WO2016082593A1 - 一种克服汲出电流对母线差动保护影响的方法 - Google Patents

一种克服汲出电流对母线差动保护影响的方法 Download PDF

Info

Publication number
WO2016082593A1
WO2016082593A1 PCT/CN2015/087922 CN2015087922W WO2016082593A1 WO 2016082593 A1 WO2016082593 A1 WO 2016082593A1 CN 2015087922 W CN2015087922 W CN 2015087922W WO 2016082593 A1 WO2016082593 A1 WO 2016082593A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
bus
difference component
braking
differential
Prior art date
Application number
PCT/CN2015/087922
Other languages
English (en)
French (fr)
Inventor
杜丁香
柳焕章
周泽昕
王兴国
Original Assignee
国家电网公司
中国电力科学研究院
华中电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 中国电力科学研究院, 华中电网有限公司 filed Critical 国家电网公司
Priority to US15/520,850 priority Critical patent/US20170317489A1/en
Publication of WO2016082593A1 publication Critical patent/WO2016082593A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/28Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured for meshed systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/22Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections

Definitions

  • the invention belongs to the technical field of power system relay protection, and particularly relates to a method for overcoming the influence of the current drawn on the bus differential protection.
  • Busbar protection usually uses the principle of differential protection. Differential protection is widely used because of its simple principle and its influence from oscillation. However, in practical applications, the fault current in the area of the bus differential protection has become a major factor affecting its safety and reliability.
  • the invention proposes a countermeasure for the busbar differential protection to overcome the influence of the current drawn.
  • the large difference protection is used to determine whether a fault has occurred within its protection range, and the small difference component is used to select the fault bus and to cut it off.
  • the double busbars are operated in series and the two busbars are electrically connected through the surrounding power network, when one of the busbars fails and the other power bus has a power supply.
  • the fault current supplied by the power supply to the fault point must flow out of the non-faulted bus through a branch connected to the non-faulted bus, and flow to the fault point through the branch connected to the faulty bus, as illustrated in FIG. That is, the current is drawn.
  • the present invention provides a method for overcoming the influence of the current drawn on the differential protection of the busbar.
  • the double busbar wiring mode it is not necessary to reduce the braking coefficient during the split operation, and the situation may be Appropriately improve the sensitivity of the bus differential protection in the area of the fault, while ensuring the reliability of the fault outside the zone.
  • the present invention provides a method for overcoming the effect of a current drawn on a bus differential protection, the method comprising Next steps:
  • Step 1 Collecting and processing the branch current signal
  • Step 2 Select the fault bus and determine the maximum branch current in the connected branch of the fault bus
  • Step 3 Calculate the differential current and braking current of the disparity component and determine whether the disparity component is operating.
  • the step 1 includes the following steps:
  • Step 1-2 Fourier transforming i j (k) to obtain the current phasor of the jth branch
  • the real part X j and the imaginary part Y j have:
  • N is the number of sampling points of the fundamental wave in one cycle
  • the step 2 includes the following steps:
  • Step 2-1 Calculate the differential current and braking current of the small difference component
  • the differential current and braking current of the small difference component are represented by I cd small and I zd small , respectively:
  • n is the number of all branches connected to the single-segment bus
  • Step 2-2 If the differential current and the braking current of the difference component corresponding to a bus bar satisfy I cd small > k res1 I zd is small , it is determined that the bus bar is a fault bus; wherein k res1 is a ratio of the difference component Braking coefficient, usually taken as 0.6;
  • Step 2-3 Select the branch current with the largest amplitude in the connected branch of the determined fault bus.
  • the step 3 includes the following steps:
  • Step 3-1 Calculate the differential current of the difference component, which has:
  • I cd is the differential current of the large difference component
  • Step 3-2 Calculate the braking current of the difference component, which has:
  • I zd is the braking current of the disparity component; a differential current phasor for a large difference component, and
  • Step 3-3 Determine whether the difference component is active. If the ratio braking criterion I cd >k res I zd is satisfied, it satisfies:
  • k res is the ratio difference braking coefficient of the large difference component, which is 0.8.
  • FIG. 1 is a schematic diagram of a current flowing out of a fault in a double busbar wiring area in the prior art
  • FIG. 2 is a flow chart of a method for overcoming the influence of the current drawn on the differential protection of the busbar in the embodiment of the present invention.
  • the present invention provides a method for overcoming the influence of the current drawn on the differential protection of the busbar.
  • the mother differential can be adaptively improved for the case of the output current. It protects the sensitivity of faults in the area while ensuring the reliability of faults outside the zone.
  • the method for overcoming the influence of the current drawn on the differential protection of the bus includes the following steps:
  • Step 1 Collecting and processing the branch current signal
  • Step 2 Select the fault bus and determine the maximum branch current in the connected branch of the fault bus
  • Step 3 Calculate the differential current and braking current of the disparity component and determine whether the disparity component is operating.
  • the step 1 includes the following steps:
  • Step 1-2 Fourier transforming i j (k) to obtain the current phasor of the jth branch
  • the real part X j and the imaginary part Y j have:
  • N is the number of sampling points of the fundamental wave in one cycle
  • the step 2 includes the following steps:
  • Step 2-1 Calculate the differential current and braking current of the small difference component
  • the differential current and braking current of the small difference component are represented by I cd small and I zd small , respectively:
  • n is the number of all branches connected to the single-segment bus
  • Step 2-2 If the differential current and the braking current of the difference component corresponding to a bus bar satisfy I cd small > k res1 I zd is small , it is determined that the bus bar is a fault bus; wherein k res1 is a ratio of the difference component Braking coefficient, usually taken as 0.6;
  • Step 2-3 Select the branch current with the largest amplitude in the connected branch of the determined fault bus.
  • the step 3 includes the following steps:
  • Step 3-1 Calculate the differential current of the difference component, which has:
  • I cd is the differential current of the large difference component
  • Step 3-2 Calculate the braking current of the difference component, which has:
  • I zd is the braking current of the disparity component; a differential current phasor for a large difference component, and
  • Step 3-3 Determine whether the difference component is active. If the ratio braking criterion I cd >k res I zd is satisfied, it satisfies:
  • k res is the ratio difference braking coefficient of the large difference component, which is 0.8.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

一种克服汲出电流对母线差动保护影响的方法,包括以下步骤:支路电流信号采集与处理;选取故障母线,并确定故障母线相连支路中幅值最大支路电流;计算大差元件的差动电流和制动电流,并判断大差元件是否动作。该方法对于双母线接线方式无需在分列运行时降低制动系数,对于有汲出电流的情况可自适应地提高母差保护在区内故障时的灵敏度,同时保证区外故障时的可靠性。

Description

一种克服汲出电流对母线差动保护影响的方法 技术领域
本发明属于电力系统继电保护技术领域,具体涉及一种克服汲出电流对母线差动保护影响的方法。
背景技术
母线保护通常采用差动保护原理。差动保护由于其原理简单,不受振荡影响诸多优势得到了最广泛的应用。但是,在实际应用中母线差动保护的区内故障汲出电流问题,成为影响其安全性和可靠性的主要因素。本发明提出了母线差动保护克服汲出电流的影响的对策。
对于双母线接线型式的母线保护,通常配置有大差和小差元件。大差保护用来判别是否在其保护范围内发生故障,而小差元件用来选择故障母线,并进行切除。双母线分列运行且两条母线通过周边电力网络形成电气连接时,当其中一条母线故障且另一条健全母线上存在供电电源。此供电电源向故障点提供的故障电流必然通过某一与非故障母线相连接的支路流出非故障母线,并通过与故障母线相连接的支路流向故障点,如说明附图1的
Figure PCTCN2015087922-appb-000001
即为汲出电流。对于常规比率差动算法,这个电流对大差的差动电流没有影响,却增大了制动电流,从而导致大差比率制动判据的灵敏度下降,在严重的情况下可导致由于大差保护拒动引起的整套母差保护拒动。因此,有的厂家的处理方式为在这种情况下,内部降低大差比率制动系数。对于双母双分段接线型式也存在类似的问题。
发明内容
为了克服上述现有技术的不足,本发明提供一种克服汲出电流对母线差动保护影响的方法,对于双母线接线方式无需在分列运行时降低制动系数,对于有汲出电流的情况可自适应地提高母差保护在区内故障时的灵敏度,同时保证区外故障时的可靠性。
为了实现上述发明目的,本发明采取如下技术方案:
本发明提供一种克服汲出电流对母线差动保护影响的方法,所述方法包括以 下步骤:
步骤1:支路电流信号采集与处理;
步骤2:选取故障母线,并确定故障母线相连支路中幅值最大支路电流;
步骤3:计算大差元件的差动电流和制动电流,并判断大差元件是否动作。
所述步骤1包括以下步骤:
步骤1-1:采集与母线连接的所有支路的电流采样值,并进行低通滤波,得到第j条支路第k次电流采样值ij(k),其中j=1,2,...,n,n为与母线连接的支路总数;
步骤1-2:对ij(k)进行傅里叶变换得到第j条支路的电流相量
Figure PCTCN2015087922-appb-000002
的实部Xj和虚部Yj,有:
Figure PCTCN2015087922-appb-000003
Figure PCTCN2015087922-appb-000004
其中,N为基波在一个周期内的采样点数;
再通过实步Xj和虚部Yj得到
Figure PCTCN2015087922-appb-000005
的幅值IjM和相角θj,有:
Figure PCTCN2015087922-appb-000006
Figure PCTCN2015087922-appb-000007
所述步骤2包括以下步骤:
步骤2-1:计算小差元件的差动电流和制动电流;
小差元件的差动电流和制动电流分别用Icd小和Izd小表示,有:
Figure PCTCN2015087922-appb-000008
Figure PCTCN2015087922-appb-000009
其中,m为与单段母线相连接的所有支路数;
步骤2-2:若某母线所对应的小差元件的差动电流和制动电流满足Icd小>kres1Izd小,则确定此母线为故障母线;其中kres1为小差元件的比率制动系数,通常取为0.6;
步骤2-3:选取确定的故障母线所连接支路中的幅值最大的支路电流
Figure PCTCN2015087922-appb-000010
所述步骤3包括以下步骤:
步骤3-1:计算大差元件差动电流,有:
Figure PCTCN2015087922-appb-000011
其中,Icd为大差元件差动电流;
步骤3-2:计算大差元件的制动电流,有:
Figure PCTCN2015087922-appb-000012
其中,Izd为大差元件的制动电流;
Figure PCTCN2015087922-appb-000013
为大差元件差动电流相量,且
Figure PCTCN2015087922-appb-000014
步骤3-3:判断大差元件是否动作,若满足比率制动判据Icd>kresIzd,即满足:
Figure PCTCN2015087922-appb-000015
则表明大差元件动作,否则表明大差元件不动作,其中kres为大差元件比率制动系数,取0.8。
与现有技术相比,本发明的有益效果在于:
1.在制动量的计算过程中,消除了汲出电流的影响。且由于
Figure PCTCN2015087922-appb-000016
Figure PCTCN2015087922-appb-000017
相位接近,其相量差的幅值远小于现有典型制动量,在差动量不变的情况下大幅提高了现有母线保护区内故障有汲出电流流出时大差元件的灵敏度;
2.正常情况或区外故障时,
Figure PCTCN2015087922-appb-000018
为不平衡电流
Figure PCTCN2015087922-appb-000019
本发明所提出的判据演化为
Figure PCTCN2015087922-appb-000020
与常规判据
Figure PCTCN2015087922-appb-000021
相比,应用新型算法制动量相对 于常规算法有所减小,但是由于
Figure PCTCN2015087922-appb-000022
为区外故障时的不平衡电流,在CT未饱和的情况下,
Figure PCTCN2015087922-appb-000023
的值非常小,母线差动保护仍能保证可靠不误动作;
3.通过与典型的母线电流差动判据
Figure PCTCN2015087922-appb-000024
比较可得,区内故障时,现有典型判据和本发明提出的判据动作量
Figure PCTCN2015087922-appb-000025
相同,本发明提出的判据制动量
Figure PCTCN2015087922-appb-000026
不受母线汲出电流的影响,且小于现有判据的制动量
Figure PCTCN2015087922-appb-000027
因此,本发明提出的判据灵敏度高于现有判据;区外故障时,本发明提出的判据与现有判据具有基本相同的可靠性。
附图说明
图1是现有技术中双母线接线区内故障存在汲出电流示意图;
图2是本发明实施例中克服汲出电流对母线差动保护影响的方法流程图。
具体实施方式
下面结合附图对本发明作进一步详细说明。
如图2,本发明提供一种克服汲出电流对母线差动保护影响的方法,对于双母线接线方式无需在分列运行时降低制动系数,对于有汲出电流的情况可自适应地提高母差保护在区内故障时的灵敏度,同时保证区外故障时的可靠性。
克服汲出电流对母线差动保护影响的方法包括以下步骤:
步骤1:支路电流信号采集与处理;
步骤2:选取故障母线,并确定故障母线相连支路中幅值最大支路电流;
步骤3:计算大差元件的差动电流和制动电流,并判断大差元件是否动作。
所述步骤1包括以下步骤:
步骤1-1:采集与母线连接的所有支路的电流采样值,并进行低通滤波,得到第j条支路第k次电流采样值ij(k),其中j=1,2,...,n,n为与母线连接的支路总数;
步骤1-2:对ij(k)进行傅里叶变换得到第j条支路的电流相量
Figure PCTCN2015087922-appb-000028
的实部Xj和虚部Yj,有:
Figure PCTCN2015087922-appb-000029
Figure PCTCN2015087922-appb-000030
其中,N为基波在一个周期内的采样点数;
再通过实步Xj和虚部Yj得到
Figure PCTCN2015087922-appb-000031
的幅值IjM和相角θj,有:
Figure PCTCN2015087922-appb-000032
Figure PCTCN2015087922-appb-000033
所述步骤2包括以下步骤:
步骤2-1:计算小差元件的差动电流和制动电流;
小差元件的差动电流和制动电流分别用Icd小和Izd小表示,有:
Figure PCTCN2015087922-appb-000034
Figure PCTCN2015087922-appb-000035
其中,m为与单段母线相连接的所有支路数;
步骤2-2:若某母线所对应的小差元件的差动电流和制动电流满足Icd小>kres1Izd小,则确定此母线为故障母线;其中kres1为小差元件的比率制动系数,通常取为0.6;
步骤2-3:选取确定的故障母线所连接支路中的幅值最大的支路电流
Figure PCTCN2015087922-appb-000036
所述步骤3包括以下步骤:
步骤3-1:计算大差元件差动电流,有:
Figure PCTCN2015087922-appb-000037
其中,Icd为大差元件差动电流;
步骤3-2:计算大差元件的制动电流,有:
Figure PCTCN2015087922-appb-000038
其中,Izd为大差元件的制动电流;
Figure PCTCN2015087922-appb-000039
为大差元件差动电流相量,且
Figure PCTCN2015087922-appb-000040
步骤3-3:判断大差元件是否动作,若满足比率制动判据Icd>kresIzd,即满足:
Figure PCTCN2015087922-appb-000041
则表明大差元件动作,否则表明大差元件不动作,其中kres为大差元件比率制动系数,取0.8。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,所属领域的普通技术人员参照上述实施例依然可以对本发明的具体实施方式进行修改或者等同替换,这些未脱离本发明精神和范围的任何修改或者等同替换,均在申请待批的本发明的权利要求保护范围之内。

Claims (4)

  1. 一种克服汲出电流对母线差动保护影响的方法,其特征在于:所述方法包括以下步骤:
    步骤1:支路电流信号采集与处理;
    步骤2:选取故障母线,并确定故障母线相连支路中幅值最大支路电流;
    步骤3:计算大差元件的差动电流和制动电流,并判断大差元件是否动作。
  2. 根据权利要求1所述的克服汲出电流对母线差动保护影响的方法,其特征在于:所述步骤1包括以下步骤:
    步骤1-1:采集与母线连接的所有支路的电流采样值,并进行低通滤波,得到第j条支路第k次电流采样值ij(k),其中j=1,2,…,n,n为与母线连接的支路总数;
    步骤1-2:对ij(k)进行傅里叶变换得到第j条支路的电流相量
    Figure PCTCN2015087922-appb-100001
    的实部Xj和虚部Yj,有:
    Figure PCTCN2015087922-appb-100002
    Figure PCTCN2015087922-appb-100003
    其中,N为基波在一个周期内的采样点数;
    再通过实步Xj和虚部Yj得到
    Figure PCTCN2015087922-appb-100004
    的幅值IjM和相角θj,有:
    Figure PCTCN2015087922-appb-100005
    Figure PCTCN2015087922-appb-100006
  3. 根据权利要求2所述的克服汲出电流对母线差动保护影响的方法,其特征在于:所述步骤2包括以下步骤:
    步骤2-1:计算小差元件的差动电流和制动电流;
    小差元件的差动电流和制动电流分别用Icd小和Izd小表示,有:
    Figure PCTCN2015087922-appb-100007
    Figure PCTCN2015087922-appb-100008
    其中,m为与单段母线相连接的所有支路数;
    步骤2-2:若某母线所对应的小差元件的差动电流和制动电流满足Icd小>kres1Izd小,则确定此母线为故障母线;其中kres1为小差元件的比率制动系数,通常取为0.6;
    步骤2-3:选取确定的故障母线所连接支路中的幅值最大的支路电流
    Figure PCTCN2015087922-appb-100009
  4. 根据权利要求3所述的克服汲出电流对母线差动保护影响的方法,其特征在于:所述步骤3包括以下步骤:
    步骤3-1:计算大差元件差动电流,有:
    Figure PCTCN2015087922-appb-100010
    其中,Icd为大差元件差动电流;
    步骤3-2:计算大差元件的制动电流,有:
    Figure PCTCN2015087922-appb-100011
    其中,Izd为大差元件的制动电流;
    Figure PCTCN2015087922-appb-100012
    为大差元件差动电流相量,且
    Figure PCTCN2015087922-appb-100013
    步骤3-3:判断大差元件是否动作,若满足比率制动判据Icd>kresIzd,即满足:
    Figure PCTCN2015087922-appb-100014
    则表明大差元件动作,否则表明大差元件不动作,其中kres为大差元件比率制动系数,取0.8。
PCT/CN2015/087922 2014-11-26 2015-08-24 一种克服汲出电流对母线差动保护影响的方法 WO2016082593A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/520,850 US20170317489A1 (en) 2014-11-26 2015-08-24 Method For Overcoming Influence Of Out-Flowing Current On Bus Differential Protection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410704737.1 2014-11-26
CN201410704737.1A CN104393579B (zh) 2014-11-26 2014-11-26 一种克服汲出电流对母线差动保护影响的方法

Publications (1)

Publication Number Publication Date
WO2016082593A1 true WO2016082593A1 (zh) 2016-06-02

Family

ID=52611434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087922 WO2016082593A1 (zh) 2014-11-26 2015-08-24 一种克服汲出电流对母线差动保护影响的方法

Country Status (3)

Country Link
US (1) US20170317489A1 (zh)
CN (1) CN104393579B (zh)
WO (1) WO2016082593A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115313304A (zh) * 2022-06-30 2022-11-08 南京理工大学 一种应用于5g下含分支线的架空线路差动保护方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393579B (zh) * 2014-11-26 2017-02-22 国家电网公司 一种克服汲出电流对母线差动保护影响的方法
CN105470931B (zh) * 2015-12-25 2017-12-26 国家电网公司 一种不受母线数据不同步影响的母线差动保护方法
CN105870887B (zh) * 2016-05-04 2018-04-20 国电南瑞科技股份有限公司 一种识别母线差动区域的方法
CN109188207B (zh) * 2018-09-18 2020-12-25 四川理工学院 一种基于初始行波有功功率的母线故障定位方法
CN114498557A (zh) * 2021-12-29 2022-05-13 北京四方继保工程技术有限公司 适用于母联ct断线情况下的自适应的区外ct饱和判别方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101609979A (zh) * 2009-07-24 2009-12-23 南京南瑞继保电气有限公司 面向对象的母线保护设置方法
CN103746350A (zh) * 2014-01-23 2014-04-23 国家电网公司 高灵敏度母线差动保护方法
CN104393579A (zh) * 2014-11-26 2015-03-04 国家电网公司 一种克服汲出电流对母线差动保护影响的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104090209A (zh) * 2014-07-02 2014-10-08 国家电网公司 一种基于参数识别的母线保护方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101609979A (zh) * 2009-07-24 2009-12-23 南京南瑞继保电气有限公司 面向对象的母线保护设置方法
CN103746350A (zh) * 2014-01-23 2014-04-23 国家电网公司 高灵敏度母线差动保护方法
CN104393579A (zh) * 2014-11-26 2015-03-04 国家电网公司 一种克服汲出电流对母线差动保护影响的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115313304A (zh) * 2022-06-30 2022-11-08 南京理工大学 一种应用于5g下含分支线的架空线路差动保护方法

Also Published As

Publication number Publication date
CN104393579B (zh) 2017-02-22
CN104393579A (zh) 2015-03-04
US20170317489A1 (en) 2017-11-02

Similar Documents

Publication Publication Date Title
WO2016082593A1 (zh) 一种克服汲出电流对母线差动保护影响的方法
US20160084893A1 (en) Determining status of electric power transmission lines in an electric power transmission system
WO2017128631A1 (zh) 基于时差法的自适应半波长线路电流差动保护方法
CN108023338B (zh) 用于多端t接输电线路的差动保护的判断方法
KR102460706B1 (ko) 고장전류 방향판별 장치 및 그 방법
CN106154025B (zh) 一种合并单元剔除单点异常数据的方法
US10551425B2 (en) Method for quickly identifying disconnection of CT in protection of 3/2 connection mode based bus
EP2859635A1 (en) Method for identifying fault by current differential protection and device thereof
CN109188174B (zh) 一种交流线路出口故障的判别方法
CN109541351B (zh) 继电保护装置中电流采样不一致判别方法及处理方法
CN109286202B (zh) 大规模逆变型电源并网联络线电流差动保护方法、装置和系统
CN106655113A (zh) 一种母联死区故障识别及故障保护方法
CN104076246A (zh) 一种配电网单相接地故障预想事故集的确定方法
CN106291221B (zh) 一种同塔双回输电线路相邻线断线识别方法
US8120206B2 (en) Method of detecting a sustained parallel source condition
EP2984719B1 (en) A method for detecting fault and current differential protection system thereof
CN110518555B (zh) 一种随机性电源接入配电网差动保护实现方法
CN111725778A (zh) 潮流反向条件下的线路保护ct断线闭锁方法、系统及介质
CN111736107A (zh) 一种基于序电流比相的ct断线检测方法、系统及介质
CN104953561A (zh) 一种差动保护采样数据异常处理方法
CN102998536B (zh) 一种高可靠性的直流母线绝缘电阻检测方法
CN104953560B (zh) 一种输电线路零序电流差动保护判据方法
CN106129978B (zh) 一种基于序差流的零序电流差动保护选相方法和装置
CN114884027A (zh) 一种电流差动保护方法和系统
JP2021004855A (ja) 地絡検出方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863555

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15520850

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15863555

Country of ref document: EP

Kind code of ref document: A1