複数のR7、R9は、それぞれ同一でも、異なっていてもよい。]
を経る製造方法により製造することが可能である。
Figure JPOXMLDOC01-appb-C000084

[In the formula (7), A 1 and A 2 each represent the same group as described above. M 1 and M 2 each independently represents a boron atom or a tin atom. R 7 to R 10 each independently represents an aliphatic hydrocarbon group having 1 to 6 carbon atoms, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or an aryloxy group having 6 to 10 carbon atoms. R 7 and R 8 may form a ring together with M 1 , and R 9 and R 10 may form a ring together with M 2 . m and n each represents an integer of 1 or 2. When m and n are 2, the plurality of R 7 and R 9 may be the same or different. ]
It is possible to manufacture by the manufacturing method which passes through.
 R1~R6の脂肪族炭化水素基の炭素数は、好ましくは1~18であり、より好ましくは1~8である。R1~R6の脂肪族炭化水素基としては、メチル基、エチル基、イソプロピル基、tert-ブチル基、イソブチル基、オクチル基、オクタデシル基が挙げられる。R1~R6の芳香族炭化水素基の炭素数は、好ましくは6~8であり、より好ましくは6~7であり、特に好ましくは6である。R1~R6の芳香族炭化水素基としては、例えば、フェニル基が挙げられる。中でも、R1~R6としては、脂肪族炭化水素基が好ましく、分岐を有する脂肪族炭化水素基がより好ましく、イソプロピル基が特に好ましい。 The carbon number of the aliphatic hydrocarbon group of R 1 to R 6 is preferably 1 to 18, more preferably 1 to 8. Examples of the aliphatic hydrocarbon group represented by R 1 to R 6 include a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, an isobutyl group, an octyl group, and an octadecyl group. The carbon number of the aromatic hydrocarbon group of R 1 to R 6 is preferably 6 to 8, more preferably 6 to 7, and particularly preferably 6. Examples of the aromatic hydrocarbon group represented by R 1 to R 6 include a phenyl group. Among these, as R 1 to R 6 , an aliphatic hydrocarbon group is preferable, an aliphatic hydrocarbon group having a branch is more preferable, and an isopropyl group is particularly preferable.
 上記式(7)の化合物は例えば下記のようにして製造する事が可能である。
第一工程:ベンゾビスチアゾールに塩基とハロゲン化シラン化合物とを反応させ、式(3)で表される化合物を得る工程
第二工程:式(3)で表される化合物に塩基とハロゲン化試薬とを反応させ、式(4)で表される化合物を得る工程
The compound of the above formula (7) can be produced, for example, as follows.
First step: A step of reacting a benzobisthiazole with a base and a halogenated silane compound to obtain a compound represented by formula (3) Second step: A base and a halogenating reagent for the compound represented by formula (3) And a step of obtaining a compound represented by the formula (4)
 さらに下記第三工程、第四工程および第五工程を含むこと工程により式(7)で表される化合物を得ることが可能である。
第三工程:式(4)で表される化合物に、式(8)および/または(9)で表される化合物と反応させて、
Furthermore, it is possible to obtain the compound represented by Formula (7) by including the following third step, fourth step and fifth step.
Third step: reacting the compound represented by formula (4) with the compound represented by formula (8) and / or (9),
Figure JPOXMLDOC01-appb-C000085

Figure JPOXMLDOC01-appb-I000086
Figure JPOXMLDOC01-appb-C000085

Figure JPOXMLDOC01-appb-I000086
[式(8)、(9)中、A1、Aは、それぞれ上記と同様の基を表す。R11、R12は、それぞれ独立に、水素原子、又は、*-M(R13k14を表す。R13、R14は、それぞれ独立に、炭素数1~6の脂肪族炭化水素基、水酸基、炭素数1~6のアルコキシ基、または、炭素数6~10のアリールオキシ基を表す。Mは、ホウ素原子または錫原子を表す。R13、R14は、Mとともに環を形成していてもよい。kは、1または2の整数を表す。また、kが2のとき、複数のR13は、それぞれ同一でも、異なっていてもよい。*は、A1、またはA1、との結合手を表す。]で表される化合物を反応させて、式(4)で表される化合物を得る工程
第四工程:式(5)で表される化合物を、酸または塩基で処理して、式(6)で表される化合物を得る工程
第五工程:式(6)で表される化合物とハロゲン化錫化合物とを反応させて、式(7)で表される化合物を得る工程
[In the formulas (8) and (9), A 1 and A 2 each represent the same group as described above. R 11 and R 12 each independently represents a hydrogen atom or * -M 3 (R 13 ) k R 14 . R 13 and R 14 each independently represents an aliphatic hydrocarbon group having 1 to 6 carbon atoms, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or an aryloxy group having 6 to 10 carbon atoms. M 3 represents a boron atom or a tin atom. R 13 and R 14 may form a ring together with M 3 . k represents an integer of 1 or 2. When k is 2, the plurality of R 13 may be the same or different. * Represents a bond to A 1 or A 1,,. The compound represented by formula (4) is reacted to obtain a compound represented by formula (4) Fourth step: The compound represented by formula (5) is treated with an acid or a base to obtain a compound represented by formula (6) Step 5 for obtaining a compound represented by formula: Step for obtaining a compound represented by formula (7) by reacting a compound represented by formula (6) with a tin halide compound
カップリング反応
 さらに、高分子化合物(1)は、カップリング反応によって、式(1)で表される構造単位と、共重合成分(2)とを交互に配置するように組合せてドナー-アクセプター型高分子化合物として製造することができる。
Coupling reaction Furthermore, the polymer compound (1) is combined with the structural unit represented by the formula (1) and the copolymerization component (2) alternately by a coupling reaction to form a donor-acceptor type. It can be produced as a polymer compound.
 カップリング反応は、金属触媒の存在下、式(6)で表される化合物と、下記式(B1)~(B21)で表される化合物のいずれかと反応させることによって行ことが可能である。
Figure JPOXMLDOC01-appb-C000087

[式(B1)~(B22)中、R30~R49は、それぞれ独立に、R21~R25と同様の基を表し、A30、A31は、それぞれ独立に、A1、A2と同様の基を表す。Xはハロゲン原子を表す。jは1~4の整数を表す。]
The coupling reaction can be performed by reacting the compound represented by the formula (6) with any one of the compounds represented by the following formulas (B1) to (B21) in the presence of a metal catalyst.
Figure JPOXMLDOC01-appb-C000087

[In formulas (B1) to (B22), R 30 to R 49 each independently represents the same group as R 21 to R 25, and A 30 and A 31 each independently represent A 1 , A 2 Represents the same group. X represents a halogen atom. j represents an integer of 1 to 4. ]
(その他のp型半導体化合物)
 活性層(IV)は、p型半導体化合物として、本発明に係る高分子化合物(1)を少なくとも含有する。しかしながら、高分子化合物(1)とは異なるp型半導体化合物を、高分子化合物(1)と混合及び/又は積層して併用することも可能である。併用しうる他のp型半導体化合物としては、特に限定されないが、有機半導体化合物(10)が挙げられる。以下、有機半導体化合物(10)について説明する。なお、有機半導体化合物(10)は、高分子有機半導体化合物であっても、低分子有機半導体化合物であっても差し支えないが、高分子有機半導体であることが好ましい。
(Other p-type semiconductor compounds)
The active layer (IV) contains at least the polymer compound (1) according to the present invention as a p-type semiconductor compound. However, a p-type semiconductor compound different from the polymer compound (1) can be mixed and / or laminated with the polymer compound (1). Although it does not specifically limit as another p-type semiconductor compound which can be used together, An organic-semiconductor compound (10) is mentioned. Hereinafter, the organic semiconductor compound (10) will be described. The organic semiconductor compound (10) may be a high molecular organic semiconductor compound or a low molecular organic semiconductor compound, but is preferably a high molecular organic semiconductor.
(有機半導体化合物(10))
 有機半導体化合物(10)としては、特に限定はなく、ポリチオフェン、ポリフルオレン、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリアセチレン又はポリアニリン等の共役コポリマー半導体化合物;アルキル基やその他の置換基が置換されたオリゴチオフェン等のコポリマー半導体化合物等が挙げられる。また、二種以上のモノマー単位を共重合させたコポリマー半導体化合物も挙げられる。共役コポリマーは、例えば、Handbook of Conducting Polymers,3rd Ed.(全2巻),2007、J.Polym. Sci.Part A:Polym.Chem.2013,51,743-768、 J.Am.Chem.Soc.2009,131,13886-13887、 Angew. Chem.Int.Ed.2013,52,8341-8344、 Adv.Mater.2009,21,2093-2097等の公知文献に記載されたコポリマーやその誘導体、及び記載されているモノマーの組み合わせによって合成し得るコポリマーを用いることができる。有機半導体化合物(10)は、一種の化合物でも複数種の化合物の混合物でもよい。有機半導体化合物(10)を用いることで吸収波長帯の追加による吸光量の増加などが期待できる。
(Organic semiconductor compound (10))
The organic semiconductor compound (10) is not particularly limited, and is a conjugated copolymer semiconductor compound such as polythiophene, polyfluorene, polyphenylene vinylene, polythienylene vinylene, polyacetylene, or polyaniline; an oligothiophene substituted with an alkyl group or other substituent. And copolymer semiconductor compounds such as Moreover, the copolymer semiconductor compound which copolymerized 2 or more types of monomer units is also mentioned. Conjugated copolymers are described in, for example, Handbook of Conducting Polymers, 3rd Ed. (2 volumes in total), 2007, J.M. Polym. Sci. Part A: Polym. Chem. 2013, 51, 743-768, J. MoI. Am. Chem. Soc. 2009, 131, 13886-13887, Angew. Chem. Int. Ed. 2013, 52, 8341-8344, Adv. Mater. Copolymers that can be synthesized by a combination of a copolymer described in publicly known documents such as 2009, 21, 2093-2097, derivatives thereof, and the monomers described can be used. The organic semiconductor compound (10) may be a single compound or a mixture of a plurality of compounds. By using the organic semiconductor compound (10), an increase in the amount of light absorption due to the addition of the absorption wavelength band can be expected.
 有機半導体化合物(10)の具体例としては以下のものが挙げられるが、以下のものに限定されるわけではない。 Specific examples of the organic semiconductor compound (10) include the following, but are not limited to the following.
Figure JPOXMLDOC01-appb-I000088

Figure JPOXMLDOC01-appb-I000089
Figure JPOXMLDOC01-appb-I000088

Figure JPOXMLDOC01-appb-I000089
 p型半導体化合物のHOMO(最高被占分子軌道)エネルギー準位は、特に限定は無く、後述のn型半導体化合物の種類によって選択することができる。特に、フラーレン化合物をn型半導体化合物として用いる場合、p型半導体化合物のHOMOエネルギー準位は、通常-5.9eV以上、より好ましくは-5.7eV以上、一方、通常-4.6eV以下、より好ましくは-4.8eV以下である。p型半導体化合物のHOMOエネルギー準位が-5.9eV以上であることによりp型半導体としての特性が向上し、p型半導体化合物のHOMOエネルギー準位が-4.6eV以下であることによりp型半導体化合物の安定性が向上し、開放電圧(Voc)も向上する。 The HOMO (highest occupied molecular orbital) energy level of the p-type semiconductor compound is not particularly limited and can be selected according to the type of the n-type semiconductor compound described later. In particular, when a fullerene compound is used as an n-type semiconductor compound, the HOMO energy level of the p-type semiconductor compound is usually −5.9 eV or more, more preferably −5.7 eV or more, while usually −4.6 eV or less. Preferably, it is −4.8 eV or less. When the HOMO energy level of the p-type semiconductor compound is −5.9 eV or more, the characteristics as a p-type semiconductor are improved, and when the HOMO energy level of the p-type semiconductor compound is −4.6 eV or less, the p-type semiconductor compound has p-type characteristics. The stability of the semiconductor compound is improved and the open circuit voltage (Voc) is also improved.
 p型半導体化合物のLUMO(最低空分子軌道)エネルギー準位は、特に限定は無いが、後述のn型半導体化合物の種類によって選択することができる。特に、フラーレン化合物をn型半導体化合物として用いる場合、p型半導体化合物のLUMOエネルギー準位は、通常-4.5eV以上、好ましくは-4.3eV以上である。一方、通常-2.5eV以下、好ましくは-2.7eV以下である。p型半導体のLUMOエネルギー準位が-2.5eV以下であることにより、バンドギャップが調整され長波長の光エネルギーを有効に吸収することができ、短絡電流密度が向上する。p型半導体化合物のLUMOエネルギ-準位が-3.9eV以上であることにより、n型半導体化合物への電子移動が起こりやすくなり短絡電流密度が向上する。 The LUMO (lowest unoccupied molecular orbital) energy level of the p-type semiconductor compound is not particularly limited, but can be selected according to the type of the n-type semiconductor compound described later. In particular, when a fullerene compound is used as an n-type semiconductor compound, the LUMO energy level of the p-type semiconductor compound is usually −4.5 eV or more, preferably −4.3 eV or more. On the other hand, it is usually −2.5 eV or less, preferably −2.7 eV or less. When the LUMO energy level of the p-type semiconductor is −2.5 eV or less, the band gap is adjusted, light energy of a long wavelength can be effectively absorbed, and the short-circuit current density is improved. When the LUMO energy level of the p-type semiconductor compound is −3.9 eV or more, electron transfer to the n-type semiconductor compound is likely to occur, and the short-circuit current density is improved.
 LUMOエネルギー準位及びHOMOエネルギー準位の算出方法は、理論的に計算値で求める方法と実際に測定する方法が挙げられる。理論的に計算値で求める方法としては、半経験的分子軌道法及び非経験的分子軌道法が挙げられる。実際に測定する方法としては、紫外可視吸収スペクトル測定法又は常温常圧下、紫外線光電子分析装置(理研計器社製、「AC-3」)によりイオン化ポテンシャルを測定が挙げられる。
その中でも好ましくはAC-3測定であり、本発明ではAC-3測定法を用いるものとする。
As a method for calculating the LUMO energy level and the HOMO energy level, there are a theoretically calculated method and a method of actually measuring. The theoretically calculated values include semi-empirical molecular orbital methods and non-empirical molecular orbital methods. Examples of the actual measurement method include ultraviolet-visible absorption spectrum measurement or measurement of ionization potential with an ultraviolet photoelectron analyzer (“AC-3”, manufactured by Riken Keiki Co., Ltd.) under normal temperature and normal pressure.
Among them, AC-3 measurement is preferable, and the AC-3 measurement method is used in the present invention.
[1.1.3 n型半導体化合物]
 n型有機半導体化合物としては、特に限定されないが、一般的に、その最低空軌道(LUMO)準位が3.5~4.5eVであるようなπ電子共役系化合物であり、例えば、フラーレンもしくはその誘導体、オクタアザポルフィリン等、p型有機半導体化合物の水素原子をフッ素原子に置換したパーフルオロ体(例えば、パーフルオロペンタセンやパーフルオロフタロシアニン)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物やそのイミド化物を骨格として含む高分子化合物等を挙げる事ができる。
[1.1.3 n-type semiconductor compound]
The n-type organic semiconductor compound is not particularly limited, but is generally a π-electron conjugated compound having a lowest unoccupied orbital (LUMO) level of 3.5 to 4.5 eV, such as fullerene or Perfluoro derivatives (eg, perfluoropentacene or perfluorophthalocyanine) in which hydrogen atoms of p-type organic semiconductor compounds are substituted with fluorine atoms, such as derivatives thereof, octaazaporphyrins, naphthalene tetracarboxylic acid anhydrides, naphthalene tetracarboxylic acid diimides, Examples thereof include aromatic carboxylic acid anhydrides such as perylenetetracarboxylic acid anhydride and perylenetetracarboxylic acid diimide, and polymer compounds containing the imidized product as a skeleton.
 これらのn型有機半導体化合物のうち、本発明の特定構成単位を有する高分子化合物(1)(p型有機半導体化合物)と高速かつ効率的に電荷分離ができるためフラーレンもしくはその誘導体が好ましい。
 フラーレンやその誘導体としては、C60フラーレン、C70フラーレン、C76フラーレン、C78フラーレン、C84フラーレン、C240フラーレン、C540フラーレン、ミックスドフラーレン、フラーレンナノチューブ、およびこれらの一部が水素原子、ハロゲン原子、置換または無置換のアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基、シリル基等によって置換されたフラーレン誘導体を挙げることができる。
Among these n-type organic semiconductor compounds, fullerene or a derivative thereof is preferable because charge separation can be performed at high speed and efficiently from the polymer compound (1) (p-type organic semiconductor compound) having the specific structural unit of the present invention.
As fullerenes and derivatives thereof, C60 fullerene, C70 fullerene, C76 fullerene, C78 fullerene, C84 fullerene, C240 fullerene, C540 fullerene, mixed fullerene, fullerene nanotubes, and some of them are hydrogen atoms, halogen atoms, substituted or non-substituted. Examples include fullerene derivatives substituted with a substituted alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, cycloalkyl group, silyl group, ether group, thioether group, amino group, silyl group, and the like.
 フラーレン誘導体としては、フェニル-C61-酪酸エステル、ジフェニル-C62-ビス(酪酸エステル)、フェニル-C71-酪酸エステル、フェニル-C85-酪酸エステルまたはチエニル-C61-酪酸エステルが好ましく、上記の酪酸エステルのアルコール部分の好ましい炭素数は1~30、より好ましくは1~8、さらに好ましくは1~4、最も好ましくは1である。 As the fullerene derivative, phenyl-C61-butyric acid ester, diphenyl-C62-bis (butyric acid ester), phenyl-C71-butyric acid ester, phenyl-C85-butyric acid ester or thienyl-C61-butyric acid ester is preferable. The carbon number of the alcohol moiety is preferably 1-30, more preferably 1-8, still more preferably 1-4, and most preferably 1.
 好ましいフラーレン誘導体を例示すると、フェニル-C61-酪酸メチルエステル([60]PCBM)、フェニル-C61-酪酸n-ブチルエステル([60]PCBnB)、フェニル-C61-酪酸イソブチルエステル([60]PCBiB)、フェニル-C61-酪酸n-ヘキシルエステル([60]PCBH)、フェニル-C61-酪酸n-オクチルエステル([60]PCBO)、ジフェニル-C62-ビス(酪酸メチルエステル)(ビス[60]PCBM)、フェニル-C71-酪酸メチルエステル([70]PCBM)、フェニル-C85-酪酸メチルエステル([84]PCBM)、チエニル-C61-酪酸メチルエステル([60]ThCBM)、C60ピロリジントリス酸、C60ピロリジントリス酸エチルエステル、N-メチルフラロピロリジン(MP-C60)、(1,2-メタノフラーレンC60)-61-カルボン酸、(1,2-メタノフラーレンC60)-61-カルボン酸t-ブチルエステル、特開2008-130889号公報等のメタロセン化フラーレン、米国特許第7,329,709号明細書等の環状エーテル基を有するフラーレンが挙げられる。 Examples of preferred fullerene derivatives include phenyl-C61-butyric acid methyl ester ([60] PCBM), phenyl-C61-butyric acid n-butyl ester ([60] PCBnB), phenyl-C61-butyric acid isobutyl ester ([60] PCBiB). Phenyl-C61-butyric acid n-hexyl ester ([60] PCBH), phenyl-C61-butyric acid n-octyl ester ([60] PCBO), diphenyl-C62-bis (butyric acid methyl ester) (bis [60] PCBM) Phenyl-C71-butyric acid methyl ester ([70] PCBM), phenyl-C85-butyric acid methyl ester ([84] PCBM), thienyl-C61-butyric acid methyl ester ([60] ThCBM), C60 pyrrolidine tris acid, C60 pyrrolidine Tris acid ethyl ester N-methylfulleropyrrolidine (MP-C60), (1,2-methanofullerene C60) -61-carboxylic acid, (1,2-methanofullerene C60) -61-carboxylic acid t-butyl ester, JP2008- Metallocene fullerenes such as No. 130889, and fullerenes having a cyclic ether group such as US Pat. No. 7,329,709.
<1.2 アノード(II),カソード(VI)>
 アノード(II),およびカソード(VI)は、光吸収により生じた正孔及び電子を捕集する機能を有する。したがって、一対の電極には、電子の捕集に適した電極(VI)(カソード)と、正孔の捕集に適した電極(II)(アノード)とを用いることが好ましい。一対の電極は、いずれか一方が透光性であればよく、両方が透光性であっても構わない。透光性があるとは、太陽光が40%以上透過することを指す。また、透光性を有する透明電極の太陽光線透過率は70%以上であることが、透明電極を透過させて活性層(IV)に光を到達させるために好ましい。光の透過率は、通常の分光光度計で測定できる。
<1.2 Anode (II), Cathode (VI)>
The anode (II) and the cathode (VI) have a function of collecting holes and electrons generated by light absorption. Therefore, it is preferable to use an electrode (VI) (cathode) suitable for collecting electrons and an electrode (II) (anode) suitable for collecting holes for the pair of electrodes. Any one of the pair of electrodes may be translucent, and both may be translucent. Translucency means that sunlight passes through 40% or more. Moreover, it is preferable that the translucent transparent electrode has a sunlight transmittance of 70% or more in order to allow light to reach the active layer (IV) through the transparent electrode. The light transmittance can be measured with a normal spectrophotometer.
 カソード(VI)は、一般には仕事関数がアノードよりも小さい値を有する導電性材料で構成され、活性層(IV)で発生した電子をスムーズに取り出す機能を有する電極である。 The cathode (VI) is an electrode generally made of a conductive material having a work function smaller than that of the anode and having a function of smoothly extracting electrons generated in the active layer (IV).
 カソード(VI)の材料を挙げると、例えば、白金、金、銀、銅、鉄、錫、亜鉛、アルミニウム、インジウム、クロム、リチウム、ナトリウム、カリウム、セシウム、カルシウム又はマグネシウム等の金属及びその合金;フッ化リチウムやフッ化セシウム等の無機塩;酸化ニッケル、酸化アルミニウム、酸化リチウム又は酸化セシウムのような金属酸化物等が挙げられる。これらの材料は小さい仕事関数を有する材料であるため、好ましい。また、電子輸送層(V)の材料として酸化亜鉛のようなn型半導体化合物で導電性を有するものを用いる場合、酸化インジウムスズ(ITO)のような、アノードに適した大きい仕事関数を有する材料を、カソード(VI)の材料として用いることもできる。電極保護の観点から、カソード1(VI)の材料として好ましくは、白金、金、銀、銅、鉄、錫、アルミニウム、カルシウム又はインジウム等の金属及びこれらの金属を用いた合金である。 Examples of the material of the cathode (VI) include metals such as platinum, gold, silver, copper, iron, tin, zinc, aluminum, indium, chromium, lithium, sodium, potassium, cesium, calcium or magnesium and alloys thereof; Examples include inorganic salts such as lithium fluoride and cesium fluoride; metal oxides such as nickel oxide, aluminum oxide, lithium oxide, and cesium oxide. These materials are preferable because they are materials having a small work function. In addition, when an n-type semiconductor compound such as zinc oxide having conductivity is used as a material for the electron transport layer (V), a material having a large work function suitable for an anode, such as indium tin oxide (ITO). Can also be used as a material for the cathode (VI). From the viewpoint of electrode protection, the material of the cathode 1 (VI) is preferably a metal such as platinum, gold, silver, copper, iron, tin, aluminum, calcium or indium and an alloy using these metals.
 カソード(VI)の膜厚は特に制限は無いが、通常10nm以上、好ましくは20nm以上、より好ましくは50nm以上である。一方、通常10μm以下、好ましくは1μm以下、より好ましくは500nm以下である。カソード(VI)の膜厚が10nm以上であることにより、シート抵抗が抑えられ、カソード(VI)の膜厚が10μm以下であることにより、光透過率を低下させずに効率よく光を電気に変換することができる。カソード(VI)を透明電極として用いる場合には、光透過率とシート抵抗を両立する膜厚を選ぶ必要がある。 The film thickness of the cathode (VI) is not particularly limited, but is usually 10 nm or more, preferably 20 nm or more, more preferably 50 nm or more. On the other hand, it is usually 10 μm or less, preferably 1 μm or less, more preferably 500 nm or less. When the thickness of the cathode (VI) is 10 nm or more, the sheet resistance is suppressed, and when the thickness of the cathode (VI) is 10 μm or less, the light is efficiently supplied without reducing the light transmittance. Can be converted. When the cathode (VI) is used as a transparent electrode, it is necessary to select a film thickness that achieves both light transmittance and sheet resistance.
 カソード(VI)のシート抵抗は、特に制限は無いが、通常1000Ω/sq以下、好ましくは500Ω/sq以下、さらに好ましくは100Ω/sq以下である。下限に制限は無いが、通常は1Ω/sq以上である。 The sheet resistance of the cathode (VI) is not particularly limited, but is usually 1000Ω / sq or less, preferably 500Ω / sq or less, more preferably 100Ω / sq or less. Although there is no restriction | limiting in a lower limit, Usually, it is 1 ohm / sq or more.
 カソード(VI)の形成方法としては、蒸着法若しくはスパッタ法等の真空成膜方法、又はナノ粒子や前駆体を含有するインクを塗布して成膜する湿式塗布法等がある。 As a method for forming the cathode (VI), there are a vacuum film forming method such as a vapor deposition method or a sputtering method, or a wet coating method in which an ink containing nanoparticles or a precursor is applied to form a film.
 アノード(II)とは、一般には仕事関数がカソードよりも大きい導電性材料で構成され、活性層(IV)で発生した正孔をスムーズに取り出す機能を有する電極である。 The anode (II) is an electrode generally made of a conductive material having a work function larger than that of the cathode and having a function of smoothly extracting holes generated in the active layer (IV).
 アノード(II)の材料を挙げると、例えば、酸化ニッケル、酸化錫、酸化インジウム、酸化インジウムスズ(ITO)、インジウム-ジルコニウム酸化物(IZO)、酸化チタン、酸化インジウム又は酸化亜鉛等の導電性金属酸化物;金、白金、銀、クロム又はコバルト等の金属あるいはその合金等が挙げられる。これらの物質は大きい仕事関数を有するため、好ましく、さらに、ポリチオフェン誘導体にポリスチレンスルホン酸をドーピングしたPEDOT:PSSで代表されるような導電性高分子材料を積層することができるため、好ましい。このような導電性高分子を積層する場合には、この導電性高分子材料の仕事関数が大きいことから、上記のような大きい仕事関数の材料でなくとも、アルミニウムやマグネシウム等のカソードに適した金属も広く用いることが可能である。 Examples of materials for the anode (II) include conductive metals such as nickel oxide, tin oxide, indium oxide, indium tin oxide (ITO), indium-zirconium oxide (IZO), titanium oxide, indium oxide, and zinc oxide. Oxides; metals such as gold, platinum, silver, chromium or cobalt, or alloys thereof. These substances are preferable because they have a large work function, and more preferably, a conductive polymer material represented by PEDOT: PSS in which a polythiophene derivative is doped with polystyrene sulfonic acid can be laminated. When laminating such a conductive polymer, the work function of this conductive polymer material is large, so it is suitable for cathodes such as aluminum and magnesium, even if it is not a material with a large work function as described above. Metals can also be widely used.
 ポリチオフェン誘導体にポリスチレンスルホン酸をドーピングしたPEDOT:PSSや、ポリピロール又はポリアニリン等にヨウ素等をドーピングした導電性高分子材料を、アノードの材料として使用することもできる。 PEDOT: PSS in which a polythiophene derivative is doped with polystyrene sulfonic acid, or a conductive polymer material in which polypyrrole or polyaniline is doped with iodine or the like can also be used as an anode material.
 アノード(II)が透明電極である場合には、ITO、酸化亜鉛又は酸化錫等の透光性がある導電性金属酸化物を用いることが好ましく、特にITOを用いることが好ましい。 When the anode (II) is a transparent electrode, it is preferable to use a light-transmitting conductive metal oxide such as ITO, zinc oxide or tin oxide, and particularly preferably ITO.
 アノード(II)の膜厚に特に制限は無いが、通常10nm以上、好ましくは20nm以上、さらに好ましくは50nm以上である。一方、通常10μm以下、好ましくは1μm以下、さらに好ましくは500nm以下である。アノード(II)の膜厚が10nm以上であることにより、シート抵抗が抑えられ、アノード(II)の膜厚が10μm以下であることにより、光透過率を低下させずに効率よく光を電気に変換することができる。アノード(II)が透明電極である場合には、光透過率とシート抵抗とを両立できる膜厚を選ぶ必要がある。 The film thickness of the anode (II) is not particularly limited, but is usually 10 nm or more, preferably 20 nm or more, more preferably 50 nm or more. On the other hand, it is usually 10 μm or less, preferably 1 μm or less, more preferably 500 nm or less. When the film thickness of the anode (II) is 10 nm or more, the sheet resistance is suppressed, and when the film thickness of the anode (II) is 10 μm or less, the light is efficiently transferred without reducing the light transmittance. Can be converted. When the anode (II) is a transparent electrode, it is necessary to select a film thickness that can achieve both light transmittance and sheet resistance.
 アノード(II)のシート抵抗は、特段の制限はないが、通常1Ω/sq以上、一方、1000Ω/sq以下、好ましくは500Ω/sq以下、さらに好ましくは100Ω/sq以下である。 The sheet resistance of the anode (II) is not particularly limited, but is usually 1Ω / sq or more, on the other hand, 1000Ω / sq or less, preferably 500Ω / sq or less, more preferably 100Ω / sq or less.
 アノード(II)の形成方法としては、蒸着法若しくはスパッタ法等の真空成膜方法、又はナノ粒子や前駆体を含有するインクを塗布して成膜する湿式塗布法が挙げられる。 Examples of the method for forming the anode (II) include a vacuum film forming method such as an evaporation method or a sputtering method, or a wet coating method in which an ink containing nanoparticles and a precursor is applied to form a film.
 さらに、カソード(VI)及びアノード(II)は、2層以上の積層構造を有していてもよい。また、カソード(VI)及びアノード(II)に対して表面処理を行うことにより、特性(電気特性やぬれ特性等)を改良してもよい。 Furthermore, the cathode (VI) and the anode (II) may have a laminated structure of two or more layers. Further, the characteristics (electrical characteristics, wetting characteristics, etc.) may be improved by performing a surface treatment on the cathode (VI) and the anode (II).
<1.3 基材(I)>
 光電変換素子(VII)は、通常は支持体となる基材(I)を有する。すなわち、基材上に、電極(II),(VI)と、活性層(IV)とが形成される。
<1.3 Substrate (I)>
A photoelectric conversion element (VII) has the base material (I) which becomes a support body normally. That is, the electrodes (II) and (VI) and the active layer (IV) are formed on the substrate.
 基材(I)の材料は、本発明の効果を著しく損なわない限り特に限定されない。基材(I)の材料の好適な例を挙げると、石英、ガラス、サファイア又はチタニア等の無機材料;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリイミド、ナイロン、ポリスチレン、ポリビニルアルコール、エチレンビニルアルコール共重合体、フッ素樹脂フィルム、塩化ビニル若しくはポリエチレン等のポリオレフィン、セルロース、ポリ塩化ビニリデン、アラミド、ポリフェニレンスルフィド、ポリウレタン、ポリカーボネート、ポリアリレート、ポリノルボルネン又はエポキシ樹脂等の有機材料;紙又は合成紙等の紙材料;ステンレス、チタン又はアルミニウム等の金属に、絶縁性を付与するために表面をコート又はラミネートしたもの等の複合材料;等が挙げられる。 The material for the substrate (I) is not particularly limited as long as the effects of the present invention are not significantly impaired. Preferable examples of the material of the substrate (I) include inorganic materials such as quartz, glass, sapphire and titania; polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyimide, nylon, polystyrene, polyvinyl alcohol, ethylene vinyl alcohol Organic materials such as copolymers, fluororesin films, polyolefins such as vinyl chloride or polyethylene, cellulose, polyvinylidene chloride, aramid, polyphenylene sulfide, polyurethane, polycarbonate, polyarylate, polynorbornene, or epoxy resins; paper or synthetic paper Paper materials; composite materials such as those obtained by coating or laminating a surface of a metal such as stainless steel, titanium, or aluminum to provide insulation;
 ガラスとしてはソーダガラス、青板ガラス又は無アルカリガラス等が挙げられる。ガラスからの溶出イオンが少ない点で、これらの中でも無アルカリガラスが好ましい。 Examples of glass include soda glass, blue plate glass, and non-alkali glass. Among these, alkali-free glass is preferable in that there are few eluted ions from the glass.
 基材(I)の形状に制限はなく、例えば、板状、フィルム状又はシート状等のものを用いることができる。また、基材(I)の膜厚に制限はないが、通常5μm以上、好ましくは20μm以上であり、一方、通常20mm以下、好ましくは10mm以下である。基材(I)の膜厚が5μm以上であることは、光電変換素子の強度が不足する可能性が低くなるために好ましい。基材(I)の膜厚が20mm以下であることは、コストが抑えられ、かつ重量が重くならないために好ましい。基材(I)の材料がガラスである場合の膜厚は、通常0.01mm以上、好ましくは0.1mm以上であり、一方、通常1cm以下、好ましくは0.5cm以下である。ガラス基材(I)の膜厚が0.01mm以上であることは、機械的強度が増加し、割れにくくなるために、好ましい。また、ガラス基材(I)の膜厚が0.5cm以下であることは、重量が重くならないために好ましい。 There is no restriction | limiting in the shape of base material (I), For example, things, such as plate shape, a film form, or a sheet form, can be used. Moreover, although there is no restriction | limiting in the film thickness of base material (I), it is 5 micrometers or more normally, Preferably it is 20 micrometers or more, on the other hand, it is 20 mm or less normally, Preferably it is 10 mm or less. The film thickness of the substrate (I) is preferably 5 μm or more because the possibility that the strength of the photoelectric conversion element is insufficient is reduced. It is preferable that the film thickness of the substrate (I) is 20 mm or less because the cost is suppressed and the weight does not increase. When the material of the substrate (I) is glass, the film thickness is usually 0.01 mm or more, preferably 0.1 mm or more, and is usually 1 cm or less, preferably 0.5 cm or less. It is preferable that the film thickness of the glass substrate (I) is 0.01 mm or more because the mechanical strength increases and it is difficult to break. Moreover, it is preferable that the film thickness of the glass substrate (I) is 0.5 cm or less because the weight does not increase.
<1.4 バッファ層(III,V)>
 光電変換素子(VII)は、活性層(IV)とアノード(II)(以下、「電極(II)」ともいう。),カソード(VI)(以下、「電極(VI)」ともいう。)の間にバッファ層(III),(V)を有することが好ましい。バッファ層は、電子輸送層(V)及びホール輸送層(III)に分類することができる。バッファ層を設けることで、活性層(IV)とアノード(II)との間での電子又は正孔の移動が容易となるほか、電極間の短絡が防止されうる。もっとも本発明において、バッファ層(III),(V)は存在しなくてもよい。
<1.4 Buffer layer (III, V)>
The photoelectric conversion element (VII) includes an active layer (IV), an anode (II) (hereinafter also referred to as “electrode (II)”), and a cathode (VI) (hereinafter also referred to as “electrode (VI)”). It is preferable to have buffer layers (III) and (V) between them. The buffer layer can be classified into an electron transport layer (V) and a hole transport layer (III). By providing the buffer layer, electrons or holes can be easily transferred between the active layer (IV) and the anode (II), and a short circuit between the electrodes can be prevented. However, in the present invention, the buffer layers (III) and (V) may not exist.
 電子輸送層(V)とホール輸送層(III)とは、1対の電極(II),(VI)の間に、活性層(IV)を挟むように配置される。すなわち、本発明に係る光電変換素子(VII)が電子輸送層(V)とホール輸送層(III)との両者を含む場合、カソード(VI)、電子輸送層(V)、活性層(IV)、ホール輸送層(III)、及びアノード(II)がこの順に配置される。本発明に係る光電変換素子(VII)が電子輸送層(V)を含みホール輸送層(III)を含まない場合は、カソード(VI)、電子輸送層(V)、活性層(IV)、及びアノード(II)がこの順に配置される。 The electron transport layer (V) and the hole transport layer (III) are arranged so as to sandwich the active layer (IV) between the pair of electrodes (II) and (VI). That is, when the photoelectric conversion element (VII) according to the present invention includes both the electron transport layer (V) and the hole transport layer (III), the cathode (VI), the electron transport layer (V), and the active layer (IV) , Hole transport layer (III), and anode (II) are arranged in this order. When the photoelectric conversion element (VII) according to the present invention includes the electron transport layer (V) and does not include the hole transport layer (III), the cathode (VI), the electron transport layer (V), the active layer (IV), and The anode (II) is arranged in this order.
[1.4.1 電子輸送層(V)]
 電子輸送層(V)は、活性層(IV)からカソード(VI)へ電子の取り出しを行う層であり、電子取り出しの効率を向上させる電子輸送性の材料であれば特段の制限はなく、有機化合物でも無機化合物でも良いが、無機化合物が好ましい。
[1.4.1 Electron Transport Layer (V)]
The electron transport layer (V) is a layer for extracting electrons from the active layer (IV) to the cathode (VI), and is not particularly limited as long as it is an electron transport material that improves the efficiency of electron extraction. A compound or an inorganic compound may be used, but an inorganic compound is preferable.
 無機化合物の材料の好ましい例としては、リチウム、ナトリウム、カリウム若しくはセシウム等のアルカリ金属の塩、カルシウム等アルカリ土類金属の塩、又は金属酸化物等が挙げられる。なかでも、アルカリ金属の塩としては、フッ化リチウム、フッ化ナトリウム、フッ化カリウム又はフッ化セシウムのようなフッ化物塩が好ましく、金属酸化物としては、酸化チタン(TiOx)や酸化亜鉛(ZnO)のようなn型半導体特性を有する金属酸化物が好ましい。無機化合物の材料としてより好ましくは、酸化チタン(TiOx)又は酸化亜鉛(ZnO)のような、n型半導体特性を有する金属酸化物である。特に好ましくは酸化チタン(TiOx)である。このような材料の動作機構は不明であるが、カソード(VI)と組み合わされた際に、仕事関数を小さくし、太陽電池素子内部に印加される電圧を上げる事が考えられる。 Preferred examples of the inorganic compound material include alkali metal salts such as lithium, sodium, potassium, and cesium, alkaline earth metal salts such as calcium, and metal oxides. Among them, the alkali metal salt is preferably a fluoride salt such as lithium fluoride, sodium fluoride, potassium fluoride or cesium fluoride, and the metal oxide is titanium oxide (TiOx) or zinc oxide (ZnO). A metal oxide having n-type semiconductor characteristics such as More preferable as the material of the inorganic compound is a metal oxide having n-type semiconductor properties such as titanium oxide (TiOx) or zinc oxide (ZnO). Particularly preferred is titanium oxide (TiOx). The operation mechanism of such a material is unknown, but when combined with the cathode (VI), it is conceivable to reduce the work function and increase the voltage applied to the inside of the solar cell element.
 電子輸送層(V)の材料のLUMOエネルギー準位は、特に限定は無いが、通常-4.0eV以上、好ましくは-3.9eV以上である。一方、通常-1.9eV以下、好ましくは-2.0eV以下である。電子輸送層(V)の材料のLUMOエネルギー準位が-1.9eV以下であることは、電荷移動が促進されうる点で好ましい。電子輸送層(V)の材料のLUMOエネルギー準位が-4.0eV以上であることは、n型半導体化合物への逆電子移動が防がれうる点で好ましい。 The LUMO energy level of the material of the electron transport layer (V) is not particularly limited, but is usually −4.0 eV or more, preferably −3.9 eV or more. On the other hand, it is usually −1.9 eV or less, preferably −2.0 eV or less. It is preferable that the LUMO energy level of the material of the electron transport layer (V) is −1.9 eV or less because charge transfer can be promoted. It is preferable that the LUMO energy level of the material of the electron transport layer (V) is −4.0 eV or more because reverse electron transfer to the n-type semiconductor compound can be prevented.
 電子輸送層(V)の材料のHOMOエネルギー準位は、特に限定は無いが、通常-9.0eV以上、好ましくは-8.0eV以上である。一方、通常-5.0eV以下、好ましくは-5.5eV以下である。電子輸送層(V)の材料のHOMOエネルギー準位が-5.0eV以下であることは、正孔が移動してくることを阻止しうる点で好ましい。電子輸送層(V)の材料のLUMOエネルギー準位及びHOMOエネルギー準位の算出方法としては、サイクリックボルタモグラム測定法が挙げられる。 The HOMO energy level of the material of the electron transport layer (V) is not particularly limited, but is usually −9.0 eV or more, preferably −8.0 eV or more. On the other hand, it is usually −5.0 eV or less, preferably −5.5 eV or less. It is preferable that the HOMO energy level of the material of the electron transport layer (V) is −5.0 eV or less from the viewpoint that holes can be prevented from moving. As a method for calculating the LUMO energy level and the HOMO energy level of the material of the electron transport layer (V), a cyclic voltammogram measurement method may be mentioned.
 電子輸送層(V)の膜厚は特に限定はないが、通常0.1nm以上、好ましくは0.5nm以上、より好ましくは1.0nm以上である。一方、通常100nm以下、好ましくは70nm以下、より好ましくは40nm以下、特に好ましくは20nm以下である。電子輸送層(V)の膜厚が0.1nm以上であることでバッファ材料としての機能を果たすことになり、電子輸送層(V)の膜厚が100nm以下であることで、電子が取り出しやすくなり、光電変換効率が向上しうる。 The film thickness of the electron transport layer (V) is not particularly limited, but is usually 0.1 nm or more, preferably 0.5 nm or more, more preferably 1.0 nm or more. On the other hand, it is usually 100 nm or less, preferably 70 nm or less, more preferably 40 nm or less, and particularly preferably 20 nm or less. When the film thickness of the electron transport layer (V) is 0.1 nm or more, it functions as a buffer material. When the film thickness of the electron transport layer (V) is 100 nm or less, electrons are easily taken out. Thus, the photoelectric conversion efficiency can be improved.
[1.4.2 ホール輸送層(III)]
 ホール輸送層(III)は、活性層(IV)からアノード(II)へ正孔の取り出しを行う層であり、正孔取り出しの効率を向上させることが可能な正孔輸送性の材料であれば特に限定されない。具体的には、ポリチオフェン、ポリピロール、ポリアセチレン、トリフェニレンジアミン又はポリアニリン等に、スルホン酸及び/又はヨウ素等がドーピングされた導電性ポリマー、スルホニル基を置換基として有するポリチオフェン誘導体、アリールアミン等の導電性有機化合物、三酸化モリブデン、五酸化バナジウム又は酸化ニッケル等のp型半導体特性を有する金属酸化物、上述のp型半導体化合物等が挙げられる。その中でも好ましくはスルホン酸をドーピングした導電性ポリマーが挙げられ、ポリチオフェン誘導体にポリスチレンスルホン酸をドーピングしたポリ(3,4-エチレンジオキシチオフェン)ポリ(スチレンスルホン酸)(PEDOT:PSS)がより好ましい。また、金、インジウム、銀又はパラジウム等の金属等の薄膜も使用することができる。金属等の薄膜は、単独で形成してもよいし、上記の有機材料と組み合わせて用いることもできる。
[1.4.2 Hole transport layer (III)]
The hole transport layer (III) is a layer that extracts holes from the active layer (IV) to the anode (II), and any material that can improve the hole extraction efficiency can be used. There is no particular limitation. Specifically, conductive polymers in which polythiophene, polypyrrole, polyacetylene, triphenylenediamine, polyaniline or the like is doped with sulfonic acid and / or iodine, polythiophene derivatives having a sulfonyl group as a substituent, conductive organic materials such as arylamine Examples include compounds, metal oxides having p-type semiconductor properties such as molybdenum trioxide, vanadium pentoxide, or nickel oxide, and the above-described p-type semiconductor compounds. Among them, a conductive polymer doped with sulfonic acid is preferable, and poly (3,4-ethylenedioxythiophene) poly (styrenesulfonic acid) (PEDOT: PSS) in which a polythiophene derivative is doped with polystyrene sulfonic acid is more preferable. . A thin film of metal such as gold, indium, silver or palladium can also be used. A thin film of metal or the like may be formed alone or in combination with the above organic material.
 ホール輸送層(III)の膜厚は特に限定はないが、通常0.2nm以上、好ましくは0.5nm以上、より好ましくは1.0nm以上である。一方、通常400nm以下、好ましくは200nm以下、より好ましくは100nm以下、特に好ましくは70nm以下である。ホール輸送層104の膜厚が0.2nm以上であることでバッファ材料としての機能を果たすことになり、ホール輸送層(III)の膜厚が400nm以下であることで、正孔が取り出し易くなり、光電変換効率が向上しうる。 The film thickness of the hole transport layer (III) is not particularly limited, but is usually 0.2 nm or more, preferably 0.5 nm or more, more preferably 1.0 nm or more. On the other hand, it is usually 400 nm or less, preferably 200 nm or less, more preferably 100 nm or less, and particularly preferably 70 nm or less. When the thickness of the hole transport layer 104 is 0.2 nm or more, it functions as a buffer material. When the thickness of the hole transport layer (III) is 400 nm or less, holes are easily extracted. The photoelectric conversion efficiency can be improved.
 電子輸送層(V)及びホール輸送層(III)の形成方法に制限はない。例えば、昇華性を有する材料を用いる場合は真空蒸着法等により形成することができる。また、例えば、溶媒に可溶な材料を用いる場合は、スピンコートやインクジェット等の湿式塗布法等により形成することができる。ホール輸送層(III)に半導体化合物を用いる場合は、活性層(IV)と同様に、半導体化合物前駆体を含む層を形成した後に、前駆体を半導体化合物に変換してもよい。 There is no limitation on the method of forming the electron transport layer (V) and the hole transport layer (III). For example, when a material having sublimation property is used, it can be formed by a vacuum deposition method or the like. Further, for example, when a material soluble in a solvent is used, it can be formed by a wet coating method such as spin coating or inkjet. When a semiconductor compound is used for the hole transport layer (III), the precursor may be converted into a semiconductor compound after forming a layer containing a semiconductor compound precursor, as in the active layer (IV).
<1.5 光電変換素子の製造方法>
 光電変換素子(VII)の製造方法に特に制限は無いが、下記の方法に従い、基材(I)、アノード(II)、ホール輸送層(III)、活性層(IV)、電子輸送層(V)、およびカソード(VI)を順次積層することにより作製することができる。例えば、酸化インジウムスズ(ITO)透明導電膜(カソード)がパターニングされたガラス基板(ジオマテック社製)を、アセトンによる超音波洗浄、ついでエタノールによる超音波洗浄の後、窒素ブローで乾燥させ、UV-オゾン処理を実施しアノード付き基材が出来る。次いで、ホール輸送層として使用するPEDOT-PSS([ポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸))をスピンコーターで塗布(5000rpm 50秒)した後に200℃で10分間アニールし、ホール輸送層を形成できる。後にグローブボックス内に搬入しで不活性ガス雰囲気下でドナー材料・アクセプター材料の混合溶液をスピンコートし、ホットプレート上でアニール処理もしくは減圧乾燥を実施することで活性層を形成出来る。次いで大気中にて、オルトチタン酸テトライソプロピルのエタノール溶液(約0.3v%)をスピンコートして雰囲気中の水分により酸化チタンに変換した電子輸送層を作製できる。最後に電極であるアルミニウムを蒸着しカソードとし、光電変換素子を得ることが出来る。
 また、異なる構成を有する光電変換素子、例えば、ホール輸送層(III)及び電子輸送層(V)のうちの少なくとも1つを有さない光電変換素子も、同様の方法により作製することができる。
<1.5 Manufacturing Method of Photoelectric Conversion Element>
Although there is no restriction | limiting in particular in the manufacturing method of a photoelectric conversion element (VII), According to the following method, base material (I), anode (II), hole transport layer (III), active layer (IV), electron transport layer (V ) And the cathode (VI) can be sequentially laminated. For example, an indium tin oxide (ITO) transparent conductive film (cathode) patterned glass substrate (manufactured by Geomatic) is ultrasonically cleaned with acetone, then ultrasonically cleaned with ethanol, and then dried with nitrogen blow. Ozonation is performed to make a substrate with an anode. Next, PEDOT-PSS ([poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid)) used as a hole transport layer was applied with a spin coater (5000 rpm for 50 seconds) and then annealed at 200 ° C. for 10 minutes. And a hole transport layer can be formed. The active layer can be formed by carrying it in a glove box later, spin-coating a mixed solution of donor material and acceptor material in an inert gas atmosphere, and performing annealing treatment or drying under reduced pressure on a hot plate. Next, an electron transport layer in which tetraisopropyl orthotitanate in ethanol (about 0.3 v%) is spin-coated in the atmosphere and converted into titanium oxide by moisture in the atmosphere can be produced. Finally, aluminum as an electrode is vapor-deposited to form a cathode, and a photoelectric conversion element can be obtained.
In addition, photoelectric conversion elements having different configurations, for example, a photoelectric conversion element that does not have at least one of the hole transport layer (III) and the electron transport layer (V) can be manufactured by a similar method.
<1.6 光電変換特性>
 光電変換素子(VII)の光電変換特性は次のようにして求めることができる。光電変換素子(VII)にソーラシュミレーターでAM1.5G条件の光を照射強度100mW/cm2で照射して、電流-電圧特性を測定する。得られた電流-電圧曲線から、光電変換効率(PCE)、短絡電流密度(Jsc)、開放電圧(Voc)、フィルファクター(FF)、直列抵抗、シャント抵抗といった光電変換特性を求めることができる。
<1.6 Photoelectric conversion characteristics>
The photoelectric conversion characteristics of the photoelectric conversion element (VII) can be obtained as follows. The photoelectric conversion element (VII) is irradiated with AM1.5G light with a solar simulator at an irradiation intensity of 100 mW / cm 2 and current-voltage characteristics are measured. From the obtained current-voltage curve, photoelectric conversion characteristics such as photoelectric conversion efficiency (PCE), short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF), series resistance, and shunt resistance can be obtained.
 また、光電変換素子の耐久性を測定する方法としては、光電変換素子を大気暴露する前後での、光電変換効率の維持率を求める方法が挙げられる。(維持率)=(大気暴露N時間後の光電変換効率)/(大気暴露直前の光電変換効率) Further, as a method for measuring the durability of the photoelectric conversion element, there is a method for obtaining a maintenance ratio of the photoelectric conversion efficiency before and after exposing the photoelectric conversion element to the atmosphere. (Maintenance rate) = (Photoelectric conversion efficiency after N hours of atmospheric exposure) / (Photoelectric conversion efficiency immediately before atmospheric exposure)
 光電変換素子を実用化するには、製造が簡便かつ安価であること以外に、高い光電変換効率及び高い耐久性を有することが重要である。この観点から、1週間大気暴露する前後での光電変換効率の維持率は、60%以上が好ましく、80%以上がより好ましく、高ければ高いほどよい。 In order to put a photoelectric conversion element into practical use, it is important to have high photoelectric conversion efficiency and high durability in addition to simple and inexpensive manufacture. From this viewpoint, the maintenance rate of photoelectric conversion efficiency before and after exposure to the atmosphere for one week is preferably 60% or more, more preferably 80% or more, and the higher the better.
<2.本発明に係る有機薄膜太陽電池>
 本発明に係る光電変換素子(VII)は、太陽電池、なかでも有機薄膜太陽電池の太陽電池素子として使用されることが好ましい。
<2. Organic Thin Film Solar Cell According to the Present Invention>
The photoelectric conversion element (VII) according to the present invention is preferably used as a solar cell, particularly a solar cell element of an organic thin film solar cell.
 本発明に係る有機薄膜太陽電池の用途に制限はなく、任意の用途に用いることができる。本発明に係る有機薄膜太陽電池を適用できる分野の例を挙げると、建材用太陽電池、自動車用太陽電池、インテリア用太陽電池、鉄道用太陽電池、船舶用太陽電池、飛行機用太陽電池、宇宙機用太陽電池、家電用太陽電池、携帯電話用太陽電池又は玩具用太陽電池等である。 The use of the organic thin-film solar cell according to the present invention is not limited and can be used for any purpose. Examples of fields to which the organic thin film solar cell according to the present invention can be applied include building material solar cells, automotive solar cells, interior solar cells, railway solar cells, marine solar cells, airplane solar cells, and spacecrafts. Solar cells for home appliances, solar cells for home appliances, solar cells for mobile phones, solar cells for toys, and the like.
 本発明に係る有機薄膜太陽電池ではそのまま用いても、基材(I)上に太陽電池を設置して太陽電池モジュールとして用いてもよい。具体例を挙げると、基材として建材用板材を使用する場合、この板材の表面に薄膜太陽電池を設けることにより、太陽電池モジュールとして太陽電池パネルを作製することができる。 The organic thin film solar cell according to the present invention may be used as it is, or may be used as a solar cell module by installing a solar cell on the substrate (I). If a specific example is given, when using the board | plate material for building materials as a base material, a solar cell panel can be produced as a solar cell module by providing a thin film solar cell on the surface of this board | plate material.
 合成例で用いた測定方法は、下記の通りである。 The measurement method used in the synthesis example is as follows.
(NMRスペクトル測定)
 ベンゾビスチアゾール化合物について、NMRスペクトル測定装置(Agilent社(旧Varian社)製、「400MR」、及び、Bruker社製、「AVANCE500」)を用いて、NMRスペクトル測定を行った。
(NMR spectrum measurement)
About the benzobis thiazole compound, NMR spectrum measurement was performed using the NMR spectrum measuring apparatus (Agilent (formerly Varian), "400MR", and Bruker, "AVANCE500").
(高分解能マススペクトル測定)
 ベンゾビスチアゾール化合物について、質量分析装置(Bruker Daltnics社製、「MicrOTOF」)を用いて、高分解能マススペクトル測定(APCI:大気圧化学イオン化法)を行った。
(High-resolution mass spectrum measurement)
The benzobisthiazole compound was subjected to high-resolution mass spectrum measurement (APCI: atmospheric pressure chemical ionization method) using a mass spectrometer (manufactured by Bruker Daltnics, “MicOTOF”).
(ゲル浸透クロマトグラフィー(GPC))
 ベンゾビスチアゾール化合物について、ゲル浸透クロマトグラフィー(GPC)を用い、分子量測定を行った。測定に際しては、ベンゾビスチアゾール化合物を0.5g/Lの濃度となるように移動相溶媒(クロロホルム)に溶解して、下記条件で測定を行い、ポリスチレンを標準試料として作成した較正曲線に基づいて換算することによって、ベンゾビスチアゾール化合物の重量平均分子量を算出した。測定におけるGPC条件は、下記の通りである。
移動相:クロロホルム
流速:0.6ml/min
装置:HLC-8320GPC(東ソー社製)
カラム:TSKgel(登録商標) SuperHM-H´2 + TSKgel(登録商標)SuperH2000(東ソー社製)
(Gel permeation chromatography (GPC))
The molecular weight of the benzobisthiazole compound was measured using gel permeation chromatography (GPC). In the measurement, the benzobisthiazole compound was dissolved in a mobile phase solvent (chloroform) so as to have a concentration of 0.5 g / L, measured under the following conditions, and based on a calibration curve prepared using polystyrene as a standard sample. By converting, the weight average molecular weight of the benzobisthiazole compound was calculated. The GPC conditions in the measurement are as follows.
Mobile phase: Chloroform flow rate: 0.6 ml / min
Apparatus: HLC-8320GPC (manufactured by Tosoh Corporation)
Column: TSKgel (registered trademark) SuperHM-H´2 + TSKgel (registered trademark) SuperH2000 (manufactured by Tosoh Corporation)
(IRスペクトル)
 ベンゾビスチアゾール化合物について、赤外分光装置(JASCO社製、「FT/IR-6100」)を用い、IRスペクトル測定を行った。
(IR spectrum)
With respect to the benzobisthiazole compound, IR spectrum measurement was performed using an infrared spectrometer (manufactured by JASCO, “FT / IR-6100”).
(紫外可視吸収スペクトル)
 0.03g/Lの濃度になる様に、得られたベンゾビスチアゾール化合物をクロロホルムに溶解し、紫外・可視分光装置(島津製作所社製、「UV-2450」、「UV-3150」)、及び、光路長1cmのセルを用いて紫外可視吸収スペクトル測定を行った。
(UV-visible absorption spectrum)
The obtained benzobisthiazole compound was dissolved in chloroform so as to have a concentration of 0.03 g / L, and an ultraviolet / visible spectroscope (manufactured by Shimadzu Corporation, “UV-2450”, “UV-3150”), and The UV-visible absorption spectrum was measured using a cell having an optical path length of 1 cm.
(融点測定)
 ベンゾビスチアゾール化合物について、融点測定装置(Buchi社製、「M-560」)を用い、融点測定を行った。
(Melting point measurement)
The melting point of the benzobisthiazole compound was measured using a melting point measurement apparatus (manufactured by Buchi, “M-560”).
(イオン化ポテンシャル測定)
 ガラス基板上にベンゾビスチアゾール化合物を50nm~100nmの厚みになるように成膜した。この膜について、常温常圧下、紫外線光電子分析装置(理研計器社製、「AC-3」)によりイオン化ポテンシャルを測定した。
(Ionization potential measurement)
A benzobisthiazole compound was formed on a glass substrate so as to have a thickness of 50 nm to 100 nm. The ionization potential of this membrane was measured with an ultraviolet photoelectron analyzer (“AC-3” manufactured by Riken Keiki Co., Ltd.) at room temperature and normal pressure.
 以下に本特許に用いられる高分子化合物(1)の合成の一例を示す。本発明に使用される高分子化合物(1)はもとより下記合成例によって制限を受けるものではなく、合成法自体も前・後記の趣旨に適合し得る範囲で適当に変更を加えて合成することも勿論可能である。なお、以下においては、特に断りのない限り、「部」は「質量部」を、「%」は「質量%」を意味する。 An example of the synthesis of the polymer compound (1) used in this patent is shown below. The polymer compound (1) used in the present invention is not limited by the following synthesis examples, and the synthesis method itself may be synthesized with appropriate modifications within a range that can meet the purpose described above and below. Of course it is possible. In the following, “part” means “part by mass” and “%” means “mass%” unless otherwise specified.
(合成例1)
 DBTH-DT(2,6-ビス-トリイソプロピルシラニルベンゾ[1,2-d;4,5-d’]ビスチアゾール)の合成
(Synthesis Example 1)
Synthesis of DBTH-DT (2,6-bis-triisopropylsilanylbenzo [1,2-d; 4,5-d ′] bisthiazole)
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
 窒素雰囲気下、200mLフラスコにDBTH(ベンゾ[1,2-d;4,5-d’]ビスチアゾール、4g、20.8mmol)およびテトラヒドロフラン(160mL)を加え-40℃に冷却してリチウムジイソプロピルアミド溶液(1.5M溶液、29.1mL、43.7mmol)を滴下した。その後-40℃で1時間攪拌した後に、トリイソプロピルクロライド(8.8mL、41.6mmol)を滴下して、室温に昇温して2時間攪拌した。反応終了後、10%食塩水を加え分液して得られた水層を酢酸エチルで1回抽出した後に、有機層をまとめて飽和食塩水で洗浄して無水硫酸マグネシウムを用いて乾燥した。次いで、ろ過・濃縮して得られた粗品をカラムクロマトグラフィー(シリカゲル、クロロホルム)で精製するとDBTH-DT(2,6-ビス-トリイソプロピルシラニルベンゾ[1,2-d;4,5-d’]ビスチアゾール)が7.14g(収率68%)で白色固体として得られた。1H-NMR測定、13C-NMR測定、融点測定、高分解能マススペクトル分析により、目的とする化合物が生成したことを確認した。 Under a nitrogen atmosphere, DBTH (benzo [1,2-d; 4,5-d ′] bisthiazole, 4 g, 20.8 mmol) and tetrahydrofuran (160 mL) were added to a 200 mL flask, cooled to −40 ° C., and lithium diisopropylamide was added. The solution (1.5M solution, 29.1 mL, 43.7 mmol) was added dropwise. Thereafter, after stirring at −40 ° C. for 1 hour, triisopropyl chloride (8.8 mL, 41.6 mmol) was added dropwise, and the mixture was warmed to room temperature and stirred for 2 hours. After completion of the reaction, the aqueous layer obtained by adding 10% brine and separating the layers was extracted once with ethyl acetate, and then the organic layers were combined, washed with saturated brine, and dried over anhydrous magnesium sulfate. Next, the crude product obtained by filtration and concentration is purified by column chromatography (silica gel, chloroform) to give DBTH-DT (2,6-bis-triisopropylsilanylbenzo [1,2-d; 4,5-d '] Bisthiazole) was obtained as a white solid in 7.14 g (68% yield). 1 H-NMR measurement, 13 C-NMR measurement, melting point measurement, and high-resolution mass spectrum analysis confirmed that the target compound was produced.
(合成例2)
DI-DBTH-DT(4,8-ジヨード-2,6-ビス-トリイソプロピルシラニルベンゾ[1,2-d;4,5-d’]ビスチアゾール)の合成
(Synthesis Example 2)
Synthesis of DI-DBTH-DT (4,8-diiodo-2,6-bis-triisopropylsilanylbenzo [1,2-d; 4,5-d ′] bisthiazole)
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
 窒素雰囲気下、200mLフラスコにDBTH-DT(2,6-ビス-トリイソプロピルシラニルベンゾ[1,2-d;4,5-d’]ビスチアゾール、3g、5.88mmol)、N,N,N’,N’-テトラメチルエチレンジアミン(1.84mL、12.4mmol)およびテトラヒドロフラン(60mL)を加え-40℃に冷却してリチウムジイソプロピルアミド溶液(1.5M溶液、8.24mL、12.4mmol)を滴下した。その後、0℃で30分攪拌した後に、-80℃に冷却してよう素(7.47g、29.4mmol)を加え室温に昇温して2時間攪拌した。反応終了後、10%亜硫酸水素ナトリウム水溶液を加えて分液して得られた水層を酢酸エチルで1回抽出した後に、有機層をまとめて5%重曹水次いで飽和食塩水で洗浄して無水硫酸マグネシウムを用いて乾燥した。ろ過・濃縮して得られた粗品をカラムクロマトグラフィー(シリカゲル、クロロホルム/ヘキサン=1/1)で精製するとDI-DBTH-DT(4,8-ジヨード-2,6-ビス-トリイソプロピルシラニルベンゾ[1,2-d;4,5-d’]ビスチアゾール)が1.95g(収率44%)で白色固体として得られた。1H-NMR測定、13C-NMR測定、融点測定、高分解能マススペクトル分析により、目的とする化合物が生成したことを確認した。 In a 200 mL flask under nitrogen atmosphere, DBTH-DT (2,6-bis-triisopropylsilanylbenzo [1,2-d; 4,5-d ′] bisthiazole, 3 g, 5.88 mmol), N, N, N ′, N′-tetramethylethylenediamine (1.84 mL, 12.4 mmol) and tetrahydrofuran (60 mL) were added and cooled to −40 ° C. to obtain a lithium diisopropylamide solution (1.5 M solution, 8.24 mL, 12.4 mmol). Was dripped. Thereafter, the mixture was stirred at 0 ° C. for 30 minutes, then cooled to −80 ° C., iodine (7.47 g, 29.4 mmol) was added, and the mixture was warmed to room temperature and stirred for 2 hours. After completion of the reaction, a 10% aqueous sodium hydrogen sulfite solution was added to separate the aqueous layer, and the aqueous layer was extracted once with ethyl acetate. The organic layers were combined and washed with 5% aqueous sodium bicarbonate and then with saturated brine. Dry using magnesium sulfate. The crude product obtained by filtration and concentration was purified by column chromatography (silica gel, chloroform / hexane = 1/1) to obtain DI-DBTH-DT (4,8-diiodo-2,6-bis-triisopropylsilanylbenzo [1,2-d; 4,5-d ′] bisthiazole) was obtained as a white solid in 1.95 g (44% yield). 1 H-NMR measurement, 13 C-NMR measurement, melting point measurement, and high-resolution mass spectrum analysis confirmed that the target compound was produced.
(合成例3)
 DBTH-C8THO(4,8-ビス(5-オクチルチオフェン-2-イル)ベンゾ[1,2-d;4,5-d’]ビスチアゾール)の合成反応
(Synthesis Example 3)
Synthesis reaction of DBTH-C8THO (4,8-bis (5-octylthiophen-2-yl) benzo [1,2-d; 4,5-d ′] bisthiazole)
Figure JPOXMLDOC01-appb-C000092
 
Figure JPOXMLDOC01-appb-C000092
 
 窒素雰囲気下、50mLフラスコにDI-DBTH-DT(4,8-ジヨード-2,6-ビス-トリイソプロピルシラニルベンゾ[1,2-d;4,5-d’]ビスチアゾール、500mg、0.66mmol)、トリブチル(5-オクチルチオフェン-2-イル)スタンナン(962mg、1.98mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)-クロロホルム付加体(62mg、0.06mmol)、トリス(2-フリル)ホスフィン(28mg、0.12mmol)、およびN,N-ジメチルホルムアミド(10mL)を加え60℃に昇温した後に18時間反応した。その後、室温まで冷却してテトラブチルアンモニウムフルオリド溶液(1Mテトラヒドロフラン溶液、2.0mL、1.98mmol)を加え3時間反応した。反応終了後、水を加えクロロホルムで2回抽出して得られた有機層を水で洗浄、無水硫酸マグネシウムで乾燥した。ろ過・濃縮して得られた粗品をカラムクロマトグラフィー(シリカゲル、クロロホルム/ヘキサン=1/1)で精製するとDBTH-C8THO(4,8-ビス(5-オクチルチオフェン-2-イル)ベンゾ[1,2-d;4,5-d’]ビスチアゾール)が323mg(収率84%)で黄色固体として得られた。1H-NMR測定、IRスペクトル測定、高分解能マススペクトル分析により、目的とするDBTH-C8THOが生成したことを確認した。 In a 50 mL flask under nitrogen atmosphere, DI-DBTH-DT (4,8-diiodo-2,6-bis-triisopropylsilanylbenzo [1,2-d; 4,5-d ′] bisthiazole, 500 mg, 0 .66 mmol), tributyl (5-octylthiophen-2-yl) stannane (962 mg, 1.98 mmol), tris (dibenzylideneacetone) dipalladium (0) -chloroform adduct (62 mg, 0.06 mmol), tris (2 -Furyl) phosphine (28 mg, 0.12 mmol) and N, N-dimethylformamide (10 mL) were added, and the mixture was heated to 60 ° C. and reacted for 18 hours. Then, it cooled to room temperature, the tetrabutylammonium fluoride solution (1M tetrahydrofuran solution, 2.0 mL, 1.98 mmol) was added, and it reacted for 3 hours. After completion of the reaction, water was added and the organic layer obtained by extraction twice with chloroform was washed with water and dried over anhydrous magnesium sulfate. The crude product obtained by filtration and concentration was purified by column chromatography (silica gel, chloroform / hexane = 1/1) to give DBTH-C8THO (4,8-bis (5-octylthiophen-2-yl) benzo [1, 2-d; 4,5-d ′] bisthiazole) was obtained as a yellow solid in 323 mg (84% yield). 1 H-NMR measurement, IR spectrum measurement, and high-resolution mass spectrum analysis confirmed that the target DBTH-C8THO was produced.
(合成例4)
 合成例3と同様に、DBTH-EHT(4,8-ビス[5-(2-エチルヘキシル)チオフェン-2-イル]ベンゾ[1,2-d;4,5-d’]ビスチアゾール)を得た。収率は72~84%であった。
(Synthesis Example 4)
Similarly to Synthesis Example 3, DBTH-EHT (4,8-bis [5- (2-ethylhexyl) thiophen-2-yl] benzo [1,2-d; 4,5-d ′] bisthiazole) was obtained. It was. The yield was 72 to 84%.
(合成例5)
 DBTH-C8THO-DSM(4,8-ビス(5-オクチルチオフェン-2-イル)-2,6-ビストリメチルスタンニルベンゾ[1,2-d;4,5-d’]ビスチアゾール)の合成(DBTH-C8THOのスズ化反応)
(Synthesis Example 5)
Synthesis of DBTH-C8THO-DSM (4,8-bis (5-octylthiophen-2-yl) -2,6-bistrimethylstannylbenzo [1,2-d; 4,5-d ′] bisthiazole) (Dinning reaction of DBTH-C8THO)
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
 窒素雰囲気下、30mLフラスコにDBTH-C8THO(180mg、0.31mmol)およびテトラヒドロフラン(6mL)を加え0℃に冷却してリチウムジイソプロピルアミド溶液(2M溶液、0.33mL、0.65mmol)を滴下した。その後、0℃で30分攪拌した後に、-80℃に冷却してトリメチルすずクロリド(0.65mL、0.65mmol)を加え室温に昇温して2時間攪拌した。反応終了後、水を加えてトルエンで1回抽出して得られた有機層を飽和食塩水で洗浄して、無水硫酸マグネシウムで乾燥した。ろ過・濃縮して得られた粗品をGPC-HPLC(JAIGEL-1H、2H、クロロホルム)で精製するとDBTH-C8THO-DSM(4,8-ビス(5-オクチルチオフェン-2-イル)-2,6-ビストリメチルスタンニルベンゾ[1,2-d;4,5-d’]ビスチアゾール)が93mg(収率33%)で固体として得られた。 In a nitrogen atmosphere, DBTH-C8THO (180 mg, 0.31 mmol) and tetrahydrofuran (6 mL) were added to a 30 mL flask, cooled to 0 ° C., and a lithium diisopropylamide solution (2 M solution, 0.33 mL, 0.65 mmol) was added dropwise. Thereafter, the mixture was stirred at 0 ° C. for 30 minutes, cooled to −80 ° C., trimethyltin chloride (0.65 mL, 0.65 mmol) was added, and the mixture was warmed to room temperature and stirred for 2 hours. After completion of the reaction, water was added and the organic layer obtained by extraction once with toluene was washed with saturated brine and dried over anhydrous magnesium sulfate. When the crude product obtained by filtration and concentration was purified by GPC-HPLC (JAIGEL-1H, 2H, chloroform), DBTH-C8THO-DSM (4,8-bis (5-octylthiophen-2-yl) -2,6 -Bistrimethylstannylbenzo [1,2-d; 4,5-d ′] bisthiazole) was obtained as a solid in 93 mg (33% yield).
(合成例6)
 合成例5と同様に、DBTH-EHT-DSM(4,8-ビス[5-(2-エチルヘキシル)チオフェン-2-イル]-2,6-ビストリメチルスタンニルベンゾ[1,2-d;4,5-d’]ビスチアゾール)を得た。収率は70%であった。
(Synthesis Example 6)
As in Synthesis Example 5, DBTH-EHT-DSM (4,8-bis [5- (2-ethylhexyl) thiophen-2-yl] -2,6-bistrimethylstannylbenzo [1,2-d; 4 , 5-d ′] bisthiazole). The yield was 70%.
(合成例7)
 P-DBTH-C8TH-O-DPPの合成
(Synthesis Example 7)
Synthesis of P-DBTH-C8TH-O-DPP
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
 窒素雰囲気下、30mLフラスコに、DBTH-C8THO-DSM(92mg、0.10mmol)、O-DPP-DB(3,6-ビス(5-ブロモチオフェン-2-イル)-2,5-ジオクチル-2,5-ジヒドロピロロ[3,4-c]ピロール-1,4-ジオン、69mg、0.10mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)-クロロホルム付加体(4.2mg、4.1μmol)、トリス(o-トリル)ホスフィン(4.9mg、16μmol)およびクロロベンゼン(6mL)を加え110℃で46時間反応した。反応終了後、メタノール(35mL)に反応液を加えて析出した固体をろ取して、得られた固体をソックスレー洗浄(メタノール、アセトン、ヘキサン)した。次いでソックスレー抽出(クロロホルム)することでP-DBTH-C8TH-O-DPPが42mg(37%)で黒色固体として得られた。 In a 30 mL flask under nitrogen atmosphere, DBTH-C8THO-DSM (92 mg, 0.10 mmol), O-DPP-DB (3,6-bis (5-bromothiophen-2-yl) -2,5-dioctyl-2 , 5-dihydropyrrolo [3,4-c] pyrrole-1,4-dione, 69 mg, 0.10 mmol), tris (dibenzylideneacetone) dipalladium (0) -chloroform adduct (4.2 mg, 4.1 μmol) ), Tris (o-tolyl) phosphine (4.9 mg, 16 μmol) and chlorobenzene (6 mL) were added and reacted at 110 ° C. for 46 hours. After completion of the reaction, the reaction solution was added to methanol (35 mL), the precipitated solid was collected by filtration, and the obtained solid was washed with Soxhlet (methanol, acetone, hexane). Subsequent extraction with Soxhlet (chloroform) gave 42 mg (37%) of P-DBTH-C8TH-O-DPP as a black solid.
(合成例8~9)
 合成例7と同様に、P-DBTH-EHT-EH-DPP(合成例8)、P-DHD-DBTH-O-IMTHT(合成例9)を得た。収率は27~83%であった。
(Synthesis Examples 8 to 9)
In the same manner as in Synthesis Example 7, P-DBTH-EHT-EH-DPP (Synthesis Example 8) and P-DHD-DBTH-O-IMTHT (Synthesis Example 9) were obtained. Yields were 27-83%.
(合成例10)
 DHD-DBTH(4,8-ビス(2-ヘキシルデシロキシ)ベンゾ[1,2-d;4,5-d’]ビスチアゾール)の合成反応
Figure JPOXMLDOC01-appb-C000095
(Synthesis Example 10)
Synthesis reaction of DHD-DBTH (4,8-bis (2-hexyldecyloxy) benzo [1,2-d; 4,5-d ′] bisthiazole)
Figure JPOXMLDOC01-appb-C000095
 窒素雰囲気下、50mLフラスコに、DI-DBTH-DT(4,8-ジヨード-2,6-ビス-トリイソプロピルシラニルベンゾ[1,2-d;4,5-d’]ビスチアゾール、3g、4.0mmol)、2-ヘキシルデカノール(5.8g、23.8mmol)、よう化銅(I)(151mg、0.79mmol)、1,10-PHT(1,10-フェナントロリン、286mg、1.59mmol)、t-ブトキシナトリウム(1.14g、11.9mmol)および1,4-ジオキサン(30mL)を加え、還流下23時間反応した。室温に冷却後テトラブチルアンモニウムフルオリド(1M-テトラヒドロフラン溶液、12.0mL、11.9mmol)を加え室温で更に3時間反応した。応終了後、水を加えてクロロホルムで2回抽出して得られた有機層を水で洗浄して、無水硫酸マグネシウムで乾燥した。ろ過・濃縮して得られた粗品をカラムクロマトグラフィー(シリカゲル、クロロホルム/ヘキサン=1/1)で精製するとDHD-DBTH(4,8-ビス(2-ヘキシルデシロキシ)ベンゾ[1,2-d;4,5-d’]ビスチアゾール)が1.30g(収率49%)で褐色油状として得られた。 In a 50 mL flask under a nitrogen atmosphere, DI-DBTH-DT (4,8-diiodo-2,6-bis-triisopropylsilanylbenzo [1,2-d; 4,5-d ′] bisthiazole, 3 g, 4.0 mmol), 2-hexyldecanol (5.8 g, 23.8 mmol), copper (I) iodide (151 mg, 0.79 mmol), 1,10-PHT (1,10-phenanthroline, 286 mg, 1.59 mmol) , T-butoxy sodium (1.14 g, 11.9 mmol) and 1,4-dioxane (30 mL) were added and reacted under reflux for 23 hours. After cooling to room temperature, tetrabutylammonium fluoride (1M-tetrahydrofuran solution, 12.0 mL, 11.9 mmol) was added, and the mixture was further reacted at room temperature for 3 hours. After completion of the reaction, water was added and the organic layer obtained by extraction twice with chloroform was washed with water and dried over anhydrous magnesium sulfate. The crude product obtained by filtration and concentration was purified by column chromatography (silica gel, chloroform / hexane = 1/1) to obtain DHD-DBTH (4,8-bis (2-hexyldecyloxy) benzo [1,2-d ; 4,5-d '] bisthiazole) was obtained as a brown oil in 1.30 g (49% yield).
(合成例11~12)
 合成例10と同様に、DEH-DBTH(4,8-ビス(2-エチルヘキシロキシ)ベンゾ[1,2-d;4,5-d’]ビスチアゾール)(合成例11)、DDMO-DBTH(4,8-ビス(3,7-ジメチルオクチロキシ)ベンゾ[1,2-d;4,5-d’]ビスチアゾール)(合成例12)を得た。収率は49~60%であった。
(Synthesis Examples 11 to 12)
As in Synthesis Example 10, DEH-DBTH (4,8-bis (2-ethylhexyloxy) benzo [1,2-d; 4,5-d ′] bisthiazole) (Synthesis Example 11), DDMO-DBTH (4,8-bis (3,7-dimethyloctyloxy) benzo [1,2-d; 4,5-d ′] bisthiazole) (Synthesis Example 12) was obtained. The yield was 49-60%.
(合成例13)
 DHD-DBTH-DSB(4,8-ビス(2-ヘキシルデシロキシ)-2,6-ビストリブチルスタンニルベンゾ[1,2-d;4,5-d’]ビスチアゾール)の合成(DHD-DBTHのスズ化反応)
(Synthesis Example 13)
Synthesis of DHD-DBTH-DSB (4,8-bis (2-hexyldecyloxy) -2,6-bistributylstannylbenzo [1,2-d; 4,5-d ′] bisthiazole) (DHD- DBTH stannation reaction)
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
 窒素雰囲気下、30mLフラスコにDHD-DBTH(4,8-ビス(2-ヘキシルデシロキシ)ベンゾ[1,2-d;4,5-d’]ビスチアゾール、1g、1.49mmol)およびテトラヒドロフラン(20mL)を加え-80℃に冷却してn-ブチルリチウム(1.6Mヘキサン溶液、1.95mL、3.12mmol)を滴下した。その後30分攪拌した後に、トリブチルすずクロリド(0.87mL、3.19mmol)を加え室温に昇温して2時間攪拌した。反応終了後、水を加えてトルエンで1回抽出して得られた有機層を飽和食塩水で洗浄して、無水硫酸マグネシウムで乾燥した。ろ過・濃縮して得られた粗品をGPC-HPLC(JAIGEL-1H、2H、クロロホルム)で精製するとDHD-DBTH-DSB(4,8-ビス(2-ヘキシルデシロキシ)-2,6-ビストリブチルスタンニルベンゾ[1,2-d;4,5-d’]ビスチアゾール)が1.12g(収率63%)で褐色油状として得られた。1H-NMR測定により、目的とする化合物が生成したことを確認した。 Under a nitrogen atmosphere, in a 30 mL flask was added DHD-DBTH (4,8-bis (2-hexyldecyloxy) benzo [1,2-d; 4,5-d ′] bisthiazole, 1 g, 1.49 mmol) and tetrahydrofuran ( 20 mL) was added, the mixture was cooled to −80 ° C., and n-butyllithium (1.6 M hexane solution, 1.95 mL, 3.12 mmol) was added dropwise. After stirring for 30 minutes, tributyltin chloride (0.87 mL, 3.19 mmol) was added, and the mixture was warmed to room temperature and stirred for 2 hours. After completion of the reaction, water was added and the organic layer obtained by extraction once with toluene was washed with saturated brine and dried over anhydrous magnesium sulfate. The crude product obtained by filtration and concentration was purified by GPC-HPLC (JAIGEL-1H, 2H, chloroform) to obtain DHD-DBTH-DSB (4,8-bis (2-hexyldecyloxy) -2,6-bistributyl. Stannylbenzo [1,2-d; 4,5-d ′] bisthiazole) was obtained as a brown oil in 1.12 g (yield 63%). It was confirmed by 1 H-NMR measurement that the target compound was produced.
(合成例14~15)
 合成例13と同様に、DEH-DBTH-DSB(4,8-ビス(2-エチルヘキシロキシ)-2,6-ビストリブチルスタンニルベンゾ[1,2-d;4,5-d’]ビスチアゾール)(合成例14)、DDMO-DBTH-DSB(4,8-ビス(3,7-ジメチルオクチロキシ)-2,6-ビストリブチルスタンニルベンゾ[1,2-d;4,5-d’]ビスチアゾール)(合成例15)を得た。収率は33~70%であった。
(Synthesis Examples 14 to 15)
As in Synthesis Example 13, DEH-DBTH-DSB (4,8-bis (2-ethylhexyloxy) -2,6-bistributylstannylbenzo [1,2-d; 4,5-d ′] bis Thiazole) (Synthesis Example 14), DDMO-DBTH-DSB (4,8-bis (3,7-dimethyloctyloxy) -2,6-bistributylstannylbenzo [1,2-d; 4,5-d '] Bisthiazole) (Synthesis Example 15) was obtained. The yield was 33-70%.
(合成例16)
 P-DHD-DBTH-O-IMTHTの合成
(Synthesis Example 16)
Synthesis of P-DHD-DBTH-O-IMTHT
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
 窒素雰囲気下、20mLフラスコに、DHD-DBTH-DSB(4,8-ビス(2-ヘキシルデシロキシ)-2,6-ビストリブチルスタンニルベンゾ[1,2-d;4,5-d’]ビスチアゾール、0.14mmol)、O-IMTHT-DB(1,3-ジブロモ-5-オクチルチエノ[3,4-c]ピロール-4,6-ジオン、0.14mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)-クロロホルム付加体(5.6mg、5.4μmol)、トリス(o-トリル)ホスフィン(6.2mg、22μmol)およびクロロベンゼン(12mL)を加え120℃で24時間反応した。反応終了後、メタノール(60mL)に反応液を加えて析出した固体をろ取して、得られた固体をソックスレー洗浄(メタノール、アセトン)した。次いでソックスレー抽出(クロロホルム)することでP-DHD-DBTH-O-IMTHTが収率75%で固体として得られた。 In a 20 mL flask under nitrogen atmosphere, DHD-DBTH-DSB (4,8-bis (2-hexyldecyloxy) -2,6-bistributylstannylbenzo [1,2-d; 4,5-d ′] Bisthiazole, 0.14 mmol), O-IMTHT-DB (1,3-dibromo-5-octylthieno [3,4-c] pyrrole-4,6-dione, 0.14 mmol), tris (dibenzylideneacetone) di Palladium (0) -chloroform adduct (5.6 mg, 5.4 μmol), tris (o-tolyl) phosphine (6.2 mg, 22 μmol) and chlorobenzene (12 mL) were added and reacted at 120 ° C. for 24 hours. After completion of the reaction, the reaction solution was added to methanol (60 mL), the precipitated solid was collected by filtration, and the obtained solid was subjected to Soxhlet washing (methanol, acetone). Subsequently, P-DHD-DBTH-O-IMTHT was obtained as a solid with a yield of 75% by Soxhlet extraction (chloroform).
(合成例17~21)
 合成例16と同様に、P-DHD-DBTH-TDZT(合成例17)、P-DHD-DBTH-DMO-DPP(合成例18)、P-DHD-DBTH-3HTDZT(合成例19)、P-DEH-DBTH-EH-DPP(合成例20)、P-DDMO-DBTH-EH-BDT(合成例21)を得た。収率は19~99%であった。
(Synthesis Examples 17 to 21)
Similar to Synthesis Example 16, P-DHD-DBTH-TDZT (Synthesis Example 17), P-DHD-DBTH-DMO-DPP (Synthesis Example 18), P-DHD-DBTH-3HTDZT (Synthesis Example 19), P- DEH-DBTH-EH-DPP (Synthesis Example 20) and P-DDMO-DBTH-EH-BDT (Synthesis Example 21) were obtained. Yields were 19-99%.
(光電変換素子の評価方法)
 光電変換素子に0.05027mm角のメタルマスクを付け、照射光源としてソーラーシミュレーター(CEP2000、AM1.5Gフィルター、放射強度100mW/cm2、分光計器製)を用い、ソースメーター(ケイスレー社製,2400型)により、ITO電極とアルミニウム電極との間における電流-電圧特性を測定した。この測定結果から、開放電圧Voc(V)、短絡電流密度Jsc(mA/cm2)、曲線因子FF、及び光電変換効率PCE(%)を算出した。
(Evaluation method of photoelectric conversion element)
A 0.0550 mm square metal mask is attached to the photoelectric conversion element, a solar simulator (CEP2000, AM1.5G filter, radiation intensity 100 mW / cm 2 , manufactured by Spectrometer) is used as an irradiation light source, and a source meter (type 2400 manufactured by Keithley, Inc.). ) To measure the current-voltage characteristics between the ITO electrode and the aluminum electrode. From this measurement result, open circuit voltage Voc (V), short circuit current density Jsc (mA / cm 2), fill factor FF, and photoelectric conversion efficiency PCE (%) were calculated.
 ここで、開放電圧Vocとは電流値=0(mA/cm2)の際の電圧値であり、短絡電流密度Jscとは電圧値=0(V)の際の電流密度である。曲線因子FFとは内部抵抗を表すファクターであり、最大出力をPmaxとすると次式で表される。
 FF = Pmax/(Voc×Jsc)
 また、光電変換効率PCEは、入射エネルギーをPinとすると次式で与えられる。
 PCE = (Pmax/Pin)×100
     = (Voc×Jsc×FF/Pin)×100
Here, the open circuit voltage Voc is a voltage value when the current value = 0 (mA / cm 2), and the short circuit current density Jsc is a current density when the voltage value = 0 (V). The curve factor FF is a factor representing the internal resistance, and is represented by the following expression when the maximum output is Pmax.
FF = Pmax / (Voc × Jsc)
Further, the photoelectric conversion efficiency PCE is given by the following equation when the incident energy is Pin.
PCE = (Pmax / Pin) × 100
= (Voc x Jsc x FF / Pin) x 100
<実施例1>
Figure JPOXMLDOC01-appb-C000098

(p型半導体化合物・n型半導体化合物の混合溶液の作製)
 p型半導体化合物としてP-DBTH-C8TH-O-DPP[化28]の構造を有する高分子化合物を用いた。
n型半導体化合物としてPC61BM(フェニルC61酪酸メチルエステル,フロンティアカーボン社製,NS-)を、p型半導体化合物:n型半導体化合物=1:1(重量)、合計濃度1.6wt%でクロロベンゼンに溶解させた。この溶液をホットスターラー上で100℃の温度にて2時間以上攪拌混合した。攪拌混合後の溶液を0.45μmのフィルターで濾過することにより、p型半導体化合物・n型半導体化合物の混合溶液を得た。
<Example 1>
Figure JPOXMLDOC01-appb-C000098

(Preparation of mixed solution of p-type semiconductor compound and n-type semiconductor compound)
As the p-type semiconductor compound, a polymer compound having a structure of P-DBTH-C8TH-O-DPP [Chem. 28] was used.
PC61BM (phenyl C61 butyric acid methyl ester, manufactured by Frontier Carbon Corporation, NS-) as an n-type semiconductor compound is dissolved in chlorobenzene at a total concentration of 1.6 wt%, p-type semiconductor compound: n-type semiconductor compound = 1: 1 (weight). I let you. This solution was stirred and mixed for 2 hours or more at a temperature of 100 ° C. on a hot stirrer. The solution after stirring and mixing was filtered through a 0.45 μm filter to obtain a mixed solution of a p-type semiconductor compound and an n-type semiconductor compound.
(光電変換素子の作製)
 酸化インジウムスズ(ITO)透明導電膜(カソード)がパターニングされたガラス基板(ジオマテック社製)を、アセトンによる超音波洗浄、ついでエタノールによる超音波洗浄の後、窒素ブローで乾燥させた。
(Preparation of photoelectric conversion element)
A glass substrate (manufactured by Geomatic Co., Ltd.) on which an indium tin oxide (ITO) transparent conductive film (cathode) was patterned was ultrasonically cleaned with acetone, then ultrasonically cleaned with ethanol, and then dried by nitrogen blowing.
 UV-オゾン処理を実施後、ホール輸送層として使用するPEDOT-PSS([ポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸))をスピンコーターで塗布(5000rpm 60秒)した後に200℃で10分間アニールした。 After performing UV-ozone treatment, after applying PEDOT-PSS ([poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid)) used as a hole transport layer with a spin coater (5000 rpm, 60 seconds) Annealed at 200 ° C. for 10 minutes.
 グローブボックス内に搬入しで不活性ガス雰囲気下でp型半導体化合物・n型半導体化合物の混合溶液をスピンコートし減圧乾燥を実施した。 搬 carried into the glove box, spin-coated with a mixed solution of p-type semiconductor compound and n-type semiconductor compound in an inert gas atmosphere, and dried under reduced pressure.
 大気中にて、オルトチタン酸テトライソプロピルのエタノール溶液(約0.3v%)をスピンコートして雰囲気中の水分により酸化チタンに変換した膜を作成した。その後、電極であるアルミニウムを蒸着してデバイスとした。得られたデバイスは上記光電変換素子の評価を行なった。結果を表1に示す。 In the air, an ethanol solution of tetraisopropyl orthotitanate (about 0.3 v%) was spin-coated, and a film converted into titanium oxide by moisture in the atmosphere was created. Then, aluminum which is an electrode was vapor-deposited to make a device. The obtained device evaluated the said photoelectric conversion element. The results are shown in Table 1.
<実施例2>
Figure JPOXMLDOC01-appb-C000099

p型半導体化合物としてP-DBTH-EHT-EH-DPP[化29]の構造を有する高分子化合物を用いた。
PCBM(C61)をn型半導体化合物として用いて、p型半導体化合物:n型半導体化合物=1:1(重量)、合計濃度1.6wt%でクロロベンゼンに溶解させて0.45μmのフィルターに通して混合溶液とした。得られた混合溶液を用いて、実施例1と同様にデバイスを作製した。得られたデバイスは上記光電変換素子の評価を行なった。結果を表1に示す。
<Example 2>
Figure JPOXMLDOC01-appb-C000099

As the p-type semiconductor compound, a high molecular compound having a structure of P-DBTH-EHT-EH-DPP [Chemical 29] was used.
Using PCBM (C61) as an n-type semiconductor compound, p-type semiconductor compound: n-type semiconductor compound = 1: 1 (weight), dissolved in chlorobenzene at a total concentration of 1.6 wt%, and passed through a 0.45 μm filter. A mixed solution was obtained. Using the obtained mixed solution, a device was produced in the same manner as in Example 1. The obtained device evaluated the said photoelectric conversion element. The results are shown in Table 1.
<実施例3>
Figure JPOXMLDOC01-appb-C000100

p型半導体化合物としてP-DHD-DBTH-O-IMTHT[化30]の構造を有する高分子化合物を用いた。
PCBM(C61)をn型半導体化合物として用いて、p型半導体化合物:n型半導体化合物=1:2(重量)、合計濃度3.0wt%で6%(v/v)の1,8-ジヨードオクタンを含むオルトジクロロベンゼンに溶解させて0.45μmのフィルターに通して混合溶液とした。得られた混合溶液を用いて、実施例1と同様にデバイスを作製した。得られたデバイスは上記光電変換素子の評価を行なった。結果を表1に示す。
<Example 3>
Figure JPOXMLDOC01-appb-C000100

As the p-type semiconductor compound, a polymer compound having a structure of P-DHD-DBTH-O-IMTHT [Chemical Formula 30] was used.
Using PCBM (C61) as an n-type semiconductor compound, p-type semiconductor compound: n-type semiconductor compound = 1: 2 (weight), 6% (v / v) 1,8-di at a total concentration of 3.0 wt% It was dissolved in orthodichlorobenzene containing iodooctane and passed through a 0.45 μm filter to obtain a mixed solution. Using the obtained mixed solution, a device was produced in the same manner as in Example 1. The obtained device evaluated the said photoelectric conversion element. The results are shown in Table 1.
<実施例4>
Figure JPOXMLDOC01-appb-C000101

p型半導体化合物としてP-DHD-DBTH-TDZT[化31]の構造を有する高分子化合物を用いた。
PCBM(C61)をn型半導体化合物として用いて、p型半導体化合物:n型半導体化合物=1:1.5(重量)、合計濃度2.0wt%でクロロベンゼンに溶解させて0.45μmのフィルターに通して混合溶液とした。得られた混合溶液を用いて、実施例1と同様にデバイスを作製した。得られたデバイスは上記光電変換素子の評価を行なった。結果を表1に示す。
<Example 4>
Figure JPOXMLDOC01-appb-C000101

As the p-type semiconductor compound, a polymer compound having a structure of P-DHD-DBTH-TDZT [Chemical Formula 31] was used.
Using PCBM (C61) as an n-type semiconductor compound, p-type semiconductor compound: n-type semiconductor compound = 1: 1.5 (weight), and dissolved in chlorobenzene at a total concentration of 2.0 wt% to form a 0.45 μm filter. A mixed solution was obtained. Using the obtained mixed solution, a device was produced in the same manner as in Example 1. The obtained device evaluated the said photoelectric conversion element. The results are shown in Table 1.
<実施例5>
Figure JPOXMLDOC01-appb-C000102

p型半導体化合物としてP-DHD-DBTH-DMO-DPP[化32]の構造を有する高分子化合物を用いた。
PCBM(C61)をn型半導体化合物として用いて、p型半導体化合物:n型半導体化合物=1:1.5(重量)、合計濃度2.5wt%でクロロベンゼンに溶解させて0.45μmのフィルターに通して混合溶液とした。得られた混合溶液を用いて、実施例1と同様にデバイスを作製した。得られたデバイスは上記光電変換素子の評価を行なった。結果を表1に示す。
<Example 5>
Figure JPOXMLDOC01-appb-C000102

As the p-type semiconductor compound, a polymer compound having a structure of P-DHD-DBTH-DMO-DPP [Chemical Formula 32] was used.
Using PCBM (C61) as an n-type semiconductor compound, p-type semiconductor compound: n-type semiconductor compound = 1: 1.5 (weight), and dissolved in chlorobenzene at a total concentration of 2.5 wt% to form a 0.45 μm filter. A mixed solution was obtained. Using the obtained mixed solution, a device was produced in the same manner as in Example 1. The obtained device evaluated the said photoelectric conversion element. The results are shown in Table 1.
<実施例6>
Figure JPOXMLDOC01-appb-C000103

p型半導体化合物としてP-DHD-DBTH-3HTDZT[化33]の構造を有する高分子化合物を用いた。
PCBM(C61)をn型半導体化合物として用いて、p型半導体化合物:n型半導体化合物=1:2(重量)、合計濃度3.0wt%でオルトジクロロベンゼンに溶解させて0.45μmのフィルターに通して混合溶液とした。得られた混合溶液を用いて、実施例1と同様にデバイスを作製した。得られたデバイスは上記光電変換素子の評価を行なった。結果を表1に示す。
<Example 6>
Figure JPOXMLDOC01-appb-C000103

As the p-type semiconductor compound, a polymer compound having a structure of P-DHD-DBTH-3HTDZT [Chemical Formula 33] was used.
Using PCBM (C61) as an n-type semiconductor compound, p-type semiconductor compound: n-type semiconductor compound = 1: 2 (weight), and dissolved in orthodichlorobenzene at a total concentration of 3.0 wt% to form a 0.45 μm filter. A mixed solution was obtained. Using the obtained mixed solution, a device was produced in the same manner as in Example 1. The obtained device evaluated the said photoelectric conversion element. The results are shown in Table 1.
<実施例7>
Figure JPOXMLDOC01-appb-C000104

p型半導体化合物としてP-DEH-DBTH-EH-DPP[化34]の構造を有する高分子化合物を用いた。
PCBM(C61)をn型半導体化合物として用いて、p型半導体化合物:n型半導体化合物=1:1.5(重量)、合計濃度2.0wt%でクロロベンゼンに溶解させて0.45μmのフィルターに通して混合溶液とした。得られた混合溶液を用いて、実施例1と同様にデバイスを作製した。得られたデバイスは上記光電変換素子の評価を行なった。結果を表1に示す。
<Example 7>
Figure JPOXMLDOC01-appb-C000104

As the p-type semiconductor compound, a polymer compound having a structure of P-DEH-DBTH-EH-DPP [Chemical Formula 34] was used.
Using PCBM (C61) as an n-type semiconductor compound, p-type semiconductor compound: n-type semiconductor compound = 1: 1.5 (weight), and dissolved in chlorobenzene at a total concentration of 2.0 wt% to form a 0.45 μm filter. A mixed solution was obtained. Using the obtained mixed solution, a device was produced in the same manner as in Example 1. The obtained device evaluated the said photoelectric conversion element. The results are shown in Table 1.
<実施例8>
Figure JPOXMLDOC01-appb-C000105

p型半導体化合物としてP-DDMO-DBTH-EH-BDT[化35]の構造を有する高分子化合物を用いた。
PCBM(C61)をn型半導体化合物として用いて、p型半導体化合物:n型半導体化合物=1:2.0(重量)、合計濃度3.0wt%でオルトジクロロベンゼンに溶解させて0.45μmのフィルターに通して混合溶液とした。得られた混合溶液を用いて、実施例1と同様にデバイスを作製した。得られたデバイスは上記光電変換素子の評価を行なった。結果を表1に示す。
<Example 8>
Figure JPOXMLDOC01-appb-C000105

As the p-type semiconductor compound, a polymer compound having a structure of P-DDMO-DBTH-EH-BDT [Chemical Formula 35] was used.
Using PCBM (C61) as an n-type semiconductor compound, p-type semiconductor compound: n-type semiconductor compound = 1: 2.0 (weight), dissolved in orthodichlorobenzene at a total concentration of 3.0 wt%, 0.45 μm The solution was passed through a filter. Using the obtained mixed solution, a device was produced in the same manner as in Example 1. The obtained device evaluated the said photoelectric conversion element. The results are shown in Table 1.
<実施例9>
Figure JPOXMLDOC01-appb-C000106

p型半導体化合物としてP-DHD-DBTH-TDZT[化31]の構造を有する高分子化合物を用いた。
PCBM(C61)をn型半導体化合物として用いて、p型半導体化合物:n型半導体化合物=1:1.5(重量)、合計濃度2.0wt%でクロロベンゼンに溶解させて0.45μmのフィルターに通してp型半導体化合物・n型半導体化合物の混合溶液を得た。
<Example 9>
Figure JPOXMLDOC01-appb-C000106

As the p-type semiconductor compound, a polymer compound having a structure of P-DHD-DBTH-TDZT [Chemical Formula 31] was used.
Using PCBM (C61) as an n-type semiconductor compound, p-type semiconductor compound: n-type semiconductor compound = 1: 1.5 (weight), and dissolved in chlorobenzene at a total concentration of 2.0 wt% to form a 0.45 μm filter. As a result, a mixed solution of p-type semiconductor compound and n-type semiconductor compound was obtained.
(光電変換素子の作製)
 酸化インジウムスズ(ITO)透明導電膜(カソード)がパターニングされたガラス基板(ジオマテック社製)を、アセトンによる超音波洗浄、ついでエタノールによる超音波洗浄の後、窒素ブローで乾燥させた。
(Preparation of photoelectric conversion element)
A glass substrate (manufactured by Geomatic Co., Ltd.) on which an indium tin oxide (ITO) transparent conductive film (cathode) was patterned was ultrasonically cleaned with acetone, then ultrasonically cleaned with ethanol, and then dried by nitrogen blowing.
 UV-オゾン処理を実施後、ホール輸送層として使用するPEDOT-PSS([ポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸))をスピンコーターで塗布(5000rpm 60秒)した後に200℃で10分間アニールした。 After performing UV-ozone treatment, after applying PEDOT-PSS ([poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid)) used as a hole transport layer with a spin coater (5000 rpm, 60 seconds) Annealed at 200 ° C. for 10 minutes.
 グローブボックス内に搬入しで不活性ガス雰囲気下でp型半導体化合物・n型半導体化合物の混合溶液をスピンコートし減圧乾燥を実施した。 搬 carried into the glove box, spin-coated with a mixed solution of p-type semiconductor compound and n-type semiconductor compound in an inert gas atmosphere, and dried under reduced pressure.
 蒸着機にて電子移動層であるフッ化リチウムを蒸着し、その後、電極であるアルミニウムを蒸着してデバイスとした。得られたデバイスは上記光電変換素子の評価を行なった。結果を表1に示す。 Lithium fluoride as an electron transfer layer was vapor-deposited with a vapor deposition machine, and then aluminum as an electrode was vapor-deposited to obtain a device. The obtained device evaluated the said photoelectric conversion element. The results are shown in Table 1.
<実施例10>
Figure JPOXMLDOC01-appb-C000107

p型半導体化合物としてP-DHD-DBTH-TDZT[化31]の構造を有する高分子化合物を用いた。
PCBM(C61)をn型半導体化合物として用いて、p型半導体化合物:n型半導体化合物=1:1.5(重量)、合計濃度2.0wt%でクロロベンゼンに溶解させて0.45μmのフィルターに通してp型半導体化合物・n型半導体化合物の混合溶液を得た。
<Example 10>
Figure JPOXMLDOC01-appb-C000107

As the p-type semiconductor compound, a polymer compound having a structure of P-DHD-DBTH-TDZT [Chemical Formula 31] was used.
Using PCBM (C61) as an n-type semiconductor compound, p-type semiconductor compound: n-type semiconductor compound = 1: 1.5 (weight), and dissolved in chlorobenzene at a total concentration of 2.0 wt% to form a 0.45 μm filter. As a result, a mixed solution of p-type semiconductor compound and n-type semiconductor compound was obtained.
(光電変換素子の作製)
 酸化インジウムスズ(ITO)透明導電膜(カソード)がパターニングされたガラス基板(ジオマテック社製)を、アセトンによる超音波洗浄、ついでエタノールによる超音波洗浄の後、窒素ブローで乾燥させた。
(Preparation of photoelectric conversion element)
A glass substrate (manufactured by Geomatic Co., Ltd.) on which an indium tin oxide (ITO) transparent conductive film (cathode) was patterned was ultrasonically cleaned with acetone, then ultrasonically cleaned with ethanol, and then dried by nitrogen blowing.
 UV-オゾン処理を実施後、ホール輸送層として使用するPEDOT-PSS([ポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸))をスピンコーターで塗布(5000rpm 60秒)した後に200℃で10分間アニールした。 After the UV-ozone treatment, PEDOT-PSS ([poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid)) used as a hole transport layer was applied with a spin coater (5000 rpm for 60 seconds). Annealed at 200 ° C. for 10 minutes.
 グローブボックス内に搬入しで不活性ガス雰囲気下でp型半導体化合物・n型半導体化合物の混合溶液をスピンコートし減圧乾燥を実施した。 搬 carried into the glove box, spin-coated with a mixed solution of p-type semiconductor compound and n-type semiconductor compound in an inert gas atmosphere, and dried under reduced pressure.
 蒸着機にて電子移動層であるカルシウムを蒸着し、その後、電極であるアルミニウムを蒸着してデバイスとした。得られたデバイスは上記光電変換素子の評価を行なった。結果を表1に示す。 Calcium which is an electron transfer layer was vapor-deposited with a vapor deposition machine, and then aluminum which was an electrode was vapor-deposited to obtain a device. The obtained device evaluated the said photoelectric conversion element. The results are shown in Table 1.
<実施例11>
Figure JPOXMLDOC01-appb-C000108

p型半導体化合物としてP-DDMO-DBTH-EH-BDT[化35]の構造を有する高分子化合物を用いた。
PCBM(C61)をn型半導体化合物として用いて、p型半導体化合物:n型半導体化合物=1:2.0(重量)、合計濃度3.0wt%でオルトジクロロベンゼンに溶解させて0.45μmのフィルターに通して混合溶液とした。得られた混合溶液を用いて、実施例9と同様にデバイスを作製した。得られたデバイスは上記光電変換素子の評価を行なった。結果を表1に示す。
<Example 11>
Figure JPOXMLDOC01-appb-C000108

As the p-type semiconductor compound, a polymer compound having a structure of P-DDMO-DBTH-EH-BDT [Chemical Formula 35] was used.
Using PCBM (C61) as an n-type semiconductor compound, p-type semiconductor compound: n-type semiconductor compound = 1: 2.0 (weight), dissolved in orthodichlorobenzene at a total concentration of 3.0 wt%, 0.45 μm The solution was passed through a filter. A device was produced in the same manner as in Example 9 using the obtained mixed solution. The obtained device evaluated the said photoelectric conversion element. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000109
Figure JPOXMLDOC01-appb-T000109
 上記の様に本発明に用いた高分子化合物で作製された光電変換素子は、HOMO準位が適度に深いため、殆どが0.7V以上の高電圧を示すことが確認された。さらに、本発明の用いられた高分子化合物は製造方法により、多様な骨格や置換基を導入できることが確認され、光電変換素子のVocの細かな調整が可能である。 As described above, it was confirmed that most of the photoelectric conversion elements made of the polymer compound used in the present invention showed a high voltage of 0.7 V or more because the HOMO level was moderately deep. Furthermore, it is confirmed that the polymer compound used in the present invention can introduce various skeletons and substituents according to the production method, and fine adjustment of Voc of the photoelectric conversion element is possible.
(VII) 光電変換素子
(VI)  カソード
(V)  電子輸送層 
(IV) 活性層
(III)ホール輸送層
(II) アノード
(I)  基材
 
(VII) Photoelectric conversion element (VI) Cathode (V) Electron transport layer
(IV) Active layer (III) Hole transport layer (II) Anode (I) Base material

Claims (10)

  1.  基材と、アノードと、活性層と、カソードとがこの順に配置された構造を有する光電変換素子であって、前記活性層に、式(1)で表されるベンゾビスチアゾール構造単位を有する高分子化合物を含有することを特徴とする光電変換素子。
    Figure JPOXMLDOC01-appb-C000001

    [式(1)中、
     A、Aは、それぞれ独立に、アルコキシ基、チオアルコキシ基、炭化水素基で置換されていてもよいチオフェン環、炭化水素基もしくはオルガノシリル基で置換されていてもよいチアゾール環、または、炭化水素基、アルコキシ基、チオアルコキシ基、オルガノシリル基、ハロゲン原子、もしくは、トリフルオロメチル基で置換されていてもよいフェニル基を表す。]
    A photoelectric conversion element having a structure in which a base material, an anode, an active layer, and a cathode are arranged in this order, wherein the active layer has a benzobisthiazole structural unit represented by formula (1) A photoelectric conversion element comprising a molecular compound.
    Figure JPOXMLDOC01-appb-C000001

    [In Formula (1),
    A 1 and A 2 are each independently an alkoxy group, a thioalkoxy group, a thiophene ring optionally substituted with a hydrocarbon group, a thiazole ring optionally substituted with a hydrocarbon group or an organosilyl group, or It represents a phenyl group which may be substituted with a hydrocarbon group, an alkoxy group, a thioalkoxy group, an organosilyl group, a halogen atom, or a trifluoromethyl group. ]
  2.  前記高分子化合物のA1、A2が、それぞれ、下記式(a1)~(a4)で表される基であることを特徴とする、請求項1に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000002

    [式(a1)~(a4)中、
     R21~R25は、それぞれ独立に、炭素数8~30の炭化水素基を表す。*はベンゾビスチアゾールのベンゼン環に結合する結合手を表す。]
    2. The photoelectric conversion element according to claim 1 , wherein A 1 and A 2 of the polymer compound are groups represented by the following formulas (a1) to (a4), respectively.
    Figure JPOXMLDOC01-appb-C000002

    [In the formulas (a1) to (a4),
    R 21 to R 25 each independently represents a hydrocarbon group having 8 to 30 carbon atoms. * Represents a bond bonded to the benzene ring of benzobisthiazole. ]
  3.  前記高分子化合物が、ドナー-アクセプター型半導体ポリマーである請求項1または請求項2に記載の光電変換素子。 3. The photoelectric conversion element according to claim 1, wherein the polymer compound is a donor-acceptor type semiconductor polymer.
  4.  前記活性層に、さらにn型有機半導体化合物を含有する請求項1~3のいずれか1項に記載の光電変換素子。 The photoelectric conversion element according to any one of claims 1 to 3, wherein the active layer further contains an n-type organic semiconductor compound.
  5.  前記n型有機半導体化合物が、フラーレンもしくはその誘導体である請求項4に記載の光電変換素子。 The photoelectric conversion element according to claim 4, wherein the n-type organic semiconductor compound is fullerene or a derivative thereof.
  6.  前記アノードと前記活性層との間にホール輸送層を有する請求項1~5のいずれか1項に記載の光電変換素子。 6. The photoelectric conversion element according to claim 1, further comprising a hole transport layer between the anode and the active layer.
  7.  前記カソードと前記活性層との間に電子輸送層を有する請求項1~6のいずれか1項に記載の光電変換素子。 The photoelectric conversion device according to any one of claims 1 to 6, further comprising an electron transport layer between the cathode and the active layer.
  8.  前記アノードが透明電極である請求項1~7のいずれか1項に記載の光電変換素子。 The photoelectric conversion element according to any one of claims 1 to 7, wherein the anode is a transparent electrode.
  9.  前記カソードが金属電極である請求項1~8のいずれか1項に記載の光電変換素子。 The photoelectric conversion element according to any one of claims 1 to 8, wherein the cathode is a metal electrode.
  10.  請求項1~9のいずれか1項に記載の光電変換素子を備えることを特徴とする有機薄膜太陽電池。 An organic thin film solar cell comprising the photoelectric conversion device according to any one of claims 1 to 9.
PCT/JP2015/072746 2014-09-11 2015-08-11 Photoelectric conversion element and organic semiconductor compound used in same WO2016039063A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016502557A JP6699545B2 (en) 2014-09-11 2015-08-11 Photoelectric conversion element and organic semiconductor compound used therein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014184875 2014-09-11
JP2014-184875 2014-09-11

Publications (1)

Publication Number Publication Date
WO2016039063A1 true WO2016039063A1 (en) 2016-03-17

Family

ID=55458821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072746 WO2016039063A1 (en) 2014-09-11 2015-08-11 Photoelectric conversion element and organic semiconductor compound used in same

Country Status (2)

Country Link
JP (1) JP6699545B2 (en)
WO (1) WO2016039063A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150119A1 (en) * 2016-02-29 2017-09-08 富士フイルム株式会社 Organic semiconductor film, organic semiconductor element, polymer, and organic semiconductor composition
CN110379926A (en) * 2019-07-24 2019-10-25 浙江大学 A kind of organic photovoltaic cell based on benzo dithiazole class near-infrared receptor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258235A (en) * 2006-03-20 2007-10-04 Matsushita Electric Works Ltd Organic thin-film solar battery
JP2009197218A (en) * 2008-01-22 2009-09-03 Ricoh Co Ltd Polymer, organic film containing it, and transistor
JP2012214635A (en) * 2011-03-31 2012-11-08 Fujifilm Corp Organic semiconductor polymer, composition for organic semiconductor material, and photoelectric cell
JP2013509474A (en) * 2009-10-28 2013-03-14 ユニヴァーシティ オブ ワシントン Copolymer semiconductor comprising thiazolothiazole or benzobisthiazole or benzobisoxazole electron acceptor subunit and electron donor subunit, and its use in transistors and solar cells

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5597890A (en) * 1993-11-01 1997-01-28 Research Corporation Technologies, Inc. Conjugated polymer exciplexes and applications thereof
US9318707B2 (en) * 2011-11-15 2016-04-19 Konica Minolta, Inc. Organic photoelectric conversion element, and solar cell and optical sensor array each using same
JP5825134B2 (en) * 2012-02-14 2015-12-02 コニカミノルタ株式会社 ORGANIC PHOTOELECTRIC CONVERSION DEVICE, SOLAR CELL USING THE SAME, AND OPTICAL SENSOR ARRAY
JP5853805B2 (en) * 2012-03-23 2016-02-09 コニカミノルタ株式会社 Conjugated polymer compound and organic photoelectric conversion device using the same
JP5853852B2 (en) * 2012-05-08 2016-02-09 コニカミノルタ株式会社 Conjugated polymer compound and organic photoelectric conversion device using the same
WO2014038526A1 (en) * 2012-09-04 2014-03-13 株式会社クラレ Block copolymer and photoelectric conversion element using same
JP2014075194A (en) * 2012-10-02 2014-04-24 Konica Minolta Inc Photoelectric conversion element and solar cell
WO2014072292A2 (en) * 2012-11-07 2014-05-15 Basf Se Polymers based on naphthodiones
WO2014086722A1 (en) * 2012-12-04 2014-06-12 Basf Se Functionnalized benzodithiophene polymers for electronic application

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258235A (en) * 2006-03-20 2007-10-04 Matsushita Electric Works Ltd Organic thin-film solar battery
JP2009197218A (en) * 2008-01-22 2009-09-03 Ricoh Co Ltd Polymer, organic film containing it, and transistor
JP2013509474A (en) * 2009-10-28 2013-03-14 ユニヴァーシティ オブ ワシントン Copolymer semiconductor comprising thiazolothiazole or benzobisthiazole or benzobisoxazole electron acceptor subunit and electron donor subunit, and its use in transistors and solar cells
JP2012214635A (en) * 2011-03-31 2012-11-08 Fujifilm Corp Organic semiconductor polymer, composition for organic semiconductor material, and photoelectric cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150119A1 (en) * 2016-02-29 2017-09-08 富士フイルム株式会社 Organic semiconductor film, organic semiconductor element, polymer, and organic semiconductor composition
CN110379926A (en) * 2019-07-24 2019-10-25 浙江大学 A kind of organic photovoltaic cell based on benzo dithiazole class near-infrared receptor
CN110379926B (en) * 2019-07-24 2021-07-06 浙江大学 Organic solar cell based on benzodithiazole near-infrared receptor

Also Published As

Publication number Publication date
JPWO2016039063A1 (en) 2017-06-22
JP6699545B2 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
JP6642455B2 (en) Photoelectric conversion element and organic thin-film solar cell
Feng et al. All-small-molecule organic solar cells based on an electron donor incorporating binary electron-deficient units
Tang et al. Naphthobistriazole-based wide bandgap donor polymers for efficient non-fullerene organic solar cells: Significant fine-tuning absorption and energy level by backbone fluorination
US10355212B2 (en) Polymer and solar cell using the same
Zhang et al. D–A–Ar-type small molecules with enlarged π-system of phenanthrene at terminal for high-performance solution processed organic solar cells
Cheng et al. Donor–acceptor copolymers incorporating polybenzo [1, 2-b: 4, 5-b′] dithiophene and tetrazine for high open circuit voltage polymer solar cells
Song et al. Correlation of intramolecular charge transfer and orientation properties among quinacridone and acceptor units
EP2581399B1 (en) Conjugated polymer based on perylene tetracarboxylic acid diimide and benzodithiophene and its preparation method and application
JP5658633B2 (en) Composition for organic semiconductor and photoelectric conversion element using the same
Ge et al. Diketopyrrolopyrrole‐based acceptor–acceptor conjugated polymers: The importance of comonomer on their charge transportation nature
Peng et al. Development of s-tetrazine-based polymers for efficient polymer solar cells by controlling appropriate molecular aggregation
Kim et al. Synthesis and characterization of indeno [1, 2-b] fluorene-based low bandgap copolymers for photovoltaic cells
Shaker et al. Direct C–H arylation synthesis of (DD′ AD′ DA′)-constituted alternating polymers with low bandgaps and their photovoltaic performance
Hong et al. A novel small molecule based on dithienophosphole oxide for bulk heterojunction solar cells without pre-or post-treatments
JP6658727B2 (en) Photoelectric conversion element and organic thin-film solar cell
Choi et al. Effect of side chains on solubility and morphology of poly (benzodithiohene-alt-alkylbithiophene) in organic photovoltaics
Hong et al. Synthesis and characterization of a series of low-bandgap copolymers based on cyclopenta [2, 1-b: 3, 4-b′] dithiophene and thienopyrroledione for photovoltaic applications
JP6699545B2 (en) Photoelectric conversion element and organic semiconductor compound used therein
JP6696432B2 (en) Photoelectric conversion element and organic semiconductor compound used therein
Cao et al. DA copolymers based on lactam acceptor unit and thiophene derivatives for efficient polymer solar cells
KR101553806B1 (en) Organic semiconductor compounds Containing Posphine oxide and Solar Cell Device Using This Material
Kim et al. Low band gap polymer consisting of quinacridone and diketopyrrolopyrrole and isoindigo units: correlation of ordered structure and intramolecular charge transfer properties
Tomar et al. Tuning the HOMO energy levels in quinoline and biquinoline based donor-acceptor polymers
Su et al. Synthesis and characterization of alternating and random conjugated polymers derived from dithieno [2, 3-d: 2′, 3′-d′] benzo [1, 2-b: 4, 5-b′] dithiophene and 2, 1, 3-benzothiadiazole derivatives
WO2023276753A1 (en) Organic photodetector, and organic semiconductor compound used for same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016502557

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15840392

Country of ref document: EP

Kind code of ref document: A1