WO2016038687A1 - Numerical control apparatus - Google Patents

Numerical control apparatus Download PDF

Info

Publication number
WO2016038687A1
WO2016038687A1 PCT/JP2014/073811 JP2014073811W WO2016038687A1 WO 2016038687 A1 WO2016038687 A1 WO 2016038687A1 JP 2014073811 W JP2014073811 W JP 2014073811W WO 2016038687 A1 WO2016038687 A1 WO 2016038687A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
vibration
clamp
axis
unit
Prior art date
Application number
PCT/JP2014/073811
Other languages
French (fr)
Japanese (ja)
Inventor
光雄 渡邊
正一 嵯峨崎
悠貴 平田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201480081819.3A priority Critical patent/CN106687874B/en
Priority to JP2015521728A priority patent/JP5823082B1/en
Priority to DE112014006864.0T priority patent/DE112014006864B4/en
Priority to PCT/JP2014/073811 priority patent/WO2016038687A1/en
Publication of WO2016038687A1 publication Critical patent/WO2016038687A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • G05B19/4163Adaptive control of feed or cutting velocity
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration

Definitions

  • the present invention relates to a numerical control device that relatively moves and controls a workpiece and a tool for machining the workpiece.
  • a numerical control device having a cutting tool feed mechanism that feeds a cutting tool to a workpiece and a control mechanism that controls a cutting tool feed drive motor by vibrating the cutting tool at a low frequency. It has been proposed (see Patent Documents 1 to 3).
  • the control mechanism feeds the cutting tool in synchronization according to the operating means for performing various settings, and the workpiece rotation speed set by the operating means or the cutting tool feed amount per one cutting tool rotation.
  • data that can be operated at a low frequency of 25 Hz or more to be operated at least the advance amount, the retract amount, the advance speed, and the retract speed of the cutting tool feed mechanism according to mechanical characteristics such as inertia of the feed shaft or motor characteristics are tabulated in advance.
  • Vibration cutting information storage means and motor control means for controlling the cutting tool feed drive motor based on the data stored in the vibration cutting information storage means. Thereby, low frequency vibration is generated by repeating forward and backward movements along the interpolation path.
  • Patent Documents 1 to 3 show a method of driving a motor by generating a movement command in which vibration in the movement direction is superimposed on a movement command designated from a program.
  • the movement command speed after vibration superimposition may be larger than the movement speed specified in the program, which is not expected by the machine operator There was a possibility that such a large speed was generated and a load was applied to the machine.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a numerical control device capable of controlling a moving speed superimposed with vibration during low frequency vibration cutting so as not to apply a load to the machine.
  • the present invention provides a tool or a workpiece to be driven along a movement path while relatively vibrating the tool and the workpiece by a drive shaft provided on the workpiece.
  • a numerical control device that moves and processes the workpiece, an analysis processing unit that reads a feed speed and a clamp speed for moving the movement path from a machining program, and based on a given vibration cutting condition,
  • a post-superimposition speed calculation unit that calculates a post-superimposition speed after the vibration is superimposed on the movement by the feed speed, and when the post-vibration superposition speed exceeds the clamp speed, the speed is less than the clamp speed.
  • a vibration speed clamp portion for reducing the feed speed.
  • the numerical control device has an effect that it is possible to control so that the moving speed on which vibration is superimposed during low frequency vibration cutting does not apply a load to the machine.
  • FIG.2 (a) is a figure in the case of moving only a tool to a Z-axis and an X-axis direction
  • FIG.2 (b) is FIG. Figure when moving the machining target in the Z-axis direction and moving the tool in the X-axis direction
  • Diagram showing examples of vibration cutting conditions The figure which shows which amount each vibration cutting condition of Drawing 3 corresponds in the time change of the amount of movement.
  • FIG. 1 Diagram showing the state of vibration cutting movement when the actual speed is not clamped
  • the flowchart which shows the procedure which performs the clamp of real speed in Embodiment 1 and 2 of this invention
  • the figure which shows the mode of vibration cutting movement when the speed of each drive shaft is not clamped The figure which shows the state of the vibration cutting movement when the speed of each drive shaft is not clamped according to the drive shaft
  • the figure which shows the mode of the vibration cutting movement of the X-axis when the speed of each drive shaft is not clamped The figure which shows the mode of the vibration cutting movement of the Z-axis when the speed of each drive shaft is not clamped
  • FIG. 1 is a block diagram of an example of the configuration of the numerical control device 1 according to the first embodiment.
  • the numerical control device 1 includes a drive unit 10, an input operation unit 20, a display unit 30, and a control calculation unit 40.
  • the drive unit 10 is a mechanism that drives one or both of the machining target and the tool in at least two axial directions.
  • the drive unit 10 is detected by a servo motor 11 that moves a workpiece or a tool in each axial direction defined on the numerical control device 1, a detector 12 that detects the position and speed of the servo motor 11, and the detector 12. And an X-axis servo control unit 13X and a Z-axis servo control unit 13Z for each axis direction for controlling the position and speed of the processing target or tool based on the position and speed.
  • the X-axis servo control unit 13X and the Z-axis servo control unit 13Z are simply referred to as the servo control unit 13.
  • the numerical control apparatus 1 moves the tool and the machining target along the movement path with relative vibrations by using these drive shafts provided on the tool or the machining target. Processing.
  • the drive unit 10 is based on the spindle motor 14 that rotates the spindle that holds the workpiece, the detector 15 that detects the position and rotation speed of the spindle motor 14, and the position and rotation speed detected by the detector 15. And a spindle control unit 16 for controlling the rotation of the spindle.
  • the input operation unit 20 is configured by an input means such as a keyboard, a button, or a mouse, and a user inputs a command to the numerical control device 1 or inputs a machining program or a parameter.
  • the display unit 30 is configured by display means such as a liquid crystal display device, and displays information processed by the control calculation unit 40.
  • the control calculation unit 40 includes an input control unit 41, a data setting unit 42, a storage unit 43, a screen processing unit 44, an analysis processing unit 45, a machine control signal processing unit 46, and a PLC (Programmable Logic Controller) circuit.
  • the input control unit 41 receives information input from the input operation unit 20.
  • the data setting unit 42 stores the information received by the input control unit 41 in the storage unit 43.
  • the input control unit 41 reflects the edited content in the machining program 432 stored in the storage unit 43, and a parameter is input. Is stored in the storage area of the parameter 431 of the storage unit 43.
  • the storage unit 43 stores information such as the parameters 431 used in the processing of the control calculation unit 40, the machining program 432 to be executed, and the screen display data 433 to be displayed on the display unit 30.
  • the storage unit 43 is provided with a shared area 434 for storing temporarily used data other than the parameters 431 and the machining program 432.
  • the screen processing unit 44 performs control to display the screen display data 433 in the storage unit 43 on the display unit 30.
  • the analysis processing unit 45 reads the machining program 432 including one or more blocks, analyzes the read machining program for each block, reads the feed speed in the movement path direction, and generates a movement command for moving in one block.
  • a command generation unit 451, and a vibration command analysis unit 452 that analyzes whether the machining program 432 includes a vibration command and generates a vibration condition included in the vibration command when the vibration command is included.
  • the vibration conditions generated by the vibration command analysis unit 452 include frequency and amplitude.
  • the analysis processing unit 45 further includes an actual speed clamp command analysis unit 453 that reads the clamp speed after vibration superposition specified by the program command of the machining program 432 and writes the clamp speed to the shared area 434 of the storage unit 43.
  • the machine control signal processing unit 46 confirms that the auxiliary command is instructed when the analysis processing unit 45 reads an auxiliary command that is a command for operating a machine other than a command for operating the drive axis that is a numerical control axis. Notify the PLC circuit unit 47.
  • the PLC circuit unit 47 receives notification from the machine control signal processing unit 46 that an auxiliary command has been commanded, the PLC circuit unit 47 executes processing corresponding to the commanded auxiliary command.
  • the interpolation processing unit 48 uses the movement command analyzed by the analysis processing unit 45 to obtain a command movement amount that is a movement amount that moves at a specified feed speed during a processing cycle that is a control cycle of the numerical control device 1.
  • a movement amount superimposing unit 483 that calculates a superimposed movement amount in which the vibration movement amount is superimposed, a post-vibration superimposing speed calculation unit 484 that calculates a speed after vibration superimposition, and an upper limit of the post-vibration superimposition speed that is a speed after vibration superimposition
  • a vibration speed clamp portion 485 that limits the feed speed so that the value does not exceed the clamp speed.
  • the processing cycle is also called an interpolation cycle.
  • the acceleration / deceleration processing unit 49 converts the superimposed movement amount of each drive axis output from the interpolation processing unit 48 into a movement command per processing cycle that takes acceleration / deceleration into consideration according to a pre-specified acceleration / deceleration pattern.
  • the axis data output unit 50 sends the movement command per processing cycle processed by the acceleration / deceleration processing unit 49 to the X-axis servo control unit 13X, the Z-axis servo control unit 13Z, and the spindle control unit 16 that control each drive axis. Output.
  • FIG. 2 is a diagram schematically showing the configuration of the shaft of the numerical control apparatus 1 according to Embodiment 1 that performs turning.
  • a Z axis and an X axis that are orthogonal to each other in the drawing are provided.
  • FIG. 2A shows a case where the workpiece 61 is fixed and only the tool 62, which is a turning tool for performing turning, for example, is moved in the Z-axis direction and the X-axis direction.
  • FIG. 2B shows a case where the workpiece 61 is moved in the Z-axis direction and the tool 62 is moved in the X-axis direction.
  • the processing described below can be performed by providing both or either of the servo motor 11 and the spindle motor 14 on either or both of the processing object 61 and the tool 62 that are to be moved. It becomes possible.
  • FIG. 3 is a diagram showing an example of vibration cutting conditions. “No.” which is the condition number, “vibration condition item” which is the name of the condition, “unit” which indicates the unit of the condition, “calculation method” which is the calculation method of the condition using other conditions, and the condition One line is composed of “explanation” which is the contents of the above.
  • the spindle rotation speed” in (1) is the rotation speed of the spindle that rotates the workpiece to be machined, the unit being [r / min], and the rotation speed r per minute.
  • “Frequency” in (3) is the frequency of vibration in vibration cutting.
  • “Amplitude” in (5) is the amplitude of vibration of vibration cutting.
  • the “feed rate [per minute]” in (7) is a unit [mm / min] and a feed amount [mm] per minute.
  • the unit “feed rate [per rotation]” in (8) is [mm / r], and is a feed amount [mm] per one rotation of the main shaft.
  • FIG. 4 is a graph of the change in the movement distance with time on the horizontal axis and the movement distance on the vertical axis. Which part of the change in the movement distance corresponds to each vibration cutting condition shown in FIG. FIG.
  • FIG. 7 shows the change.
  • FIG. 8 is a diagram showing a part of the machining program 432 according to the first embodiment.
  • the coordinates “X0.0 Z0.0” of the first position of the X axis and the Z axis are designated.
  • a positioning command is issued.
  • “G165 P1 F200” indicated by the next sequence number “N2” indicates the start of the vibration cutting control mode, and “F200” indicates the actual speed at the clamp speed 200 [mm / min]. Instructed to clamp.
  • This clamping speed is a speed limit for the combined speed obtained by combining the speeds in the X-axis direction and the Z-axis direction.
  • the command “G165 P0” indicated by the last sequence number “N4” means the end of the vibration cutting control mode.
  • FIG. 9 shows movement paths in the X-axis direction and the Z-axis direction indicated by the machining program 432 in FIG.
  • FIG. 10 is a diagram showing vibration cutting conditions.
  • the “spindle rotation speed” is not shown in FIG. 8, but is described before the description of FIG. 8 of the machining program 432, for example.
  • “feed speed” is described in the command indicated by the sequence number “N3” in FIG.
  • the “number of vibrations per rotation” is given as the parameter 431 in the storage unit 43, for example, but may be described in the machining program 432.
  • the conditions of vibration “frequency”, vibration “amplitude feed ratio”, and vibration “waveform” are shown.
  • FIG. 11 shows an XZ combined moving distance that is a combined moving distance of directions.
  • “forward vibration superposition speed” in (16) of FIG. 3 is 350 [mm / min]
  • “reverse vibration superposition speed” in (17) of FIG. 3 is 250 [mm / min. Therefore, both of them exceed the clamping speed of 200 [mm / min].
  • clamp speed 200 [mm / min] is set to 350 [mm / min] of “forward vibration superposition speed” which is the larger value of “forward vibration superposition speed” and “reverse vibration superposition speed”.
  • the actual speed is clamped, that is, the actual speed is suppressed according to the flowchart of FIG.
  • the actual speed clamp command analysis unit 453 reads the clamp speed 200 [mm / min] after vibration superposition indicated by “F200” of the sequence number “N2” in FIG. 8 from the machining program 432 and writes it in the shared area 434.
  • the post-vibration speed calculation unit 484 calculates the post-vibration speed based on the machining program 432 of FIG. 8 and the vibration cutting conditions shown in FIG. 10 (step S102).
  • the post-superimposition speed calculation unit 484 calculates, for example, both the “forward vibration superposition speed” in (16) of FIG.
  • the “forward vibration superimposition speed” and “reverse vibration superposition speed” are, for example, “feed speed [per minute]” (5) amplitude, (12) forward, which are the vibration cutting conditions shown in FIG. It is obtained using the hourly feed amount and (13) the reverse feed amount. More specifically, the post-vibration superimposition speed calculation unit 484 sets the speeds after the forward and backward movements due to the vibration are superimposed on the movement based on the feed rate, respectively, as “forward vibration superposition speed” and “reverse vibration superposition speed”. Asking.
  • the vibration speed clamp unit 485 determines whether the post-vibration speed exceeds the clamp speed written in the shared area 434. Specifically, the vibration speed clamp unit 485 determines whether or not the larger one of the “forward vibration superposition speed” and the “reverse vibration superposition speed” exceeds the clamp speed.
  • the vibration post-superimposition speed and the clamp speed are substantially determined. What is necessary is just to be able to compare. Therefore, instead of comparing speeds, it may be a comparison of movement amounts at a predetermined time.
  • step S103 If neither the “forward vibration superimposition speed” nor the “reverse vibration superposition speed” exceeds the clamp speed (step S103: No), the interpolation processing unit 48 does not clamp the “feed speed” and performs normal operation. Execute (Step S105).
  • the “clamp ratio” may be equal to or less than a value obtained by dividing the clamp speed by the larger of “forward vibration superposition speed” and “reverse vibration superposition speed”.
  • step S104 when the “feed rate” is clamped, the vibration cutting movement is performed by combining the time on the horizontal axis and the movement distance in the X-axis direction and the movement distance in the Z-axis direction on the vertical axis.
  • FIG. 13 shows the XZ composite movement distance that is the distance.
  • “forward vibration superposition speed” matches the clamp speed 200 [mm / min] by the clamp of “feed speed”.
  • FIG. A block diagram showing an example of the configuration of the numerical control device 1 according to the second embodiment is FIG.
  • the “waveform” of the vibration is a symmetrical triangular wave in which the forward and backward movements are equal in time.
  • the vibration of FIG. As shown in the cutting conditions, the forward time ratio of (10) in FIG. 3 is 0.75, and the backward time ratio of (11) in FIG. Different.
  • Other conditions are the same as in the first embodiment. That is, the machining program in FIG. 8 and the movement path diagram in FIG. 9 are similarly applied to the second embodiment.
  • FIG. 15 shows the XZ combined movement distance, which is a combined movement distance.
  • “forward vibration superposition speed” in (16) of FIG. 3 is 250 [mm / min]
  • “reverse vibration superposition speed” in (17) of FIG. 3 is 550 [mm / min. Therefore, both of them exceed the clamping speed of 200 [mm / min].
  • clamp speed 200 [mm / min] is set to 550 [mm / min] of “reverse vibration superposition speed” which is the larger value of “forward vibration superposition speed” and “reverse vibration superposition speed”.
  • the actual speed is clamped, that is, the actual speed is suppressed according to the flowchart of FIG. 12 as in the first embodiment.
  • the “reverse vibration superimposition speed” before clamping is larger than the “forward vibration superposition speed”, so the clamp speed is divided by the “reverse vibration superposition speed”. It is only the point which makes the obtained value the clamp ratio. Since other points are the same as those of the first embodiment, description thereof is omitted.
  • the “clamp ratio” may be equal to or less than a value obtained by dividing the clamp speed by the “reverse vibration superimposition speed”.
  • the state of the vibration cutting movement when the “feed rate” is clamped as in step S104 is as follows.
  • the horizontal axis represents time
  • the vertical axis represents the movement distance in the X-axis direction and the movement distance in the Z-axis direction.
  • the XZ composite movement distance is as shown in FIG.
  • by clamping the “feed speed” the combined speed obtained by combining the speeds in the X-axis direction and the Z-axis direction can be suppressed to a clamp speed or less.
  • the “reverse vibration superimposition speed” matches the clamp speed 200 [mm / min] by the clamp of “feed speed”.
  • FIG. 17 is a block diagram showing an example of the configuration of the numerical controller 2 according to the third embodiment.
  • the clamping speed is designated by the machining program 432, but in the third embodiment, the clamping speed is designated as the parameter 431.
  • the numerical control device 2 includes a drive unit 10, an input operation unit 20, a display unit 30, and a control calculation unit 40.
  • a parameter 431 in the storage unit 43 includes an actual speed clamp 4311 that is an upper limit value of the speed of each axis
  • the analysis processing unit 45 includes an actual speed clamp command analysis unit 453. Is an unnecessary point.
  • the actual speed clamp command analysis unit 453 may be provided in the analysis processing unit 45.
  • FIG. 18 is a diagram illustrating a part of the machining program 432 according to the third embodiment.
  • the command “G165 P1” indicated by the sequence number “N2” in the machining program 432 in FIG. 18 is different from the command “G165 P1 F200” indicated by the sequence number “N2” in the machining program 432 in FIG. Not done.
  • the other description of FIG. 18 is the same as FIG.
  • the clamp speed for each drive axis as the feed axis is set as the actual speed clamp 4311 in the parameter 431 of the storage unit 43.
  • the clamping speed of the X axis is 150 [mm / min]
  • the clamping speed of the Z axis is 250 [mm / min].
  • the vibration speed clamp unit 485 clamps the feed speed so that is less than or equal to the speed set in the parameter 431 of each drive shaft.
  • the vibration cutting is performed under the vibration cutting conditions shown in FIG.
  • FIG. 20 shows an XZ combined movement distance that is a movement distance obtained by combining the movement distance in the Z-axis direction. Furthermore, the state of the vibration cutting movement of FIG. 20 is shown in FIG. 21 by setting the horizontal axis as time, the vertical axis as the movement distance for each axis in the X-axis direction and the Z-axis direction, and the movement distance for each XZ-axis. Show. FIG.
  • 21 shows that the X-axis clamping speed and the Z-axis clamping speed can be compared with the X-axis vibration superposition speed and the Z-axis vibration superposition speed. 22 and 23, the X-axis and Z-axis vibration cutting operations collectively shown in FIG. 21 are shown separately with the vertical axis as the X-axis movement distance and the Z-axis movement distance, respectively.
  • the numerical control device 2 executes actual speed clamping, that is, suppression of actual speed according to the flowchart of FIG.
  • the vibration speed clamp unit 485 reads the X-axis clamp speed and the Z-axis clamp speed stored as the actual speed clamp 4311 from the storage unit 43 (step S201).
  • the post-vibration superposition speed calculation unit 484 calculates post-vibration superposition speeds for the X axis and the Z axis (step S202). Specifically, for each of the X-axis and the Z-axis, both “forward vibration superposition speed” and “reverse vibration superposition speed” are calculated for each axis.
  • the calculation method of “forward vibration superposition speed” and “reverse vibration superposition speed” for each axis is the same as in the first embodiment.
  • step S203 the vibration speed clamp unit 485 determines whether or not the vibration superposed speeds of the X axis and the Z axis exceed the X axis clamp speed and the Z axis clamp speed, respectively.
  • step S203 the vibration speed clamp unit 485 determines that the larger of the “forward vibration superposition speed” and the “reverse vibration superposition speed” of the X axis exceeds the clamp speed or the Z axis “forward vibration superposition speed”. ”And“ reverse vibration superimposition speed ”is judged whether or not the clamp speed exceeds the clamp speed. Since this comparison also needs to be able to compare the post-superimposition speed and the clamping speed for each axis, it may be a comparison between the movement amounts in a predetermined time instead of a comparison between the speeds. .
  • step S203 the interpolation processing unit 48 performs a normal operation without clamping the “feed speed” (step S205).
  • the vibration speed clamp unit 485 clamps the “feed speed” (step S204). Specifically, neither the X-axis “forward vibration superposition speed” nor the “reverse vibration superposition speed” exceeds the X-axis clamp speed, and the Z-axis “forward vibration superposition speed” and “reverse time”.
  • the interpolation processing unit 48 performs subsequent calculations.
  • the “clamp ratio” may be equal to or less than the value determined as described above.
  • FIG. 25 shows the XZ combined movement distance, which is the movement distance obtained by combining the directions. Furthermore, the state of the vibration cutting movement of FIG. 25 is shown in FIG. 26 with the X-axis and Z-axis, the horizontal axis as time, and the vertical axis as the movement distance by XZ-axis, which is the movement distance by axis in the X-axis direction and Z-axis direction. Show. FIG.
  • FIG. 26 shows the X-axis clamp speed and the Z-axis clamp speed so that they can be compared with the X-axis vibration superposition speed and the Z-axis vibration superposition speed. Further, in FIGS. 27 and 28, the operations of the X-axis and the Z-axis collectively shown in FIG. 26 are shown separately with the vertical axis as the X-axis movement distance and the Z-axis movement distance, respectively.
  • the clamping speed for clamping the feeding speed is not limited to that described in the first to third embodiments.
  • the cutting speed is a clamping speed applied to all cutting feeds, and only during the vibration cutting mode.
  • PLC programmable logic controller
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Geometry (AREA)
  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

A numerical control apparatus for machining a target object to be machined by moving, and at the same time vibrating, a tool and the target object relative to each other along a movement path by means of a drive shaft provided to the tool or the target object, said numerical control apparatus being provided with: an analysis processing unit which reads both a feed rate of movement along the movement path and a clamp feed rate from a machining program; a feed-rate-with-vibration calculation unit which, on the basis of given vibratory cutting conditions, calculates a feed rate with vibration, which is a feed rate resulting from imparting vibration to the aforementioned read feed rate of movement; and a feed-rate-with-vibration clamping unit which, if the calculated feed rate with vibration exceeds the aforementioned read clamp feed rate, reduces the original feed rate without vibration so that the calculated feed rate with vibration is equal to or less than the clamp feed rate.

Description

数値制御装置Numerical controller
 本発明は、ワークとワークを加工する工具とを相対的に移動制御する数値制御装置に関する。 The present invention relates to a numerical control device that relatively moves and controls a workpiece and a tool for machining the workpiece.
 従来では、旋削加工において、切削工具をワークに対して送り動作させる切削工具送り機構と、上記切削工具を低周波振動させて切削工具送り駆動モータを制御する制御機構と、を有する数値制御装置が提案されている(特許文献1~3参照)。この数値制御装置では制御機構は、各種設定を行う操作手段と、操作手段によって設定されたワークの回転数または切削工具1回転当たりの切削工具の送り量に応じて、切削工具を同期させて送り動作させる25Hz以上の低周波で動作可能なデータとして、送り軸のイナーシャまたはモータ特性等の機械特性に応じた少なくとも切削工具送り機構の前進量、後退量、前進速度、後退速度が予め表にされて格納されている振動切削情報格納手段と、振動切削情報格納手段に格納されている当該データに基づいて切削工具送り駆動モータを制御してなるモータ制御手段と、を有している。これによって、補間経路に沿って前進、後退動作を繰り返すことによって、低周波振動を生成している。 Conventionally, in turning, a numerical control device having a cutting tool feed mechanism that feeds a cutting tool to a workpiece and a control mechanism that controls a cutting tool feed drive motor by vibrating the cutting tool at a low frequency is known. It has been proposed (see Patent Documents 1 to 3). In this numerical control apparatus, the control mechanism feeds the cutting tool in synchronization according to the operating means for performing various settings, and the workpiece rotation speed set by the operating means or the cutting tool feed amount per one cutting tool rotation. As data that can be operated at a low frequency of 25 Hz or more to be operated, at least the advance amount, the retract amount, the advance speed, and the retract speed of the cutting tool feed mechanism according to mechanical characteristics such as inertia of the feed shaft or motor characteristics are tabulated in advance. Vibration cutting information storage means and motor control means for controlling the cutting tool feed drive motor based on the data stored in the vibration cutting information storage means. Thereby, low frequency vibration is generated by repeating forward and backward movements along the interpolation path.
特許第5033929号公報Japanese Patent No. 5033929 特許第5139591号公報Japanese Patent No. 5139591 特許第5139592号公報Japanese Patent No. 5139592
 上記特許文献1~3においては、プログラムから指定した移動指令に対して移動方向の振動を重畳した移動指令を生成して、モータを駆動する方法が示されている。しかし、プログラムにおいて指定された移動指令に対して振動を重畳すると、振動重畳後の移動指令速度は、プログラムにおいて指定された移動速度に比べて大きくなる場合があり、機械のオペレータが予期していないような大きな速度が発生して機械に対して負荷をかける可能性があった。 The above Patent Documents 1 to 3 show a method of driving a motor by generating a movement command in which vibration in the movement direction is superimposed on a movement command designated from a program. However, if vibration is superimposed on the movement command specified in the program, the movement command speed after vibration superimposition may be larger than the movement speed specified in the program, which is not expected by the machine operator There was a possibility that such a large speed was generated and a load was applied to the machine.
 本発明は、上記に鑑みてなされたものであって、低周波振動切削時に振動を重畳した移動速度が機械に対して負荷をかけないように制御できる数値制御装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a numerical control device capable of controlling a moving speed superimposed with vibration during low frequency vibration cutting so as not to apply a load to the machine.
 上述した課題を解決し、目的を達成するために、本発明は、工具または加工対象に設けられた駆動軸によって、前記工具と前記加工対象とを相対的に振動を伴いながら移動経路に沿って移動させて前記加工対象の加工を行う数値制御装置であって、加工プログラムから、前記移動経路を移動させる送り速度およびクランプ速度を読み出す解析処理部と、与えられた振動切削条件に基づいて、前記送り速度による移動に前記振動が重畳した後の振動重畳後速度を算出する振動重畳後速度算出部と、前記振動重畳後速度が前記クランプ速度を超える場合は、前記クランプ速度以下となるように前記送り速度を低減する振動速度クランプ部と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a tool or a workpiece to be driven along a movement path while relatively vibrating the tool and the workpiece by a drive shaft provided on the workpiece. A numerical control device that moves and processes the workpiece, an analysis processing unit that reads a feed speed and a clamp speed for moving the movement path from a machining program, and based on a given vibration cutting condition, A post-superimposition speed calculation unit that calculates a post-superimposition speed after the vibration is superimposed on the movement by the feed speed, and when the post-vibration superposition speed exceeds the clamp speed, the speed is less than the clamp speed. And a vibration speed clamp portion for reducing the feed speed.
 本発明にかかる数値制御装置は、低周波振動切削時に振動を重畳した移動速度が機械に対して負荷をかけないように制御できるという効果を奏する。 The numerical control device according to the present invention has an effect that it is possible to control so that the moving speed on which vibration is superimposed during low frequency vibration cutting does not apply a load to the machine.
本発明の実施の形態1および2における数値制御装置の構成の一例を示すブロック図The block diagram which shows an example of a structure of the numerical control apparatus in Embodiment 1 and 2 of this invention 実施の形態における数値制御装置の軸の構成を模式的に示す図であって、図2(a)は、工具のみをZ軸とX軸方向に移動させる場合の図、図2(b)は、加工対象をZ軸方向に移動させ、工具をX軸方向に移動させる場合の図It is a figure which shows typically the structure of the axis | shaft of the numerical control apparatus in embodiment, Comprising: Fig.2 (a) is a figure in the case of moving only a tool to a Z-axis and an X-axis direction, FIG.2 (b) is FIG. Figure when moving the machining target in the Z-axis direction and moving the tool in the X-axis direction 振動切削条件の例を示す図Diagram showing examples of vibration cutting conditions 移動量の時間変化において図3の各振動切削条件がいずれの量に該当するかを示した図The figure which shows which amount each vibration cutting condition of Drawing 3 corresponds in the time change of the amount of movement. 振動条件の例を示す図Diagram showing examples of vibration conditions 送り速度[毎分]=50[mm/min]における移動距離の時間変化を示す図The figure which shows the time change of the movement distance in feed speed [every minute] = 50 [mm / min]. 送り速度[毎分]=20[mm/min]における移動距離の時間変化を示す図The figure which shows the time change of the movement distance in feed speed [every minute] = 20 [mm / min]. 実施の形態1にかかる加工プログラムの一部を示す図The figure which shows a part of machining program concerning Embodiment 1 図8の加工プログラムで示されるX軸方向およびZ軸方向における移動経路を示す図The figure which shows the movement path | route in the X-axis direction and Z-axis direction shown by the machining program of FIG. 実施の形態1にかかる振動切削条件を示す図The figure which shows the vibration cutting conditions concerning Embodiment 1. FIG. 実速度をクランプしなかった場合の振動切削移動の様子を示す図Diagram showing the state of vibration cutting movement when the actual speed is not clamped 本発明の実施の形態1および2において実速度のクランプを実行する手順を示すフローチャートThe flowchart which shows the procedure which performs the clamp of real speed in Embodiment 1 and 2 of this invention 実施の形態1において実速度をクランプした場合の振動切削移動の様子を示す図The figure which shows the mode of the vibration cutting movement at the time of clamping an actual speed in Embodiment 1. 実施の形態2にかかる振動切削条件を示す図The figure which shows the vibration cutting conditions concerning Embodiment 2. FIG. 実速度をクランプしなかった場合の振動切削移動の様子を示す図Diagram showing the state of vibration cutting movement when the actual speed is not clamped 実施の形態2において実速度をクランプした場合の振動切削移動の様子を示す図The figure which shows the mode of the vibration cutting movement at the time of clamping an actual speed in Embodiment 2. 本発明の実施の形態3における数値制御装置の構成の一例を示すブロック図The block diagram which shows an example of a structure of the numerical control apparatus in Embodiment 3 of this invention. 実施の形態3にかかる加工プログラムの一部を示す図The figure which shows a part of machining program concerning Embodiment 3 実施の形態3においてパラメータとして駆動軸別にクランプ速度を設定する例を示す図The figure which shows the example which sets a clamp speed for every drive axis as a parameter in Embodiment 3. 各駆動軸の速度をクランプしなかった場合の振動切削移動の様子を示す図The figure which shows the mode of vibration cutting movement when the speed of each drive shaft is not clamped 各駆動軸の速度をクランプしなかった場合の振動切削移動の様子を駆動軸別に示す図The figure which shows the state of the vibration cutting movement when the speed of each drive shaft is not clamped according to the drive shaft 各駆動軸の速度をクランプしなかった場合のX軸の振動切削移動の様子を示す図The figure which shows the mode of the vibration cutting movement of the X-axis when the speed of each drive shaft is not clamped 各駆動軸の速度をクランプしなかった場合のZ軸の振動切削移動の様子を示す図The figure which shows the mode of the vibration cutting movement of the Z-axis when the speed of each drive shaft is not clamped 実施の形態3において実速度のクランプを実行する手順を示すフローチャートThe flowchart which shows the procedure which performs the clamp of real speed in Embodiment 3. 実施の形態3において実速度をクランプした場合の振動切削移動の様子を示す図The figure which shows the mode of the vibration cutting movement at the time of clamping a real speed in Embodiment 3. 実施の形態3において実速度をクランプした場合の振動切削移動の様子をX軸Z軸別に示す図The figure which shows the mode of the vibration cutting movement at the time of clamping an actual speed in Embodiment 3 according to X-axis Z-axis 実施の形態3において実速度をクランプした場合のX軸の振動切削移動の様子を示す図The figure which shows the mode of the vibration cutting movement of the X-axis at the time of clamping real speed in Embodiment 3. 実施の形態3において実速度をクランプした場合のZ軸の振動切削移動の様子を示す図The figure which shows the mode of the vibration cutting movement of the Z axis at the time of clamping an actual speed in Embodiment 3.
 以下に、本発明の実施の形態にかかる数値制御装置を図面に基づいて詳細に説明する。なお、これらの実施の形態によりこの発明が限定されるものではない。 Hereinafter, a numerical controller according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to these embodiments.
実施の形態1.
 図1は、実施の形態1にかかる数値制御装置1の構成の一例を示すブロック図である。数値制御装置1は、駆動部10と、入力操作部20と、表示部30と、制御演算部40と、を有する。
Embodiment 1 FIG.
FIG. 1 is a block diagram of an example of the configuration of the numerical control device 1 according to the first embodiment. The numerical control device 1 includes a drive unit 10, an input operation unit 20, a display unit 30, and a control calculation unit 40.
 駆動部10は、加工対象および工具のいずれか一方または両方を少なくとも2軸方向に駆動する機構である。駆動部10は、数値制御装置1上で規定された各軸方向に加工対象または工具を移動させるサーボモータ11と、サーボモータ11の位置および速度を検出する検出器12と、検出器12によって検出される位置および速度に基づいて、加工対象または工具の位置および速度の制御を行う各軸方向のX軸サーボ制御部13XおよびZ軸サーボ制御部13Zと、を有する。なお、以下では、駆動軸の方向を区別する必要がない場合には、X軸サーボ制御部13XおよびZ軸サーボ制御部13Zを単にサーボ制御部13と表記する。本実施の形態1による数値制御装置1は、工具または加工対象に設けられたこれらの駆動軸によって、工具と加工対象とを相対的に振動を伴いながら移動経路に沿って移動させて加工対象の加工を行う。 The drive unit 10 is a mechanism that drives one or both of the machining target and the tool in at least two axial directions. The drive unit 10 is detected by a servo motor 11 that moves a workpiece or a tool in each axial direction defined on the numerical control device 1, a detector 12 that detects the position and speed of the servo motor 11, and the detector 12. And an X-axis servo control unit 13X and a Z-axis servo control unit 13Z for each axis direction for controlling the position and speed of the processing target or tool based on the position and speed. Hereinafter, when it is not necessary to distinguish the directions of the drive axes, the X-axis servo control unit 13X and the Z-axis servo control unit 13Z are simply referred to as the servo control unit 13. The numerical control apparatus 1 according to the first embodiment moves the tool and the machining target along the movement path with relative vibrations by using these drive shafts provided on the tool or the machining target. Processing.
 また、駆動部10は、加工対象を保持する主軸を回転させる主軸モータ14と、主軸モータ14の位置および回転数を検出する検出器15と、検出器15によって検出される位置および回転数に基づいて、主軸の回転を制御する主軸制御部16と、を有する。 Further, the drive unit 10 is based on the spindle motor 14 that rotates the spindle that holds the workpiece, the detector 15 that detects the position and rotation speed of the spindle motor 14, and the position and rotation speed detected by the detector 15. And a spindle control unit 16 for controlling the rotation of the spindle.
 入力操作部20は、キーボード、ボタンまたはマウスといった入力手段によって構成され、ユーザによる数値制御装置1に対するコマンドの入力または加工プログラムもしくはパラメータなどの入力が行われる。表示部30は、液晶表示装置などの表示手段によって構成され、制御演算部40によって処理された情報が表示される。 The input operation unit 20 is configured by an input means such as a keyboard, a button, or a mouse, and a user inputs a command to the numerical control device 1 or inputs a machining program or a parameter. The display unit 30 is configured by display means such as a liquid crystal display device, and displays information processed by the control calculation unit 40.
 制御演算部40は、入力制御部41と、データ設定部42と、記憶部43と、画面処理部44と、解析処理部45と、機械制御信号処理部46と、PLC(Programmable Logic Controller)回路部47と、補間処理部48と、加減速処理部49と、軸データ出力部50と、を有する。 The control calculation unit 40 includes an input control unit 41, a data setting unit 42, a storage unit 43, a screen processing unit 44, an analysis processing unit 45, a machine control signal processing unit 46, and a PLC (Programmable Logic Controller) circuit. A unit 47, an interpolation processing unit 48, an acceleration / deceleration processing unit 49, and an axis data output unit 50.
 入力制御部41は、入力操作部20から入力される情報を受け付ける。データ設定部42は、入力制御部41で受け付けられた情報を記憶部43に記憶させる。一例として、入力制御部41は、入力された内容が加工プログラム432の編集の場合には、記憶部43に記憶されている加工プログラム432に編集された内容を反映させ、パラメータが入力された場合には記憶部43のパラメータ431の記憶領域に記憶させる。 The input control unit 41 receives information input from the input operation unit 20. The data setting unit 42 stores the information received by the input control unit 41 in the storage unit 43. As an example, when the input content is an edit of the machining program 432, the input control unit 41 reflects the edited content in the machining program 432 stored in the storage unit 43, and a parameter is input. Is stored in the storage area of the parameter 431 of the storage unit 43.
 記憶部43は、制御演算部40の処理で使用されるパラメータ431、実行される加工プログラム432および表示部30に表示させる画面表示データ433といった情報を記憶する。また、記憶部43には、パラメータ431および加工プログラム432以外の一時的に使用されるデータを記憶する共有エリア434が設けられている。画面処理部44は、記憶部43の画面表示データ433を表示部30に表示させる制御を行う。 The storage unit 43 stores information such as the parameters 431 used in the processing of the control calculation unit 40, the machining program 432 to be executed, and the screen display data 433 to be displayed on the display unit 30. The storage unit 43 is provided with a shared area 434 for storing temporarily used data other than the parameters 431 and the machining program 432. The screen processing unit 44 performs control to display the screen display data 433 in the storage unit 43 on the display unit 30.
 解析処理部45は、1以上のブロックを含む加工プログラム432を読み込み、読み込んだ加工プログラムを1ブロック毎に解析し、移動経路方向の送り速度を読み出し、1ブロックで移動する移動指令を生成する移動指令生成部451と、加工プログラム432に振動指令が含まれているかを解析し、振動指令が含まれている場合に、振動指令に含まれる振動条件を生成する振動指令解析部452と、を有する。振動指令解析部452が生成する振動条件には、周波数および振幅が含まれる。解析処理部45は、さらに、加工プログラム432のプログラム指令で指定された振動重畳後のクランプ(clamp)速度を読み出して記憶部43の共有エリア434に書き込む実速度クランプ指令解析部453を有する。 The analysis processing unit 45 reads the machining program 432 including one or more blocks, analyzes the read machining program for each block, reads the feed speed in the movement path direction, and generates a movement command for moving in one block. A command generation unit 451, and a vibration command analysis unit 452 that analyzes whether the machining program 432 includes a vibration command and generates a vibration condition included in the vibration command when the vibration command is included. . The vibration conditions generated by the vibration command analysis unit 452 include frequency and amplitude. The analysis processing unit 45 further includes an actual speed clamp command analysis unit 453 that reads the clamp speed after vibration superposition specified by the program command of the machining program 432 and writes the clamp speed to the shared area 434 of the storage unit 43.
 機械制御信号処理部46は、解析処理部45によって、数値制御軸である駆動軸を動作させる指令以外の機械を動作させる指令である補助指令を読み込んだ場合に、補助指令が指令されたことをPLC回路部47に通知する。PLC回路部47は、機械制御信号処理部46から補助指令が指令されたことの通知を受けると、指令された補助指令に対応する処理を実行する。 The machine control signal processing unit 46 confirms that the auxiliary command is instructed when the analysis processing unit 45 reads an auxiliary command that is a command for operating a machine other than a command for operating the drive axis that is a numerical control axis. Notify the PLC circuit unit 47. When the PLC circuit unit 47 receives notification from the machine control signal processing unit 46 that an auxiliary command has been commanded, the PLC circuit unit 47 executes processing corresponding to the commanded auxiliary command.
 補間処理部48は、解析処理部45が解析した移動指令を用い、数値制御装置1の制御の周期である処理周期の間に、指定された送り速度で移動する移動量である指令移動量を算出する指令移動量算出部481と、工具または加工対象を振動させるための処理周期の間の移動量である振動移動量を算出する振動移動量算出部482と、処理周期当たりの指令移動量と振動移動量とを重畳した重畳移動量を算出する移動量重畳部483と、振動重畳後の速度を算出する振動重畳後速度算出部484と、振動重畳後の速度である振動重畳後速度の上限値がクランプ速度を超えないように送り速度を制限する振動速度クランプ部485と、を有する。なお、処理周期は補間周期とも呼ばれる。 The interpolation processing unit 48 uses the movement command analyzed by the analysis processing unit 45 to obtain a command movement amount that is a movement amount that moves at a specified feed speed during a processing cycle that is a control cycle of the numerical control device 1. A command movement amount calculation unit 481 to calculate, a vibration movement amount calculation unit 482 that calculates a vibration movement amount that is a movement amount during a processing cycle for vibrating a tool or a machining target, and a command movement amount per processing cycle A movement amount superimposing unit 483 that calculates a superimposed movement amount in which the vibration movement amount is superimposed, a post-vibration superimposing speed calculation unit 484 that calculates a speed after vibration superimposition, and an upper limit of the post-vibration superimposition speed that is a speed after vibration superimposition And a vibration speed clamp portion 485 that limits the feed speed so that the value does not exceed the clamp speed. The processing cycle is also called an interpolation cycle.
 加減速処理部49は、補間処理部48から出力された各駆動軸の重畳移動量を、予め指定された加減速パターンに従って、加減速を考慮した処理周期当たりの移動指令に変換する。軸データ出力部50は、加減速処理部49で処理された処理周期当たりの移動指令を、各駆動軸を制御するX軸サーボ制御部13X、Z軸サーボ制御部13Z、および主軸制御部16に出力する。 The acceleration / deceleration processing unit 49 converts the superimposed movement amount of each drive axis output from the interpolation processing unit 48 into a movement command per processing cycle that takes acceleration / deceleration into consideration according to a pre-specified acceleration / deceleration pattern. The axis data output unit 50 sends the movement command per processing cycle processed by the acceleration / deceleration processing unit 49 to the X-axis servo control unit 13X, the Z-axis servo control unit 13Z, and the spindle control unit 16 that control each drive axis. Output.
 工具または加工対象を振動させながら加工を行うためには、上記したように、加工を行う際に、加工対象と工具とを相対的に移動させればよい。図2は、旋削加工を行う実施の形態1による数値制御装置1の軸の構成を模式的に示す図である。この図では、紙面内に直交するZ軸とX軸を設けている。図2(a)は、加工対象61を固定し、たとえば旋削加工を行う旋削加工用工具である工具62のみをZ軸方向とX軸方向とに移動させる場合である。また、図2(b)は、加工対象61をZ軸方向に移動させ、工具62をX軸方向に移動させる場合である。これらのいずれの場合でも、移動させる対象である加工対象61および工具62の両方またはいずれかにサーボモータ11および主軸モータ14の両方またはいずれかを設けることで、以下に説明する処理を行うことが可能となる。 In order to perform the processing while vibrating the tool or the processing target, as described above, the processing target and the tool may be relatively moved when performing the processing. FIG. 2 is a diagram schematically showing the configuration of the shaft of the numerical control apparatus 1 according to Embodiment 1 that performs turning. In this figure, a Z axis and an X axis that are orthogonal to each other in the drawing are provided. FIG. 2A shows a case where the workpiece 61 is fixed and only the tool 62, which is a turning tool for performing turning, for example, is moved in the Z-axis direction and the X-axis direction. FIG. 2B shows a case where the workpiece 61 is moved in the Z-axis direction and the tool 62 is moved in the X-axis direction. In any of these cases, the processing described below can be performed by providing both or either of the servo motor 11 and the spindle motor 14 on either or both of the processing object 61 and the tool 62 that are to be moved. It becomes possible.
 図3は、振動切削条件の例を示す図である。条件の番号である「No.」、条件の名称である「振動条件項目」、条件の単位を示す「単位」、他の条件を用いた当該条件の算出方法である「算出方法」および当該条件の内容である「説明」とで1行が構成されている。 FIG. 3 is a diagram showing an example of vibration cutting conditions. “No.” which is the condition number, “vibration condition item” which is the name of the condition, “unit” which indicates the unit of the condition, “calculation method” which is the calculation method of the condition using other conditions, and the condition One line is composed of “explanation” which is the contents of the above.
 以下、図3の「説明」が空白になっている条件について説明する。例えば、(1)の「主軸回転速度」は、加工対象であるワークを回転させる主軸の回転速度であり、単位は[r/min]であって、1分当たりの回転数rである。(3)の「周波数」は、振動切削の振動の周波数である。(5)の「振幅」は、振動切削の振動の振幅である。(7)の「送り速度[毎分]」は、単位は[mm/min]であって、1分当たりの送り量[mm]である。(8)の「送り速度[毎回転]」は、単位は[mm/r]であって、主軸1回転当たりの送り量[mm]である。 Hereinafter, the conditions under which “Description” in FIG. 3 is blank will be described. For example, the “spindle rotation speed” in (1) is the rotation speed of the spindle that rotates the workpiece to be machined, the unit being [r / min], and the rotation speed r per minute. “Frequency” in (3) is the frequency of vibration in vibration cutting. “Amplitude” in (5) is the amplitude of vibration of vibration cutting. The “feed rate [per minute]” in (7) is a unit [mm / min] and a feed amount [mm] per minute. The unit “feed rate [per rotation]” in (8) is [mm / r], and is a feed amount [mm] per one rotation of the main shaft.
 図4は、横軸を時間、縦軸を移動距離として示した移動距離の時間変化の図において、図3で示した各振動切削条件が移動距離の時間変化のどの部位の量に該当するかを示した図である。 FIG. 4 is a graph of the change in the movement distance with time on the horizontal axis and the movement distance on the vertical axis. Which part of the change in the movement distance corresponds to each vibration cutting condition shown in FIG. FIG.
 ここで、与えられた振動条件下において、「送り速度[毎分]」および「送り速度[毎回転]」が変化した場合の移動距離の時間変化がどのように変化するかについて、具体例を用いて説明する。 Here, a specific example of how the time change of the moving distance changes when the “feed rate [per minute]” and the “feed rate [per rotation]” change under the given vibration conditions. It explains using.
 図5は、振動条件の例を示す図である。図5の振動条件下において、「送り速度[毎分]」=50[mm/min]、即ち、「送り速度[毎回転]」=0.0125[mm/r]の場合の移動距離の時間変化を示すのが図6である。図5の振動条件下において、「送り速度[毎分]」=20[mm/min]、即ち、「送り速度[毎回転]」=0.005[mm/r]の場合の移動距離の時間変化を示すのが図7である。 FIG. 5 is a diagram illustrating an example of vibration conditions. Under the vibration conditions of FIG. 5, the movement distance time when “feed rate [per minute]” = 50 [mm / min], that is, “feed rate [per rotation]” = 0.0125 [mm / r]. FIG. 6 shows the change. Under the vibration conditions of FIG. 5, the movement distance time when “feed rate [per minute]” = 20 [mm / min], that is, “feed rate [per rotation]” = 0.005 [mm / r]. FIG. 7 shows the change.
 図6および図7を比べると、図3および図4に示した振動重畳移動における前進時速度である(16)の「前進時振動重畳速度」および振動重畳移動における後退時速度である(17)の「後退時振動重畳速度」が、共に、図6よりも送り速度を下げた図7になると低減されていることがわかる。すなわち、振動条件が変化しなければ、送り速度を下げると(5)の「振幅」、(16)の「前進時振動重畳速度」および(17)の「後退時振動重畳速度」も送り速度に比例して小さくなる。実施の形態1にかかる数値制御装置1はこの事実を利用する。 6 and 7 are compared with the forward speed in the vibration superposition movement shown in FIGS. 3 and 4 (16) and the reverse speed in the vibration superposition movement (17). It can be seen that the “reverse vibration superimposition speed” in FIG. 6 is reduced in FIG. 7 where the feed speed is lower than in FIG. That is, if the vibration condition does not change, when the feed rate is lowered, the “amplitude” in (5), the “forward vibration superposition speed” in (16), and the “reverse vibration superposition speed” in (17) also become the feed speed. Proportionally decreases. The numerical control apparatus 1 according to the first embodiment uses this fact.
 図8は、実施の形態1にかかる加工プログラム432の一部を示す図である。図8の加工プログラム432のシーケンス番号「N1」で示される指令「G0 X0.0 Z0.0」においては、X軸およびZ軸の最初の位置の座標「X0.0 Z0.0」を指定する位置決め指令がなされる。次のシーケンス番号「N2」で示される指令「G165 P1 F200」においては、「G165 P1」は振動切削制御モードの開始を指示し、「F200」はクランプ速度200[mm/min]で実速度をクランプすることが指示される。このクランプ速度は、X軸方向およびZ軸方向の速度を合成した合成速度に対する制限速度である。 FIG. 8 is a diagram showing a part of the machining program 432 according to the first embodiment. In the command “G0 X0.0 Z0.0” indicated by the sequence number “N1” of the machining program 432 in FIG. 8, the coordinates “X0.0 Z0.0” of the first position of the X axis and the Z axis are designated. A positioning command is issued. In the command “G165 P1 F200” indicated by the next sequence number “N2”, “G165 P1” indicates the start of the vibration cutting control mode, and “F200” indicates the actual speed at the clamp speed 200 [mm / min]. Instructed to clamp. This clamping speed is a speed limit for the combined speed obtained by combining the speeds in the X-axis direction and the Z-axis direction.
 次のシーケンス番号「N3」で示される指令「G1 X10.0 Z20.0 F50」は、直線補間で「X10.0 Z20.0」まで移動する振動切削を実行することを示すものである。また、「F」とそれに続く数値は、1分間当たりの切削送り量である指令送り速度を示し、この例「F50」では、指令送り速度=50[mm/min]を示す。この指令送り速度は、X軸方向およびZ軸方向の送り速度を合成した送り速度である。最後のシーケンス番号「N4」で示される指令「G165 P0」は、振動切削制御モードの終了を意味するものである。 The command “G1 X10.0 Z20.0 F50” indicated by the next sequence number “N3” indicates that vibration cutting that moves to “X10.0 Z20.0” by linear interpolation is executed. Further, “F” and a numerical value subsequent thereto indicate a command feed speed that is a cutting feed amount per minute, and in this example “F50”, a command feed speed = 50 [mm / min]. This command feed speed is a feed speed obtained by combining the feed speeds in the X-axis direction and the Z-axis direction. The command “G165 P0” indicated by the last sequence number “N4” means the end of the vibration cutting control mode.
 図8の加工プログラム432で示されるX軸方向およびZ軸方向における移動経路を図9に示す。図9の右側には、この場合の移動距離、移動時間、指令送り速度=50[mm/min]をX軸方向およびZ軸方向に分解したX軸送り速度およびZ軸送り速度も示してある。 FIG. 9 shows movement paths in the X-axis direction and the Z-axis direction indicated by the machining program 432 in FIG. The right side of FIG. 9 also shows the X-axis feed speed and Z-axis feed speed obtained by disassembling the travel distance, travel time, and command feed speed = 50 [mm / min] in this case in the X-axis direction and Z-axis direction. .
 図10は、振動切削条件を示す図である。「主軸回転速度」は、図8には示されていないが、例えば加工プログラム432の図8の記載より前に記述されている。「送り速度」は、上述したように図8のシーケンス番号「N3」で示される指令に記述されている。「毎回転振動回数」は、例えば、記憶部43のパラメータ431として与えられるが、加工プログラム432に記述されていてもかまわない。その他、振動の「周波数」、振動の「振幅送り比率」、および振動の「波形」の条件が示されている。本実施の形態1における振動の「波形」は、前進と後退が等時間の三角波である。このように、図10の振動切削条件は、加工プログラム432あるいはパラメータ431のいずれかから得られる情報である。 FIG. 10 is a diagram showing vibration cutting conditions. The “spindle rotation speed” is not shown in FIG. 8, but is described before the description of FIG. 8 of the machining program 432, for example. As described above, “feed speed” is described in the command indicated by the sequence number “N3” in FIG. The “number of vibrations per rotation” is given as the parameter 431 in the storage unit 43, for example, but may be described in the machining program 432. In addition, the conditions of vibration “frequency”, vibration “amplitude feed ratio”, and vibration “waveform” are shown. The “waveform” of the vibration in the first embodiment is a triangular wave in which the forward and backward movements are equal in time. 10 is information obtained from either the machining program 432 or the parameter 431.
 図8から図10に示した振動切削加工の条件において、仮に、実速度をクランプしなかった場合の振動切削移動の様子を、横軸を時間、縦軸をX軸方向の移動距離とZ軸方向の移動距離とを合成した移動距離であるXZ合成移動距離として図11に示す。図11に示すように、図3の(16)の「前進時振動重畳速度」は350[mm/min]となり、図3の(17)の「後退時振動重畳速度」は250[mm/min]となるので、共に、クランプ速度200[mm/min]を超えている。ここで、「前進時振動重畳速度」と「後退時振動重畳速度」との大きい方の値である「前進時振動重畳速度」の350[mm/min]でクランプ速度200[mm/min]を除算した値を「クランプ比」=0.5714として図11に示す。 In the conditions of vibration cutting shown in FIG. 8 to FIG. 10, if the actual speed is not clamped, the state of vibration cutting movement will be shown, with the horizontal axis representing time, the vertical axis representing the movement distance in the X axis direction, and the Z axis. FIG. 11 shows an XZ combined moving distance that is a combined moving distance of directions. As shown in FIG. 11, “forward vibration superposition speed” in (16) of FIG. 3 is 350 [mm / min], and “reverse vibration superposition speed” in (17) of FIG. 3 is 250 [mm / min. Therefore, both of them exceed the clamping speed of 200 [mm / min]. Here, the clamp speed 200 [mm / min] is set to 350 [mm / min] of “forward vibration superposition speed” which is the larger value of “forward vibration superposition speed” and “reverse vibration superposition speed”. The divided value is shown in FIG. 11 as “clamp ratio” = 0.5714.
 本実施の形態1にかかる数値制御装置1においては、図12のフローチャートに従って実速度のクランプ、即ち実速度の抑制を実行する。まず、実速度クランプ指令解析部453は、加工プログラム432から図8のシーケンス番号「N2」の「F200」で示される振動重畳後のクランプ速度200[mm/min]を読み出して共有エリア434に書き込む(ステップS101)。次に、振動重畳後速度算出部484は、図8の加工プログラム432および図10に示した振動切削条件に基づいて振動重畳後速度を計算する(ステップS102)。振動重畳後速度算出部484は、振動重畳後速度として、例えば、図3の(16)の「前進時振動重畳速度」および(17)の「後退時振動重畳速度」の両方を計算する。「前進時振動重畳速度」および「後退時振動重畳速度」は、例えば、図3に示す振動切削条件である(7)の「送り速度[毎分]」、(5)振幅、(12)前進時送り量および(13)後退時送り量を用いて求められる。具体的には、振動重畳後速度算出部484は、送り速度による移動に、振動による前進および後退の運動が重畳した後の速度をそれぞれ「前進時振動重畳速度」および「後退時振動重畳速度」として求める。 In the numerical control apparatus 1 according to the first embodiment, the actual speed is clamped, that is, the actual speed is suppressed according to the flowchart of FIG. First, the actual speed clamp command analysis unit 453 reads the clamp speed 200 [mm / min] after vibration superposition indicated by “F200” of the sequence number “N2” in FIG. 8 from the machining program 432 and writes it in the shared area 434. (Step S101). Next, the post-vibration speed calculation unit 484 calculates the post-vibration speed based on the machining program 432 of FIG. 8 and the vibration cutting conditions shown in FIG. 10 (step S102). The post-superimposition speed calculation unit 484 calculates, for example, both the “forward vibration superposition speed” in (16) of FIG. 3 and the “reverse vibration superposition speed” in (17) as the post-superimposition speed. The “forward vibration superimposition speed” and “reverse vibration superposition speed” are, for example, “feed speed [per minute]” (5) amplitude, (12) forward, which are the vibration cutting conditions shown in FIG. It is obtained using the hourly feed amount and (13) the reverse feed amount. More specifically, the post-vibration superimposition speed calculation unit 484 sets the speeds after the forward and backward movements due to the vibration are superimposed on the movement based on the feed rate, respectively, as “forward vibration superposition speed” and “reverse vibration superposition speed”. Asking.
 そして、次にステップS103において、振動速度クランプ部485は、振動重畳後速度が共有エリア434に書き込まれているクランプ速度を超えるか否かを判断する。具体的には、振動速度クランプ部485は、「前進時振動重畳速度」および「後退時振動重畳速度」の大きい方がクランプ速度を超えるか否かを判断する。 Then, in step S103, the vibration speed clamp unit 485 determines whether the post-vibration speed exceeds the clamp speed written in the shared area 434. Specifically, the vibration speed clamp unit 485 determines whether or not the larger one of the “forward vibration superposition speed” and the “reverse vibration superposition speed” exceeds the clamp speed.
 このように、「前進時振動重畳速度」および「後退時振動重畳速度」の大きい方がクランプ速度を超えるか否かを判断する方法としては、実質的に、振動重畳後速度とクランプ速度とを比較することができればよい。したがって、速度同士の比較ではなく、予め定められた時間での移動量同士の比較であってもよい。 As described above, as a method of determining whether the larger one of the “forward vibration superposition speed” and the “reverse vibration superposition speed” exceeds the clamp speed, the vibration post-superimposition speed and the clamp speed are substantially determined. What is necessary is just to be able to compare. Therefore, instead of comparing speeds, it may be a comparison of movement amounts at a predetermined time.
 「前進時振動重畳速度」および「後退時振動重畳速度」のいずれもがクランプ速度を超えない場合(ステップS103:No)は、補間処理部48は「送り速度」をクランプせず通常の動作を実行する(ステップS105)。 If neither the “forward vibration superimposition speed” nor the “reverse vibration superposition speed” exceeds the clamp speed (step S103: No), the interpolation processing unit 48 does not clamp the “feed speed” and performs normal operation. Execute (Step S105).
 「前進時振動重畳速度」および「後退時振動重畳速度」の大きい方がクランプ速度を超えた場合(ステップS103:Yes)、振動速度クランプ部485は「送り速度」をクランプする(ステップS104)。即ち、振動速度クランプ部485は、クランプ速度を「前進時振動重畳速度」および「後退時振動重畳速度」の大きい方で除算した値を「クランプ比」とし、「送り速度」に「クランプ比」を乗じた値を新たな「送り速度」とする。具体的には、図8のシーケンス番号「N3」の「F50」で指令された「送り速度」が図11で示した「クランプ比」=0.5714を乗じた値に置き換えられたものとして、補間処理部48が以後の計算を実行する。なお、「クランプ比」はクランプ速度を「前進時振動重畳速度」および「後退時振動重畳速度」の大きい方で除算した値以下であってもかまわない。 When the larger one of the “forward vibration superposition speed” and the “reverse vibration superposition speed” exceeds the clamp speed (step S103: Yes), the vibration speed clamp unit 485 clamps the “feed speed” (step S104). That is, the vibration speed clamp unit 485 sets the value obtained by dividing the clamp speed by the larger of the “forward vibration superposition speed” and the “reverse vibration superposition speed” as the “clamp ratio”, and the “feed speed” is set to the “clamp ratio”. A value obtained by multiplying is set as a new “feed speed”. Specifically, the “feed speed” commanded by “F50” of the sequence number “N3” in FIG. 8 is replaced with a value obtained by multiplying “clamp ratio” = 0.5714 shown in FIG. The interpolation processing unit 48 performs subsequent calculations. The “clamp ratio” may be equal to or less than a value obtained by dividing the clamp speed by the larger of “forward vibration superposition speed” and “reverse vibration superposition speed”.
 ステップS104で、上述したように「送り速度」をクランプした場合の振動切削移動の様子は、横軸を時間、縦軸をX軸方向の移動距離とZ軸方向の移動距離とを合成した移動距離であるXZ合成移動距離として、図13のようになる。図13に示すように「送り速度」がクランプされることによって、X軸方向の速度とZ軸方向の速度とが合成された合成速度はクランプ速度以下に抑えられる。図13の場合は、「送り速度」のクランプにより「前進時振動重畳速度」がクランプ速度200[mm/min]に一致することになる。 In step S104, as described above, when the “feed rate” is clamped, the vibration cutting movement is performed by combining the time on the horizontal axis and the movement distance in the X-axis direction and the movement distance in the Z-axis direction on the vertical axis. FIG. 13 shows the XZ composite movement distance that is the distance. As shown in FIG. 13, by clamping the “feed speed”, the combined speed obtained by combining the speed in the X-axis direction and the speed in the Z-axis direction is suppressed to a clamp speed or less. In the case of FIG. 13, “forward vibration superposition speed” matches the clamp speed 200 [mm / min] by the clamp of “feed speed”.
実施の形態2.
 実施の形態2にかかる数値制御装置1の構成の一例を示すブロック図は実施の形態1と同じく図1である。実施の形態1の振動切削条件では、図10に示すように、振動の「波形」が、前進と後退が等時間の対称な三角波であったが、実施の形態2においては、図14の振動切削条件に示すように、図3の(10)の前進時間比率が0.75で、図3の(11)の後退時間比率が0.25と非対称な三角波の波形になっている点のみが異なる。それ以外の条件は実施の形態1と同じである。即ち、図8の加工プログラムや図9の移動経路の図は実施の形態2にも同様に適用される。
Embodiment 2. FIG.
A block diagram showing an example of the configuration of the numerical control device 1 according to the second embodiment is FIG. In the vibration cutting condition of the first embodiment, as shown in FIG. 10, the “waveform” of the vibration is a symmetrical triangular wave in which the forward and backward movements are equal in time. In the second embodiment, the vibration of FIG. As shown in the cutting conditions, the forward time ratio of (10) in FIG. 3 is 0.75, and the backward time ratio of (11) in FIG. Different. Other conditions are the same as in the first embodiment. That is, the machining program in FIG. 8 and the movement path diagram in FIG. 9 are similarly applied to the second embodiment.
 このような振動切削加工の条件において、仮に、実速度をクランプしなかった場合の振動切削移動の様子を、横軸を時間、縦軸をX軸方向の移動距離とZ軸方向の移動距離とを合成した移動距離であるXZ合成移動距離として図15に示す。図15に示すように、図3の(16)の「前進時振動重畳速度」は250[mm/min]となり、図3の(17)の「後退時振動重畳速度」は550[mm/min]となるので、共に、クランプ速度200[mm/min]を超えている。ここで、「前進時振動重畳速度」と「後退時振動重畳速度」との大きい方の値である「後退時振動重畳速度」の550[mm/min]でクランプ速度200[mm/min]を除算した値を「クランプ比」=0.3636として図15に示す。 Under such conditions of vibration cutting, if the actual speed is not clamped, the state of vibration cutting movement is expressed as follows: time on the horizontal axis, movement distance in the X-axis direction and movement distance in the Z-axis direction. FIG. 15 shows the XZ combined movement distance, which is a combined movement distance. As shown in FIG. 15, “forward vibration superposition speed” in (16) of FIG. 3 is 250 [mm / min], and “reverse vibration superposition speed” in (17) of FIG. 3 is 550 [mm / min. Therefore, both of them exceed the clamping speed of 200 [mm / min]. Here, the clamp speed 200 [mm / min] is set to 550 [mm / min] of “reverse vibration superposition speed” which is the larger value of “forward vibration superposition speed” and “reverse vibration superposition speed”. The divided value is shown in FIG. 15 as “clamp ratio” = 0.3636.
 本実施の形態2にかかる数値制御装置1においても、実施の形態1と同様に図12のフローチャートに従って実速度のクランプ、即ち実速度の抑制を実行する。実施の形態1と異なるのは、本実施の形態2においてはクランプ前の「後退時振動重畳速度」が「前進時振動重畳速度」より大きいので、クランプ速度を「後退時振動重畳速度」で除算した値をクランプ比とする点だけである。その他の点は実施の形態1と同様なので説明を省略する。なお、「クランプ比」はクランプ速度を「後退時振動重畳速度」で除算した値以下であってもかまわない。 Also in the numerical controller 1 according to the second embodiment, the actual speed is clamped, that is, the actual speed is suppressed according to the flowchart of FIG. 12 as in the first embodiment. The difference from the first embodiment is that, in the second embodiment, the “reverse vibration superimposition speed” before clamping is larger than the “forward vibration superposition speed”, so the clamp speed is divided by the “reverse vibration superposition speed”. It is only the point which makes the obtained value the clamp ratio. Since other points are the same as those of the first embodiment, description thereof is omitted. The “clamp ratio” may be equal to or less than a value obtained by dividing the clamp speed by the “reverse vibration superimposition speed”.
 ステップS104のようにして、「送り速度」をクランプした場合の振動切削移動の様子は、横軸を時間、縦軸をX軸方向の移動距離とZ軸方向の移動距離とを合成した移動距離であるXZ合成移動距離として図16のようになる。図16に示すように「送り速度」をクランプすることによって、X軸方向およびZ軸方向の速度を合成した合成速度はクランプ速度以下に抑えられる。図16の場合は、「送り速度」のクランプにより「後退時振動重畳速度」がクランプ速度200[mm/min]に一致することになる。 The state of the vibration cutting movement when the “feed rate” is clamped as in step S104 is as follows. The horizontal axis represents time, the vertical axis represents the movement distance in the X-axis direction and the movement distance in the Z-axis direction. The XZ composite movement distance is as shown in FIG. As shown in FIG. 16, by clamping the “feed speed”, the combined speed obtained by combining the speeds in the X-axis direction and the Z-axis direction can be suppressed to a clamp speed or less. In the case of FIG. 16, the “reverse vibration superimposition speed” matches the clamp speed 200 [mm / min] by the clamp of “feed speed”.
実施の形態3.
 図17は、実施の形態3による数値制御装置2の構成の一例を示すブロック図である。実施の形態1および2においては、加工プログラム432でクランプ速度を指定したが、実施の形態3においては、パラメータ431としてクランプ速度を指定する。数値制御装置2は、駆動部10と、入力操作部20と、表示部30と、制御演算部40と、を有する。
Embodiment 3 FIG.
FIG. 17 is a block diagram showing an example of the configuration of the numerical controller 2 according to the third embodiment. In the first and second embodiments, the clamping speed is designated by the machining program 432, but in the third embodiment, the clamping speed is designated as the parameter 431. The numerical control device 2 includes a drive unit 10, an input operation unit 20, a display unit 30, and a control calculation unit 40.
 図17が図1と異なる点は、記憶部43のパラメータ431に、各軸それぞれの速度の上限値である実速度クランプ4311が含まれていて、解析処理部45に実速度クランプ指令解析部453が不要な点である。ただし、加工プログラム432によるクランプ速度の指定とパラメータ431によるクランプ速度の指定を併用する場合は、解析処理部45に実速度クランプ指令解析部453が設けられていてもよい。他の同一符号の構成要素の機能は図1と同様である。 17 differs from FIG. 1 in that a parameter 431 in the storage unit 43 includes an actual speed clamp 4311 that is an upper limit value of the speed of each axis, and the analysis processing unit 45 includes an actual speed clamp command analysis unit 453. Is an unnecessary point. However, when the designation of the clamp speed by the machining program 432 and the designation of the clamp speed by the parameter 431 are used together, the actual speed clamp command analysis unit 453 may be provided in the analysis processing unit 45. The functions of the other components having the same reference numerals are the same as those in FIG.
 以下、本実施の形態3が実施の形態1および2と異なる動作を中心に詳細に説明する。 Hereinafter, the third embodiment will be described in detail focusing on operations different from the first and second embodiments.
 図18は、実施の形態3にかかる加工プログラム432の一部を示す図である。図18の加工プログラム432のシーケンス番号「N2」で示される指令「G165 P1」は、図8の加工プログラム432のシーケンス番号「N2」で示される指令「G165 P1 F200」とは異なりクランプ速度を指示していない。図18の他の記載は図8と同じである。 FIG. 18 is a diagram illustrating a part of the machining program 432 according to the third embodiment. The command “G165 P1” indicated by the sequence number “N2” in the machining program 432 in FIG. 18 is different from the command “G165 P1 F200” indicated by the sequence number “N2” in the machining program 432 in FIG. Not done. The other description of FIG. 18 is the same as FIG.
 そのかわり、本実施の形態3においては、記憶部43のパラメータ431に図19に示すように、送り軸である駆動軸別のクランプ速度を実速度クランプ4311として設定する。具体的には、X軸のクランプ速度は150[mm/min]であり、Z軸のクランプ速度は250[mm/min]である。即ち、プログラム指令された送り速度に対して振動を重畳した速度を各駆動軸に分配した各駆動軸の実指令速度がパラメータ431に設定された設定値を超える場合、各駆動軸の実指令速度がそれぞれの駆動軸のパラメータ431に設定された速度以下となるように、振動速度クランプ部485は送り速度をクランプする。なお、本実施の形態3においても、図10に示した振動切削条件で振動切削を行うものとする。 Instead, in the third embodiment, as shown in FIG. 19, the clamp speed for each drive axis as the feed axis is set as the actual speed clamp 4311 in the parameter 431 of the storage unit 43. Specifically, the clamping speed of the X axis is 150 [mm / min], and the clamping speed of the Z axis is 250 [mm / min]. In other words, when the actual command speed of each drive axis that is obtained by distributing the vibration superposed speed to the programmed feed speed to each drive axis exceeds the set value set in the parameter 431, the actual command speed of each drive axis The vibration speed clamp unit 485 clamps the feed speed so that is less than or equal to the speed set in the parameter 431 of each drive shaft. In the third embodiment, the vibration cutting is performed under the vibration cutting conditions shown in FIG.
 図18および図19に示した振動切削加工の条件において、仮に、各駆動軸の速度をクランプしなかった場合の振動切削移動の様子を、横軸を時間、縦軸をX軸方向の移動距離とZ軸方向の移動距離とを合成した移動距離であるXZ合成移動距離として図20に示す。さらに、図20の振動切削移動の様子をX軸およびZ軸別に、横軸を時間、縦軸をX軸方向およびZ軸方向の軸別の移動距離であるXZ軸別移動距離として図21に示す。図21にはX軸クランプ速度およびZ軸クランプ速度が、X軸振動重畳速度およびZ軸振動重畳速度と対比できるように示してある。さらに、図22および図23では、図21で纏めて示したX軸およびZ軸の振動切削動作を、それぞれ縦軸をX軸移動距離およびZ軸移動距離にして別々に示す。 Under the conditions of the vibration cutting process shown in FIGS. 18 and 19, if the speed of each drive shaft is not clamped, the state of vibration cutting movement is represented by time on the horizontal axis and the movement distance in the X-axis direction on the vertical axis. FIG. 20 shows an XZ combined movement distance that is a movement distance obtained by combining the movement distance in the Z-axis direction. Furthermore, the state of the vibration cutting movement of FIG. 20 is shown in FIG. 21 by setting the horizontal axis as time, the vertical axis as the movement distance for each axis in the X-axis direction and the Z-axis direction, and the movement distance for each XZ-axis. Show. FIG. 21 shows that the X-axis clamping speed and the Z-axis clamping speed can be compared with the X-axis vibration superposition speed and the Z-axis vibration superposition speed. 22 and 23, the X-axis and Z-axis vibration cutting operations collectively shown in FIG. 21 are shown separately with the vertical axis as the X-axis movement distance and the Z-axis movement distance, respectively.
 図22では、X軸クランプ速度が、振動の前進時のX軸振動重畳速度と対比できるように示してあり、振動の前進時のX軸振動重畳速度がX軸クランプ速度より大きい。従って、前進時のX軸振動重畳速度でX軸クランプ速度を除算した値であるX軸の「クランプ比」=0.9583も併記してある。 FIG. 22 shows that the X-axis clamping speed can be compared with the X-axis vibration superposition speed at the time of vibration advance, and the X-axis vibration superposition speed at the time of vibration advance is larger than the X-axis clamp speed. Therefore, the X-axis “clamp ratio” = 0.95883, which is a value obtained by dividing the X-axis clamp speed by the X-axis vibration superposition speed at the time of forward movement, is also shown.
 図23では、Z軸クランプ速度が、振動の前進時のZ軸振動重畳速度と対比できるように示してあり、振動の前進時のZ軸振動重畳速度がZ軸クランプ速度より大きい。従って、前進時のZ軸振動重畳速度でZ軸クランプ速度を除算した値であるZ軸の「クランプ比」=0.7986も併記してある。 FIG. 23 shows that the Z-axis clamping speed can be compared with the Z-axis vibration superposition speed at the time of vibration advance, and the Z-axis vibration superposition speed at the time of vibration advance is larger than the Z-axis clamp speed. Therefore, the Z-axis “clamp ratio” = 0.7986, which is a value obtained by dividing the Z-axis clamp speed by the Z-axis vibration superposition speed at the time of forward movement, is also shown.
 本実施の形態3にかかる数値制御装置2は、図24のフローチャートに従って実速度のクランプ、即ち実速度の抑制を実行する。まず、振動速度クランプ部485が記憶部43から実速度クランプ4311として記憶されているX軸クランプ速度およびZ軸クランプ速度を読み込む(ステップS201)。次に、図18の加工プログラム432および図10に示した振動切削条件に基づいて、振動重畳後速度算出部484がX軸およびZ軸それぞれの振動重畳後速度を計算する(ステップS202)。具体的には、X軸およびZ軸それぞれについて軸毎の「前進時振動重畳速度」および「後退時振動重畳速度」の両方を計算する。各軸における「前進時振動重畳速度」および「後退時振動重畳速度」の計算方法は実施の形態1と同様である。 The numerical control device 2 according to the third embodiment executes actual speed clamping, that is, suppression of actual speed according to the flowchart of FIG. First, the vibration speed clamp unit 485 reads the X-axis clamp speed and the Z-axis clamp speed stored as the actual speed clamp 4311 from the storage unit 43 (step S201). Next, based on the machining program 432 in FIG. 18 and the vibration cutting conditions shown in FIG. 10, the post-vibration superposition speed calculation unit 484 calculates post-vibration superposition speeds for the X axis and the Z axis (step S202). Specifically, for each of the X-axis and the Z-axis, both “forward vibration superposition speed” and “reverse vibration superposition speed” are calculated for each axis. The calculation method of “forward vibration superposition speed” and “reverse vibration superposition speed” for each axis is the same as in the first embodiment.
 そして、次にステップS203にて、X軸およびZ軸それぞれの振動重畳後速度が、X軸クランプ速度およびZ軸クランプ速度を超えるか否かを振動速度クランプ部485が判断する。 Then, in step S203, the vibration speed clamp unit 485 determines whether or not the vibration superposed speeds of the X axis and the Z axis exceed the X axis clamp speed and the Z axis clamp speed, respectively.
 ステップS203では、振動速度クランプ部485は、X軸の「前進時振動重畳速度」および「後退時振動重畳速度」の大きい方がクランプ速度を超えるか、または、Z軸の「前進時振動重畳速度」および「後退時振動重畳速度」の大きい方がクランプ速度を超えるか、否かを判断する。この比較も、各軸毎に、振動重畳後速度とクランプ速度とを比較することができればよいので、速度同士の比較ではなく、予め定められた時間での移動量同士の比較であってもよい。 In step S203, the vibration speed clamp unit 485 determines that the larger of the “forward vibration superposition speed” and the “reverse vibration superposition speed” of the X axis exceeds the clamp speed or the Z axis “forward vibration superposition speed”. ”And“ reverse vibration superimposition speed ”is judged whether or not the clamp speed exceeds the clamp speed. Since this comparison also needs to be able to compare the post-superimposition speed and the clamping speed for each axis, it may be a comparison between the movement amounts in a predetermined time instead of a comparison between the speeds. .
 X軸の「前進時振動重畳速度」および「後退時振動重畳速度」のいずれもがX軸クランプ速度を超えず、Z軸の「前進時振動重畳速度」および「後退時振動重畳速度」のいずれもがZ軸クランプ速度を超えない場合(ステップS203:No)、補間処理部48は「送り速度」をクランプせず通常の動作を実行する(ステップS205)。 Both the X-axis “forward vibration superposition speed” and “reverse vibration superposition speed” do not exceed the X-axis clamp speed, and either the Z-axis “forward vibration superposition speed” or “reverse vibration superposition speed” If the motor does not exceed the Z-axis clamping speed (step S203: No), the interpolation processing unit 48 performs a normal operation without clamping the “feed speed” (step S205).
 X軸の「前進時振動重畳速度」および「後退時振動重畳速度」のいずれかがX軸クランプ速度を超えた場合またはZ軸の「前進時振動重畳速度」および「後退時振動重畳速度」のいずれかがZ軸クランプ速度を超えた場合(ステップS203:Yes)は、振動速度クランプ部485は「送り速度」をクランプする(ステップS204)。具体的には、X軸の「前進時振動重畳速度」および「後退時振動重畳速度」のいずれもがX軸クランプ速度を超えず、かつZ軸の「前進時振動重畳速度」および「後退時振動重畳速度」のいずれもがZ軸クランプ速度を超えないようにするために、図22で求めたX軸の「クランプ比」=0.9583と、図23で求めたZ軸の「クランプ比」=0.7986とのうちの小さい方の値の「クランプ比」が用いられる。従って、振動速度クランプ部485は「送り速度」に「クランプ比」=0.7986を乗じた値を新たな「送り速度」とする。具体的には、図18のシーケンス番号「N3」の「F50」で指令された「送り速度」が、図23で示した「クランプ比」=0.7986を乗じた値に置き換えられたものとして、補間処理部48が以後の計算を実行する。なお、「クランプ比」は上記のようにして決定された値以下であってもかまわない。 When either the X-axis "superimposing vibration speed during forward movement" or "reverse vibration superimposing speed" exceeds the X-axis clamping speed or the Z-axis "superimposing vibration speed during forward movement" or "reverse vibration superimposition speed" If either exceeds the Z-axis clamp speed (step S203: Yes), the vibration speed clamp unit 485 clamps the “feed speed” (step S204). Specifically, neither the X-axis “forward vibration superposition speed” nor the “reverse vibration superposition speed” exceeds the X-axis clamp speed, and the Z-axis “forward vibration superposition speed” and “reverse time”. In order to prevent any of the “superimposed vibration speeds” from exceeding the Z-axis clamping speed, the “clamping ratio” of the X axis obtained in FIG. 22 is 0.9583, and the “clamping ratio of the Z axis obtained in FIG. The smaller “clamp ratio” of “= 0.986” is used. Therefore, the vibration speed clamp unit 485 sets a value obtained by multiplying “feed rate” by “clamp ratio” = 0.7986 as a new “feed rate”. Specifically, it is assumed that the “feed speed” commanded by “F50” of the sequence number “N3” in FIG. 18 is replaced with a value multiplied by “clamp ratio” = 0.7986 shown in FIG. The interpolation processing unit 48 performs subsequent calculations. The “clamp ratio” may be equal to or less than the value determined as described above.
 ステップS204で、上述したように小さい方の「クランプ比」=0.7986で「送り速度」をクランプした場合の振動切削移動の様子は、横軸を時間、縦軸をX軸方向およびZ軸方向を合成した移動距離であるXZ合成移動距離として図25のようになる。さらに、図25の振動切削移動の様子をX軸およびZ軸別に、横軸を時間、縦軸をX軸方向およびZ軸方向の軸別の移動距離であるXZ軸別移動距離として図26に示す。図26にはX軸クランプ速度およびZ軸クランプ速度が、X軸振動重畳速度およびZ軸振動重畳速度と対比できるように示してある。さらに、図27および図28では、図26で纏めて示したX軸およびZ軸の動作を、それぞれ縦軸をX軸移動距離およびZ軸移動距離にして別々に示す。 In step S204, as described above, when the “feed rate” is clamped with the smaller “clamp ratio” = 0.7986, the state of the vibration cutting movement is as follows: the horizontal axis is time, the vertical axis is the X axis direction, and the Z axis. FIG. 25 shows the XZ combined movement distance, which is the movement distance obtained by combining the directions. Furthermore, the state of the vibration cutting movement of FIG. 25 is shown in FIG. 26 with the X-axis and Z-axis, the horizontal axis as time, and the vertical axis as the movement distance by XZ-axis, which is the movement distance by axis in the X-axis direction and Z-axis direction. Show. FIG. 26 shows the X-axis clamp speed and the Z-axis clamp speed so that they can be compared with the X-axis vibration superposition speed and the Z-axis vibration superposition speed. Further, in FIGS. 27 and 28, the operations of the X-axis and the Z-axis collectively shown in FIG. 26 are shown separately with the vertical axis as the X-axis movement distance and the Z-axis movement distance, respectively.
 図23でZ軸について求められた小さい方の「クランプ比」=0.7986で「送り速度」をクランプしたことにより、X軸方向およびZ軸方向のそれぞれの振動重畳後の速度は、図26に示すようにそれぞれX軸クランプ速度およびZ軸クランプ速度以下に抑えられる。図26および図28に示されるようにZ軸振動重畳後速度がZ軸クランプ速度に一致することになる。 Since the “feed speed” is clamped with the smaller “clamp ratio” = 0.986 obtained for the Z-axis in FIG. 23, the speed after superimposing vibrations in the X-axis direction and the Z-axis direction is as shown in FIG. As shown in FIG. 4, the X-axis clamp speed and the Z-axis clamp speed are respectively suppressed. As shown in FIGS. 26 and 28, the speed after Z-axis vibration superposition coincides with the Z-axis clamping speed.
 また、送り速度をクランプするクランプ速度としては、上記実施の形態1から3で説明したもの以外にも、例えば、切削送り全般に適用されるクランプ速度である切削送りクランプ速度、振動切削モード中のみに有効なクランプ速度である振動切削モード中の切削送りクランプ速度およびPLC(programmable logic controller)からの最大切削送り速度クランプ指令によるクランプ速度が存在する。実際の加工では、これらのクランプ速度を考慮に入れた最も小さな送り速度にする必要がある。従って、上記実施の形態1から3の速度クランプの手法は、これらのクランプ速度を考慮した場合にも同様に適用することが可能である。 The clamping speed for clamping the feeding speed is not limited to that described in the first to third embodiments. For example, the cutting speed is a clamping speed applied to all cutting feeds, and only during the vibration cutting mode. There are a cutting feed clamping speed during the vibration cutting mode, which is an effective clamping speed, and a clamping speed based on a maximum cutting feed speed clamping command from a PLC (programmable logic controller). In actual machining, it is necessary to set the smallest feed speed in consideration of these clamping speeds. Therefore, the speed clamping methods of the first to third embodiments can be applied in the same manner when these clamping speeds are taken into consideration.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 数値制御装置、10 駆動部、11 サーボモータ、12 検出器、13 サーボ制御部、13X X軸サーボ制御部、13Z Z軸サーボ制御部、14 主軸モータ、15 検出器、16 主軸制御部、20 入力操作部、30 表示部、40 制御演算部、41 入力制御部、42 データ設定部、43 記憶部、44 画面処理部、45 解析処理部、46 機械制御信号処理部、47 PLC回路部、48 補間処理部、49 加減速処理部、50 軸データ出力部、61 加工対象、62 工具、431 パラメータ、432 加工プログラム、433 画面表示データ、434 共有エリア、451 移動指令生成部、452 振動指令解析部、453 実速度クランプ指令解析部、481 指令移動量算出部、482 振動移動量算出部、483 移動量重畳部、484 振動重畳後速度算出部、485 振動速度クランプ部、4311 実速度クランプ。 1 numerical controller, 10 drive unit, 11 servo motor, 12 detector, 13 servo control unit, 13X X-axis servo control unit, 13Z Z-axis servo control unit, 14 spindle motor, 15 detector, 16 spindle control unit, 20 Input operation unit, 30 display unit, 40 control operation unit, 41 input control unit, 42 data setting unit, 43 storage unit, 44 screen processing unit, 45 analysis processing unit, 46 machine control signal processing unit, 47 PLC circuit unit, 48 Interpolation processing unit, 49 acceleration / deceleration processing unit, 50 axis data output unit, 61 machining target, 62 tool, 431 parameter, 432 machining program, 433 screen display data, 434 shared area, 451 movement command generation unit, 452 vibration command analysis unit , 453 Actual speed clamp command analysis unit, 481 Command movement amount calculation unit, 482 Dynamic movement amount calculating section, 483 movement amount superimposing unit, 484 vibration superimposed after the speed calculation portion, 485 vibration velocity clamp unit, 4311 actual speed clamps.

Claims (4)

  1.  工具または加工対象に設けられた駆動軸によって、前記工具と前記加工対象とを相対的に振動を伴いながら移動経路に沿って移動させて前記加工対象の加工を行う数値制御装置であって、
     加工プログラムから、前記移動経路における送り速度およびクランプ速度を読み出す解析処理部と、
     与えられた振動切削条件に基づいて、前記送り速度による移動に前記振動が重畳した後の振動重畳後速度を算出する振動重畳後速度算出部と、
     前記振動重畳後速度が前記クランプ速度を超える場合は、前記クランプ速度以下となるように前記送り速度を低減する振動速度クランプ部と、
     を備える
     ことを特徴とする数値制御装置。
    A numerical control device that performs processing of the processing target by moving the tool and the processing target along a movement path while relatively vibrating with a drive shaft provided on the tool or processing target,
    An analysis processing unit that reads a feed speed and a clamp speed in the movement path from a machining program;
    Based on a given vibration cutting condition, a post-vibration superposition speed calculation unit that calculates a post-superimposition speed after the superposition of the vibration on the movement at the feed rate;
    When the vibration superposition speed exceeds the clamp speed, a vibration speed clamp unit that reduces the feed speed to be equal to or less than the clamp speed;
    A numerical control device comprising:
  2.  工具または加工対象に設けられた駆動軸によって、前記工具と前記加工対象とを相対的に振動を伴いながら移動経路に沿って移動させて前記加工対象の加工を行う数値制御装置であって、
     加工プログラムから、前記移動経路における送り速度を読み出す解析処理部と、
     クランプ速度を保持する記憶部と、
     与えられた振動切削条件に基づいて、前記送り速度による移動に前記振動が重畳した後の振動重畳後速度を算出する振動重畳後速度算出部と、
     前記振動重畳後速度が前記クランプ速度を超える場合は、前記クランプ速度以下となるように前記送り速度を低減する振動速度クランプ部と、
     を備える
     ことを特徴とする数値制御装置。
    A numerical control device that performs processing of the processing target by moving the tool and the processing target along a movement path while relatively vibrating with a drive shaft provided on the tool or processing target,
    From a machining program, an analysis processing unit that reads a feed rate in the movement path,
    A storage unit for holding the clamping speed;
    Based on a given vibration cutting condition, a post-vibration superposition speed calculation unit that calculates a post-superimposition speed after the superposition of the vibration on the movement at the feed rate;
    When the vibration superposition speed exceeds the clamp speed, a vibration speed clamp unit that reduces the feed speed to be equal to or less than the clamp speed;
    A numerical control device comprising:
  3.  前記工具または前記加工対象に複数の前記駆動軸が設けられ、
     前記記憶部は、前記駆動軸毎の複数の前記クランプ速度を保持し、
     前記振動重畳後速度算出部は、前記駆動軸毎の前記振動重畳後速度を算出し、
     前記振動速度クランプ部は、前記駆動軸毎の前記振動重畳後速度のいずれかが当該駆動軸の前記クランプ速度を超える場合は、複数の前記駆動軸毎の前記振動重畳後速度それぞれが当該駆動軸の前記クランプ速度以下となるように前記送り速度を低減する
     ことを特徴とする請求項2に記載の数値制御装置。
    A plurality of the drive shafts are provided on the tool or the processing target,
    The storage unit holds a plurality of the clamping speeds for each drive shaft,
    The post-vibration superposition speed calculation unit calculates the post-vibration superposition speed for each drive shaft,
    When any of the vibration superposed speeds for each of the drive shafts exceeds the clamp speed of the drive shafts, the vibration speed clamp unit is configured so that each of the post-vibration superposed speeds of the plurality of drive shafts corresponds to the drive shafts. The numerical control apparatus according to claim 2, wherein the feed speed is reduced so as to be equal to or less than the clamp speed.
  4.  前記振動速度クランプ部は、前記クランプ速度を前記振動重畳後速度で割った値であるクランプ比を前記送り速度に乗ずることにより前記送り速度を低減する
     ことを特徴とする請求項1から3のいずれか1項に記載の数値制御装置。
    4. The vibration speed clamp unit reduces the feed speed by multiplying the feed speed by a clamp ratio that is a value obtained by dividing the clamp speed by the post-vibration superposition speed. The numerical control device according to claim 1.
PCT/JP2014/073811 2014-09-09 2014-09-09 Numerical control apparatus WO2016038687A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480081819.3A CN106687874B (en) 2014-09-09 2014-09-09 Numerical control device
JP2015521728A JP5823082B1 (en) 2014-09-09 2014-09-09 Numerical controller
DE112014006864.0T DE112014006864B4 (en) 2014-09-09 2014-09-09 Numerical control device
PCT/JP2014/073811 WO2016038687A1 (en) 2014-09-09 2014-09-09 Numerical control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/073811 WO2016038687A1 (en) 2014-09-09 2014-09-09 Numerical control apparatus

Publications (1)

Publication Number Publication Date
WO2016038687A1 true WO2016038687A1 (en) 2016-03-17

Family

ID=54696283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073811 WO2016038687A1 (en) 2014-09-09 2014-09-09 Numerical control apparatus

Country Status (4)

Country Link
JP (1) JP5823082B1 (en)
CN (1) CN106687874B (en)
DE (1) DE112014006864B4 (en)
WO (1) WO2016038687A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020017249A (en) * 2017-08-01 2020-01-30 シチズン時計株式会社 Control device for machine tool and machine tool
US20200174440A1 (en) 2018-11-29 2020-06-04 Fanuc Corporation Numerical control device, program recording medium and control method
JP2020149436A (en) * 2019-03-14 2020-09-17 ファナック株式会社 Numerical controller and machine tool
JP2021066005A (en) * 2018-11-29 2021-04-30 ファナック株式会社 Numerical control apparatus, program and control method
US11541500B2 (en) 2019-06-25 2023-01-03 Fanuc Corporation Numerical control device, program recording medium, and control method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107272758B (en) * 2017-08-01 2020-08-07 深圳市雷赛控制技术有限公司 Method and device for improving efficiency and stability of winding equipment
JP7264643B2 (en) * 2019-01-10 2023-04-25 シチズン時計株式会社 Machine tool controls and machine tools
WO2023067683A1 (en) * 2021-10-19 2023-04-27 ファナック株式会社 Control device of machine tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289903A (en) * 1991-03-18 1992-10-14 Fanuc Ltd Chopping correcting system
JPH0887312A (en) * 1994-09-20 1996-04-02 Fanuc Ltd Cylinder interpolation system
JP5033929B1 (en) * 2011-11-10 2012-09-26 ハリキ精工株式会社 Machine Tools
JP2014523348A (en) * 2011-06-15 2014-09-11 ザウアー ウルトラソニック ゲーエムベーハー Machine tools, machining methods for workpieces

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3607259B2 (en) * 2002-04-16 2005-01-05 ヤマザキマザック株式会社 3D linear processing equipment
DE102010048638B4 (en) * 2010-07-16 2017-10-05 Sauer Ultrasonic Gmbh Machine tool, workpiece machining process
JP5132842B1 (en) * 2011-10-27 2013-01-30 三菱電機株式会社 Numerical controller
WO2014184820A1 (en) * 2013-05-14 2014-11-20 三菱電機株式会社 Numerical control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289903A (en) * 1991-03-18 1992-10-14 Fanuc Ltd Chopping correcting system
JPH0887312A (en) * 1994-09-20 1996-04-02 Fanuc Ltd Cylinder interpolation system
JP2014523348A (en) * 2011-06-15 2014-09-11 ザウアー ウルトラソニック ゲーエムベーハー Machine tools, machining methods for workpieces
JP5033929B1 (en) * 2011-11-10 2012-09-26 ハリキ精工株式会社 Machine Tools

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020017249A (en) * 2017-08-01 2020-01-30 シチズン時計株式会社 Control device for machine tool and machine tool
JP7161349B2 (en) 2017-08-01 2022-10-26 シチズン時計株式会社 Machine tool controls and machine tools
US20200174440A1 (en) 2018-11-29 2020-06-04 Fanuc Corporation Numerical control device, program recording medium and control method
JP2021066005A (en) * 2018-11-29 2021-04-30 ファナック株式会社 Numerical control apparatus, program and control method
US11137737B2 (en) 2018-11-29 2021-10-05 Fanuc Corporation Numerical control device, program recording medium and control method
JP7036786B2 (en) 2018-11-29 2022-03-15 ファナック株式会社 Numerical control device, program and control method
JP2020149436A (en) * 2019-03-14 2020-09-17 ファナック株式会社 Numerical controller and machine tool
US11378933B2 (en) 2019-03-14 2022-07-05 Fanuc Corporation Numerical control device and machine tool for controlling at least two oscillating drive axes
US11541500B2 (en) 2019-06-25 2023-01-03 Fanuc Corporation Numerical control device, program recording medium, and control method

Also Published As

Publication number Publication date
DE112014006864T5 (en) 2017-05-18
CN106687874A (en) 2017-05-17
JPWO2016038687A1 (en) 2017-04-27
CN106687874B (en) 2018-04-17
JP5823082B1 (en) 2015-11-25
DE112014006864B4 (en) 2020-09-03

Similar Documents

Publication Publication Date Title
JP5823082B1 (en) Numerical controller
US9886022B2 (en) Numerical control device
US9791846B2 (en) Numerical control device
US10625355B2 (en) Numerical control device
JP6487397B2 (en) Machine tool control device, control method, and computer program
JP6342935B2 (en) Servo control device, control method and computer program for machine tool for rocking cutting
JP6721307B2 (en) Machine tool controller with multiple axes
JP5781241B1 (en) Numerical controller
JP5826444B1 (en) Numerical controller
JP5901871B1 (en) Numerical controller
JP5208325B1 (en) Numerical control apparatus, machining system, and numerical control method
JP5444412B2 (en) Numerical control device having a display unit for displaying information for evaluating processing
JP6843314B1 (en) Numerical control device, numerical control method and machine learning device
JP7195110B2 (en) Machine tools and controllers
JP5280665B2 (en) Numerical control device with manual shift operation function
JP2009098982A (en) Working simulation device and its program
JP6740483B1 (en) Numerical control device and numerical control method
JP7044734B2 (en) Servo controller
WO2020084771A1 (en) Numerical control device, machine tool, and numerical control method
KR101560529B1 (en) Numerical control device
JP2016194860A (en) Vibration cutting machine and vibration cutting method
JP7433570B1 (en) Numerical control device and numerical control method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015521728

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901707

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112014006864

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14901707

Country of ref document: EP

Kind code of ref document: A1