WO2016038908A1 - Gas leak detection device and gas leak inspection method - Google Patents

Gas leak detection device and gas leak inspection method Download PDF

Info

Publication number
WO2016038908A1
WO2016038908A1 PCT/JP2015/056282 JP2015056282W WO2016038908A1 WO 2016038908 A1 WO2016038908 A1 WO 2016038908A1 JP 2015056282 W JP2015056282 W JP 2015056282W WO 2016038908 A1 WO2016038908 A1 WO 2016038908A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas pressure
gas
pressure vessel
temperature
gas leak
Prior art date
Application number
PCT/JP2015/056282
Other languages
French (fr)
Japanese (ja)
Inventor
稲波 久雄
廣瀬 誠
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2016038908A1 publication Critical patent/WO2016038908A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/53Cases; Reservoirs, tanks, piping or valves, for arc-extinguishing fluid; Accessories therefor, e.g. safety arrangements, pressure relief devices
    • H01H33/56Gas reservoirs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/065Means for detecting or reacting to mechanical or electrical defects

Definitions

  • the present invention relates to a gas leak detection device and detection method for a gas insulated electrical device that detects a minute leak of an insulating gas sealed in a closed container such as a gas insulated switchgear.
  • a gas-insulated switchgear is an equipment that instantaneously cuts off current to protect substation equipment when an abnormal current flows due to lightning.
  • the gas insulated switchgear has a structure in which a plurality of gas pressure vessels are connected, and a circuit breaker and a disconnecting device are accommodated together with an inert gas in the gas pressure vessel.
  • As the inert gas sealed in the gas pressure vessel sulfur hexafluoride (hereinafter abbreviated as SF6) is used as the inert gas sealed in the gas pressure vessel.
  • SF 6 is subject to management because its global warming potential is as high as 24,000 times that of CO 2 , and gas leak detection of gas-insulated electrical equipment is required.
  • Patent Document 1 describes a technique related to conventional gas leak detection. This document shows a method of measuring the external temperature of a gas pressure vessel and correcting the gas pressure after a predetermined time from the time when the temperature is measured by the measured temperature.
  • Patent Document 2 describes a technique related to conventional gas leak detection. This document shows a method of measuring the temperature inside and outside the gas pressure vessel and correcting the temperature of the internal gas pressure in a time zone in which the difference between the two temperatures is small.
  • Patent Document 2 since the temperature measurement inside the gas pressure vessel is performed at one place, the temperature distribution caused by energization or gas convection cannot be accurately shown. Further, since the gas insulated switchgear is composed of a plurality of gas pressure vessels, it is not realistic from the viewpoint of installation cost to install temperature sensors inside all the gas pressure vessels and measure the internal temperature.
  • Patent Document 1 and Patent Document 2 do not consider the influence of wind that greatly affects the temperature inside the gas pressure vessel.
  • An object of the present invention is to provide a gas leak detection device that can detect a gas leak with high accuracy.
  • the gas leak detection device of the present invention includes a pressure sensor that measures the gas pressure of a gas pressure vessel, a temperature sensor that measures the surface temperature of the gas pressure vessel, and a current that takes in a current value that flows through a bus arranged in the gas pressure vessel.
  • a data capture unit, a gas pressure measurement value, a recording unit for recording the measurement value and current value of the surface temperature of the gas pressure vessel, and an internal gas average temperature and gas pressure vessel of the gas pressure vessel according to the range of the current value The data storage unit in which the relationship with the surface temperature is previously databased, and the relationship between the average internal gas temperature stored in the data storage unit and the surface temperature corresponding to the current value recorded in the recording unit are extracted.
  • the reference unit for calculating the internal gas average temperature of the gas pressure vessel from the surface temperature of the gas pressure vessel recorded in the recording unit, and the gas pressure recorded in the recording unit using the internal gas average temperature A pressure calculation unit that corrects the gas pressure value of the gas and a test unit that performs linear regression on the corrected gas pressure and tests whether the slope of the regression line obtained thereby exceeds the slope of the gas leak at the specified concentration. It is characterized by points.
  • a gas leak detection device capable of detecting gas leak of SF 6 with high accuracy by performing temperature correction of gas pressure in consideration of the influence of energization conditions and environmental factors.
  • the block diagram of the gas leak detection apparatus which concerns on 1st embodiment The block diagram which shows the detection flow of the gas leak which concerns on 1st embodiment.
  • FIG. 1 shows a configuration of a gas leak detection apparatus according to the first embodiment.
  • FIG. 2 is a block diagram showing a gas leak detection flow.
  • FIG. 3 is a diagram illustrating an example of a database stored in the data storage unit.
  • FIG. 4 is a velocity vector diagram showing an example of the flow inside the gas pressure vessel.
  • FIG. 5 is a diagram showing a method for obtaining the average temperature inside the gas pressure vessel.
  • FIG. 6 is a diagram showing a change with time of the measurement pressure and the correction pressure.
  • FIG. 7 is a diagram showing a time transition of the standard deviation of the correction gas pressure at night.
  • FIG. 8 is a diagram illustrating filtering of gas pressure data according to the first embodiment.
  • FIG. 9 is a diagram showing linear regression of the corrected gas pressure.
  • FIG. 10 is a diagram showing the slope of the regression line of the correction gas pressure.
  • the gas-insulated switchgear 1 has a structure in which a plurality of gas pressure vessels 2a to 2c are connected, and a bus bar 5 penetrates the central portion in the same direction as these gas pressure vessels. ing.
  • the value of the current flowing through the bus 5 is sent to the recording unit 20 via the current data capturing unit 6 as information from the substation protection control system.
  • Insulating gas SF 6 having a predetermined gas pressure is sealed in the gas pressure vessels 2a to 2c. Since the gas pressure is monitored for each of the gas pressure vessels 2a to 2c, the gas pressure sensors 10a to 10c are connected via the pipes 3a to 3c and the valves 4a to 4c. These gas pressure sensors 10a to 10c measure the gas pressure inside the gas pressure vessels 2a to 2c.
  • Temperature sensors 11a to 11c are installed on the surfaces of the gas pressure vessels 2a to 2c, and the surface temperatures of the gas pressure vessels 2a to 2c are measured. In consideration of the influence of direct sunlight, it is preferable to measure the surface temperature in the area on the ground side half of the gas pressure vessel, and it is more preferable to measure the surface temperature at the bottom of the gas pressure vessel.
  • the data storage unit 30 stores a relationship between the average internal gas temperature of the gas pressure vessel and the surface temperature as a database.
  • the calculation unit 40 includes a verification unit 41, a pressure calculation unit 42, and a test unit 43.
  • the collation unit 41 is connected to the recording unit 20 and the data storage unit 30.
  • the relationship between the internal gas average temperature and the surface temperature of the gas pressure vessel corresponding to the current value recorded in the recording unit 20 is extracted from the data storage unit 30 and the gas pressure vessel recorded in the recording unit 20.
  • the average internal gas temperature of the gas pressure vessels 2a to 2c is determined from the surface temperature of 2a to 2c.
  • the pressure calculation unit 42 uses the internal gas average temperature to correct the gas pressure in the gas pressure vessels 2a to 2c recorded in the recording unit 20 to the gas pressure at the reference temperature (for example, 20 ° C.).
  • the verification unit 43 verifies whether the time-dependent change in the gas pressure whose temperature has been corrected as described above (hereinafter referred to as the corrected gas pressure) exceeds the gas leak of the specified concentration.
  • step 1 The gas pressures in the gas pressure vessels 2a to 2c are measured by the gas pressure sensors 10a to 10c. Further, the surface temperature of the gas pressure vessels 2a to 2c is measured by the temperature sensors 11a to 11c. At this time, by setting the temperature sensor at the bottom of the gas pressure vessel, it is possible to obtain a surface temperature that is not easily affected by sunlight.
  • Step 2 The gas pressure inside the gas pressure vessel and the surface temperature of the gas pressure vessel measured in step 1 are sent to the recording unit 20, and the gas pressure and the surface temperature of the gas pressure vessel are recorded in the recording unit 20 in time series.
  • the value of the current flowing through the bus 5 is also sent to the recording unit 20 and recorded along with the gas pressure and temperature.
  • Step 3 In the data storage unit 30, the relationship between the average temperature inside the gas pressure vessel and the surface temperature as shown in FIG. 3 is stored as a database according to the range of the energization condition (current value I).
  • This database can be created using a commercially available fluid analysis code.
  • the temperature inside the gas pressure vessel is preferably not an average but a mean value at a plurality of locations. This is because the gas pressure is proportional to the average value of the gas temperature. However, the following considerations are preferable when calculating the average temperature inside the gas pressure vessel.
  • FIG. 4 shows an example of the flow of the insulating gas inside the gas pressure vessel.
  • the drawing is simplified and only the right half of the cross section is shown.
  • An upward flow is generated on the surface of the bus bar, and a circulating flow is formed by natural convection in which it flows downwards so as to follow the tube wall of the gas pressure vessel and then rises again.
  • a vortex separated from the circulating flow is generated near the equator (center part in the figure). Due to the influence of the separation vortex, the temperature fluctuation in the vicinity of the equator of the gas pressure vessel is large. Therefore, it is preferable to exclude the temperature in the vicinity of the equator when calculating the average temperature inside the gas pressure vessel. That is, the average of the temperatures at the top and bottom of the gas pressure vessel is preferably the internal average temperature, and the average of four or more locations excluding the vicinity of the equator is more preferably the internal average temperature.
  • the collation unit 41 collates the energization conditions in the database of the data storage unit 30 corresponding to the current value I recorded in the recording unit 20.
  • Step 4 In the verification unit 41, the relationship between the average temperature inside the gas pressure vessel and the surface temperature corresponding to the verified energization conditions is extracted (see FIG. 3).
  • Step 5 In the verification unit 41, the internal average temperature is calculated from the surface temperature of the gas pressure vessel as shown in FIG. 5 based on the relationship between the extracted average temperature inside the gas pressure vessel and the surface temperature.
  • Step 6 the gas pressure of the recording part 20 is temperature-corrected using the internal average temperature.
  • the temperature correction of the gas pressure is converted into the gas pressure at the reference temperature of 20 ° C. using, for example, the equation of state of the real gas shown in Equation (1), Beattie-Bridgeman.
  • p 0 is the gas pressure (Pa)
  • v is the molar volume (m 3 / mol)
  • R is the gas constant (8.31 J / mol ⁇ K)
  • T is the gas temperature (K)
  • the formula (1 ) A and B are shown below.
  • Step 7 An example of the gas pressure change whose temperature is corrected in step 6 is shown in FIG.
  • A 15.78 ⁇ 10 -1 (1-0.1062 ⁇ 10 -3 / v) (2)
  • B 0.366 ⁇ 10 -3 (1-0.1236 ⁇ 10 -3 / v) (3)
  • Step 7 An example of the gas pressure change whose temperature is corrected in step 6 is shown in FIG.
  • FIG. 7 shows an example in which the standard deviation of the corrected gas pressure at night after sunset is obtained at one hour intervals.
  • the standard deviation here is a measure for seeing fluctuations in the correction gas pressure.
  • FIG. 8 shows an example in which corrected gas pressure data is extracted in a time zone (for example, nighttime from 23:00 to 5:00) that is less than half of the standard deviation of the corrected gas pressure immediately after sunset.
  • Step 8 The verification unit 43 determines whether the corrected gas pressure filtered in step 7 corresponds to a gas leak having a specified concentration or more.
  • the regression data of the correction gas pressure with time is linearly regressed.
  • the administrator can easily recognize the state of the gas pressure vessel.
  • the verification unit 43 stores in advance the slope c of the allowable gas leak concentration line. Therefore, the test unit 43 compares the slope a of the regression line updated daily and the slope c of the allowable gas leak line to determine the presence or absence of a gas leak.
  • Step 10 If the slope a of the regression line of the pressure data exceeds the slope c of the allowable gas leak line in step 9, it is determined as a gas leak and an alarm is issued.
  • the gas condition is calculated after calculating the internal gas temperature using the relation between the internal gas temperature and the surface temperature stored in advance in the database in consideration of energization conditions that greatly affect the internal temperature of the gas pressure vessel. Since the pressure is corrected, it is possible to provide a gas leak detection device with higher accuracy than the pressure correction using the conventional surface temperature.
  • FIG. 11 shows another embodiment of the present invention.
  • a weather data server 7 for storing weather data transmitted from a local weather station is provided in order to obtain wind speed information around the gas pressure vessel.
  • the meteorological statistical information is fetched into the meteorological data server 7 and the fetched information is transferred to the recording unit 20.
  • An anemometer may be installed instead of the weather data server 7. Further, as described in the first embodiment, when only nighttime pressure data having a small standard deviation of the correction gas pressure is used, a configuration in which the weather information is not captured may be employed.
  • the basic structure is the same as that of the first embodiment, and the relation between the internal gas temperature and the surface temperature of the gas pressure vessel in consideration of the wind speed and sunshine is stored in a database in advance.
  • the meteorological data it is possible to consider the influence of wind and sunshine on the gas pressure vessel, and it is possible to perform more accurate gas pressure temperature correction.
  • FIG. 12 shows another embodiment of the present invention.
  • the present embodiment is different from the first embodiment in that the measured data is sent wirelessly to a remote place and the gas pressure is managed at a point away from the gas insulated switchgear 1.
  • FIG. 12 shows a gas leak detection apparatus according to the third embodiment.
  • the basic structure is the same as that of the first embodiment.
  • a feature of the third embodiment is that a transmitter 21 is installed in the recording unit 20 and a receiver 45 is installed in the calculation unit 40.
  • the information of the gas pressure sensors 10a to 10c, the temperature sensors 11a to 11c, and the information of the weather data server 7 recorded in the recording unit 20 are wirelessly skipped from the transmitter 21.
  • the arithmetic unit 40 and the data storage unit 30 are located away from the gas insulated switchgear 1 and monitor gas leaks in the gas pressure vessel. In the substation equipment, there is a problem of surge resistance, but by placing the calculation unit 40 in a place away from the gas-insulated switchgear 1, it is possible to take a surge countermeasure. In addition, it has an advantage that information on gas pressures of a plurality of gas insulated switchgears 1 can be managed collectively at a distance.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Abstract

Provided is a gas leak detection device capable of carrying out temperature correction of gas pressure in consideration of the influence of energization conditions and environmental factors and highly accurately detecting a gas leak. A gas leak detection device is provided with: a pressure sensor 10; a temperature sensor 11; a current data acquisition unit 6 for acquiring a current value; a storage unit 20 for storing a measured gas pressure value, measured surface temperature value, and the current value; a data storage unit 30 in which the relationship between an average internal gas temperature and surface temperature corresponding to the current value is stored in a database beforehand; a comparison unit 41 for calculating an average internal gas temperature from the surface temperature stored in the storage unit 20; a pressure calculation unit 42 for correcting the gas pressure stored in the storage unit 20 to a gas pressure value at a reference temperature; and an evaluation unit 43 for subjecting the corrected gas pressure to linear regression and evaluating whether the slope of the resulting regression line exceeds the slope of a gas leak of a specified concentration.

Description

ガスリーク検知装置およびガスリーク検査方法Gas leak detection device and gas leak inspection method
 本発明は、ガス絶縁開閉装置などの密閉容器に封入された絶縁ガスの微少な漏れを検知するガス絶縁電気機器のガスリーク検知装置および検知方法に関する。 The present invention relates to a gas leak detection device and detection method for a gas insulated electrical device that detects a minute leak of an insulating gas sealed in a closed container such as a gas insulated switchgear.
 ガス絶縁開閉装置は,落雷などで異常電流が流れた場合,変電所の設備を保護するために,電流を瞬時に遮断する設備である。ガス絶縁開閉装置は複数のガス圧力容器が連結した構造となっており,ガス圧力容器内には遮断器や断路器が不活性ガスと共に収納されている。ガス圧力容器に封入する不活性ガスとして,六フッ化イオウ(以下SF6と略す)が使用されている。SF6は,地球温暖化係数がCO2の24,000倍と高いため管理の対象となっており、ガス絶縁電気機器のガスリーク検知が必要とされている。 A gas-insulated switchgear is an equipment that instantaneously cuts off current to protect substation equipment when an abnormal current flows due to lightning. The gas insulated switchgear has a structure in which a plurality of gas pressure vessels are connected, and a circuit breaker and a disconnecting device are accommodated together with an inert gas in the gas pressure vessel. As the inert gas sealed in the gas pressure vessel, sulfur hexafluoride (hereinafter abbreviated as SF6) is used. SF 6 is subject to management because its global warming potential is as high as 24,000 times that of CO 2 , and gas leak detection of gas-insulated electrical equipment is required.
 ガスリークの検出,すなわちガス量を経時的にモニタリングするために,ガス圧力を測定するのが一般的である。しかしながら,ガス圧力は温度によって大きく変動するため、基準温度20℃におけるガス圧力に換算する補正を行う。 In order to detect a gas leak, that is, to monitor the amount of gas over time, it is common to measure the gas pressure. However, since the gas pressure largely fluctuates depending on the temperature, correction is made to convert it to the gas pressure at the reference temperature of 20 ° C.
 従来のガスリーク検知に係る技術として、特許文献1に記載がある。本文献には、ガス圧力容器の外部温度を測定し、温度測定した時刻から所定の時間後のガス圧力を前記測定温度により補正する方式が示されている。 Patent Document 1 describes a technique related to conventional gas leak detection. This document shows a method of measuring the external temperature of a gas pressure vessel and correcting the gas pressure after a predetermined time from the time when the temperature is measured by the measured temperature.
 また、従来のガスリーク検知に係る技術として、特許文献2に記載がある。本文献には、ガス圧力容器の内部と外部の温度を測定し、この2つの温度差が小さな時間帯において内部ガス圧力の温度補正を行う方式が示されている。 Further, Patent Document 2 describes a technique related to conventional gas leak detection. This document shows a method of measuring the temperature inside and outside the gas pressure vessel and correcting the temperature of the internal gas pressure in a time zone in which the difference between the two temperatures is small.
特開2010-193616号公報JP 2010-193616 A 特開2011-130581号公報JP 2011-130581 A
 特許文献1で開示される方式では、ガス圧力容器の外部温度とガス圧力との関係を、遅延時間で関係づけ、ガス圧力を外部温度で補正している。しかしながら、外部温度とガス圧力を1対1で対応させるのは困難であり、外部温度を用いて補正したガス圧力には誤差が生じやすくなる。 In the method disclosed in Patent Document 1, the relationship between the external temperature of the gas pressure vessel and the gas pressure is related by a delay time, and the gas pressure is corrected by the external temperature. However, it is difficult to make a one-to-one correspondence between the external temperature and the gas pressure, and an error tends to occur in the gas pressure corrected using the external temperature.
 特許文献2では、ガス圧力容器内部の温度測定が一箇所であるため、通電やガス対流により生じる温度分布を正確に示すことができない。また、ガス絶縁開閉装置は複数のガス圧力容器から構成されるため、全てのガス圧力容器の内部に温度センサを設置し、内部温度を測定するのは、設置コストの観点から現実的でない。 In Patent Document 2, since the temperature measurement inside the gas pressure vessel is performed at one place, the temperature distribution caused by energization or gas convection cannot be accurately shown. Further, since the gas insulated switchgear is composed of a plurality of gas pressure vessels, it is not realistic from the viewpoint of installation cost to install temperature sensors inside all the gas pressure vessels and measure the internal temperature.
 さらに、特許文献1ならびに特許文献2では、ガス圧力容器内部の温度に大きく影響を及ぼす風の影響が考慮されていない。 Furthermore, Patent Document 1 and Patent Document 2 do not consider the influence of wind that greatly affects the temperature inside the gas pressure vessel.
 そこで、本発明の目的は、このような事情に鑑みてなされたものであり、ガス圧力容器内部温度に大きな影響を及ぼす通電条件や風の影響を考慮してガス圧力の温度補正を行い、SF6のガスリークを高精度に検出可能なガスリーク検知装置を提供することにある。 Therefore, the object of the present invention has been made in view of such circumstances, and the temperature correction of the gas pressure is performed in consideration of the energization condition and the influence of the wind that have a large effect on the internal temperature of the gas pressure vessel. An object of the present invention is to provide a gas leak detection device that can detect a gas leak with high accuracy.
 本発明のガスリーク検知装置は、ガス圧力容器のガス圧力を測定する圧力センサと、ガス圧力容器の表面温度を測定する温度センサと、ガス圧力容器内に配された母線を流れる電流値を取り込む電流データ取り込み部と、ガス圧力の測定値と前記ガス圧力容器の表面温度の測定値と電流値を記録する記録部と、電流値の範囲に応じたガス圧力容器の内部ガス平均温度とガス圧力容器の表面温度との関係が予めデータベース化されているデータ記憶部と、記録部に記録された電流値に対応する、データ記憶部に記憶された内部ガス平均温度と表面温度との関係を抽出し、記録部に記録されたガス圧力容器の表面温度からガス圧力容器の内部ガス平均温度を算出する照合部と、内部ガス平均温度を用いて、記録部に記録されたガス圧力を基準温度のガス圧力値に補正する圧力演算部と、補正されたガス圧力を直線回帰し、これにより得られた回帰直線の傾きが規定濃度のガスリークの傾きを上回るかどうかを検定する検定部とを備えた点を特徴とする。 The gas leak detection device of the present invention includes a pressure sensor that measures the gas pressure of a gas pressure vessel, a temperature sensor that measures the surface temperature of the gas pressure vessel, and a current that takes in a current value that flows through a bus arranged in the gas pressure vessel. A data capture unit, a gas pressure measurement value, a recording unit for recording the measurement value and current value of the surface temperature of the gas pressure vessel, and an internal gas average temperature and gas pressure vessel of the gas pressure vessel according to the range of the current value The data storage unit in which the relationship with the surface temperature is previously databased, and the relationship between the average internal gas temperature stored in the data storage unit and the surface temperature corresponding to the current value recorded in the recording unit are extracted. The reference unit for calculating the internal gas average temperature of the gas pressure vessel from the surface temperature of the gas pressure vessel recorded in the recording unit, and the gas pressure recorded in the recording unit using the internal gas average temperature A pressure calculation unit that corrects the gas pressure value of the gas and a test unit that performs linear regression on the corrected gas pressure and tests whether the slope of the regression line obtained thereby exceeds the slope of the gas leak at the specified concentration. It is characterized by points.
 本発明によれば、通電条件や環境因子の影響を考慮してガス圧力の温度補正を行い、SF6のガスリークを高精度に検出可能なガスリーク検知装置を提供することができる。 According to the present invention, it is possible to provide a gas leak detection device capable of detecting gas leak of SF 6 with high accuracy by performing temperature correction of gas pressure in consideration of the influence of energization conditions and environmental factors.
第一の実施形態に係るガスリーク検知装置の構成図。The block diagram of the gas leak detection apparatus which concerns on 1st embodiment. 第一の実施形態に係るガスリークの検知フローを示すブロック図。The block diagram which shows the detection flow of the gas leak which concerns on 1st embodiment. データ記憶部に記憶されるデータベースの一例を示す図。The figure which shows an example of the database memorize | stored in a data storage part. ガス圧力容器内部の流速ベクトルの一例を示す図。図面を簡略化して、ガス圧力容器の右側半分のみを示している。The figure which shows an example of the flow velocity vector inside a gas pressure vessel. The drawing is simplified and only the right half of the gas pressure vessel is shown. ガス圧力容器内部の平均温度を求める方法を示す図。The figure which shows the method of calculating | requiring the average temperature inside a gas pressure vessel. 測定圧力と補正圧力の経時変化を示す図。The figure which shows the time-dependent change of measurement pressure and correction pressure. 補正ガス圧力の標準偏差の夜間における時間推移を示す図。The figure which shows the time transition at night of the standard deviation of correction | amendment gas pressure. 第一の実施形態に係るガス圧力データのフィルタリングを示す図。The figure which shows filtering of the gas pressure data which concern on 1st embodiment. 補正ガス圧力の直線回帰を示す図。The figure which shows the linear regression of correction | amendment gas pressure. 補正ガス圧力の回帰直線の傾きを示す図。The figure which shows the inclination of the regression line of correction | amendment gas pressure. 第二の実施形態に係るガスリーク検知装置の構成図。The block diagram of the gas leak detection apparatus which concerns on 2nd embodiment. 第三の実施形態に係るガスリーク検知装置の構成図。The block diagram of the gas leak detection apparatus which concerns on 3rd embodiment.
 以下、図面を参照して、本発明の実施の形態を説明する。なお、後述する実施の形態は一例であって、各実施の形態同士の組み合わせ、公知又は周知の技術との組み合わせや置換による他の態様も可能である。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. Note that the embodiments described later are merely examples, and combinations of the embodiments, combinations with known or well-known techniques, and other modes by replacement are possible.
 図1は、第一の実施例であるガスリーク検知装置の構成を示している。図2は、ガスリークの検知フローを示すブロック図である。図3はデータ記憶部に記憶されるデータベースの一例を示す図である。図4は、ガス圧力容器内部の流れの一例を示す速度ベクトル図である。図5は、ガス圧力容器内部の平均温度を求める方法を示す図である。図6は、測定圧力と補正圧力の経時変化を示す図である。図7は、補正ガス圧力の標準偏差の夜間における時間推移を示す図である。図8は、第一の実施形態に係るガス圧力データのフィルタリングを示す図である。図9は、補正ガス圧力の直線回帰を示す図である。図10は、補正ガス圧力の回帰直線の傾きを示す図である。 FIG. 1 shows a configuration of a gas leak detection apparatus according to the first embodiment. FIG. 2 is a block diagram showing a gas leak detection flow. FIG. 3 is a diagram illustrating an example of a database stored in the data storage unit. FIG. 4 is a velocity vector diagram showing an example of the flow inside the gas pressure vessel. FIG. 5 is a diagram showing a method for obtaining the average temperature inside the gas pressure vessel. FIG. 6 is a diagram showing a change with time of the measurement pressure and the correction pressure. FIG. 7 is a diagram showing a time transition of the standard deviation of the correction gas pressure at night. FIG. 8 is a diagram illustrating filtering of gas pressure data according to the first embodiment. FIG. 9 is a diagram showing linear regression of the corrected gas pressure. FIG. 10 is a diagram showing the slope of the regression line of the correction gas pressure.
 図1に示したように、ガス絶縁開閉装置1は複数のガス圧力容器2a~2cが連結された構造になっており、これらのガス圧力容器と同軸方向にその中心部を母線5が貫通している。母線5に流れている電流値は、変電所の保護制御システムからの情報を、電流データ取り込み部6を介して、記録部20に送られる。 As shown in FIG. 1, the gas-insulated switchgear 1 has a structure in which a plurality of gas pressure vessels 2a to 2c are connected, and a bus bar 5 penetrates the central portion in the same direction as these gas pressure vessels. ing. The value of the current flowing through the bus 5 is sent to the recording unit 20 via the current data capturing unit 6 as information from the substation protection control system.
 ガス圧力容器2a~2cには所定のガス圧力の絶縁性ガスSF6が封入されている。ガス圧力の監視は各ガス圧力容器2a~2cごとに行うため、配管3a~3cおよびバルブ4a~4cを介してガス圧力センサ10a~10cが接続されている。これらのガス圧力センサ10a~10cにより、ガス圧力容器2a~2c内部のガス圧力が測定される。 Insulating gas SF 6 having a predetermined gas pressure is sealed in the gas pressure vessels 2a to 2c. Since the gas pressure is monitored for each of the gas pressure vessels 2a to 2c, the gas pressure sensors 10a to 10c are connected via the pipes 3a to 3c and the valves 4a to 4c. These gas pressure sensors 10a to 10c measure the gas pressure inside the gas pressure vessels 2a to 2c.
 ガス圧力容器2a~2cの表面には温度センサ11a~11cが設置されており、ガス圧力容器2a~2cの表面温度を測定する。なお、直射日光の影響を考慮し、ガス圧力容器の地面側半分の領域において表面温度を測定するのが好ましく、ガス圧力容器の底部で表面温度を測定するのがより好ましい。 Temperature sensors 11a to 11c are installed on the surfaces of the gas pressure vessels 2a to 2c, and the surface temperatures of the gas pressure vessels 2a to 2c are measured. In consideration of the influence of direct sunlight, it is preferable to measure the surface temperature in the area on the ground side half of the gas pressure vessel, and it is more preferable to measure the surface temperature at the bottom of the gas pressure vessel.
 ガス圧力センサ10a~10c、温度センサ11a~11cの情報は記録部20に送られる。 Information on the gas pressure sensors 10a to 10c and the temperature sensors 11a to 11c is sent to the recording unit 20.
 データ記憶部30には、ガス圧力容器の内部ガス平均温度と表面温度との関係がデータベースとして記憶されている。 The data storage unit 30 stores a relationship between the average internal gas temperature of the gas pressure vessel and the surface temperature as a database.
 演算部40は照合部41と圧力演算部42と検定部43から構成されている。 The calculation unit 40 includes a verification unit 41, a pressure calculation unit 42, and a test unit 43.
 照合部41は記録部20とデータ記憶部30に接続されている。照合部41では、記録部20に記録された電流値に対応するガス圧力容器の内部ガス平均温度と表面温度との関係をデータ記憶部30から抽出し、記録部20に記録されたガス圧力容器2a~2cの表面温度からガス圧力容器2a~2cの内部ガス平均温度を決定する。 The collation unit 41 is connected to the recording unit 20 and the data storage unit 30. In the collation unit 41, the relationship between the internal gas average temperature and the surface temperature of the gas pressure vessel corresponding to the current value recorded in the recording unit 20 is extracted from the data storage unit 30 and the gas pressure vessel recorded in the recording unit 20. The average internal gas temperature of the gas pressure vessels 2a to 2c is determined from the surface temperature of 2a to 2c.
 圧力演算部42では、上記内部ガス平均温度を使用して、記録部20に記録されたガス圧力容器2a~2cのガス圧力を基準温度(例えば20℃)におけるガス圧力へと温度補正する。検定部43では、上記のように温度補正されたガス圧力(以下、補正ガス圧力という。)の経時変化が規定濃度のガスリークを上回るかを検定する。 The pressure calculation unit 42 uses the internal gas average temperature to correct the gas pressure in the gas pressure vessels 2a to 2c recorded in the recording unit 20 to the gas pressure at the reference temperature (for example, 20 ° C.). The verification unit 43 verifies whether the time-dependent change in the gas pressure whose temperature has been corrected as described above (hereinafter referred to as the corrected gas pressure) exceeds the gas leak of the specified concentration.
 表示部50では、上記補正ガス圧力の経時変化が示されている。 In the display unit 50, a change with time of the correction gas pressure is shown.
 次に、図2を用いてガスリークの検知フローを説明する。 Next, a gas leak detection flow will be described with reference to FIG.
 (ステップ1)
ガス圧力センサ10a~10cにより、ガス圧力容器2a~2c内部のガス圧力を測定する。また温度センサ11a~11cにより、ガス圧力容器2a~2cの表面温度を測定する。このとき、温度センサの設置をガス圧力容器の底部とすることで、日照の影響を受けにくい表面温度を得ることができる。
(step 1)
The gas pressures in the gas pressure vessels 2a to 2c are measured by the gas pressure sensors 10a to 10c. Further, the surface temperature of the gas pressure vessels 2a to 2c is measured by the temperature sensors 11a to 11c. At this time, by setting the temperature sensor at the bottom of the gas pressure vessel, it is possible to obtain a surface temperature that is not easily affected by sunlight.
 (ステップ2)
ステップ1において測定されたガス圧力容器内部のガス圧力およびガス圧力容器の表面温度は記録部20に送られ、ガス圧力とガス圧力容器の表面温度が時系列で記録部20に記録される。また母線5を流れる電流値についても、記録部20に送られ、ガス圧力や温度と共に記録される。
(Step 2)
The gas pressure inside the gas pressure vessel and the surface temperature of the gas pressure vessel measured in step 1 are sent to the recording unit 20, and the gas pressure and the surface temperature of the gas pressure vessel are recorded in the recording unit 20 in time series. The value of the current flowing through the bus 5 is also sent to the recording unit 20 and recorded along with the gas pressure and temperature.
 (ステップ3)
データ記憶部30には、通電条件(電流値I)の範囲に応じて、図3に示すようなガス圧力容器内部の平均温度と表面温度との関係がデータベースとして記憶されている。本データベースは、市販の流体解析コードを用いて作成することができる。ここで、ガス圧力容器内部の温度は、一箇所ではなく、複数個所の平均値が好ましい。ガス圧力がガス温度の平均値に比例するからである。しかしながら、ガス圧力容器内部の平均温度を算出するに当たり、以下の考慮が好ましい。
(Step 3)
In the data storage unit 30, the relationship between the average temperature inside the gas pressure vessel and the surface temperature as shown in FIG. 3 is stored as a database according to the range of the energization condition (current value I). This database can be created using a commercially available fluid analysis code. Here, the temperature inside the gas pressure vessel is preferably not an average but a mean value at a plurality of locations. This is because the gas pressure is proportional to the average value of the gas temperature. However, the following considerations are preferable when calculating the average temperature inside the gas pressure vessel.
 図4に、ガス圧力容器内部の絶縁ガスの流れの一例を示す。なお、図4では図面を簡略し、断面の右半分のみを示している。母線の表面で上方流が発生し、ガス圧力容器の管壁を辿るように下向きに流れた後、再度上昇するといった、自然対流による循環流が形成されている。さらに、循環流から剥離した渦が赤道付近(図中の中央部)に発生している。この剥離渦の影響で、ガス圧力容器の赤道付近の温度変動が大きいことから、ガス圧力容器内部の平均温度を算出するに当たり、赤道付近の温度を除外するのが好ましい。すなわち、ガス圧力容器内部の頂部と底部の温度の平均を内部平均温度とするのが好ましく、赤道付近を除いた4箇所以上の複数個所の平均を内部平均温度とするのがより好ましい。 FIG. 4 shows an example of the flow of the insulating gas inside the gas pressure vessel. In FIG. 4, the drawing is simplified and only the right half of the cross section is shown. An upward flow is generated on the surface of the bus bar, and a circulating flow is formed by natural convection in which it flows downwards so as to follow the tube wall of the gas pressure vessel and then rises again. Furthermore, a vortex separated from the circulating flow is generated near the equator (center part in the figure). Due to the influence of the separation vortex, the temperature fluctuation in the vicinity of the equator of the gas pressure vessel is large. Therefore, it is preferable to exclude the temperature in the vicinity of the equator when calculating the average temperature inside the gas pressure vessel. That is, the average of the temperatures at the top and bottom of the gas pressure vessel is preferably the internal average temperature, and the average of four or more locations excluding the vicinity of the equator is more preferably the internal average temperature.
 照合部41において、記録部20に記録された電流値Iに対応するデータ記憶部30のデータベースの通電条件を照合する。 The collation unit 41 collates the energization conditions in the database of the data storage unit 30 corresponding to the current value I recorded in the recording unit 20.
 (ステップ4)
照合部41において、上記照合した通電条件に対応する、ガス圧力容器内部の平均温度と表面温度との関係を抽出する(図3参照)。
(Step 4)
In the verification unit 41, the relationship between the average temperature inside the gas pressure vessel and the surface temperature corresponding to the verified energization conditions is extracted (see FIG. 3).
 (ステップ5)
照合部41において、上記抽出したガス圧力容器内部の平均温度と表面温度との関係より、図5に示すようにガス圧力容器の表面温度から内部平均温度を算出する。
(Step 5)
In the verification unit 41, the internal average temperature is calculated from the surface temperature of the gas pressure vessel as shown in FIG. 5 based on the relationship between the extracted average temperature inside the gas pressure vessel and the surface temperature.
 (ステップ6)
圧力演算部42において、上記内部平均温度を用いて記録部20のガス圧力を温度補正する。ガス圧力の温度補正は、例えば式(1)に示される実在気体の状態方程式 Beattie-Bridgeman を用いて、基準温度20℃におけるガス圧力に換算する。
(Step 6)
In the pressure calculation part 42, the gas pressure of the recording part 20 is temperature-corrected using the internal average temperature. The temperature correction of the gas pressure is converted into the gas pressure at the reference temperature of 20 ° C. using, for example, the equation of state of the real gas shown in Equation (1), Beattie-Bridgeman.
Figure JPOXMLDOC01-appb-I000001

ここで、p0 はガス圧力(Pa)、v はモル容積(m3 / mol)、R はガス定数(8.31J / mol・K)、T はガス温度(K)であり、式(1)のA とB は下記で示される。
Figure JPOXMLDOC01-appb-I000001

Here, p 0 is the gas pressure (Pa), v is the molar volume (m 3 / mol), R is the gas constant (8.31 J / mol · K), T is the gas temperature (K), and the formula (1 ) A and B are shown below.
   A = 15.78×10-1(1-0.1062×10-3/ v)          (2)
   B = 0.366×10-3  (1-0.1236×10-3/ v )           (3)

 (ステップ7)
ステップ6において温度補正したガス圧力変化の一例を図6に示す。温度補正を行うことで、温度変化に起因する大きな圧力変動が大幅に低減される。しかしながら、微小な圧力変動がなお残る。これは、日照の影響を受ける日中の圧力変動が大きいためである。
A = 15.78 × 10 -1 (1-0.1062 × 10 -3 / v) (2)
B = 0.366 × 10 -3 (1-0.1236 × 10 -3 / v) (3)

(Step 7)
An example of the gas pressure change whose temperature is corrected in step 6 is shown in FIG. By performing temperature correction, large pressure fluctuations due to temperature changes are greatly reduced. However, minute pressure fluctuations still remain. This is because the pressure fluctuation during the daytime affected by sunlight is large.
 そこで、圧力演算部42において圧力データのフィルタリングを行う。日没後の夜間の補正ガス圧力の標準偏差を1時間間隔で求めた一例を図7に示す。ここでの標準偏差は、補正ガス圧力の変動を見る尺度となる。図7において、日没から数時間経過すると、標準偏差が日没直後の半分以下となり安定することがわかる。日没直後の補正ガス圧力の標準偏差の半分以下となる時間帯(例えば、23時~5時の夜間)の補正ガス圧力データを抽出した一例を図8に示す。 Therefore, the pressure calculation unit 42 filters the pressure data. FIG. 7 shows an example in which the standard deviation of the corrected gas pressure at night after sunset is obtained at one hour intervals. The standard deviation here is a measure for seeing fluctuations in the correction gas pressure. In FIG. 7, when several hours have passed since sunset, it can be seen that the standard deviation becomes less than half of that immediately after sunset and becomes stable. FIG. 8 shows an example in which corrected gas pressure data is extracted in a time zone (for example, nighttime from 23:00 to 5:00) that is less than half of the standard deviation of the corrected gas pressure immediately after sunset.
 補正ガス圧力の標準偏差の小さな時間帯、すなわち日照の影響を受けていない夜間の時間帯のデータのみを抽出することで、日中の圧力変動が除去され,補正ガス圧力の変動が平滑化されることがわかる。よって、圧力の温度補正後に残る微小な圧力変動を低減するためのフィルタリングとして、日没直後の補正ガス圧力の標準偏差の半分以下となる時間帯の補正ガス圧力データのみを使用するのが効果的と言える。 By extracting only the data of the time zone with a small standard deviation of the correction gas pressure, that is, the night time zone that is not affected by sunlight, the fluctuation of the correction gas pressure is smoothed. I understand that Therefore, it is effective to use only the corrected gas pressure data in the time zone that is less than half of the standard deviation of the corrected gas pressure immediately after sunset as filtering to reduce the minute pressure fluctuation that remains after pressure correction. It can be said.
 (ステップ8)
ステップ7においてフィルタリングした補正ガス圧力が規定濃度以上のガスリークに相当するかを検定部43において行う。まず、補正ガス圧力の経時変化データを直線回帰する。圧力データの直線回帰は、例えば最小二乗法により行う。具体的には、図9に示されるように、時間(X軸)に対してガス圧力(Y軸)をプロットし、y = ax + b の直線に回帰する。ここで、表示部50に、補正ガス圧力の経時変化および回帰直線を表示することで、管理者がガス圧力容器の状況を認識しやすくできる。
(Step 8)
The verification unit 43 determines whether the corrected gas pressure filtered in step 7 corresponds to a gas leak having a specified concentration or more. First, the regression data of the correction gas pressure with time is linearly regressed. The linear regression of the pressure data is performed by, for example, the least square method. Specifically, as shown in FIG. 9, the gas pressure (Y-axis) is plotted against time (X-axis), and a regression is made to a straight line y = ax + b. Here, by displaying the change with time and the regression line of the corrected gas pressure on the display unit 50, the administrator can easily recognize the state of the gas pressure vessel.
 (ステップ9)
ステップ8において圧力データの直線回帰を行った後、回帰直線y = ax + bの傾きaを一日に一回検定部43に記録する。検定部43には予め、図10に示されるように、許容されるガスリーク濃度の直線の傾きcが保存されている。そこで、日々更新される回帰直線の傾きaと許容ガスリーク直線の傾きcとの比較を検定部43にて行い、ガスリークの有無を判断する。
(Step 9)
After linear regression of the pressure data in step 8, the slope a of the regression line y = ax + b is recorded in the test unit 43 once a day. As shown in FIG. 10, the verification unit 43 stores in advance the slope c of the allowable gas leak concentration line. Therefore, the test unit 43 compares the slope a of the regression line updated daily and the slope c of the allowable gas leak line to determine the presence or absence of a gas leak.
 (ステップ10)
ステップ9において圧力データの回帰直線の傾きaが許容ガスリーク直線の傾きcを上回った場合、ガスリークと判断し、警報を発する。
(Step 10)
If the slope a of the regression line of the pressure data exceeds the slope c of the allowable gas leak line in step 9, it is determined as a gas leak and an alarm is issued.
 上記実施例1によれば、ガス圧力容器の内部温度に大きな影響を及ぼす通電条件を考慮し、予めデータベース化された内部ガス温度と表面温度との関係を用いて内部ガス温度を算出した後にガス圧力の補正を行うため、従来の表面温度を用いた圧力補正よりも高精度なガスリーク検知装置を提供することができる。 According to the first embodiment, the gas condition is calculated after calculating the internal gas temperature using the relation between the internal gas temperature and the surface temperature stored in advance in the database in consideration of energization conditions that greatly affect the internal temperature of the gas pressure vessel. Since the pressure is corrected, it is possible to provide a gas leak detection device with higher accuracy than the pressure correction using the conventional surface temperature.
 図11に本発明の別の実施例を示す。本実施例は、ガス圧力容器周辺の風速の情報を得るために、地方気象台から発信される気象データを保存する気象データサーバ7を設けた点にある。 FIG. 11 shows another embodiment of the present invention. In this embodiment, a weather data server 7 for storing weather data transmitted from a local weather station is provided in order to obtain wind speed information around the gas pressure vessel.
 地方気象台から気象統計情報として、風速、天候(日照)が一定時間ごとに発信される。これらの気象統計情報を気象データサーバ7に取り込み、取り込み情報を記録部20に転送する。風速と日照の影響を考慮した、ガス圧力容器の内部ガス温度と表面温度との関係を予めデータベース化しておくことで、風と日照の影響を考慮した、より精度の高い内部ガス温度の算出が可能となる。 Local weather stations send out wind speed and weather (sunshine) at regular intervals as weather statistics information. The meteorological statistical information is fetched into the meteorological data server 7 and the fetched information is transferred to the recording unit 20. By creating a database of the relationship between the internal gas temperature of the gas pressure vessel and the surface temperature in consideration of the effects of wind speed and sunlight, it is possible to calculate the internal gas temperature with higher accuracy in consideration of the effects of wind and sunlight. It becomes possible.
 なお、気象データサーバ7の代わりに、風速計を設置しても良い。また、実施例1で述べたように、補正ガス圧力の標準偏差が小さい夜間の圧力データのみを使用する場合は、天候の情報を取り込まない構成としても良い。 An anemometer may be installed instead of the weather data server 7. Further, as described in the first embodiment, when only nighttime pressure data having a small standard deviation of the correction gas pressure is used, a configuration in which the weather information is not captured may be employed.
 このように、基本的な構造は実施例1と同様であり、風速と日照を考慮した、ガス圧力容器の内部ガス温度と表面温度との関係を予めデータベース化しておく。気象データを利用することで、ガス圧力容器への風や日照の影響を考慮することができ、より精度の高いガス圧力の温度補正が可能となる。 As described above, the basic structure is the same as that of the first embodiment, and the relation between the internal gas temperature and the surface temperature of the gas pressure vessel in consideration of the wind speed and sunshine is stored in a database in advance. By using the meteorological data, it is possible to consider the influence of wind and sunshine on the gas pressure vessel, and it is possible to perform more accurate gas pressure temperature correction.
 図12に本発明の別の実施例を示す。本実施例は、測定したデータを無線で遠隔地に飛ばし、ガス絶縁開閉装置1から離れた地点でガス圧力の管理を行う点が、実施例1と異なる点である。 FIG. 12 shows another embodiment of the present invention. The present embodiment is different from the first embodiment in that the measured data is sent wirelessly to a remote place and the gas pressure is managed at a point away from the gas insulated switchgear 1.
 図12は、第3の実施例であるガスリーク検知装置を示している。基本構造は実施例1と同様である。実施例3の特徴は、記録部20に発信器21を、演算部40に受信器45を設置した点にある。 FIG. 12 shows a gas leak detection apparatus according to the third embodiment. The basic structure is the same as that of the first embodiment. A feature of the third embodiment is that a transmitter 21 is installed in the recording unit 20 and a receiver 45 is installed in the calculation unit 40.
 記録部20に記録された、ガス圧力センサ10a~10c、温度センサ11a~11cの情報、及び気象データサーバ7の情報を、発信器21から無線で飛ばす。演算部40やデータ記憶部30は、ガス絶縁開閉装置1から離れた場所にあり、ガス圧力容器のガスリークを監視している。変電所設備において、耐サージという課題があるが、演算部40をガス絶縁開閉装置1から離した場所に置くことで、サージ対策が可能となる。また、複数のガス絶縁開閉装置1のガス圧力の情報を遠方で一括して管理可能とする長所を有する。 The information of the gas pressure sensors 10a to 10c, the temperature sensors 11a to 11c, and the information of the weather data server 7 recorded in the recording unit 20 are wirelessly skipped from the transmitter 21. The arithmetic unit 40 and the data storage unit 30 are located away from the gas insulated switchgear 1 and monitor gas leaks in the gas pressure vessel. In the substation equipment, there is a problem of surge resistance, but by placing the calculation unit 40 in a place away from the gas-insulated switchgear 1, it is possible to take a surge countermeasure. In addition, it has an advantage that information on gas pressures of a plurality of gas insulated switchgears 1 can be managed collectively at a distance.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加,削除,置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
1・・・ガス絶縁開閉装置、 2a、2b、2c・・・ガス圧力容器、 3a、3b、3c・・・配管、 4a、4b、4c・・・バルブ、 5・・・母線、 6・・・電流データ取り込み部、 7・・・気象データサーバ、 10a、10b、10c・・・ガス圧力センサ、 11a、11b、11c・・・温度センサ、 20・・・記録部、 21・・・発信器、 30・・・データ記憶部、 40・・・演算部、 41・・・照合部、 42・・・圧力演算部、 43・・・検定部、 45・・・受信器、 50・・・表示部、 1 ... Gas insulated switchgear, 2a, 2b, 2c ... Gas pressure vessel, 3a, 3b, 3c ... Piping, 4a, 4b, 4c ... Valve, 5 ... Busbar, 6 ... Current data capturing unit, 7 ... Weather data server, 10a, 10b, 10c ... Gas pressure sensor, 11a, 11b, 11c ... Temperature sensor, 20 ... Recording unit, 21 ... Transmitter , 30 ... Data storage unit, 40 ... Calculation unit, 41 ... Verification unit, 42 ... Pressure calculation unit, 43 ... Testing unit, 45 ... Receiver, 50 ... Display Part,

Claims (15)

  1.  ガス圧力容器のガス圧力を測定する圧力センサと、
     前記ガス圧力容器の表面温度を測定する温度センサと、
     前記ガス圧力容器内に配された母線を流れる電流値を取り込む電流データ取り込み部と、
     前記ガス圧力の測定値と前記ガス圧力容器の表面温度の測定値と前記電流値を記録する記録部と、
     前記電流値の範囲に応じた前記ガス圧力容器の内部ガス平均温度と前記ガス圧力容器の表面温度との関係が予めデータベース化されているデータ記憶部と、
     前記記録部に記録された電流値に対応する、前記データ記憶部に記憶された前記内部ガス平均温度と前記表面温度との関係を抽出し、前記記録部に記録された前記ガス圧力容器の表面温度から前記ガス圧力容器の内部ガス平均温度を算出する照合部と、
     前記内部ガス平均温度を用いて、前記記録部に記録された前記ガス圧力を基準温度のガス圧力値に補正する圧力演算部と、
     前記補正されたガス圧力を直線回帰し、これにより得られた回帰直線の傾きが規定濃度のガスリークの傾きを上回るかどうかを検定する検定部と、
     を備えたガスリーク検知装置。
    A pressure sensor for measuring the gas pressure in the gas pressure vessel;
    A temperature sensor for measuring the surface temperature of the gas pressure vessel;
    A current data capturing section for capturing a current value flowing through a bus arranged in the gas pressure vessel;
    A recording unit for recording the measured value of the gas pressure, the measured value of the surface temperature of the gas pressure vessel, and the current value;
    A data storage unit in which a relation between the internal gas average temperature of the gas pressure vessel and the surface temperature of the gas pressure vessel corresponding to the range of the current value is stored in a database;
    The surface of the gas pressure vessel recorded in the recording unit is extracted by extracting a relationship between the internal gas average temperature stored in the data storage unit and the surface temperature corresponding to the current value recorded in the recording unit. A collation unit that calculates the internal gas average temperature of the gas pressure vessel from the temperature;
    A pressure calculation unit that corrects the gas pressure recorded in the recording unit to a gas pressure value of a reference temperature using the internal gas average temperature;
    A linear regression of the corrected gas pressure, and a test unit that tests whether the slope of the regression line obtained thereby exceeds the slope of the gas leak at the specified concentration;
    Gas leak detection device with
  2.  請求項1に記載のガスリーク検査装置であって、
     さらに、前記ガス圧力容器の位置する地域の気象データより風速を保存する気象データサーバを有し、
     前記記録部は、さらに前記風速を記録し、
     前記データ記憶部は、前記電流値と前記風速の範囲に応じた、前記ガス圧力容器の内部ガス平均温度と前記ガス圧力容器の表面温度との関係が予めデータベース化されており、
     前記照合部は、前記記録部に記録された電流値と風速に対応する、前記データ記憶部に記憶された前記内部ガス平均温度と前記表面温度との関係を抽出し、前記記録部に記録された前記ガス圧力容器の表面温度から前記ガス圧力容器の内部ガス平均温度を算出することを特徴とする、
     請求項1に記載のガスリーク検査装置。
    The gas leak inspection apparatus according to claim 1,
    Furthermore, it has a meteorological data server that stores wind speed from the meteorological data of the area where the gas pressure vessel is located
    The recording unit further records the wind speed,
    In the data storage unit, the relationship between the internal gas average temperature of the gas pressure vessel and the surface temperature of the gas pressure vessel according to the current value and the range of the wind speed is databased in advance.
    The collation unit extracts a relationship between the internal gas average temperature stored in the data storage unit and the surface temperature corresponding to the current value and wind speed recorded in the recording unit, and is recorded in the recording unit. The internal gas average temperature of the gas pressure vessel is calculated from the surface temperature of the gas pressure vessel.
    The gas leak inspection apparatus according to claim 1.
  3.  前記データ記憶部に記憶される前記ガス圧力容器の内部ガス平均温度が、前記ガス圧力容器内部の頂部と底部の温度の平均であることを特徴とする、
     請求項1に記載のガスリーク検知装置。
    The internal gas average temperature of the gas pressure vessel stored in the data storage unit is an average of the top and bottom temperatures inside the gas pressure vessel,
    The gas leak detection apparatus according to claim 1.
  4.  前記データ記憶部に記憶される前記ガス圧力容器の内部ガス平均温度が、前記ガス圧力容器内部の頂部と底部の温度の平均であることを特徴とする、
     請求項2に記載のガスリーク検知装置。
    The internal gas average temperature of the gas pressure vessel stored in the data storage unit is an average of the top and bottom temperatures inside the gas pressure vessel,
    The gas leak detection apparatus according to claim 2.
  5.  前記データ記憶部に記憶されるガス圧力容器の内部ガス平均温度が、ガス圧力容器の赤道付近を除いた4箇所以上の複数個所の平均であることを特徴とする、
     請求項1に記載のガスリーク検知装置。
    The internal gas average temperature of the gas pressure vessel stored in the data storage unit is an average of a plurality of four or more locations excluding the vicinity of the equator of the gas pressure vessel,
    The gas leak detection apparatus according to claim 1.
  6.  前記データ記憶部に記憶されるガス圧力容器の内部ガス平均温度が、ガス圧力容器の赤道付近を除いた4箇所以上の複数個所の平均であることを特徴とする、
     請求項2に記載のガスリーク検知装置。
    The internal gas average temperature of the gas pressure vessel stored in the data storage unit is an average of a plurality of four or more locations excluding the vicinity of the equator of the gas pressure vessel,
    The gas leak detection apparatus according to claim 2.
  7.  前記ガス圧力容器の表面温度が前記ガス圧力容器の地面側半分の領域で測定された値であることを特徴とする、
     請求項1に記載のガスリーク検知装置。
    The surface temperature of the gas pressure vessel is a value measured in a region on the ground side half of the gas pressure vessel,
    The gas leak detection apparatus according to claim 1.
  8.  前記ガス圧力容器の表面温度が前記ガス圧力容器の地面側半分の領域で測定された値であることを特徴とする、
     請求項2に記載のガスリーク検知装置。
    The surface temperature of the gas pressure vessel is a value measured in a region on the ground side half of the gas pressure vessel,
    The gas leak detection apparatus according to claim 2.
  9.  前記ガス圧力容器の表面温度がガス圧力容器の底部で測定されることを特徴とする、
     請求項1に記載のガスリーク検知装置。
    The surface temperature of the gas pressure vessel is measured at the bottom of the gas pressure vessel,
    The gas leak detection apparatus according to claim 1.
  10.  前記ガス圧力容器の表面温度がガス圧力容器の底部で測定されることを特徴とする、
     請求項2に記載のガスリーク検知装置。
    The surface temperature of the gas pressure vessel is measured at the bottom of the gas pressure vessel,
    The gas leak detection apparatus according to claim 2.
  11.  前記記録部は、該記録部に記録されたデータを無線で飛ばす発信機を有し、
     前記演算部は、前記データを受信する受信機を有することを特徴とする、
     請求項1に記載のガスリーク検知装置。
    The recording unit has a transmitter that wirelessly skips data recorded in the recording unit,
    The arithmetic unit has a receiver for receiving the data,
    The gas leak detection apparatus according to claim 1.
  12.  前記記録部は、該記録部に記録されたデータを無線で飛ばす発信機を有し、
     前記演算部は、前記データを受信する受信機を有することを特徴とする、
     請求項2に記載のガスリーク検知装置。
    The recording unit has a transmitter that wirelessly skips data recorded in the recording unit,
    The arithmetic unit has a receiver for receiving the data,
    The gas leak detection apparatus according to claim 2.
  13.  請求項1に記載のガスリーク検知装置を用いたガスリーク検査方法であって、
     前記演算部においてガス圧力を基準温度のガス圧力値に補正した後、日没直後の前記補正されたガス圧力の標準偏差の半分以下となる時間帯の補正ガス圧力データを使用して、前記補正ガス圧力データの直線回帰を行い、これにより得られた回帰直線の傾きが規定許容濃度のガスリーク直線の傾きを上回るかどうかを判定することでガスリークの有無を判断することを特徴とする、
     ガスリーク検査方法。
    A gas leak inspection method using the gas leak detection device according to claim 1,
    After correcting the gas pressure to the gas pressure value of the reference temperature in the arithmetic unit, using the corrected gas pressure data in the time zone that is less than half of the standard deviation of the corrected gas pressure immediately after sunset, the correction It is characterized by performing the linear regression of the gas pressure data and judging whether or not there is a gas leak by judging whether or not the slope of the regression line obtained thereby exceeds the slope of the gas leak straight line of the specified allowable concentration,
    Gas leak inspection method.
  14.  請求項2に記載のガスリーク検知装置を用いたガスリーク検査方法であって、
     前記演算部においてガス圧力を基準温度のガス圧力値に補正した後、日没直後の前記補正されたガス圧力の標準偏差の半分以下となる時間帯の補正ガス圧力データを使用して、前記補正ガス圧力データの直線回帰を行い、これにより得られた回帰直線の傾きが規定許容濃度のガスリーク直線の傾きを上回るかどうかを判定することでガスリークの有無を判断することを特徴とする、
     ガスリーク検査方法。
    A gas leak inspection method using the gas leak detection device according to claim 2,
    After correcting the gas pressure to the gas pressure value of the reference temperature in the arithmetic unit, using the corrected gas pressure data in the time zone that is less than half of the standard deviation of the corrected gas pressure immediately after sunset, the correction It is characterized by performing the linear regression of the gas pressure data and judging whether or not there is a gas leak by judging whether or not the slope of the regression line obtained thereby exceeds the slope of the gas leak straight line of the specified allowable concentration,
    Gas leak inspection method.
  15.  ガス圧力容器内のガス圧力を測定することにより、前記ガス圧力容器からのガスリークを検知する方法において、
     前記ガス圧力容器内のガス圧力を圧力センサにより計測し、
     前記ガス圧力容器の表面温度を温度センサにより測定し、
     前記ガス圧力容器内に配された母線を流れる電流値を電流データ取り込み部を介して取得し、
     前記電流値に対応する前記ガス圧力容器の内部ガス平均温度と前記ガス圧力容器の表面温度との関係を、予め作成したデータベースより抽出し、
     前記データベース中の前記内部ガス平均温度と前記表面温度との関係を用いて、前記測定したガス圧力容器の表面温度から内部ガス平均温度を算出し、
     前記算出した内部ガス平均温度を用いて前記測定したガス圧力を基準温度におけるガス圧力に補正し、
     前記補正したガス圧力を直線回帰し、これにより得られた回帰直線の傾きが規定許容濃度のガスリーク直線の傾きを上回るかどうかを判定することでガスリークの有無を判断することを特徴とする、
     ガスリーク検査方法。
    In the method of detecting gas leak from the gas pressure vessel by measuring the gas pressure in the gas pressure vessel,
    Measure the gas pressure in the gas pressure vessel with a pressure sensor,
    Measuring the surface temperature of the gas pressure vessel with a temperature sensor;
    The current value flowing through the bus arranged in the gas pressure vessel is acquired through a current data capturing unit,
    The relationship between the internal gas average temperature of the gas pressure vessel corresponding to the current value and the surface temperature of the gas pressure vessel is extracted from a database created in advance,
    Using the relationship between the internal gas average temperature and the surface temperature in the database, the internal gas average temperature is calculated from the measured surface temperature of the gas pressure vessel,
    Correcting the measured gas pressure using the calculated internal gas average temperature to the gas pressure at the reference temperature,
    The corrected gas pressure is linearly regressed, and the presence or absence of gas leak is determined by determining whether or not the slope of the regression line obtained thereby exceeds the slope of the gas leak straight line of the prescribed allowable concentration.
    Gas leak inspection method.
PCT/JP2015/056282 2014-09-09 2015-03-04 Gas leak detection device and gas leak inspection method WO2016038908A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-182852 2014-09-09
JP2014182852A JP2016057135A (en) 2014-09-09 2014-09-09 Gas leak detector and method for inspecting gas leak

Publications (1)

Publication Number Publication Date
WO2016038908A1 true WO2016038908A1 (en) 2016-03-17

Family

ID=55458673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056282 WO2016038908A1 (en) 2014-09-09 2015-03-04 Gas leak detection device and gas leak inspection method

Country Status (2)

Country Link
JP (1) JP2016057135A (en)
WO (1) WO2016038908A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105703258A (en) * 2016-03-21 2016-06-22 广东电网有限责任公司东莞供电局 Action state monitoring system of gas insulated switchgear (GIS) and application method of action state monitoring system
CN108628370A (en) * 2018-06-08 2018-10-09 青岛特利信工业科技有限公司 Environment control method and system in the case detected in conjunction with micro-positive pressure and SF6
WO2019003311A1 (en) * 2017-06-27 2019-01-03 東芝エネルギーシステムズ株式会社 Gas leak determination device, gas leak determination program, and gas leak determination method
CN111879484A (en) * 2020-09-09 2020-11-03 广东冠电科技股份有限公司 Gas leakage detection device
CN112525438A (en) * 2020-10-15 2021-03-19 国网浙江省电力有限公司杭州供电公司 SF (sulfur hexafluoride)6Air leakage monitoring method and system for density relay
CN117288392A (en) * 2023-11-24 2023-12-26 福建优迪电力技术有限公司 Method and system for SF6 gas leakage monitoring

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7318065B2 (en) 2018-07-11 2023-07-31 能美防災株式会社 Sprinkler fire extinguishing equipment
JP7080753B2 (en) * 2018-07-11 2022-06-06 能美防災株式会社 Sprinkler fire extinguishing equipment
US20220352697A1 (en) 2019-07-19 2022-11-03 Kabushiki Kaisha Toshiba Gas leakage detection system and gas leakage detection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07287040A (en) * 1994-04-18 1995-10-31 Meidensha Corp Monitoring device for gas insulation transformer
US20070027640A1 (en) * 2005-07-28 2007-02-01 Avistar, Inc. Method and apparatus for monitoring SF6 gas and electric utility apparatus
JP2007263584A (en) * 2006-03-27 2007-10-11 Mitsubishi Electric Corp Gas leakage detector and gas leakage detection method
JP2011130581A (en) * 2009-12-17 2011-06-30 Mitsubishi Electric Corp Gas pressure monitoring system and gas-insulated electric apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07287040A (en) * 1994-04-18 1995-10-31 Meidensha Corp Monitoring device for gas insulation transformer
US20070027640A1 (en) * 2005-07-28 2007-02-01 Avistar, Inc. Method and apparatus for monitoring SF6 gas and electric utility apparatus
JP2007263584A (en) * 2006-03-27 2007-10-11 Mitsubishi Electric Corp Gas leakage detector and gas leakage detection method
JP2011130581A (en) * 2009-12-17 2011-06-30 Mitsubishi Electric Corp Gas pressure monitoring system and gas-insulated electric apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105703258A (en) * 2016-03-21 2016-06-22 广东电网有限责任公司东莞供电局 Action state monitoring system of gas insulated switchgear (GIS) and application method of action state monitoring system
WO2019003311A1 (en) * 2017-06-27 2019-01-03 東芝エネルギーシステムズ株式会社 Gas leak determination device, gas leak determination program, and gas leak determination method
JPWO2019003311A1 (en) * 2017-06-27 2020-08-06 株式会社東芝 Gas leak determination device, gas leak determination program, and gas leak determination method
CN108628370A (en) * 2018-06-08 2018-10-09 青岛特利信工业科技有限公司 Environment control method and system in the case detected in conjunction with micro-positive pressure and SF6
CN111879484A (en) * 2020-09-09 2020-11-03 广东冠电科技股份有限公司 Gas leakage detection device
CN112525438A (en) * 2020-10-15 2021-03-19 国网浙江省电力有限公司杭州供电公司 SF (sulfur hexafluoride)6Air leakage monitoring method and system for density relay
CN117288392A (en) * 2023-11-24 2023-12-26 福建优迪电力技术有限公司 Method and system for SF6 gas leakage monitoring
CN117288392B (en) * 2023-11-24 2024-04-16 福建优迪电力技术有限公司 Method and system for SF6 gas leakage monitoring

Also Published As

Publication number Publication date
JP2016057135A (en) 2016-04-21

Similar Documents

Publication Publication Date Title
WO2016038908A1 (en) Gas leak detection device and gas leak inspection method
JP6514598B2 (en) Gas leak detection device and gas leak detection method
US11121537B2 (en) System and method for locating faults and communicating network operational status to a utility crew using an intelligent fuse
JP4495103B2 (en) Gas leak detection device and gas leak detection method
EP3469387B1 (en) A method and system for dynamic fault detection in an electric grid
US20150355049A1 (en) Determination of a leakage rate of an insulation gas
CN103854446B (en) A kind of dynamic temperature rise diagnostic alarms method and apparatus of high-tension switch cabinet
KR20160105784A (en) Method and wind turbine for warning of lightning
CN104391086B (en) Transformer external environment condition humidity parameter measuring method and system
CN106771867A (en) Feeder line fault independent positioning method, detecting terminal, main website, alignment system
JP6805346B2 (en) Gas leak judgment device, gas leak judgment program, and gas leak judgment method
KR20150121369A (en) Gis preventive diagnostic system and gas pressure monitoring method thereof
GB2537863B (en) Methods and systems for alerting a user to the presence of a fault in an electromechanical system in a railway infrastructure
CN106257294A (en) For the method and apparatus detecting the fault in electrical network
CN107905204A (en) Foundation structure monitors system
CN105297791B (en) A kind of transformer substation monitoring system
JP6521744B2 (en) Gas-insulated switchgear monitoring apparatus, gas-insulated switchgear monitoring method, and gas-insulated switchgear
CN110042402A (en) A kind of cathodic protection on-line monitoring method for early warning
JP6157753B1 (en) Monitoring system and monitoring method
CN108615093A (en) SF6 gas pressures prediction technique, device and electronic equipment
KR101505182B1 (en) Method for acquiring information on atmospheric pressure measured by sensor of mobile terminals and server and computer-readable recording media using the same
JP2016217966A (en) Calibration method of weather hydrologic observation device and weather hydrologic observation system
VERSTRALEN et al. LYRA: a novel autonomous monitoring solution for long and short bridge stays and hangers
JP2022102162A (en) Lightning occurrence prediction system, and power transmission accident occurrence prediction system using the system
JP2022147564A (en) Electric field detection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15839996

Country of ref document: EP

Kind code of ref document: A1