JP6521744B2 - Gas-insulated switchgear monitoring apparatus, gas-insulated switchgear monitoring method, and gas-insulated switchgear - Google Patents

Gas-insulated switchgear monitoring apparatus, gas-insulated switchgear monitoring method, and gas-insulated switchgear Download PDF

Info

Publication number
JP6521744B2
JP6521744B2 JP2015109834A JP2015109834A JP6521744B2 JP 6521744 B2 JP6521744 B2 JP 6521744B2 JP 2015109834 A JP2015109834 A JP 2015109834A JP 2015109834 A JP2015109834 A JP 2015109834A JP 6521744 B2 JP6521744 B2 JP 6521744B2
Authority
JP
Japan
Prior art keywords
pressure
gas
insulated switchgear
temperature
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015109834A
Other languages
Japanese (ja)
Other versions
JP2016226146A (en
Inventor
優 楯身
楯身  優
六戸 敏昭
敏昭 六戸
正志 西村
正志 西村
稲波 久雄
久雄 稲波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015109834A priority Critical patent/JP6521744B2/en
Publication of JP2016226146A publication Critical patent/JP2016226146A/en
Application granted granted Critical
Publication of JP6521744B2 publication Critical patent/JP6521744B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gas-Insulated Switchgears (AREA)

Description

本発明は、ガス絶縁開閉装置の内部で発生する接触不良を検出する技術に関する。   The present invention relates to a technology for detecting a contact failure that occurs inside a gas-insulated switchgear.

ガス絶縁開閉装置は遮断器、断路器、母線、避雷器、計器用変成器等の機器を絶縁性能の高い六フッ化硫黄ガスで封入する密閉タンクである。例えば、複数のガス絶縁開閉装置を連結し、変電所内に設置される配線を密封するのに用いられる。配線にガス絶縁開閉装置を用いることにより変電所の小型化が実現されている。ガス絶縁開閉装置は「GIS」ともいう(GIS:Gas Insulated Switch)。また、六フッ化硫黄ガスは「SFガス」ともいう。 The gas-insulated switchgear is a sealed tank that encloses devices such as a circuit breaker, a disconnector, a bus bar, a lightning arrester, a meter transformer, etc. with sulfur hexafluoride gas having high insulation performance. For example, it is used to connect a plurality of gas-insulated switchgears and to seal the wiring installed in the substation. By using gas-insulated switchgear for wiring, miniaturization of the substation has been realized. The gas insulated switchgear is also called "GIS" (GIS: Gas Insulated Switch). Further, sulfur hexafluoride gas is also referred to as "SF 6 gas".

GISは内部に、遮断器あるいは断路器など、可動部および接点を含む開閉器を封入する場合がある。開閉器は、接点が完全に接触する位置に収まらず、不完全に接触した状態になると、高い接触抵抗を持つこととなる。高い接触抵抗の部分に電流が流れると異常発熱が起こることがある。こ接触不良による異常発熱は接点を溶損させ、地絡あるいは短絡による事故の原因となる場合がある。   The GIS may internally enclose switches, including moveable parts and contacts, such as circuit breakers or disconnectors. The switch will have high contact resistance when it does not fit in the position where the contacts are in full contact and it is in an incomplete contact state. Abnormal heating may occur if current flows in the area with high contact resistance. The abnormal heat generation due to the contact failure may melt the contact and cause an accident due to a ground fault or a short circuit.

特許文献1は接触不良を検出する技術を開示している。特許文献1には、内部に封入されたSFガスの圧力(以下「ガス圧力」ともいう)の変化ΔPと導体の発熱量とから接触不良を検出する技術が示されている。 Patent Document 1 discloses a technique for detecting a contact failure. Patent Document 1 discloses a technique for detecting a contact failure from a change ΔP of pressure (hereinafter also referred to as “gas pressure”) of SF 6 gas enclosed inside and a calorific value of a conductor.

特開昭56−125908号公報Japanese Patent Application Laid-Open No. 56-125908

特許文献1で開示される技術は、短時間Δtにおける通電電流によるジュール熱が全てガス圧力を上昇させるエネルギーに反映されるという前提で異常な発熱が発生しているか否か判定している。しかしながら、実際には、ジュール熱はガス絶縁開閉装置に封入された機器および配線の温度上昇にも使われるため、ガス圧力の変化として表れるのは一部である。また、特許文献1の手法では、時間に対する電流の変化の割合が小さいとガス圧力の変化ΔPも小さくなるので、もともと電流の変化が小さいようなシステムには不向きな手法である。   The technique disclosed in Patent Document 1 determines whether or not abnormal heat generation occurs on the premise that all Joule heat by current flow in a short time Δt is reflected in energy that raises the gas pressure. However, in practice, Joule heat is also used to raise the temperature of the equipment and wiring enclosed in the gas-insulated switchgear, and therefore, it appears as a change in gas pressure. Further, in the method of Patent Document 1, when the rate of change in current with respect to time is small, the change in gas pressure ΔP is also small, so this method is unsuitable for a system in which the change in current is originally small.

本発明の目的は、ガス絶縁開閉装置内の異常を高い確度で検出する技術を提供することである。   An object of the present invention is to provide a technique for detecting an abnormality in a gas insulated switchgear with high accuracy.

本発明の一態様によるガス絶縁開閉装置監視装置は、複数の圧力容器を含み1つ以上の圧力容器に機器を封入するガス絶縁開閉装置内の前記機器の異常を検知するガス絶縁開閉装置監視装置であって、前記圧力容器内のガス圧力を取得する圧力取得手段と、ガス圧力が他の圧力容器のガス圧力より所定の圧力差閾値以上高い圧力容器の内部の機器に異常が発生していると判定する判定手段と、を有している。   A gas-insulated switchgear monitoring apparatus according to an aspect of the present invention includes a plurality of pressure vessels and seals equipment in one or more pressure vessels. An abnormality occurs in the pressure acquiring means for acquiring the gas pressure in the pressure vessel, and the equipment inside the pressure vessel whose gas pressure is higher than the gas pressure of the other pressure vessels by a predetermined pressure difference threshold or more. And determining means for determining that

本発明によれば、ガス絶縁開閉装置内の機器の異常を高い確度で検知することができる。   ADVANTAGE OF THE INVENTION According to this invention, the abnormality of the apparatus in gas insulated switchgear can be detected with high precision.

本実施形態によるガス絶縁開閉設備の概略的な物理構成を示すブロック図である。It is a block diagram showing a schematic physical configuration of gas insulated switching equipment by this embodiment. ガス絶縁開閉装置1の全体構成の一例を示す図である。FIG. 1 is a view showing an example of the entire configuration of a gas-insulated switchgear 1. 圧力容器の断面を示す図である。It is a figure which shows the cross section of a pressure vessel. 本実施形態による監視装置の概略的な機能構成を示すブロック図である。It is a block diagram showing a schematic functional configuration of a monitoring device according to the present embodiment. 本実施形態による監視装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the monitoring apparatus by this embodiment. ガス温度およびガス圧力の算出処理について説明するための図である。It is a figure for demonstrating calculation processing of gas temperature and gas pressure. ガス温度特性について説明するための図である。It is a figure for demonstrating a gas temperature characteristic. 20℃換算ガス圧力P20の経時変化を示すグラフである。It is a graph showing a time course of 20 ° C. Conversion gas pressure P 20. 通電電流Iと20℃換算のガス圧力差ΔP20との関係を示すグラフである。It is a graph which shows the relationship between electricity supply current I and gas pressure difference deltaP20 of 20 ° C conversion. 他の実施形態における処理の詳細処理を説明するための図である。It is a figure for demonstrating the detailed process of the process in other embodiment. 実測データの一例を示す図である。It is a figure which shows an example of measurement data.

本発明の実施形態について図面を参照して詳細に説明する。なお、後述する実施形態は一例であって、実施形態同士の組み合わせ、実施形態と公知又は周知の技術との組み合わせ、実施形態の一部を公知又は周知の技術で置換することができる。   Embodiments of the present invention will be described in detail with reference to the drawings. The embodiments to be described later are merely examples, and combinations of the embodiments, combinations of the embodiments and known or known techniques, and some of the embodiments can be replaced by known or known techniques.

図1は、本実施形態によるガス絶縁開閉設備の概略的な物理構成を示すブロック図である。図1を参照すると、本実施形態によるガス絶縁開閉設備は、ガス絶縁開閉装置1と、その監視装置100とを有している。   FIG. 1 is a block diagram showing a schematic physical configuration of the gas-insulated switchgear according to the present embodiment. Referring to FIG. 1, the gas-insulated switchgear according to the present embodiment includes a gas-insulated switchgear 1 and a monitoring device 100 thereof.

ガス絶縁開閉装置1は、SFガスを封入した円筒形の複数の圧力容器2a〜2cが連結された構造になっている。これらの圧力容器2a〜2cの中心部に、その同軸方向に導体の母線5が貫通している。一部の圧力容器2a〜2c(図1では圧力容器2b)の内部には、母線5だけではなく、機器6が封入されている。 The gas-insulated switchgear 1 has a structure in which a plurality of cylindrical pressure vessels 2a to 2c in which SF 6 gas is sealed are connected. In the center of these pressure vessels 2a to 2c, a bus bar 5 of a conductor penetrates in the coaxial direction. Not only the bus bar 5 but also the device 6 is enclosed inside some of the pressure vessels 2a to 2c (the pressure vessel 2b in FIG. 1).

機器6は一例として開閉装置すなわち接点を有する電気回路である。開閉装置の異常として接点の接触不良がある。接触不要は過剰な発熱の原因となる比較的重大な異常であるため、本実施形態ではこの接触不良を検知の対象としている。   The device 6 is an electric circuit having a switchgear, that is, a contact, as an example. There is contact failure of the contact as an abnormality of the switchgear. Since the non-contact is a relatively serious abnormality that causes excessive heat generation, in the present embodiment, this contact failure is targeted for detection.

図2は、ガス絶縁開閉装置1の全体構成の一例を示す図である。図2の例では、「001」から「0050」という多数の圧力容器2が複雑に連結されている。「001」の圧力容器2に着目すると、その中を母線5が貫通し、機器(開閉器)6が封入されている。   FIG. 2 is a view showing an example of the entire configuration of the gas-insulated switchgear 1. As shown in FIG. In the example of FIG. 2, a large number of pressure vessels 2 from “001” to “0050” are connected in a complicated manner. Focusing on the pressure vessel 2 of "001", the bus bar 5 penetrates through the pressure vessel 2 and the device (switch) 6 is enclosed.

図1に戻り、監視装置100は、各圧力容器2の内部のガスの圧力を測定する圧力センサ3と、圧力容器2の表面の温度(以下「タンク温度」と呼ぶ)を測定するための温度センサ4と、母線5に流れる電流(以下「通電電流」と呼ぶ)を測定する電流センサ7と、各センサから出力されるアナログ信号をデジタル信号に変換するA/D変換器8と、A/D変換器8と通信線9により結ばれる処理部10と、測定したデータを記録する記録部11と、予め解析により推定した、タンク温度Ttankと、通電電流Iと、ガス温度Tgasとの相互の関係を表わす情報が予め記録されたガス温度特性データベース12と、接触不良による異常が発生したことを表示する表示部13とを有する。 Returning to FIG. 1, the monitoring device 100 measures a pressure sensor 3 that measures the pressure of the gas inside each pressure vessel 2 and a temperature for measuring the surface temperature of the pressure vessel 2 (hereinafter referred to as “tank temperature”) A sensor 4, a current sensor 7 for measuring a current (hereinafter referred to as “energized current”) flowing through the bus 5, an A / D converter 8 for converting an analog signal output from each sensor into a digital signal, A / D The processing unit 10 connected by the D converter 8 and the communication line 9, the recording unit 11 for recording the measured data, and the tank temperature T tank , the conduction current I, and the gas temperature T gas estimated by analysis in advance It has a gas temperature characteristic database 12 in which information representing the mutual relationship is recorded in advance, and a display unit 13 which displays that an abnormality due to a contact failure has occurred.

図3は、圧力容器の断面を示す図である。圧力容器2は、筒状のシース21の内部にSFガス22が封入された構造である。圧力容器2内には母線5が貫通している。母線5は通電電流Iが流れる電線である。 FIG. 3 is a view showing a cross section of the pressure vessel. The pressure vessel 2 has a structure in which an SF 6 gas 22 is enclosed in a tubular sheath 21. A bus bar 5 penetrates into the pressure vessel 2. The bus bar 5 is a wire through which the current I flows.

図4は、本実施形態による監視装置の概略的な機能構成を示すブロック図である。図4を参照すると、監視装置100は、圧力センサ3、温度センサ4、および電流センサ7の他に、温度取得部10A、圧力取得部10B、および判定部10Cを有している。この温度取得部10A、圧力取得部10B、および判定部10Cは、図1における処理部10に相当する。   FIG. 4 is a block diagram showing a schematic functional configuration of the monitoring device according to the present embodiment. Referring to FIG. 4, the monitoring device 100 includes a temperature acquisition unit 10A, a pressure acquisition unit 10B, and a determination unit 10C, in addition to the pressure sensor 3, the temperature sensor 4, and the current sensor 7. The temperature acquisition unit 10A, the pressure acquisition unit 10B, and the determination unit 10C correspond to the processing unit 10 in FIG.

圧力取得部10Bは、圧力容器2内のガス圧力を取得する。判定部10Cは、ガス圧力が他の圧力容器2のガス圧力より所定の圧力差閾値以上高い圧力容器2の内部の機器6に異常が発生していると判定する。これにより、複数の圧力容器2のガス圧力の差と適切な圧力閾値との比較に基づいて圧力容器2内の機器6の異常を検知するので、機器6の異常による発熱がガス圧力の上昇にどの程度費やされるか、電流の時間変化がどの程度か等に関わりなく、機器6の異常を高い確度で検知することができる。   The pressure acquisition unit 10 </ b> B acquires the gas pressure in the pressure vessel 2. The determination unit 10C determines that an abnormality occurs in the device 6 inside the pressure vessel 2 in which the gas pressure is higher than the gas pressure of the other pressure vessels 2 by a predetermined pressure difference threshold or more. Thereby, since the abnormality of the apparatus 6 in the pressure vessel 2 is detected based on the difference between the gas pressure of the plurality of pressure vessels 2 and the appropriate pressure threshold, the heat generation due to the abnormality of the apparatus 6 causes the gas pressure to rise. Irrespective of how much time is spent, and how much the current changes with time, etc., it is possible to detect an abnormality of the device 6 with high accuracy.

また、判定部10Cは、取得されるガス圧力に基づき圧力容器2からガスが漏れているか否か予め判定し、ガスが漏れていない圧力容器2について機器6に異常が発生しているか否か判定する。ガスが漏れている圧力容器2はガス圧力が低下してしまうので他の圧力容器2とのガス圧力の差によって機器6の異常を正常に検知できない。そのため、そのような圧力容器2を機器6の異常検知の対象から除外することにより、機器6の異常を高い確度で検知することを可能にしている。   Further, the determination unit 10C determines in advance whether gas leaks from the pressure vessel 2 based on the acquired gas pressure, and determines whether or not an abnormality occurs in the device 6 for the pressure vessel 2 in which the gas does not leak. Do. Since the gas pressure of the pressure vessel 2 in which the gas is leaking decreases, the difference in gas pressure with the other pressure vessels 2 can not normally detect an abnormality of the device 6. Therefore, by excluding such a pressure vessel 2 from the target of abnormality detection of the device 6, it is possible to detect an abnormality of the device 6 with high accuracy.

また、判定部10Cは、隣り合った圧力容器2のガス圧力の差に基づき圧力容器2内の機器6の異常の有無を判定する。これにより、似通った外部環境に置かれた圧力容器2同士の内部のガス圧力の差により機器6の異常を検知するので、高い精度で機器6の異常を検知することができる。   Further, the determination unit 10C determines the presence or absence of abnormality of the device 6 in the pressure vessel 2 based on the difference in gas pressure between the adjacent pressure vessels 2. Thereby, since the abnormality of the apparatus 6 is detected based on the difference in the gas pressure inside the pressure vessels 2 placed in similar external environments, the abnormality of the apparatus 6 can be detected with high accuracy.

さらに、判定部10Cは、判定対象の圧力容器2のガス圧力と判定対象の圧力容器2の両隣りの2つの圧力容器2のガス圧力との差をそれぞれ算出し、両方の差の値が圧力差閾値以上であれば、判定対象の圧力容器2内の機器6に異常が発生していると判定する。これにより、近い環境の両隣りの圧力容器2とのガス圧力の差が共に圧力差閾値以上である圧力容器2内の機器6の異常と判定するので、より高い精度で機器6の異常を検知することができる。   Furthermore, the determination unit 10C calculates the difference between the gas pressure of the pressure container 2 to be determined and the gas pressure of the two pressure containers 2 on both sides of the pressure container 2 to be determined. If it is more than a difference threshold value, it will be judged that abnormalities have occurred in apparatus 6 in pressure vessel 2 of judgment object. As a result, it is determined that the equipment 6 in the pressure vessel 2 has a difference between the gas pressure with both adjacent pressure vessels 2 in the near environment, both of which are equal to or larger than the pressure difference threshold. can do.

さらに本実施形態による監視装置100について詳細に説明する。   Further, the monitoring device 100 according to the present embodiment will be described in detail.

図5は、本実施形態による監視装置の動作を示すフローチャートである。   FIG. 5 is a flowchart showing the operation of the monitoring device according to the present embodiment.

監視装置100は、所定の周期で、圧力センサ3で測定されるガス圧力と、温度センサ4で測定される圧力容器2のタンク温度と、電流センサ7で測定される導体(母線)5の通電電流とを収集する(ステップS1)。圧力センサ3、温度センサ4、および電流センサ7からのアナログの出力信号がA/D変換器8で各検出値を示すデジタル信号に変換されて処理部10に入力される。処理部10は、デジタル信号が示す各検出値を記録部11に格納する。   The monitoring apparatus 100 supplies the gas pressure measured by the pressure sensor 3, the tank temperature of the pressure vessel 2 measured by the temperature sensor 4, and the energization of the conductor (bus) 5 measured by the current sensor 7 at a predetermined cycle. The current is collected (step S1). Analog output signals from the pressure sensor 3, the temperature sensor 4, and the current sensor 7 are converted into digital signals indicating detected values by the A / D converter 8 and are input to the processing unit 10. The processing unit 10 stores each detection value indicated by the digital signal in the recording unit 11.

図6は、ガス温度およびガス圧力の算出処理について説明するための図である。図6にも示すように、次に監視装置100は、温度取得部10Aによって、タンク温度Ttankおよび通電電流Iに基づいて、ガス温度の一次推定値である一次推定ガス温度Tgas0を算出する(ステップS2)。その際、温度取得部10Aはガス温度特性データベース12を参照する。 FIG. 6 is a diagram for explaining calculation processing of gas temperature and gas pressure. As also shown in FIG. 6, next, the monitoring device 100 calculates a primary estimated gas temperature T gas0 , which is a primary estimated value of the gas temperature, based on the tank temperature T tank and the energizing current I by the temperature acquisition unit 10A. (Step S2). At that time, the temperature acquisition unit 10A refers to the gas temperature characteristic database 12.

ガス温度特性データベース12には予め圧力容器の寸法等を考慮して数値解析で演算されたガス温度特性のデータが格納されている。ガス温度特性は、電流Iをパラメータとしたタンク温度Ttankと一次推定ガス温度Tgas0との相関関係を示している。一次推定ガス温度Tgas0には、電流Iおよびタンク温度Ttankが安定した定常状態でのガス温度の推定値を用いている。 The gas temperature characteristic database 12 previously stores data of the gas temperature characteristic calculated by numerical analysis in consideration of the dimensions of the pressure vessel and the like. Gas temperature characteristic shows the correlation between the tank temperature T tank and the primary estimated gas temperature T Gas0 that the current I and parameters. As the primary estimated gas temperature T gas0 , an estimated value of the gas temperature in a steady state in which the current I and the tank temperature T tank are stable is used.

図7は、ガス温度特性について説明するための図である。図7(a)に、電流Iをパラメータとしたタンク温度Ttankと一次推定ガス温度Tgas0との相関関係のグラフが示されている。 FIG. 7 is a diagram for explaining gas temperature characteristics. In FIG. 7 (a), a graph of correlation between the tank temperature T tank and the primary estimated gas temperature T Gas0 that the current I as a parameter is shown.

ここで一例として、測定されたタンク温度TtankがT’[℃]であり、通電電流IがI’[kA]であったとする。図7(b)に示すように、電流I’は電流I1より大きく電流I2より小さい値であるとする。温度取得部10Aは、タンク温度Ttankを通電電流Iの二次曲線と想定して電流Iと電流Iの間を内挿し、その二次曲線に基づき、電流I’に対応する一次推定ガス温度Tgas0(T’,I’)を算出する。 Here, as an example, it is assumed that the measured tank temperature T tank is T ′ [° C.] and the conduction current I is I ′ [kA]. As shown in FIG. 7B, it is assumed that the current I ′ is larger than the current I1 and smaller than the current I2. Temperature acquisition unit 10A, interpolates between current I 1 and the current I 2 assumes a tank temperature T tank and the secondary curve of the energizing current I, based on the quadratic curve, corresponding primary estimated current I ' The gas temperature T gas0 (T ', I') is calculated.

なお、ここで二次曲線で内挿するのは、論理的には、母線5の電流による発熱量が電流の2乗に比例するためである。しかしながら、事前に、十分に細かい間隔の電流値毎にタンク温度とガス温度の相関関係を実測値として収集しておくことができれば、線形近似による補間を行ってもよい。   Note that the reason for interpolating with a quadratic curve here is that, theoretically, the amount of heat generated by the current of the bus 5 is proportional to the square of the current. However, if the correlation between the tank temperature and the gas temperature can be collected as an actual measurement value for each current value with sufficiently fine intervals, interpolation by linear approximation may be performed in advance.

また、予め想定している電流Iの最大値よりも大きい電流I’が測定された場合、温度取得部10Aは、外挿によって一次推定ガス温度Tgas0を算出すればよい。 Further, when a current I ′ larger than the maximum value of the current I assumed in advance is measured, the temperature acquisition unit 10A may calculate the primary estimated gas temperature T gas0 by extrapolation.

以上のように、電流Iとタンク温度Ttankから一次推定ガス温度Tgas0を得ることができる。 As described above, may be from the current I and the tank temperature T tank obtain primary estimated gas temperature T gas0.

さらに、温度取得部10Aは、時系列に蓄積された一次推定ガス温度Tgas0をフィルタ処理することにより、ガス圧力の算出処理に用いるガス温度Tgasを算出する。 Furthermore, the temperature acquisition unit 10A calculates the gas temperature T gas used for the gas pressure calculation process by filtering the primary estimated gas temperature T gas0 accumulated in time series.

次に、監視装置100は、温度取得部10Aによって、一次推定ガス温度Tgas0をフィルタリング処理することにより、過渡的な温度推移を考慮したガス温度Tgasを算出する(ステップS3)。ここではフィルタリング処理の一例として、一次推定ガス温度Tgas0の履歴データを用いた移動平均演算を示す。系の時定数をτとした場合、時間τで算出された過去のガス温度の一次推定ガス温度Tgas0(i)(i=1,2,…,N)の平均値を算出する。 Next, the monitoring device 100 performs the filtering process on the primary estimated gas temperature T gas0 by the temperature acquisition unit 10A to calculate the gas temperature T gas in consideration of a transient temperature transition (step S3). Here, moving average calculation using history data of the primary estimated gas temperature T gas0 is shown as an example of the filtering process. Assuming that the time constant of the system is τ, an average value of the primary estimated gas temperature T gas0 (i) (i = 1, 2,..., N) of the past gas temperature calculated at time τ is calculated.

Figure 0006521744
Figure 0006521744

式(1)において、N=(時定数τ)/(演算周期)である。つまり移動平均をとる時間は系の時定数に基づいて決めればよい。ここでは時定数τの範囲内の一次推定ガス温度Tgas0の平均を取る例を示したが、移動平均をとる時間範囲がこれに限定されることはない。時定数τの3倍程度までの移動平均を取ってもよい。 In equation (1), N = (time constant τ) / (arithmetic cycle). That is, the time to take moving average may be determined based on the time constant of the system. Although the example which takes the average of primary estimated gas temperature Tgas0 in the range of time constant (tau) was shown here, the time range which takes a moving average is not limited to this. A moving average up to about three times the time constant τ may be taken.

図3に示したような、母線5とシース21が同軸で無限に延びる圧力容器2と仮定して、誘導および輻射を無視すると、母線5、ガス22、シース21の非定常熱伝達方程式はそれぞれ式(2)(3)(4)で表わされる。   Assuming that the bus 5 and the sheath 21 are coaxial and extend infinitely as shown in FIG. 3, assuming that induction and radiation are neglected, the unsteady heat transfer equations of the bus 5, the gas 22 and the sheath 21 are respectively Formula (2) (3) (4) represents.

Figure 0006521744
Figure 0006521744

また、母線5、ガス22、シース21の時定数はそれぞれ式(5)(6)(7)で表わされる。本実施形態では、一例として、母線5の時定数、ガス22の時定数、シース21の時定数のうち最大のものを系全体の時定数として用いる。   Further, the time constants of the bus 5, the gas 22, and the sheath 21 are expressed by the equations (5), (6), and (7), respectively. In the present embodiment, as an example, the largest one of the time constant of the bus 5, the time constant of the gas 22, and the time constant of the sheath 21 is used as the time constant of the entire system.

Figure 0006521744
Figure 0006521744

上記各式における記号およびその添字は以下の通りである。
<記号>
T 温度[K]
ρ 密度[kg/m3]
c 比熱[J/kg・K]
V 体積[m3]
h 熱伝達率[W/(m2K)]
S 面積[m2]
t 時間[s]
I 電流[kA]
<添字>
a 導体
g ガス
th シース
b シース内表面
c シース外表面
∞ 外気
The symbols in the above formulas and their subscripts are as follows.
<Symbol>
T temperature [K]
ρ density [kg / m 3 ]
c Specific heat [J / kg · K]
V volume [m 3 ]
h Heat transfer coefficient [W / (m 2 K)]
S area [m 2 ]
t time [s]
I current [kA]
<Subscript>
a conductor
g gas
th sheath
b Inner surface of sheath
c Sheath outer surface 外 outside air

次に、監視装置100は、圧力取得部10Bにより、各圧力容器2内のSFガスのモル体積v[m/mol]を算出する(ステップS4)。その際、圧力取得部10Bは、各圧力容器2について、Beattie−Bridgemanの状態方程式を解くことにより、SFガスのモル体積vを算出する。 Next, the monitoring device 100 calculates the molar volume v [m 3 / mol] of the SF 6 gas in each pressure vessel 2 by the pressure acquisition unit 10B (step S4). At this time, the pressure acquisition unit 10B calculates the molar volume v of the SF 6 gas by solving the Beattie-Bridgeman equation of state for each pressure vessel 2.

Figure 0006521744
Figure 0006521744

A=1.578
B=0.1062×10-3
C=0.366×10-3
D=0.1236×10-3
R=8.3143 J/(mol・K)
A = 1.578
B = 0.1062 x 10 -3
C = 0.366 x 10 -3
D = 0.1236 × 10 -3
R = 8.3143 J / (mol · K)

続いて、圧力取得部10Bは、所定の基準温度に換算したガス圧力を算出する(ステップS5)。ここでは一例として基準温度を20℃とする。圧力取得部10Bは式(11)を用いて20℃の基準温度に換算したガス圧力P20を算出する。 Subsequently, the pressure acquisition unit 10B calculates the gas pressure converted to the predetermined reference temperature (step S5). Here, the reference temperature is set to 20 ° C. as an example. The pressure acquisition unit 10B calculates the gas pressure P 20 converted to the reference temperature of 20 ° C. using the equation (11).

Figure 0006521744
Figure 0006521744

監視装置100は、計測あるいは算出した電流I、タンク温度Ttank、一次推定ガス温度Tgas0、ガス温度Tgas、20℃換算ガス圧力P20にタイムスタンプを付けて記録部11に保存する。 Monitoring device 100, the measurement or the calculated current I, tank temperature T tank, primary estimated gas temperature T Gas0, it is stored in the recording unit 11 with the time stamp on the gas temperature T gas, 20 ° C. converted gas pressure P 20.

監視装置100は、判定部10Cによって、記録部11に蓄積された20℃換算ガス圧力P20のうち夜間の所定時刻のタイムスタンプが付されたデータを1日の代表値として抽出し、その代表値による回帰曲線P20=a×t+bの傾きaと切片bを算出する(ステップS6)。 The monitoring apparatus 100 extracts the data with the time stamp of the predetermined time of night among the 20 ° C. converted gas pressure P 20 accumulated in the recording unit 11 by the determination unit 10 C as a representative value of one day, and the representative thereof The slope a and the intercept b of the regression curve P20 = a × t + b according to the value are calculated (step S6).

図8は、20℃換算ガス圧力P20の経時変化を示すグラフである。図8のグラフは横軸が時間[年]、縦軸が20℃換算ガス圧力P20である。ガス漏れがなければ、モル体積は基本的には一定なので、温度を一定に換算するとガス圧力も基本的には一定である。ガス漏れが発生している圧力容器2では、この20℃換算ガス圧力P20の減少が大きくなる。夜間のデータを用いるのは、日毎の日射量の違いの影響を受けにくい、誤差の少ないデータで判定を行うためである。 FIG. 8 is a graph showing the time-dependent change of the 20 ° C. converted gas pressure P 20 . In the graph of FIG. 8, the horizontal axis represents time [years], and the vertical axis represents a 20 ° C. converted gas pressure P20. If there is no gas leak, the molar volume is basically constant, so if the temperature is converted to a constant, the gas pressure is also basically constant. In the pressure vessel 2 in which the gas leak has occurred, the decrease of the 20 ° C. converted gas pressure P 20 becomes large. The nighttime data is used because the judgment is made using data with less error, which is less susceptible to differences in daily solar radiation.

判定部10Cは、各圧力容器2について切片bを基準とした傾き((a/b)×100[%])が閾値(−0.5%/年)よりも小さいか否か判定する(ステップS7)。傾き((a/b)×100[%])が閾値(−0.5%/年)よりも小さければ、判定部10Cは、その圧力容器2からSFガスが漏れていると判定し、表示部13に警報を表示する(ステップS8)。 The determination unit 10C determines whether or not the inclination ((a / b) × 100 [%]) based on the section b for each pressure vessel 2 is smaller than the threshold (−0.5% / year) (step S7). If the slope ((a / b) × 100 [%]) is smaller than the threshold (−0.5% / year), the determination unit 10C determines that the SF 6 gas is leaking from the pressure vessel 2; An alarm is displayed on the display unit 13 (step S8).

一方、傾き((a/b)×100[%])が閾値(−0.5%/年)以上であれば、判定部10Cは、圧力容器2にガス漏れが発生していないと判定し、全ての区画の圧力容器2のガス圧力を取得する(ステップS9)。   On the other hand, if the slope ((a / b) × 100 [%]) is equal to or higher than the threshold (−0.5% / year), the determination unit 10C determines that no gas leak has occurred in the pressure vessel 2 The gas pressure of the pressure vessel 2 of all the compartments is acquired (step S9).

そして、ステップS9の後、判定部10Cは、内部に機器6を備える圧力容器2(判定対象)のガス圧力と、他の圧力容器2のガス圧力との差ΔPを算出する(ステップS10)。続いて、判定部10Cは、ガス圧力差ΔPが閾値Pth以上であるか否か判定する(ステップS11)。   Then, after step S9, the determination unit 10C calculates the difference ΔP between the gas pressure of the pressure vessel 2 (determination target) including the device 6 therein and the gas pressure of the other pressure vessels 2 (step S10). Subsequently, the determination unit 10C determines whether the gas pressure difference ΔP is equal to or larger than the threshold Pth (step S11).

内部の機器6に接触不良が発生している圧力容器2では接触不良によって母線5の抵抗値が増大するが、それ以外の条件は圧力容器2間で一致しているとする。理想気体と仮定するとPV=nRTが成立するため、圧力容器2間の母線5の抵抗の差に依存する温度差ΔTに応じた圧力差ΔPが圧力容器2間で発生する。ΔPは温度差ΔTに比例するので、開閉器に接触不良が生じて接点の接触抵抗が高くなった場合、高くなった抵抗値に比例してジュール熱が増加し、圧力差ΔPが拡大する。   In the pressure vessel 2 in which the contact failure occurs in the internal device 6, the resistance value of the bus bar 5 increases due to the contact failure, but the other conditions are assumed to be the same among the pressure vessels 2. Assuming that the ideal gas is PV = nRT, a pressure difference ΔP corresponding to the temperature difference ΔT depending on the difference in resistance of the bus 5 between the pressure vessels 2 is generated between the pressure vessels 2. Since ΔP is proportional to the temperature difference ΔT, when contact failure occurs in the switch and the contact resistance of the contact increases, Joule heat increases in proportion to the increased resistance value, and the pressure difference ΔP increases.

そこで、監視装置100は、内部に開閉器等の機器6が存在する圧力容器2を判定対象として、20℃換算ガス圧力P20と、同じ大きさの電流の流れるその他の圧力容器2の20℃換算ガス圧力P20bとの差ΔP20=P20−P20bを計算し、それを閾値Pthと比較する。 Therefore, the monitoring device 100 determines the pressure vessel 2 in which the device 6 such as a switch exists inside as a determination target, and the 20 ° C. converted gas pressure P 20 and the other 20 ° C. The difference ΔP20 = P20−P20b from the converted gas pressure P20b is calculated and compared with the threshold value Pth.

図9は、通電電流Iと20℃換算のガス圧力差ΔP20との関係を示すグラフである。閾値Pthは通電電流Iの一次関数である。機器6に異常がなければ、ガス圧力差ΔP20は閾値Pthを超えない。一方、機器6に異常があれば、ガス圧力差ΔP20は閾値Pthを超える。   FIG. 9 is a graph showing the relationship between the supplied current I and the gas pressure difference ΔP20 in 20 ° C. conversion. The threshold Pth is a linear function of the conduction current I. If there is no abnormality in the device 6, the gas pressure difference ΔP20 does not exceed the threshold Pth. On the other hand, if there is an abnormality in the device 6, the gas pressure difference ΔP20 exceeds the threshold value Pth.

ガス圧力差ΔPが閾値Pth以上であれば、判定部10Cは、判定対象の圧力容器2内の機器6にて接触不良による異常が発生していると判定し、表示部13に警報を表示する(ステップS12)。一方、ガス圧力差ΔPが閾値Pth以上でなければ、監視装置100はステップS1に戻って監視を継続する。   If the gas pressure difference ΔP is equal to or more than the threshold value Pth, the determination unit 10C determines that an abnormality due to a contact failure has occurred in the device 6 in the pressure container 2 to be determined, and displays an alarm on the display unit 13. (Step S12). On the other hand, if the gas pressure difference ΔP is not the threshold Pth or more, the monitoring device 100 returns to step S1 and continues monitoring.

図2には、判定部10Cが異常を検知して表示部13に警報を表示したときの表示例が示されている。図2の例では、ガス絶縁開閉装置1の全ての圧力容器2と、それぞれの圧力容器2に一意に付与された番号が図示されている。図2の例には、圧力容器「013」に異常が検知され、表示部13ではその異常が発生している部分がブリンク表示等で強調表示されている様子が示されている。   FIG. 2 shows a display example when the determination unit 10C detects an abnormality and displays an alarm on the display unit 13. In the example of FIG. 2, all the pressure vessels 2 of the gas-insulated switchgear 1 and numbers uniquely assigned to the respective pressure vessels 2 are illustrated. In the example of FIG. 2, a state in which an abnormality is detected in the pressure vessel “013”, and a portion in which the abnormality has occurred is highlighted in a blink display or the like on the display unit 13 is shown.

上述のように、本実施形態における20℃換算ガス圧力差ΔP20の閾値Pthは通電電流Iの関数で表わされる。判定部10Cは、ガス圧力差ΔP20と、そのガス圧力差ΔP20を算出するのに用いられたガス圧力Pが圧力センサ3で測定されたときに電流センサ7で測定された通電電流Iを用いてその関数から算出された圧力差閾値Pthと、を比較する。これにより、通電電流Iの値に応じた圧力差閾値Pthを用いることができるので、通電電流Iが変化するシステムにおいても高い精度で機器の異常を検知することができる。 As described above, the threshold Pth of the 20 ° C. converted gas pressure difference ΔP 20 in the present embodiment is expressed as a function of the energizing current I. The determination unit 10C determines the gas pressure difference ΔP 20 and the current I measured by the current sensor 7 when the gas pressure P used to calculate the gas pressure difference ΔP 20 is measured by the pressure sensor 3. The pressure difference threshold Pth calculated from the function is used to compare with. As a result, since the pressure difference threshold value Pth corresponding to the value of the current I can be used, it is possible to detect an abnormality of the device with high accuracy even in a system in which the current I changes.

また、上述のように、本実施形態では、圧力取得部10Bは、圧力センサ3で測定されたガス圧力Pに基づき、温度取得部10Aで取得されたガス温度を所定の基準ガス温度(20℃)に換算したガス圧力P20を算出する。そして、判定部10Cは、換算後のガス圧力の差ΔP20を圧力差閾値Pthと比較する。これにより、ガス温度Tによるガス圧力Pの変動による誤差を除去し、高い精度でガス圧力に基づき計算を行うことができる。   Further, as described above, in the present embodiment, based on the gas pressure P measured by the pressure sensor 3, the pressure acquiring unit 10B determines the gas temperature acquired by the temperature acquiring unit 10A as a predetermined reference gas temperature (20 ° C. The gas pressure P20 converted to) is calculated. Then, the determination unit 10C compares the converted gas pressure difference ΔP20 with the pressure difference threshold Pth. Thereby, the error due to the fluctuation of the gas pressure P due to the gas temperature T can be removed, and the calculation can be performed based on the gas pressure with high accuracy.

なお、本実施形態では、20℃換算ガス圧力差ΔP20を閾値Pthと比較して異常検知を行う例を示したが、これに限定されることはなく、他の方法を用いて異常を検知してもよい。他の例では、監視装置100は、20℃換算ガス圧力差ΔP20の通電電流Iに対する値を算出し、図9に示したように、通電電流Iを横軸とし20℃換算ガス圧力差ΔP20を縦軸とするグラフにプロットする。そして、監視装置100は、回帰曲線をΔP20=K1*I+K2として、最小二乗法により、傾きK1と切片K2とを求める。更に、監視装置100は、傾きK1が所定の傾き閾値Kg以上であるか否か判定し、傾きK1が閾値Kg以上であれば、機器6の接点が接触不良であるとして、異常の警報を表示部13に表示させる。   In the present embodiment, an example is shown in which abnormality detection is performed by comparing the 20 ° C. converted gas pressure difference ΔP20 with the threshold value Pth. However, the present invention is not limited to this. May be In another example, the monitoring apparatus 100 calculates a value for the conduction current I of the 20 ° C. converted gas pressure difference ΔP 20, and as shown in FIG. 9, the 20 ° C. conversion gas pressure difference ΔP 20 with the conduction current I as the horizontal axis. Plot on the graph as the vertical axis. Then, the monitoring apparatus 100 determines the slope K1 and the intercept K2 by the least squares method, with the regression curve being ΔP20 = K1 * I + K2. Furthermore, the monitoring apparatus 100 determines whether the inclination K1 is equal to or more than a predetermined inclination threshold Kg. If the inclination K1 is equal to or more than the threshold Kg, an alarm is displayed indicating that the contact of the device 6 is a contact failure. It is displayed on the part 13.

次に、他の実施形態について説明する。   Next, another embodiment will be described.

図10は、他の実施形態における処理の詳細処理を説明するための図である。   FIG. 10 is a diagram for explaining the detailed process of the process in another embodiment.

圧力取得部10Bは、温度取得部10Aが取得したガス温度Tgasと、圧力取得部10B自身が取得したガス圧力Pとに基づいて、圧力容器2内のガスのモル体積vを算出し、そのモル体積vに基づいて、ガス温度Tgasを基準ガス温度(20℃)に換算したガス圧力である20℃換算ガス圧力P20を算出する。また、温度取得部10Aは、モル体積vに基づいて算出した補正係数を用いて、圧力取得部10Bの入力となるガス温度Tgasを補正する。これによれば、基準ガス温度に換算したガス圧力を、モル体積の変動をフィードバックすることで補正したガス温度Tgasを用いて算出するので、実測結果に基づく補正によりガス圧力の精度を高め、機器6の異常検知の確度を高めることができる。 The pressure acquisition unit 10B calculates the molar volume v of the gas in the pressure vessel 2 based on the gas temperature T gas acquired by the temperature acquisition unit 10A and the gas pressure P acquired by the pressure acquisition unit 10B itself, and Based on the molar volume v, a 20 ° C. converted gas pressure P 20 which is a gas pressure obtained by converting the gas temperature T gas into a reference gas temperature (20 ° C.) is calculated. Further, the temperature acquisition unit 10A corrects the gas temperature T gas to be input to the pressure acquisition unit 10B using the correction coefficient calculated based on the molar volume v. According to this, since the gas pressure converted to the reference gas temperature is calculated using the gas temperature T gas corrected by feeding back the fluctuation of the molar volume, the accuracy of the gas pressure is enhanced by the correction based on the measurement result, The accuracy of abnormality detection of the device 6 can be enhanced.

以下、より詳細に説明する。   A more detailed description will be given below.

温度取得部10Aは、図6を用いて説明したのと同じ方法で、測定されたタンク温度Ttankと電流Iに基づいて、一次推定ガス温度Tgas0を算出する。図10の構成では図6と異なるのは、温度取得部10Aがフィルタ処理ではなく実測に基づいて一次推定ガス温度Tgas0を補正してガス温度Tgasを算出する点である。温度取得部10Aは、式(12)によりガス温度の補正値ΔT=ΔT(i)(i=1,・・・,N)を算出し、一次推定ガス温度Tgas0から補正値ΔTを減算することにより、補正後のガス温度Tgasを算出する。 Temperature acquisition unit 10A, in the same way as described with reference to FIG. 6, on the basis of the measured tank temperature T tank and the current I, calculating a primary estimated gas temperature T gas0. The configuration of FIG. 10 differs from that of FIG. 6 in that the temperature acquisition unit 10A calculates the gas temperature T gas by correcting the primary estimated gas temperature T gas0 based on actual measurement, not filtering. The temperature acquisition unit 10A calculates the correction value ΔT = ΔT (i) (i = 1,..., N) of the gas temperature by the equation (12), and subtracts the correction value ΔT from the primary estimated gas temperature Tgas0. Thus, the corrected gas temperature T gas is calculated.

Figure 0006521744
Figure 0006521744

温度取得部10Aは、式(12)の比例定数Kを、初期値K0=K(0)=・・・K(M)=K(0)=・・・K(M)=0とした所定期間のフィードバックによって補正して精度を高めていく。例えば所定期間の1年をかけて比例定数Kを決定した後は、温度取得部10Aは比例定数Kを固定して運用する。 The temperature acquisition unit 10A sets the proportional constant K of equation (12) to the initial value K0 = K I (0) =... K I (M) = K T (0) =... K T (M) = It corrects by feedback of the predetermined period set to 0, and raises accuracy. For example, after determining the proportionality constant K by taking one year of a predetermined period, the temperature acquisition unit 10A fixes the proportionality constant K and operates.

以下、比例定数Kのフィードバックによって補正して決定する方法について説明する。   Hereinafter, a method of correcting and determining by feedback of the proportionality constant K will be described.

温度取得部10Aは、まず、本日を除く過去N日分のモル体積v(1),・・・,v(N)のデータを記録部11から取得する。図11は、実測データの一例を示す図である。図11では、現在時刻(16:00)から所定時間(3時間)内の過去のタンク温度Ttankと電流Iが太線で囲われている。モル体積v(1),・・・,v(N)は、この太線で囲われた実測データに基づいて算出された値である。 First, the temperature acquiring unit 10A acquires, from the recording unit 11, data of molar volumes v (1),..., V (N) for the past N days excluding today. FIG. 11 is a diagram illustrating an example of actual measurement data. In FIG. 11, the past tank temperature T tank and the current I within a predetermined time (3 hours) from the current time (16:00) are surrounded by thick lines. The molar volumes v (1),..., V (N) are values calculated based on the measured data surrounded by the thick lines.

次に、温度取得部10Aは、取得したモル体積v(1),・・・,v(N)の平均値vを算出し、これをモル体積の真値とみなす。図8の説明で上述したように、ガス漏れがなければ、モル体積は基本的には一定なので、この平均値vを真値とみなすことができる。 Next, the temperature acquisition unit 10A calculates an average value v 0 of the acquired molar volumes v (1),..., V (N), and regards this as the true value of the molar volume. As described above in the description of FIG. 8, since there is no gas leakage, the molar volume is basically constant, and therefore this average value v 0 can be regarded as a true value.

次に、温度取得部10Aは、取得した過去のモル体積v(1),・・・,v(N)の誤差を算出する。モル体積の誤差の算出式は式(13)である。   Next, the temperature acquisition unit 10A calculates an error of the acquired past molar volume v (1),..., V (N). The equation for calculating the molar volume error is equation (13).

Figure 0006521744
Figure 0006521744

続いて、温度取得部10Aは式(14)により、モル体積の誤差Δv(i)のガス温度推定誤差ΔT(i)に対する比例定数K(T,v,P)を算出する。   Subsequently, the temperature acquiring unit 10A calculates a proportional constant K (T, v, P) with respect to the gas temperature estimation error ΔT (i) of the molar volume error Δv (i) by the equation (14).

Figure 0006521744
Figure 0006521744

式(14)の((C+2v)RT−A−3Pv)/(CD−vC−v)Rの部分がKである。そして、温度取得部10Aは、記録部11から過去N日分の電流Iとタンク温度Ttankを取得し、式(15)に基づいてKの補正値ΔK=(ΔK,ΔK(0),・・・,ΔK(M),ΔK(0),・・・,ΔK(M))を算出する。 ((C + 2v) RT- A-3Pv 2) / (CD-vC-v 2) R moiety of formula (14) is K. Then, the temperature acquisition unit 10A acquires the current I and the tank temperature Ttank for the past N days from the recording unit 11, and the correction value ΔK = K (ΔK 0 , ΔK I (0) based on the equation (15) ,..., ΔK I (M), ΔK T (0),..., ΔK T (M)) are calculated.

Figure 0006521744
Figure 0006521744

上述した本発明の実施形態は、本発明の説明のための例示であり、本発明の範囲をそれらの実施形態にのみ限定する趣旨ではない。当業者は、本発明の要旨を逸脱することなしに、他の様々な態様で本発明を実施することができる。   The embodiments of the present invention described above are exemplifications for explanation of the present invention, and are not intended to limit the scope of the present invention only to those embodiments. Those skilled in the art can practice the present invention in various other aspects without departing from the scope of the present invention.

1…ガス絶縁開閉装置、10…処理部、100…監視装置、10A…温度取得部、10B…圧力取得部、10C…判定部、11…記録部、12…ガス温度特性データベース、13…表示部、2…圧力容器、21…シース、22…ガス、2a…圧力容器、2b…圧力容器、3…圧力センサ、4…温度センサ、5…導体(母線)、6…機器、7…電流センサ、9…通信線 DESCRIPTION OF SYMBOLS 1 ... Gas-insulated switchgear, 10 ... Processing part, 100 ... Monitoring apparatus, 10A ... Temperature acquisition part, 10B ... Pressure acquisition part, 10C ... Determination part, 11 ... Recording part, 12 ... Gas temperature characteristic database, 13 ... Display part , 2: pressure vessel, 21: sheath, 22: gas, 2 a: pressure vessel, 2 b: pressure vessel, 3: pressure sensor, 4: temperature sensor, 5: conductor (bus), 6: equipment, 7: current sensor, 9 ... Communication line

Claims (12)

複数の圧力容器を含み1つ以上の圧力容器に機器を封入するガス絶縁開閉装置内の前記機器の異常を検知するガス絶縁開閉装置監視装置であって、
前記圧力容器内のガス圧力を取得する圧力取得手段と、
ガス圧力が他の圧力容器のガス圧力より所定の圧力差閾値以上高い圧力容器の内部の機器に異常が発生していると判定する判定手段と、
を有し、
前記判定手段は、取得される前記ガス圧力に基づき前記圧力容器からガスが漏れているか否か予め判定し、ガスが漏れていない圧力容器について前記機器に異常が発生しているか否か判定する、ガス絶縁開閉装置監視装置。
A gas-insulated switchgear monitoring device for detecting an abnormality of the device in a gas-insulated switchgear including a plurality of pressure vessels and enclosing the instruments in one or more pressure vessels,
Pressure acquisition means for acquiring the gas pressure in the pressure vessel;
A determination unit that determines that an abnormality occurs in equipment inside the pressure vessel whose gas pressure is higher than that of the other pressure vessels by a predetermined pressure difference threshold or more;
Have
The determination means determines in advance whether gas leaks from the pressure vessel based on the acquired gas pressure, and determines whether or not an abnormality occurs in the device with respect to the pressure vessel in which the gas does not leak . gas insulated switchgear monitoring device.
複数の圧力容器を含み1つ以上の圧力容器に機器を封入するガス絶縁開閉装置内の前記機器の異常を検知するガス絶縁開閉装置監視装置であって、
前記圧力容器内のガス圧力を取得する圧力取得手段と、
ガス圧力が他の圧力容器のガス圧力より所定の圧力差閾値以上高い圧力容器の内部の機器に異常が発生していると判定する判定手段と、
を有し、
前記判定手段は、判定対象の圧力容器のガス圧力と前記判定対象の圧力容器の両隣りの2つの圧力容器のガス圧力との差をそれぞれ算出し、両方の前記差の値が前記圧力差閾値以上であれば前記判定対象の圧力容器内の前記機器に異常が発生していると判定する、ガス絶縁開閉装置監視装置。
A gas-insulated switchgear monitoring device for detecting an abnormality of the device in a gas-insulated switchgear including a plurality of pressure vessels and enclosing the instruments in one or more pressure vessels,
Pressure acquisition means for acquiring the gas pressure in the pressure vessel;
A determination unit that determines that an abnormality occurs in equipment inside the pressure vessel whose gas pressure is higher than that of the other pressure vessels by a predetermined pressure difference threshold or more;
Have
The determination means calculates the difference between the gas pressure of the pressure vessel to be determined and the gas pressure of the two pressure vessels on both sides of the pressure vessel to be determined, and the value of the difference between the two is the pressure difference threshold. abnormality in said equipment of the determination target of the pressure vessel if more is determined to be occurring, gas insulated switchgear monitoring device.
複数の圧力容器を含み1つ以上の圧力容器に機器を封入するガス絶縁開閉装置内の前記機器の異常を検知するガス絶縁開閉装置監視装置であって、
前記圧力容器内のガス圧力を取得する圧力取得手段と、
ガス圧力が他の圧力容器のガス圧力より所定の圧力差閾値以上高い圧力容器の内部の機器に異常が発生していると判定する判定手段と、
前記圧力容器の内部のガス圧力を測定する圧力センサと、
複数の前記圧力容器を通る母線に流れる通電電流を測定する電流センサと、
前記圧力容器内のガス温度を取得する温度取得手段とを有し、
前記圧力差閾値は通電電流の関数で表わされ、
前記圧力取得手段は、前記圧力センサで測定されたガス圧力に基づき、前記温度取得手段で取得されたガス温度を所定の基準ガス温度に換算したガス圧力を算出し、
前記判定手段は、換算後の該ガス圧力の差を、該ガス圧力の差を算出するのに用いられたガス圧力が前記圧力センサで測定されたときに前記電流センサで測定された通電電流を用いて前記関数から算出された前記圧力差閾値と比較する
ス絶縁開閉装置監視装置。
A gas-insulated switchgear monitoring device for detecting an abnormality of the device in a gas-insulated switchgear including a plurality of pressure vessels and enclosing the instruments in one or more pressure vessels,
Pressure acquisition means for acquiring the gas pressure in the pressure vessel;
A determination unit that determines that an abnormality occurs in equipment inside the pressure vessel whose gas pressure is higher than that of the other pressure vessels by a predetermined pressure difference threshold or more;
A pressure sensor that measures the gas pressure inside the pressure vessel;
A current sensor that measures an electric current flowing to a bus passing through the plurality of pressure vessels;
Temperature acquisition means for acquiring the gas temperature in the pressure vessel ;
The pressure difference threshold is expressed as a function of current flow,
The pressure acquisition unit calculates a gas pressure obtained by converting the gas temperature acquired by the temperature acquisition unit into a predetermined reference gas temperature, based on the gas pressure measured by the pressure sensor.
The determination means determines the difference in the gas pressure after conversion, the flowing current measured by the current sensor when the gas pressure used to calculate the difference in the gas pressure is measured by the pressure sensor. is compared with the pressure difference threshold calculated from the function using,
Gas insulated switchgear monitoring device.
前記圧力容器の表面のタンク温度を測定する温度センサを更に有し、
前記温度取得手段は、前記タンク温度と前記通電電流に基づき前記ガス温度を算出する、
請求項に記載のガス絶縁開閉装置監視装置。
It further comprises a temperature sensor for measuring the tank temperature on the surface of the pressure vessel,
The temperature acquisition unit calculates the gas temperature based on the tank temperature and the energization current.
The gas insulated switchgear monitoring device according to claim 3 .
前記圧力取得手段は、前記温度取得手段が取得した前記ガス温度と、前記圧力取得手段自身が取得した前記ガス圧力とに基づいて、前記圧力容器内のガスのモル体積を算出し、前記モル体積に基づいて、前記ガス温度を前記基準ガス温度に換算した前記ガス圧力を算出し、
前記温度取得手段は、前記モル体積に基づいて算出した補正係数を用いて前記ガス温度を補正する、
請求項に記載のガス絶縁開閉装置監視装置。
The pressure acquisition unit calculates the molar volume of the gas in the pressure vessel based on the gas temperature acquired by the temperature acquisition unit and the gas pressure acquired by the pressure acquisition unit itself, and the molar volume is calculated. Calculating the gas pressure obtained by converting the gas temperature into the reference gas temperature based on
The temperature acquisition unit corrects the gas temperature using a correction coefficient calculated based on the molar volume.
The gas insulated switchgear monitoring device according to claim 3 .
前記判定手段は、隣り合った圧力容器のガス圧力の差に基づき前記圧力容器内の前記機器の異常の有無を判定する、請求項1、3〜5のいずれか1項に記載のガス絶縁開閉装置監視装置。 The gas-insulated switchgear according to any one of claims 1 to 5, wherein the determination means determines the presence or absence of an abnormality of the device in the pressure vessel based on a difference in gas pressure between adjacent pressure vessels. Device monitoring device. 前記圧力容器の内部のガス圧力を測定する圧力センサと、
複数の前記圧力容器を通る母線に流れる通電電流を測定する電流センサと、を更に有し、
前記圧力差閾値は通電電流の関数で表わされ、
前記判定手段は、前記ガス圧力の差と、該ガス圧力の差を算出するのに用いられたガス圧力が前記圧力センサで測定されたときに前記電流センサで測定された通電電流を用いて前記関数から算出された前記圧力差閾値と、を比較する、
請求項1または2に記載のガス絶縁開閉装置監視装置。
A pressure sensor that measures the gas pressure inside the pressure vessel;
And a current sensor for measuring a current flowing through a bus bar passing through the plurality of pressure vessels.
The pressure difference threshold is expressed as a function of current flow,
The determination means uses the supplied current measured by the current sensor when the difference between the gas pressure and the gas pressure used to calculate the difference between the gas pressures are measured by the pressure sensor. Comparing the pressure difference threshold calculated from the function with
Gas insulated switchgear monitoring device as claimed in claim 1 or 2.
前記機器は接点を有する電気回路であり、
前記機器の異常は前記接点における接触不良である、
請求項1〜7のいずれか1項に記載のガス絶縁開閉装置監視装置。
The device is an electrical circuit with contacts,
An abnormality of the device is a contact failure at the contact point,
The gas insulated switchgear monitoring device according to any one of claims 1 to 7 .
複数の圧力容器を含み1つ以上の圧力容器に機器を封入するガス絶縁開閉装置内の前記機器の異常を検知するためのガス絶縁開閉装置監視方法であって、
圧力取得手段が、前記圧力容器内のガス圧力を取得し、
判定手段が、ガス圧力が他の圧力容器のガス圧力より所定の圧力差閾値以上高い圧力容器の内部の機器に異常が発生していると判定する、ガス絶縁開閉装置監視方法において、
前記判定手段は、取得される前記ガス圧力に基づき前記圧力容器からガスが漏れているか否か予め判定し、ガスが漏れていない圧力容器について前記機器に異常が発生しているか否か判定する、ガス絶縁開閉装置監視方法。
A gas-insulated switchgear monitoring method for detecting an abnormality of the equipment in a gas-insulated switchgear, comprising a plurality of pressure vessels and enclosing the equipment in one or more pressure vessels, comprising:
A pressure acquisition unit acquires the gas pressure in the pressure vessel;
In the gas-insulated switchgear monitoring method, the determination means determines that an abnormality occurs in equipment inside the pressure vessel whose gas pressure is higher than that of the other pressure vessels by a predetermined pressure difference threshold or more.
The determination means determines in advance whether gas leaks from the pressure vessel based on the acquired gas pressure, and determines whether or not an abnormality occurs in the device with respect to the pressure vessel in which the gas does not leak . gas insulated switchgear monitoring method.
前記判定手段は、隣り合った圧力容器のガス圧力の差に基づき前記圧力容器内の前記機器の異常の有無を判定する、請求項に記載のガス絶縁開閉装置監視方法。 10. The gas-insulated switchgear monitoring method according to claim 9 , wherein the determination means determines the presence or absence of an abnormality of the device in the pressure vessel based on a difference in gas pressure between adjacent pressure vessels. 複数の圧力容器を含み1つ以上の圧力容器に機器を封入するガス絶縁開閉装置と、
前記圧力容器内のガス圧力を取得し、ガス圧力が他の圧力容器のガス圧力より所定の圧力差閾値以上高い圧力容器の内部の機器に異常が発生していると判定する監視装置と、
を有し、
前記監視装置は、取得される前記ガス圧力に基づき前記圧力容器からガスが漏れているか否か予め判定し、ガスが漏れていない圧力容器について前記機器に異常が発生しているか否か判定する、ガス絶縁開閉設備。
A gas-insulated switchgear including a plurality of pressure vessels and sealing equipment in one or more pressure vessels;
A monitoring device that acquires the gas pressure in the pressure vessel and determines that an abnormality occurs in equipment inside the pressure vessel whose gas pressure is higher than that of the other pressure vessels by a predetermined pressure difference threshold or more;
Have
The monitoring device determines in advance whether gas is leaking from the pressure vessel based on the acquired gas pressure, and determines whether or not an abnormality occurs in the device with respect to the pressure vessel in which the gas is not leaking . gas-insulated switchgear equipment.
前記監視装置は、隣り合った圧力容器のガス圧力の差に基づき前記圧力容器内の前記機器の異常の有無を判定する、請求項11に記載のガス絶縁開閉設備。 The gas-insulated switching facility according to claim 11 , wherein the monitoring device determines the presence or absence of an abnormality of the device in the pressure vessel based on a difference in gas pressure between adjacent pressure vessels.
JP2015109834A 2015-05-29 2015-05-29 Gas-insulated switchgear monitoring apparatus, gas-insulated switchgear monitoring method, and gas-insulated switchgear Active JP6521744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015109834A JP6521744B2 (en) 2015-05-29 2015-05-29 Gas-insulated switchgear monitoring apparatus, gas-insulated switchgear monitoring method, and gas-insulated switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015109834A JP6521744B2 (en) 2015-05-29 2015-05-29 Gas-insulated switchgear monitoring apparatus, gas-insulated switchgear monitoring method, and gas-insulated switchgear

Publications (2)

Publication Number Publication Date
JP2016226146A JP2016226146A (en) 2016-12-28
JP6521744B2 true JP6521744B2 (en) 2019-05-29

Family

ID=57746059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015109834A Active JP6521744B2 (en) 2015-05-29 2015-05-29 Gas-insulated switchgear monitoring apparatus, gas-insulated switchgear monitoring method, and gas-insulated switchgear

Country Status (1)

Country Link
JP (1) JP6521744B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7018704B2 (en) 2016-11-21 2022-02-14 株式会社細川洋行 Manufacturing method of self-supporting bag
CN109256859A (en) * 2018-10-17 2019-01-22 国家电网有限公司 A kind of power switch cabinet monitoring system
WO2020136881A1 (en) * 2018-12-28 2020-07-02 株式会社東芝 Diagnostic device, diagnostic method, and program

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027830A (en) * 1988-06-23 1990-01-11 Nissin Electric Co Ltd Monitor device of gas insulation type electrical equipment
JPH09121414A (en) * 1995-10-25 1997-05-06 Ishikawajima Harima Heavy Ind Co Ltd Method and device for monitoring gas enclosed in gas insulated switchgear
JPH09200918A (en) * 1996-01-18 1997-07-31 Nissin Electric Co Ltd Diagnosis for internal overheating of electrical equipment
JP4628857B2 (en) * 2005-05-02 2011-02-09 三菱電機株式会社 Slow leak detector

Also Published As

Publication number Publication date
JP2016226146A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
CN103854446B (en) A kind of dynamic temperature rise diagnostic alarms method and apparatus of high-tension switch cabinet
JP5775641B2 (en) System and method for monitoring the state of power equipment by constant measurement of on-line electrical circuits
JP6514598B2 (en) Gas leak detection device and gas leak detection method
CN106918778B (en) Method for loose joint detection in medium voltage switchgear and medium voltage switchgear
CN102830319B (en) A kind of zinc oxide lightning arrester insulation state measuring device with electricity and method
JP6521744B2 (en) Gas-insulated switchgear monitoring apparatus, gas-insulated switchgear monitoring method, and gas-insulated switchgear
WO2016038908A1 (en) Gas leak detection device and gas leak inspection method
CN108181000A (en) A kind of contact of breaker detection method for temperature rise based on GIS housing thermometrics
JP4628857B2 (en) Slow leak detector
CN111458652A (en) Fault determination method, device and equipment for direct current charging pile
KR20150043162A (en) Apparatus and method for real time monitoring of sulfur hexaflouride gas
US12009160B2 (en) Monitoring method for an electric power transmission device
CN102338672A (en) Internal temperature rise test and monitoring method of GIS
JP4977481B2 (en) Insulation monitoring device
KR102260550B1 (en) Facility health monitoring method by measuring the electric circuit constant inside the power facility in operation
CN104568211A (en) Switch cabinet contact and busbar connection point temperature rise online monitoring device and working method thereof
KR101778102B1 (en) Method for providing graphic user interface dedicated to power facility comprehensive preventive diagnosis and power facility comprehensive preventive diagnosis system
KR101412498B1 (en) Deterioration Diagnosis Device for Switchboard using Overload and Leakage current
CN204422095U (en) Switch cabinet contact and busbar tie point temperature rise on-Line Monitor Device and system
JP2011064465A (en) Line constant measuring method and protection control measuring device
Farzanehrafat et al. Review of power quality state estimation
KR102419753B1 (en) Facility health monitoring method by measuring the electric circuit constant inside the power facility in operation
Gasiyarov et al. Substantiation of on-line monitoring methods for surge arrestors of closed 110 kV switchgear
US20230341473A1 (en) A method for monitoring an electrical power transmission system and an associated device
KR102011330B1 (en) Apparatus and method of measuring data in high voltage direct current system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190423

R150 Certificate of patent or registration of utility model

Ref document number: 6521744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150