WO2016038684A1 - Multiplex communication apparatus - Google Patents

Multiplex communication apparatus Download PDF

Info

Publication number
WO2016038684A1
WO2016038684A1 PCT/JP2014/073797 JP2014073797W WO2016038684A1 WO 2016038684 A1 WO2016038684 A1 WO 2016038684A1 JP 2014073797 W JP2014073797 W JP 2014073797W WO 2016038684 A1 WO2016038684 A1 WO 2016038684A1
Authority
WO
WIPO (PCT)
Prior art keywords
multiplex communication
data
registered trademark
communication apparatus
multiplex
Prior art date
Application number
PCT/JP2014/073797
Other languages
French (fr)
Japanese (ja)
Inventor
伸夫 長坂
重元 廣田
英和 金井
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to PCT/JP2014/073797 priority Critical patent/WO2016038684A1/en
Priority to JP2016547291A priority patent/JP6438964B2/en
Publication of WO2016038684A1 publication Critical patent/WO2016038684A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems

Definitions

  • the present invention relates to a multiplex communication apparatus that transmits and receives communication data of an apparatus using an industrial Ethernet (such as EtherCAT (registered trademark) and MECHATRLINK (registered trademark) -III) in a minimum unit of a logical layer and a physical layer. .
  • an industrial Ethernet such as EtherCAT (registered trademark) and MECHATRLINK (registered trademark) -III
  • FIG. 6 is a system configuration diagram of a conventional communication system.
  • the multiplex communication system 1001 shown in FIG. 6 is divided into an A area 1002 and a B area 1003.
  • a system control device 1011 In the A area 1002, a system control device 1011, a servo controller 1012, an image processing device 1013, and a sequencer 1014 are installed.
  • the system controller 1011 and the servo controller 1012 are connected by a LAN cable 1020 for Ethernet (registered trademark) such as MECHATRLINK (registered trademark) -III.
  • system control device 1011 and the image processing device 1013 are connected by a LAN cable 1021 for Ethernet (registered trademark) such as TCP / IP, UDP.
  • Ethernet registered trademark
  • system controller 1011 and the sequencer 1014 are connected by a LAN cable 1022 for Ethernet (registered trademark) such as EtherCAT (registered trademark).
  • Ethernet registered trademark
  • EtherCAT registered trademark
  • the system control device 1011 controls the entire device. As shown in FIG. 6, the entire apparatus includes an A area 1002 as a fixed portion and a B area 1003 as a movable portion. Instead of the entire apparatus, an A area 1002 as a C factory and a B area 1003 as a D factory may be used.
  • the image processing apparatus 1013 is used for monitoring or the like. Note that the image processing apparatus 1013 may be replaced with an image display apparatus.
  • Servo amplifier / motors 1015, 1016, a camera 1017, and slaves 1018, 1019 are installed in the B area 1003.
  • the slaves 1018 and 1019 are here relays or sensors.
  • Servo amplifiers / motors 1015 and 1016 are connected by a LAN cable 1020 for Ethernet (registered trademark) such as MECHATRLINK (registered trademark) -III. Further, the servo amplifiers / motors 1015 and 1016 are connected to the servo controller 1012 in the A area 1002 by a LAN cable 1020 for Ethernet (registered trademark) such as MECHATRLINK (registered trademark) -III.
  • the camera 1017 is connected to the image processing apparatus 1013 in the A area 1002 by a LAN cable 1021 for Ethernet (registered trademark) such as TCP / IP and UDP.
  • a LAN cable 1021 for Ethernet registered trademark
  • TCP / IP registered trademark
  • UDP Universal Datagram Protocol
  • the slaves 1018 and 1019 are connected by a LAN cable 1022 for Ethernet (registered trademark) such as EtherCAT (registered trademark). Furthermore, the slaves 1018 and 1019 are connected to the sequencer 1014 in the A area 1002 by an Ethernet (registered trademark) LAN cable 1022 such as EtherCAT (registered trademark).
  • Ethernet registered trademark
  • EtherCAT registered trademark
  • LAN cables 1020, 1021, and 1022 are prepared and installed for each of a plurality of routes.
  • Standard 1 and Standard 2 gateway devices are purchased and unified to one of the lines, and then connected by one LAN line.
  • each standard has its pros and cons, there are only products with limited I / F (interface) of the desired component, there are no choices, and there are standards for devices delivered in the past. Even within the same factory, there are cases where they are not unified into one standard.
  • an object of the present invention is to provide a multiplex communication apparatus capable of wiring a plurality of industrial Ethernet (registered trademark) through a single route.
  • the invention according to claim 1 is a multiplex communication apparatus for placing industrial Ethernet (registered trademark) signals of a plurality of ports on a single transmission line, comprising: a data logical layer;
  • the media independent interface which is the internal interface of the physical layer, adds flag information on the presence / absence of data to the minimum unit data, performs transmission / reception of the minimum unit of data, and multiplexes while ensuring data continuity
  • the media independent interface which is the internal interface of the physical layer, adds flag information on the presence / absence of data to the minimum unit data, performs transmission / reception of the minimum unit of data, and multiplexes while ensuring data continuity
  • the “multiple-port industrial Ethernet (registered trademark) signal” is, for example, 100base-tx.
  • the internal interface between the logical layer and the physical layer of data includes, for example, MII: Media Independent Interference, GMII: Gigabit Media Independent Interference, etc.
  • the “minimum unit” is, for example, 1 Nibble 25 MHz and 4 BIT in MII, and 125 MHz and 8 BIT in GMII.
  • “Perform transmission / reception in the minimum unit of data” means, for example, switching between transmission and reception at a fixed interval (15 clocks) in 100 base-tx half-duplex communication according to Ethernet (registered trademark) standard GbE. In full-duplex communication using etc., transmission and reception are performed at a fixed interval (10 clocks).
  • bit positions are fixed on the multiplexed data before and after multiplexing a plurality of ports, and a plurality of industrial Ethernet (registered trademark) can be wired by a single route. Therefore, wiring saving can be achieved.
  • FIG. 1 is a system configuration diagram of a multiplex communication system in which a multiplex communication apparatus according to an embodiment of the present invention is used. It is an internal block diagram of the same multiplex communication apparatus.
  • FIG. 3 is a diagram illustrating a multiplex communication protocol based on Ethernet (registered trademark) standard GbE when the multiplex communication apparatus performs transmission and reception in a half-duplex communication scheme.
  • FIG. 3 is a diagram illustrating a multiplex communication protocol according to Ethernet (registered trademark) standard GbE when the multiplex communication apparatus performs transmission and reception in a half-duplex communication scheme.
  • a multiplex communication protocol when 3 lines of 1000 base-t are multiplexed by SFP (5 Gbps) is shown. It is a system configuration
  • FIG. 1 is a system configuration diagram of a multiplex communication system in which a multiplex communication apparatus according to an embodiment of the present invention is used.
  • a 1 is divided into A area 2 and B area 3.
  • a area 2 the multiplex communication apparatus 100A according to the present embodiment is installed.
  • B area 3 the multiplex communication apparatus 100B according to the present embodiment is installed.
  • a system control apparatus 11 In the A area 2, in addition to the multiplex communication apparatus 100A according to the present embodiment, a system control apparatus 11, a servo controller 12, an image processing apparatus 13, and a sequencer 14 are installed.
  • the system control apparatus 11 and the multiplex communication apparatus 100A according to the present embodiment are connected via a servo controller 12 with a LAN cable 20 for Ethernet (registered trademark) such as MECHATRLINK (registered trademark) -III.
  • a servo controller 12 with a LAN cable 20 for Ethernet (registered trademark) such as MECHATRLINK (registered trademark) -III.
  • system control apparatus 11 and the multiplex communication apparatus 100A are connected via the image processing apparatus 13 with a LAN cable 21 for Ethernet (registered trademark) such as TCP / IP and UDP.
  • LAN cable 21 for Ethernet registered trademark
  • system control apparatus 11 and the multiplex communication apparatus 100A are connected via a sequencer 14 by an Ethernet (registered trademark) LAN cable 22 such as EtherCAT (registered trademark).
  • Ethernet registered trademark
  • EtherCAT registered trademark
  • the system control device 11 controls the entire device. As shown in FIG. 1, the entire apparatus is an A area 2 as a fixed portion and a B area 3 as a movable portion. Instead of the entire apparatus, an A area 2 as a C factory and a B area 3 as a D factory may be used.
  • the image processing device 13 is used for monitoring and the like. The image processing device 13 may be replaced with an image display device.
  • servo amplifiers / motors 15, 16, a camera 17, and slaves 18, 19 are installed in the B area 3.
  • the slaves 18 and 19 are relays or sensors.
  • Servo amplifiers / motors 15 and 16 perform data communication with the servo controller 12 in area A2.
  • the camera 17 performs data communication with the image processing device 13 (or image display device) in area A2.
  • the slaves 18 and 19 perform data communication with the sequencer 14 in the A area 2.
  • the multiplex communication apparatus 100B according to this embodiment and the servo amplifiers / motors 15 and 16 are connected by a LAN cable 20 for Ethernet (registered trademark) such as MECHATRLINK (registered trademark) -III.
  • the multiplex communication device 100B according to the present embodiment and the camera 17 are connected by a LAN cable 21 for Ethernet (registered trademark) such as TCP / IP and UDP.
  • the multiplex communication apparatus 100B according to the present embodiment and the slaves 18 and 19 are connected by a LAN cable 22 for Ethernet (registered trademark) such as EtherCAT (registered trademark).
  • the multiplex communication apparatuses 100A and 100B according to the present embodiment are connected by a multiplex communication cable 101 such as a LAN line category 5e or an optical fiber.
  • FIG. 2 is an internal configuration diagram of the multiplex communication apparatuses 100A and 100B according to the present embodiment. As shown in FIG. 2, the multiplex communication apparatuses 100A and 100B according to the present embodiment are connected by the multiplex communication cable 101 such as the LAN line category 5e or an optical fiber as described above.
  • the multiplex communication cable 101 such as the LAN line category 5e or an optical fiber as described above.
  • the multiplex communication apparatus 100A includes a PHY-IC 110A for the multiplex side physical layer, a multiplex communication protocol processing unit 120A, input / output processing units 130A, 140A, 150A, a multiplex processing unit 160A, and a PHY- for the local side physical layer.
  • the multiplex-side physical layer PHY-IC 110A is a 1000-base-t PHY-IC, and is an SFP optical transceiver when an optical fiber is used as the multiplex communication cable 101.
  • the multiplex communication protocol processing unit 120A performs a synthesis / separation process on the multiplex communication protocols shown in FIGS.
  • the multiplex communication protocol processing unit 120A includes a GMII-I / F data input unit 121A, a demultiplexing unit 122A, a multiplex mixing unit 123A, and a GMII-I / F data output unit 124A.
  • the input / output processing units 130A, 140A, and 150A are Ethernet (registered trademark) signal input / output units to be multiplexed, and require a plurality of paths.
  • the multiplex communication apparatus 100 ⁇ / b> A according to the present embodiment is installed in the A area 2. Therefore, the multiplex communication apparatus 100A according to the present embodiment includes three input / output processing units 130A, 130A, as shown in FIG. 2 as paths for the servo controller 12, the image processing apparatus 13, and the sequencer 14. 140A and 150A.
  • Each input / output processing unit 130A, 140A, 150A includes MII-I / F data input units 131A, 141A, 151A, reception buffers 132A, 142A, 152A, MII-I / F data output units 133A, 143A, 153A, and transmission. There are buffers 134A, 144A, 154A.
  • the MII-I / F data input units 131A, 141A, and 151A are physical layer and link layer I / Fs, and are MII-I / F data (25 MHz, 4 BIT) receiving units.
  • the reception buffers 132A, 142A, and 152A are buffers that absorb a difference between 125 MHz, which is a clock for multiplex communication, and 25 MHz, which is an MII clock.
  • the MII-I / F data output units 133A, 143A, and 153A are physical layer and link layer I / Fs, and are MII-I / F data (25 MHz, 4 BIT) transmission units.
  • the transmission buffers 134A, 144A, 154A are data storage units for outputting data to the local side.
  • the multiplex communication apparatus 100 ⁇ / b> A according to the present embodiment is installed in the A area 2. Therefore, in the multiplex communication apparatus 100A according to the present embodiment, the local side is the servo controller 12, the image processing apparatus 13, and the sequencer 14.
  • the transmission buffers 134A, 144A, and 154A have a jitter (one block transmission / reception time, for example, 30 in the standard GbE of Ethernet (registered trademark) shown in FIGS.
  • a jitter one block transmission / reception time, for example, 30 in the standard GbE of Ethernet (registered trademark) shown in FIGS.
  • the transmission buffers 134A, 144A, and 154A determine that the frame delimiter is IPG (Inter-Packet Gap, MIN 12 bytes) when there is no data for a certain period of time, and cancel the continuous transmission state.
  • IPG Inter-Packet Gap, MIN 12 bytes
  • the multiplex processing unit 160A is a multiplex internal processing unit in an integrated circuit (specifically, FPGA or ASIC) having a multiplex communication protocol processing unit 120A and input / output processing units 130A, 140A, 150A.
  • PHY-ICs 170A, 180A, and 190A for the local physical layer are PHY-ICs for 100base-tx, and are necessary for input / output of signals for a plurality of paths of Ethernet (registered trademark).
  • the multiplex communication apparatus 100 ⁇ / b> A according to the present embodiment is installed in the A area 2.
  • the multiplex communication apparatus 100A according to the present embodiment includes three local physical layer PHY-as shown in FIG. 2 as paths of the servo controller 12, the image processing apparatus 13, and the sequencer 14.
  • the local physical layer PHY-IC 170A is connected to a LAN cable 20 for Ethernet (registered trademark) such as MECHATRLINK (registered trademark) -III.
  • a LAN cable 21 for Ethernet (registered trademark) such as TCP / IP or UDP is connected to the local physical layer PHY-IC 180A.
  • a LAN cable 22 for Ethernet (registered trademark) such as EtherCAT (registered trademark) is connected to the local physical layer PHY-IC 190A.
  • the multiplex communication apparatus 100B includes the PHY-IC 110B for the multiplex side physical layer, the multiplex communication protocol processing unit 120B, the input / output processing units 130B, 140B, and 150B, the multiplex processing unit 160B, and the local side physical layer.
  • Layer PHY-ICs 170B, 180B, and 190B are provided.
  • the PHY-IC 110B for the multiplex side physical layer is a PHY-IC for 1000base-t, and is an SFP optical transceiver when an optical fiber is used as the multiplex communication cable 101.
  • the multiplex communication protocol processing unit 120B performs a synthesis / separation process on the multiplex communication protocols shown in FIGS.
  • the multiplex communication protocol processing unit 120B includes a GMII-I / F data input unit 121B, a demultiplexing unit 122B, a multiplex mixing unit 123B, and a GMII-I / F data output unit 124B.
  • the input / output processing units 130B, 140B, and 150B are input / output units for Ethernet (registered trademark) signals to be multiplexed, and require a plurality of paths.
  • the multiplex communication apparatus 100 ⁇ / b> B according to the present embodiment is installed in the B area 3. Therefore, the multiplex communication apparatus 100B according to the present embodiment includes three input / output signals as shown in FIG. 2 for the servo amplifier / motors 15 and 16, the camera 17, and the slaves 18 and 19, respectively.
  • Each input / output processing unit 130B, 140B, 150B includes MII-I / F data input units 131B, 141B, 151B, reception buffers 132B, 142B, 152B, MII-I / F data output units 133B, 143B, 153B, and transmission. It has buffers 134B, 144B, 154B.
  • the MII-I / F data input units 131B, 141B, and 151B are physical layer and link layer I / Fs, and are MII-I / F data (25 MHz, 4 BIT) receiving units.
  • the reception buffers 132B, 142B, and 152B are buffers that absorb a difference between 125 MHz, which is a clock for multiplex communication, and 25 MHz, which is an MII clock.
  • the MII-I / F data output units 133B, 143B, and 153B are physical layer and link layer I / Fs, and are MII-I / F data (25 MHz, 4 BIT) transmission units.
  • the transmission buffers 134B, 144B, and 154B are data storage units for outputting data to the local side.
  • the multiplex communication apparatus 100 ⁇ / b> B according to the present embodiment is installed in the B area 3. Therefore, in the multiplex communication apparatus 100B according to the present embodiment, the local side is the servo amplifiers / motors 15 and 16, the camera 17, and the slaves 18 and 19.
  • the transmission buffers 134B, 144B, and 154B have a jitter (one block transmission / reception time, for example, 30 in the standard GbE of Ethernet (registered trademark) represented in FIGS.
  • a jitter one block transmission / reception time, for example, 30 in the standard GbE of Ethernet (registered trademark) represented in FIGS.
  • the transmission buffers 134B, 144B, and 154B determine that the frame delimiter is IPG (Inter-Packet Gap, MIN 12 bytes) when there is no data for a certain period of time, and cancel the continuous transmission state.
  • IPG Inter-Packet Gap, MIN 12 bytes
  • the data to be transmitted with the jitter of multiplex communication is not in the transmission buffers 134B, 144B, and 154B, and the continuity of the output data is lost, so the frame can be received correctly on the local side. It becomes abnormal.
  • the multiplex processing unit 160B is a multiplex internal processing unit in an integrated circuit (specifically, FPGA or ASIC) having a multiplex communication protocol processing unit 120B and input / output processing units 130B, 140B, and 150B.
  • PHY-ICs 170B, 180B, and 190B for the local physical layer are PHY-ICs for 100base-tx, and are necessary for input / output of signals for Ethernet (registered trademark) in multiple paths.
  • the multiplex communication apparatus 100 ⁇ / b> B according to the present embodiment is installed in the B area 3.
  • the multiplex communication apparatus 100B according to the present embodiment includes three local physical units as shown in FIG. 2 as the paths of the servo amplifiers / motors 15, 16, the camera 17, and the slaves 18, 19.
  • a LAN cable 20 for Ethernet (registered trademark) such as MECHATRLINK (registered trademark) -III is connected to the local physical layer PHY-IC 170B.
  • a LAN cable 21 for Ethernet (registered trademark) such as TCP / IP and UDP is connected to the local physical layer PHY-IC 180B.
  • a LAN cable 22 for Ethernet (registered trademark) such as EtherCAT (registered trademark) is connected to the local physical layer PHY-IC 190B.
  • the multiplex communication apparatuses 100A and 100B according to the present embodiment multiplex, for example, three lines of 100base-tx according to the Ethernet (registered trademark) standard GbE.
  • LAN cable 20 for Ethernet such as MECHATROJSLINK (registered trademark) -III, Ethernet (registered trademark) such as TCP / IP, UDP, etc.
  • LAN cable 21 and Ethernet (registered trademark) LAN cable 22 such as EtherCAT (registered trademark) are a single multiplexed communication cable 101, which is a single multiplexed communication line, and independent lines without analyzing the communication protocol. It is possible to multiplex without changing.
  • the connected LAN cables 22 are multiplexed independently.
  • FIG. 3 is a diagram showing a multiplex communication protocol of a half-duplex communication method for transmitting data from A area 2 to B area 3, but half-duplex for transmitting data from B area 3 to A area 2.
  • the multiplex communication protocol of the communication method is not described.
  • FIG. 4 shows a half-duplex communication protocol for transmitting data from B area 3 to A area 2, but transmits data from A area 2 to B area 3.
  • the multiplex communication protocol of the half duplex communication system is not described.
  • PHY-ICs 110A and 110B for the multi-side physical layer are PHY-ICs for 1000 base-t
  • transmission / reception is performed with GMII (125 MHz * 8 BIT) which is the minimum unit of 1000 base-t.
  • the 8 bits are represented by “B0”, “B1”, “B2”, “B3”, “B4”, “B5”, “B6”, “B7” arranged in the vertical axis in FIGS.
  • the numerical values “0” to “14” arranged on the horizontal axis are the counter numbers of the clock (125 MHz, which is the same as that for the standard GbE) for performing multiplexed communication.
  • the numerical values “15” to “29” arranged on the horizontal axis are the counter numbers of the clock (125 MHz, which is the same as that for the standard GbE) for performing multiplexed communication.
  • the multiplex communication apparatuses 100A and 100B are the minimum unit of 100base-tx of 100base-tx according to the standard GbE of each local side Ethernet (registered trademark). Data transmission / reception is performed by adding a data presence / absence flag in units of 1 Nibble, 25 MHz, 4 BIT of an MII.
  • MIIX-Y the data is represented by “MIIX-Y” where “X” is the line number and “Y” is the order in which the buffer is accumulated.
  • the line number of “X” is any one of “1”, “2”, “3”, and the order of accumulation in the buffer of “Y” is “1”, “2”, “3”, “4”, It is either “5” or “6”.
  • MIIX-Y present / not present is a flag indicating the presence / absence of data. “MIIX-Y present” indicates that “MIIX-Y” data is present. “No MIIX-Y” indicates that there is no data of “MIIX-Y”.
  • each local side Ethernet (registered trademark) communication transmission and reception are performed in units of packets, and when there is no necessary data, there is no communication state. However, there is at least no communication between IPG (Inter-PacketPackGap, MIN 12 bytes) between packets.
  • IPG Inter-PacketPackGap, MIN 12 bytes
  • the PHY-ICs 110A and 110B for the multiplex side physical layer perform data transmission and reception at a fixed interval in order to multiplex with the minimum delay and jitter. For this reason, if there is no data to be transmitted to the local side and data that does not exist is transmitted to the local side, a communication error occurs. Therefore, as shown in FIG. 3 and FIG. 4, the data presence / absence flag information is added to each minimum unit of data, and MII 4-bit data is not output when there is no data.
  • FIG. 5 shows multiplex communication when 1000 base-t 3 lines (CC-LinkIE (registered trademark), GigE_Vision (registered trademark), LAN line for PC)) are multiplexed with SFP (5 Gbps) in addition to 100 base-tx. It is a figure showing a protocol.
  • an SFP (5 Gbps) optical transceiver is used instead of the PHY-IC 110B for the multi-side physical layer (see FIG. 2), which is the PHY-IC for 1000base-t.
  • an optical fiber is used as the multiplex communication cable 101 (see FIG. 2).
  • FIG. 5 is a diagram showing a multiplex communication protocol for transmitting data from the C factory to the D factory, and a diagram showing a multiplex communication protocol for transmitting data from the D factory to the C factory.
  • GMII-I / F data (125 MHz, 8 BIT) is multiplexed as one unit at 1000 base-t.
  • the 8 bits are represented by “B0” to “B7”, “B8” to “B15”, “B16” to “B23”, and “B24” to “B31” arranged on the vertical axis.
  • the numerical values “0” to “9” arranged on the horizontal axis are the counter numbers of clocks for performing multiplexed communication.
  • X is the number of three lines (CC-LinkIE (registered trademark), GigE_Vision (registered trademark), LAN line for PC)
  • the line number of “X” is any one of “1” of CC-Link IE (registered trademark), “2” of GigE_Vision (registered trademark), and “3” of the LAN line for PC.
  • “With / without GMIIX” is a flag indicating whether data exists. “With GMIIX” indicates that there is data of “GMIIX”. “No GMIIX” indicates that there is no data of “GMIIX”.
  • “X” is the line number
  • “Y” is the order of accumulation in the buffer, and the data is represented by “MIIX-Y”.
  • the line number “X” includes “4” in addition to “1”, “2”, and “3” indicating the local sides.
  • the order of accumulation in the “Y” buffer is either “1” or “2”.
  • “MIIX-Y present / not present” is a flag indicating the presence / absence of data. “MIIX-Y present” indicates that “MIIX-Y” data is present. “No MIIX-Y” indicates that there is no data of “MIIX-Y”.
  • a Hamming code FEC (15, 11) shortening system which is one of the forward error correction methods, is used to improve reliability. To do.
  • This PORT is used for communication standards / uses that are difficult to retransmit.
  • bit positions are fixed on the multiplexed data before and after multiplexing for a plurality of ports (see FIGS. 3, 4 and 5), and a plurality of industrial Ethernet (registered)
  • the trademark path (reference numerals 1020, 1021, and 1022 in FIG. 6) can be wired by a single path (reference numeral 101 in FIG. 1).
  • Ethernet (registered trademark) line is reduced between the A area 2 as the fixed part and the B area 3 as the movable part in the entire apparatus, or between different floors in the same factory. Is possible.
  • the multiplex communication devices 100A and 100B according to the present embodiment are inserted into the configuration of FIG. 6 described in the “Background Art” column, and two multiplex communication devices 100A are inserted. , 100B, standard LAN lines corresponding to the same numbered ports are connected.
  • multiplex communication devices 100A and 100B according to the present embodiment are GbE (1000base-t) multiplex communication devices
  • 100base-tx is multiplexed up to 3 lines using the multiplex communication protocol shown in FIGS. Is possible.
  • FIG. 3 since the internal data is independent, there is an abnormality (for example, a LAN cable loop, virus infection, etc.) in one of a plurality of lines. ) Does not affect other lines at all.
  • an abnormality for example, a LAN cable loop, virus infection, etc.
  • a one-way transfer is a delay of about 1.5 ⁇ s, and a jitter is about 240 ns (30 clocks for one transmission) (FIG. 3). (See FIG. 4).
  • the delay is about 1.2 ⁇ s in one transfer in one direction, and the jitter is about 80 ns (at the time of one transmission with 10 clocks) (see FIG. 5). ).
  • the physical layer of data in time for the communication speed can be used to multiplex any standard industrial Ethernet (registered trademark), making difficult settings for multiplexing, creating configuration files, and releasing There are no timing delays and it can be used immediately.
  • this invention is not limited to the said embodiment, A various change is possible in the range which does not deviate from the meaning.
  • the standards for industrial Ethernet (registered trademark) based on 100base include MECHATRLINK (registered trademark) -III, EtherCAT (registered trademark), EtherNet / IP (registered trademark), Profinet (registered trademark), and Modbus (registered trademark). Trademark), TCP / IP, or FL-net.
  • TCP / IP or UDP communication there is TCP / IP or UDP communication to which a PC that performs normal data transmission / reception is connected.
  • an SFP optical transceiver when an optical fiber is used as the multiplex communication cable 101, an SFP optical transceiver is used.
  • an SFF optical transceiver may be used.
  • Multiplex communication system 100A Multiplex communication device 100B Multiplex communication device 101 Multiplex communication cable 110A Multiplex side physical layer PHY-IC 110B PHY-IC for multiple physical layer 133A MII-I / F data output unit 134A Transmission buffer 133B MII-I / F data output unit 134B Transmission buffer 143A MII-I / F data output unit 144A Transmission buffer 143B MII-I / F data output unit 144B Transmission buffer 153A MII -I / F data output unit 154A Transmission buffer 153B MII-I / F data output unit 154B Transmission buffer 160A Multiplexing unit 160B Multiplexing unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Small-Scale Networks (AREA)

Abstract

Provided is a multiplex communication apparatus for enabling a plurality of industrial Ethernets (Registered Trademark) to be routed by use of a single path. A multiplex communication system 1 is divided into an A-area 2 and a B-area 3. In the A-area 2, a multiplex communication apparatus 100A is disposed. In the B-area 3, a multiplex communication apparatus 100B is disposed. The multiplex communication apparatuses 100A and 100B are connected to each other by use of a multiplex communication-use cable 101, such as LAN line category 5e or optical fiber.

Description

多重通信装置Multiplex communication equipment
 本発明は、産業用イーサネット(EtherCAT(登録商標)・MECHATROLINK(登録商標)-III等)を使用した装置の通信データを論理層と物理層の最小単位で送受信を行う多重通信装置に関するものである。 The present invention relates to a multiplex communication apparatus that transmits and receives communication data of an apparatus using an industrial Ethernet (such as EtherCAT (registered trademark) and MECHATRLINK (registered trademark) -III) in a minimum unit of a logical layer and a physical layer. .
 以下、従来技術の多重通信装置について説明する。 Hereinafter, a conventional multiplex communication apparatus will be described.
  図6は、従来技術の通信システムのシステム構成図である。図6に表された多重通信システム1001は、Aエリア1002とBエリア1003に分かれる。 FIG. 6 is a system configuration diagram of a conventional communication system. The multiplex communication system 1001 shown in FIG. 6 is divided into an A area 1002 and a B area 1003.
 Aエリア1002には、システム制御装置1011、サーボコントローラ1012、画像処理装置1013、及びシーケンサ1014が設置される。 In the A area 1002, a system control device 1011, a servo controller 1012, an image processing device 1013, and a sequencer 1014 are installed.
 システム制御装置1011とサーボコントローラ1012は、MECHATROLINK(登録商標)-III等のイーサネット(登録商標)用のLANケーブル1020で接続される。 The system controller 1011 and the servo controller 1012 are connected by a LAN cable 1020 for Ethernet (registered trademark) such as MECHATRLINK (registered trademark) -III.
 また、システム制御装置1011と画像処理装置1013は、TCP/IP,UDP等のイーサネット(登録商標)用のLANケーブル1021で接続される。 Also, the system control device 1011 and the image processing device 1013 are connected by a LAN cable 1021 for Ethernet (registered trademark) such as TCP / IP, UDP.
 さらに、システム制御装置1011とシーケンサ1014は、EtherCAT(登録商標)等のイーサネット(登録商標)用のLANケーブル1022で接続される。 Furthermore, the system controller 1011 and the sequencer 1014 are connected by a LAN cable 1022 for Ethernet (registered trademark) such as EtherCAT (registered trademark).
 システム制御装置1011は、装置全体を制御する。装置全体は、図6に表されたように、固定部としてのAエリア1002と、可動部としてのBエリア1003である。尚、装置全体に代えて、C工場としてのAエリア1002と、D工場としてのBエリア1003としてもよい。画像処理装置1013は、監視等に使用される。尚、画像処理装置1013は、画像表示装置に代えてもよい。 The system control device 1011 controls the entire device. As shown in FIG. 6, the entire apparatus includes an A area 1002 as a fixed portion and a B area 1003 as a movable portion. Instead of the entire apparatus, an A area 1002 as a C factory and a B area 1003 as a D factory may be used. The image processing apparatus 1013 is used for monitoring or the like. Note that the image processing apparatus 1013 may be replaced with an image display apparatus.
 Bエリア1003には、サーボアンプ/モータ1015,1016、カメラ1017、及びスレーブ1018,1019が設置される。スレーブ1018,1019は、ここでは、リレー又はセンサーである。 Servo amplifier / motors 1015, 1016, a camera 1017, and slaves 1018, 1019 are installed in the B area 1003. The slaves 1018 and 1019 are here relays or sensors.
 サーボアンプ/モータ1015,1016は、MECHATROLINK(登録商標)-III等のイーサネット(登録商標)用のLANケーブル1020で接続される。さらに、サーボアンプ/モータ1015,1016は、Aエリア1002のサーボコントローラ1012に、MECHATROLINK(登録商標)-III等のイーサネット(登録商標)用のLANケーブル1020で接続される。 Servo amplifiers / motors 1015 and 1016 are connected by a LAN cable 1020 for Ethernet (registered trademark) such as MECHATRLINK (registered trademark) -III. Further, the servo amplifiers / motors 1015 and 1016 are connected to the servo controller 1012 in the A area 1002 by a LAN cable 1020 for Ethernet (registered trademark) such as MECHATRLINK (registered trademark) -III.
 カメラ1017は、Aエリア1002の画像処理装置1013に、TCP/IP,UDP等のイーサネット(登録商標)用のLANケーブル1021で接続される。 The camera 1017 is connected to the image processing apparatus 1013 in the A area 1002 by a LAN cable 1021 for Ethernet (registered trademark) such as TCP / IP and UDP.
 スレーブ1018,1019は、EtherCAT(登録商標)等のイーサネット(登録商標)用のLANケーブル1022で接続される。さらに、スレーブ1018,1019は、Aエリア1002のシーケンサ1014に、EtherCAT(登録商標)等のイーサネット(登録商標)用のLANケーブル1022で接続される。 The slaves 1018 and 1019 are connected by a LAN cable 1022 for Ethernet (registered trademark) such as EtherCAT (registered trademark). Furthermore, the slaves 1018 and 1019 are connected to the sequencer 1014 in the A area 1002 by an Ethernet (registered trademark) LAN cable 1022 such as EtherCAT (registered trademark).
 尚、従来技術の多重通信装置に関連する発明としては、以下の各特許文献に記載された発明がある。 In addition, as inventions related to the conventional multiplex communication apparatus, there are inventions described in the following patent documents.
特開2001-308921号公報Japanese Patent Laid-Open No. 2001-308921 特開2010-193327号公報JP 2010-193327 A
 しかしながら、図6に表された多重通信システム1001では、複数の経路毎にLANケーブル1020,1021,1022を用意して敷設する。 However, in the multiplex communication system 1001 shown in FIG. 6, LAN cables 1020, 1021, and 1022 are prepared and installed for each of a plurality of routes.
 つまり、ワイヤーハーネス(LANケーブル1020,1021,1022)の本数が多く、装置内の可動部としてのBエリア1003に使用した場合には、ワイヤーハーネス(LANケーブル1020,1021,1022)の全体が太くなり、曲げの屈曲半径Rを十分に確保したケーブルダクトが必要となり、小型化に影響する。 That is, when the number of wire harnesses ( LAN cables 1020, 1021, 1022) is large and the wire harness ( LAN cables 1020, 1021, 1022) is used in the B area 1003 as a movable part in the apparatus, the entire wire harness ( LAN cables 1020, 1021, 1022) is thick. Thus, a cable duct having a sufficiently large bending radius R is required, which affects downsizing.
 C工場としてのAエリア1002と、D工場としてのBエリア1003とした場合には、ワイヤーハーネス(LANケーブル1020,1021,1022)の本数に加えて、ワイヤーハーネス(LANケーブル1020,1021,1022)の距離が長いため、LANケーブル1020,1021,1022の重量が重い、コストが高い、敷設する電線が太いこと等が要因となって、工事費がかさむ。 In the case of A area 1002 as C factory and B area 1003 as D factory, in addition to the number of wire harnesses ( LAN cables 1020, 1021, 1022), wire harnesses ( LAN cables 1020, 1021, 1022) Therefore, the LAN cable 1020, 1021, 1022 is heavy, the cost is high, and the electric wires to be installed are thick.
 また、図6に表された多重通信システム1001では、固定部としてのAエリア1002と可動部としてのBエリア1003との間を1本のLAN線で接続する場合には、先ず、使用する特定の規格1と規格2のGateway装置を購入し、どれか1つの回線に統一した後で、1本のLAN線で接続する。 Further, in the multiplex communication system 1001 shown in FIG. 6, when the A area 1002 as the fixed part and the B area 1003 as the movable part are connected by a single LAN line, first, the specific information to be used is used. Standard 1 and Standard 2 gateway devices are purchased and unified to one of the lines, and then connected by one LAN line.
 使用する規格のGateway装置が存在しない場合や、産業用イーサネット(登録商標)が新しい規格である場合には、Gateway装置の開発リードタイム分、工事の進捗が遅れたりする。 If there is no standard Gateway device to be used or if Industrial Ethernet (registered trademark) is a new standard, the progress of the construction will be delayed by the development lead time of the Gateway device.
 使用する規格の組合せが複数で大量生産されない組合せもあり、そのような場合には、工事費がかさむ。 There are some combinations of standards to be used that are not mass-produced. In such a case, construction costs are high.
 Gateway装置を使用する場合には、変換前のフレームを解析した後に変換後のフレームを作成するため、遅延が大きくなり、リアルタイム性の必要な部分に使用することができず、比較的遅い周期のものになる。 When using the Gateway device, since the frame after conversion is created after analyzing the frame before conversion, the delay becomes large, and it cannot be used for a portion that requires real-time characteristics, and has a relatively slow cycle. Become a thing.
 スレーブ1018,1019の規格が違う場合には、Gateway後は、市販メーカーのサポート外の規格(例えば、Profinet(登録商標)用で市販されたスレーブをEtherCAT(登録商標)で使用)となるため、スレーブ設定ファイルが準備されていない。そのため、設定ファイル(先程の例では、EtherCAT(登録商標)用設定ファイル)を新規に作成するので、(規格を理解し、その後、設定ファイルを記述し、動作確認を行う等の)手間と時間がかかる。 When the slaves 1018 and 1019 have different standards, after Gateway, it becomes a standard that is not supported by a commercial manufacturer (for example, a slave marketed for Profinet (registered trademark) is used in EtherCAT (registered trademark)). Slave configuration file is not prepared. Therefore, since a setting file (in the previous example, a setting file for EtherCAT (registered trademark)) is newly created, it takes time and effort (such as understanding the standard, then writing the setting file, and checking the operation). It takes.
 また、それぞれの規格には一長一短があったり、欲しいコンポーネントのI/F(インターフェイス)に限られた製品しかなく選択枝が無かったり、過去に納入した装置の規格があったりと、同じ装置内・同じ工場内でも、一つの規格に統一されないケースがある。 In addition, each standard has its pros and cons, there are only products with limited I / F (interface) of the desired component, there are no choices, and there are standards for devices delivered in the past. Even within the same factory, there are cases where they are not unified into one standard.
 特に、産業用イーサネット(登録商標)の規格の中には、PC等でよく利用されているハブが使用できない規格があり、また、専用の中継器でも他の規格を接続して使用できないケースがある。 In particular, some industrial Ethernet (registered trademark) standards cannot use hubs that are often used in PCs, and there are cases in which other standards cannot be used with dedicated repeaters. is there.
 そこで、本発明は、上述した点を鑑みてなされたものであり、複数の産業用イーサネット(登録商標)を1本の経路で配線させることができる多重通信装置を提供することを課題とする。 Therefore, the present invention has been made in view of the above-described points, and an object of the present invention is to provide a multiplex communication apparatus capable of wiring a plurality of industrial Ethernet (registered trademark) through a single route.
 この課題を解決するためになされた請求項1に係る発明は、複数のポートの産業用イーサネット(登録商標)の信号を1つの伝送路にのせる多重通信装置であって、データの論理層と物理層の内部インターフェースであるメディアインペンデントインターフェース最小単位データにデータ有無のフラグ情報をつけて、データの最小単位の送受信を行い、データの連続性を確保した状態で多重化すること、を特徴とする。 In order to solve this problem, the invention according to claim 1 is a multiplex communication apparatus for placing industrial Ethernet (registered trademark) signals of a plurality of ports on a single transmission line, comprising: a data logical layer; The media independent interface, which is the internal interface of the physical layer, adds flag information on the presence / absence of data to the minimum unit data, performs transmission / reception of the minimum unit of data, and multiplexes while ensuring data continuity And
 尚、「複数のポートの産業用イーサネット(登録商標)の信号」とは、例えば、100base-txがある。 The “multiple-port industrial Ethernet (registered trademark) signal” is, for example, 100base-tx.
 「データの論理層と物理層の内部インターフェース」とは、例えば、MII:Media Independent Intergace,GMII:Gigabit Media Independent Intergace等がある。 “The internal interface between the logical layer and the physical layer of data” includes, for example, MII: Media Independent Interference, GMII: Gigabit Media Independent Interference, etc.
 「最小単位」とは、例えば、MIIでは、1Nibbleの25MHz,4BITであり、GMIIでは、125MHz,8BITである。 The “minimum unit” is, for example, 1 Nibble 25 MHz and 4 BIT in MII, and 125 MHz and 8 BIT in GMII.
 「データの最小単位の送受信を行い」とは、例えば、イーサネット(登録商標)の規格GbEによる100base-txの半2重通信時では一定の固定間隔(15クロック)で送受信を切り替え、後述するSFP等を使用する全2重通信では一定の固定間隔(10クロック)で送受信を行う。 “Perform transmission / reception in the minimum unit of data” means, for example, switching between transmission and reception at a fixed interval (15 clocks) in 100 base-tx half-duplex communication according to Ethernet (registered trademark) standard GbE. In full-duplex communication using etc., transmission and reception are performed at a fixed interval (10 clocks).
 本発明では、複数のポートが多重化前と多重化後、多重化データ上でもビット位置が固定しており、複数の産業用イーサネット(登録商標)を1本の経路で配線させることができる。よって、省配線化ができる。 In the present invention, the bit positions are fixed on the multiplexed data before and after multiplexing a plurality of ports, and a plurality of industrial Ethernet (registered trademark) can be wired by a single route. Therefore, wiring saving can be achieved.
本発明の一実施形態に係る多重通信装置が使用された多重通信システムのシステム構成図である。1 is a system configuration diagram of a multiplex communication system in which a multiplex communication apparatus according to an embodiment of the present invention is used. 同多重通信装置の内部構成図である。It is an internal block diagram of the same multiplex communication apparatus. 同多重通信装置が半2重通信方式で送受信を行う際のイーサネット(登録商標)の規格GbEによる多重通信プロトコルが表された図である。FIG. 3 is a diagram illustrating a multiplex communication protocol based on Ethernet (registered trademark) standard GbE when the multiplex communication apparatus performs transmission and reception in a half-duplex communication scheme. 同多重通信装置が半2重通信方式で送受信を行う際のイーサネット(登録商標)の規格GbEによる多重通信プロトコルが表わされた図である。FIG. 3 is a diagram illustrating a multiplex communication protocol according to Ethernet (registered trademark) standard GbE when the multiplex communication apparatus performs transmission and reception in a half-duplex communication scheme. 同多重通信装置において、100base-txの他に、1000base-tの3回線をSFP(5Gbps)で多重化したときの多重通信プロトコルが表わされた図である。In the same multiplex communication apparatus, in addition to 100 base-tx, a multiplex communication protocol when 3 lines of 1000 base-t are multiplexed by SFP (5 Gbps) is shown. 従来技術の通信システムのシステム構成図である。It is a system configuration | structure figure of the communication system of a prior art.
[1.多重通信システムのシステム構成]
  以下、本発明を具体化した多重通信装置について図面を参照しつつ説明する。図1は、本発明の一実施形態に係る多重通信装置が使用された多重通信システムのシステム構成図である。
[1. System configuration of multiplex communication system]
Hereinafter, a multiplex communication apparatus embodying the present invention will be described with reference to the drawings. FIG. 1 is a system configuration diagram of a multiplex communication system in which a multiplex communication apparatus according to an embodiment of the present invention is used.
 図1に表された多重通信システム1は、Aエリア2とBエリア3に分かれる。Aエリア2には、本実施形態に係る多重通信装置100Aが設置される。Bエリア3には、本実施形態に係る多重通信装置100Bが設置される。 1 is divided into A area 2 and B area 3. In the A area 2, the multiplex communication apparatus 100A according to the present embodiment is installed. In the B area 3, the multiplex communication apparatus 100B according to the present embodiment is installed.
 Aエリア2には、本実施形態に係る多重通信装置100Aの他に、システム制御装置11、サーボコントローラ12、画像処理装置13、及びシーケンサ14が設置される。 In the A area 2, in addition to the multiplex communication apparatus 100A according to the present embodiment, a system control apparatus 11, a servo controller 12, an image processing apparatus 13, and a sequencer 14 are installed.
 システム制御装置11と本実施形態に係る多重通信装置100Aは、サーボコントローラ12を介して、MECHATROLINK(登録商標)-III等のイーサネット(登録商標)用のLANケーブル20で接続される。 The system control apparatus 11 and the multiplex communication apparatus 100A according to the present embodiment are connected via a servo controller 12 with a LAN cable 20 for Ethernet (registered trademark) such as MECHATRLINK (registered trademark) -III.
 また、システム制御装置11と本実施形態に係る多重通信装置100Aは、画像処理装置13を介して、TCP/IP,UDP等のイーサネット(登録商標)用のLANケーブル21で接続される。 Further, the system control apparatus 11 and the multiplex communication apparatus 100A according to the present embodiment are connected via the image processing apparatus 13 with a LAN cable 21 for Ethernet (registered trademark) such as TCP / IP and UDP.
 さらに、システム制御装置11と本実施形態に係る多重通信装置100Aは、シーケンサ14を介して、EtherCAT(登録商標)等のイーサネット(登録商標)用のLANケーブル22で接続される。 Furthermore, the system control apparatus 11 and the multiplex communication apparatus 100A according to the present embodiment are connected via a sequencer 14 by an Ethernet (registered trademark) LAN cable 22 such as EtherCAT (registered trademark).
 システム制御装置11は、装置全体を制御する。装置全体は、図1に表されたように、固定部としてのAエリア2と、可動部としてのBエリア3である。尚、装置全体に代えて、C工場としてのAエリア2と、D工場としてのBエリア3としてもよい。画像処理装置13は、監視等に使用される。尚、画像処理装置13は、画像表示装置に代えてもよい。 The system control device 11 controls the entire device. As shown in FIG. 1, the entire apparatus is an A area 2 as a fixed portion and a B area 3 as a movable portion. Instead of the entire apparatus, an A area 2 as a C factory and a B area 3 as a D factory may be used. The image processing device 13 is used for monitoring and the like. The image processing device 13 may be replaced with an image display device.
 Bエリア3には、本実施形態に係る多重通信装置100Bの他に、サーボアンプ/モータ15,16、カメラ17、及びスレーブ18,19が設置される。スレーブ18,19は、本実施形態では、リレー又はセンサーである。 In the B area 3, in addition to the multiplex communication apparatus 100B according to the present embodiment, servo amplifiers / motors 15, 16, a camera 17, and slaves 18, 19 are installed. In this embodiment, the slaves 18 and 19 are relays or sensors.
 サーボアンプ/モータ15,16は、Aエリア2のサーボコントローラ12とデータ通信を行う。カメラ17は、Aエリア2の画像処理装置13(又は画像表示装置)とデータ通信を行う。スレーブ18,19は、Aエリア2のシーケンサ14とデータ通信を行う。 Servo amplifiers / motors 15 and 16 perform data communication with the servo controller 12 in area A2. The camera 17 performs data communication with the image processing device 13 (or image display device) in area A2. The slaves 18 and 19 perform data communication with the sequencer 14 in the A area 2.
 本実施形態に係る多重通信装置100Bとサーボアンプ/モータ15,16は、MECHATROLINK(登録商標)-III等のイーサネット(登録商標)用のLANケーブル20で接続される。 The multiplex communication apparatus 100B according to this embodiment and the servo amplifiers / motors 15 and 16 are connected by a LAN cable 20 for Ethernet (registered trademark) such as MECHATRLINK (registered trademark) -III.
 本実施形態に係る多重通信装置100Bとカメラ17は、TCP/IP,UDP等のイーサネット(登録商標)用のLANケーブル21で接続される。 The multiplex communication device 100B according to the present embodiment and the camera 17 are connected by a LAN cable 21 for Ethernet (registered trademark) such as TCP / IP and UDP.
 本実施形態に係る多重通信装置100Bとスレーブ18,19は、EtherCAT(登録商標)等のイーサネット(登録商標)用のLANケーブル22で接続される。 The multiplex communication apparatus 100B according to the present embodiment and the slaves 18 and 19 are connected by a LAN cable 22 for Ethernet (registered trademark) such as EtherCAT (registered trademark).
 そして、本実施形態に係る多重通信装置100A,100Bは、LAN線カテゴリー5e又は光ファイバ等の多重通信用ケーブル101で接続される。 The multiplex communication apparatuses 100A and 100B according to the present embodiment are connected by a multiplex communication cable 101 such as a LAN line category 5e or an optical fiber.
[2.システム制御装置の内部構成]
 図2は、本実施形態に係る多重通信装置100A,100Bの内部構成図である。図2に表されたように、本実施形態に係る多重通信装置100A,100Bは、上述したように、LAN線カテゴリー5e又は光ファイバ等の多重通信用ケーブル101で接続される。
[2. Internal configuration of system control unit]
FIG. 2 is an internal configuration diagram of the multiplex communication apparatuses 100A and 100B according to the present embodiment. As shown in FIG. 2, the multiplex communication apparatuses 100A and 100B according to the present embodiment are connected by the multiplex communication cable 101 such as the LAN line category 5e or an optical fiber as described above.
 本実施形態に係る多重通信装置100Aは、多重側物理層用PHY-IC110A、多重通信プロトコル処理部120A、入出力処理部130A,140A,150A、多重処理部160A、及びローカル側物理層用PHY-IC170A,180A,190Aを有する。 The multiplex communication apparatus 100A according to the present embodiment includes a PHY-IC 110A for the multiplex side physical layer, a multiplex communication protocol processing unit 120A, input / output processing units 130A, 140A, 150A, a multiplex processing unit 160A, and a PHY- for the local side physical layer. IC 170A, 180A, 190A.
 多重側物理層用PHY-IC110Aは、1000base-t用PHY-ICであり、多重通信用ケーブル101として光ファイバが使用される時はSFPの光トランシーバである。 The multiplex-side physical layer PHY-IC 110A is a 1000-base-t PHY-IC, and is an SFP optical transceiver when an optical fiber is used as the multiplex communication cable 101.
 多重通信プロトコル処理部120Aは、後述する図3乃至図5等の多重通信プロトコルを合成・分離処理を行う。多重通信プロトコル処理部120Aは、GMII-I/Fデータ入力部121A、多重分離部122A、多重混合部123A、及びGMII-I/Fデータ出力部124Aを有する。 The multiplex communication protocol processing unit 120A performs a synthesis / separation process on the multiplex communication protocols shown in FIGS. The multiplex communication protocol processing unit 120A includes a GMII-I / F data input unit 121A, a demultiplexing unit 122A, a multiplex mixing unit 123A, and a GMII-I / F data output unit 124A.
 入出力処理部130A,140A,150Aは、多重化対象となるイーサネット(登録商標)用信号の入出力部であり、複数経路分を必要とする。具体的には、図1に表された多重通信システム1では、本実施形態に係る多重通信装置100AはAエリア2に設置される。従って、本実施形態に係る多重通信装置100Aには、サーボコントローラ12、画像処理装置13、及びシーケンサ14の各経路分として、図2に表されたように、3個の入出力処理部130A,140A,150Aがある。 The input / output processing units 130A, 140A, and 150A are Ethernet (registered trademark) signal input / output units to be multiplexed, and require a plurality of paths. Specifically, in the multiplex communication system 1 shown in FIG. 1, the multiplex communication apparatus 100 </ b> A according to the present embodiment is installed in the A area 2. Therefore, the multiplex communication apparatus 100A according to the present embodiment includes three input / output processing units 130A, 130A, as shown in FIG. 2 as paths for the servo controller 12, the image processing apparatus 13, and the sequencer 14. 140A and 150A.
 各入出力処理部130A,140A,150Aは、MII-I/Fデータ入力部131A,141A,151A、受信バッファ132A,142A,152A、MII-I/Fデータ出力部133A,143A,153A、及び送信バッファ134A,144A,154Aを有する。 Each input / output processing unit 130A, 140A, 150A includes MII-I / F data input units 131A, 141A, 151A, reception buffers 132A, 142A, 152A, MII-I / F data output units 133A, 143A, 153A, and transmission. There are buffers 134A, 144A, 154A.
 MII-I/Fデータ入力部131A,141A,151Aは、物理層とリンク層のI/Fであり、MII-I/Fデータ(25MHz、4BIT)の受信部である。 The MII-I / F data input units 131A, 141A, and 151A are physical layer and link layer I / Fs, and are MII-I / F data (25 MHz, 4 BIT) receiving units.
 受信バッファ132A,142A,152Aは、多重通信のクロックである125MHzとMIIのクロックである25MHzの差を吸収するバッファである。 The reception buffers 132A, 142A, and 152A are buffers that absorb a difference between 125 MHz, which is a clock for multiplex communication, and 25 MHz, which is an MII clock.
 MII-I/Fデータ出力部133A,143A,153Aは、物理層とリンク層のI/Fであり、MII-I/Fデータ(25MHz、4BIT)の送信部である。 The MII-I / F data output units 133A, 143A, and 153A are physical layer and link layer I / Fs, and are MII-I / F data (25 MHz, 4 BIT) transmission units.
 送信バッファ134A,144A,154Aは、ローカル側にデータを出力するためのデータ蓄積部である。具体的には、図1に表された多重通信システム1では、本実施形態に係る多重通信装置100AはAエリア2に設置される。従って、本実施形態に係る多重通信装置100Aにおいて、当該ローカル側とは、サーボコントローラ12、画像処理装置13、及びシーケンサ14である。 The transmission buffers 134A, 144A, 154A are data storage units for outputting data to the local side. Specifically, in the multiplex communication system 1 shown in FIG. 1, the multiplex communication apparatus 100 </ b> A according to the present embodiment is installed in the A area 2. Therefore, in the multiplex communication apparatus 100A according to the present embodiment, the local side is the servo controller 12, the image processing apparatus 13, and the sequencer 14.
 図2に戻り、送信バッファ134A,144A,154Aは、多重通信プロトコル上のジッタ(1ブロックの送受信時間分、例えば、後述する図3,4で表されたイーサネット(登録商標)の規格GbEでは30回)を予め考慮し、作成された閾値個数分の4BITデータが蓄積されたら、連続送信を開始する。また、送信バッファ134A,144A,154Aは、ある時間以上データが無いときに、フレームの区切りのIPG(Inter-Packet Gap、MIN12バイト)と判断し、連続送信の状態を解除する。 Returning to FIG. 2, the transmission buffers 134A, 144A, and 154A have a jitter (one block transmission / reception time, for example, 30 in the standard GbE of Ethernet (registered trademark) shown in FIGS. When the number of created 4 BIT data is accumulated, continuous transmission is started. The transmission buffers 134A, 144A, and 154A determine that the frame delimiter is IPG (Inter-Packet Gap, MIN 12 bytes) when there is no data for a certain period of time, and cancel the continuous transmission state.
 尚、バッファ1個以上で送信を開始すると、多重通信のジッタ分で送信するデータが送信バッファ134A,144A,154Aになく、出力データの連続性がなくなるので、上記ローカル側でフレームを正しく受信できず、異常となる。 If transmission is started with one or more buffers, there is no data to be transmitted in the jitter of multiplex communication in the transmission buffers 134A, 144A, 154A, and the continuity of the output data is lost, so that the frame can be received correctly on the local side. It becomes abnormal.
 多重処理部160Aは、多重通信プロトコル処理部120A、及び入出力処理部130A,140A,150Aを有した集積回路(具体的には、FPGA又はASIC)での多重化内部処理部である。 The multiplex processing unit 160A is a multiplex internal processing unit in an integrated circuit (specifically, FPGA or ASIC) having a multiplex communication protocol processing unit 120A and input / output processing units 130A, 140A, 150A.
 ローカル側物理層用PHY-IC170A,180A,190Aは、100base-tx用PHY-ICであり、複数路のイーサネット(登録商標)用信号の入出力に必要となる。具体的には、図1に表された多重通信システム1では、本実施形態に係る多重通信装置100AはAエリア2に設置される。従って、本実施形態に係る多重通信装置100Aには、サーボコントローラ12、画像処理装置13、及びシーケンサ14の各路として、図2に表されたように、3個のローカル側物理層用PHY-IC170A,180A,190Aがある。 PHY- ICs 170A, 180A, and 190A for the local physical layer are PHY-ICs for 100base-tx, and are necessary for input / output of signals for a plurality of paths of Ethernet (registered trademark). Specifically, in the multiplex communication system 1 shown in FIG. 1, the multiplex communication apparatus 100 </ b> A according to the present embodiment is installed in the A area 2. Accordingly, the multiplex communication apparatus 100A according to the present embodiment includes three local physical layer PHY-as shown in FIG. 2 as paths of the servo controller 12, the image processing apparatus 13, and the sequencer 14. There are ICs 170A, 180A, and 190A.
 ローカル側物理層用PHY-IC170Aには、MECHATROLINK(登録商標)-III等のイーサネット(登録商標)用のLANケーブル20が接続される。ローカル側物理層用PHY-IC180Aには、TCP/IP,UDP等のイーサネット(登録商標)用のLANケーブル21が接続される。ローカル側物理層用PHY-IC190Aには、EtherCAT(登録商標)等のイーサネット(登録商標)用のLANケーブル22が接続される。 The local physical layer PHY-IC 170A is connected to a LAN cable 20 for Ethernet (registered trademark) such as MECHATRLINK (registered trademark) -III. A LAN cable 21 for Ethernet (registered trademark) such as TCP / IP or UDP is connected to the local physical layer PHY-IC 180A. A LAN cable 22 for Ethernet (registered trademark) such as EtherCAT (registered trademark) is connected to the local physical layer PHY-IC 190A.
 同様にして、本実施形態に係る多重通信装置100Bは、多重側物理層用PHY-IC110B、多重通信プロトコル処理部120B、入出力処理部130B,140B,150B、多重処理部160B、及びローカル側物理層用PHY-IC170B,180B,190Bを有する。 Similarly, the multiplex communication apparatus 100B according to the present embodiment includes the PHY-IC 110B for the multiplex side physical layer, the multiplex communication protocol processing unit 120B, the input / output processing units 130B, 140B, and 150B, the multiplex processing unit 160B, and the local side physical layer. Layer PHY- ICs 170B, 180B, and 190B are provided.
 多重側物理層用PHY-IC110Bは、1000base-t用PHY-ICであり、多重通信用ケーブル101として光ファイバが使用される時はSFPの光トランシーバである。 The PHY-IC 110B for the multiplex side physical layer is a PHY-IC for 1000base-t, and is an SFP optical transceiver when an optical fiber is used as the multiplex communication cable 101.
 多重通信プロトコル処理部120Bは、後述する図3乃至図5等の多重通信プロトコルを合成・分離処理を行う。多重通信プロトコル処理部120Bは、GMII-I/Fデータ入力部121B、多重分離部122B、多重混合部123B、及びGMII-I/Fデータ出力部124Bを有する。 The multiplex communication protocol processing unit 120B performs a synthesis / separation process on the multiplex communication protocols shown in FIGS. The multiplex communication protocol processing unit 120B includes a GMII-I / F data input unit 121B, a demultiplexing unit 122B, a multiplex mixing unit 123B, and a GMII-I / F data output unit 124B.
 入出力処理部130B,140B,150Bは、多重化対象となるイーサネット(登録商標)用信号の入出力部であり、複数経路分を必要とする。具体的には、図1に表された多重通信システム1では、本実施形態に係る多重通信装置100BはBエリア3に設置される。従って、本実施形態に係る多重通信装置100Bには、サーボアンプ/モータ15,16、カメラ17、及びスレーブ18,19の各経路分として、図2に表されたように、3個の入出力処理部130B,140B,150Bがある。 The input / output processing units 130B, 140B, and 150B are input / output units for Ethernet (registered trademark) signals to be multiplexed, and require a plurality of paths. Specifically, in the multiplex communication system 1 shown in FIG. 1, the multiplex communication apparatus 100 </ b> B according to the present embodiment is installed in the B area 3. Therefore, the multiplex communication apparatus 100B according to the present embodiment includes three input / output signals as shown in FIG. 2 for the servo amplifier / motors 15 and 16, the camera 17, and the slaves 18 and 19, respectively. There are processing units 130B, 140B, and 150B.
 各入出力処理部130B,140B,150Bは、MII-I/Fデータ入力部131B,141B,151B、受信バッファ132B,142B,152B、MII-I/Fデータ出力部133B,143B,153B、及び送信バッファ134B,144B,154Bを有する。 Each input / output processing unit 130B, 140B, 150B includes MII-I / F data input units 131B, 141B, 151B, reception buffers 132B, 142B, 152B, MII-I / F data output units 133B, 143B, 153B, and transmission. It has buffers 134B, 144B, 154B.
 MII-I/Fデータ入力部131B,141B,151Bは、物理層とリンク層のI/Fであり、MII-I/Fデータ(25MHz、4BIT)の受信部である。 The MII-I / F data input units 131B, 141B, and 151B are physical layer and link layer I / Fs, and are MII-I / F data (25 MHz, 4 BIT) receiving units.
 受信バッファ132B,142B,152Bは、多重通信のクロックである125MHzとMIIのクロックである25MHzの差を吸収するバッファである。 The reception buffers 132B, 142B, and 152B are buffers that absorb a difference between 125 MHz, which is a clock for multiplex communication, and 25 MHz, which is an MII clock.
 MII-I/Fデータ出力部133B,143B,153Bは、物理層とリンク層のI/Fであり、MII-I/Fデータ(25MHz、4BIT)の送信部である。 The MII-I / F data output units 133B, 143B, and 153B are physical layer and link layer I / Fs, and are MII-I / F data (25 MHz, 4 BIT) transmission units.
 送信バッファ134B,144B,154Bは、ローカル側にデータを出力するためのデータ蓄積部である。具体的には、図1に表された多重通信システム1では、本実施形態に係る多重通信装置100BはBエリア3に設置される。従って、本実施形態に係る多重通信装置100Bにおいて、当該ローカル側とは、サーボアンプ/モータ15,16、カメラ17、及びスレーブ18,19である。 The transmission buffers 134B, 144B, and 154B are data storage units for outputting data to the local side. Specifically, in the multiplex communication system 1 shown in FIG. 1, the multiplex communication apparatus 100 </ b> B according to the present embodiment is installed in the B area 3. Therefore, in the multiplex communication apparatus 100B according to the present embodiment, the local side is the servo amplifiers / motors 15 and 16, the camera 17, and the slaves 18 and 19.
 図2に戻り、送信バッファ134B,144B,154Bは、多重通信プロトコル上のジッタ(1ブロックの送受信時間分、例えば、後述する図3,4で表されたイーサネット(登録商標)の規格GbEでは30回)を予め考慮し、作成された閾値個数分の4BITデータが蓄積されたら、連続送信を開始する。また、送信バッファ134B,144B,154Bは、ある時間以上データが無いときに、フレームの区切りのIPG(Inter-Packet Gap、MIN12バイト)と判断し、連続送信の状態を解除する。 Returning to FIG. 2, the transmission buffers 134B, 144B, and 154B have a jitter (one block transmission / reception time, for example, 30 in the standard GbE of Ethernet (registered trademark) represented in FIGS. When the number of created 4 BIT data is accumulated, continuous transmission is started. The transmission buffers 134B, 144B, and 154B determine that the frame delimiter is IPG (Inter-Packet Gap, MIN 12 bytes) when there is no data for a certain period of time, and cancel the continuous transmission state.
 尚、バッファ1個以上で送信を開始すると、多重通信のジッタ分で送信するデータが送信バッファ134B,144B,154Bになく、出力データの連続性がなくなるので、上記ローカル側でフレームを正しく受信できず、異常となる。 When transmission starts with one or more buffers, the data to be transmitted with the jitter of multiplex communication is not in the transmission buffers 134B, 144B, and 154B, and the continuity of the output data is lost, so the frame can be received correctly on the local side. It becomes abnormal.
 多重処理部160Bは、多重通信プロトコル処理部120B、及び入出力処理部130B,140B,150Bを有した集積回路(具体的には、FPGA又はASIC)での多重化内部処理部である。 The multiplex processing unit 160B is a multiplex internal processing unit in an integrated circuit (specifically, FPGA or ASIC) having a multiplex communication protocol processing unit 120B and input / output processing units 130B, 140B, and 150B.
 ローカル側物理層用PHY-IC170B,180B,190Bは、100base-tx用PHY-ICであり、複数路のイーサネット(登録商標)用信号の入出力に必要となる。具体的には、図1に表された多重通信システム1では、本実施形態に係る多重通信装置100BはBエリア3に設置される。従って、本実施形態に係る多重通信装置100Bには、サーボアンプ/モータ15,16、カメラ17、及びスレーブ18,19の各路として、図2に表されたように、3個のローカル側物理層用PHY-IC170B,180B,190Bがある。 PHY- ICs 170B, 180B, and 190B for the local physical layer are PHY-ICs for 100base-tx, and are necessary for input / output of signals for Ethernet (registered trademark) in multiple paths. Specifically, in the multiplex communication system 1 shown in FIG. 1, the multiplex communication apparatus 100 </ b> B according to the present embodiment is installed in the B area 3. Accordingly, the multiplex communication apparatus 100B according to the present embodiment includes three local physical units as shown in FIG. 2 as the paths of the servo amplifiers / motors 15, 16, the camera 17, and the slaves 18, 19. There are layer PHY- ICs 170B, 180B, 190B.
 ローカル側物理層用PHY-IC170Bには、MECHATROLINK(登録商標)-III等のイーサネット(登録商標)用のLANケーブル20が接続される。ローカル側物理層用PHY-IC180Bには、TCP/IP,UDP等のイーサネット(登録商標)用のLANケーブル21が接続される。ローカル側物理層用PHY-IC190Bには、EtherCAT(登録商標)等のイーサネット(登録商標)用のLANケーブル22が接続される。 A LAN cable 20 for Ethernet (registered trademark) such as MECHATRLINK (registered trademark) -III is connected to the local physical layer PHY-IC 170B. A LAN cable 21 for Ethernet (registered trademark) such as TCP / IP and UDP is connected to the local physical layer PHY-IC 180B. A LAN cable 22 for Ethernet (registered trademark) such as EtherCAT (registered trademark) is connected to the local physical layer PHY-IC 190B.
 上記の構成により、本実施形態に係る多重通信装置100A,100Bは、例えば、イーサネット(登録商標)の規格GbEによる100base-txの3回線を多重化するものである。 With the above configuration, the multiplex communication apparatuses 100A and 100B according to the present embodiment multiplex, for example, three lines of 100base-tx according to the Ethernet (registered trademark) standard GbE.
 従来では、1系統にまとめることができない規格違いの3回線(MECHATROJSLINK(登録商標)-III等のイーサネット(登録商標)用のLANケーブル20、TCP/IP,UDP等のイーサネット(登録商標)用のLANケーブル21、及びEtherCAT(登録商標)等のイーサネット(登録商標)用のLANケーブル22)を、1本の多重化通信線である多重通信用ケーブル101で、通信プロトコルの解析なく、独立した回線のままで、多重化することが可能である。 Conventionally, three lines of different standards that cannot be combined into one system (for LAN cable 20 for Ethernet (registered trademark) such as MECHATROJSLINK (registered trademark) -III, Ethernet (registered trademark) such as TCP / IP, UDP, etc.) LAN cable 21 and Ethernet (registered trademark) LAN cable 22 such as EtherCAT (registered trademark) are a single multiplexed communication cable 101, which is a single multiplexed communication line, and independent lines without analyzing the communication protocol. It is possible to multiplex without changing.
 つまり、ローカル側物理層用PHY-IC170A,170Bに接続されたLANケーブル20、ローカル側物理層用PHY-IC180A,180Bに接続されたLANケーブル21、及びローカル側物理層用PHY-IC190A,190Bに接続されたLANケーブル22は、独立して多重化される。 That is, the LAN cable 20 connected to the local-side physical layer PHY- ICs 170A and 170B, the LAN cable 21 connected to the local-side physical layer PHY-ICs 180A and 180B, and the local-side physical layer PHY- ICs 190A and 190B The connected LAN cables 22 are multiplexed independently.
[3.イーサネット(登録商標)の規格GbEによる多重通信プロトコル]
 多重側物理層用PHY-IC110A,110Bが1000base-t用PHY-ICである場合には、本実施形態に係る多重通信装置100A,100Bは半2重通信方式で送受信を行う。図3,図4は、本実施形態に係る多重通信装置100A,100B(図2参照)が半2重通信方式で送受信を行う際のイーサネット(登録商標)の規格GbEによる多重通信プロトコルが表わされた図である。
[3. Multiplex communication protocol based on Ethernet (registered trademark) standard GbE]
When the PHY- ICs 110A and 110B for the multi-side physical layer are 1000base-t PHY-ICs, the multiplex communication apparatuses 100A and 100B according to the present embodiment perform transmission and reception using the half-duplex communication method. 3 and 4 show a multiplex communication protocol based on the Ethernet (registered trademark) standard GbE when the multiplex communication apparatuses 100A and 100B (see FIG. 2) according to the present embodiment perform transmission and reception in the half duplex communication system. FIG.
 図3,図4では、縦軸に通信方向が表される。図3は、Aエリア2からBエリア3にデータを送信する半2重通信方式の多重通信プロトコルが表わされた図であるが、Bエリア3からAエリア2にデータを送信する半2重通信方式の多重通信プロトコルは記載されていない。これに対して、図4は、Bエリア3からAエリア2にデータを送信する半2重通信方式の多重通信プロトコルが表された図であるが、Aエリア2からBエリア3にデータを送信する半2重通信方式の多重通信プロトコルは記載されていない。 3 and 4, the vertical axis represents the communication direction. FIG. 3 is a diagram showing a multiplex communication protocol of a half-duplex communication method for transmitting data from A area 2 to B area 3, but half-duplex for transmitting data from B area 3 to A area 2. The multiplex communication protocol of the communication method is not described. On the other hand, FIG. 4 shows a half-duplex communication protocol for transmitting data from B area 3 to A area 2, but transmits data from A area 2 to B area 3. The multiplex communication protocol of the half duplex communication system is not described.
 多重側物理層用PHY-IC110A,110B(図2参照)が1000base-t用PHY-ICである場合には、1000base-tの最小単位であるGMII(125MHz*8BIT)で送受信が行われる。その8BITは、図3,図4では、縦軸に並んだ「B0」,「B1」,「B2」,「B3」,「B4」,「B5」,「B6」,「B7」で表される。 When the PHY- ICs 110A and 110B for the multi-side physical layer (see FIG. 2) are PHY-ICs for 1000 base-t, transmission / reception is performed with GMII (125 MHz * 8 BIT) which is the minimum unit of 1000 base-t. The 8 bits are represented by “B0”, “B1”, “B2”, “B3”, “B4”, “B5”, “B6”, “B7” arranged in the vertical axis in FIGS. The
 図3では、横軸に並んだ「0」~「14」の数値は、多重化通信を行うクロック(規格GbE用と同じ125MHz)のカウンタ数である。同様にして、図4では、横軸に並んだ「15」~「29」の数値は、多重化通信を行うクロック(規格GbE用と同じ125MHz)のカウンタ数である。 In FIG. 3, the numerical values “0” to “14” arranged on the horizontal axis are the counter numbers of the clock (125 MHz, which is the same as that for the standard GbE) for performing multiplexed communication. Similarly, in FIG. 4, the numerical values “15” to “29” arranged on the horizontal axis are the counter numbers of the clock (125 MHz, which is the same as that for the standard GbE) for performing multiplexed communication.
 図3,図4では、本実施形態に係る多重通信装置100A,100B(図2参照)は、上記各ローカル側のイーサネット(登録商標)の規格GbEによる100base-txの100base-txの最小単位であるMIIの1Nibble,25MHz,4BITを単位として、データ有無フラグを追加して、データの送受信を行う。 3 and 4, the multiplex communication apparatuses 100A and 100B (see FIG. 2) according to the present embodiment are the minimum unit of 100base-tx of 100base-tx according to the standard GbE of each local side Ethernet (registered trademark). Data transmission / reception is performed by adding a data presence / absence flag in units of 1 Nibble, 25 MHz, 4 BIT of an MII.
 図3,図4では、「X」を回線番号、「Y」をバッファにたまった順番とすると、データが「MIIX-Y」で表わされる。「X」の回線番号は「1」,「2」,「3」のいずれかであり、「Y」のバッファにたまった順番は「1」,「2」,「3」,「4」,「5」,「6」のいずれかである。「MIIX-Y有/無」は、データ有無のフラグである。「MIIX-Y有」は、「MIIX-Y」のデータが有ることを表す。「MIIX-Y無」は、「MIIX-Y」のデータが無いことを表す。 3 and 4, the data is represented by “MIIX-Y” where “X” is the line number and “Y” is the order in which the buffer is accumulated. The line number of “X” is any one of “1”, “2”, “3”, and the order of accumulation in the buffer of “Y” is “1”, “2”, “3”, “4”, It is either “5” or “6”. “MIIX-Y present / not present” is a flag indicating the presence / absence of data. “MIIX-Y present” indicates that “MIIX-Y” data is present. “No MIIX-Y” indicates that there is no data of “MIIX-Y”.
 尚、「空き」は、データそのものが存在しないことを表す。 Note that “free” means that the data itself does not exist.
 図3に表されたように、カウンタ数が「0」,「1」の通信開始時は多重側物理層用PHY-IC110A,110B(図2参照)により決まったプリアンブル2個が送受信される。カウンタ数が「14」では、送受信を切り替えるため、お互いに送信OFFの状態とする。 As shown in FIG. 3, at the start of communication with the counter numbers “0” and “1”, two preambles determined by the PHY- ICs 110A and 110B for the multiplex side physical layer (see FIG. 2) are transmitted and received. When the number of counters is “14”, transmission and reception are switched, so that transmission is mutually turned off.
 図4に表されたように、カウンタ数が「15」~「29」の後半15回分は、送受信の方向を切り替えて通信を行う。 As shown in FIG. 4, for the last 15 times of the counter number “15” to “29”, communication is performed by switching the transmission / reception direction.
 一般的に、上記各ローカル側のイーサネット(登録商標)の通信では、パケット単位で送受信が行われ、必要なデータがない時に無通信状態となる。但し、パケット間は、最低でも、IPG(Inter-Packet Gap、MIN12バイト)間分の無通信が有る。 Generally, in each local side Ethernet (registered trademark) communication, transmission and reception are performed in units of packets, and when there is no necessary data, there is no communication state. However, there is at least no communication between IPG (Inter-PacketPackGap, MIN 12 bytes) between packets.
 一方、多重側物理層用PHY-IC110A,110B(図2参照)は、最小の遅延・ジッタで多重化するために、一定の固定間隔でデータ送受信を行う。そのため、上記ローカル側に送信すべきデータがないときに、存在しないデータを上記ローカル側に送信すると、通信異常となる。従って、図3,図4に表したように、最小単位のデータ毎にデータ有無のフラグの情報を付加し、データが無いときはMIIの4BITデータを出力しない。 On the other hand, the PHY- ICs 110A and 110B for the multiplex side physical layer (see FIG. 2) perform data transmission and reception at a fixed interval in order to multiplex with the minimum delay and jitter. For this reason, if there is no data to be transmitted to the local side and data that does not exist is transmitted to the local side, a communication error occurs. Therefore, as shown in FIG. 3 and FIG. 4, the data presence / absence flag information is added to each minimum unit of data, and MII 4-bit data is not output when there is no data.
[4.SFP(5Gbps)による多重通信プロトコル]
 図5は、100base-txの他に、1000base-tの3回線(CC-LinkIE(登録商標)、GigE_Vision(登録商標)、PC用LAN回線)をSFP(5Gbps)で多重化したときの多重通信プロトコルが表わされた図である。この場合には、上述したように、1000base-t用PHY-ICである多重側物理層用PHY-IC110B(図2参照)に代えて、SFP(5Gbps)の光トランシーバが使用される。さらに、多重通信用ケーブル101(図2参照)として光ファイバが使用される。
[4. Multiplex communication protocol by SFP (5 Gbps)]
FIG. 5 shows multiplex communication when 1000 base-t 3 lines (CC-LinkIE (registered trademark), GigE_Vision (registered trademark), LAN line for PC)) are multiplexed with SFP (5 Gbps) in addition to 100 base-tx. It is a figure showing a protocol. In this case, as described above, an SFP (5 Gbps) optical transceiver is used instead of the PHY-IC 110B for the multi-side physical layer (see FIG. 2), which is the PHY-IC for 1000base-t. Further, an optical fiber is used as the multiplex communication cable 101 (see FIG. 2).
 図5では、縦軸に通信方向が表される。図5は、C工場からD工場にデータを送信する多重通信プロトコルが表わされた図であるとともに、D工場からC工場にデータを送信する多重通信プロトコルが表された図である。 In FIG. 5, the vertical axis represents the communication direction. FIG. 5 is a diagram showing a multiplex communication protocol for transmitting data from the C factory to the D factory, and a diagram showing a multiplex communication protocol for transmitting data from the D factory to the C factory.
 100base-txのときのMII-I/Fデータ(25MHz,4BIT)に対して、1000base-tでは、GMII-I/Fデータ(125MHz,8BIT)を1つの単位として多重化する。その8BITは、図5では、縦軸に並んだ「B0」~「B7」,「B8」~「B15」,「B16」~「B23」,「B24」~「B31」で表される。 In contrast to MII-I / F data (25 MHz, 4 BIT) at 100 base-tx, GMII-I / F data (125 MHz, 8 BIT) is multiplexed as one unit at 1000 base-t. In FIG. 5, the 8 bits are represented by “B0” to “B7”, “B8” to “B15”, “B16” to “B23”, and “B24” to “B31” arranged on the vertical axis.
 さらに、図5では、横軸に並んだ「0」~「9」の数値は、多重化通信を行うクロックのカウンタ数である。 Furthermore, in FIG. 5, the numerical values “0” to “9” arranged on the horizontal axis are the counter numbers of clocks for performing multiplexed communication.
 図5では、「X」を、3回線(CC-LinkIE(登録商標)、GigE_Vision(登録商標)、PC用LAN回線)の番号とすると、データが「GMIIX」で表わされる。「X」の回線番号は、CC-LinkIE(登録商標)の「1」,GigE_Vision(登録商標)の「2」,PC用LAN回線の「3」のいずれかである。「GMIIX有/無」は、データ有無のフラグである。「GMIIX有」は、「GMIIX」のデータが有ることを表す。「GMIIX無」は、「GMIIX」のデータが無いことを表す。 In FIG. 5, when “X” is the number of three lines (CC-LinkIE (registered trademark), GigE_Vision (registered trademark), LAN line for PC), the data is represented by “GMIIX”. The line number of “X” is any one of “1” of CC-Link IE (registered trademark), “2” of GigE_Vision (registered trademark), and “3” of the LAN line for PC. “With / without GMIIX” is a flag indicating whether data exists. “With GMIIX” indicates that there is data of “GMIIX”. “No GMIIX” indicates that there is no data of “GMIIX”.
 また、図5では、「X」を回線番号、「Y」をバッファにたまった順番とすると、データが「MIIX-Y」で表わされる。「X」の回線番号には、上記各ローカル側を意味する「1」,「2」,「3」に加え、「4」がある。また、「Y」のバッファにたまった順番は「1」,「2」のいずれかである。「MIIX-Y有/無」は、データ有無のフラグである。「MIIX-Y有」は、「MIIX-Y」のデータが有ることを表す。「MIIX-Y無」は、「MIIX-Y」のデータが無いことを表す。 In FIG. 5, “X” is the line number, and “Y” is the order of accumulation in the buffer, and the data is represented by “MIIX-Y”. The line number “X” includes “4” in addition to “1”, “2”, and “3” indicating the local sides. The order of accumulation in the “Y” buffer is either “1” or “2”. “MIIX-Y present / not present” is a flag indicating the presence / absence of data. “MIIX-Y present” indicates that “MIIX-Y” data is present. “No MIIX-Y” indicates that there is no data of “MIIX-Y”.
 特に、図5では、「MII4-1」と「MII4-2」には、信頼性を高めるために、前方誤り訂正方式の1つであるハミング符号のFEC(15,11)の短縮系を使用する。再送をきらう通信規格・用途には、このPORTを使用する。 In particular, in FIG. 5, for MII4-1 and MII4-2, a Hamming code FEC (15, 11) shortening system, which is one of the forward error correction methods, is used to improve reliability. To do. This PORT is used for communication standards / uses that are difficult to retransmit.
 図5に表されたSFP(5Gbps)の場合には、図3,図4に表されたGbEの場合とは違い、全2重通信方式であり、プリアンブルがなく、転送速度が速い特徴を持つ。また、多重通信用ケーブル101(図2参照)として光ファイバが使用されるため、長距離間(数km)を多重化できる。 In the case of SFP (5 Gbps) shown in FIG. 5, unlike the case of GbE shown in FIGS. 3 and 4, it is a full-duplex communication method, has no preamble, and has a high transfer rate. . Further, since an optical fiber is used as the multiplex communication cable 101 (see FIG. 2), a long distance (several kilometers) can be multiplexed.
[5.まとめ]
 すなわち、本実施形態では、複数のポートが多重化前と多重化後、多重化データ上でもビット位置が固定しており(図3,図4,図5参照)、複数の産業用イーサネット(登録商標)の経路(図6の符号1020,1021,1022)を1本の経路(図1の符号101)で配線させることができる。
[5. Summary]
In other words, in this embodiment, the bit positions are fixed on the multiplexed data before and after multiplexing for a plurality of ports (see FIGS. 3, 4 and 5), and a plurality of industrial Ethernet (registered) The trademark path ( reference numerals 1020, 1021, and 1022 in FIG. 6) can be wired by a single path (reference numeral 101 in FIG. 1).
 よって、省配線化ができる。本実施形態では、装置全体における固定部としてのAエリア2と可動部としてのBエリア3との間で、あるいは、同じ工場における異なる階数との間で、イーサネット(登録商標)の回線の省配線化が可能である。 Therefore, wiring can be saved. In this embodiment, the Ethernet (registered trademark) line is reduced between the A area 2 as the fixed part and the B area 3 as the movable part in the entire apparatus, or between different floors in the same factory. Is possible.
 C工場とD工場の間のような長距離の場合は、ケーブル代の他に、敷設に必要な部品代や工事代が安価で済む。 In the case of a long distance between the C factory and the D factory, in addition to the cable cost, the parts cost and construction cost necessary for laying can be reduced.
 本実施形態では、「背景技術」の欄で説明した図6の構成に対し、図2に表したように、本実施形態に係る多重通信装置100A,100Bを挿入し、2つの多重通信装置100A,100B間で、同じ番号のポートに対応する規格のLAN線を接続する。 In the present embodiment, as shown in FIG. 2, the multiplex communication devices 100A and 100B according to the present embodiment are inserted into the configuration of FIG. 6 described in the “Background Art” column, and two multiplex communication devices 100A are inserted. , 100B, standard LAN lines corresponding to the same numbered ports are connected.
 本実施形態に係る多重通信装置100A,100BがGbE(1000base-t)による多重通信装置の場合は、図3,図4に表された多重通信プロトコルで、100base-txを最大3回線を多重化することが可能である。 When the multiplex communication devices 100A and 100B according to the present embodiment are GbE (1000base-t) multiplex communication devices, 100base-tx is multiplexed up to 3 lines using the multiplex communication protocol shown in FIGS. Is possible.
 本実施形態では、図3,図4,図5に表されたように、内部データ上は独立しているので、複数の回線内の1つに異常(例えば、LANケーブルのループ、ウイルス感染等)が発生しても、他の回線に全く影響を及ぼさない。 In this embodiment, as shown in FIG. 3, FIG. 4 and FIG. 5, since the internal data is independent, there is an abnormality (for example, a LAN cable loop, virus infection, etc.) in one of a plurality of lines. ) Does not affect other lines at all.
 従って、例えば、外部接続しているPC用LAN回線がウイルス感染しても、装置制御を行う別回線には全く影響せず、安定した生産ができる。 Therefore, for example, even if an externally connected PC LAN line is infected with a virus, there is no influence on another line for controlling the apparatus and stable production can be achieved.
 本実施形態では、図3,図4,図5に表されたように、最小単位のデータを基に多重化通信プロトコルにしているので、産業用イーサネット(登録商標)で問題となる遅延時間・ジッタが小さく、ほとんど影響しない。 In this embodiment, as shown in FIG. 3, FIG. 4 and FIG. 5, since the multiplexing communication protocol is based on the minimum unit data, the delay time and the problem that are problematic in Industrial Ethernet (registered trademark) Jitter is small and has almost no effect.
 具体的には、GbEによる多重通信装置では、片方向1回の転送で、約1.5μs程度の遅延であり、ジッタは約240ns(30クロックで1回分の送信時)である(図3,図4参照)。これに対して、SFPによる多重通信装置では、片方向1回の転送で、約1.2μs程度の遅延であり、ジッタは約80ns(10クロックで1回分の送信時)である(図5参照)。 Specifically, in a GbE multiplex communication apparatus, a one-way transfer is a delay of about 1.5 μs, and a jitter is about 240 ns (30 clocks for one transmission) (FIG. 3). (See FIG. 4). On the other hand, in the multiplex communication apparatus using the SFP, the delay is about 1.2 μs in one transfer in one direction, and the jitter is about 80 ns (at the time of one transmission with 10 clocks) (see FIG. 5). ).
 本実施形態のように、パケット解析なしに多重化しているために、通信速度的に間に合うデータの物理層(多重側物理層用PHY-IC110A,110B、ローカル側物理層用PHY-IC170A,180A,190A、及びローカル側物理層用PHY-IC170B,180B,190B)を用意すれば、どんな規格の産業用イーサネット(登録商標)でも多重化でき、多重化のための難しい設定、設定ファイルの作成、リリースタイミングの遅れ等がなく、すぐに使用することができる。 Since multiplexing is performed without packet analysis as in the present embodiment, the physical layer of data in time for the communication speed (multi-side physical layer PHY- ICs 110A, 110B, local-side physical layer PHY- ICs 170A, 180A, 190A and local physical layer PHY- ICs 170B, 180B, 190B) can be used to multiplex any standard industrial Ethernet (registered trademark), making difficult settings for multiplexing, creating configuration files, and releasing There are no timing delays and it can be used immediately.
 従来のように、パケット単位でCRCチェック等を行ってからデータ通信すると、フレームのデータ量分の遅延が追加されて、フィードバック制御を行っているような産業用イーサネット(登録商標)では、遅延が大きく、正常に動作しないケースもある。また、データに識別子があると、識別子がデータ化けした場合、少なくとも2つの回線に影響がある。しかしながら、本実施形態では、図3,図4,図5に表されたように、固定ビットに割り付けているので、多重処理部160A,160Bでデータ化けが発生しても、複数のポートの対応を誤認することがない。 When data communication is performed after performing a CRC check or the like on a packet basis as in the prior art, a delay corresponding to the amount of data in the frame is added, and in an industrial Ethernet (registered trademark) in which feedback control is performed, the delay is In some cases, it is large and does not operate normally. Also, if there is an identifier in the data, if the identifier is garbled, there is an effect on at least two lines. However, in this embodiment, as shown in FIG. 3, FIG. 4 and FIG. 5, since it is assigned to a fixed bit, even if garbled data occurs in the multiplex processing units 160A and 160B, it is possible to cope with a plurality of ports. Is not mistaken.
[6.その他]
 尚、本発明は上記実施形態に限定されるものでなく、その趣旨を逸脱しない範囲で様々な変更が可能である。
 例えば、100baseをベースとした産業用イーサネット(登録商標)の規格としては、MECHATROLINK(登録商標)-III、EtherCAT(登録商標)、EtherNet/IP(登録商標)、Profinet(登録商標)、Modbus(登録商標)、TCP/IP、又はFL-net等がある。
[6. Others]
In addition, this invention is not limited to the said embodiment, A various change is possible in the range which does not deviate from the meaning.
For example, the standards for industrial Ethernet (registered trademark) based on 100base include MECHATRLINK (registered trademark) -III, EtherCAT (registered trademark), EtherNet / IP (registered trademark), Profinet (registered trademark), and Modbus (registered trademark). Trademark), TCP / IP, or FL-net.
 1000baseをベースとした産業用イーサネット(登録商標)の規格としては、CC-LinkIE(登録商標)等がある。 As a standard of industrial Ethernet (registered trademark) based on 1000base, there is CC-LinkIE (registered trademark).
 また、その他にも、通常の情報系のデータ送受信を行うPCが接続されたTCP/IP又はUDPの通信も存在する。 In addition, there is TCP / IP or UDP communication to which a PC that performs normal data transmission / reception is connected.
 本実施形態では、多重通信用ケーブル101として光ファイバが使用される時はSFPの光トランシーバであったが、SFFの光トランシーバであってもよい。 In this embodiment, when an optical fiber is used as the multiplex communication cable 101, an SFP optical transceiver is used. However, an SFF optical transceiver may be used.
  1  多重通信システム
100A 多重通信装置
100B 多重通信装置
101  多重通信用ケーブル
110A 多重側物理層用PHY-IC
110B 多重側物理層用PHY-IC
133A MII-I/Fデータ出力部
134A 送信バッファ
133B MII-I/Fデータ出力部
134B 送信バッファ
143A MII-I/Fデータ出力部
144A 送信バッファ
143B MII-I/Fデータ出力部
144B 送信バッファ
153A MII-I/Fデータ出力部
154A 送信バッファ
153B MII-I/Fデータ出力部
154B 送信バッファ
160A 多重処理部
160B 多重処理部
1 Multiplex communication system 100A Multiplex communication device 100B Multiplex communication device 101 Multiplex communication cable 110A Multiplex side physical layer PHY-IC
110B PHY-IC for multiple physical layer
133A MII-I / F data output unit 134A Transmission buffer 133B MII-I / F data output unit 134B Transmission buffer 143A MII-I / F data output unit 144A Transmission buffer 143B MII-I / F data output unit 144B Transmission buffer 153A MII -I / F data output unit 154A Transmission buffer 153B MII-I / F data output unit 154B Transmission buffer 160A Multiplexing unit 160B Multiplexing unit

Claims (6)

  1.  複数のポートの産業用イーサネット(登録商標)の信号を1つの伝送路にのせる多重通信装置であって、
     データの論理層と物理層の内部インターフェースであるメディアインペンデントインターフェース最小単位データにデータ有無のフラグ情報をつけて、データの最小単位の送受信を行い、データの連続性を確保した状態で多重化すること、を特徴とする多重通信装置。
    A multiplex communication apparatus for placing industrial Ethernet (registered trademark) signals of a plurality of ports on one transmission line,
    Media independent interface, which is an internal interface between the logical layer and physical layer of data. The flag data presence / absence flag is attached to the minimum unit data, and the data is transmitted / received in the minimum unit, and multiplexing is performed while ensuring data continuity. A multiplex communication apparatus characterized by:
  2.  前記物理層として用いられる光トランシーバと、
     多重通信用ワイヤーハーネスとして用いられる光ファイバと、を備えたこと、を特徴とする請求項1に記載の多重通信装置。
    An optical transceiver used as the physical layer;
    The multiplex communication apparatus according to claim 1, further comprising an optical fiber used as a multiplex communication wire harness.
  3.  前記物理層として用いられるイーサネット(登録商標)用の物理層回路と、
     多重通信用ワイヤーハーネスとして用いられるLAN線と、を備えたこと、を特徴とする請求項1に記載の多重通信装置。
    A physical layer circuit for Ethernet (registered trademark) used as the physical layer;
    The multiplex communication apparatus according to claim 1, further comprising a LAN line used as a multiplex communication wire harness.
  4.  ローカル出力部と、
     バッファと、を備え、
     前記ローカル出力部は、連続的に出力するためのデータ数分を前記バッファにためた後に、前記バッファにためたデータの出力を開始すること、を特徴とする請求項1に記載の多重通信装置。
    A local output section;
    A buffer, and
    The multiplex communication apparatus according to claim 1, wherein the local output unit starts outputting data for the buffer after storing the number of data for continuous output in the buffer. .
  5.  前記複数のポートを、多重化の通信プロトコル上で、固定ビットに割り当てること、を特徴とする請求項1に記載の多重通信装置。 The multiplex communication apparatus according to claim 1, wherein the plurality of ports are assigned to fixed bits on a multiplex communication protocol.
  6.  前記多重化の処理を行うデバイスとしてFPGAを備えること、を特徴とする請求項1に記載の多重通信装置。 The multiplex communication apparatus according to claim 1, further comprising an FPGA as a device for performing the multiplexing process.
PCT/JP2014/073797 2014-09-09 2014-09-09 Multiplex communication apparatus WO2016038684A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/073797 WO2016038684A1 (en) 2014-09-09 2014-09-09 Multiplex communication apparatus
JP2016547291A JP6438964B2 (en) 2014-09-09 2014-09-09 Multiplex communication equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/073797 WO2016038684A1 (en) 2014-09-09 2014-09-09 Multiplex communication apparatus

Publications (1)

Publication Number Publication Date
WO2016038684A1 true WO2016038684A1 (en) 2016-03-17

Family

ID=55458477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073797 WO2016038684A1 (en) 2014-09-09 2014-09-09 Multiplex communication apparatus

Country Status (2)

Country Link
JP (1) JP6438964B2 (en)
WO (1) WO2016038684A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017184086A (en) * 2016-03-31 2017-10-05 富士機械製造株式会社 Multiplex communication system and work machine
WO2017179156A1 (en) * 2016-04-13 2017-10-19 富士機械製造株式会社 Substrate-related operation machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169150A (en) * 1987-01-06 1988-07-13 Fujitsu Ltd Data transmission circuit
JP2006067581A (en) * 2004-08-24 2006-03-09 Samsung Electronics Co Ltd Method of multiplexing data, field-programmable gate array, and optical network
JP2007110457A (en) * 2005-10-14 2007-04-26 Hitachi Communication Technologies Ltd Transmission apparatus
JP2012114883A (en) * 2010-11-29 2012-06-14 Furukawa Electric Co Ltd:The Distribution system monitoring controller, and monitoring control system for power distribution system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06247537A (en) * 1993-02-25 1994-09-06 Tsubakimoto Chain Co Sorting device
JP4848547B2 (en) * 2006-06-21 2011-12-28 グンゼ株式会社 Display inspection device
JP5989776B2 (en) * 2012-07-30 2016-09-07 富士機械製造株式会社 Electrical equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169150A (en) * 1987-01-06 1988-07-13 Fujitsu Ltd Data transmission circuit
JP2006067581A (en) * 2004-08-24 2006-03-09 Samsung Electronics Co Ltd Method of multiplexing data, field-programmable gate array, and optical network
JP2007110457A (en) * 2005-10-14 2007-04-26 Hitachi Communication Technologies Ltd Transmission apparatus
JP2012114883A (en) * 2010-11-29 2012-06-14 Furukawa Electric Co Ltd:The Distribution system monitoring controller, and monitoring control system for power distribution system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017184086A (en) * 2016-03-31 2017-10-05 富士機械製造株式会社 Multiplex communication system and work machine
WO2017179156A1 (en) * 2016-04-13 2017-10-19 富士機械製造株式会社 Substrate-related operation machine
JPWO2017179156A1 (en) * 2016-04-13 2019-02-21 株式会社Fuji Board work machine

Also Published As

Publication number Publication date
JP6438964B2 (en) 2018-12-19
JPWO2016038684A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
US10873536B2 (en) Distribution node, automation network, and method for transmitting real-time-relevant and non-real-time-relevant data packets
JP6093031B2 (en) Data transmission using protocol exception status
US20210075838A1 (en) Control Method, Apparatus, Computer Program, Computer-Readable Medium and Method for Communicating Data in an Industrial Network
Tsiang et al. The Cisco SRP MAC layer protocol
JP4443601B2 (en) Transceiver that automatically sets based on auto-negotiation
Knezic et al. Topology aspects in EtherCAT networks
US20140321285A1 (en) Distributed network test system
WO2017046916A1 (en) Industrial device communication system, communication method and industrial device
WO2018022291A1 (en) Mac and physical layer techniques for enabling communications on shared physical medium with multi-drop capability
US8812759B2 (en) Bus subscriber device for connection to a line-redundant data bus, and method for controlling the communication of a bus subscriber with a line-redundant serial data bus
Cummings et al. Exploring use of Ethernet for in-vehicle control applications: AFDX, TTEthernet, EtherCAT, and AVB
TWI669934B (en) Network system, communication devices, and method thereof
KR101355062B1 (en) Method and system for low-latency networking
JP2012124895A (en) Method and system for synchronizing network using existing network cables
JP6438964B2 (en) Multiplex communication equipment
JP6466732B2 (en) Multiplexing communication device
JP6659208B2 (en) Loop type protection relay system
JP4559511B2 (en) Packet transfer system and packet transfer method
JP7163256B2 (en) Optical transceiver and network system
JP2022540588A (en) Method and data network for communicating data content, especially in elevator systems
WO2017153384A1 (en) Data communication bus for a robot
Sridharan et al. Investigation of time-synchronization over ethernet in-vehicle networks for automotive applications
KR101055163B1 (en) Apparatus for ethernet switch of using various phy chip
Utter et al. SatCat5: A Low-Power, Mixed-Media Ethernet Network for Smallsats
JP4577670B2 (en) Communication apparatus and data transmission control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901797

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547291

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14901797

Country of ref document: EP

Kind code of ref document: A1