WO2016037547A1 - 一种三区域电流差动保护方法 - Google Patents

一种三区域电流差动保护方法 Download PDF

Info

Publication number
WO2016037547A1
WO2016037547A1 PCT/CN2015/089015 CN2015089015W WO2016037547A1 WO 2016037547 A1 WO2016037547 A1 WO 2016037547A1 CN 2015089015 W CN2015089015 W CN 2015089015W WO 2016037547 A1 WO2016037547 A1 WO 2016037547A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
current
double
ended
region
Prior art date
Application number
PCT/CN2015/089015
Other languages
English (en)
French (fr)
Inventor
郑玉平
路学刚
吴通华
Original Assignee
国电南瑞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国电南瑞科技股份有限公司 filed Critical 国电南瑞科技股份有限公司
Publication of WO2016037547A1 publication Critical patent/WO2016037547A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured

Definitions

  • the invention belongs to the technical field of power system current differential protection, and more particularly relates to a current differential protection method for dividing an amplitude phase plane into three regions.
  • Differential protection is one of the most widely used protections in power systems, and the reliability of its operation has a major impact on the safe and stable operation of protected components.
  • the current differential protection is required to reflect high-resistance faults in the area and does not malfunction when the CT is saturated outside the area.
  • the new protection principle has been more widely concerned and studied.
  • the full-current differential protection itself is greatly affected by the load current, reflecting the poor transition resistance, and the full current differential can be used as an independent The protection is used, so it is necessary to increase its ability to reflect the transition resistance.
  • the traditional current differential protection criterion divides the amplitude and phase plane into only two regions.
  • the setting of the ratio braking coefficient is difficult. If the coefficient is too large, the sensitivity of the protection during internal minor faults will be reduced. If it is too small, it will affect the protection of external faults. Safety, this contradiction is caused by the coincidence of the relative current distribution between the CT saturation of the out-of-zone fault and the high-impedance fault in the zone. In addition, when the fault occurs in the CT saturation transition zone outside the fault zone, the lockout time will affect the speed of the protection action.
  • the object of the present invention is to provide a three-zone current differential protection method in order to solve the problem of low sensitivity of the conventional full current differential protection.
  • the protection can still operate reliably, and the contradiction between sensitivity and safety is further solved, that is, while ensuring the CT saturation protection of the fault outside the zone is not disturbed It can reflect the large transition resistance fault and reliable operation in the zone, and it has a faster action speed for the protection of the out-of-zone fault CT saturation into the zone fault, and has better performance than the traditional current differential protection.
  • the present invention is implemented by the following technical solutions, including the following steps:
  • the relative relationship between the double-ended currents is discriminated in the area of the amplitude phase plane, and the amplitude phase plane is divided into the braking zone, the action zone and the fuzzy zone, according to the relative amplitude ratio of the double-ended current
  • the phase difference ⁇ the region in which the relative relationship of the double-ended current is determined, the double-ended current is the current across the protected component acquired by the protection device, and specifically includes the following steps:
  • the real and imaginary parts of the double-ended current fundamental wave vector are calculated by the full-wave Fourier algorithm, respectively forming the double-ended current fundamental wave vector.
  • a 1 and a 2 are the braking zone amplitude ratio determination parameters, with For the braking zone phase difference determination parameter, a 3 is the action zone amplitude ratio determination parameter, with Determining parameters for the phase difference of the action zone;
  • I d0 is the difference threshold and k is the ratio coefficient
  • the fuzzy area When the relative relationship of the double-ended current is in the fuzzy area, if the trigger meets the CT linear zone criterion of the out-of-zone fault, the fuzzy area is blocked according to the set blocking time, and the protection does not operate during the blocking time; if it is not satisfied outside the blocking time
  • the outer zone fault CT linear zone criterion protects the action.
  • a 1 is taken as 0.8 and a 2 is taken as 1, Take 170°, Take 200°, Take -70°, Take 130° and a 3 is 0.1.
  • a further feature of the above technical solution is that I d0 is taken as 0.3 times the rated current and k is taken as 0.25.
  • a further feature of the above technical solution is that the blocking time is 18 ms.
  • the beneficial effects of the present invention are as follows:
  • the present invention fully utilizes the amplitude and phase of the double-ended protection current, divides the entire amplitude and phase plane into three regions, and determines the protection action according to the relative relationship of the double-ended currents.
  • the action zone protects the direct action.
  • the CT linear zone criterion of the out-of-zone fault is used to distinguish the high-resistance fault in the zone from the CT saturation in the out-of-zone fault. If it is a high-impedance fault in the zone, the protection can be sensitive and the sensitivity is solved.
  • Figure 1 is a schematic representation of the application of the process of the invention.
  • Figure 2 is a schematic illustration of the implementation of the process of the invention.
  • Figure 3 is a schematic illustration of the division of the planar phase area of the method of the present invention.
  • Figure 4 is a logic diagram for the determination of the protection action of the method of the present invention.
  • Figure 1 is a schematic representation of the application of the process of the invention. It can be seen from Fig. 1 that the protection is installed at the M-terminal and N-terminal busbar outlets in the power system, and the current at both ends of the protected component is obtained by the protection device, that is, the double-ended current. with .
  • the basic process of the method of the present invention is to separately determine the relationship between the two-terminal current in the amplitude phase plane and the fault type, and then determine the protection action based on the discrimination results of the two.
  • it can be implemented by the three-zone differential relay 1, the out-of-zone fault CT linear zone criterion 2, and the protection logic control circuit 3 shown in FIG. That is, for each sampling point, the three-region differential relay 1 and the out-of-zone fault CT linear region criterion 2 are respectively determined according to respective equations, and then the three-zone differential relay 1 is further protected by the protection logic control circuit 3.
  • the judgment result is logically processed with the judgment result of the CT linear zone criterion 2 of the out-of-zone fault, and the processing result is taken as the final judgment result of performing or not performing the protection action.
  • the three-zone differential relay determines where the relative current relationship is in the plane of the amplitude and phase plane
  • the sampling value of the double-ended protection current is obtained, and the real and imaginary parts of the double-ended current fundamental wave vector are calculated by the full-wave Fourier algorithm to form the double-ended current fundamental wave vector respectively.
  • k is the serial number of the sampled value
  • N is the number of sampling points per cycle
  • i is the current sampling value
  • I Re is the real part of the current fundamental vector
  • I Im is the imaginary part of the current fundamental vector. Is the current fundamental vector.
  • the current at the other end is normalized to a larger amplitude current, and the relative amplitude ratio of the double-ended current is obtained.
  • phase difference ⁇ hypothesis Larger amplitude, then Then according to And ⁇ , the region to which the relative relationship of the double-ended current is discriminated.
  • the plane of the amplitude phase is divided into a braking zone, an action zone and a blur zone.
  • the unit of each angle value in the graph is degrees.
  • the three-zone differential relay determines which region the current relative relationship at each moment is in.
  • the braking area is the area that satisfies the braking zone equation, and the braking zone equation is:
  • a 1 and a 2 are the brake zone amplitude ratio determination parameters, with for the braking zone phase difference determination parameters, in practice, these four parameters are determined according to the CT steady-state error range, such as a 1 may be taken as 0.8, a 2 may be taken as 1, Can be taken as 170°, It can be taken as 200°.
  • the action area satisfies the area of the action zone equation.
  • the action zone equation is:
  • a 3 is the action area amplitude ratio determination parameter, with for the action zone phase difference determination parameters, in practice, these four parameters are determined according to the amplitude of the CT saturation than the phase difference range, such as Can be taken as -70°, It can be taken as 130°, and a 3 can be taken as 0.1.
  • the relative relationship of the double-ended current is considered to be in the blurred zone.
  • the fuzzy area it is not possible to directly determine whether the protection action is or not, but to determine whether the high-resistance fault in the area or the CT fault in the out-of-zone fault is determined by the CT linear zone criterion of the out-of-zone fault to be introduced below, and then according to the identified fault type. deal with.
  • Out-of-zone fault CT linear zone criterion distinguishes whether it is an out-of-zone fault CT saturation
  • the sum and difference of the double-ended current sampling values are obtained, and the differential current and the braking current are obtained.
  • the amplitudes I d and I r of the differential current and the braking current are calculated by a small vector algorithm with a data window length of 1/4 cycle. .
  • the small vector algorithm with a data window length of 1/4 cycle is:
  • k is the serial number of the sampled value
  • N is the number of sampling points per cycle
  • i is the current sampling value
  • I Re is the real part of the current fundamental vector
  • I Im is the imaginary part of the current fundamental vector. Is the current fundamental vector.
  • the CT linear zone criterion for out-of-zone faults is:
  • I d0 is the differential current threshold, which can refer to the value in the traditional ratio differential criterion, which can be taken as 0.3 times the rated current
  • k is the ratio coefficient, which is smaller than the value in the conventional ratio differential criterion, according to the sensitivity Need to be properly set, can be taken as 0.25.
  • the protection logic control circuit After performing the above two kinds of judgments, the protection logic control circuit is applied to the three-zone differential relay and the outside of the zone.
  • the judgment result of the fault CT linear region is logically processed to make a final judgment result of performing or not performing the protection action. That is, if the relative relationship between the double-ended currents is in the braking zone, the protection does not work. If the relative relationship between the double-ended currents is in the action zone, the protection acts directly, when the relative relationship of the double-ended currents is in the fuzzy zone, such as the triggering zone.
  • the fuzzy zone is blocked according to the set blocking time, and the protection does not operate during the lockout time; if the CT linear zone criterion of the out-of-zone fault is not satisfied outside the lockout time, the protection action is performed.
  • Figure 4 shows an embodiment of the above logic, the principle of which is that if the current distribution is in the action zone, the protection acts directly.
  • the CT For the fault outside the zone, if the CT is not saturated, even if the CT has a certain transmission error, the relative current distribution is still completely in the braking zone, and the protection does not work; if the CT is saturated, the current distribution trajectory runs from the braking zone to the fuzzy zone.
  • the fuzzy area the CT linear zone criterion of the out-of-zone fault will be satisfied.
  • the fuzzy region is blocked for a period of time t 2 , and the protection does not operate during the blocking time t 2 , and t 2 can be taken as 18 ms.
  • the current distribution trajectory enters the action zone from the braking zone through the fuzzy zone to protect the direct action; if it is a high-impedance fault in the zone, the current distribution trajectory runs from the braking zone to the fuzzy zone, and is calculated. after transient delay may enter operation region may also stuck in the twilight zone when a blocking signal is determined by the time t 1 is not satisfied due to failure caused in the CT saturation criterion ambiguity region outside the region, the protection operation. If the action zone is entered before the end of the blur zone discrimination time, the direct action is protected.
  • the discriminating time t 1 should be greater than or equal to the blocking time t 2 to avoid triggering the protection action during the blocking time because the CT linear zone criterion of the out-of-zone fault is not satisfied.

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

一种三区域电流差动保护方法,属于电力系统电流差动保护技术领域,该方法分别进行对双端电流的相对关系在幅相平面上所属区域的判别以及对故障类型的判别,然后根据这两者的判别结果再决定保护动作与否,充分利用双端电流的幅值与相位,将整个幅相平面划分为包含制动区、模糊区、动作区的三个区域,根据双端电流的相对关系处于何区域来确定保护动作与否,在模糊区时利用区外故障CT线性区判据区分区内高阻故障与区外故障CT饱和,解决了灵敏性与安全性之间的矛盾,同时对于区外故障转区内故障有较好的速动性。

Description

一种三区域电流差动保护方法 技术领域
本发明属于电力系统电流差动保护技术领域,更准确地说本发明涉及一种将幅相平面上划分为三区域的电流差动保护方法。
背景技术
差动保护是电力系统中应用最为广泛的保护之一,其动作的可靠性对于被保护元件安全稳定运行有着重大的影响。特别是近年来,随着电力系统的快速发展,要求电流差动保护能够反映区内高阻故障并且在区外故障CT饱和时不误动,新型保护原理得到了更加广泛的关注和研究。
在差动保护中,需要同时考虑区内高阻故障和区外故障CT饱和问题,使得保护在区内经过渡电阻短路时,能够具有足够的反映过渡电阻能力让保护灵敏动作,同时在区外故障CT饱和时,保护不受虚假差流的影响,能够可靠不动作。
对于区内高阻故障,可以通过零序电流差动继电器来得到很好的反映,但全电流差动保护本身受负荷电流影响较大,反映过渡电阻较差,且全电流差动可作为独立的保护使用,因此有必要提高其反映过渡电阻的能力。
传统的电流差动保护判据将幅相平面仅分为两个区域,比率制动系数的设置较为困难,系数太大会降低内部轻微故障时保护的灵敏度,太小又会影响外部故障时保护的安全性,该矛盾是由于区外故障CT饱和与区内高阻故障两种情况的相对电流分布存在重合造成的。另外,在区外故障CT饱和转区内故障时,闭锁时间将影响保护动作速度。
因此,目前针对差动保护灵敏性与安全性之间矛盾问题,尚没有很好的解决方法,多采用非线性比率制动或者优化比率系数,但非线性差动判据式较为复杂,不便于整定,而且灵敏性的提高都不明显。
发明内容
本发明的目的是:为了解决传统全电流差动保护灵敏性低的问题,给出一种一种三区域电流差动保护方法。该方法在区内发生高于一定数值的高阻故障时,保护仍能可靠动作,同时进一步解决了灵敏性与安全性之间的矛盾,即在保证区外故障CT饱和保护不误动的同时,能反映区内经较大的过渡电阻故障并可靠动作,而且对于区外故障CT饱和转为区内故障时保护具有较快的动作速度,较传统电流差动保护具有更好的动作性能。
具体地说,本发明是采用以下技术方案实现的,包括以下步骤:
1)对双端电流的相对关系在幅相平面上所属区域进行判别,将幅相平面分为制动区、动作区和模糊区,根据双端电流相对幅值比
Figure PCTCN2015089015-appb-000001
与相位差θ,判别双端电流的相对关系的所属区域,所述双端电流为保护装置所获取的被保护元件两端的电流,具体包括以下步骤:
1-1)根据双端电流的采样值,用全波傅氏算法计算得到双端电流基波矢量的实部与虚部,分别组成双端电流基波矢量
Figure PCTCN2015089015-appb-000002
Figure PCTCN2015089015-appb-000003
1-2)以双端电流中幅值较大者为基准,将另一端电流归一到幅值较大的电流上,得到双端电流相对幅值比
Figure PCTCN2015089015-appb-000004
与相位差θ,假设
Figure PCTCN2015089015-appb-000005
幅值较大,则
Figure PCTCN2015089015-appb-000006
Figure PCTCN2015089015-appb-000007
1-3)若双端电流相对幅值比
Figure PCTCN2015089015-appb-000008
与相位差θ满足制动区方程,则认为双端电流的相对关系处于制动区;
若双端电流相对幅值比
Figure PCTCN2015089015-appb-000009
与相位差θ满足动作区方程,则认为双端电流的相对关系处于动作区;
若双端电流相对幅值比
Figure PCTCN2015089015-appb-000010
与相位差θ既不满足动作区方程,也不满足制动区方程,则认为双端电流的相对关系处于模糊区;
制动区方程如公式(1)所示:
Figure PCTCN2015089015-appb-000011
动作区方程如公式(2)所示:
Figure PCTCN2015089015-appb-000012
Figure PCTCN2015089015-appb-000013
上述公式中,a1和a2为制动区幅值比判定参数,
Figure PCTCN2015089015-appb-000014
Figure PCTCN2015089015-appb-000015
为制动区相位差判定参数,a3为动作区幅值比判定参数,
Figure PCTCN2015089015-appb-000016
Figure PCTCN2015089015-appb-000017
为动作区相位差判定参数;
2)根据差动电流与制动电流的幅值Id与Ir,判断是否满足区外故障CT线性区判据,具体包括以下步骤:
2-1)对双端电流采样值求和与差,得到差动电流与制动电流,利用数据窗长为1/4周波的小矢量算法计算得到差动电流与制动电流的幅值Id与Ir,其中
Figure PCTCN2015089015-appb-000018
Figure PCTCN2015089015-appb-000019
Figure PCTCN2015089015-appb-000020
为由1/4周波的小矢量算法计算得到双端电流;
2-2)若Id与Ir满足公式(3),则认为满足区外故障CT线性区判据;
Id<Id0或Id<kIr  (3)
上述公式中,Id0为差流门槛,k为比率系数;
3)根据对双端电流的相对关系在幅相平面上所属区域的判别结果以及区外故障CT线性区判据的满足与否,决定保护动作与否:
当双端电流的相对关系处于制动区时,则保护不动作;
当双端电流的相对关系处于动作区时,则保护直接动作;
当双端电流的相对关系处于模糊区时,如触发满足区外故障CT线性区判据,则按设定的闭锁时间闭锁模糊区,在闭锁时间内保护不动作;若在闭锁时间外不满足区外故障CT线性区判据,则保护动作。
上述技术方案的进一步特征在于:a1取为0.8,a2取为1,
Figure PCTCN2015089015-appb-000021
取为170°,
Figure PCTCN2015089015-appb-000022
取为200°,
Figure PCTCN2015089015-appb-000023
取为-70°,
Figure PCTCN2015089015-appb-000024
取为130°,a3取为0.1。
上述技术方案的进一步特征在于:Id0取为0.3倍额定电流,k取为0.25。
上述技术方案的进一步特征在于:所述闭锁时间为18ms。
本发明的有益效果如下:本发明充分利用双端保护电流的幅值与相位,将整个幅相平面划分为三个区域,根据双端电流的相对关系处于何区域来确定保护动作与否,在动作区保护直接动作,在模糊区时利用区外故障CT线性区判据区分区内高阻故障与区外故障CT饱和,若为区内高阻故障,保护可灵敏动作,解决了灵敏性与安全性之间的矛盾,同时对于区外故障转区内故障有较好的速动性。
附图说明
图1是本发明方法的应用示意图。
图2是本发明方法的实施示意图。
图3是本发明方法的幅相平面区域划分示意图。
图4是本发明方法的保护动作判断的逻辑示意图。
具体实施方式
下面参照附图并结合实例对本发明作进一步详细描述。
图1是本发明方法的应用示意图。由图1可知,保护安装在电力系统中M端和N端母线出口处,由保护装置获取被保护元件两端的电流即双端电流
Figure PCTCN2015089015-appb-000025
Figure PCTCN2015089015-appb-000026
本发明方法的基本过程为,分别进行对双端电流的相对关系在幅相平面上所属区域的判别以及对故障类型的判别,然后根据这两者的判别结果再决定保护动作与否。为实现本发明方法,可通过图2所示的三区域差动继电器1、区外故障CT线性区判据2和保护逻辑控制电路3加以实施。即针对每个采样点,先由三区域差动继电器1和区外故障CT线性区判据2分别根据各自的方程作出判断结果,然后再由保护逻辑控制电路3将三区域差动继电器1的判断结果与区外故障CT线性区判据2的判断结果进行逻辑处理,将处理结果作为作出执行或不执行保护动作的最终判断结果。
下面对三区域差动继电器1、区外故障CT线性区判据2及保护逻辑控制电路3的工作原理作详细介绍。
(1)三区域差动继电器判断相对电流关系处于幅相平面的何区域
首先获得双端保护电流的采样值,用全波傅氏算法计算得到双端电流基波矢量的实部与虚部,分别组成双端电流基波矢量
Figure PCTCN2015089015-appb-000027
Figure PCTCN2015089015-appb-000028
全波傅氏算法计算式为:
Figure PCTCN2015089015-appb-000029
Figure PCTCN2015089015-appb-000030
Figure PCTCN2015089015-appb-000031
式中,k为采样值序列号,N为每周期采样点数,i为电流采样值,IRe为电流基波矢量实部,IIm为电流基波矢量虚部,
Figure PCTCN2015089015-appb-000032
为电流基波矢量。
以双端电流中幅值较大者为基准,将另一端电流归一到幅值较大的电流上,得到双端电流相对幅值比
Figure PCTCN2015089015-appb-000033
与相位差θ,假设
Figure PCTCN2015089015-appb-000034
幅值较大,则
Figure PCTCN2015089015-appb-000035
然后根据
Figure PCTCN2015089015-appb-000036
与θ,判别双端电流的相对关系的所属区域。
如图3所示,图中将幅相平面划分为制动区、动作区和模糊区。图中每个角度值的单位为度。通过三区域差动继电器判断每个时刻的电流相对关系处于哪个区域。
其中,制动区域为满足制动区方程的区域,制动区方程为:
Figure PCTCN2015089015-appb-000037
a1和a2为制动区幅值比判定参数,
Figure PCTCN2015089015-appb-000038
Figure PCTCN2015089015-appb-000039
为制动区相位差判定参数,实践中,这四个参数根据CT稳态误差范围确定,如a1可取为0.8,a2可取为1,
Figure PCTCN2015089015-appb-000040
可取为 170°,
Figure PCTCN2015089015-appb-000041
可取为200°。
因此,算得的幅值比与相位差在此区域内时,认为双端电流的相对关系处于制动区。
动作区域满足动作区方程的区域,动作区方程为:
Figure PCTCN2015089015-appb-000042
Figure PCTCN2015089015-appb-000043
a3为动作区幅值比判定参数,
Figure PCTCN2015089015-appb-000044
Figure PCTCN2015089015-appb-000045
为动作区相位差判定参数,实践中,这四个参数根据CT饱和的幅值比相位差范围确定,如
Figure PCTCN2015089015-appb-000046
可取为-70°,
Figure PCTCN2015089015-appb-000047
可取为130°,a3可取为0.1。
因此,算得的幅值比与相位差在此区域内时,认为双端电流的相对关系处于动作区。
如算得的幅值比与相位差既不在制动区也不在动作区时,则认为双端电流的相对关系处于模糊区。对于模糊区,不能直接判定保护动作与否,而要通过下面将要介绍的区外故障CT线性区判据判别是区内高阻故障还是区外故障CT饱和,然后再根据判别的故障类型进行相应处理。
(2)区外故障CT线性区判据区分是否属于区外故障CT饱和
对双端电流采样值求和与差,得到差动电流与制动电流,利用数据窗长为1/4周波的小矢量算法计算得到差动电流与制动电流的幅值Id与Ir
Figure PCTCN2015089015-appb-000048
Figure PCTCN2015089015-appb-000049
数据窗长为1/4周波的小矢量算法计算式为:
Figure PCTCN2015089015-appb-000050
Figure PCTCN2015089015-appb-000051
则计算结果为:
Figure PCTCN2015089015-appb-000052
Figure PCTCN2015089015-appb-000053
式中,k为采样值序列号,N为每周期采样点数,i为电流采样值,IRe为电流基波矢量实部,IIm为电流基波矢量虚部,
Figure PCTCN2015089015-appb-000054
为电流基波矢量。
比较Id与Ir的大小关系,看是否满足区外故障CT线性区判据式。区外故障CT线性区判据式为:
Id<Id0或Id<kIr
其中Id0为差流门槛,可参考传统比率差动判据中的值,可取为0.3倍额定电流;k为比率系数,该系数比传统比率差动判据中的值要小,可根据灵敏度的需要适当设定,可取为0.25。
当满足此判据式时,判定为区外故障CT饱和。由于系统正常运行时该判据一直满足,若之后不再满足此判据,则为区内故障。该判别只对模糊区起作用。
(3)保护逻辑控制电路决定保护动作与否
在进行了上述两种判断后,保护逻辑控制电路对三区域差动继电器和区外 故障CT线性区的判断结果进行逻辑处理,作出执行或不执行保护动作的最终判断结果。即若双端电流的相对关系处于制动区,则保护不动作,若双端电流的相对关系处于动作区,则保护直接动作,当双端电流的相对关系处于模糊区时,如触发满足区外故障CT线性区判据时,则按设定的闭锁时间闭锁模糊区,在闭锁时间内保护不动作;若在闭锁时间外不满足区外故障CT线性区判据,则保护动作。
图4给出了上述逻辑的一个实施例,其原理是:若电流分布处于动作区,保护直接动作。对于区外故障,若CT未饱和,即使CT存在一定传变误差,相对电流分布仍完全处于制动区,保护不动作;若CT发生饱和,电流分布轨迹从制动区运行到模糊区后一直处于模糊区,区外故障CT线性区判据判别将得到满足。此时闭锁模糊区一段时间t2,在闭锁时间t2内保护不动作,t2可取为18ms。
对于区内故障,若非高阻故障,电流分布轨迹从制动区穿越模糊区进入动作区,保护直接动作;若为区内高阻故障,电流分布轨迹从制动区运行到模糊区,经计算的暂态延时后可能进入动作区也有可能一直停留在模糊区,若在模糊区经判别时间t1后没有因满足区外故障CT饱和判据引起的闭锁信号,保护动作。若在模糊区判别时间结束之前进入动作区,则保护直接动作。判别时间t1应大于等于闭锁时间t2,以避免在闭锁时间内因不满足区外故障CT线性区判据而触动保护动作。
虽然本发明已以较佳实施例公开如上,但实施例并不是用来限定本发明的。在不脱离本发明之精神和范围内,所做的任何等效变化或润饰,同样属于本发明之保护范围。因此本发明的保护范围应当以本申请的权利要求所界定的内容为标准。

Claims (4)

  1. 一种三区域电流差动保护方法,其特征在于,包括以下步骤:
    1)对双端电流的相对关系在幅相平面上所属区域进行判别,将幅相平面分为制动区、动作区和模糊区,根据双端电流相对幅值比
    Figure PCTCN2015089015-appb-100001
    与相位差θ,判别双端电流的相对关系的所属区域,所述双端电流为保护装置所获取的被保护元件两端的电流,具体包括以下步骤:
    1-1)根据双端电流的采样值,用全波傅氏算法计算得到双端电流基波矢量的实部与虚部,分别组成双端电流基波矢量
    Figure PCTCN2015089015-appb-100002
    Figure PCTCN2015089015-appb-100003
    1-2)以双端电流中幅值较大者为基准,将另一端电流归一到幅值较大的电流上,得到双端电流相对幅值比
    Figure PCTCN2015089015-appb-100004
    与相位差θ,假设
    Figure PCTCN2015089015-appb-100005
    幅值较大,则
    Figure PCTCN2015089015-appb-100006
    Figure PCTCN2015089015-appb-100007
    1-3)若双端电流相对幅值比
    Figure PCTCN2015089015-appb-100008
    与相位差θ满足制动区方程,则认为双端电流的相对关系处于制动区;
    若双端电流相对幅值比
    Figure PCTCN2015089015-appb-100009
    与相位差θ满足动作区方程,则认为双端电流的相对关系处于动作区;
    若双端电流相对幅值比
    Figure PCTCN2015089015-appb-100010
    与相位差θ既不满足动作区方程,也不满足制动区方程,则认为双端电流的相对关系处于模糊区;
    制动区方程如公式(1)所示:
    Figure PCTCN2015089015-appb-100011
    动作区方程如公式(2)所示:
    Figure PCTCN2015089015-appb-100012
    Figure PCTCN2015089015-appb-100013
    上述公式中,a1和a2为制动区幅值比判定参数,
    Figure PCTCN2015089015-appb-100014
    Figure PCTCN2015089015-appb-100015
    为制动区相位差判定参数,a3为动作区幅值比判定参数,
    Figure PCTCN2015089015-appb-100016
    Figure PCTCN2015089015-appb-100017
    为动作区相位差判定参数;
    2)根据差动电流与制动电流的幅值Id与Ir,判断是否满足区外故障CT线 性区判据,具体包括以下步骤:
    2-1)对双端电流采样值求和与差,得到差动电流与制动电流,利用数据窗长为1/4周波的小矢量算法计算得到差动电流与制动电流的幅值Id与Ir,其中
    Figure PCTCN2015089015-appb-100018
    为由1/4周波的小矢量算法计算得到双端电流;
    2-2)若Id与Ir满足公式(3),则认为满足区外故障CT线性区判据;
    Id<Id0或Id<kIr   (3)
    上述公式中,Id0为差流门槛,k为比率系数;
    3)根据对双端电流的相对关系在幅相平面上所属区域的判别结果以及区外故障CT线性区判据的满足与否,决定保护动作与否:
    当双端电流的相对关系处于制动区时,则保护不动作;
    当双端电流的相对关系处于动作区时,则保护直接动作;
    当双端电流的相对关系处于模糊区时,如触发满足区外故障CT线性区判据,则按设定的闭锁时间闭锁模糊区,在闭锁时间内保护不动作;若在闭锁时间外不满足区外故障CT线性区判据,则保护动作。
  2. 根据权利要求1所述的三区域电流差动保护方法,其特征在于,a1取为0.8,a2取为1,
    Figure PCTCN2015089015-appb-100019
    取为170°,
    Figure PCTCN2015089015-appb-100020
    取为200°,
    Figure PCTCN2015089015-appb-100021
    取为-70°,
    Figure PCTCN2015089015-appb-100022
    取为130°,a3取为0.1。
  3. 根据权利要求1所述的三区域电流差动保护方法,其特征在于,Id0取为0.3倍额定电流,k取为0.25。
  4. 根据权利要求1所述的三区域电流差动保护方法,其特征在于,所述闭锁时间为18ms。
PCT/CN2015/089015 2014-09-11 2015-09-07 一种三区域电流差动保护方法 WO2016037547A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410462694.0A CN104242268B (zh) 2014-09-11 2014-09-11 一种三区域电流差动保护方法
CN201410462694.0 2014-09-11

Publications (1)

Publication Number Publication Date
WO2016037547A1 true WO2016037547A1 (zh) 2016-03-17

Family

ID=52229860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089015 WO2016037547A1 (zh) 2014-09-11 2015-09-07 一种三区域电流差动保护方法

Country Status (2)

Country Link
CN (1) CN104242268B (zh)
WO (1) WO2016037547A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106771770A (zh) * 2017-01-09 2017-05-31 三峡大学 一种用于广域保护试验的动模试验系统
CN108627737A (zh) * 2017-03-15 2018-10-09 中国南方电网有限责任公司电网技术研究中心 一种行波测距闭锁时间的测试系统及测试方法
CN112510659A (zh) * 2020-11-23 2021-03-16 国网浙江省电力有限公司经济技术研究院 一种基于功率差动保护的城市配电网保护方法及相关装置
CN116093895A (zh) * 2023-03-07 2023-05-09 国电南京自动化股份有限公司 基于多间隔信息融合的母线保护ct断线再开放方法及系统
CN117169640A (zh) * 2023-11-02 2023-12-05 云南电力试验研究院(集团)有限公司 多分布式新能源接入馈线下复式比率差动校验方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104242268B (zh) * 2014-09-11 2017-06-16 国电南瑞科技股份有限公司 一种三区域电流差动保护方法
CN105071341B (zh) * 2015-07-28 2018-09-14 中国电力科学研究院 一种电流互感器饱和识别方法
CN105353271B (zh) * 2015-11-03 2017-12-12 云南电网有限责任公司电力科学研究院 一种电流差动保护饱和判别方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090009181A1 (en) * 2007-07-06 2009-01-08 Areva T&D Uk Limited Current Differential Protection Relays
CN102324722A (zh) * 2011-09-08 2012-01-18 山东大学 基于故障分量电流幅值与相位差的电流差动保护方法
CN102593801A (zh) * 2011-12-30 2012-07-18 天津大学 基于标积制动判据归一化的分相差动保护方法
CN104242268A (zh) * 2014-09-11 2014-12-24 国电南瑞科技股份有限公司 一种三区域电流差动保护方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090009181A1 (en) * 2007-07-06 2009-01-08 Areva T&D Uk Limited Current Differential Protection Relays
CN102324722A (zh) * 2011-09-08 2012-01-18 山东大学 基于故障分量电流幅值与相位差的电流差动保护方法
CN102593801A (zh) * 2011-12-30 2012-07-18 天津大学 基于标积制动判据归一化的分相差动保护方法
CN104242268A (zh) * 2014-09-11 2014-12-24 国电南瑞科技股份有限公司 一种三区域电流差动保护方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DU, JIAO ET AL.: "Differential-protection Algorithm With Double Criterions of Amplitude and Phase Angle for Transformer", PROCEEDINGS OF THE CSEE, vol. 30, no. 16, 5 June 2010 (2010-06-05), pages 80 *
LI, BIN ET AL.: "Phase Correlation Current Differential Protection Based on Fault Component", AUTOMATION OF ELECTRIC POWER SYSTEMS, vol. 35, no. 2, 10 February 2011 (2011-02-10) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106771770A (zh) * 2017-01-09 2017-05-31 三峡大学 一种用于广域保护试验的动模试验系统
CN106771770B (zh) * 2017-01-09 2023-07-11 三峡大学 一种用于广域保护试验的动模试验系统
CN108627737A (zh) * 2017-03-15 2018-10-09 中国南方电网有限责任公司电网技术研究中心 一种行波测距闭锁时间的测试系统及测试方法
CN108627737B (zh) * 2017-03-15 2023-09-15 南方电网科学研究院有限责任公司 一种行波测距闭锁时间的测试系统及测试方法
CN112510659A (zh) * 2020-11-23 2021-03-16 国网浙江省电力有限公司经济技术研究院 一种基于功率差动保护的城市配电网保护方法及相关装置
CN116093895A (zh) * 2023-03-07 2023-05-09 国电南京自动化股份有限公司 基于多间隔信息融合的母线保护ct断线再开放方法及系统
CN116093895B (zh) * 2023-03-07 2023-08-29 国电南京自动化股份有限公司 基于多间隔信息融合的母线保护ct断线再开放方法及系统
CN117169640A (zh) * 2023-11-02 2023-12-05 云南电力试验研究院(集团)有限公司 多分布式新能源接入馈线下复式比率差动校验方法及装置
CN117169640B (zh) * 2023-11-02 2024-02-20 云南电力试验研究院(集团)有限公司 多分布式新能源接入馈线下复式比率差动校验方法及装置

Also Published As

Publication number Publication date
CN104242268A (zh) 2014-12-24
CN104242268B (zh) 2017-06-16

Similar Documents

Publication Publication Date Title
WO2016037547A1 (zh) 一种三区域电流差动保护方法
Mohanty et al. A cumulative sum-based fault detector for power system relaying application
Khodaparast et al. Three-phase fault detection during power swing by transient monitor
CA2359500C (en) Fault type selection system for identifying faults in an electric power system
EP3425767B1 (en) Method, apparatus and computer readable storage medium for electrical islanding detection
Alencar et al. A method to identify inrush currents in power transformers protection based on the differential current gradient
KR102460706B1 (ko) 고장전류 방향판별 장치 및 그 방법
US10677834B2 (en) Distance protection of electric power delivery systems using time domain and frequency domain
CN109066620A (zh) 一种基于单端暂态量的高压直流输电线路保护装置
WO2016176682A1 (en) Detecting cyber-attacks and sensor failures in digital substations
CN109286202B (zh) 大规模逆变型电源并网联络线电流差动保护方法、装置和系统
WO2021047568A1 (zh) 一种通过拖尾电流辨识自动调整失灵保护延时的方法
CN106154025B (zh) 一种合并单元剔除单点异常数据的方法
WO2016082593A1 (zh) 一种克服汲出电流对母线差动保护影响的方法
JP2004080839A (ja) 地絡方向継電器および地絡方向継電装置
CN104485646A (zh) 一种用于快速相量保护的采样值异常闭锁方法及快速相量保护装置
CN106207995B (zh) 一种差动保护方法、装置及其ct饱和识别方法、装置
CN111736107B (zh) 一种基于序电流比相的ct断线检测方法、系统及介质
US20100254056A1 (en) Efficient method for calculating the dot product in fault detection algorithms
CN104410053B (zh) 一种直流输电系统行波保护方法
CN106026040A (zh) 一种防止采样异常大数的母线差动保护方法
CN102916402B (zh) 一种适用于高压电动机过流保护的判据
CN104934930B (zh) 一种振荡中不对称故障差动保护加速方法
JP5431080B2 (ja) 電流差動保護継電装置
CN106410764A (zh) 一种正序极化电压的计算方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15839317

Country of ref document: EP

Kind code of ref document: A1