WO2016035865A1 - Polyurethane elastomer-forming composition, industrial machine component using same, mold release agent composition used for resin molding, and polyurethane resin molded article which is molded using said mold release agent composition - Google Patents

Polyurethane elastomer-forming composition, industrial machine component using same, mold release agent composition used for resin molding, and polyurethane resin molded article which is molded using said mold release agent composition Download PDF

Info

Publication number
WO2016035865A1
WO2016035865A1 PCT/JP2015/075125 JP2015075125W WO2016035865A1 WO 2016035865 A1 WO2016035865 A1 WO 2016035865A1 JP 2015075125 W JP2015075125 W JP 2015075125W WO 2016035865 A1 WO2016035865 A1 WO 2016035865A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyurethane elastomer
forming composition
release agent
melting point
Prior art date
Application number
PCT/JP2015/075125
Other languages
French (fr)
Japanese (ja)
Inventor
野村弘二
中島雄次
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014194778A external-priority patent/JP6387763B2/en
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2016035865A1 publication Critical patent/WO2016035865A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/60Releasing, lubricating or separating agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/28Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen sulfur-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters

Definitions

  • the present invention relates to a thermosetting polyurethane elastomer-forming composition used for industrial machine component members, a release agent composition used for resin molding, and a polyurethane resin molded product produced using the same.
  • thermosetting polyurethane elastomer has a very high durability because it has a high modulus, high breaking strength, low wear, and low strain, and is suitably used as a component member of an industrial machine.
  • thermosetting polyurethane elastomers used for industrial machine component parts are obtained by mixing a main agent composed of an isocyanate group component and a curing agent composed of an active hydrogen-containing component with a mixing head of a casting machine.
  • the liquid can be poured into a mold, and the mixed liquid can be heated and cured (urethane reaction) in the mold.
  • a mold release agent is applied to the inner surface of the mold in advance.
  • the mold release agent polyethylene wax, organopolysiloxane, polyfluorinated ethylene and the like are preferably used.
  • an isocyanate group-terminated urethane prepolymer (hereinafter abbreviated as “NCO group-terminated urethane prepolymer”) composed of an isocyanate and a polyol and a polyol or a polyamine are used.
  • NCO group-terminated urethane prepolymer A method in which an active hydrogen group terminal curing agent is mixed and heat-cured is generally used.
  • an isocyanate component an NCO group-terminated urethane prepolymer comprising diphenyl metadiisocyanate (hereinafter abbreviated as “MDI”) and a polyol component, polybutylene adipate (hereinafter abbreviated as “PBA”), and a polyol component as 1 , 4-butanediol (hereinafter abbreviated as “1,4-BD”), trimethylolpropane (hereinafter abbreviated as “TMP”), and PBA are preferably used.
  • MDI diphenyl metadiisocyanate
  • PBA polybutylene adipate
  • 1,4-BD 4-butanediol
  • TMP trimethylolpropane
  • NCO-terminated urethane prepolymer comprising tolylene diisocyanate (hereinafter abbreviated as “TDI”) and polytetramethylene glycol (hereinafter abbreviated as “PTMG”), 4,4′-diamino-3,3′-dichloro
  • TDI tolylene diisocyanate
  • PTMG polytetramethylene glycol
  • An amino group terminal curing agent having an amino group as an active hydrogen group such as diphenylmethane (hereinafter abbreviated as “MOCA”) is preferably used.
  • thermosetting polyurethane elastomer molding obtained as described above is very large due to its high elastic force.
  • heat is generated due to friction caused by driving, and this heat gradually accumulates, resulting in a temperature higher than the design and changes in physical properties.
  • Particularly problematic is a vicious circle in which the elastic force increases and the frictional resistance further increases as the temperature increases.
  • these thermosetting polyurethane elastomer moldings are used as industrial machine parts, the characteristics change due to the heat storage of the parts, and in a relatively short period of time, defects due to breakage, cracks, wear, etc. of the parts occur. Parts need to be replaced.
  • thermosetting polyurethane elastomer molded product cannot be used sufficiently, and a low-friction thermosetting polyurethane elastomer molded product is strongly desired.
  • Patent Documents 4 to 5 a method of incorporating a lubricant component into a polyurethane molecule by introducing a stearic acid having a hydroxyl group or an amino group or an oleic acid ester and a curing agent, or introducing octadecyl isocyanate having an NCO group has been proposed ( Patent Documents 4 to 5).
  • Patent Document 6 a method of forming a polyurethane layer containing a siloxane bond by reacting a silicone compound having active hydrogen with a polyurethane resin has been proposed (Patent Document 6), and by forming a high hardness layer on the surface, low friction is proposed. A technique for realizing this has been proposed (Patent Document 7).
  • the compatibility of the lubricant with an NCO group-terminated urethane prepolymer or an active hydrogen group-terminated curing agent is high.
  • a polyurethane elastomer molded product in which a lubricant with reaction with polyurethane described below is mixed with polyurethane elastomer and the lubricant component is incorporated in the polyurethane molecule is sufficient on the surface of the molded product due to the lack of carbon number of these lubricant components and the inhibition of the degree of freedom. In many cases, the friction cannot be reduced and the friction reduction is insufficient. Also, on the machined surface, the lubricant component cannot be sufficiently transferred, and the friction reduction is often insufficient or does not continue.
  • silicones with active hydrogen groups that react with isocyanates are used, which also contain silicones that do not contain active hydrogen functional groups as impurities, which can bleed to the surface and contaminate the parts that come into contact with them. There is sex.
  • the method of forming a high hardness layer has a problem that the number of processes increases and productivity decreases because of the two-stage molding in which urethane resin molding is performed after the formation of the high hardness layer.
  • thermosetting polyurethane elastomer formation composition for industrial machine component members, polyoxyethylene alkyl ether (C1) and carbon number At least one selected from the group consisting of linear aliphatic alcohols (C2) having a melting point of 20 to 40 and a melting point of 90 ° C. or lower, introducing octadecyl isocyanate (C3) for obtaining a better effect, At least one selected from the group consisting of oxyethylene alkyl ether (C1), linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C.
  • thermoset polyurethane elastomer for.
  • thermosetting polyurethane elastomer whose quality is stabilized is obtained. It is an object of the present invention to provide an NCO group-terminated urethane prepolymer and an active hydrogen group-terminated curing agent.
  • An object of the present invention is to provide a polyurethane resin molded product for industrial machine parts having a very low coefficient of friction without causing deterioration of physical properties, bleed or bloom, and without impairing productivity.
  • the present invention includes the following embodiments (1) to (26).
  • An isocyanate group-terminated urethane prepolymer (A), an active hydrogen group-terminated curing agent (B), and a lubricant (C) are contained, and the lubricant (C) is added to the thermosetting polyurethane elastomer-forming composition in an amount of 0.00. 1 to 8% by mass of polyoxyethylene alkyl ether (C1), or 0.1 to 5% by mass of 20 to 40 carbon atoms in the thermosetting polyurethane elastomer-forming composition and a melting point of 90 ° C.
  • thermosetting polyurethane elastomer-forming composition comprising the following linear aliphatic alcohol (C2): (2) The group in which the lubricant (C) is a polyoxyethylene alkyl ether (C1), a linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less, and octadecyl isocyanate (C3)
  • the thermosetting according to the above (1) which comprises at least two compounds selected from the group consisting of 0.2 to 8% by mass of the lubricant (C) in the thermosetting polyurethane elastomer-forming composition.
  • -Forming polyurethane elastomer-forming composition is the following linear aliphatic alcohol (C2): (2) The group in which the lubricant (C) is a polyoxyethylene alkyl ether (C1), a linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less
  • lubricant (C) is a polyoxyethylene alkyl ether (C1), a linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less, and octadecyl isocyanate (C3) At least one selected from the group consisting of fatty acid amide (C4), polyoxyethylene alkyl ether (C1), linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C.
  • thermosetting polyurethane elastomer-forming composition as described in (1) above, containing 5% by mass.
  • thermosetting polyurethane elastomer-forming composition as described in any one of (1) to (3) above, wherein the polyoxyethylene alkyl ether (C1) has a hydroxyl value of 5 to 70 KOHmg / g .
  • C1 polyoxyethylene alkyl ether
  • C2 linear aliphatic alcohol
  • C3 octadecyl isocyanate
  • C4 fatty acid amide
  • thermosetting polyurethane elastomer according to any one of the above (1) to (4), characterized by using an active hydrogen group terminal curing agent comprising: an active hydrogen group terminal curing agent (B0) Formable composition.
  • B0 active hydrogen group terminal curing agent
  • thermosetting polyurethane elastomer comprising subjecting the thermosetting polyurethane elastomer-forming composition according to any one of (1) to (7) to a thermosetting treatment.
  • thermosetting treatment comprising subjecting the thermosetting polyurethane elastomer-forming composition according to any one of (1) to (7) to a thermosetting treatment.
  • Industrial machine parts comprising a JIS-A hardness in the range of 60 to 98 obtained by thermosetting the thermosetting polyurethane elastomer-forming composition according to any one of (1) to (7) above.
  • thermosetting polyurethane elastomer-forming composition obtained by thermosetting the thermosetting polyurethane elastomer-forming composition according to any one of (1) to (7)
  • D Industrial machinery parts having a static friction coefficient of 0.8 or less and a dynamic friction coefficient of 0.6 or less.
  • An industrial machine part in which a static friction coefficient of a cured product (D1) obtained by cutting is 0.8 or less and a dynamic friction coefficient is 0.6 or less.
  • the cured product obtained by further heat-treating the cured product (D) according to (10) at 100 to 200 ° C. for 1 to 120 minutes has a static friction coefficient of 0.8 or less and a dynamic friction coefficient of 0.6 or less.
  • a mold release used for resin molding comprising an organopolysiloxane (J) having in its molecular structure at least one carboxylate selected from the group consisting of quaternary ammonium and quaternary phosphonium.
  • Agent composition (15) The release agent composition used for resin molding, wherein the release agent composition used for resin molding described in (14) above further contains silicone (L) having an active hydrogen group. object.
  • Organopolysiloxane (J) having at least one carboxylate selected from the group consisting of quaternary ammonium and quaternary phosphonium in the molecular structure is quaternary ammonium (J1), quaternary phosphonium (J2), And a release agent composition for use in resin molding as described in (14) or (15) above, comprising at least one selected from the group consisting of a carboxyl group-containing organopolysiloxane (J3).
  • the total content of at least one carboxylate selected from the group consisting of quaternary ammonium (J1) and quaternary phosphonium (J2) is at least one selected from the group consisting of quaternary ammonium and quaternary phosphonium. Any one of (14) to (16) above, wherein 0.3 mmol / g or more is contained with respect to the total content of organopolysiloxane (J) having a carboxylate in the molecular structure. Mold release agent composition used for resin molding.
  • An active hydrogen group is added to 100 parts by mass of an organopolysiloxane (J) having at least one carboxylate selected from the group consisting of quaternary ammonium (J1) and quaternary phosphonium (J2) in the molecular structure.
  • Polyurethane resin-forming composition (K) is molded by a molding die to which a release agent composition used for resin molding according to any one of (14) to (19) is applied. Resin molding. (21) The mold release agent composition used in the resin molding described in any one of (14) to (19) is applied to a mold, and the polyurethane resin-forming composition (K) is injected into the mold. A method for producing a molded polyurethane resin product obtained by molding. (22) The polyurethane resin according to (20) above, wherein the polyurethane resin-forming composition (K) comprises an isocyanate group-terminated urethane prepolymer (A0) and an active hydrogen group-terminated curing agent (B0). Molded product.
  • the polyurethane resin-forming composition (K) is a polyoxyethylene alkyl ether (C1) as a lubricant (C), a linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less.
  • the isocyanate group / active hydrogen group molar ratio when mixing the isocyanate group-terminated urethane prepolymer (A0) and the active hydrogen group terminal curing agent (B0) is 1.0 to 3.0.
  • the dynamic friction coefficient is 0.8 or less and the JIS-A hardness is in the range of 60 to 98, according to any one of (20), (22), (23), (24), or (25) Industrial machine parts using polyurethane resin moldings.
  • thermosetting polyurethane elastomer-forming composition for industrial machine parts of the present invention for industrial machines, the NCO group-terminated urethane prepolymer, and active hydrogen have both low contamination and low friction, which could not be achieved in the past.
  • a uniform thermosetting polyurethane elastomer for industrial machine parts can be obtained without impairing the properties (compatibility) of the base terminal curing agent.
  • thermosetting polyurethane elastomer has a high elasticity and low friction that could not be achieved in the past, and is a uniform thermosetting polyurethane elastomer for industrial machine parts with the same production method. Can be obtained.
  • thermosetting polyurethane elastomer molding composition for industrial machine parts of the present invention that solves the first problem includes an isocyanate group-terminated urethane prepolymer (A), an active hydrogen group-terminated curing agent (B), and a lubricant (C).
  • a thermosetting polyurethane elastomer-forming composition comprising a polyoxyethylene alkyl ether (C1) as a lubricant (C) and a linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C.
  • octadecyl isocyanate (C3) can continuously reduce the dynamic friction coefficient
  • introduction of fatty acid amide (C4) can significantly reduce the static friction coefficient
  • the polyoxyethylene alkyl ether (C1) introduced as the lubricant (C) used in the present invention is not particularly limited as long as the effects of the present invention are exhibited.
  • This polyoxyethylene alkyl ether can be represented by the general formula 1.
  • the hydroxyl value is preferably 5 to 70 KOHmg / g for more effective reduction of friction. When the hydroxyl value exceeds 70 KOHmg / g, the number of carbon atoms is generally short, and the effect as a lubricant component may be gradually reduced.
  • polyoxyethylene alkyl ether examples include, for example, polyoxyethylene lauryl ether “NIKKOL BL-2, NIKKOL BL-4.2, NIKKOL BL-21, NIKKOL BL-25 manufactured by Nikko Chemicals”, Polyoxyethylene cetyl ale “NIKKOL BC-2, NIKKOL BC-5.5, NIKKOL BC-7, NIKKOL BC-10, NIKKOL BC-20, NIKKOL BC-23, NIKKOL BC-25, NIKOL BC-25, NIKOL BC-25, NIKOL BC-25 -40, NIKKOL BC-150 ", polyoxyethylene stearyl ether” NIKKOL BS-2, “NIKKOL BS-4,” NIKKOL BS-20 “, polyoxyethylene oleyl ether”"NI KOL BO-2V, "NIKKOL BO-7V,” NIKKOL BO-10V, "NIKKOL BO-15V,” NIKKOL BO-20V, "" NIKKOL BO-50
  • the linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or lower introduced as the lubricant (C) used in the present invention is not particularly limited as long as the effects of the present invention are exhibited.
  • the solubility with the isocyanate group-terminated urethane prepolymer is generally poor, and even if the temperature during prepolymer synthesis is raised to 100 ° C. or higher, uniform dissolution is difficult, and the reaction temperature increases. , Resulting in a high viscosity due to side reactions such as allophanatization, leading to a decrease in the quality of the prepolymer. Moreover, the solubility with an active hydrogen group terminal hardening
  • thermosetting polyurethane elastomer During production, it can be dissolved by heating above the melting point, but when it is filled and stored, it will crystallize at room temperature, so when molding a thermosetting polyurethane elastomer, heat it again above the melting point. However, it is necessary to stir uniformly, and it becomes difficult to handle.
  • Examples of the linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less include 1-icosanol (C20), 1-heneicosanol (C21), 1-docosanol (C22), 1-tricosanol ( C23), 1-tricosanol (C24), 1-pentacosanol (C25), 1-hexacosanol (C26), 1-heptacosanol (C27), 1-octacosanol (C28), 1-nonacosanol (C29), 1 Triacontanol (C30), 1-Hentriacontanol (C31), 1-Dotriacontanol (C32), 1-Tritriacontanol (C33), 1-Tetratriacontanol (C34), 1-Pentatria Contanol (C35), 1-hexatriacontanol (C36), 1-hept
  • Specific examples of commercial products of these mixtures having a melting point of 90 ° C. or lower include behenyl alcohol, behenyl alcohol 65, behenyl alcohol 80R, highsonol 20SS, highsonol 22SS manufactured by Higher Alcohol Industry, NIKKOL behenyl alcohol 65, NIKKOL behenyl alcohol 80 manufactured by Nikko Chemicals. Permacol 350 Alcohol, etc. can be used.
  • the octadecyl isocyanate (C3) introduced as the lubricant (C) used in the present invention can be represented by the general formula 3.
  • [General formula 3] CH 3 (CH 2 ) 17 NCO Millionate O (manufactured by Hodogaya Chemical Co., Ltd.) can be used as a specific example of a commercially available product of octadecyl isocyanate (C3).
  • the fatty acid amide (C4) introduced as the lubricant (C) used in the present invention is not particularly limited as long as the effects of the present invention are exhibited.
  • this fatty acid amide a saturated fatty acid amide, an unsaturated fatty acid amide, a substituted amide, a saturated fatty acid bisamide, and an unsaturated fatty acid bisamide can be used, and in order to reduce friction more effectively, the melting point is 90 ° C. or lower. It is preferable. When the melting point exceeds 90 ° C., the solubility with the isocyanate group-terminated urethane prepolymer is generally poor, and even if the temperature during prepolymer synthesis is raised to 100 ° C.
  • fatty acid amide (C4) for example, lauric acid amide of saturated fatty acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, hydroxy stearic acid amide, oleic acid amide of unsaturated fatty acid amide, erucic acid amide, substituted amide N-oleyl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl erucic acid amide, methylene bis stearic acid amide of saturated fatty acid bisamide, ethylene biscapric acid amide , Ethylene bis lauric acid amide, ethylene bis stearic acid amide, ethylene bis hydroxy stearic acid amide, ethylene bis behenic acid amide, hexamethylene bis stearic acid amide, hexamethylene bis bevenic acid Amide,
  • Specific examples of commercial products of these mixtures having a melting point of 90 ° C. or lower include Diamit Y, Diamit O-200, Diamit L-200, Nikka Amide OP, Nikka Amide SO, Nikka Amide manufactured by Nippon Kasei. OS, Nikka Amide SE, etc. can be used.
  • thermosetting polyurethane elastomer molding when the content of polyoxyethylene alkyl ether (C1) in the thermosetting polyurethane elastomer molding is less than 0.1% by mass, the friction reducing effect is not seen. Moreover, when it exceeds 8 mass%, although the friction reduction effect is seen, there exists a possibility of causing the physical-property fall of the thermosetting polyurethane elastomer obtained by increase in 1 functional component.
  • the total amount of at least one compound selected from the group consisting of octadecyl isocyanate (C3) is preferably 0.2 to 8% by mass, and particularly preferably 1 to 6% by mass, in the thermosetting polyurethane elastomer molding.
  • the total addition amount of the lubricant (C) is less than 0.2% by mass, a sufficient friction-reducing effect is not observed, and when it exceeds 8% by mass, the physical properties decrease due to the decrease in the average functional group number or the prepolymer. There is a risk of quality degradation.
  • the lubricant (C) contains fatty acid amide (C4) as an essential component, polyoxyethylene alkyl ether (C1), a straight chain having 20 to 40 carbon atoms and a melting point of 90 ° C. or lower.
  • polyoxyethylene alkyl ether (C1), a straight chain having 20 to 40 carbon atoms and a melting point of 90 ° C. or lower can be arbitrarily selected and used.
  • polyoxyethylene alkyl ether (C1), carbon number 20 to 40, and melting point A combination of at least one selected from the group consisting of linear aliphatic alcohols (C2) of 90 ° C. or lower and octadecyl isocyanate (C3) is particularly preferable.
  • the amount of lubricant component selected from the group consisting of polyoxyethylene alkyl ether (C1), linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or lower, and octadecyl isocyanate (C3) is as follows:
  • the content is preferably 0.2 to 8% by mass in the whole thermosetting polyurethane elastomer-forming composition.
  • the amount is less than 0.2% by mass, a sufficient friction reducing effect is not observed, and when the amount is more than 8% by mass, the physical properties may be lowered due to a decrease in the number of average functional groups or the quality of the prepolymer may be reduced.
  • the introduction amount of the fatty acid amide (C4) used in combination with these is preferably 0.05 to 0.5% by mass relative to the entire thermosetting polyurethane elastomer-forming composition, and considering the bleed (bloom). A small amount of 0.05 to 0.3% by mass is particularly preferred.
  • the NCO group-terminated urethane prepolymer (A) used in the present invention is not limited as long as the NCO group-terminated urethane prepolymer (A0) is included.
  • an NCO group-terminated urethane prepolymer (A1) to which polyoxyethylene alkyl ether (C1) is further added can be suitably used.
  • the NCO group-terminated urethane prepolymer (A1) uses a reaction inhibitor (E) as necessary, and undergoes urethanation reaction with at least polyisocyanate (A6), polyol (A7), and polyoxyethylene alkyl ether (C1). What is obtained is preferred.
  • the NCO group-terminated urethane prepolymer (A0) is prepared from at least a polyisocyanate (A6) and a polyol (A7) and does not contain a lubricant (C) component.
  • the NCO content of the NCO group-terminated urethane prepolymer (A) or (A1) is preferably 5 to 25% by mass.
  • the NCO content is lower than 5% by mass, the viscosity of the prepolymer is mainly increased, and the flowability of the urethane resin is remarkably deteriorated during casting.
  • the content is higher than 25% by mass, the stability of properties during storage and use is remarkably deteriorated, and it is difficult to obtain a stable industrial machine part, resulting in molding failure. It may become unsuitable as a terminal urethane prepolymer.
  • NCO group terminal urethane prepolymer (A1) NCO group terminal urethane prepolymer (A1)
  • the following manufacturing methods can be mentioned.
  • the polyisocyanate (A6) and the reaction inhibitor (E) are charged and stirred in the stirring vessel, and then the polyol (A7) and the polyoxyethylene alkyl ether (C1) while maintaining the temperature in the stirring vessel at 40 to 70 ° C. Is stirred.
  • the urethanization reaction can be carried out for about 2 to 5 hours while maintaining the temperature in the stirring vessel at 70 to 90 ° C.
  • the NCO group-terminated urethane prepolymer (A) used in the present invention is not limited as long as at least the NCO group-terminated urethane prepolymer (A0) is included.
  • an NCO group-terminated urethane prepolymer (A2) further added with a linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less can be suitably used.
  • the NCO group-terminated urethane prepolymer (A2) uses a reaction inhibitor (E) as necessary, and at least a polyisocyanate (A6), a polyol (A7), a carbon number of 20 to 40, and a melting point of 90 ° C. or less. Those obtained by a urethanization reaction with a linear aliphatic alcohol (C2) are preferred.
  • the NCO content of the NCO group-terminated urethane prepolymer (A) or (A2) is preferably 5 to 25% by mass.
  • the NCO content is lower than 5% by mass, the viscosity of the prepolymer is mainly increased, and the flowability of the urethane resin is remarkably deteriorated during casting.
  • the content is higher than 25% by mass, the stability of properties during storage and use is remarkably deteriorated, and it is difficult to obtain a stable industrial machine part, resulting in molding failure. It may become unsuitable as a terminal urethane prepolymer.
  • NCO group terminal urethane prepolymer (A2) NCO group terminal urethane prepolymer (A2)
  • the following manufacturing methods can be mentioned.
  • the polyisocyanate (A6) and the reaction inhibitor (E) are charged into the stirring vessel and stirred, and then the polyol (A7), having 20 to 40 carbon atoms and a melting point while maintaining the temperature in the stirring vessel at 40 to 70 ° C.
  • the polyol (A7) having 20 to 40 carbon atoms and a melting point while maintaining the temperature in the stirring vessel at 40 to 70 ° C.
  • C2 straight chain aliphatic alcohol
  • the urethanization reaction can be carried out for about 2 to 5 hours while maintaining the temperature in the stirring vessel at 70 to 90 ° C.
  • the NCO group-terminated urethane prepolymer (A) used in the present invention is not limited as long as at least the NCO group-terminated urethane prepolymer (A0) is included.
  • NCO group-terminated urethane prepolymer (A4) modified by further adding at least one compound selected from the group consisting of linear aliphatic alcohols (C2) and octadecyl isocyanate (C3).
  • the modification referred to here is to change the properties of the NCO group-terminated urethane prepolymer (A0).
  • the NCO group-terminated urethane prepolymer (A3) modified with octadecyl isocyanate (C3) is a polyisocyanate (A6).
  • the NCO content of the NCO-terminated urethane prepolymer (A), (A3), or (A4) is preferably 5 to 25% by mass.
  • the NCO content is lower than 5% by mass, the viscosity of the prepolymer is mainly increased, and the flowability of the urethane resin is remarkably deteriorated during casting.
  • the content is higher than 25% by mass, the stability of properties during storage and use is remarkably deteriorated, and it is difficult to obtain a stable industrial machine part, resulting in molding failure. It may become unsuitable as a terminal urethane prepolymer.
  • NCO group terminal urethane prepolymer (A3) or (A4) NCO group terminal urethane prepolymer (A3) or (A4)
  • the following manufacturing methods can be mentioned.
  • the polyisocyanate (A6), octadecyl isocyanate (C3), and the reaction inhibitor (E) are charged into the stirring vessel and stirred, the polyoxyethylene alkyl ether (C1), while maintaining the temperature in the vessel at 40 to 70 ° C., And a mixture of at least one selected from the group consisting of linear aliphatic alcohols (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less and a polyol (A7), or a polyol (A7) is added and stirred.
  • the isocyanate group-terminated urethane prepolymer (A3) or (A4) can be obtained by proceeding with the urethanization reaction for about 2 to 5 hours while maintaining the temperature in the stirring vessel at 70 to 90 ° C. Further, octadecyl isocyanate (C3) can be added and blended after the urethanization reaction.
  • the NCO group-terminated urethane prepolymer (A) used in the present invention is not limited as long as at least the NCO group-terminated urethane prepolymer (A0) is included.
  • the NCO group-terminated urethane prepolymer (A0) is included.
  • the modification referred to here is to change the properties of the NCO group-terminated urethane prepolymer (A0).
  • the NCO group-terminated urethane prepolymer (A5) modified with a fatty acid amide (C4) is a polyisocyanate (A6).
  • the NCO content of the NCO group-terminated urethane prepolymer (A) or (A5) is preferably 5 to 25% by mass.
  • the NCO content is lower than 5% by mass, the viscosity of the prepolymer is mainly increased, and the flowability of the urethane resin is remarkably deteriorated during casting.
  • the content is higher than 25% by mass, the stability of properties during storage and use is remarkably deteriorated, and it is difficult to obtain a stable industrial machine part, resulting in molding failure. It will become unsuitable as a terminal urethane prepolymer.
  • the polyisocyanate (A6) and, if necessary, the octadecyl isocyanate (C3) and the reaction inhibitor (E) are charged into the stirring vessel, and after stirring, the temperature in the vessel is kept at 40 to 70 ° C.
  • At least one selected from the group consisting of ethylene alkyl ether (C1) and linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less, and polyol (A7) are added and stirred. .
  • fatty acid amide (C4) is added and stirred. Subsequently, the isocyanate group-terminated urethane prepolymer (A5) can be obtained by proceeding with the urethanization reaction for about 2 to 5 hours while maintaining the temperature in the stirring vessel at 70 to 90 ° C.
  • Octadecyl isocyanate (C3) and fatty acid amide (C4) can also be added and blended after the urethanization reaction.
  • the polyisocyanate (A6) used in the present invention is not particularly limited as long as the effects of the present invention are exhibited. From the viewpoint of mechanical properties and reaction control, at least one selected from aromatic diisocyanates is preferable, and 4,4'-diphenylmethane diisocyanate is particularly preferable.
  • polyisocyanate examples include hexamethylene diisocyanate, lysine diisocyanate, isophorone diisocyanate, cyclohexyl diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated trimethylxylylene diisocyanate, 2-methylpentane-1, 5-diisocyanate, 3-methylpentane-1,5-diisocyanate, 2,2,4-trimethylhexahylene-1,6-diisocyanate, 2,4,4-trimethylhexahylene-1,6-diisocyanate, etc.
  • Aromatic diisocyanates such as paraphenylene diisocyanate, tolylene-2,4-diisocyanate, tolylene-2,6-diisocyanate.
  • Difficult yellowing diisocyanates such as orthoxylylene diisocyanate, metaxylylene diisocyanate, paraxylylene diisocyanate, tetramethylxylylene diisocyanate.
  • urethane-modified products urea-modified products, carbodiimide-modified products, uretonimine-modified products, uretdione-modified products, isocyanurate-modified products, allophanate-modified products, etc. can be used.
  • the polyol (A7) used in the present invention is not particularly limited as long as the effects of the present invention are exhibited, but from the viewpoint of mechanical properties and glass transition temperature, the average number of functional groups is 2 to 3, and the number average molecular weight is 250 to 5000. It is preferable that at least one kind selected from polyester polyols and polyether polyols. In addition, a monomer polyol can also be used together as needed.
  • polyols can be arbitrarily selected and used for the active hydrogen group terminal curing agent (B) described later.
  • polyester polyol examples include, for example, phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, succinic acid, tartaric acid, oxalic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, glutaconic acid, azelaic acid.
  • Sebacic acid 1,4-cyclohexyl dicarboxylic acid, ⁇ -hydromuconic acid, ⁇ -hydromuconic acid, ⁇ -butyl- ⁇ -ethylglutaric acid, ⁇ , ⁇ -diethylsuccinic acid, maleic acid, fumaric acid, etc.
  • acids or their anhydrides ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, , 9-nonanediol, 3-methyl-1,5-pentanediol, 3,3-dimethylolheptane, diethylene glycol, dipropylene glycol, neopentyl glycol, cyclohexane-1,4-diol, cyclohexane-1,4-di 1 of low molecular weight polyols having a molecular weight of 500 or less such as methanol, dimer acid diol, ethylene oxide or propylene oxide adduct of bisphenol A, bis ( ⁇ -hydroxyethyl,
  • polyester-amide polyol obtained by replacing a part of the low molecular polyol with a low molecular polyamine such as hexamethylene diamine, isophorone diamine or monoethanolamine or a low molecular amino alcohol can also be used.
  • a low molecular polyamine such as hexamethylene diamine, isophorone diamine or monoethanolamine or a low molecular amino alcohol
  • polyether polyol examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1, 5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 3-methyl-1,5-pentanediol, 3,3-dimethylolheptane, diethylene glycol, dipropylene glycol , Neopentyl glycol, cyclohexane-1,4-diol, cyclohexane-1,4-dimethanol, dimer acid diol, bisphenol A, bis ( ⁇ -hydroxyethyl) benzene, xylylene glycol, glycerin, trimethylolpropane, pent
  • polyether polyols obtained by addition polymerization of alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide, etc., or alkyl glycidyl ethers such as methyl glycidyl ether, aryl glycidyl ethers such as phenyl glycidyl ether And polyether polyols obtained by ring-opening polymerization of cyclic ether monomers such as tetrahydrofuran.
  • alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide, etc.
  • alkyl glycidyl ethers such as methyl glycidyl ether
  • aryl glycidyl ethers such as phenyl glycidyl ether
  • polyether polyols obtained by ring-opening polymerization of cyclic ether monomers such as tetrahydrofuran.
  • polycarbonate polyol examples include, for example, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5 -Pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 3-methyl-1,5-pentanediol, 3,3-dimethylolheptane, diethylene glycol, dipropylene glycol, Neopentyl glycol, cyclohexane-1,4-diol, cyclohexane-1,4-dimethanol, dimer acid diol, bisphenol A ethylene oxide and propylene oxide adducts, bis ( ⁇ -hydroxyethyl) benzene, xylylene
  • the polyol (A7) may be a polyolefin polyol, an acrylic polyol, a silicone polyol, a castor oil-based polyol, a fluorine-based polyol, or a monomer polyol alone or in combination of two or more, as long as the performance does not deteriorate.
  • polyolefin polyol examples include polybutadiene having two or more hydroxyl groups, hydrogenated polybutadiene, polyisoprene, hydrogenated polyisoprene, and the like.
  • acrylic polyol examples include acrylic acid ester and / or methacrylic acid ester (hereinafter referred to as (meth) acrylic acid ester), acrylic acid hydroxy compound having at least one hydroxyl group in the molecule and / or methacrylic acid which can be a reaction point.
  • acrylic acid ester and / or methacrylic acid ester examples include acrylic acid hydroxy compound having at least one hydroxyl group in the molecule and / or methacrylic acid which can be a reaction point.
  • examples include an acid hydroxy compound (hereinafter referred to as a (meth) acrylic acid hydroxy compound) and a polymerization initiator obtained by copolymerizing an acrylic monomer using thermal energy, light energy such as ultraviolet rays or electron beams, and the like.
  • (meth) acrylic acid esters include alkyl esters having 1 to 20 carbon atoms.
  • Specific examples of such (meth) acrylate esters include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and pentyl (meth) acrylate.
  • (Meth) such as hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate
  • Esters of (meth) acrylic acid with cycloaliphatic alcohols such as alkyl acrylates, cyclohexyl (meth) acrylates, (meth) acrylic acid allyl esters such as phenyl (meth) acrylate and benzyl (meth) acrylate Can be mentioned.
  • Such (meth) acrylic acid esters can be used singly or in combination of two or more.
  • (meth) acrylic acid hydroxy compound examples include, for example, at least one hydroxyl group in the molecule that can be a reaction point with the polyisocyanate composition, specifically, 2-hydroxyethyl acrylate, Examples thereof include hydroxy acrylate compounds such as 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, 3-hydroxy-2,2-dimethylpropyl acrylate, and pentaerythritol triacrylate.
  • hydroxy methacrylate compounds such as 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 4-hydroxybutyl methacrylate, 3-hydroxy-2,2-dimethylpropyl methacrylate, and pentaerythritol trimethacrylate are exemplified.
  • acrylic acid hydroxy compounds and methacrylic acid hydroxy compounds can be used singly or in combination of two or more.
  • Polymerization initiator examples include a thermal polymerization initiator and a photopolymerization initiator, and are appropriately selected depending on the polymerization method.
  • thermal polymerization initiator examples include peroxydicarbonates such as di-2-ethylhexyl peroxydicarbonate, t-butylperoxybenzoate, t-butylperoxy-2-ethylhexanoate, and t-butylperoxyisopropyl carbonate.
  • Peroxyesters such as t-hexylperoxyisopropyl carbonate, di (t-butylperoxy) -2-methylcyclohexane, di (t-butylperoxy) 3,3,5-trimethylcyclohexane and di (t-butylperoxy) cyclohexane And peroxyketals.
  • the photopolymerization initiator include acetophenone, methoxyacetophenone, 2,2-diethoxyacetophenone, p-dimethylaminoacetophenone, 2,2-dimethoxy-2-phenylacetophenone, ⁇ -hydroxy- ⁇ , ⁇ Acetophenones such as' -dimethylacetophenone, 2-hydroxy-2-cyclohexylacetophenone, 2-methyl-1 [4- (methylthio) phenyl] -2-montforinopropanone-1, benzoin, benzoin methyl ether, benzoin ethyl Benzoin ethers such as ether and benzoin isopropyl butyl ether, benzophenone, 2-chlorobenzophenone, p, p'-dichlorobenzophenone, N, N'-tetramethyl-4,4'-diaminobenzophenone, 4- (2- Ketones such as droxyethoxy) phenyl (2-
  • silicone polyol examples include a vinyl group-containing silicone compound obtained by polymerizing ⁇ -methacryloxypropyltrimethoxysilane and the like, and ⁇ , ⁇ -dihydroxypolydimethylsiloxane having at least one terminal hydroxyl group in the molecule, ⁇ , ⁇ -dihydroxypolydiphenylsiloxane, and the like.
  • castor oil-based polyol examples include linear or branched polyester polyols obtained by the reaction of castor oil fatty acid and polyol. Dehydrated castor oil, partially dehydrated castor oil partially dehydrated, hydrogenated castor oil added with hydrogen, and the like can also be used.
  • the fluorine-based polyol include linear or branched polyols obtained by a copolymerization reaction using a fluorine-containing monomer and a monomer having a hydroxy group as essential components.
  • the fluorine-containing monomer is preferably a fluoroolefin, for example, tetrafluoroethylene, chlorotrifluoroethylene, trichlorofluoroethylene, hexafluoropropylene, vinylidene fluoride, vinyl fluoride, trifluoromethyl trifluoroethylene.
  • Examples of the monomer having a hydroxyl group include hydroxyalkyl vinyl ethers such as hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether and cyclohexanediol monovinyl ether, hydroxyalkyl allyl ethers such as 2-hydroxyethyl allyl ether, and vinyl hydroxyalkyl crotonates.
  • Examples thereof include monomers having hydroxyl groups such as hydroxyl group-containing vinyl carboxylate such as allyl ester.
  • ⁇ Monomer polyol Specific examples of the monomer polyol include, for example, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5- Pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 3-methyl-1,5-pentanediol, 3,3-dimethylolheptane, diethylene glycol, dipropylene glycol, neo Pentyl glycol, cyclohexane-1,4-diol, cyclohexane-1,4-dimethanol, dimer acid diol, bisphenol A, bis ( ⁇ -hydroxyethyl) benzene, xylylene glycol, glycerin, trimethylol
  • the active hydrogen group terminal curing agent (B) used in the present invention can be arbitrarily selected from the aforementioned polyols. Among these, it is preferable to use a mixture obtained by adding any one of polyester polyols, polyether polyols, and polycarbonate polyols having an average functional group number of 2 to 3 and a number average molecular weight of 250 to 5000. Further, from the viewpoint of improving mechanical properties and molding processability, monomer polyols can be used alone or in admixture of two or more. As the monomer polyol, a mixture of 1,4-butanediol and trimethylolpropane is preferable.
  • an active hydrogen group terminal curing agent that does not contain the lubricant (C) is referred to as an active hydrogen group terminal curing agent (B0).
  • the catalyst (F) can be added to the active hydrogen group terminal curing agent (B) used in the present invention as necessary.
  • the catalyst (F) is not particularly limited as long as the effects of the invention are achieved, but from the viewpoint of improving mechanical properties and molding processability, as the nurating catalyst for polyurethane (F1), potassium salt or quaternary ammonium is used.
  • a salt is preferable, and N, N, N′-trimethylaminoethylethanolamine or N, N-dimethylaminoethoxyethanol is preferable as the allophanatization catalyst (F2) for polyurethane.
  • a urethanization catalyst (F3) can also be used together or used independently as needed.
  • urethanization catalyst As the urethanization catalyst (F3), known general amine catalysts such as triethylenediamine, imidazole catalysts such as 1-isobutyl-2-methylimidazole, metal catalysts such as dioctyltin dilaurate, and the like can also be used.
  • ⁇ Nuration catalyst for polyurethane (F1) As the nurating catalyst for polyurethane (F1) used in the nurating reaction, it can be appropriately selected from known catalysts and used. Specific examples include, for example, triethylamine, N-ethylpiperidine, N, N′-dimethylpiperazine, N-ethylmorpholine, tertiary amines such as phenolic Mannich bases, tetramethylammonium hydrogen carbonate, methyltriethylammonium carbonate.
  • Hydrogen salt ethyl trimethylammonium bicarbonate, propyltrimethylammonium bicarbonate, butyltrimethylammonium bicarbonate, pentyltrimethylammonium bicarbonate, hexyltrimethylammonium bicarbonate, heptyltrimethylammonium bicarbonate, octyltrimethylammonium bicarbonate Salt, nonyltrimethylammonium bicarbonate, decyltrimethylammonium bicarbonate, undecyltrimethylammonium bicarbonate, dodecyltri Methylammonium bicarbonate, tridecyltrimethylammonium bicarbonate, tetradecyltrimethylammonium bicarbonate, heptadecyltrimethylammonium bicarbonate, hexadecyltrimethylammonium bicarbonate, heptadecyltrimethylammonium bicarbonate, octadecyltrimethylammonium carbonate Hydrogen salt,
  • the amount of the isocyanurate-forming catalyst (F1) used is 0.001 to 0.5% by mass with respect to the total mass of the NCO group-terminated urethane prepolymer (A) and the active hydrogen group-end curing agent (B). It is preferably used in the range, and in particular, it is more preferably used in the range of 0.005 to 0.10% by mass from the viewpoint of easy reaction control.
  • the allophanatization catalyst for polyurethane (F2) used in the allophanatization reaction can be appropriately selected from known catalysts, and for example, a metal salt of a carboxylic acid can be used.
  • carboxylic acid examples include, for example, acetic acid, propionic acid, butyric acid, caproic acid, octylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, 2-ethylhexanoic acid and other saturated aliphatic carboxylic acids, cyclohexanecarboxylic acid , Saturated monocyclic carboxylic acids such as cyclopentanecarboxylic acid, saturated bicyclic carboxylic acids such as bicyclo [4.4.0] decane-2-carboxylic acid, mixtures of the above-mentioned carboxylic acids such as naphthenic acid, oleic acid, linole Monocarboxylic acids such as acid, linolenic acid, unsaturated fatty carboxylic acid such as soybean oil fatty acid and tall oil fatty acid, aromatic aliphatic carboxylic acid such as diphenylacetic acid, aromatic carboxylic acid such as benzoic acid and
  • Examples of the metal constituting the metal salt of carboxylic acid include alkali metals such as lithium, sodium and potassium, alkaline earth metals such as magnesium, calcium and barium, other typical metals such as tin and lead, manganese and iron , Transition metals such as cobalt, nickel, copper, zinc and zirconium. These carboxylic acid metal salts can be used alone or in combination of two or more.
  • alkanolamine examples include N, N, N, N′-trimethylaminoethylethanolamine, N, N-dimethylaminoethoxyethanol, and the like.
  • the amount of the allophanatization catalyst (F2) used is in the range of 0.001 to 0.5% by mass with respect to the total mass of the NCO group-terminated urethane prepolymer (A) and the active hydrogen group-terminated curing agent (B). In particular, from the viewpoint of easy reaction control, it is more preferably used in the range of 0.005 to 0.10% by mass.
  • the polyurethane urethanization catalyst (F3) used in the urethanization reaction can be appropriately selected from known catalysts.
  • amine catalyst examples include, for example, triethylenediamine, 2-methyltriethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetramethylpropylenediamine, N, N, N ′, N ′′, N ′′ -pentamethyldiethylenetriamine, N, N, N ′, N ′′, N ′′ -pentamethyl- (3-aminopropyl) ethylenediamine, N, N, N ′, N ′′, N ′′ -Pentamethyldipropylenetriamine, N, N, N ', N'-tetramethylhexamethylenediamine, bis (2-dimethylaminoethyl) ether, dimethylethanolamine, dimethylisopropanolamine, dimethylaminoethoxyethanol, N, N- Dimethyl-N '-(2-hydroxyethyl) ethylenediamine, N, N- Dimethyl
  • the imidazole-based catalyst examples include 1-methylimidazole, 1,2-dimethylimidazole, 1-isobutyl-2-methylimidazole, 1-dimethylaminopropylimidazole, N, N-dimethylhexanolamine, N-methyl- N ′-(2-hydroxyethyl) piperazine, 1- (2-hydroxyethyl) imidazole, 1- (2-hydroxypropyl) imidazole, 1- (2-hydroxyethyl) -2-methylimidazole, 1- (2- Hydroxypropyl) -2-methylimidazole and the like.
  • metal catalyst system examples include stannous diacetate, stannous dioctoate, stannous dioleate, stannous dilaurate, dibutyltin oxide, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin dichloride, dioctyltin dilaurate and the like.
  • Organotin catalysts nickel octylate, nickel naphthenate, cobalt octylate, cobalt naphthenate, bismuth octylate, bismuth naphthenate, and the like.
  • the amount of the urethanization catalyst (F3) used is in the range of 0.001 to 0.5% by mass with respect to the total mass of the NCO group-terminated urethane prepolymer (A) and the active hydrogen group-terminated curing agent (B). In particular, from the viewpoint of easy reaction control, it is more preferably used in the range of 0.005 to 0.10% by mass.
  • reaction inhibitor (E) used in the present invention is not particularly limited as long as the effects of the present invention are exhibited.
  • reaction inhibitor (E) examples include a phosphite ester system, an acidic phosphate ester system, and a polyoxyethylene alkyl ether phosphate system.
  • phosphite esters include triphenyl phosphate, tridecyl phosphate, and dibutyl hydrogen phosphate.
  • acidic phosphate ester examples include butyl acid phosphate, 2-ethylhexyl acid phosphate, and isodecyl acid phosphate.
  • Examples of the polyoxyethylene alkyl ether phosphoric acid system include di (C12-15) pares-2 phosphoric acid, di (C12-15) -pares tetraphosphoric acid, di (C12-15) -palace 6 phosphoric acid, di (C12 -15) -Palace 8-phosphate, di (C12-15) -Palace 10-phosphate, phosphoric acid (mono, di) polyethylene glycol (3EO) C10-14 alcohol, polyoxyethylene tridecyl ether phosphate, phosphorus Acid (mono, di) polyethylene glycol (4E0) 4-noniphenyl and the like.
  • an antioxidant if necessary, an antioxidant, a defoaming agent, an ultraviolet absorber and the like can be introduced into the forming composition as additives.
  • thermosetting polyurethane elastomer-forming composition described so far, a curing process (specifically, a process for promoting curing by heating) is performed in a mold as a process.
  • a curing process specifically, a process for promoting curing by heating
  • thermoset polyurethane elastomer molding having urethanized, nurated, and allophanatized bonds.
  • the method for producing a thermosetting polyurethane elastomer molded product using the forming composition of the present invention is preferably produced by a method including the following steps.
  • Step (1) NCO group terminal prepolymer (A) and active hydrogen group terminal curing agent (B).
  • the active hydrogen group terminal curing agent (B) does not contain the catalyst (F) in advance, the catalyst (F) is added separately.
  • the forming composition is prepared by mixing uniformly.
  • the bubbles are removed by vacuum defoaming or the like.
  • Step (2) Immediately after mixing the moldable composition into a preheated mold (casting), the moldable composition is cured in the mold (specifically, heated to cure reaction) Promote).
  • the temperature of the mold is preferably in the range of 80 to 170 ° C. from the viewpoint that the urethanization reaction, the nurateization and the allophanatization reaction are performed easily and reliably.
  • Step (3) After the forming composition is cured, the cured product (that is, the thermosetting polyurethane elastomer molded product) is taken out from the mold (demolding).
  • the time required from casting to demolding is not particularly limited.
  • the amount of catalyst and molding It is preferable that the preheating temperature of the mold is adjusted to be in the range of 30 to 600 seconds.
  • Step (4) After curing, the molded product of the thermosetting polyurethane elastomer is removed, and then subjected to aging treatment at room temperature for one week.
  • the compounding molar ratio (hereinafter abbreviated as “ ⁇ value”) determined from the NCO group content of the NCO group-terminated prepolymer and the OH group (NH 2 group) content of the active hydrogen group terminal curing agent at the time of casting, OH group
  • ⁇ value The compounding molar ratio (hereinafter abbreviated as “ ⁇ value”) determined from the NCO group content of the NCO group-terminated prepolymer and the OH group (NH 2 group) content of the active hydrogen group terminal curing agent at the time of casting, OH group
  • the (NH 2 group) / NCO group can be selected according to the selected catalyst type and desired physical properties.
  • the ⁇ value is preferably 0.2 to 0.8 when the polyurethane nurating catalyst (F1) or the polyurethane allophanating catalyst (F2) is used.
  • a urethanization catalyst (F3) can also be used in combination.
  • it is less than 0.2 nurateization or allophanate formation by excess isocyanate becomes extremely large, and this increase in the cross-linking point may lead to a significant decrease in tensile property values.
  • it exceeds 0.8 the number of cross-linking points due to nurateization or allophanate decreases, leading to a decrease in initial modulus (M100), a large deformation amount with respect to stress, and a lack of strength with respect to hardness.
  • the ⁇ value when the urethanization catalyst (F3) is used alone is preferably 0.8 to 1.0. If it is less than 0.8, sufficient molecular extension cannot be performed and problems such as insufficient curing occur. Further, when the ratio exceeds 1.0, problems such as deterioration of physical properties and insufficient curing may occur.
  • thermosetting polyurethane elastomer molded product produced by using the forming composition of the present invention can be efficiently reduced in friction by heat treatment at 100 to 200 ° C. for 1 to 60 minutes after demolding. it can.
  • the heating temperature is less than 100 ° C. or when the time is less than 1 minute, the effect is small because the lubricant is difficult to transfer to the outermost surface.
  • a heat temperature exceeds 200 degreeC or time exceeds 60 minutes, it is easy to lead to the increase in a friction coefficient by softening of a thermosetting polyurethane molding, and an effect is small.
  • thermosetting polyurethane elastomer-forming composition of the present invention can be suitably used for industrial machine parts that require a low friction coefficient.
  • the release agent composition used in the resin molding of the present invention for solving the second problem has a molecular structure containing at least one carboxylate selected from the group consisting of at least quaternary ammonium and quaternary phosphonium.
  • the organopolysiloxane (J) contained therein the isocyanurate reaction on the mold contact surface is promoted, and only the surface is hardened due to an increase in the crosslink density, and the resulting polyurethane resin molded product retains the conventional physical properties. However, low friction can be achieved.
  • the organopolysiloxane (J) having in its molecular structure at least one carboxylate selected from the group consisting of quaternary ammonium and quaternary phosphonium is not contained, the resulting molded product does not have low friction.
  • the organopolysiloxane (J) and the silicone (L) having an active hydrogen group are used in combination, it is possible to impart slipperiness in addition to increasing the hardness of the surface, and to further reduce friction.
  • the organopolysiloxane (J) used in the present invention can be obtained, for example, by reacting a carboxyl group-containing organopolysiloxane with at least one hydroxide selected from the group consisting of quaternary ammonium and quaternary phosphonium.
  • hydroxide selected from the group consisting of quaternary ammonium and quaternary phosphonium.
  • salts with acids that are weaker than carboxylic acids, such as carbonates undergo a salt exchange reaction with the carboxylic acids in the organopolysiloxane, promptly.
  • a desired release agent composition can be obtained.
  • the organopolysiloxane (J) used in the resin molding of the present invention has a structure in which at least one carboxylate selected from the group consisting of quaternary ammonium and quaternary phosphonium is bonded to the organopolysiloxane molecule. As long as the above effect is exhibited, the structure and the manufacturing method are not limited to those described above.
  • the content of the carboxylate is not particularly limited, but is preferably 0.3 mmol / g or more based on the organopolysiloxane (J) in order to achieve low friction by increasing the hardness of the molding surface.
  • the release agent composition containing an organopolysiloxane (J) having at least one carboxylate selected from the group consisting of quaternary ammonium and quaternary phosphonium in the molecular structure improves the coatability.
  • release agent compositions may be diluted with a solvent capable of dissolving, ether compounds such as diethyl ether and tetrahydrofuran (hereinafter abbreviated as “THF”), ester compounds such as ethyl acetate and butyl acetate, benzene and toluene Examples thereof include aromatic hydrocarbon compounds such as hexane, octane, etc., or mixtures thereof.
  • THF diethyl ether and tetrahydrofuran
  • ester compounds such as ethyl acetate and butyl acetate
  • benzene and toluene examples thereof include aromatic hydrocarbon compounds such as hexane, octane, etc., or mixtures thereof.
  • J organopolysiloxane
  • J organopolysiloxane
  • Specific examples of the raw material to be used include the following.
  • organopolysiloxane having a carboxyl group examples include a dimethylpolysiloxane having a carboxyl group at one end and a molecular weight of 1000 to 2000 (for example, “X-22-3710” manufactured by Shin-Etsu Silicone), and a molecular weight of 4000 having a carboxyl group at both ends.
  • dimethylpolysiloxane for example, “X-22-162C” manufactured by Shin-Etsu Silicone
  • dimethylpolysiloxane having a carboxyl group in the side chain for example, “X-22-3701E” manufactured by Shin-Etsu Silicone
  • the silicone (L) having an active hydrogen group used in the present invention is not particularly limited as long as it is a silicone compound having an amino group, a hydroxyl group, a thiol group, or a carboxyl group, and specifically, dimethyl silicone, methylphenyl silicone, diphenyl silicone. Dimethyl methylphenyl silicone, dimethyl diphenyl silicone, methyl hydrogen silicone, and mixtures thereof.
  • the position and the number of active hydrogen groups are not particularly limited, and one or more active hydrogen groups may be present at the terminal or side chain. Of these, silicone having an amino group is preferred.
  • the amount of the active hydrogen group-containing silicone (L) used in the present invention is not particularly limited, but is 5 to 150 parts by weight, particularly 10 to 120 parts by weight, based on 100 parts by weight of the organopolysiloxane (J). Is preferred. If the amount is 5 parts by mass or less, the imparting and hardening of the slipperiness to the surface of the molded product is small, and if it is 150 parts by mass or more, the effect of increasing the hardness of the surface is reduced, and the synergistic effect of the slipperiness and the increase in hardness cannot be obtained.
  • the mold release agent composition is applied to a mold, and the polyurethane resin-forming composition (K) is injected into the mold and molded to obtain a polyurethane resin molded product having low friction.
  • the polyurethane resin-forming composition (K) used in the present invention preferably comprises an NCO group-terminated prepolymer (A0) and an active hydrogen group-terminated curing agent (B0), and more preferably a polyoxyethylene alkyl ether (C1), It preferably contains at least one lubricant (C) selected from linear aliphatic alcohol (C2), octadecyl isocyanate (C3), and fatty acid amide (C4) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less. .
  • the NCO group-terminated urethane prepolymer (A0) used in the present invention can be obtained by a urethanization reaction of at least a polyisocyanate (A6), a polyol and (A7) using a reaction inhibitor if necessary.
  • the NCO content of the NCO group-terminated urethane prepolymer is preferably 5 to 25% by mass. When the NCO content is lower than 5% by mass, the viscosity of the prepolymer is mainly increased, and the flowability of the urethane resin is remarkably deteriorated during casting. When the content is higher than 25% by mass, the stability of properties during storage and use is remarkably deteriorated, and it is difficult to obtain a stable industrial machine part, resulting in molding failure. It will become unsuitable as a terminal urethane prepolymer (A0).
  • the NCO group-terminated urethane prepolymer (A0) is prepared by adding a polyisocyanate (A6) and, if necessary, a reaction inhibitor to a stirring vessel and stirring the polyol (A7) while maintaining the temperature in the stirring vessel at 40 to 70 ° C. ) Is stirred. Subsequently, the urethanization reaction can be carried out for about 2 to 5 hours while maintaining the temperature in the stirring vessel at 70 to 90 ° C.
  • the polyisocyanate (A6) used for molding the polyurethane resin of the present invention is not particularly limited as long as the effects of the present invention are exhibited. From the viewpoint of mechanical properties and reaction control, at least one kind is preferably selected from aromatic diisocyanates, and 4,4'-diphenylmethane diisocyanate is particularly preferable.
  • Polyisocyanate (A6) examples include the polyisocyanate (A6) described above.
  • the polyol (A7) used in the present invention is not particularly limited as long as the effects of the present invention are exhibited, but from the viewpoint of mechanical properties and glass transition temperature, the average number of functional groups is 2 to 3, and the number average molecular weight is 250 to 5000. It is preferable that at least one kind selected from polyester polyols and polyether polyols. In addition, a monomer polyol can also be used together as needed.
  • polyester polyol examples include the above-described polyester polyol.
  • polyether polyol examples include the above-described polyether polyol. .
  • polycarbonate polyol examples include the above-described polycarbonate polyol.
  • the polyol may be a polyolefin polyol, an acrylic polyol, a silicone polyol, a castor oil-based polyol, or a fluorine-based polyol alone or in combination of two or more as long as the performance does not deteriorate.
  • polyolefin polyol examples include the above-described polyolefin polyol.
  • acrylic polyol examples include the above-described acrylic polyol.
  • silicone polyol examples include the aforementioned silicone polyols.
  • ⁇ Castor oil-based polyol As the castor oil-based polyol, the aforementioned castor oil-based polyol can be exemplified.
  • fluorine-based polyol examples include the fluorine-based polyol described above.
  • ⁇ Monomer polyol examples include the monomer polyol described above.
  • reaction inhibitor used in the present invention is not particularly limited as long as the effects of the present invention are exhibited, and examples thereof include the reaction inhibitor (E) described above.
  • the active hydrogen group terminal curing agent (B0) used in the present invention is not particularly limited as long as at least the polyol (A7) described above can be used, and the effects of the present invention are exhibited.
  • monomer polyols can be used alone or in admixture of two or more. Further, a mixture obtained by adding any one of polyester polyols, polyether polyols, and polycarbonate polyols having an average functional group number of 2 to 3 and a number average molecular weight of 250 to 5000 can be used.
  • the monomer polyol a mixture of 1,4-butanediol and trimethylolpropane is preferable. Further, a mixture in which a polyester polyol or polyether polyol having an average number of functional groups of 2 and an average molecular weight of 500 to 3000 is added is preferred.
  • the active hydrogen group terminal curing agent (B0) used in the present invention can be added with a catalyst (F) as required.
  • the catalyst is not particularly limited as long as the effects of the invention are achieved. From the viewpoint of improving mechanical properties and molding processability, the isocyanurate catalyst (F1), the allophanate catalyst (F2), the urethanization catalyst (F3) ) Is used.
  • the urethanization catalyst may be a known general amine catalyst such as triethylenediamine, imidazole catalyst such as 1-isobutyl-2-methylimidazole, metal catalyst such as dioctyltin dilaurate, and the like.
  • the isocyanuration catalyst can be a potassium salt or a quaternary ammonium salt, and the allophanate catalyst can be N, N, N'-trimethylaminoethylethanolamine or N, N-dimethylaminoethoxyethanol. These may be used alone or in admixture of two or more as required.
  • isocyanurate-forming catalyst it can be appropriately selected from known catalysts, and examples thereof include the above-mentioned isocyanurate-forming catalysts.
  • the amount of the isocyanurate-forming catalyst is preferably used in a range of 0.001 to 0.5% by mass with respect to the total mass of the NCO group-terminated urethane prepolymer and the OH group-end curing agent. From the viewpoint of easy reaction control, it is more preferably used in the range of 0.005 to 0.10% by mass.
  • the allophanatization catalyst can be appropriately selected from known catalysts, and examples thereof include the allophanatization catalyst for polyurethane described above.
  • the amount of the allophanatization catalyst used is preferably in the range of 0.001 to 0.5% by mass with respect to the total mass of the NCO group-terminated urethane prepolymer and the active hydrogen group-terminated curing agent, From the viewpoint of easy reaction control, it is more preferably used in the range of 0.005 to 0.10% by mass.
  • the polyurethane urethanization catalyst used in the urethanization reaction can be appropriately selected from known catalysts, and examples thereof include the polyurethane urethanization catalysts described above.
  • the amount of the urethanization catalyst used is preferably in the range of 0.001 to 0.5% by mass with respect to the total mass of the NCO group-terminated urethane prepolymer and the active hydrogen group-end curing agent, From the viewpoint of easy reaction control, it is more preferably used in the range of 0.005 to 0.10% by mass.
  • a lubricant (C) can be added to the polyurethane resin-forming composition (K) of the present invention.
  • the lubricant (C) is not particularly limited, but is particularly polyoxyethylene alkyl ether (C1), a linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less, octadecyl isocyanate (C3), It is preferable to use at least one lubricant selected from fatty acid amides (C4).
  • the addition amount of the lubricant is not particularly limited, but is preferably 0.1 to 8% by mass, particularly preferably 0.2 to 5% by mass in the polyurethane resin-forming composition (C). If it is less than 0.1% by mass, the effect of reducing friction due to the imparting of slipperiness to the surface of the molded product is small. Specific examples of compounds are given below.
  • the polyoxyethylene alkyl ether (C1) examples include the polyoxyethylene alkyl ether (C1) described above.
  • the hydroxyl value is preferably 5 to 70 KOHmg / g. When the hydroxyl value exceeds 70 KOH mg / g, the number of carbon atoms is generally short, and the effect as a lubricant component is gradually reduced. On the other hand, when the hydroxyl value is less than 5 KOHmg / g, the surface may be roughened.
  • Linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or lower As the linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less, the linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less is used. Can be mentioned. In order to effectively reduce friction, the melting point is 90 ° C. or lower.
  • the solubility with the NCO-terminated urethane prepolymer (A0) is generally poor, and even if the temperature during prepolymer synthesis is raised to 100 ° C or higher, uniform dissolution is not only difficult, but the reaction temperature The increase in viscosity may increase the viscosity due to side reactions such as allophanatization, leading to a decrease in quality of the prepolymer. Moreover, the solubility with an active hydrogen group terminal hardening
  • thermosetting polyurethane elastomer During production, it can be dissolved by heating above the melting point, but when it is filled and stored, it will crystallize at room temperature, so when molding a thermosetting polyurethane elastomer, heat it again above the melting point. However, it is necessary to stir uniformly, and it becomes difficult to handle.
  • octadecyl isocyanate (C3) As the octadecyl isocyanate (C3), the above-mentioned octadecyl isocyanate (C3) can be mentioned, and Millionate O (manufactured by Hodogaya Chemical Co., Ltd.) can be used as a specific example of a commercially available product.
  • fatty acid amide (C4) examples include the fatty acid amide (C4) described above, and are not particularly limited as long as they are amide compounds derived from fatty acids and amines, but with the polyurethane resin-forming composition (K). Higher fatty acid amides having 10 to 20 carbon atoms are preferred from the viewpoint of compatibility.
  • an antioxidant if necessary, an antioxidant, a defoaming agent, an ultraviolet absorber and the like can be introduced and used as an additive in the forming composition.
  • thermosetting polyurethane elastomer-forming composition of the present invention described so far, curing treatment (specifically, treatment for accelerating curing by heating) in the mold.
  • curing treatment specifically, treatment for accelerating curing by heating
  • thermoset polyurethane elastomer molding having urethane, nurate, and allophanate bonds.
  • the manufacturing process in this case is preferably manufactured by the method of the above-described steps (1) to (4).
  • the molar ratio (NCO group / active hydrogen group) between the NCO group content of the NCO group-terminated prepolymer (A0) and the active hydrogen group content of the active hydrogen group terminal curing agent (B0) at the time of casting is determined by the selected catalyst. It can be selected according to the species and the desired physical properties.
  • 1.2 to 3.0 is preferable.
  • a urethanization catalyst can be used in combination.
  • the ratio is less than 1.2, the number of cross-linking points due to nurateization or allophanate decreases, and sufficient friction reduction does not occur.
  • the initial modulus (M100) is lowered, the deformation amount with respect to the stress is large, and the strength is insufficient with respect to the hardness.
  • the urethanization catalyst when used alone, 1.0 to 1.2 is preferable. If it exceeds 1.2, sufficient molecular extension cannot be performed and problems such as insufficient curing occur. Moreover, when it is less than 1.0, problems such as deterioration of physical properties and insufficient curing occur. In particular, in the present invention, since it is important that excess isocyanate is isocyanurate on the mold contact surface, it is preferable that the isocyanate is excessive as long as the physical properties are not impaired.
  • the NCO group-terminated urethane prepolymer and the catalyst-containing active hydrogen group-end curing agent are mixed by a two-component mixed urethane casting machine, thereby producing the heat of the present invention.
  • a curable polyurethane elastomer-forming composition was prepared. This formable composition is poured into a mold for forming a flat sheet having a thickness of 2 mm or 3 mm, which has been preheated to a curing temperature in advance, and the molded product can be taken out from the mold (minimum mold removal).
  • the polyurethane elastomer molding (D) of the present invention was obtained by heat-curing in a mold for a period of time and quickly removing the molding.
  • the NCO group-terminated urethane prepolymer and the catalyst-containing active hydrogen group-end curing agent are mixed by a two-component mixed urethane casting machine, whereby the heat of the present invention.
  • a curable polyurethane elastomer-forming composition was prepared. This composition is poured into a mold for forming a flat sheet having a thickness of 2 mm or 3 mm, which has been preheated to a curing temperature in advance, and the molded product is removed from the mold for a minimum time that can be removed (demolding).
  • the polyurethane elastomer molded product (D) of the present invention was obtained by heat-curing in a mold and quickly removing the molded product.
  • NCO group-terminated urethane prepolymers (A0), or () by adding an appropriate amount of antifoaming agent and proceeding the urethanization reaction for about 2 to 5 hours while keeping the temperature in the stirring vessel at 70 to 90 ° C. A3) was obtained.
  • octadecyl isocyanate (C3) was added after the urethanization reaction and stirred and mixed for about 0.5 to 1 hour.
  • thermosetting polyurethane elastomer-forming composition of the present invention was prepared by mixing with a liquid mixing urethane casting machine. This composition is poured into a mold for forming a flat sheet having a thickness of 2 mm or 3 mm, which has been preheated to a curing temperature in advance, and the molded product is removed from the mold for a minimum time that can be removed (demolding).
  • the polyurethane elastomer molded product (D) of the present invention was obtained by heat-curing in a mold and quickly removing the molded product. Tables 10 and 11 show the evaluation results of the obtained molded product, such as the coefficient of friction.
  • fatty acid amide (C4) and an antifoaming agent are added, and the urethanization reaction is advanced for about 2 to 5 hours while maintaining the temperature in the stirring vessel at 70 to 90 ° C.
  • Various NCO group-terminated urethane prepolymers (A5) were obtained.
  • the fatty acid amide (C4) was added after the urethanization reaction, and the mixture was stirred and mixed for about 0.5 to 1 hour.
  • thermosetting polyurethane elastomer-forming composition of the present invention was prepared by mixing with a liquid mixing urethane casting machine. This composition is poured into a mold for forming a flat sheet having a thickness of 2 mm or 3 mm, which has been preheated to a curing temperature in advance, and the molded product is removed from the mold for a minimum time that can be removed (demolding).
  • the polyurethane elastomer molded product (D) of the present invention was obtained by heat-curing in a mold and quickly removing the molded product. Tables 13 and 14 show the evaluation results of the obtained molded product, such as the coefficient of friction.
  • Catalyst (26) POLYCAT-46; (Air Products), mixture of potassium acetate and ethylene glycol (27) DABCO TMR; (Air Products), mixture of quaternary ammonium salt catalyst and ethylene glycol (28) TOYOCAT RX- 5; (manufactured by Tosoh Corp.), trimethylaminoethylethanolamine (29) TOYOCAT TEDA-L33E; (manufactured by Tosoh Corp.), a mixture of triethylenediamine and ethylene glycol "Other additives” (30) Reaction inhibitor: Phospholan PS-236 (manufactured by Akzo Nobel), mono-di (C10-12) palace-5 phosphate (31) antioxidant; Irganox 1010 (manufactured by BASF Japan) pentaerythritol tetrakis [3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] (32) Antifoam
  • JIS-A hardness Measured using a type A hardness meter in accordance with JIS K7312.
  • test piece A 3 mm thick molded sheet was cut into a width of 25 mm and a length of 100 mm, and degreased using cyclohexane to prepare a test piece. Thereafter, after standing for 1 day in an environment of room temperature 23 ° C. and humidity 50%, the static friction coefficient and the dynamic friction coefficient were measured under the following conditions. The measurement was continuously repeated 1000 times, and the average value of the 5th to 10th outbound trips was used as the initial value, and the average value of 995 to 1000 outbound trips was used as the late value and used as an indicator of sustainability.
  • Presence / absence of bleed and bloom The test piece used for the measurement of the dynamic friction coefficient was left in an environment of room temperature 23 ° C. and humidity 50% for 2 weeks, and then the surface condition of the test piece before and after wiping off the gauze was visually observed. The presence or absence of bleed and bloom was evaluated.
  • Comparative Example 1 is a comparative example in which the polyoxyethylene alkyl ether (C1) of the present invention is less than 0.1% by mass, and is not suitable because sufficient friction reduction cannot be achieved.
  • Comparative Example 2 is a comparative example in which the polyoxyethylene alkyl ether (C1) of the present invention exceeds 8% by mass, and the friction property is sufficiently reduced, but the tensile property value is extremely low and is not suitable. Met.
  • Comparative Examples 3 to 7 are comparative examples in the case of using a lubricant other than the present invention. Although the friction is reduced, the compatibility with the isocyanate group-terminated urethane prepolymer and the active hydrogen group-end curing agent is low. Unfortunately, bleeding or bloom was seen in the obtained molded product, which was not suitable.
  • Comparative Example 8 is a comparative example in the case where the linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less is less than 0.1% by mass, and sufficient friction reduction cannot be achieved. It was not suitable.
  • Comparative Example 9 is a comparative example in the case where the linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less of the present invention exceeds 5% by mass, and sufficiently reduces friction. However, the tensile properties were extremely low and not suitable.
  • Comparative Example 10 is a comparative example in which a lubricant other than the present invention is used. Although it contains 20 to 40 carbon atoms, it contains a substance having a melting point exceeding 90 ° C., and low friction is achieved. However, the compatibility with the isocyanate group-terminated urethane prepolymer (A) and the active hydrogen group-terminated curing agent (B) was poor, and the resulting molded product was uneven and unsuitable.
  • Comparative Example 11 is a comparative example in which a lubricant other than the present invention is used, and contains a substance having a carbon number of 30 to 50 and a melting point exceeding 90 ° C., and a little lower friction is achieved.
  • the compatibility with the isocyanate group-terminated urethane prepolymer and the active hydrogen group-terminated curing agent was poor, and the resulting molded product was uneven and unsuitable.
  • Comparative Example 12 is a comparative example in which a lubricant other than the present invention is used, and since it does not have a hydroxyl group, low friction is achieved, but an isocyanate group-terminated urethane prepolymer, an active hydrogen group-terminated curing agent.
  • the molded product obtained was not uniform and bleeds and blooms were not suitable.
  • Comparative Example 13 was a comparative example in which a lubricant other than the present invention was used, and the carbon number was as short as C16, which was not suitable because sufficient friction reduction could not be achieved.
  • Comparative Example 14 was a comparative example in which the lubricant of the present invention was not contained, and was not suitable as a thermosetting polyurethane for industrial machine parts because sufficient friction was not achieved.
  • Comparative Example 15 is a comparative example in which only octadecyl isocyanate (C3) of the present invention is contained, and although low friction is somewhat achieved, it is not suitable as a thermosetting polyurethane for industrial machine parts. Met.
  • Reference Examples 1, 3, and 4 are at least one selected from the polyoxyethylene alkyl ether (C1) of the present invention, a linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or lower. This is a case where more than one kind of compound is contained, and the initial value of the dynamic friction coefficient is low, but it is understood that the friction coefficient may be increased in the continuous repeated friction test.
  • Reference Example 2 is an example in which the polyoxyethylene alkyl ether (C1) of the present invention and a montanic acid ester WAX (Licowax E) as a general lubricant are contained, and the static friction coefficient and the dynamic friction coefficient are extremely high. However, it is understood that bleed and bloom may be generated from the thermosetting polyurethane elastomer-forming composition.
  • Comparative Example 18 is at least one compound selected from the polyoxyethylene alkyl ether (C1) of the present invention, a linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or lower.
  • C1 polyoxyethylene alkyl ether
  • C2 linear aliphatic alcohol
  • Reference Example 5 is a polyoxyethylene alkyl ether (C1) of the present invention, at least one compound selected from linear aliphatic alcohols (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or lower.
  • C1 polyoxyethylene alkyl ether
  • C2 linear aliphatic alcohols
  • C3 octadecyl isocyanate
  • the content of these lubricants (C) exceeds 8% by mass, and although sufficient friction reduction is achieved, the mechanical strength may be lowered. Is understood.
  • Reference Example 6 is an example in which 5.0% of polyoxyethylene alkyl ether (C1) was added as a lubricant. Although the coefficient of dynamic friction has decreased, it is understood that the late value is higher than the initial value, and the persistence of low friction may be reduced.
  • C1 polyoxyethylene alkyl ether
  • Reference Example 7 is an example in which 4.9% polyoxyethylene alkyl ether (C1) and 0.82% fatty acid amide (C4) were added. Although the coefficient of friction was at a practical level and its sustainability was good, it is understood that bleed and bloom may occur.
  • Comparative Example 24 is an example in which 0.30% of fatty acid amide (C4) was added. No decrease in the dynamic friction coefficient was observed.
  • Comparative Example 25 is an example in which 4.0% of polyoxyethylene alkyl ether (C1) is added and 0.51% of montanic acid ester wax (Licowax E) is added instead of fatty acid amide (C4).
  • C1 polyoxyethylene alkyl ether
  • Liowax E montanic acid ester wax
  • C4 fatty acid amide
  • Comparative Example 26 is an example in which 2.5% of 1-hexadecanol, which is an aliphatic alcohol having less than 20 carbon atoms, and 0.25% of fatty acid amide (C4) are added. Although the coefficient of friction decreased slightly, it was not at a sufficient level for use in industrial machine parts.
  • 1-hexadecanol which is an aliphatic alcohol having less than 20 carbon atoms
  • C4 fatty acid amide
  • Comparative Example 27 is an example in which 11.2% polyoxyethylene alkyl ether (C1) and 0.19% fatty acid amide were added. The coefficient of friction decreased slightly, but the tensile strength and elongation decreased significantly.
  • Examples 30-37 Using a sheet of 3 mm thickness prepared in the same process according to Tables 1 and 3, cut out to 3 mm (width) x 30 mm (length) x 10 mm (height) with a feather shaving blade S single blade (product number: FAS-10) A test piece (D1) for confirming the friction coefficient of the cutting surface was prepared. Then, according to Table 9, the 2 mm thick sheet (D) and the cut 3 mm thick sheet (D1) were heat-treated, and the static friction coefficient and the dynamic friction coefficient were measured. The results are shown in Table 9.
  • Examples 38-45 Using a sheet of 3 mm thickness produced in the same process according to Table 5, cut out to 3 mm (width) x 30 mm (length) x 10 mm (height) with a feather shaving blade S single blade (product number: FAS-10) and cut A test piece (D1) for checking the coefficient of friction of the surface was prepared. Next, according to Table 12, the 2 mm thick sheet (D) and the cut 3 mm thick sheet (D1) were heat-treated, and the static friction coefficient and the dynamic friction coefficient were measured. The results are shown in Table 12.
  • Examples 46-53 Using a sheet of 3 mm thickness produced in the same process according to Table 7, cut and cut into 3 mm (width) x 30 mm (length) x 10 mm (height) with a feather shaving blade S single blade (product number: FAS-10) A test piece (D1) for checking the coefficient of friction of the surface was prepared. Next, according to Table 15, the 2 mm thick sheet (D) and the cut 3 mm thick sheet (D1) were heat-treated, and the static friction coefficient and the dynamic friction coefficient were measured. The results are shown in Table 15.
  • % means “% by mass” unless otherwise specified.
  • carboxyl equivalent if it is 1000 g / mol, for example, it has having one carboxyl group per 1000 molecular weight silicone units.
  • TMAH tetramethylammonium hydroxide solution
  • MSA mineral spirit A
  • release agent 6 ⁇ Synthesis of release agent 6> Release agent 1 and release agent 4 were mixed at a mass ratio of 1: 1 to obtain release agent 6.
  • TMAH TMAH (equal moles relative to the carboxyl group of organopolysiloxane B) was added, and the mixture was stirred at room temperature for 1 hour. From this reaction solution, THF and water were removed under reduced pressure, and MSA was added to the residue to prepare a non-volatile content of 50%, whereby a release agent 7 was obtained.
  • TMAH equimolar to the carboxyl groups of organopolysiloxane A and organopolysiloxane C
  • Organopolysiloxane D unmodified dimethylpolysiloxane “KF-96” manufactured by Shin-Etsu Silicone was used as the release agent 13.
  • ⁇ Releasing agent 14> The release agent 12 and the release agent 13 were mixed at a mass ratio of 15:85 to obtain a release agent 14.
  • the NCO group-terminated urethane prepolymer and the catalyst-containing active hydrogen group-end curing agent are mixed by a two-component mixed urethane casting machine, thereby forming a polyurethane resin-forming composition.
  • a composition is prepared, and this composition is poured into a mold for forming a flat sheet having a thickness of 2 mm, which has been preheated to the curing temperature and coated with the release agent composition of the present invention, and the molded product is removed from the mold.
  • the polyurethane elastomer molded product (sheet) of the present invention was obtained by heat-curing in a mold for a minimum time (demolding) and quickly demolding the molded product.
  • the characteristics evaluation method of the obtained molded sheet is as follows.
  • JIS-A hardness Measured using an A-type hardness meter according to JIS K7312.
  • Examples 101 to 112 show the implementation results of the present invention. Under any of the conditions in the examples, by using the release agent of the present invention, a tough polyurethane resin having a low dynamic friction coefficient, high mechanical strength, and high strength could be obtained.
  • Comparative Examples 101 to 104 do not contain the organopolysiloxane (J) having a quaternary ammonium and / or quaternary phosphonium carboxylate of the present invention in the molecular structure in the release agent, the dynamic friction coefficient is high. It became a polyurethane resin.
  • Comparative Example 105 is close to the embodiment of the present invention, but at least one carboxylate selected from the group consisting of quaternary ammonium and quaternary phosphonium is not bonded to organopolysiloxane, that is, quaternary ammonium and 4 Since this is not an organopolysiloxane (J) having in its molecular structure at least one carboxylate selected from the group consisting of secondary phosphoniums, a polyurethane resin having a high dynamic friction coefficient was obtained.
  • organopolysiloxane J
  • Example 113 After adding 29 g of silicone (I) (single-end hydroxyl group-containing “X-22-170BX”, hydroxyl group equivalent: 2800 g / mol) manufactured by Shin-Etsu Silicone Co., Ltd. to release agent 3, TBAH-modified organopolysiloxane A / one-end hydroxyl group-containing silicone A release agent composition having a content of 50/50 was prepared. A polyurethane elastomer molded article was obtained in the same manner as in Example 103, except that this release agent composition was used. The results are shown in Table 21.
  • Examples 114-120 A release agent composition was prepared by changing the amount and type of one-end hydroxyl group-containing silicone used in Example 113, and a polyurethane elastomer molded product was obtained in the same manner as in Example 103.
  • the silicone used is shown below.
  • Comparative Examples 106 and 107 A polyurethane elastomer molded product was obtained in the same manner as in Example 103, except that silicone (I) or silicone (IV) was used as the release agent. The results are shown in Table 21. Even if silicone having an active hydrogen group is used as a release agent, the effect of reducing the dynamic friction coefficient is small.
  • Example 121 In the synthesis of urethane prepolymer 1 (UP-1), the amount of diphenylmethane diisocyanate was changed to 515 g, and further 5 g of octadecyl isocyanate (“Millionate O” manufactured by Hodogaya Chemical Co., Ltd.) was added to the polyurethane resin-forming composition. 25 mass%) was added to prepare urethane prepolymer 3 (UP-3). A polyurethane elastomer molded product was obtained in the same manner as in Example 103 except that UP-1 was changed to UP-3.
  • Example 122 In the preparation of polyol 1 (PO-1), the amount of polybutylene adipate “Niporan 4010” was changed to 880 g, and 20 g of polyoxyethylene cetyl ether (“NIKKOL BC-150” manufactured by Nikko Chemicals Co., Ltd.) was formed. Polyol 4 (PO-4) was prepared by adding 1% by mass in the active composition. A polyurethane elastomer molded product was obtained in the same manner as in Example 103 except that PO-1 was changed to PO-4.
  • Example 123 In the preparation of polyol 1 (PO-1), the amount of polybutylene adipate “Nippolan 4010” was changed to 840 g, and further 60 g of polyoxyethylene cetyl ether “NIKKOL BC-150” (3% in the polyurethane resin-forming composition). (Mass%) was added to prepare polyol 5 (PO-5). A polyurethane elastomer molded product was obtained in the same manner as in Example 103 except that PO-1 was changed to PO-5.
  • Example 124 A molded polyurethane elastomer was obtained in the same manner as in Example 103, except that urethane prepolymer 3 (UP-3) and polyol 4 (PO-4) were used.
  • UP-3 urethane prepolymer 3
  • PO-4 polyol 4
  • Example 125 In the preparation of polyol 4 (PO-4), instead of polyoxyethylene cetyl ether, 20 g of behenyl alcohol (“NIKKOL behenyl alcohol 80” manufactured by Nikko Chemicals Co., Ltd., melting point: 65 to 75 ° C.) was added to the polyurethane resin-forming composition. (Mass%) was used to prepare polyol (PO-6). A polyurethane elastomer molded product was obtained in the same manner as in Example 103 except that PO-1 was changed to PO-6.
  • NIKKOL behenyl alcohol 80 manufactured by Nikko Chemicals Co., Ltd., melting point: 65 to 75 ° C.
  • Example 126 In the preparation of polyol 1 (PO-1), 10 g of N-oleyl stearamide (Nikka Amide OS manufactured by Nippon Kasei Co., Ltd.) as a saturated fatty acid amide (0.5% by mass in the polyurethane resin-forming composition) was added. Polyol 7 (PO-7) was prepared. A polyurethane elastomer molded product was obtained in the same manner as in Example 103 except that PO-1 was changed to PO-7.
  • N-oleyl stearamide Nikka Amide OS manufactured by Nippon Kasei Co., Ltd.

Abstract

To provide a thermosetting polyurethane elastomer which is free from the occurrence of bleeding and blooming, and which has extremely low coefficient of friction. The present invention solves a problem by introducing, into a thermosetting polyurethane elastomer-forming composition, at least one substance selected from the group consisting of polyoxyethylene alkyl ethers and linear aliphatic alcohols having 20-40 carbon atoms and a melting point of 90°C or less, and additionally octadecyl isocyanate in order to achieve a better effect, or alternatively, by introducing an aliphatic amide and at least one substance selected from the group consisting of polyoxyethylene alkyl ethers, linear aliphatic alcohols having 20-40 carbon atoms and a melting point of 90°C or less and octadecyl isocyanate. The present invention solves another problem by using, for resin molding, a mold release agent composition which contains an organopolysiloxane having at least one carboxylate selected from the group consisting of quaternary ammonium and quaternary phosphonium in the molecular structure.

Description

ポリウレタンエラストマー形成性組成物、及びそれを用いた産業機械部品、並びに樹脂成型に用いられる離型剤組成物、及びそれを用いて成型されるポリウレタン樹脂成型物Polyurethane elastomer-forming composition, industrial machine parts using the same, release agent composition used for resin molding, and polyurethane resin molded product molded using the same
 本発明は、産業機械部品部材に用いられる熱硬化性ポリウレタンエラストマー形成性組成物、並びに樹脂成型に用いられる離型剤組成物、及びそれを用いて製造したポリウレタン樹脂成形物に関する。 The present invention relates to a thermosetting polyurethane elastomer-forming composition used for industrial machine component members, a release agent composition used for resin molding, and a polyurethane resin molded product produced using the same.
 熱硬化性ポリウレタンエラストマーは、高モジュラス、高破断強度、低摩耗、低歪であることから耐久性が非常に高く、産業機械の部品部材として好適に使用されている。 The thermosetting polyurethane elastomer has a very high durability because it has a high modulus, high breaking strength, low wear, and low strain, and is suitably used as a component member of an industrial machine.
 一般的に産業機械部品部材に用いられる熱硬化性ポリウレタンエラストマーは、イソシアネート基成分からなる主剤と、活性水素含有成分からなる硬化剤とを、注型機のミキシングヘッドで混合し、得られた混合液を型内に注入し、この型内で当該混合液を加熱硬化(ウレタン化反応)させることにより製造することができる。
また、成形品の取り出しを容易にするため、予め型内面には離型剤を塗布することが行われている。離型剤としては、ポリエチレンワックス、オルガノポリシロキサン、ポリフッ化エチレンなどが好適に用いられる。
In general, thermosetting polyurethane elastomers used for industrial machine component parts are obtained by mixing a main agent composed of an isocyanate group component and a curing agent composed of an active hydrogen-containing component with a mixing head of a casting machine. The liquid can be poured into a mold, and the mixed liquid can be heated and cured (urethane reaction) in the mold.
In order to facilitate removal of the molded product, a mold release agent is applied to the inner surface of the mold in advance. As the mold release agent, polyethylene wax, organopolysiloxane, polyfluorinated ethylene and the like are preferably used.
 そして、熱硬化ポリウレタンエラストマーを成型するための形成性組成物をなす成分として、イソシアネートとポリオールから成るイソシアネート基末端ウレタンプレポリマー(以下「NCO基末端ウレタンプレポリマー」と略記)とポリオールやポリアミンからなる活性水素基末端硬化剤とを、混合し加熱硬化させる方法が一般的に用いられる。 As a component forming a composition for molding a thermosetting polyurethane elastomer, an isocyanate group-terminated urethane prepolymer (hereinafter abbreviated as “NCO group-terminated urethane prepolymer”) composed of an isocyanate and a polyol and a polyol or a polyamine are used. A method in which an active hydrogen group terminal curing agent is mixed and heat-cured is generally used.
 例えば、イソシアネート成分として、ジフェニルメタジイソジアネート(以下「MDI」と略記)とポリオール成分として、ポリブチレンアジペート(以下「PBA」と略記)からなるNCO基末端ウレタンプレポリマーと、ポリオール成分として、1,4-ブタンジオール(以下「1,4-BD」と略記)、トリメチロールプロパン(以下「TMP」と略記)とPBAとを混合した、活性水素基末端硬化剤が好適に用いられている。この他、トリレンジイソシアネート(以下「TDI」と略記)とポリテトラメチレングリコール(以下「PTMG」と略記)からなるNCO基末端ウレタンプレポリマーと、4,4’-ジアミノ-3,3’-ジクロロジフェニルメタン(以下「MOCA」と略記)等のアミノ基を活性水素基とするアミノ基末端硬化剤が好適に用いられている。 For example, as an isocyanate component, an NCO group-terminated urethane prepolymer comprising diphenyl metadiisocyanate (hereinafter abbreviated as “MDI”) and a polyol component, polybutylene adipate (hereinafter abbreviated as “PBA”), and a polyol component as 1 , 4-butanediol (hereinafter abbreviated as “1,4-BD”), trimethylolpropane (hereinafter abbreviated as “TMP”), and PBA are preferably used. In addition, an NCO-terminated urethane prepolymer comprising tolylene diisocyanate (hereinafter abbreviated as “TDI”) and polytetramethylene glycol (hereinafter abbreviated as “PTMG”), 4,4′-diamino-3,3′-dichloro An amino group terminal curing agent having an amino group as an active hydrogen group such as diphenylmethane (hereinafter abbreviated as “MOCA”) is preferably used.
 然るに、上記の様にして得られる熱硬化性ポリウレタンエラストマー成型物の摩擦係数はその弾性力の高さから非常に大きいことが知られている。このため、連続的に使用される産業機械部品においては、駆動による摩擦で発熱し、この熱が徐々に蓄熱することで設計以上の温度となり物性が変化する。特に問題なのは、高温化することで弾性力が増し更に摩擦抵抗が増え高温化すると言った悪循環を招く。これらの熱硬化性ポリウレタンエラストマー成型物を産業機械部品として使用する場合、当該部品の蓄熱により特性が変化し、比較的短期間で、当該部品の破断、亀裂、摩耗などによる欠損が発生し、当該部品の交換が必要となる。特に、近年においては、産業機器の高速処理化に伴い、当該部品の蓄熱による温度の上昇が見られ機械的強度の低下を招き、これに伴う当該部品の破断、亀裂、摩耗などによる欠損が頻発しており、従来公知の熱硬化ポリウレタンエラストマー成型物では十分な対応ができなくなってきており、低摩擦の熱硬化ポリウレタンエラストマー成型物が強く望まれている。 However, it is known that the coefficient of friction of the thermosetting polyurethane elastomer molding obtained as described above is very large due to its high elastic force. For this reason, in industrial machine parts that are used continuously, heat is generated due to friction caused by driving, and this heat gradually accumulates, resulting in a temperature higher than the design and changes in physical properties. Particularly problematic is a vicious circle in which the elastic force increases and the frictional resistance further increases as the temperature increases. When these thermosetting polyurethane elastomer moldings are used as industrial machine parts, the characteristics change due to the heat storage of the parts, and in a relatively short period of time, defects due to breakage, cracks, wear, etc. of the parts occur. Parts need to be replaced. In particular, in recent years, with the high-speed processing of industrial equipment, the temperature rises due to the heat storage of the part, leading to a decrease in mechanical strength, and the resulting breakage, cracks, wear, etc. of the part frequently occur. Therefore, a conventionally well-known thermosetting polyurethane elastomer molded product cannot be used sufficiently, and a low-friction thermosetting polyurethane elastomer molded product is strongly desired.
 ポリウレタンエラストマー成型物の摩擦係数低減を目的にグラファイト、4弗化エチレン、樹脂パウダー、パラフィン、二硫化モリブテン、もくろう等、脂肪アルコールエステルや炭素数13以上の高級脂肪酸と炭素数8以上のアルコールとで構成される液状及び粉末状の高級脂肪酸エステル等の潤滑剤をポリウレタンエラストマーに混合することが提案されている(特許文献1~3)。この他、水酸基、又はアミノ基を有するステアリン酸、又はオレイン酸系のエステル及び硬化剤の導入、或いはNCO基を有するオクタデシルイソシアネートの導入によりポリウレタン分子中に滑剤成分を取り込む方法が提案されている(特許文献4~5)。 For the purpose of reducing the friction coefficient of polyurethane elastomer moldings, such as graphite, tetrafluoroethylene, resin powder, paraffin, disulfide molybdenum, wax, etc., fatty alcohol esters, higher fatty acids having 13 or more carbon atoms and alcohols having 8 or more carbon atoms It has been proposed to mix a liquid elastomer and a powdery lubricant such as higher fatty acid ester, etc., with a polyurethane elastomer (Patent Documents 1 to 3). In addition, a method of incorporating a lubricant component into a polyurethane molecule by introducing a stearic acid having a hydroxyl group or an amino group or an oleic acid ester and a curing agent, or introducing octadecyl isocyanate having an NCO group has been proposed ( Patent Documents 4 to 5).
 また、活性水素を有するシリコーン化合物をポリウレタン樹脂に反応させることで、シロキサン結合を含むポリウレタン層を形成する方法が提案されており(特許文献6)、表面に高硬度層を形成することで低摩擦化する手法が提案されている(特許文献7)。 In addition, a method of forming a polyurethane layer containing a siloxane bond by reacting a silicone compound having active hydrogen with a polyurethane resin has been proposed (Patent Document 6), and by forming a high hardness layer on the surface, low friction is proposed. A technique for realizing this has been proposed (Patent Document 7).
日本国特開昭57-194946号公報Japanese Unexamined Patent Publication No. 57-194946 日本国特開平3-346号公報Japanese Unexamined Patent Publication No. 3-346 日本国特開平5-133440号公報Japanese Patent Laid-Open No. 5-133440 日本国特開平11-51122号公報Japanese Unexamined Patent Publication No. 11-51122 日本国特開2005-120216号公報Japanese Unexamined Patent Publication No. 2005-120216 日本国特開平4-189114号公報Japanese Unexamined Patent Publication No. 4-189114 日本国特開2001-75451号公報 しかしながら、前述のポリウレタンと反応を伴わない滑剤をポリウレタンエラストマーに混合する場合は、これら滑剤とNCO基末端ウレタンプレポリマーや活性水素基末端硬化剤との相溶性が悪く、不均一なポリウレタンエラストマー成型物となるばかりではなく、滑剤成分のブリードやブルームの発生が見られる。特に精密な産業機械の部品に用いる場合は、これら潤滑剤成分による汚染により、産業機械に不具合が発生し問題化することがある。後述のポリウレタンと反応を伴う滑剤をポリウレタンエラストマーに混合反応させポリウレタン分子中に滑剤成分を取り込んだポリウレタンエラストマー成型物は、これら滑剤成分の炭素数の不足や自由度の阻害により、成型品表面に十分に移行できずに低摩擦化が不十分な場合や持続しない場合が多い。また、切削加工面においても、滑剤成分が十分に移行できずに低摩擦化が不十分な場合や持続しない場合が多い。However, when a lubricant that does not react with the above-mentioned polyurethane is mixed with a polyurethane elastomer, the compatibility of the lubricant with an NCO group-terminated urethane prepolymer or an active hydrogen group-terminated curing agent is high. Unfortunately, not only becomes a non-uniform polyurethane elastomer molded product, but also generation of bleeding and bloom of a lubricant component is observed. In particular, when used for precision industrial machine parts, contamination by these lubricant components may cause problems in the industrial machine. A polyurethane elastomer molded product in which a lubricant with reaction with polyurethane described below is mixed with polyurethane elastomer and the lubricant component is incorporated in the polyurethane molecule is sufficient on the surface of the molded product due to the lack of carbon number of these lubricant components and the inhibition of the degree of freedom. In many cases, the friction cannot be reduced and the friction reduction is insufficient. Also, on the machined surface, the lubricant component cannot be sufficiently transferred, and the friction reduction is often insufficient or does not continue.
 また、ウレタン樹脂表面にシリコーンポリウレタン樹脂層を形成する方法では、動摩擦係数低下が不十分なものであった。さらに、イソシアネートと反応する活性水素基を有するシリコーンを使用しているが、これは不純物として活性水素官能基を含まないシリコーンも含有するため、それが表面にブリードし、接触する部品を汚染する可能性がある。 Also, the method of forming a silicone polyurethane resin layer on the urethane resin surface was insufficient in reducing the dynamic friction coefficient. In addition, silicones with active hydrogen groups that react with isocyanates are used, which also contain silicones that do not contain active hydrogen functional groups as impurities, which can bleed to the surface and contaminate the parts that come into contact with them. There is sex.
 また、高硬度層を形成する方法では、高硬度層形成後、ウレタン樹脂成形を行う2段階成形となるため工程数が増え、生産性が低下する問題があった。 In addition, the method of forming a high hardness layer has a problem that the number of processes increases and productivity decreases because of the two-stage molding in which urethane resin molding is performed after the formation of the high hardness layer.
 本発明は以上のような事情に基づいてなされたものであり、第一の課題として、産業機械部品部材用熱硬化性ポリウレタンエラストマー形成性組成物として、ポリオキシエチレンアルキルエーテル(C1)及び炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)からなる群より選ばれる少なくとも一種、さらに良好な効果を得るためにオクタデシルイソシアネート(C3)を導入すること、もしくは、ポリオキシエチレンアルキルエーテル(C1)、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)及びオクタデシルイソシアネート(C3)からなる群より選ばれる少なくとも一種と、脂肪酸アミド(C4)を導入することで、ブリード、ブルームを発生することもなく、摩擦係数が非常に低い産業機械部品用の熱硬化性ポリウレタンエラストマーを提供することにある。また、これら熱硬化性ポリウレタンエラストマーを得るためのNCO基末端ウレタンプレポリマーや活性水素基末端硬化剤との相溶性を良好にすることで、品質安定化が図られた熱硬化性ポリウレタンエラストマーを得るためのNCO基末端ウレタンプレポリマーと活性水素基末端硬化剤を提供することにある。 This invention is made | formed based on the above situations, As a 1st subject, as a thermosetting polyurethane elastomer formation composition for industrial machine component members, polyoxyethylene alkyl ether (C1) and carbon number At least one selected from the group consisting of linear aliphatic alcohols (C2) having a melting point of 20 to 40 and a melting point of 90 ° C. or lower, introducing octadecyl isocyanate (C3) for obtaining a better effect, At least one selected from the group consisting of oxyethylene alkyl ether (C1), linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or lower, and octadecyl isocyanate (C3), and fatty acid amide (C4 ), The friction coefficient is reduced without causing bleed and bloom. And to provide a consistently low industrial machinery parts thermoset polyurethane elastomer for. Moreover, by improving the compatibility with the NCO group-terminated urethane prepolymer and the active hydrogen group-terminated curing agent for obtaining these thermosetting polyurethane elastomers, a thermosetting polyurethane elastomer whose quality is stabilized is obtained. It is an object of the present invention to provide an NCO group-terminated urethane prepolymer and an active hydrogen group-terminated curing agent.
 第二の課題として少なくとも4級アンモニウム、及び4級ホスホニウムからなる群より選ばれる少なくとも一種のカルボキシレートを分子構造中に有するオルガノポリシロキサン(A)を含有する離型剤組成物を用いることで、物性低下やブリード、ブルームを起こさず、生産性も損なうことなく、摩擦係数が非常に小さい産業機械部品用のポリウレタン樹脂成形品を提供することにある。 By using a release agent composition containing organopolysiloxane (A) having at least one carboxylate selected from the group consisting of at least quaternary ammonium and quaternary phosphonium in the molecular structure as a second problem, An object of the present invention is to provide a polyurethane resin molded product for industrial machine parts having a very low coefficient of friction without causing deterioration of physical properties, bleed or bloom, and without impairing productivity.
本発明は、以下の(1)から(26)の実施形態を含む。
(1)イソシアネート基末端ウレタンプレポリマー(A)、活性水素基末端硬化剤(B)、及び滑剤(C)を含み、滑剤(C)が、熱硬化性ポリウレタンエラストマー形成性組成物中に0.1~8質量%のポリオキシエチレンアルキルエーテル(C1)を含むこと、又は熱硬化性ポリウレタンエラストマー形成性組成物中に0.1~5質量%の炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)を含むこと、を特徴とする熱硬化性ポリウレタンエラストマー形成性組成物。
(2)滑剤(C)が、ポリオキシエチレンアルキルエーテル(C1)、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)、及びオクタデシルイソシアネート(C3)からなる群より選ばれる少なくとも2種の化合物を含み、滑剤(C)が熱硬化性ポリウレタンエラストマー形成性組成物中に0.2~8質量%含まれることを特徴とする上記(1)に記載の熱硬化性ポリウレタンエラストマー形成性組成物。
(3)滑剤(C)が、ポリオキシエチレンアルキルエーテル(C1)、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)、及びオクタデシルイソシアネート(C3)からなる群より選ばれる少なくとも一種と、脂肪酸アミド(C4)とを含み、ポリオキシエチレンアルキルエーテル(C1)、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)、及びオクタデシルイソシアネート(C3)の総量として熱硬化性ポリウレタンエラストマー形成性組成物中に0.2~8質量%含み、かつ熱硬化性ポリウレタンエラストマー形成性組成物中に脂肪酸アミド(C4)を0.05~0.5質量%含むことを特徴とする上記(1)に記載の熱硬化性ポリウレタンエラストマー形成性組成物。
(4)ポリオキシエチレンアルキルエーテル(C1)の水酸基価が5~70KOHmg/gであることを特徴とする上記(1)乃至(3)のいずれかに記載の熱硬化性ポリウレタンエラストマー形成性組成物。
(5)ポリオキシエチレンアルキルエーテル(C1)、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)、オクタデシルイソシアネート(C3)、及び脂肪酸アミド(C4)からなる群より選ばれる少なくとも一種にて、少なくともポリイソシアネート(A6)とポリオール(A7)から成るイソシアネート基末端ウレタンプレポリマー(A0)を予め変性させたイソシアネート基末端プレポリマーを用いることを特徴とする上記(1)乃至(4)のいずれかに記載の熱硬化性ポリウレタンエラストマー形成性組成物。
(6)ポリオキシエチレンアルキルエーテル(C1)、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)、及び脂肪酸アミド(C4)からなる群より選ばれる少なくとも一種と、活性水素基末端硬化剤(B0)とを含むことを特徴とする活性水素基末端硬化剤を用いることを特徴とする上記(1)乃至(4)のいずれかに記載の熱硬化性ポリウレタンエラストマー形成性組成物。
(7)ポリオキシエチレンアルキルエーテル(C1)の水酸基価が5~70KOHmg/g、脂肪酸アミド(C4)の融点が90℃以下であることを特徴とする上記(3)に記載の熱硬化性ポリウレタンエラストマー形成性組成物。
(8)上記(1)乃至(7)のいずれかに記載の熱硬化性ポリウレタンエラストマー形成性組成物を熱硬化処理することを特徴とする熱硬化性ポリウレタンエラストマーの製造方法。
(9)上記(1)乃至(7)のいずれかに記載の熱硬化性ポリウレタンエラストマー形成性組成物を熱硬化処理して得られたJIS-A硬度が60~98の範囲の硬化物からなる産業機械部品。
(10)上記(1)乃至(7)のいずれかに記載の熱硬化性ポリウレタンエラストマー形成性組成物を熱硬化処理して得られたJIS-A硬度が60~98の範囲の硬化物(D)の静摩擦係数が0.8以下、かつ動摩擦係数が0.6以下である産業機械部品。
(11)上記(1)乃至(7)のいずれかに記載の熱硬化性ポリウレタンエラストマー形成性組成物を熱硬化処理して得られるJIS-A硬度が60~98の範囲の硬化物(D)を切削加工して得られる硬化物(D1)の静摩擦係数が0.8以下、かつ動摩擦係数が0.6以下である産業機械部品。
(12)上記(10)に記載の硬化物(D)を100~200℃で1~120分間さらに加熱処理した硬化物の静摩擦係数が0.8以下、かつ動摩擦係数が0.6以下である産業機械部品。
(13)上記(11)に記載の硬化物(D)を切削加工して得られる硬化物(D1)を100~200℃で1~120分間さらに加熱処理した硬化物(D2)の静摩擦係数が0.8以下、かつ動摩擦係数が0.6以下である産業機械部品。
(14)4級アンモニウム、及び4級ホスホニウムからなる群より選ばれる少なくとも一種のカルボキシレートを分子構造中に有するオルガノポリシロキサン(J)を含有することを特徴とする、樹脂成型に用いられる離型剤組成物。
(15)上記(14)に記載の樹脂成型に用いられる離型剤組成物に、さらに活性水素基を有するシリコーン(L)を含有することを特徴とする、樹脂成型に用いられる離型剤組成物。
(16)4級アンモニウム、及び4級ホスホニウムからなる群より選ばれる少なくとも一種のカルボキシレートを分子構造中に有するオルガノポリシロキサン(J)が、4級アンモニウム(J1)、4級ホスホニウム(J2)、及びカルボキシル基含有オルガノポリシロキサン(J3)からなる群より選ばれる少なくとも一種を含むことを特徴とする、上記(14)又は(15)に記載の樹脂成型に用いられる離型剤組成物。
(17)4級アンモニウム(J1)、及び4級ホスホニウム(J2)からなる群より選ばれる少なくとも一種のカルボキシレートの合計含有量が、4級アンモニウム、及び4級ホスホニウムからなる群より選ばれる少なくとも一種のカルボキシレートを分子構造中に有するオルガノポリシロキサン(J)の合計含有量に対して、0.3mmol/g以上含まれることを特徴とする、上記(14)乃至(16)のいずれかに記載の樹脂成型に用いられる離型剤組成物。
(18)4級アンモニウム(J1)、及び4級ホスホニウム(J2)からなる群より選ばれる少なくとも一種のカルボキシレートを分子構造中に有するオルガノポリシロキサン(J)100質量部に対し、活性水素基を有するシリコーン(L)を5~150質量部含有することを特徴とする、上記(15)乃至(17)のいずれかに記載の樹脂成型に用いられる離型剤組成物。
(19)活性水素基を有するシリコーン(L)がアミノ基含有シリコーンであることを特徴とする上記(15)乃至(18)のいずれかに記載の樹脂成型に用いられる離型剤組成物。
(20)ポリウレタン樹脂形成性組成物(K)が、上記(14)乃至(19)のいずれかに記載の樹脂成型に用いられる離型剤組成物が塗布された成形型にて成形されたポリウレタン樹脂成型物。
(21)上記(14)乃至(19)のいずれかに記載の樹脂成型に用いられる離型剤組成物を成形型に塗布し、ポリウレタン樹脂形成性組成物(K)をその成形型に注入し成型して得られること特徴とするポリウレタン樹脂成型物の製造方法。
(22)ポリウレタン樹脂形成性組成物(K)が、イソシアネート基末端ウレタンプレポリマー(A0)、活性水素基末端硬化剤(B0)からなることを特徴とする、上記(20)に記載のポリウレタン樹脂成型物。
(23)ポリウレタン樹脂形成性組成物(K)が、滑剤(C)としてポリオキシエチレンアルキルエーテル(C1)、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)、オクタデシルイソシアネート(C3)、脂肪酸アミド(C4)からなる群より選ばれる少なくとも1種の化合物を含有することを特徴とする、上記(20)又は(22)に記載のポリウレタン樹脂成型物。
(24)イソシアネート基末端ウレタンプレポリマー(A0)のイソシアネート成分として、ジフェニルメタンジイソシアネート又はトリレンジイソシアネートを含むことを特徴とする、上記(22)又は(23)に記載のポリウレタン樹脂成型物。
(25)イソシアネート基末端ウレタンプレポリマー(A0)と活性水素基末端硬化剤(B0)とを混合する際のイソシアネート基/活性水素基のモル比が1.0~3.0であることを特徴とする、上記(20)、(22)、(23)、又は(24)のいずれかに記載のポリウレタン樹脂成型物。
(26)動摩擦係数0.8以下、且つJIS-A硬度60~98の範囲である、上記(20)、(22)、(23)、(24)、又は(25)のいずれかに記載のポリウレタン樹脂成型物を用いる産業機械部品。
The present invention includes the following embodiments (1) to (26).
(1) An isocyanate group-terminated urethane prepolymer (A), an active hydrogen group-terminated curing agent (B), and a lubricant (C) are contained, and the lubricant (C) is added to the thermosetting polyurethane elastomer-forming composition in an amount of 0.00. 1 to 8% by mass of polyoxyethylene alkyl ether (C1), or 0.1 to 5% by mass of 20 to 40 carbon atoms in the thermosetting polyurethane elastomer-forming composition and a melting point of 90 ° C. A thermosetting polyurethane elastomer-forming composition comprising the following linear aliphatic alcohol (C2):
(2) The group in which the lubricant (C) is a polyoxyethylene alkyl ether (C1), a linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less, and octadecyl isocyanate (C3) The thermosetting according to the above (1), which comprises at least two compounds selected from the group consisting of 0.2 to 8% by mass of the lubricant (C) in the thermosetting polyurethane elastomer-forming composition. -Forming polyurethane elastomer-forming composition.
(3) The group in which the lubricant (C) is a polyoxyethylene alkyl ether (C1), a linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less, and octadecyl isocyanate (C3) At least one selected from the group consisting of fatty acid amide (C4), polyoxyethylene alkyl ether (C1), linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or lower, and octadecyl The total amount of isocyanate (C3) is 0.2 to 8% by mass in the thermosetting polyurethane elastomer-forming composition, and the fatty acid amide (C4) is 0.05 to 0 in the thermosetting polyurethane elastomer-forming composition. The thermosetting polyurethane elastomer-forming composition as described in (1) above, containing 5% by mass.
(4) The thermosetting polyurethane elastomer-forming composition as described in any one of (1) to (3) above, wherein the polyoxyethylene alkyl ether (C1) has a hydroxyl value of 5 to 70 KOHmg / g .
(5) A group consisting of polyoxyethylene alkyl ether (C1), linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or lower, octadecyl isocyanate (C3), and fatty acid amide (C4) The above-mentioned (1) characterized in that an isocyanate group-terminated prepolymer obtained by modifying an isocyanate group-terminated urethane prepolymer (A0) composed of at least a polyisocyanate (A6) and a polyol (A7) in advance is used as at least one selected from the above (1) The thermosetting polyurethane elastomer-forming composition according to any one of (1) to (4).
(6) at least one selected from the group consisting of polyoxyethylene alkyl ether (C1), linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or lower, and fatty acid amide (C4); The thermosetting polyurethane elastomer according to any one of the above (1) to (4), characterized by using an active hydrogen group terminal curing agent comprising: an active hydrogen group terminal curing agent (B0) Formable composition.
(7) The thermosetting polyurethane as described in (3) above, wherein the polyoxyethylene alkyl ether (C1) has a hydroxyl value of 5 to 70 KOHmg / g and the fatty acid amide (C4) has a melting point of 90 ° C. or less. Elastomer-forming composition.
(8) A method for producing a thermosetting polyurethane elastomer, comprising subjecting the thermosetting polyurethane elastomer-forming composition according to any one of (1) to (7) to a thermosetting treatment.
(9) A cured product having a JIS-A hardness in the range of 60 to 98 obtained by thermosetting the thermosetting polyurethane elastomer-forming composition according to any one of (1) to (7) above. Industrial machine parts.
(10) A cured product having a JIS-A hardness in the range of 60 to 98 obtained by thermosetting the thermosetting polyurethane elastomer-forming composition according to any one of (1) to (7) (D Industrial machinery parts having a static friction coefficient of 0.8 or less and a dynamic friction coefficient of 0.6 or less.
(11) A cured product (D) having a JIS-A hardness of 60 to 98 obtained by thermosetting the thermosetting polyurethane elastomer-forming composition according to any one of (1) to (7) above An industrial machine part in which a static friction coefficient of a cured product (D1) obtained by cutting is 0.8 or less and a dynamic friction coefficient is 0.6 or less.
(12) The cured product obtained by further heat-treating the cured product (D) according to (10) at 100 to 200 ° C. for 1 to 120 minutes has a static friction coefficient of 0.8 or less and a dynamic friction coefficient of 0.6 or less. Industrial machine parts.
(13) The static friction coefficient of the cured product (D2) obtained by further heat-treating the cured product (D1) obtained by cutting the cured product (D) described in (11) at 100 to 200 ° C. for 1 to 120 minutes. Industrial machine parts with 0.8 or less and a coefficient of dynamic friction of 0.6 or less.
(14) A mold release used for resin molding, comprising an organopolysiloxane (J) having in its molecular structure at least one carboxylate selected from the group consisting of quaternary ammonium and quaternary phosphonium. Agent composition.
(15) The release agent composition used for resin molding, wherein the release agent composition used for resin molding described in (14) above further contains silicone (L) having an active hydrogen group. object.
(16) Organopolysiloxane (J) having at least one carboxylate selected from the group consisting of quaternary ammonium and quaternary phosphonium in the molecular structure is quaternary ammonium (J1), quaternary phosphonium (J2), And a release agent composition for use in resin molding as described in (14) or (15) above, comprising at least one selected from the group consisting of a carboxyl group-containing organopolysiloxane (J3).
(17) The total content of at least one carboxylate selected from the group consisting of quaternary ammonium (J1) and quaternary phosphonium (J2) is at least one selected from the group consisting of quaternary ammonium and quaternary phosphonium. Any one of (14) to (16) above, wherein 0.3 mmol / g or more is contained with respect to the total content of organopolysiloxane (J) having a carboxylate in the molecular structure. Mold release agent composition used for resin molding.
(18) An active hydrogen group is added to 100 parts by mass of an organopolysiloxane (J) having at least one carboxylate selected from the group consisting of quaternary ammonium (J1) and quaternary phosphonium (J2) in the molecular structure. The release agent composition for use in resin molding as described in any one of (15) to (17) above, which comprises 5 to 150 parts by mass of the silicone (L) having the resin.
(19) The release agent composition used for resin molding as described in any one of (15) to (18) above, wherein the silicone (L) having an active hydrogen group is an amino group-containing silicone.
(20) Polyurethane resin-forming composition (K) is molded by a molding die to which a release agent composition used for resin molding according to any one of (14) to (19) is applied. Resin molding.
(21) The mold release agent composition used in the resin molding described in any one of (14) to (19) is applied to a mold, and the polyurethane resin-forming composition (K) is injected into the mold. A method for producing a molded polyurethane resin product obtained by molding.
(22) The polyurethane resin according to (20) above, wherein the polyurethane resin-forming composition (K) comprises an isocyanate group-terminated urethane prepolymer (A0) and an active hydrogen group-terminated curing agent (B0). Molded product.
(23) The polyurethane resin-forming composition (K) is a polyoxyethylene alkyl ether (C1) as a lubricant (C), a linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less. The polyurethane resin molded product according to (20) or (22) above, which contains at least one compound selected from the group consisting of: octadecyl isocyanate (C3) and fatty acid amide (C4).
(24) The polyurethane resin molded product according to (22) or (23) above, which contains diphenylmethane diisocyanate or tolylene diisocyanate as an isocyanate component of the isocyanate group-terminated urethane prepolymer (A0).
(25) The isocyanate group / active hydrogen group molar ratio when mixing the isocyanate group-terminated urethane prepolymer (A0) and the active hydrogen group terminal curing agent (B0) is 1.0 to 3.0. The polyurethane resin molded product according to any one of (20), (22), (23), or (24).
(26) The dynamic friction coefficient is 0.8 or less and the JIS-A hardness is in the range of 60 to 98, according to any one of (20), (22), (23), (24), or (25) Industrial machine parts using polyurethane resin moldings.
 本発明の産業機械部品用熱硬化性ポリウレタンエラストマー形成組成物を産業機械に用いることで、従来ではなし得なかった低汚染性と低摩擦化を兼ね備え、且つNCO基末端ウレタンプレポリマー、及び活性水素基末端硬化剤の性状(相溶性)を損ねることなく、均一な産業機械部品用の熱硬化性ポリウレタンエラストマーを得ることができる。 By using the thermosetting polyurethane elastomer-forming composition for industrial machine parts of the present invention for industrial machines, the NCO group-terminated urethane prepolymer, and active hydrogen have both low contamination and low friction, which could not be achieved in the past. A uniform thermosetting polyurethane elastomer for industrial machine parts can be obtained without impairing the properties (compatibility) of the base terminal curing agent.
 さらに本発明の離型剤を用いることで、従来では成し得なかった高弾性と低摩擦性を兼ね備え、且つ従来と同様の生産方法のまま、均一な産業機械部品用の熱硬化性ポリウレタンエラストマーを得ることができる。 Furthermore, by using the release agent of the present invention, the thermosetting polyurethane elastomer has a high elasticity and low friction that could not be achieved in the past, and is a uniform thermosetting polyurethane elastomer for industrial machine parts with the same production method. Can be obtained.
 第一の課題を解決する本発明の産業機械部品用熱硬化性ポリウレタンエラストマー成型組成物は、イソシアネート基末端ウレタンプレポリマー(A)、活性水素基末端硬化剤(B)、滑剤(C)を含む熱硬化性ポリウレタンエラストマー形成性組成物であって、滑剤(C)としてポリオキシエチレンアルキルエーテル(C1)、及び炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)からなる群より選ばれる少なくとも1種の化合物、さらに良好な効果を得るためにオクタデシルイソシアネート(C3)を導入すること、もしくは、ポリオキシエチレンアルキルエーテル(C1)、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)及びオクタデシルイソシアネート(C3)からなる群より選ばれる少なくとも一種と、脂肪酸アミド(C4)を導入することで摩擦係数の低減を図ることができる。 The thermosetting polyurethane elastomer molding composition for industrial machine parts of the present invention that solves the first problem includes an isocyanate group-terminated urethane prepolymer (A), an active hydrogen group-terminated curing agent (B), and a lubricant (C). A thermosetting polyurethane elastomer-forming composition comprising a polyoxyethylene alkyl ether (C1) as a lubricant (C) and a linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less At least one compound selected from the group consisting of: introducing octadecyl isocyanate (C3) to obtain a better effect; or polyoxyethylene alkyl ether (C1) having 20 to 40 carbon atoms and a melting point Is a group consisting of a linear aliphatic alcohol (C2) and octadecyl isocyanate (C3) of 90 ° C. or less At least the one selected Ri, it is possible to reduce the friction coefficient by introducing fatty acid amide (C4).
 ポリオキシエチレンアルキルエーテル(C1)、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)の導入により、静摩擦係数、及び動摩擦係数の低減が図られる。 By introducing polyoxyethylene alkyl ether (C1), linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less, the coefficient of static friction and the coefficient of dynamic friction can be reduced.
 また、オクタデシルイソシアネート(C3)の導入により、連続的に動摩擦係数の低減が図れ、脂肪酸アミド(C4)の導入により静摩擦係数の大幅な低減が図られる。 Also, the introduction of octadecyl isocyanate (C3) can continuously reduce the dynamic friction coefficient, and the introduction of fatty acid amide (C4) can significantly reduce the static friction coefficient.
 本発明に用いる滑剤(C)として導入するポリオキシエチレンアルキルエーテル(C1)は本発明の効果を奏すれば、特に限定されるものでない。このポリオキシエチレンアルキルエーテルは一般式1で示すことができる。
[一般式1]
 H2m+1-O-(CHCHO)
一般式1のm及びnの値について特に限定はしないが、より効果的摩擦の低減を図るには、水酸基価が5~70KOHmg/gであることが好ましい。水酸基価が70KOHmg/gを上回る場合は、総じて炭素数が短く、滑剤成分としての効果が徐々に小さくなる場合がある。ポリオキシエチレンアルキルエーテル(C1)の市販品の具体例として、例えばポリオキシエチレンラウリルエーテル「日光ケミカルズ製のNIKKOL BL-2、NIKKOL BL-4.2、NIKKOL BL-21、NIKKOL BL-25」、ポリオキシエチレンセチルエール「NIKKOL BC-2、NIKKOL BC-5.5、NIKKOL BC-7、NIKKOL BC-10、NIKKOL BC-20、NIKKOL BC-23、NIKKOL BC-25、NIKKOL BC-30、NIKKOL BC-40、NIKKOL BC-150」、ポリオキシエチレンステアリルエーテール「NIKKOL BS-2、「NIKKOL BS-4、「NIKKOL BS-20」、ポリオキシエチレンオレイルエーテル「「NIKKOL BO-2V、「NIKKOL BO-7V、「NIKKOL BO-10V、「NIKKOL BO-15V、「NIKKOL BO-20V、「NIKKOL BO-50V」、ポリオキシエチレンベヘニルエーテル「NIKKOL BB-5、NIKKOL BB-10、NIKKOL BB-20、NIKKOL BB-40」等が使用できる。
The polyoxyethylene alkyl ether (C1) introduced as the lubricant (C) used in the present invention is not particularly limited as long as the effects of the present invention are exhibited. This polyoxyethylene alkyl ether can be represented by the general formula 1.
[General Formula 1]
H 2m + 1 C m —O— (CH 2 CH 2 O) n H
Although the values of m and n in the general formula 1 are not particularly limited, the hydroxyl value is preferably 5 to 70 KOHmg / g for more effective reduction of friction. When the hydroxyl value exceeds 70 KOHmg / g, the number of carbon atoms is generally short, and the effect as a lubricant component may be gradually reduced. Specific examples of commercially available products of polyoxyethylene alkyl ether (C1) include, for example, polyoxyethylene lauryl ether “NIKKOL BL-2, NIKKOL BL-4.2, NIKKOL BL-21, NIKKOL BL-25 manufactured by Nikko Chemicals”, Polyoxyethylene cetyl ale "NIKKOL BC-2, NIKKOL BC-5.5, NIKKOL BC-7, NIKKOL BC-10, NIKKOL BC-20, NIKKOL BC-23, NIKKOL BC-25, NIKOL BC-25, NIKOL BC-25, NIKOL BC-25 -40, NIKKOL BC-150 ", polyoxyethylene stearyl ether" NIKKOL BS-2, "NIKKOL BS-4," NIKKOL BS-20 ", polyoxyethylene oleyl ether""NI KOL BO-2V, "NIKKOL BO-7V," NIKKOL BO-10V, "NIKKOL BO-15V," NIKKOL BO-20V, "" NIKKOL BO-50V ", polyoxyethylene behenyl ether" NIKKOLB BKB " 10, NIKKOL BB-20, NIKKOL BB-40 ”and the like can be used.
 本発明に用いる滑剤(C)として導入する炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)は本発明の効果を奏すれば、特に限定されるものでない。この炭素数20~40の直鎖脂肪族アルコールは一般式2で示すことができる。
[一般式2]
 CH-(CH)n-OH  、 n=19~39
一般式2のnの値は19~39であり、且つ、融点が90℃以下である。融点が90℃を超える場合は、総じてイソシアネート基末端ウレタンプレポリマーとの溶解性に劣り、プレポリマー合成時の温度を100℃以上に上げても均一溶解が難しいばかりではなく、反応温度の上昇により、アロファネート化等の副反応により高粘度化し、プレポリマーの品質低下を招く。また、活性水素基末端硬化剤との溶解性も悪い。製造の際、融点以上の加熱で溶解は可能であるが、その後、充填貯蔵する際に、常温下で結晶化してしまうため、熱硬化性ポリウレタンエラストマーを成型する際は、再度、融点以上に加熱し均一に攪拌する必要があり、取り扱い難いものとなる。
The linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or lower introduced as the lubricant (C) used in the present invention is not particularly limited as long as the effects of the present invention are exhibited. The straight chain aliphatic alcohol having 20 to 40 carbon atoms can be represented by the general formula 2.
[General formula 2]
CH 3 — (CH 2 ) n—OH, n = 19 to 39
The value of n in the general formula 2 is 19 to 39, and the melting point is 90 ° C. or less. When the melting point exceeds 90 ° C., the solubility with the isocyanate group-terminated urethane prepolymer is generally poor, and even if the temperature during prepolymer synthesis is raised to 100 ° C. or higher, uniform dissolution is difficult, and the reaction temperature increases. , Resulting in a high viscosity due to side reactions such as allophanatization, leading to a decrease in the quality of the prepolymer. Moreover, the solubility with an active hydrogen group terminal hardening | curing agent is also bad. During production, it can be dissolved by heating above the melting point, but when it is filled and stored, it will crystallize at room temperature, so when molding a thermosetting polyurethane elastomer, heat it again above the melting point. However, it is necessary to stir uniformly, and it becomes difficult to handle.
 炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)としては、1-イコサノール(C20)、1-ヘネイコサノール(C21)、1-ドコサノール(C22)、1-トリコサノール(C23)、1-トリコサノール(C24)、1-ペンタコサノール(C25)、1-ヘキサコサノール(C26)、1-ヘプタコサノール(C27)、1-オクタコサノール(C28)、1-ノナコサノール(C29)、1-トリアコンタノール(C30)、1-ヘントリアコンタノール(C31)、1-ドトリアコンタノール(C32)、1-トリトリアコンタノール(C33)、1-テトラトリアコンタノール(C34)、1-ペンタトリアコンタノール(C35)、1-ヘキサトリアコンタノール(C36)、1―ヘプタトリアコンタノール(C37)、1-オクタトリアコンタノール(C38)、1-ノナトリアコンタノール(C39)、1-テトラコンタノール(C40)が挙げられる。 Examples of the linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less include 1-icosanol (C20), 1-heneicosanol (C21), 1-docosanol (C22), 1-tricosanol ( C23), 1-tricosanol (C24), 1-pentacosanol (C25), 1-hexacosanol (C26), 1-heptacosanol (C27), 1-octacosanol (C28), 1-nonacosanol (C29), 1 Triacontanol (C30), 1-Hentriacontanol (C31), 1-Dotriacontanol (C32), 1-Tritriacontanol (C33), 1-Tetratriacontanol (C34), 1-Pentatria Contanol (C35), 1-hexatriacontanol (C36), 1-heptato Acon ethanol (C37), 1-octa triacontanol (C38), 1-nona triacontanol (C39), 1-tetra con methanol (C40) can be mentioned.
 また、融点が90℃以下のこれらの混合物の市販品の具体例としては、高級アルコール工業製のベヘニルアルコール、ベヘニルアルコール65、ベヘニルアルコール80R、ハイソノール20SS、ハイソノール22SSや日光ケミカルズ製のNIKKOL ベヘニルアルコール65、NIKKOL ベヘニルアルコール80、Performacol 350 Alcohol等が利用できる。 Specific examples of commercial products of these mixtures having a melting point of 90 ° C. or lower include behenyl alcohol, behenyl alcohol 65, behenyl alcohol 80R, highsonol 20SS, highsonol 22SS manufactured by Higher Alcohol Industry, NIKKOL behenyl alcohol 65, NIKKOL behenyl alcohol 80 manufactured by Nikko Chemicals. Permacol 350 Alcohol, etc. can be used.
 本発明に用いる滑剤(C)として導入するオクタデシルイソシアネート(C3)は、一般式3で示すことができる。
[一般式3]
 CH(CH17NCO
オクタデシルイソシアネート(C3)の市販品の具体例としてミリオネートO(保土谷化学社製)等が使用できる。
The octadecyl isocyanate (C3) introduced as the lubricant (C) used in the present invention can be represented by the general formula 3.
[General formula 3]
CH 3 (CH 2 ) 17 NCO
Millionate O (manufactured by Hodogaya Chemical Co., Ltd.) can be used as a specific example of a commercially available product of octadecyl isocyanate (C3).
 本発明に用いる滑剤(C)として導入する脂肪酸アミド(C4)は、本発明の効果を奏すれば、特に限定されるものでない。この脂肪酸アミドは、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミドを用いることができ、より効果的に摩擦の低減を図るには、融点が90℃以下であることが好ましい。融点が90℃を超える場合は、総じてイソシアネート基末端ウレタンプレポリマーとの溶解性に劣り、プレポリマー合成時の温度を100℃以上に上げても均一溶解が難しいばかりではなく、反応温度の上昇により、アロファネート化等の副反応により高粘度化し、プレポリマーの品質低下を招く場合がある。また、活性水素基末端硬化剤との溶解性も悪く、製造の際、融点以上の加熱で溶解は可能であるが、その後、充填貯蔵する際に、常温下で結晶化してしまうため、熱硬化性ポリウレタンエラストマーを成型する際は、再度、融点以上に加熱し均一に攪拌する必要があり、取り扱い難いものとなる。 The fatty acid amide (C4) introduced as the lubricant (C) used in the present invention is not particularly limited as long as the effects of the present invention are exhibited. As this fatty acid amide, a saturated fatty acid amide, an unsaturated fatty acid amide, a substituted amide, a saturated fatty acid bisamide, and an unsaturated fatty acid bisamide can be used, and in order to reduce friction more effectively, the melting point is 90 ° C. or lower. It is preferable. When the melting point exceeds 90 ° C., the solubility with the isocyanate group-terminated urethane prepolymer is generally poor, and even if the temperature during prepolymer synthesis is raised to 100 ° C. or higher, uniform dissolution is difficult, and the reaction temperature increases. In some cases, the viscosity increases due to side reactions such as allophanatization, leading to deterioration of the quality of the prepolymer. In addition, the solubility with the active hydrogen group terminal curing agent is poor, and during the production, it can be dissolved by heating above the melting point. When molding a flexible polyurethane elastomer, it is necessary to heat it to the melting point or higher and stir it uniformly, which makes it difficult to handle.
 脂肪酸アミド(C4)としては、例えば飽和脂肪酸アミドのラウリル酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミド、不飽和脂肪酸アミドのオレイン酸アミド、エルカ酸アミド、置換アミドのN-オレイルパルミチン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミド、飽和脂肪酸ビスアミドのメチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベベン酸アミド、ヘキサメチレンビスヒドロキシステアリン酸アミド、N,N-ジステアリルアジピン酸アミド、N,N-ジステアリルアセバシン酸アミド、不飽和脂肪酸ビスアミドのエチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N-ジオレイルアジピン酸アミド、N,N-ジオレイルセバシン酸アミド等が挙げられる。また、融点が90℃以下のこれらの混合物の市販品の具体例としては、日本化成製のダイヤミットY、ダイヤミットO-200、ダイヤミットL-200、ニッカアマイドOP、ニッカアマイドSO、ニッカアマイドOS、ニッカアマイドSE等が利用できる。 As fatty acid amide (C4), for example, lauric acid amide of saturated fatty acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, hydroxy stearic acid amide, oleic acid amide of unsaturated fatty acid amide, erucic acid amide, substituted amide N-oleyl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl erucic acid amide, methylene bis stearic acid amide of saturated fatty acid bisamide, ethylene biscapric acid amide , Ethylene bis lauric acid amide, ethylene bis stearic acid amide, ethylene bis hydroxy stearic acid amide, ethylene bis behenic acid amide, hexamethylene bis stearic acid amide, hexamethylene bis bevenic acid Amide, hexamethylene bishydroxystearic acid amide, N, N-distearyl adipic acid amide, N, N-distearyl acevacic acid amide, ethylene bisoleic acid amide of unsaturated fatty acid bisamide, ethylene biserucic acid amide, hexamethylene Examples thereof include bisoleic acid amide, N, N-dioleyl adipic acid amide, N, N-dioleyl sebacic acid amide and the like. Specific examples of commercial products of these mixtures having a melting point of 90 ° C. or lower include Diamit Y, Diamit O-200, Diamit L-200, Nikka Amide OP, Nikka Amide SO, Nikka Amide manufactured by Nippon Kasei. OS, Nikka Amide SE, etc. can be used.
 第1の実施形態においては、熱硬化性ポリウレタンエラストマー成型物中のポリオキシエチレンアルキルエーテル(C1)の含有量が0.1質量%を下回る場合は、摩擦低減効果が見られない。また、8質量%を上回る場合は、摩擦低減効果は見られるが、1官能成分増加により、得られる熱硬化性ポリウレタンエラストマーの物性低下を招く恐れがある。 In the first embodiment, when the content of polyoxyethylene alkyl ether (C1) in the thermosetting polyurethane elastomer molding is less than 0.1% by mass, the friction reducing effect is not seen. Moreover, when it exceeds 8 mass%, although the friction reduction effect is seen, there exists a possibility of causing the physical-property fall of the thermosetting polyurethane elastomer obtained by increase in 1 functional component.
 第2の実施形態においては、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)の含有量が0.1質量%を下回る場合は、摩擦低減効果が見られない。また、5質量%を上回る場合は、摩擦低減効果は見られるが、1官能成分増加により、得られる熱硬化性ポリウレタンエラストマーの物性値低下を招く恐れがある。 In the second embodiment, when the content of the linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less is less than 0.1% by mass, a friction reducing effect is seen. Absent. Moreover, when it exceeds 5 mass%, although the friction reduction effect is seen, there exists a possibility of causing the physical-property value fall of the thermosetting polyurethane elastomer obtained by increase in 1 functional component.
 第3の実施形態においては、熱硬化性ポリウレタンエラストマー成型物中の、ポリオキシエチレンアルキルエーテル(C1)、及び炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)からなる群より選ばれる少なくとも一種の化合物と、オクタデシルイソシアネート(C3)の総量として熱硬化性ポリウレタンエラストマー成型物中に0.2~8質量%含むことが好ましく、1~6質量%が特に好ましい。滑剤(C)の総添加量が、0.2質量%を下回る場合は十分な低摩擦化効果が見られず、8質量%を上回る場合は、平均官能基数の低下による物性低下やプレポリマーの品質低下を招く恐れがある。 In the third embodiment, polyoxyethylene alkyl ether (C1) and linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less in the thermosetting polyurethane elastomer molding. The total amount of at least one compound selected from the group consisting of octadecyl isocyanate (C3) is preferably 0.2 to 8% by mass, and particularly preferably 1 to 6% by mass, in the thermosetting polyurethane elastomer molding. When the total addition amount of the lubricant (C) is less than 0.2% by mass, a sufficient friction-reducing effect is not observed, and when it exceeds 8% by mass, the physical properties decrease due to the decrease in the average functional group number or the prepolymer. There is a risk of quality degradation.
 さらに第4の実施形態においては、滑剤(C)は、脂肪酸アミド(C4)を必須成分とし、ポリオキシエチレンアルキルエーテル(C1)、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)、オクタデシルイソシアネート(C3)の中から1種以上を任意に選択して使用できるが、中でも、ポリオキシエチレンアルキルエーテル(C1)、及び炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)からなる群より選ばれる少なくとも一種と、オクタデシルイソシアネート(C3)の組合せが特に好ましい。ポリオキシエチレンアルキルエーテル(C1)、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)、オクタデシルイソシアネート(C3)からなる群より選ばれる滑剤成分の導入量は、熱硬化性ポリウレタンエラストマー形成性組成物全体中に0.2~8質量%が好ましい。0.2質量%を下回る場合は十分な低摩擦化効果が見られず、8質量%を上回る場合は、平均官能基数の低下による物性低下やプレポリマーの品質低下を招く恐れがある。これらと併用して使用する脂肪酸アミド(C4)の導入量は、熱硬化性ポリウレタンエラストマー形成性組成物全体に対し、0.05~0.5質量%が好ましく、ブリード(ブルーム)を考慮した最少量の0.05~0.3質量%が特に好ましい。 Furthermore, in the fourth embodiment, the lubricant (C) contains fatty acid amide (C4) as an essential component, polyoxyethylene alkyl ether (C1), a straight chain having 20 to 40 carbon atoms and a melting point of 90 ° C. or lower. One or more of aliphatic alcohol (C2) and octadecyl isocyanate (C3) can be arbitrarily selected and used. Among them, polyoxyethylene alkyl ether (C1), carbon number 20 to 40, and melting point A combination of at least one selected from the group consisting of linear aliphatic alcohols (C2) of 90 ° C. or lower and octadecyl isocyanate (C3) is particularly preferable. The amount of lubricant component selected from the group consisting of polyoxyethylene alkyl ether (C1), linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or lower, and octadecyl isocyanate (C3) is as follows: The content is preferably 0.2 to 8% by mass in the whole thermosetting polyurethane elastomer-forming composition. When the amount is less than 0.2% by mass, a sufficient friction reducing effect is not observed, and when the amount is more than 8% by mass, the physical properties may be lowered due to a decrease in the number of average functional groups or the quality of the prepolymer may be reduced. The introduction amount of the fatty acid amide (C4) used in combination with these is preferably 0.05 to 0.5% by mass relative to the entire thermosetting polyurethane elastomer-forming composition, and considering the bleed (bloom). A small amount of 0.05 to 0.3% by mass is particularly preferred.
 第1の実施形態として、本発明に用いるNCO基末端ウレタンプレポリマー(A)は、NCO基末端ウレタンプレポリマー(A0)が含まれれば、何ら制限はない。中でも、ポリオキシエチレンアルキルエーテル(C1)をさらに加えたNCO基末端ウレタンプレポリマー(A1)を好適に用いることができる。NCO基末端ウレタンプレポリマー(A1)は、必要に応じ反応抑制剤(E)を用い、少なくともポリイソシアネート(A6)、ポリオール(A7)、及びポリオキシエチレンアルキルエーテル(C1)とのウレタン化反応により得られるものが好ましい。ここで、NCO基末端ウレタンプレポリマー(A0)とは、少なくともポリイソシアネート(A6)とポリオール(A7)から調製され、滑剤(C)成分を含まないものである。 As the first embodiment, the NCO group-terminated urethane prepolymer (A) used in the present invention is not limited as long as the NCO group-terminated urethane prepolymer (A0) is included. Among these, an NCO group-terminated urethane prepolymer (A1) to which polyoxyethylene alkyl ether (C1) is further added can be suitably used. The NCO group-terminated urethane prepolymer (A1) uses a reaction inhibitor (E) as necessary, and undergoes urethanation reaction with at least polyisocyanate (A6), polyol (A7), and polyoxyethylene alkyl ether (C1). What is obtained is preferred. Here, the NCO group-terminated urethane prepolymer (A0) is prepared from at least a polyisocyanate (A6) and a polyol (A7) and does not contain a lubricant (C) component.
 NCO基末端ウレタンプレポリマー(A)、又は(A1)のNCO含量は、5~25質量%が好ましい。NCO含量が5質量%より低い場合には、主にプレポリマーの粘度が高くなり、注型時にウレタン樹脂の流れ性が著しく悪くなる。25質量%より高い場合は、保存時及び使用時の性状安定性が著しく悪くなり、安定した産業機械部品が得にくく、成型不良に繋がるなどの問題を抱えるため、産業機械部品部材用のNCO基末端ウレタンプレポリマーとして適さないものとなってしまう場合がある。 The NCO content of the NCO group-terminated urethane prepolymer (A) or (A1) is preferably 5 to 25% by mass. When the NCO content is lower than 5% by mass, the viscosity of the prepolymer is mainly increased, and the flowability of the urethane resin is remarkably deteriorated during casting. When the content is higher than 25% by mass, the stability of properties during storage and use is remarkably deteriorated, and it is difficult to obtain a stable industrial machine part, resulting in molding failure. It may become unsuitable as a terminal urethane prepolymer.
 NCO基末端ウレタンプレポリマー(A1)の製造方法として特に制限はないが、例えば以下の製造方法を挙げることができる。攪拌容器内にポリイソシアネート(A6)と反応抑制剤(E)を投入攪拌し、その後、攪拌容器内の温度を40から70℃に保ちながらポリオール(A7)、及びポリオキシエチレンアルキルエーテル(C1)を投入攪拌する。続いて、攪拌容器内の温度を70~90℃に保ちながら、2~5時間程度ウレタン化反応を進めることで得ることができる。 Although there is no restriction | limiting in particular as a manufacturing method of NCO group terminal urethane prepolymer (A1), For example, the following manufacturing methods can be mentioned. The polyisocyanate (A6) and the reaction inhibitor (E) are charged and stirred in the stirring vessel, and then the polyol (A7) and the polyoxyethylene alkyl ether (C1) while maintaining the temperature in the stirring vessel at 40 to 70 ° C. Is stirred. Subsequently, the urethanization reaction can be carried out for about 2 to 5 hours while maintaining the temperature in the stirring vessel at 70 to 90 ° C.
 第2の実施形態として、本発明に用いるNCO基末端ウレタンプレポリマー(A)は、少なくともNCO基末端ウレタンプレポリマー(A0)が含まれれば、何ら制限はない。中でも、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)をさらに加えたNCO基末端ウレタンプレポリマー(A2)を好適に用いることができる。NCO基末端ウレタンプレポリマー(A2)は、必要に応じ反応抑制剤(E)を用い、少なくともポリイソシアネート(A6)、ポリオール(A7)、及び炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)とのウレタン化反応により得られるものが好ましい。 As a second embodiment, the NCO group-terminated urethane prepolymer (A) used in the present invention is not limited as long as at least the NCO group-terminated urethane prepolymer (A0) is included. Among these, an NCO group-terminated urethane prepolymer (A2) further added with a linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less can be suitably used. The NCO group-terminated urethane prepolymer (A2) uses a reaction inhibitor (E) as necessary, and at least a polyisocyanate (A6), a polyol (A7), a carbon number of 20 to 40, and a melting point of 90 ° C. or less. Those obtained by a urethanization reaction with a linear aliphatic alcohol (C2) are preferred.
 NCO基末端ウレタンプレポリマー(A)、又は(A2)のNCO含量は、5~25質量%が好ましい。NCO含量が5質量%より低い場合には、主にプレポリマーの粘度が高くなり、注型時にウレタン樹脂の流れ性が著しく悪くなる。25質量%より高い場合は、保存時及び使用時の性状安定性が著しく悪くなり、安定した産業機械部品が得にくく、成型不良に繋がるなどの問題を抱えるため、産業機械部品部材用のNCO基末端ウレタンプレポリマーとして適さないものとなってしまう場合がある。 The NCO content of the NCO group-terminated urethane prepolymer (A) or (A2) is preferably 5 to 25% by mass. When the NCO content is lower than 5% by mass, the viscosity of the prepolymer is mainly increased, and the flowability of the urethane resin is remarkably deteriorated during casting. When the content is higher than 25% by mass, the stability of properties during storage and use is remarkably deteriorated, and it is difficult to obtain a stable industrial machine part, resulting in molding failure. It may become unsuitable as a terminal urethane prepolymer.
 NCO基末端ウレタンプレポリマー(A2)の製造方法として特に制限はないが、例えば以下の製造方法を挙げることができる。攪拌容器内にポリイソシアネート(A6)と反応抑制剤(E)を投入攪拌し、その後、攪拌容器内の温度を40から70℃に保ちながらポリオール(A7)、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)を投入攪拌する。続いて、攪拌容器内の温度を70~90℃に保ちながら、2~5時間程度ウレタン化反応を進めることで得ることができる。 Although there is no restriction | limiting in particular as a manufacturing method of NCO group terminal urethane prepolymer (A2), For example, the following manufacturing methods can be mentioned. The polyisocyanate (A6) and the reaction inhibitor (E) are charged into the stirring vessel and stirred, and then the polyol (A7), having 20 to 40 carbon atoms and a melting point while maintaining the temperature in the stirring vessel at 40 to 70 ° C. Is charged with a straight chain aliphatic alcohol (C2) having a temperature of 90 ° C. or less. Subsequently, the urethanization reaction can be carried out for about 2 to 5 hours while maintaining the temperature in the stirring vessel at 70 to 90 ° C.
 第3の実施形態として、本発明に用いるNCO基末端ウレタンプレポリマー(A)は、少なくともNCO基末端ウレタンプレポリマー(A0)が含まれれば、何ら制限はない。中でも、オクタデシルイソシアネート(C3)をさらに加えて変性したNCO基末端ウレタンプレポリマー(A3)を用いること、又はポリオキシエチレンアルキルエーテル(C1)、及び炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)からなる群より選ばれる少なくとも1種の化合物、とオクタデシルイソシアネート(C3)をさらに加えて変性したNCO基末端ウレタンプレポリマー(A4)を用いることが好ましい。 As a third embodiment, the NCO group-terminated urethane prepolymer (A) used in the present invention is not limited as long as at least the NCO group-terminated urethane prepolymer (A0) is included. Among them, the NCO group-terminated urethane prepolymer (A3) modified by further adding octadecyl isocyanate (C3), or polyoxyethylene alkyl ether (C1), and having 20 to 40 carbon atoms and a melting point of 90 ° C. or less It is preferable to use an NCO group-terminated urethane prepolymer (A4) modified by further adding at least one compound selected from the group consisting of linear aliphatic alcohols (C2) and octadecyl isocyanate (C3).
 なお、ここでいう変性とは、NCO基末端ウレタンプレポリマー(A0)の性質を変えることであり、例えばオクタデシルイソシアネート(C3)で変性したNCO基末端ウレタンプレポリマー(A3)は、ポリイソシアネート(A6)とポリオール(A7)に加えオクタデシルイソシアネート(C3)から調製されるNCO基末端プレポリマーのことである。 The modification referred to here is to change the properties of the NCO group-terminated urethane prepolymer (A0). For example, the NCO group-terminated urethane prepolymer (A3) modified with octadecyl isocyanate (C3) is a polyisocyanate (A6). ) And polyol (A7), and an NCO group-terminated prepolymer prepared from octadecyl isocyanate (C3).
 また、必要に応じて反応抑制剤(E)を添加してもよい。NCO基末端ウレタンプレポリマー(A)、(A3)、又は(A4)のNCO含量は、5~25質量%が好ましい。NCO含量が5質量%より低い場合には、主にプレポリマーの粘度が高くなり、注型時にウレタン樹脂の流れ性が著しく悪くなる。25質量%より高い場合は、保存時及び使用時の性状安定性が著しく悪くなり、安定した産業機械部品が得にくく、成型不良に繋がるなどの問題を抱えるため、産業機械部品部材用のNCO基末端ウレタンプレポリマーとして適さないものとなってしまう場合がある。 Further, a reaction inhibitor (E) may be added as necessary. The NCO content of the NCO-terminated urethane prepolymer (A), (A3), or (A4) is preferably 5 to 25% by mass. When the NCO content is lower than 5% by mass, the viscosity of the prepolymer is mainly increased, and the flowability of the urethane resin is remarkably deteriorated during casting. When the content is higher than 25% by mass, the stability of properties during storage and use is remarkably deteriorated, and it is difficult to obtain a stable industrial machine part, resulting in molding failure. It may become unsuitable as a terminal urethane prepolymer.
 NCO基末端ウレタンプレポリマー(A3)又は(A4)の製造方法として特に制限はないが、例えば以下の製造方法を挙げることができる。撹拌容器内にポリイソシアネート(A6)、オクタデシルイソシアネート(C3)、及び反応抑制剤(E)を投入し撹拌後、容器内の温度を40~70℃に保ちながらポリオキシエチレンアルキルエーテル(C1)、及び炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)からなる群より選ばれる少なくとも1種とポリオール(A7)との混合物、又はポリオール(A7)を投入し撹拌する。続いて攪拌容器内の温度を70~90℃に保ちながら、2~5時間程度ウレタン化反応を進めるとイソシアネート基末端ウレタンプレポリマー(A3)、又は(A4)を得ることができる。また、オクタデシルイソシアネート(C3)は,ウレタン化反応後に投入しブレンドすることもできる。 Although there is no restriction | limiting in particular as a manufacturing method of NCO group terminal urethane prepolymer (A3) or (A4), For example, the following manufacturing methods can be mentioned. After the polyisocyanate (A6), octadecyl isocyanate (C3), and the reaction inhibitor (E) are charged into the stirring vessel and stirred, the polyoxyethylene alkyl ether (C1), while maintaining the temperature in the vessel at 40 to 70 ° C., And a mixture of at least one selected from the group consisting of linear aliphatic alcohols (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less and a polyol (A7), or a polyol (A7) is added and stirred. To do. Subsequently, the isocyanate group-terminated urethane prepolymer (A3) or (A4) can be obtained by proceeding with the urethanization reaction for about 2 to 5 hours while maintaining the temperature in the stirring vessel at 70 to 90 ° C. Further, octadecyl isocyanate (C3) can be added and blended after the urethanization reaction.
 第4の実施形態として、本発明に用いるNCO基末端ウレタンプレポリマー(A)は、少なくともNCO基末端ウレタンプレポリマー(A0)が含まれれば、何ら制限はない。中でも、ポリオキシエチレンアルキルエーテル(C1)、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)、オクタデシルイソシアネート(C3)、脂肪酸アミド(C4)からなる群より選ばれる少なくとも1種の化合物で変性したNCO基末端ウレタンプレポリマー(A5)を用いることが好ましい。 As a fourth embodiment, the NCO group-terminated urethane prepolymer (A) used in the present invention is not limited as long as at least the NCO group-terminated urethane prepolymer (A0) is included. Among them, selected from the group consisting of polyoxyethylene alkyl ether (C1), linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and melting point of 90 ° C. or lower, octadecyl isocyanate (C3), and fatty acid amide (C4). It is preferable to use an NCO group-terminated urethane prepolymer (A5) modified with at least one compound.
 なお、ここでいう変性とは、NCO基末端ウレタンプレポリマー(A0)の性質を変えることであり、例えば脂肪酸アミド(C4)で変性したNCO基末端ウレタンプレポリマー(A5)は、ポリイソシアネート(A6)とポリオール(A7)に加え、脂肪酸アミド(C4)から調製されるNCO基末端プレポリマーのことである。 The modification referred to here is to change the properties of the NCO group-terminated urethane prepolymer (A0). For example, the NCO group-terminated urethane prepolymer (A5) modified with a fatty acid amide (C4) is a polyisocyanate (A6). ) And polyol (A7), and NCO group-terminated prepolymer prepared from fatty acid amide (C4).
 また、必要に応じて反応抑制剤(E)を添加してもよい。NCO基末端ウレタンプレポリマー(A)、又は(A5)のNCO含量は、5~25質量%が好ましい。NCO含量が5質量%より低い場合には、主にプレポリマーの粘度が高くなり、注型時にウレタン樹脂の流れ性が著しく悪くなる。25質量%より高い場合は、保存時及び使用時の性状安定性が著しく悪くなり、安定した産業機械部品が得にくく、成型不良に繋がるなどの問題を抱えるため、産業機械部品部材用のNCO基末端ウレタンプレポリマーとして適さないものとなってしまう。 Further, a reaction inhibitor (E) may be added as necessary. The NCO content of the NCO group-terminated urethane prepolymer (A) or (A5) is preferably 5 to 25% by mass. When the NCO content is lower than 5% by mass, the viscosity of the prepolymer is mainly increased, and the flowability of the urethane resin is remarkably deteriorated during casting. When the content is higher than 25% by mass, the stability of properties during storage and use is remarkably deteriorated, and it is difficult to obtain a stable industrial machine part, resulting in molding failure. It will become unsuitable as a terminal urethane prepolymer.
 本発明に用いるNCO基末端ウレタンプレポリマー(A5)の製造方法として特に制限はないが、例えば以下の製造方法を挙げることができる。撹拌容器内にポリイソシアネート(A6)、及び必要に応じオクタデシルイソシアネート(C3)と反応抑制剤(E)を投入し撹拌後、容器内の温度を40~70℃に保ちながら、必要に応じポリオキシエチレンアルキルエーテル(C1)、及び炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)からなる群より選ばれる少なくとも1種と、ポリオール(A7)を投入し撹拌する。さらに必要に応じ脂肪酸アミド(C4)を投入撹拌する。続いて攪拌容器内の温度を70~90℃に保ちながら、2~5時間程度ウレタン化反応を進めるとイソシアネート基末端ウレタンプレポリマー(A5)を得ることができる。また、オクタデシルイソシアネート(C3)及び脂肪酸アミド(C4)は、ウレタン化反応後に投入しブレンドすることもできる。 Although there is no restriction | limiting in particular as a manufacturing method of the NCO group terminal urethane prepolymer (A5) used for this invention, For example, the following manufacturing methods can be mentioned. The polyisocyanate (A6) and, if necessary, the octadecyl isocyanate (C3) and the reaction inhibitor (E) are charged into the stirring vessel, and after stirring, the temperature in the vessel is kept at 40 to 70 ° C. At least one selected from the group consisting of ethylene alkyl ether (C1) and linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less, and polyol (A7) are added and stirred. . If necessary, fatty acid amide (C4) is added and stirred. Subsequently, the isocyanate group-terminated urethane prepolymer (A5) can be obtained by proceeding with the urethanization reaction for about 2 to 5 hours while maintaining the temperature in the stirring vessel at 70 to 90 ° C. Octadecyl isocyanate (C3) and fatty acid amide (C4) can also be added and blended after the urethanization reaction.
 本発明に用いるポリイソシアネート(A6)は、本発明の効果を奏すれば、特に限定されるものでない。機械物性や反応制御の観点から、芳香族ジイソシアネートからから少なくとも1種類選ばれることが好ましく、4,4’-ジフェニルメタンジイソシアネートが特に好ましい。 The polyisocyanate (A6) used in the present invention is not particularly limited as long as the effects of the present invention are exhibited. From the viewpoint of mechanical properties and reaction control, at least one selected from aromatic diisocyanates is preferable, and 4,4'-diphenylmethane diisocyanate is particularly preferable.
 <ポリイソシアネート(A6)>
 ポリイソシアネートの具体例として、例えばヘキサメチレンジイソシアネート、リジンジイソシアネート、イソホロンジイソシアネート、シクロヘキシルジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、水素添加キシリレンジイソシアネート、水素添加トリメチルキシリレンジイソシアネート、2-メチルペンタン-1,5-ジイソシアネート、3-メチルペンタン-1,5-ジイソシアネート、2,2,4-トリメチルヘキサヘチレン-1,6-ジイソシアネート、2,4,4-トリメチルヘキサヘチレン-1,6-ジイソシアネート等の脂肪族及び脂環族ジイソシアネート。4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルジメチルメタンジイソシアネート、4,4’-ジベンジルジイソシアネート、1,5-ナフチレンジイソシアネート、パラフェニレンジイソシアネート、トリレン-2,4-ジイソシアネート、トリレン-2,6-ジイソシアネート等の芳香族ジイソシアネート。オルトキシリレンジイソシアネート、メタキシリレンジイソシアネート、パラキシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート等の難黄変ジイソシアネート。また、いずれかのイソシアネートのウレタン変性体、ウレア変性体、カルボジイミド変性体、ウレトンイミン変性体、ウレトジオン変性体、イソシアヌレート変性体、アロファネート変性体等も使用できる。
<Polyisocyanate (A6)>
Specific examples of the polyisocyanate include hexamethylene diisocyanate, lysine diisocyanate, isophorone diisocyanate, cyclohexyl diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated trimethylxylylene diisocyanate, 2-methylpentane-1, 5-diisocyanate, 3-methylpentane-1,5-diisocyanate, 2,2,4-trimethylhexahylene-1,6-diisocyanate, 2,4,4-trimethylhexahylene-1,6-diisocyanate, etc. Aliphatic and alicyclic diisocyanates. 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate, 4,4'-dibenzyldiisocyanate, 1,5-naphthylene diisocyanate Aromatic diisocyanates such as paraphenylene diisocyanate, tolylene-2,4-diisocyanate, tolylene-2,6-diisocyanate. Difficult yellowing diisocyanates such as orthoxylylene diisocyanate, metaxylylene diisocyanate, paraxylylene diisocyanate, tetramethylxylylene diisocyanate. In addition, urethane-modified products, urea-modified products, carbodiimide-modified products, uretonimine-modified products, uretdione-modified products, isocyanurate-modified products, allophanate-modified products, etc. can be used.
 <ポリオール(A7)>
本発明に用いるポリオール(A7)は、本発明の効果を奏すれば特に限定されるものではないが、機械物性やガラス転移温度の観点から、平均官能基数2~3、数平均分子量250~5000のポリエステルポリオール、ポリエーテルポリオールから少なくとも1種類選ばれることが好ましい。なお、必要に応じて、モノマーポリオールを併用することもできる。
<Polyol (A7)>
The polyol (A7) used in the present invention is not particularly limited as long as the effects of the present invention are exhibited, but from the viewpoint of mechanical properties and glass transition temperature, the average number of functional groups is 2 to 3, and the number average molecular weight is 250 to 5000. It is preferable that at least one kind selected from polyester polyols and polyether polyols. In addition, a monomer polyol can also be used together as needed.
 なお、後述する活性水素基末端硬化剤(B)にも、以下のポリオールを任意に選択して用いることができる。 In addition, the following polyols can be arbitrarily selected and used for the active hydrogen group terminal curing agent (B) described later.
 <ポリエステルポリオール>
 ポリエステルポリオールの具体例としては、例えばフタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、コハク酸、酒石酸、シュウ酸、マロン酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、グルタコン酸、アゼライン酸、セバシン酸、1,4-シクロヘキシルジカルボン酸、α-ハイドロムコン酸、β-ハイドロムコン酸、α-ブチル-α-エチルグルタル酸、α,β-ジエチルサクシン酸、マレイン酸、フマル酸等のジカルボン酸又はこれらの無水物等の1種類以上と、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、3-メチル-1,5-ペンタンジオール、3,3-ジメチロールヘプタン、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール、ダイマー酸ジオール、ビスフェノールAのエチレンオキサイドやプロピレンオキサイド付加物、ビス(β-ヒドロキシエチル)ベンゼン、キシリレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の分子量500以下の低分子ポリオール類の1種類以上との縮重合反応から得られるものを挙げることができる。また、低分子ポリオールの一部をヘキサメチレンジアミン、イソホロンジアミン、モノエタノールアミン等の低分子ポリアミンや低分子アミノアルコールに代えて得られるポリエステル-アミドポリオールを使用することもできる。
<Polyester polyol>
Specific examples of the polyester polyol include, for example, phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, succinic acid, tartaric acid, oxalic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, glutaconic acid, azelaic acid. , Sebacic acid, 1,4-cyclohexyl dicarboxylic acid, α-hydromuconic acid, β-hydromuconic acid, α-butyl-α-ethylglutaric acid, α, β-diethylsuccinic acid, maleic acid, fumaric acid, etc. One or more of acids or their anhydrides, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, , 9-nonanediol, 3-methyl-1,5-pentanediol, 3,3-dimethylolheptane, diethylene glycol, dipropylene glycol, neopentyl glycol, cyclohexane-1,4-diol, cyclohexane-1,4-di 1 of low molecular weight polyols having a molecular weight of 500 or less such as methanol, dimer acid diol, ethylene oxide or propylene oxide adduct of bisphenol A, bis (β-hydroxyethyl) benzene, xylylene glycol, glycerin, trimethylolpropane, pentaerythritol The thing obtained from a polycondensation reaction with more than a kind can be mentioned. In addition, a polyester-amide polyol obtained by replacing a part of the low molecular polyol with a low molecular polyamine such as hexamethylene diamine, isophorone diamine or monoethanolamine or a low molecular amino alcohol can also be used.
 <ポリエーテルポリオール>
 ポリエーテルポリオールの具体例としては、例えばエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、3-メチル-1,5-ペンタンジオール、3,3-ジメチロールヘプタン、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール、ダイマー酸ジオール、ビスフェノールA、ビス(β-ヒドロキシエチル)ベンゼン、キシリレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の低分子ポリオール類、又はエチレンジアミン、プロピレンジアミン、トルエンジアミン、メタフェニレンジアミン、ジフェニルメタンジアミン、キシリレンジアミン等の低分子ポリアミン類等のような活性水素基を2個以上、好ましくは2~3個有する化合物を開始剤として、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド等のようなアルキレンオキサイド類を付加重合させることによって得られるポリエーテルポリオール、或いはメチルグリシジルエーテル等のアルキルグリシジルエーテル類、フェニルグリシジルエーテル等のアリールグリシジルエーテル類、テトラヒドロフラン等の環状エーテルモノマーを開環重合することで得られるポリエーテルポリオールを挙げることができる。
<Polyether polyol>
Specific examples of the polyether polyol include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1, 5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 3-methyl-1,5-pentanediol, 3,3-dimethylolheptane, diethylene glycol, dipropylene glycol , Neopentyl glycol, cyclohexane-1,4-diol, cyclohexane-1,4-dimethanol, dimer acid diol, bisphenol A, bis (β-hydroxyethyl) benzene, xylylene glycol, glycerin, trimethylolpropane, pentaerythritol Small molecules such as Initiates compounds having 2 or more, preferably 2 to 3 active hydrogen groups such as riols or low molecular weight polyamines such as ethylenediamine, propylenediamine, toluenediamine, metaphenylenediamine, diphenylmethanediamine, xylylenediamine, etc. As an agent, polyether polyols obtained by addition polymerization of alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide, etc., or alkyl glycidyl ethers such as methyl glycidyl ether, aryl glycidyl ethers such as phenyl glycidyl ether And polyether polyols obtained by ring-opening polymerization of cyclic ether monomers such as tetrahydrofuran.
 <ポリカーボネートポリオール>
 ポリカーボネートポリオールの具体例としては、例えばエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、3-メチル-1,5-ペンタンジオール、3,3-ジメチロールヘプタン、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール、ダイマー酸ジオール、ビスフェノールAのエチレンオキサイドやプロピレンオキサイド付加物、ビス(β-ヒドロキシエチル)ベンゼン、キシリレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の低分子ポリオールの一種類以上と、ジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート類、エチレンカーボネート、プロピレンカーボネート等のアルキレンカーボネート類、ジフェニルカーボネート、ジナフチルカーボネート、ジアントリルカーボネート、ジフェナントリルカーボネート、ジインダニルカーボネート、テトラヒドロナフチルカーボネート等のジアリールカーボネート類との脱アルコール反応や脱フェノール反応から得られるもの等を挙げることができる。
<Polycarbonate polyol>
Specific examples of the polycarbonate polyol include, for example, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5 -Pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 3-methyl-1,5-pentanediol, 3,3-dimethylolheptane, diethylene glycol, dipropylene glycol, Neopentyl glycol, cyclohexane-1,4-diol, cyclohexane-1,4-dimethanol, dimer acid diol, bisphenol A ethylene oxide and propylene oxide adducts, bis (β-hydroxyethyl) benzene, xylylene glycol, glycerin The One or more kinds of low molecular polyols such as methylolpropane and pentaerythritol, dialkyl carbonates such as dimethyl carbonate and diethyl carbonate, alkylene carbonates such as ethylene carbonate and propylene carbonate, diphenyl carbonate, dinaphthyl carbonate, dianthryl carbonate, di Examples thereof include those obtained from dealcoholization reaction and dephenol reaction with diaryl carbonates such as phenanthryl carbonate, diindanyl carbonate, and tetrahydronaphthyl carbonate.
 また、ポリオール(A7)には、性能の低下しない範囲で、ポリオレフィンポリオール、アクリルポリオール、シリコーンポリオール、ヒマシ油系ポリオール、フッ素系ポリオール、モノマーポリオールを単独、又は2種以上を併用することができる。 In addition, the polyol (A7) may be a polyolefin polyol, an acrylic polyol, a silicone polyol, a castor oil-based polyol, a fluorine-based polyol, or a monomer polyol alone or in combination of two or more, as long as the performance does not deteriorate.
 <ポリオレフィンポリオール>
 ポリオレフィンポリオールの具体例としては、例えば水酸基を2個以上有するポリブタジエン、水素添加ポリブタジエン、ポリイソプレン、水素添加ポリイソプレン等を挙げることができる。
<Polyolefin polyol>
Specific examples of the polyolefin polyol include polybutadiene having two or more hydroxyl groups, hydrogenated polybutadiene, polyisoprene, hydrogenated polyisoprene, and the like.
 <アクリルポリオール>
 アクリルポリオールとしては、例えばアクリル酸エステル及び/又はメタクリル酸エステル〔以下(メタ)アクリル酸エステルという〕と、反応点となりうる少なくとも分子内に1個以上の水酸基を有するアクリル酸ヒドロキシ化合物及び/又はメタクリル酸ヒドロキシ化合物〔以下(メタ)アクリル酸ヒドロキシ化合物という〕と、重合開始剤とを熱エネルギーや紫外線又は電子線などの光エネルギー等を使用し、アクリルモノマーを共重合したものを挙げることができる。
<Acrylic polyol>
Examples of the acrylic polyol include acrylic acid ester and / or methacrylic acid ester (hereinafter referred to as (meth) acrylic acid ester), acrylic acid hydroxy compound having at least one hydroxyl group in the molecule and / or methacrylic acid which can be a reaction point. Examples include an acid hydroxy compound (hereinafter referred to as a (meth) acrylic acid hydroxy compound) and a polymerization initiator obtained by copolymerizing an acrylic monomer using thermal energy, light energy such as ultraviolet rays or electron beams, and the like.
 <(メタ)アクリル酸エステル>
 (メタ)アクリル酸エステルの具体例としては、炭素数1~20のアルキルエステルを挙げることができる。このような(メタ)アクリル酸エステルの具体例としては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル等の(メタ)アクリル酸アルキルエステル、シクロヘキシル(メタ)アクリレート等の(メタ)アクリル酸の脂環属アルコールとのエステル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル等の(メタ)アクリル酸アリルエステル等を挙げることができる。このような(メタ)アクリル酸エステルは、単独、又は2種類以上組み合わせたものを挙げることができる。
<(Meth) acrylic acid ester>
Specific examples of (meth) acrylic acid esters include alkyl esters having 1 to 20 carbon atoms. Specific examples of such (meth) acrylate esters include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and pentyl (meth) acrylate. (Meth) such as hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate Esters of (meth) acrylic acid with cycloaliphatic alcohols such as alkyl acrylates, cyclohexyl (meth) acrylates, (meth) acrylic acid allyl esters such as phenyl (meth) acrylate and benzyl (meth) acrylate Can be mentioned. Such (meth) acrylic acid esters can be used singly or in combination of two or more.
 <(メタ)アクリル酸ヒドロキシ化合物>
 (メタ)アクリル酸ヒドロキシ化合物の具体例としては、例えばポリイソシアネート組成物との反応点となりうる少なくとも分子内に1個以上の水酸基を有しており、具体的には、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、4-ヒドロキシブチルアクリレート、3-ヒドロキシ-2,2-ジメチルプロピルアクリレート、ペンタエリスリトールトリアクリレートなどのアクリル酸ヒドロキシ化合物等が挙げられる。また、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、4-ヒドロキシブチルメタクリレート、3-ヒドロキシ-2,2-ジメチルプロピルメタクリレート、ペンタエリスリトールトリメタクリレート等のメタクリル酸ヒドロキシ化合物が挙げられる。これらアクリル酸ヒドロキシ化合物、メタクリル酸ヒドロキシ化合物は、単独、又は2種以上を組み合わせたものを挙げることができる。
<(Meth) acrylic acid hydroxy compound>
Specific examples of the (meth) acrylic acid hydroxy compound include, for example, at least one hydroxyl group in the molecule that can be a reaction point with the polyisocyanate composition, specifically, 2-hydroxyethyl acrylate, Examples thereof include hydroxy acrylate compounds such as 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, 3-hydroxy-2,2-dimethylpropyl acrylate, and pentaerythritol triacrylate. Also, hydroxy methacrylate compounds such as 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 4-hydroxybutyl methacrylate, 3-hydroxy-2,2-dimethylpropyl methacrylate, and pentaerythritol trimethacrylate are exemplified. These acrylic acid hydroxy compounds and methacrylic acid hydroxy compounds can be used singly or in combination of two or more.
 <重合開始剤>
 重合開始剤は、熱重合開始剤、光重合開始剤を挙げることができ、重合方法によって適宜選択される。
<Polymerization initiator>
Examples of the polymerization initiator include a thermal polymerization initiator and a photopolymerization initiator, and are appropriately selected depending on the polymerization method.
 熱重合開始剤の具体例としては、例えばジ-2-エチルヘキシルペルオキシジカーボネート等のペルオキシジカーボネート類、t-ブチルペルオキシベンゾエート、t-ブチルペルオキシ-2-エチルヘキサノエート、t-ブチルペルオキシイソプロピルカーボネート、t-ヘキシルペルオキシイソプロピルカーボネート等のペルオキシエステル類、ジ(t-ブチルペルオキシ)-2-メチルシクロヘキサン、ジ(t-ブチルペルオキシ)3,3,5-トリメチルシクロヘキサン及びジ(t-ブチルペルオキシ)シクロヘキサン等のペルオキシケタール類等を挙げることができる。 Specific examples of the thermal polymerization initiator include peroxydicarbonates such as di-2-ethylhexyl peroxydicarbonate, t-butylperoxybenzoate, t-butylperoxy-2-ethylhexanoate, and t-butylperoxyisopropyl carbonate. , Peroxyesters such as t-hexylperoxyisopropyl carbonate, di (t-butylperoxy) -2-methylcyclohexane, di (t-butylperoxy) 3,3,5-trimethylcyclohexane and di (t-butylperoxy) cyclohexane And peroxyketals.
 また、光重合開始剤の具体例としては、例えばアセトフェノン、メトキシアセトフェノン、2,2-ジエトキシアセトフェノン、p-ジメチルアミノアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、α-ヒドロキシ-α,α’-ジメチルアセトフェノン、2-ヒドロキシ-2-シクロヘキシルアセトフェノン、2-メチル-1[4-(メチルチオ)フェニル]-2-モンフォリノプロパノン-1等のアセトフェノン類、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルブチルエーテル等のベンゾインエーテル類、ベンゾフェノン、2-クロロベンゾフェノン、p,p’-ジクロロベンゾフェノン、N,N’-テトラメチル-4,4’-ジアミノベンゾフェノン、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン等のケトン類、チオキサンソン、2-クロロチオキサンソン、2-メチルチオキサンソン等のチオキサンソン類、ビスアシルホスフィンオキサイド、ベンゾイルホスフィンオキサイド等のホスフィン酸化物、ベンジルジメチルケタール等のケタール類、カンファン-2,3-ジオン、フェナントレンキノン等のキノン類等を挙げることができる。 Specific examples of the photopolymerization initiator include acetophenone, methoxyacetophenone, 2,2-diethoxyacetophenone, p-dimethylaminoacetophenone, 2,2-dimethoxy-2-phenylacetophenone, α-hydroxy-α, α Acetophenones such as' -dimethylacetophenone, 2-hydroxy-2-cyclohexylacetophenone, 2-methyl-1 [4- (methylthio) phenyl] -2-montforinopropanone-1, benzoin, benzoin methyl ether, benzoin ethyl Benzoin ethers such as ether and benzoin isopropyl butyl ether, benzophenone, 2-chlorobenzophenone, p, p'-dichlorobenzophenone, N, N'-tetramethyl-4,4'-diaminobenzophenone, 4- (2- Ketones such as droxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, thioxanthones such as thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, phosphines such as bisacylphosphine oxide and benzoylphosphine oxide Examples thereof include oxides, ketals such as benzyldimethyl ketal, and quinones such as camphane-2,3-dione and phenanthrenequinone.
 <シリコーンポリオール>
 シリコーンポリオールの具体例としては、例えばγ-メタクリロキシプロピルトリメトキシシランなどを重合したビニル基含有シリコーン化合物、及び分子中に少なくとも1個の末端水酸基を有する、α,ω-ジヒドロキシポリジメチルシロキサン、α,ω-ジヒドロキシポリジフェニルシロキサン等のポリシロキサン等を挙げることができる。
<Silicone polyol>
Specific examples of the silicone polyol include a vinyl group-containing silicone compound obtained by polymerizing γ-methacryloxypropyltrimethoxysilane and the like, and α, ω-dihydroxypolydimethylsiloxane having at least one terminal hydroxyl group in the molecule, α , Ω-dihydroxypolydiphenylsiloxane, and the like.
 <ヒマシ油系ポリオール>
 ヒマシ油系ポリオールの具体例としては、例えばヒマシ油脂肪酸とポリオールとの反応により得られる線状又は分岐状ポリエステルポリオールが挙げられる。また、脱水ヒマシ油、一部分を脱水した部分脱水ヒマシ油、水素を付加させた水添ヒマシ油等も使用することができる。
<Castor oil-based polyol>
Specific examples of the castor oil-based polyol include linear or branched polyester polyols obtained by the reaction of castor oil fatty acid and polyol. Dehydrated castor oil, partially dehydrated castor oil partially dehydrated, hydrogenated castor oil added with hydrogen, and the like can also be used.
 <フッ素系ポリオール>
 フッ素系ポリオールの具体例としては、例えば含フッ素モノマーとヒドロキシ基を有するモノマーとを必須成分として共重合反応により得られる線状、又は分岐状のポリオールである。ここで、含フッ素モノマーとしては、フルオロオレフィンであることが好ましく、例えば、テトラフルオロエチレン、クロロトリフルオロエチレン、トリクロロフルオロエチレン、ヘキサフルオロプロピレン、フッ化ビニリデン、フッ化ビニル、トリフルオロメチルトリフルオロエチレン等が挙げられる。また、ヒドロキシル基を有するモノマーとしては、例えば、ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、シクロヘキサンジオールモノビニルエーテル等のヒドロキシアルキルビニルエーテル、2-ヒドロキシエチルアリルエーテル等のヒドロキシアルキルアリルエーテル、ヒドロキシアルキルクロトン酸ビニル等のヒドロキシル基含有カルボン酸ビニル、又はアリルエステル等のヒドロキシル基を有するモノマー等が挙げられる。
<Fluorine-based polyol>
Specific examples of the fluorine-based polyol include linear or branched polyols obtained by a copolymerization reaction using a fluorine-containing monomer and a monomer having a hydroxy group as essential components. Here, the fluorine-containing monomer is preferably a fluoroolefin, for example, tetrafluoroethylene, chlorotrifluoroethylene, trichlorofluoroethylene, hexafluoropropylene, vinylidene fluoride, vinyl fluoride, trifluoromethyl trifluoroethylene. Etc. Examples of the monomer having a hydroxyl group include hydroxyalkyl vinyl ethers such as hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether and cyclohexanediol monovinyl ether, hydroxyalkyl allyl ethers such as 2-hydroxyethyl allyl ether, and vinyl hydroxyalkyl crotonates. Examples thereof include monomers having hydroxyl groups such as hydroxyl group-containing vinyl carboxylate such as allyl ester.
 <モノマーポリオール>
 モノマーポリオールの具体例として、例えばエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、3-メチル-1,5-ペンタンジオール、3,3-ジメチロールヘプタン、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール、ダイマー酸ジオール、ビスフェノールA、ビス(β-ヒドロキシエチル)ベンゼン、キシリレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等が挙げられる。
<Monomer polyol>
Specific examples of the monomer polyol include, for example, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5- Pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 3-methyl-1,5-pentanediol, 3,3-dimethylolheptane, diethylene glycol, dipropylene glycol, neo Pentyl glycol, cyclohexane-1,4-diol, cyclohexane-1,4-dimethanol, dimer acid diol, bisphenol A, bis (β-hydroxyethyl) benzene, xylylene glycol, glycerin, trimethylolpropane, pentaerythritol, etc. Can be mentioned.
 本発明に用いる活性水素基末端硬化剤(B)としては、前述のポリオールの中から任意に選択して用いることができる。なかでも、平均官能基数2~3、数平均分子量250~5000のポリエステルポリオール、ポリエーテルポリオール、及びポリカーボネートポリオールのいずれかのポリオールを加えた混合物を用いることが好ましい。また、機械物性や成形加工性を向上させる観点から、モノマーポリオールを単独で又は2種以上混合して用いることができる。モノマーポリオールとしては、1,4-ブタンジオールとトリメチロールプロパンとの混合物が好ましい。 The active hydrogen group terminal curing agent (B) used in the present invention can be arbitrarily selected from the aforementioned polyols. Among these, it is preferable to use a mixture obtained by adding any one of polyester polyols, polyether polyols, and polycarbonate polyols having an average functional group number of 2 to 3 and a number average molecular weight of 250 to 5000. Further, from the viewpoint of improving mechanical properties and molding processability, monomer polyols can be used alone or in admixture of two or more. As the monomer polyol, a mixture of 1,4-butanediol and trimethylolpropane is preferable.
 更に、各実施形態に応じて滑剤(C)として用いるポリオキシエチレンアルキルエーテル(C1)、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)、脂肪酸アミド(C4)からなる群より選ばれる少なくとも1種の化合物を添加して用いることもできる。 Furthermore, according to each embodiment, polyoxyethylene alkyl ether (C1) used as a lubricant (C), a linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less, fatty acid amide (C4 It is also possible to add and use at least one compound selected from the group consisting of:
 なお、滑剤(C)が含まれていない活性水素基末端硬化剤を活性水素基末端硬化剤(B0)とする。 Note that an active hydrogen group terminal curing agent that does not contain the lubricant (C) is referred to as an active hydrogen group terminal curing agent (B0).
 本発明に用いる活性水素基末端硬化剤(B)には、必要に応じ触媒(F)を添加することができる。 The catalyst (F) can be added to the active hydrogen group terminal curing agent (B) used in the present invention as necessary.
 触媒(F)は、発明の効果を奏すれば、特に限定されるものでないが、機械物性や成形加工性を向上させる観点から、ポリウレタン用ヌレート化触媒(F1)として、カリウム塩や4級アンモニウム塩が好ましく、ポリウレタン用アロファネート化触媒(F2)として、N,N,N’-トリメチルアミノエチルエタノールアミンやN,N-ジメチルアミノエトキシエタノールが好ましい。なお、必要に応じて、ウレタン化触媒(F3)を併用、又は単独使用することもできる。ウレタン化触媒(F3)は公知の一般的なトリエチレンジアミン等のアミン触媒、1-イソブチル-2-メチルイミダゾール等のイミダゾール系触媒、ジオクチルチンジラウレート等の金属系触媒等を用いることもできる。 The catalyst (F) is not particularly limited as long as the effects of the invention are achieved, but from the viewpoint of improving mechanical properties and molding processability, as the nurating catalyst for polyurethane (F1), potassium salt or quaternary ammonium is used. A salt is preferable, and N, N, N′-trimethylaminoethylethanolamine or N, N-dimethylaminoethoxyethanol is preferable as the allophanatization catalyst (F2) for polyurethane. In addition, a urethanization catalyst (F3) can also be used together or used independently as needed. As the urethanization catalyst (F3), known general amine catalysts such as triethylenediamine, imidazole catalysts such as 1-isobutyl-2-methylimidazole, metal catalysts such as dioctyltin dilaurate, and the like can also be used.
 <ポリウレタン用ヌレート化触媒(F1)>
 ヌレート化反応で使用されるポリウレタン用ヌレート化触媒(F1)としては、公知の触媒から適宜選択して用いることができ、
 具体例としては、例えばトリエチルアミン、N-エチルピペリジン、N,N’-ジメチルピペラジン、N-エチルモルフォリン、フェノール化合物のマンニッヒ塩基等の第三級アミン、テトラメチルアンモニウム炭酸水素塩、メチルトリエチルアンモニウム炭酸水素塩、エチルトリメチルアンモニウム炭酸水素塩、プロピルトリメチルアンモニウム炭酸水素塩、ブチルトリメチルアンモニウム炭酸水素塩、ペンチルトリメチルアンモニウム炭酸水素塩、ヘキシルトリメチルアンモニウム炭酸水素塩、ヘプチルトリメチルアンモニウム炭酸水素塩、オクチルトリメチルアンモニウム炭酸水素塩、ノニルトリメチルアンモニウム炭酸水素塩、デシルトリメチルアンモニウム炭酸水素塩、ウンデシルトリメチルアンモニウム炭酸水素塩、ドデシルトリメチルアンモニウム炭酸水素塩、トリデシルトリメチルアンモニウム炭酸水素塩、テトラデシルトリメチルアンモニウム炭酸水素塩、ヘプタデシルトリメチルアンモニウム炭酸水素塩、ヘキサデシルトリメチルアンモニウム炭酸水素塩、ヘプタデシルトリメチルアンモニウム炭酸水素塩、オクタデシルトリメチルアンモニウム炭酸水素塩、(2-ヒドロキシプロピル)トリメチルアンモニウム炭酸水素塩、ヒドロキシエチルトリメチルアンモニウム炭酸水素塩、1-メチル-1-アザニア-4-アザビシクロ[2.2.2]オクタニウム炭酸水素塩、又は1,1-ジメチル-4-メチルピペリジニウム炭酸水素塩等の第四級アンモニウム炭酸水素塩、テトラメチルアンモニウム炭酸塩、メチルトリエチルアンモニウム炭酸塩、エチルトリメチルアンモニウム炭酸塩、プロピルトリメチルアンモニウム炭酸塩、ブチルトリメチルアンモニウム炭酸塩、ペンチルトリメチルアンモニウム炭酸塩、ヘキシルトリメチルアンモニウム炭酸塩、ヘプチルトリメチルアンモニウム炭酸塩、オクチルトリメチルアンモニウム炭酸塩、ノニルトリメチルアンモニウム炭酸塩、デシルトリメチルアンモニウム炭酸塩、ウンデシルトリメチルアンモニウム炭酸塩、ドデシルトリメチルアンモニウム炭酸塩、トリデシルトリメチルアンモニウム炭酸塩、テトラデシルトリメチルアンモニウム炭酸塩、ヘプタデシルトリメチルアンモニウム炭酸塩、ヘキサデシルトリメチルアンモニウム炭酸塩、ヘプタデシルトリメチルアンモニウム炭酸塩、オクタデシルトリメチルアンモニウム炭酸塩、(2-ヒドロキシプロピル)トリメチルアンモニウム炭酸塩、ヒドロキシエチルトリメチルアンモニウム炭酸塩、1-メチル-1-アザニア-4-アザビシクロ[2.2.2]オクタニウム炭酸塩、又は1,1-ジメチル-4-メチルピペリジニウム炭酸塩等の第四級アンモニウム炭酸塩、トリメチルヒドロキシプロピルアンモニウム、トリメチルヒドロキシプロピルアンモニウム、トリエチルヒドロキシエチルアンモニウム等のヒドロキシアルキルアンモニウムのハイドロオキサイドや有機弱酸塩、酢酸、プロピオン酸、酪酸、カプロン酸、カプリン酸、吉草酸、オクチル酸、ミリスチン酸、ナフテン酸等のカルボン酸のアルカリ金属塩等が挙げられる。また、これらのポリウレタン用イソシアヌレート化触媒(F1)は、単独、又は2種以上を組み合わせて用いることができる。
<Nuration catalyst for polyurethane (F1)>
As the nurating catalyst for polyurethane (F1) used in the nurating reaction, it can be appropriately selected from known catalysts and used.
Specific examples include, for example, triethylamine, N-ethylpiperidine, N, N′-dimethylpiperazine, N-ethylmorpholine, tertiary amines such as phenolic Mannich bases, tetramethylammonium hydrogen carbonate, methyltriethylammonium carbonate. Hydrogen salt, ethyl trimethylammonium bicarbonate, propyltrimethylammonium bicarbonate, butyltrimethylammonium bicarbonate, pentyltrimethylammonium bicarbonate, hexyltrimethylammonium bicarbonate, heptyltrimethylammonium bicarbonate, octyltrimethylammonium bicarbonate Salt, nonyltrimethylammonium bicarbonate, decyltrimethylammonium bicarbonate, undecyltrimethylammonium bicarbonate, dodecyltri Methylammonium bicarbonate, tridecyltrimethylammonium bicarbonate, tetradecyltrimethylammonium bicarbonate, heptadecyltrimethylammonium bicarbonate, hexadecyltrimethylammonium bicarbonate, heptadecyltrimethylammonium bicarbonate, octadecyltrimethylammonium carbonate Hydrogen salt, (2-hydroxypropyl) trimethylammonium bicarbonate, hydroxyethyltrimethylammonium bicarbonate, 1-methyl-1-azania-4-azabicyclo [2.2.2] octanium bicarbonate, or 1,1 Quaternary ammonium hydrogen carbonates such as dimethyl-4-methylpiperidinium hydrogen carbonate, tetramethylammonium carbonate, methyltriethylammonium carbonate, ethyltrimethyl Ammonium carbonate, propyltrimethylammonium carbonate, butyltrimethylammonium carbonate, pentyltrimethylammonium carbonate, hexyltrimethylammonium carbonate, heptyltrimethylammonium carbonate, octyltrimethylammonium carbonate, nonyltrimethylammonium carbonate, decyltrimethylammonium carbonate Salt, undecyltrimethylammonium carbonate, dodecyltrimethylammonium carbonate, tridecyltrimethylammonium carbonate, tetradecyltrimethylammonium carbonate, heptadecyltrimethylammonium carbonate, hexadecyltrimethylammonium carbonate, heptadecyltrimethylammonium carbonate, Octadecyltrimethylammonium carbonate, (2-hydroxypropyl Pill) trimethylammonium carbonate, hydroxyethyltrimethylammonium carbonate, 1-methyl-1-azania-4-azabicyclo [2.2.2] octanium carbonate, or 1,1-dimethyl-4-methylpiperidinium carbonate Quaternary ammonium carbonates such as salts, hydroxyalkylammonium hydroxides such as trimethylhydroxypropylammonium, trimethylhydroxypropylammonium, triethylhydroxyethylammonium and weak organic acid salts, acetic acid, propionic acid, butyric acid, caproic acid, capric acid, Examples thereof include alkali metal salts of carboxylic acids such as valeric acid, octylic acid, myristic acid and naphthenic acid. Moreover, these isocyanurate-ized catalysts (F1) for polyurethane can be used individually or in combination of 2 or more types.
 尚、イソシアヌレート化触媒(F1)の使用量は、NCO基末端ウレタンプレポリマー(A)と活性水素基末端硬化剤(B)の総和質量に対して、0.001~0.5質量%の範囲で用いられるのが好ましく、中でも、反応制御の容易さという観点から、0.005~0.10質量%の範囲で用いられるのがより好ましい。 The amount of the isocyanurate-forming catalyst (F1) used is 0.001 to 0.5% by mass with respect to the total mass of the NCO group-terminated urethane prepolymer (A) and the active hydrogen group-end curing agent (B). It is preferably used in the range, and in particular, it is more preferably used in the range of 0.005 to 0.10% by mass from the viewpoint of easy reaction control.
 <ポリウレタン用アロファネート化触媒(F2)>
 アロファネート化反応で使用されるポリウレタン用アロファネート化触媒(F2)としては、公知の触媒から適宜選択して用いることができ、例えば、カルボン酸の金属塩を用いることができる。
<Allophanatization catalyst for polyurethane (F2)>
The allophanatization catalyst for polyurethane (F2) used in the allophanatization reaction can be appropriately selected from known catalysts, and for example, a metal salt of a carboxylic acid can be used.
 カルボン酸の具体例としては、例えば酢酸、プロピオン酸、酪酸、カプロン酸、オクチル酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、2-エチルヘキサン酸等の飽和脂肪族カルボン酸、シクロヘキサンカルボン酸、シクロペンタンカルボン酸等の飽和単環カルボン酸、ビシクロ[4.4.0]デカン-2-カルボン酸等の飽和複環カルボン酸、ナフテン酸等の上述したカルボン酸の混合物、オレイン酸、リノール酸、リノレン酸、大豆油脂肪酸、トール油脂肪酸等の不飽和脂肪族カルボン酸、ジフェニル酢酸等の芳香脂肪族カルボン酸、安息香酸、トルイル酸等の芳香族カルボン酸等のモノカルボン酸類;フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、コハク酸、酒石酸、シュウ酸、マロン酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、クルタコン酸、アゼライン酸、セバシン酸、1,4-シクロヘキシルジカルボン酸、α-ハイドロムコン酸、β-ハイドロムコン酸、α-ブチル-α-エチルグルタル酸、α,β-ジエチルサクシン酸、マレイン酸、フマル酸、トリメリット酸、ピロメリット酸等のポリカルボン酸類等が挙げられる。 Specific examples of the carboxylic acid include, for example, acetic acid, propionic acid, butyric acid, caproic acid, octylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, 2-ethylhexanoic acid and other saturated aliphatic carboxylic acids, cyclohexanecarboxylic acid , Saturated monocyclic carboxylic acids such as cyclopentanecarboxylic acid, saturated bicyclic carboxylic acids such as bicyclo [4.4.0] decane-2-carboxylic acid, mixtures of the above-mentioned carboxylic acids such as naphthenic acid, oleic acid, linole Monocarboxylic acids such as acid, linolenic acid, unsaturated fatty carboxylic acid such as soybean oil fatty acid and tall oil fatty acid, aromatic aliphatic carboxylic acid such as diphenylacetic acid, aromatic carboxylic acid such as benzoic acid and toluic acid; phthalic acid , Isophthalic acid, terephthalic acid, naphthalene dicarboxylic acid, succinic acid, tartaric acid, oxalic acid, malonic acid, Taric acid, adipic acid, pimelic acid, suberic acid, kurtaconic acid, azelaic acid, sebacic acid, 1,4-cyclohexyldicarboxylic acid, α-hydromuconic acid, β-hydromuconic acid, α-butyl-α-ethylglutaric acid , Α, β-diethylsuccinic acid, maleic acid, fumaric acid, trimellitic acid, pyromellitic acid and other polycarboxylic acids.
 また、カルボン酸の金属塩を構成する金属としては、例えばリチウム、ナトリウム、カリウム等のアルカリ金属、マグネシウム、カルシウム、バリウム等のアルカリ土類金属、スズ、鉛等のその他の典型金属、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ジルコニウム等の遷移金属等が挙げられる。これらのカルボン酸金属塩は、単独、又は2種以上を組み合わせて用いることができる。 Examples of the metal constituting the metal salt of carboxylic acid include alkali metals such as lithium, sodium and potassium, alkaline earth metals such as magnesium, calcium and barium, other typical metals such as tin and lead, manganese and iron , Transition metals such as cobalt, nickel, copper, zinc and zirconium. These carboxylic acid metal salts can be used alone or in combination of two or more.
 この他、アルカノールアミンとしては、例えばN,N,N,N’-トリメチルアミノエチルエタノールアミン、N,N-ジメチルアミノエトキシエタノール等が挙げられる。 In addition, examples of the alkanolamine include N, N, N, N′-trimethylaminoethylethanolamine, N, N-dimethylaminoethoxyethanol, and the like.
 尚、アロファネート化触媒(F2)の使用量は、NCO基末端ウレタンプレポリマー(A)と活性水素基末端硬化剤(B)の総和質量に対して、0.001~0.5質量%の範囲で用いられるのが好ましく、中でも、反応制御の容易さという観点から、0.005~0.10質量%の範囲で用いられるのがより好ましい。 The amount of the allophanatization catalyst (F2) used is in the range of 0.001 to 0.5% by mass with respect to the total mass of the NCO group-terminated urethane prepolymer (A) and the active hydrogen group-terminated curing agent (B). In particular, from the viewpoint of easy reaction control, it is more preferably used in the range of 0.005 to 0.10% by mass.
 <ポリウレタン用ウレタン化触媒(F3)>
 ウレタン化反応で使用されるポリウレタン用ウレタン化触媒(F3)としては、公知の触媒から適宜選択して用いることができる。
<Urethaneization catalyst for polyurethane (F3)>
The polyurethane urethanization catalyst (F3) used in the urethanization reaction can be appropriately selected from known catalysts.
 アミン系触媒の具体例としては、例えばトリエチレンジアミン、2-メチルトリエチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラメチルプロピレンジアミン、N,N,N’,N”,N”-ペンタメチルジエチレントリアミン、N,N,N’,N”,N”-ペンタメチル-(3-アミノプロピル)エチレンジアミン、N,N,N’,N”,N”-ペンタメチルジプロピレントリアミン、N,N,N’,N’-テトラメチルヘキサメチレンジアミン、ビス(2-ジメチルアミノエチル)エーテル、ジメチルエタノールアミン、ジメチルイソプロパノールアミン、ジメチルアミノエトキシエタノール、N,N-ジメチル-N’-(2-ヒドロキシエチル)エチレンジアミン、N,N-ジメチル-N’-(2-ヒドロキシエチル)プロパンジアミン、ビス(ジメチルアミノプロピル)アミン、ビス(ジメチルアミノプロピル)イソプロパノールアミン等である。 Specific examples of the amine catalyst include, for example, triethylenediamine, 2-methyltriethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetramethylpropylenediamine, N, N, N ′, N ″, N ″ -pentamethyldiethylenetriamine, N, N, N ′, N ″, N ″ -pentamethyl- (3-aminopropyl) ethylenediamine, N, N, N ′, N ″, N ″ -Pentamethyldipropylenetriamine, N, N, N ', N'-tetramethylhexamethylenediamine, bis (2-dimethylaminoethyl) ether, dimethylethanolamine, dimethylisopropanolamine, dimethylaminoethoxyethanol, N, N- Dimethyl-N '-(2-hydroxyethyl) ethylenediamine, N, N-dimethyl -N '- (2-hydroxyethyl) propanediamine, bis (dimethylaminopropyl) amine, bis (dimethylaminopropyl) isopropanolamine and the like.
 イミダソール系触媒の具体例としては、例えば1-メチルイミダゾール、1,2-ジメチルイミダゾール、1-イソブチル-2-メチルイミダゾール、1-ジメチルアミノプロピルイミダゾール、N,N-ジメチルヘキサノールアミン、N-メチル-N’-(2-ヒドロキシエチル)ピペラジン、1-(2-ヒドロキシエチル)イミダゾール、1-(2-ヒドロキシプロピル)イミダゾール、1-(2-ヒドロキシエチル)-2-メチルイミダゾール、1-(2-ヒドロキシプロピル)-2-メチルイミダゾール等である。 Specific examples of the imidazole-based catalyst include 1-methylimidazole, 1,2-dimethylimidazole, 1-isobutyl-2-methylimidazole, 1-dimethylaminopropylimidazole, N, N-dimethylhexanolamine, N-methyl- N ′-(2-hydroxyethyl) piperazine, 1- (2-hydroxyethyl) imidazole, 1- (2-hydroxypropyl) imidazole, 1- (2-hydroxyethyl) -2-methylimidazole, 1- (2- Hydroxypropyl) -2-methylimidazole and the like.
 金属触媒系の具体例としては、例えばスタナスジアセテート、スタナスジオクトエート、スタナスジオレエート、スタナスジラウレート、ジブチル錫オキサイド、ジブチル錫ジアセテート、ジブチル錫ジラウレート、ジブチル錫ジクロライド、ジオクチル錫ジラウレート等の有機スズ触媒や、オクチル酸ニッケル、ナフテン酸ニッケル、オクチル酸コバルト、ナフテン酸コバルト、オクチル酸ビスマス、ナフテン酸ビスマス等である。 Specific examples of the metal catalyst system include stannous diacetate, stannous dioctoate, stannous dioleate, stannous dilaurate, dibutyltin oxide, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin dichloride, dioctyltin dilaurate and the like. Organotin catalysts, nickel octylate, nickel naphthenate, cobalt octylate, cobalt naphthenate, bismuth octylate, bismuth naphthenate, and the like.
 尚、ウレタン化触媒(F3)の使用量は、NCO基末端ウレタンプレポリマー(A)と活性水素基末端硬化剤(B)の総和質量に対して、0.001~0.5質量%の範囲で用いられるのが好ましく、中でも、反応制御の容易さという観点から、0.005~0.10質量%の範囲で用いられるのがより好ましい。 The amount of the urethanization catalyst (F3) used is in the range of 0.001 to 0.5% by mass with respect to the total mass of the NCO group-terminated urethane prepolymer (A) and the active hydrogen group-terminated curing agent (B). In particular, from the viewpoint of easy reaction control, it is more preferably used in the range of 0.005 to 0.10% by mass.
 本発明に用いる反応抑制剤(E)は、本発明の効果を奏すれば、特に限定されるものでない。 The reaction inhibitor (E) used in the present invention is not particularly limited as long as the effects of the present invention are exhibited.
 反応抑制剤(E)の具体例としては、例えば亜リン酸エステル系、酸性リン酸エステル系、ポリオキシエチレンアルキルエーテルリン酸系等が挙げられる。亜リン酸エステル系としては、トリフェニルホスフェート、トリデシルホスフェート、ジブチルハイドロジエンホスフェート等である。酸性リン酸エステル系としては、ブチルアシッドホスフェート、2-エチルヘキシルアシッドホスフェート、イソデシルアシッドホスフェート等である。ポリオキシエチレンアルキルエーテルリン酸系としては、ジ(C12-15)パレス-2リン酸、ジ(C12-15)-パレス4リン酸、ジ(C12-15)-パレス6リン酸、ジ(C12-15)-パレス8リン酸、ジ(C12-15)-パレス10リン酸、リン酸(モノ,ジ)ポリエチレングルコール(3EO)C10-14アルコール、ポリオキシエチレントリデシルエーテルリン酸エステル、リン酸(モノ,ジ)ポリエチレングリコール(4E0)4-ノニフェニル等である。 Specific examples of the reaction inhibitor (E) include a phosphite ester system, an acidic phosphate ester system, and a polyoxyethylene alkyl ether phosphate system. Examples of phosphite esters include triphenyl phosphate, tridecyl phosphate, and dibutyl hydrogen phosphate. Examples of the acidic phosphate ester include butyl acid phosphate, 2-ethylhexyl acid phosphate, and isodecyl acid phosphate. Examples of the polyoxyethylene alkyl ether phosphoric acid system include di (C12-15) pares-2 phosphoric acid, di (C12-15) -pares tetraphosphoric acid, di (C12-15) -palace 6 phosphoric acid, di (C12 -15) -Palace 8-phosphate, di (C12-15) -Palace 10-phosphate, phosphoric acid (mono, di) polyethylene glycol (3EO) C10-14 alcohol, polyoxyethylene tridecyl ether phosphate, phosphorus Acid (mono, di) polyethylene glycol (4E0) 4-noniphenyl and the like.
 本発明に於いては、さらに必要に応じて、添加剤として、酸化防止剤、脱泡剤、紫外線吸収剤等を形成性組成物に導入して使用することができる。 In the present invention, if necessary, an antioxidant, a defoaming agent, an ultraviolet absorber and the like can be introduced into the forming composition as additives.
 本発明に於いては、これまでに述べた熱硬化性ポリウレタンエラストマー形成性組成物を用いて、工程として成形型内に於いて硬化処理(具体的には、加熱により硬化を促進する処理)を行い、ウレタン化、ヌレート化、並びにアロファネート化結合を有する熱硬化ポリウレタンエラストマー成型物を製造する。 In the present invention, using the thermosetting polyurethane elastomer-forming composition described so far, a curing process (specifically, a process for promoting curing by heating) is performed in a mold as a process. To produce a thermoset polyurethane elastomer molding having urethanized, nurated, and allophanatized bonds.
 この場合、本発明の形成性組成物を用いて、熱硬化性ポリウレタンエラストマー成型物を製造する方法としては、以下の工程を含む方法により製造されることが好ましい。 In this case, the method for producing a thermosetting polyurethane elastomer molded product using the forming composition of the present invention is preferably produced by a method including the following steps.
 工程(1):
NCO基末端プレポリマー(A)と活性水素基末端硬化剤(B)、ただし、予め活性水素基末端硬化剤(B)に触媒(F)を含有させない場合は、触媒(F)を別途添加し、均一に混合して形成性組成物を調製する。なお、空気を巻き込み気泡が見られる場合は、真空脱泡等で気泡を取り除く。これらの工程は、専用のポリウレタン注型機を用いることが好ましい。
Step (1):
NCO group terminal prepolymer (A) and active hydrogen group terminal curing agent (B). However, if the active hydrogen group terminal curing agent (B) does not contain the catalyst (F) in advance, the catalyst (F) is added separately. The forming composition is prepared by mixing uniformly. In addition, when air is involved and bubbles are observed, the bubbles are removed by vacuum defoaming or the like. These steps are preferably performed using a dedicated polyurethane casting machine.
 工程(2):
プレヒートした成形型に該形成性組成物を混合後直ちに成形型内に注入し(注型)、該形成性組成物を成形型内で硬化処理を行う(具体的には、加熱して硬化反応を促進させる)。この場合、成形型の温度はウレタン化反応、及びヌレート化、アロファネート化反応を容易に且つ確実に行わせる条件であるという観点から、80~170℃の範囲であることが好ましい。
Step (2):
Immediately after mixing the moldable composition into a preheated mold (casting), the moldable composition is cured in the mold (specifically, heated to cure reaction) Promote). In this case, the temperature of the mold is preferably in the range of 80 to 170 ° C. from the viewpoint that the urethanization reaction, the nurateization and the allophanatization reaction are performed easily and reliably.
 工程(3):
形成性組成物が硬化した後、硬化物(即ち、熱硬化ポリウレタンエラストマー成型物)を成形型内から取り出す(脱型)。なお、本発明に於いては、前記の注型から脱型までに要する時間は、特に限定するものではないが、本発明の意図する熱硬化性ポリウレタンエラストマーの生産性という観点から触媒量や成形型のプレヒート温度を調整し、30~600秒の範囲であることが好ましい。
Step (3):
After the forming composition is cured, the cured product (that is, the thermosetting polyurethane elastomer molded product) is taken out from the mold (demolding). In the present invention, the time required from casting to demolding is not particularly limited. However, from the viewpoint of productivity of the thermosetting polyurethane elastomer intended by the present invention, the amount of catalyst and molding It is preferable that the preheating temperature of the mold is adjusted to be in the range of 30 to 600 seconds.
 工程(4):
硬化後、熱硬化性ポリウレタンエラストマー成型物を脱型した後、室温で一週間エージング処理を行う。
Step (4):
After curing, the molded product of the thermosetting polyurethane elastomer is removed, and then subjected to aging treatment at room temperature for one week.
 なお、注型時におけるNCO基末端プレポリマーのNCO基含量と活性水素基末端硬化剤のOH基(NH基)含有量から求められる配合モル比(以下「α値」と略記)、OH基(NH基)/NCO基は、選択した触媒種や目的の物性に応じ選択することができる。 The compounding molar ratio (hereinafter abbreviated as “α value”) determined from the NCO group content of the NCO group-terminated prepolymer and the OH group (NH 2 group) content of the active hydrogen group terminal curing agent at the time of casting, OH group The (NH 2 group) / NCO group can be selected according to the selected catalyst type and desired physical properties.
 例えば、ポリウレタン用ヌレート化触媒(F1)やポリウレタン用アロファネート化触媒(F2)を用いる場合のα値は0.2~0.8が好ましい。この場合、ウレタン化触媒(F3)を併用することもできる。0.2を下回る場合は、過剰イソシアネートによるヌレート化やアロファネート化が極端に多くなり、この架橋点の増加により、著しく引張物性値の低下を招くことがある。また、0.8を上回る場合は、ヌレート化やアロファネート化による架橋点が少なくなり、初期モジュラス(M100)の低下を招き応力に対する変形量が大きく硬度に対する強度不足を招くことがある。 For example, the α value is preferably 0.2 to 0.8 when the polyurethane nurating catalyst (F1) or the polyurethane allophanating catalyst (F2) is used. In this case, a urethanization catalyst (F3) can also be used in combination. When it is less than 0.2, nurateization or allophanate formation by excess isocyanate becomes extremely large, and this increase in the cross-linking point may lead to a significant decrease in tensile property values. On the other hand, when it exceeds 0.8, the number of cross-linking points due to nurateization or allophanate decreases, leading to a decrease in initial modulus (M100), a large deformation amount with respect to stress, and a lack of strength with respect to hardness.
 また、ウレタン化触媒(F3)を単独で用いる場合のα値は、0.8~1.0が好ましい。0.8を下回る場合は、十分な分子延長が行えずに硬化不足等の問題が発生する。また、1.0を上回る場合も物性低下や硬化不足等の問題が発生することがある。 Further, the α value when the urethanization catalyst (F3) is used alone is preferably 0.8 to 1.0. If it is less than 0.8, sufficient molecular extension cannot be performed and problems such as insufficient curing occur. Further, when the ratio exceeds 1.0, problems such as deterioration of physical properties and insufficient curing may occur.
 本発明の形成性組成物を用いて製造される熱硬化性ポリウレタンエラストマー成型物を、脱型後に100~200℃で1~60分間の範囲で加熱処理することで効率良く低摩擦化することができる。加熱温度が100℃を下回る場合や時間が1分を下回る場合は、最表面に滑剤が移行し辛いため効果は小さい。また、熱温度が200℃を上回る場合や時間が60分を上回る場合は、熱硬化性ポリウレタン成型物の軟化による摩擦係数の増加に繋がりやすく、効果は小さい。 The thermosetting polyurethane elastomer molded product produced by using the forming composition of the present invention can be efficiently reduced in friction by heat treatment at 100 to 200 ° C. for 1 to 60 minutes after demolding. it can. When the heating temperature is less than 100 ° C. or when the time is less than 1 minute, the effect is small because the lubricant is difficult to transfer to the outermost surface. Moreover, when a heat temperature exceeds 200 degreeC or time exceeds 60 minutes, it is easy to lead to the increase in a friction coefficient by softening of a thermosetting polyurethane molding, and an effect is small.
 本発明の熱硬化性ポリウレタンエラストマー形成性組成物を用いて製造される成型物は、低摩擦係数が求められる産業機械部品に好適に用いることができる。 The molded product produced using the thermosetting polyurethane elastomer-forming composition of the present invention can be suitably used for industrial machine parts that require a low friction coefficient.
 次に、第二の課題を解決するための本発明の樹脂成型に用いられる離型剤組成物は、少なくとも4級アンモニウム、及び4級ホスホニウムからなる群より選ばれる少なくとも一種のカルボキシレートを分子構造中に有するオルガノポリシロキサン(J)を含有することで、型接触面のイソシアヌレート化反応が促進され、架橋密度上昇から表面のみ高硬度化し、得られるポリウレタン樹脂成形品は、従来の物性を保持しつつ低摩擦化が図れる。4級アンモニウム、及び4級ホスホニウムからなる群より選ばれる少なくとも一種のカルボキシレートを分子構造中に有するオルガノポリシロキサン(J)を含有しない場合、得られる成形物は低摩擦化しない。また、オルガノポリシロキサン(J)と活性水素基を有するシリコーン(L)を併用すると、表面の高硬度化に加えて滑り性を付与することができ、さらに低摩擦化が進行する。 Next, the release agent composition used in the resin molding of the present invention for solving the second problem has a molecular structure containing at least one carboxylate selected from the group consisting of at least quaternary ammonium and quaternary phosphonium. By containing the organopolysiloxane (J) contained therein, the isocyanurate reaction on the mold contact surface is promoted, and only the surface is hardened due to an increase in the crosslink density, and the resulting polyurethane resin molded product retains the conventional physical properties. However, low friction can be achieved. When the organopolysiloxane (J) having in its molecular structure at least one carboxylate selected from the group consisting of quaternary ammonium and quaternary phosphonium is not contained, the resulting molded product does not have low friction. In addition, when the organopolysiloxane (J) and the silicone (L) having an active hydrogen group are used in combination, it is possible to impart slipperiness in addition to increasing the hardness of the surface, and to further reduce friction.
 本発明に用いられるオルガノポリシロキサン(J)は、例えばカルボキシル基含有オルガノポリシロキサンと、4級アンモニウム、及び4級ホスホニウムからなる群より選ばれる少なくとも一種の水酸化物を反応させることで得られる。4級アンモニウムや4級ホスホニウムの水酸化物の他にも、炭酸塩などカルボン酸よりも弱酸性を示す酸との塩であれば、オルガノポリシロキサン中のカルボン酸と塩交換反応し、速やかに所望の離型剤組成物を得ることができる。他には3級アミン含有オルガノポリシロキサン、アルキレンオキシド、有機カルボン酸を反応させることで得られる。また、アルキレンオキシド含有オルガノポリシロキサン、3級アミン、有機カルボン酸を反応させることでも得られる。なお本発明の樹脂成型に用いられるオルガノポリシロキサン(J)は、4級アンモニウム及び4級ホスホニウムからなる群より選ばれる少なくとも一種のカルボキシレートがオルガノポリシロキサン分子中に結合されている構造であり所望の効果を発揮するものであれば、前述の構造や製造方法に限定されるものではない。カルボキシレートの含有量についても特に制限はないが、成形表面の高硬度化による低摩擦化を達成するには、オルガノポリシロキサン(J)に対して0.3mmol/g以上であることが好ましい。また、4級アンモニウム、及び4級ホスホニウムからなる群より選ばれる少なくとも一種のカルボキシレートを分子構造中に有するオルガノポリシロキサン(J)を含有する離型剤組成物は、塗布性を良くするため、これら離型剤組成物を溶解することのできる溶剤で希釈しても良く、ジエチルエーテル、テトラヒドロフラン(以下「THF」と略記)等のエーテル化合物、酢酸エチル、酢酸ブチル等のエステル化合物、ベンゼン、トルエン等の芳香族炭化水素化合物、ヘキサン、オクタン等の脂肪族炭化水素化合物、あるいはこれらの混合物などが例として挙げられる。少なくとも4級アンモニウム、及び4級ホスホニウムからなる群より選ばれる少なくとも一種のカルボキシレートを分子構造中に有するオルガノポリシロキサン(J)を含有する樹脂成形に用いられる離型剤組成物を調製するにあたって用いられる原料は、具体的には次のものが挙げられる。 The organopolysiloxane (J) used in the present invention can be obtained, for example, by reacting a carboxyl group-containing organopolysiloxane with at least one hydroxide selected from the group consisting of quaternary ammonium and quaternary phosphonium. In addition to hydroxides of quaternary ammonium and quaternary phosphonium, salts with acids that are weaker than carboxylic acids, such as carbonates, undergo a salt exchange reaction with the carboxylic acids in the organopolysiloxane, promptly. A desired release agent composition can be obtained. Otherwise, it can be obtained by reacting a tertiary amine-containing organopolysiloxane, an alkylene oxide, and an organic carboxylic acid. It can also be obtained by reacting an alkylene oxide-containing organopolysiloxane, a tertiary amine, or an organic carboxylic acid. The organopolysiloxane (J) used in the resin molding of the present invention has a structure in which at least one carboxylate selected from the group consisting of quaternary ammonium and quaternary phosphonium is bonded to the organopolysiloxane molecule. As long as the above effect is exhibited, the structure and the manufacturing method are not limited to those described above. The content of the carboxylate is not particularly limited, but is preferably 0.3 mmol / g or more based on the organopolysiloxane (J) in order to achieve low friction by increasing the hardness of the molding surface. In addition, the release agent composition containing an organopolysiloxane (J) having at least one carboxylate selected from the group consisting of quaternary ammonium and quaternary phosphonium in the molecular structure improves the coatability. These release agent compositions may be diluted with a solvent capable of dissolving, ether compounds such as diethyl ether and tetrahydrofuran (hereinafter abbreviated as “THF”), ester compounds such as ethyl acetate and butyl acetate, benzene and toluene Examples thereof include aromatic hydrocarbon compounds such as hexane, octane, etc., or mixtures thereof. Used in preparing a release agent composition used for resin molding containing organopolysiloxane (J) having at least one carboxylate selected from the group consisting of quaternary ammonium and quaternary phosphonium in the molecular structure. Specific examples of the raw material to be used include the following.
 <反応性官能基含有オルガノポリシロキサン>
カルボキシル基を有するオルガノポリシロキサンとしては、片末端にカルボキシル基を有する分子量1000~2000のジメチルポリシロキサン(例えば、信越シリコーン社製「X-22-3710」)、両末端にカルボキシル基を有する分子量4000~5000のジメチルポリシロキサン(例えば、信越シリコーン社製「X-22-162C」)、側鎖にカルボキシル基を有するジメチルポリシロキサン(例えば、信越シリコーン社製「X-22-3701E」)などが挙げられる。
<Reactive functional group-containing organopolysiloxane>
Examples of the organopolysiloxane having a carboxyl group include a dimethylpolysiloxane having a carboxyl group at one end and a molecular weight of 1000 to 2000 (for example, “X-22-3710” manufactured by Shin-Etsu Silicone), and a molecular weight of 4000 having a carboxyl group at both ends. -5000 dimethylpolysiloxane (for example, “X-22-162C” manufactured by Shin-Etsu Silicone), dimethylpolysiloxane having a carboxyl group in the side chain (for example, “X-22-3701E” manufactured by Shin-Etsu Silicone), and the like. It is done.
 <4級アンモニウム、4級ホスホニウムの水酸化物>
テトラメチルアンモニウムヒドロキシド、2-ヒドロキシエチルトリメチルアンモニウムヒドロキシド、2-ヒドロキシプロピルトリメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、テトラブチルホスホニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、及びこれらの混合物などが挙げられる。
<Quaternary ammonium, quaternary phosphonium hydroxide>
Tetramethylammonium hydroxide, 2-hydroxyethyltrimethylammonium hydroxide, 2-hydroxypropyltrimethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, tetrabutylphosphonium hydroxide, benzyltrimethylammonium Examples thereof include hydroxides and mixtures thereof.
 本発明で用いる活性水素基を有するシリコーン(L)は、アミノ基、水酸基、チオール基、カルボキシル基を有するシリコーン化合物であれば特に制限はなく、具体的にはジメチルシリコーン、メチルフェニルシリコーン、ジフェニルシリコーン、ジメチル・メチルフェニルシリコーン、ジメチル・ジフェニルシリコーン、メチルハイドロジェンシリコーン、及びこれらの混合物などが挙げられる。活性水素基の位置、個数は特に制限はなく、末端や側鎖に1個又は複数個あっても良い。なかでもアミノ基を有するシリコーンが好ましい。 The silicone (L) having an active hydrogen group used in the present invention is not particularly limited as long as it is a silicone compound having an amino group, a hydroxyl group, a thiol group, or a carboxyl group, and specifically, dimethyl silicone, methylphenyl silicone, diphenyl silicone. Dimethyl methylphenyl silicone, dimethyl diphenyl silicone, methyl hydrogen silicone, and mixtures thereof. The position and the number of active hydrogen groups are not particularly limited, and one or more active hydrogen groups may be present at the terminal or side chain. Of these, silicone having an amino group is preferred.
 本発明で用いる活性水素基を有するシリコーン(L)の添加量は特に制限はないが、オルガノポリシロキサン(J)100質量部に対して5~150質量部、特に10~120質量部であることが好ましい。5質量部以下では成型物表面への滑り性の付与硬化が小さく、150質量部以上では表面の高硬度化効果が小さくなり、滑り性と高硬度化の相乗効果を得られない。 The amount of the active hydrogen group-containing silicone (L) used in the present invention is not particularly limited, but is 5 to 150 parts by weight, particularly 10 to 120 parts by weight, based on 100 parts by weight of the organopolysiloxane (J). Is preferred. If the amount is 5 parts by mass or less, the imparting and hardening of the slipperiness to the surface of the molded product is small, and if it is 150 parts by mass or more, the effect of increasing the hardness of the surface is reduced, and the synergistic effect of the slipperiness and the increase in hardness cannot be obtained.
 本発明では、前記離型剤組成物を成形型に塗布し、ポリウレタン樹脂形成性組成物(K)をその成形型に注入し成型して低摩擦性を有するポリウレタン樹脂成型物を得ることができる。本発明に用いるポリウレタン樹脂形成性組成物(K)は、NCO基末端プレポリマー(A0)、活性水素基末端硬化剤(B0)からなることが好ましく、さらにはポリオキシエチレンアルキルエーテル(C1)、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)、オクタデシルイソシアネート(C3)、脂肪酸アミド(C4)から選ばれる少なくとも1種の滑剤(C)を含むことが好ましい。 In the present invention, the mold release agent composition is applied to a mold, and the polyurethane resin-forming composition (K) is injected into the mold and molded to obtain a polyurethane resin molded product having low friction. . The polyurethane resin-forming composition (K) used in the present invention preferably comprises an NCO group-terminated prepolymer (A0) and an active hydrogen group-terminated curing agent (B0), and more preferably a polyoxyethylene alkyl ether (C1), It preferably contains at least one lubricant (C) selected from linear aliphatic alcohol (C2), octadecyl isocyanate (C3), and fatty acid amide (C4) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less. .
 本発明に用いるNCO基末端ウレタンプレポリマー(A0)は、必要に応じ反応抑制剤を用い、少なくともポリイソシアネート(A6)とポリオールと(A7)のウレタン化反応により得ることができる。NCO基末端ウレタンプレポリマーのNCO含量は、5~25質量%が好ましい。NCO含量が5質量%より低い場合には、主にプレポリマーの粘度が高くなり、注型時にウレタン樹脂の流れ性が著しく悪くなる。25質量%より高い場合は、保存時及び使用時の性状安定性が著しく悪くなり、安定した産業機械部品が得にくく、成型不良に繋がるなどの問題を抱えるため、産業機械部品部材用のNCO基末端ウレタンプレポリマー(A0)として適さないものとなってしまう。 The NCO group-terminated urethane prepolymer (A0) used in the present invention can be obtained by a urethanization reaction of at least a polyisocyanate (A6), a polyol and (A7) using a reaction inhibitor if necessary. The NCO content of the NCO group-terminated urethane prepolymer is preferably 5 to 25% by mass. When the NCO content is lower than 5% by mass, the viscosity of the prepolymer is mainly increased, and the flowability of the urethane resin is remarkably deteriorated during casting. When the content is higher than 25% by mass, the stability of properties during storage and use is remarkably deteriorated, and it is difficult to obtain a stable industrial machine part, resulting in molding failure. It will become unsuitable as a terminal urethane prepolymer (A0).
 NCO基末端ウレタンプレポリマー(A0)は、攪拌容器内にポリイソシアネート(A6)と必要に応じ反応抑制剤を投入攪拌し、その後、攪拌容器内の温度を40~70℃に保ちながらポリオール(A7)を投入攪拌する。続いて、攪拌容器内の温度を70~90℃に保ちながら、2~5時間程度ウレタン化反応を進めることで得ることができる。 The NCO group-terminated urethane prepolymer (A0) is prepared by adding a polyisocyanate (A6) and, if necessary, a reaction inhibitor to a stirring vessel and stirring the polyol (A7) while maintaining the temperature in the stirring vessel at 40 to 70 ° C. ) Is stirred. Subsequently, the urethanization reaction can be carried out for about 2 to 5 hours while maintaining the temperature in the stirring vessel at 70 to 90 ° C.
 本発明のポリウレタン樹脂成形に用いるポリイソシアネート(A6)は、本発明の効果を奏すれば特に限定されるものではない。機械物性や反応制御の観点から、芳香族ジイソシアネートから少なくとも1種類選ばれることが好ましく、4,4’-ジフェニルメタンジイソシアネートが特に好ましい。 The polyisocyanate (A6) used for molding the polyurethane resin of the present invention is not particularly limited as long as the effects of the present invention are exhibited. From the viewpoint of mechanical properties and reaction control, at least one kind is preferably selected from aromatic diisocyanates, and 4,4'-diphenylmethane diisocyanate is particularly preferable.
 <ポリイソシアネート(A6)>
ポリイソシアネートとしては、前記したポリイソシアネート(A6)を挙げることができる。
<Polyisocyanate (A6)>
Examples of the polyisocyanate include the polyisocyanate (A6) described above.
 <ポリオール(A7)>
本発明に用いるポリオール(A7)は、本発明の効果を奏すれば、特に限定されるものでないが、機械物性やガラス転移温度の観点から、平均官能基数2~3、数平均分子量250~5000のポリエステルポリオール、ポリエーテルポリオールから少なくとも1種類選ばれることが好ましい。なお、必要に応じて、モノマーポリオールを併用することもできる。
<Polyol (A7)>
The polyol (A7) used in the present invention is not particularly limited as long as the effects of the present invention are exhibited, but from the viewpoint of mechanical properties and glass transition temperature, the average number of functional groups is 2 to 3, and the number average molecular weight is 250 to 5000. It is preferable that at least one kind selected from polyester polyols and polyether polyols. In addition, a monomer polyol can also be used together as needed.
 <ポリエステルポリオール>
ポリエステルポリオールとしては、前記したポリエステルポリオールを挙げることができる。
<Polyester polyol>
Examples of the polyester polyol include the above-described polyester polyol.
 <ポリエーテルポリオール>
ポリエーテルポリオールとしては、前記したポリエーテルポリオールを挙げることができる。。
<Polyether polyol>
Examples of the polyether polyol include the above-described polyether polyol. .
 <ポリカーボネートポリオール>
ポリカーボネートポリオールとしては、前記したポリカーボネートポリオールを挙げることができる。
<Polycarbonate polyol>
Examples of the polycarbonate polyol include the above-described polycarbonate polyol.
 また、ポリオールには、性能の低下しない範囲で、ポリオレフィンポリオール、アクリルポリオール、シリコーンポリオール、ヒマシ油系ポリオール、フッ素系ポリオールを単独、又は2種以上を併用することができる。 Also, the polyol may be a polyolefin polyol, an acrylic polyol, a silicone polyol, a castor oil-based polyol, or a fluorine-based polyol alone or in combination of two or more as long as the performance does not deteriorate.
 <ポリオレフィンポリオール>
ポリオレフィンポリオールとしては、前記したポリオレフィンポリオールを挙げることができる。
<Polyolefin polyol>
Examples of the polyolefin polyol include the above-described polyolefin polyol.
 <アクリルポリオール>
アクリルポリオールとしては、前記したアクリルポリオールを挙げることができる。
<Acrylic polyol>
Examples of the acrylic polyol include the above-described acrylic polyol.
 <シリコーンポリオール>
シリコーンポリオールとしては、前記したシリコーンポリオールを挙げることができる。
<Silicone polyol>
Examples of the silicone polyol include the aforementioned silicone polyols.
 <ヒマシ油系ポリオール>
ヒマシ油系ポリオールとしては、前記したヒマシ油系ポリオールを挙げることができる。
<Castor oil-based polyol>
As the castor oil-based polyol, the aforementioned castor oil-based polyol can be exemplified.
 <フッ素系ポリオール>
フッ素系ポリオールとしては、前記したフッ素系ポリオールを挙げることができる。
<Fluorine-based polyol>
Examples of the fluorine-based polyol include the fluorine-based polyol described above.
 <モノマーポリオール>
モノマーポリオールとしては、前記したモノマーポリオールを挙げることができる。
<Monomer polyol>
Examples of the monomer polyol include the monomer polyol described above.
 本発明に用いる反応抑制剤は、本発明の効果を奏すれば特に限定されるものでなく、前記した反応抑制剤(E)を挙げることができる。 The reaction inhibitor used in the present invention is not particularly limited as long as the effects of the present invention are exhibited, and examples thereof include the reaction inhibitor (E) described above.
 本発明に用いる活性水素基末端硬化剤(B0)は、少なくとも前記したポリオール(A7)を用いることができ、本発明の効果を奏すれば、特に限定されるものでない。機械物性や成形加工性を向上させる観点から、モノマーポリオールを単独で又は2種以上混合して用いることができる。また、更に平均官能基数2~3、数平均分子量250~5000のポリエステルポリオール、ポリエーテルポリオール、及びポリカーボネートポリオールのいずれかのポリオールを加えた混合物を用いることができる。モノマーポリオールとしては、1,4-ブタンジオールとトリメチロールプロパンとの混合物が好ましい。また、更に平均官能基数2、平均分子量500~3000のポリエステルポリオール、ポリエーテルポリオールを加えた混合物が好ましい。 The active hydrogen group terminal curing agent (B0) used in the present invention is not particularly limited as long as at least the polyol (A7) described above can be used, and the effects of the present invention are exhibited. From the viewpoint of improving mechanical properties and molding processability, monomer polyols can be used alone or in admixture of two or more. Further, a mixture obtained by adding any one of polyester polyols, polyether polyols, and polycarbonate polyols having an average functional group number of 2 to 3 and a number average molecular weight of 250 to 5000 can be used. As the monomer polyol, a mixture of 1,4-butanediol and trimethylolpropane is preferable. Further, a mixture in which a polyester polyol or polyether polyol having an average number of functional groups of 2 and an average molecular weight of 500 to 3000 is added is preferred.
 本発明に用いる活性水素基末端硬化剤(B0)は、必要に応じ触媒(F)を添加することができる。触媒は、発明の効果を奏すれば特に限定されるものでないが、機械物性や成形加工性を向上させる観点から、イソシアヌレート化触媒(F1)、アロファネート化触媒(F2)、ウレタン化触媒(F3)が用いられる。ウレタン化触媒は公知の一般的なトリエチレンジアミン等のアミン触媒、1-イソブチル-2-メチルイミダゾール等のイミダゾール系触媒、ジオクチルチンジラウレート等の金属系触媒等を用いることもできる。イソシアヌレート化触媒は、カリウム塩や4級アンモニウム塩が、アロファネート化触媒は、N,N,N’-トリメチルアミノエチルエタノールアミンやN,N-ジメチルアミノエトキシエタノールを用いることができる。これらは必要に応じて単独、又は2種以上を混合して使用することもできる。 The active hydrogen group terminal curing agent (B0) used in the present invention can be added with a catalyst (F) as required. The catalyst is not particularly limited as long as the effects of the invention are achieved. From the viewpoint of improving mechanical properties and molding processability, the isocyanurate catalyst (F1), the allophanate catalyst (F2), the urethanization catalyst (F3) ) Is used. The urethanization catalyst may be a known general amine catalyst such as triethylenediamine, imidazole catalyst such as 1-isobutyl-2-methylimidazole, metal catalyst such as dioctyltin dilaurate, and the like. The isocyanuration catalyst can be a potassium salt or a quaternary ammonium salt, and the allophanate catalyst can be N, N, N'-trimethylaminoethylethanolamine or N, N-dimethylaminoethoxyethanol. These may be used alone or in admixture of two or more as required.
 <ポリウレタン用イソシアヌレート化触媒(F1)>
イソシアヌレート化触媒としては、公知の触媒から適宜選択して用いることができ、前記したイソシアヌレート化触媒を挙げることができる。
<Isocyanurate catalyst for polyurethane (F1)>
As the isocyanurate-forming catalyst, it can be appropriately selected from known catalysts, and examples thereof include the above-mentioned isocyanurate-forming catalysts.
 なお、イソシアヌレート化触媒の使用量は、NCO基末端ウレタンプレポリマーとOH基末端硬化剤の総和質量に対して、0.001~0.5質量%の範囲で用いられるのが好ましく、中でも、反応制御の容易さという観点から、0.005~0.10質量%の範囲で用いられるのがより好ましい。 The amount of the isocyanurate-forming catalyst is preferably used in a range of 0.001 to 0.5% by mass with respect to the total mass of the NCO group-terminated urethane prepolymer and the OH group-end curing agent. From the viewpoint of easy reaction control, it is more preferably used in the range of 0.005 to 0.10% by mass.
 <ポリウレタン用アロファネート化触媒(F2)>
アロファネート化触媒としては、公知の触媒から適宜選択して用いることができ、前記したポリウレタン用アロファネート化触媒を挙げることができる。
なお、アロファネート化触媒の使用量は、NCO基末端ウレタンプレポリマーと活性水素基末端硬化剤の総和質量に対して、0.001~0.5質量%の範囲で用いられるのが好ましく、中でも、反応制御の容易さという観点から、0.005~0.10質量%の範囲で用いられるのがより好ましい。
<Allophanatization catalyst for polyurethane (F2)>
The allophanatization catalyst can be appropriately selected from known catalysts, and examples thereof include the allophanatization catalyst for polyurethane described above.
The amount of the allophanatization catalyst used is preferably in the range of 0.001 to 0.5% by mass with respect to the total mass of the NCO group-terminated urethane prepolymer and the active hydrogen group-terminated curing agent, From the viewpoint of easy reaction control, it is more preferably used in the range of 0.005 to 0.10% by mass.
 <ポリウレタン用ウレタン化触媒(F3)>
ウレタン化反応で使用されるポリウレタン用ウレタン化触媒としては、公知の触媒から適宜選択して用いることができ、前記したポリウレタン用ウレタン化触媒を挙げることができる。
<Urethaneization catalyst for polyurethane (F3)>
The polyurethane urethanization catalyst used in the urethanization reaction can be appropriately selected from known catalysts, and examples thereof include the polyurethane urethanization catalysts described above.
 なお、ウレタン化触媒の使用量は、NCO基末端ウレタンプレポリマーと活性水素基末端硬化剤の総和質量に対して、0.001~0.5質量%の範囲で用いられるのが好ましく、中でも、反応制御の容易さという観点から、0.005~0.10質量%の範囲で用いられるのがより好ましい。 The amount of the urethanization catalyst used is preferably in the range of 0.001 to 0.5% by mass with respect to the total mass of the NCO group-terminated urethane prepolymer and the active hydrogen group-end curing agent, From the viewpoint of easy reaction control, it is more preferably used in the range of 0.005 to 0.10% by mass.
 本発明のポリウレタン樹脂形成性組成物(K)には滑剤(C)を添加することができる。滑剤(C)に特に制限はないが、特にポリオキシエチレンアルキルエーテル(C1)、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)、オクタデシルイソシアネート(C3)、脂肪酸アミド(C4)の中から選ばれる少なくとも1種の滑剤を用いることが好ましい。滑剤の添加量も特に制限はないが、ポリウレタン樹脂形成組成物(C)中に0.1~8質量%、特に0.2~5質量%であることが好ましい。0.1質量%未満では成型物表面への滑り性の付与による低摩擦化効果が小さく、8質量部以上では成形表面のべたつきや外観不良を起こす。以下に具体的な化合物例を挙げる。 A lubricant (C) can be added to the polyurethane resin-forming composition (K) of the present invention. The lubricant (C) is not particularly limited, but is particularly polyoxyethylene alkyl ether (C1), a linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less, octadecyl isocyanate (C3), It is preferable to use at least one lubricant selected from fatty acid amides (C4). The addition amount of the lubricant is not particularly limited, but is preferably 0.1 to 8% by mass, particularly preferably 0.2 to 5% by mass in the polyurethane resin-forming composition (C). If it is less than 0.1% by mass, the effect of reducing friction due to the imparting of slipperiness to the surface of the molded product is small. Specific examples of compounds are given below.
 <ポリオキシエチレンアルキルエーテル(C1)>
ポリオキシエチレンアルキルエーテル(C1)としては、前記したポリオキシエチレンアルキルエーテル(C1)を挙げることができる。より効果的に摩擦の低減を図るには、水酸基価が5~70KOHmg/gであることが好ましい。水酸基価が70KOHmg/gを上回る場合は、総じて炭素数が短く、滑剤成分としての効果が徐々に小さくなる。一方、水酸基価が5KOHmg/g未満の場合は、表面荒れを起こす恐れがある。
<Polyoxyethylene alkyl ether (C1)>
Examples of the polyoxyethylene alkyl ether (C1) include the polyoxyethylene alkyl ether (C1) described above. In order to reduce friction more effectively, the hydroxyl value is preferably 5 to 70 KOHmg / g. When the hydroxyl value exceeds 70 KOH mg / g, the number of carbon atoms is generally short, and the effect as a lubricant component is gradually reduced. On the other hand, when the hydroxyl value is less than 5 KOHmg / g, the surface may be roughened.
 <炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)>
炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)としては、前記した炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)を挙げることができる。効果的に摩擦の低減を図るために、融点が90℃以下である。融点が90℃を超える場合は、総じてNCO基末端ウレタンプレポリマー(A0)との溶解性に劣り、プレポリマー合成時の温度を100℃以上に上げても均一溶解が難しいばかりではなく、反応温度の上昇により、アロファネート化等の副反応により高粘度化し、プレポリマーの品質低下を招く恐れがある。また、活性水素基末端硬化剤(B0)との溶解性も悪い。製造の際、融点以上の加熱で溶解は可能であるが、その後、充填貯蔵する際に、常温下で結晶化してしまうため、熱硬化性ポリウレタンエラストマーを成型する際は、再度、融点以上に加熱し均一に攪拌する必要があり、取り扱い難いものとなる。
<Linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or lower>
As the linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less, the linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less is used. Can be mentioned. In order to effectively reduce friction, the melting point is 90 ° C. or lower. When the melting point exceeds 90 ° C, the solubility with the NCO-terminated urethane prepolymer (A0) is generally poor, and even if the temperature during prepolymer synthesis is raised to 100 ° C or higher, uniform dissolution is not only difficult, but the reaction temperature The increase in viscosity may increase the viscosity due to side reactions such as allophanatization, leading to a decrease in quality of the prepolymer. Moreover, the solubility with an active hydrogen group terminal hardening | curing agent (B0) is also bad. During production, it can be dissolved by heating above the melting point, but when it is filled and stored, it will crystallize at room temperature, so when molding a thermosetting polyurethane elastomer, heat it again above the melting point. However, it is necessary to stir uniformly, and it becomes difficult to handle.
 <オクタデシルイソシアネート(C3)>
オクタデシルイソシアネート(C3)としては、前記したオクタデシルイソシアネート(C3)を挙げることができ、市販品の具体例としてミリオネートO(保土谷化学社製)等が使用できる。
<Octadecyl isocyanate (C3)>
As the octadecyl isocyanate (C3), the above-mentioned octadecyl isocyanate (C3) can be mentioned, and Millionate O (manufactured by Hodogaya Chemical Co., Ltd.) can be used as a specific example of a commercially available product.
 <脂肪酸アミド(C4)>
脂肪酸アミド(C4)としては、前記した脂肪酸アミド(C4)を挙げることができ、脂肪酸とアミンから誘導されるアミド化合物であれば特に制限はないが、ポリウレタン樹脂形成性組成物(K)との相溶性の点から炭素数10~20の高級脂肪酸アミドが好ましい。
<Fatty acid amide (C4)>
Examples of the fatty acid amide (C4) include the fatty acid amide (C4) described above, and are not particularly limited as long as they are amide compounds derived from fatty acids and amines, but with the polyurethane resin-forming composition (K). Higher fatty acid amides having 10 to 20 carbon atoms are preferred from the viewpoint of compatibility.
 本発明に於いては、さらに必要に応じて、添加剤として、酸化防止剤、脱泡剤、紫外線吸収剤等を形成性組成物に導入使用することができる。 In the present invention, if necessary, an antioxidant, a defoaming agent, an ultraviolet absorber and the like can be introduced and used as an additive in the forming composition.
 本発明に於いては、これまでに述べた本発明の熱硬化性ポリウレタンエラストマー形成性組成物を用いて、成形型内に於いて硬化処理(具体的には、加熱により硬化を促進する処理)を行い、ウレタン、ヌレート、並びにアロファネート結合を有する熱硬化ポリウレタンエラストマー成型物を製造する。 In the present invention, using the thermosetting polyurethane elastomer-forming composition of the present invention described so far, curing treatment (specifically, treatment for accelerating curing by heating) in the mold. To produce a thermoset polyurethane elastomer molding having urethane, nurate, and allophanate bonds.
 この場合の製造工程は、前記した工程(1)~(4)の方法により製造されるのが好ましい。 The manufacturing process in this case is preferably manufactured by the method of the above-described steps (1) to (4).
 なお、注型時におけるNCO基末端プレポリマー(A0)のNCO基含量と活性水素基末端硬化剤(B0)の活性水素基含量とのモル比(NCO基/活性水素基)は、選択した触媒種や目的の物性に応じ選択することができる。 The molar ratio (NCO group / active hydrogen group) between the NCO group content of the NCO group-terminated prepolymer (A0) and the active hydrogen group content of the active hydrogen group terminal curing agent (B0) at the time of casting is determined by the selected catalyst. It can be selected according to the species and the desired physical properties.
 例えば、イソシアヌレート化触媒やアロファネート化触媒を用いる場合は1.2~3.0が好ましい。この場合、ウレタン化触媒を併用することもできる。3.0を上回る場合は、過剰イソシアネートによるヌレート化やアロファネート化が極端に進むことで架橋点が増加し、著しい引張物性値の低下を招く。また、1.2を下回る場合は、ヌレート化やアロファネート化による架橋点が少なくなり、十分な低摩擦化が起こらない。また、初期モジュラス(M100)の低下を招き応力に対する変形量が大きく、硬度に対する強度不足を招く。また、ウレタン化触媒を単独で用いる場合は、1.0~1.2が好ましい。1.2を上回る場合は、十分な分子延長が行えずに硬化不足等の問題が発生する。また、1.0を下回る場合も、物性低下や硬化不足等の問題が発生する。特に本発明においては、型接触面において過剰のイソシアネートがイソシアヌレート化することが肝要であることからも、物性を損なわない範囲でイソシアネートが過剰であることが好ましい。 For example, when an isocyanurate-forming catalyst or allophanate-forming catalyst is used, 1.2 to 3.0 is preferable. In this case, a urethanization catalyst can be used in combination. In the case of exceeding 3.0, the nucleation or allophanate formation with excess isocyanate proceeds extremely, resulting in an increase in the cross-linking point and a significant decrease in tensile property values. On the other hand, when the ratio is less than 1.2, the number of cross-linking points due to nurateization or allophanate decreases, and sufficient friction reduction does not occur. In addition, the initial modulus (M100) is lowered, the deformation amount with respect to the stress is large, and the strength is insufficient with respect to the hardness. Further, when the urethanization catalyst is used alone, 1.0 to 1.2 is preferable. If it exceeds 1.2, sufficient molecular extension cannot be performed and problems such as insufficient curing occur. Moreover, when it is less than 1.0, problems such as deterioration of physical properties and insufficient curing occur. In particular, in the present invention, since it is important that excess isocyanate is isocyanurate on the mold contact surface, it is preferable that the isocyanate is excessive as long as the physical properties are not impaired.
 本発明について、実施例及び比較例により、更に詳細に説明するが、本発明はこれらにより何ら限定されるものではない。実施例及び比較例において、「%」は全て「質量%」を意味し、配合の単位は「g」である。 The present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples. In Examples and Comparative Examples, “%” means “% by mass”, and the unit of blending is “g”.
 <実施形態1>
実施例1~7、比較例1~7
表1、及び表2に示す配合比率で、窒素を満たした5Lの攪拌容器内に各種ポリイソシアネート(A6)と反応抑制剤(E)を投入攪拌した。その後、攪拌容器内の温度を40~70℃に保ちながら各種ポリオール(A7)、更に必要に応じポリオキシエチレンアルキルエーテル(C1)を投入攪拌した。続いて、消泡剤を適量投入し攪拌容器内の温度を70~90℃に保ちながら、2~5時間程度ウレタン化反応を進めることで、各種NCO基末端ウレタンプレポリマー(A0)、又は(A1)を得た。
<Embodiment 1>
Examples 1-7, Comparative Examples 1-7
Various polyisocyanates (A6) and reaction inhibitors (E) were charged and stirred in a 5 L stirring vessel filled with nitrogen at the blending ratios shown in Tables 1 and 2. Thereafter, while maintaining the temperature in the stirring vessel at 40 to 70 ° C., various polyols (A7) and, if necessary, polyoxyethylene alkyl ether (C1) were added and stirred. Subsequently, various NCO group-terminated urethane prepolymers (A0), or () by adding an appropriate amount of antifoaming agent and proceeding the urethanization reaction for about 2 to 5 hours while keeping the temperature in the stirring vessel at 70 to 90 ° C. A1) was obtained.
 また、表1、及び表2に示す配合比率で、窒素を満たした5Lの攪拌容器内に各種ポリオール(B0)、必要に応じポリオキシエチレンアルキルエーテル(C1)、各種触媒(F)と適量の消泡剤を投入攪拌し、攪拌容器内の温度を40~70℃に保ちながら、1~3時間程度、混合攪拌することで、各種活性水素基末端硬化剤(B0)、又は(B1)を得た。 Further, in the mixing ratios shown in Table 1 and Table 2, various polyols (B0), polyoxyethylene alkyl ether (C1), various catalysts (F) and appropriate amounts in a 5 L stirring vessel filled with nitrogen By adding and stirring the antifoaming agent and mixing and stirring for about 1 to 3 hours while maintaining the temperature in the stirring vessel at 40 to 70 ° C., various active hydrogen group terminal curing agents (B0) or (B1) Obtained.
 次に、表1、及び表2に示す配合比に従って、NCO基末端ウレタンプレポリマーと、触媒入り活性水素基末端硬化剤とを2液混合ウレタン注型機により混合することにより、本発明の熱硬化性ポリウレタンエラストマー形成性組成物を調製した。この形成性組成物を、予めキュア温度に予熱された2mm厚、又は3mm厚の平板シート形成用の金型に注入し、この成型物を金型から取り出し(脱型)が可能な最小限の時間、金型内で加熱硬化させ、速やかにこの成型物を脱型することにより、本発明のポリウレタンエラストマー成型物(D)を得た。 Next, according to the blending ratios shown in Table 1 and Table 2, the NCO group-terminated urethane prepolymer and the catalyst-containing active hydrogen group-end curing agent are mixed by a two-component mixed urethane casting machine, thereby producing the heat of the present invention. A curable polyurethane elastomer-forming composition was prepared. This formable composition is poured into a mold for forming a flat sheet having a thickness of 2 mm or 3 mm, which has been preheated to a curing temperature in advance, and the molded product can be taken out from the mold (minimum mold removal). The polyurethane elastomer molding (D) of the present invention was obtained by heat-curing in a mold for a period of time and quickly removing the molding.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<実施形態2>
実施例8~13、比較例8~13
表3、及び表4に示す配合比率で、窒素を満たした5Lの攪拌容器内に各種ポリイソシアネート(A6)と反応抑制剤(E)を投入攪拌した。その後、攪拌容器内の温度を40~70℃に保ちながら各種ポリオール(A7)、更に必要に応じ炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)を投入攪拌した。続いて、消泡剤を適量投入し攪拌容器内の温度を70~90℃に保ちながら、2~5時間程度ウレタン化反応を進めることで、各種NCO基末端ウレタンプレポリマー(A0)、又は(A2)を得た。
<Embodiment 2>
Examples 8 to 13 and Comparative Examples 8 to 13
In the mixing ratios shown in Table 3 and Table 4, various polyisocyanates (A6) and reaction inhibitors (E) were charged and stirred into a 5 L stirring vessel filled with nitrogen. Thereafter, while maintaining the temperature in the stirring vessel at 40 to 70 ° C., various polyols (A7), and if necessary, linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less are added and stirred. did. Subsequently, various NCO group-terminated urethane prepolymers (A0), or () by adding an appropriate amount of antifoaming agent and proceeding the urethanization reaction for about 2 to 5 hours while keeping the temperature in the stirring vessel at 70 to 90 ° C. A2) was obtained.
 また、表3、及び表4に示す配合比率で、窒素を満たした5Lの攪拌容器内に各種ポリオール(B0)、必要に応じ炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)、各種触媒(F)と適量の消泡剤を投入攪拌し、攪拌容器内の温度を40~70℃に保ちながら、1~3時間程度、混合攪拌することで、各種活性水素基末端硬化剤(B0)、又は(B2)を得た。 In addition, various polyols (B0) in a 5 L stirring vessel filled with nitrogen at the blending ratios shown in Tables 3 and 4, linear fatty acids having 20 to 40 carbon atoms and a melting point of 90 ° C. or less as required. Group alcohol (C2), various catalysts (F) and an appropriate amount of antifoaming agent are added and stirred, and mixed and stirred for about 1 to 3 hours while maintaining the temperature in the stirring vessel at 40 to 70 ° C. Hydrogen group terminal curing agent (B0) or (B2) was obtained.
 次に、表3、及び表4に示す配合比に従って、NCO基末端ウレタンプレポリマーと、触媒入り活性水素基末端硬化剤とを2液混合ウレタン注型機により混合することにより、本発明の熱硬化性ポリウレタンエラストマー形成性組成物を調製した。この組成物を、予めキュア温度に予熱された2mm厚、又は3mm厚の平板シート形成用の金型に注入し、この成型物を金型から取り出し(脱型)が可能な最小限の時間、金型内で加熱硬化させ、速やかにこの成型物を脱型することにより、本発明のポリウレタンエラストマー成型物(D)を得た。 Next, according to the blending ratios shown in Tables 3 and 4, the NCO group-terminated urethane prepolymer and the catalyst-containing active hydrogen group-end curing agent are mixed by a two-component mixed urethane casting machine, whereby the heat of the present invention. A curable polyurethane elastomer-forming composition was prepared. This composition is poured into a mold for forming a flat sheet having a thickness of 2 mm or 3 mm, which has been preheated to a curing temperature in advance, and the molded product is removed from the mold for a minimum time that can be removed (demolding). The polyurethane elastomer molded product (D) of the present invention was obtained by heat-curing in a mold and quickly removing the molded product.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 <実施形態3>
 実施例14~21、比較例14、15、18、参考例1~5
表5、及び表6に示す配合比率で、窒素を満たした5Lの攪拌容器内に各種ポリイソシアネート(A6)、及びオクタデシルイソシアネート(C3)と反応抑制剤(E)、酸化防止剤、消泡剤を投入攪拌した。その後、攪拌容器内の温度を40~70℃に保ちながら各種ポリオール(A7)と、配合比率に従い必要に応じてポリオキシエチレンアルキルエーテル(C1)、及び/又は炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)を投入攪拌した。続いて、消泡剤を適量投入し攪拌容器内の温度を70~90℃に保ちながら、2~5時間程度ウレタン化反応を進めることで、各種NCO基末端ウレタンプレポリマー(A0)、又は(A3)を得た。但し、実施例14、及び実施例17については、オクタデシルイソシアネート(C3)を、ウレタン化反応後に添加し、0.5~1時間程度撹拌混合した。
<Embodiment 3>
Examples 14 to 21, Comparative Examples 14, 15, 18 and Reference Examples 1 to 5
In the mixing ratio shown in Table 5 and Table 6, various polyisocyanate (A6), octadecyl isocyanate (C3), reaction inhibitor (E), antioxidant, antifoaming agent in a 5 L stirring vessel filled with nitrogen Was stirred. Thereafter, while maintaining the temperature in the stirring vessel at 40 to 70 ° C., various polyols (A7), polyoxyethylene alkyl ether (C1) as required according to the blending ratio, and / or carbon number 20 to 40, and melting point Of 90 ° C. or lower was added and stirred. Subsequently, various NCO group-terminated urethane prepolymers (A0), or () by adding an appropriate amount of antifoaming agent and proceeding the urethanization reaction for about 2 to 5 hours while keeping the temperature in the stirring vessel at 70 to 90 ° C. A3) was obtained. However, for Example 14 and Example 17, octadecyl isocyanate (C3) was added after the urethanization reaction and stirred and mixed for about 0.5 to 1 hour.
 また、表5、及び表6に示す配合比率で、窒素を満たした5Lの攪拌容器内に各種ポリオール(B0)と、配合比率に従い必要に応じてポリオキシエチレンアルキルエーテル(C1)、及び/又は炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)、各種触媒(F)と適量の消泡剤を投入攪拌し、攪拌容器内の温度を40~70℃に保ちながら、1~3時間程度、混合攪拌することで、各種活性水素基末端硬化剤(B0)、又は(B2)を得た。 Further, in the mixing ratios shown in Tables 5 and 6, various polyols (B0) in a 5 L stirring vessel filled with nitrogen, and polyoxyethylene alkyl ether (C1) and / or as required according to the mixing ratio. A linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less, various catalysts (F) and an appropriate amount of antifoaming agent are charged and stirred, and the temperature in the stirring vessel is adjusted to 40 to 70 ° C. While maintaining, various active hydrogen group terminal curing agents (B0) or (B2) were obtained by mixing and stirring for about 1 to 3 hours.
 次に、表5、及び表6に示す配合比に従って、予め70~90℃に保温したNCO基末端ウレタンプレポリマーと、予め40~120℃に保温した触媒入り活性水素基末端硬化剤とを2液混合ウレタン注型機により混合することにより、本発明の熱硬化性ポリウレタンエラストマー形成性組成物を調製した。この組成物を、予めキュア温度に予熱された2mm厚、又は3mm厚の平板シート形成用の金型に注入し、この成型物を金型から取り出し(脱型)が可能な最小限の時間、金型内で加熱硬化させ、速やかにこの成型物を脱型することにより、本発明のポリウレタンエラストマー成型物(D)を得た。得られた成型物の摩擦係数等の評価結果を表10、11に示す。 Next, according to the blending ratios shown in Tables 5 and 6, NCO group-terminated urethane prepolymer previously kept at 70 to 90 ° C. and catalyst-containing active hydrogen group end curing agent preliminarily kept at 40 to 120 ° C. The thermosetting polyurethane elastomer-forming composition of the present invention was prepared by mixing with a liquid mixing urethane casting machine. This composition is poured into a mold for forming a flat sheet having a thickness of 2 mm or 3 mm, which has been preheated to a curing temperature in advance, and the molded product is removed from the mold for a minimum time that can be removed (demolding). The polyurethane elastomer molded product (D) of the present invention was obtained by heat-curing in a mold and quickly removing the molded product. Tables 10 and 11 show the evaluation results of the obtained molded product, such as the coefficient of friction.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 <実施形態4>
 実施例22~29、比較例24~27、参考例6、7
表7、及び表8に示す配合比率で、窒素を満たした5Lの攪拌容器内に各種ポリイソシアネート(A6)と配合比率に従い必要に応じてオクタデシルイソシアネート(C3)と反応抑制剤(E)、酸化防止剤、消泡剤を投入攪拌した。その後、攪拌容器内の温度を40~70℃に保ちながら各種ポリオール(A7)と配合比率に従い必要に応じてポリオキシエチレンアルキルエーテル(C1)、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)を投入攪拌した。続いて、さらに配合比率に従い必要に応じて脂肪酸アミド(C4)、消泡剤を適量投入し攪拌容器内の温度を70~90℃に保ちながら、2~5時間程度ウレタン化反応を進めることで、各種NCO基末端ウレタンプレポリマー(A5)を得た。但し、実施例22、及び実施例25については、脂肪酸アミド(C4)を、ウレタン化反応後に添加し、0.5~1時間程度撹拌混合した。
<Embodiment 4>
Examples 22 to 29, Comparative Examples 24 to 27, Reference Examples 6 and 7
In the mixing ratio shown in Table 7 and Table 8, in a 5 L stirring vessel filled with nitrogen, various polyisocyanates (A6) and octadecyl isocyanate (C3), reaction inhibitor (E), oxidation according to the mixing ratio as necessary An inhibitor and an antifoaming agent were added and stirred. Thereafter, while maintaining the temperature in the stirring vessel at 40 to 70 ° C., various polyols (A7) and polyoxyethylene alkyl ether (C1) as necessary according to the blending ratio, 20 to 40 carbon atoms, and melting point of 90 ° C. or less The straight chain aliphatic alcohol (C2) was added and stirred. Subsequently, according to the blending ratio, if necessary, an appropriate amount of fatty acid amide (C4) and an antifoaming agent are added, and the urethanization reaction is advanced for about 2 to 5 hours while maintaining the temperature in the stirring vessel at 70 to 90 ° C. Various NCO group-terminated urethane prepolymers (A5) were obtained. However, in Examples 22 and 25, the fatty acid amide (C4) was added after the urethanization reaction, and the mixture was stirred and mixed for about 0.5 to 1 hour.
 また、表7、及び表8に示す配合比率で、窒素を満たした5Lの攪拌容器内に各種ポリオール(B0)と配合比率に従い必要に応じてポリオキシエチレンアルキルエーテル(C1)、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)、脂肪酸アミド(C4)、各種触媒(F)と適量の消泡剤を投入攪拌し、拌容器内の温度を40~70℃に保ちながら、1~3時間程度、混合攪拌することで、各種活性水素基末端硬化剤(B3)を得た。 Further, in the mixing ratios shown in Tables 7 and 8, various polyols (B0) and a polyoxyethylene alkyl ether (C1) according to the mixing ratio and a carbon number of 20 to 20 in a 5 L stirring vessel filled with nitrogen as required. 40, and a linear aliphatic alcohol (C2), fatty acid amide (C4), various catalysts (F) and an appropriate amount of antifoaming agent having a melting point of 90 ° C. or less are charged and stirred, and the temperature in the stirring vessel is set to 40 to 70. Various active hydrogen group terminal curing agents (B3) were obtained by mixing and stirring for about 1 to 3 hours while maintaining the temperature.
 次に、表7、及び表8に示す配合比に従って、予め70~90℃に保温したNCO基末端ウレタンプレポリマーと、予め40~120℃に保温した触媒入り活性水素基末端硬化剤とを2液混合ウレタン注型機により混合することにより、本発明の熱硬化性ポリウレタンエラストマー形成性組成物を調製した。この組成物を、予めキュア温度に予熱された2mm厚、又は3mm厚の平板シート形成用の金型に注入し、この成型物を金型から取り出し(脱型)が可能な最小限の時間、金型内で加熱硬化させ、速やかにこの成型物を脱型することにより、本発明のポリウレタンエラストマー成型物(D)を得た。得られた成型物の摩擦係数等の評価結果を表13、14に示す。 Next, according to the blending ratios shown in Tables 7 and 8, 2 NCO group-terminated urethane prepolymers preliminarily kept at 70 to 90 ° C. and 2 active catalyst-containing hydrogen radical-end curing agents preliminarily kept at 40 to 120 ° C. The thermosetting polyurethane elastomer-forming composition of the present invention was prepared by mixing with a liquid mixing urethane casting machine. This composition is poured into a mold for forming a flat sheet having a thickness of 2 mm or 3 mm, which has been preheated to a curing temperature in advance, and the molded product is removed from the mold for a minimum time that can be removed (demolding). The polyurethane elastomer molded product (D) of the present invention was obtained by heat-curing in a mold and quickly removing the molded product. Tables 13 and 14 show the evaluation results of the obtained molded product, such as the coefficient of friction.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表1~表8に用いられる原料の略記号は以下の通り。 The abbreviations of the raw materials used in Tables 1 to 8 are as follows.
 「イソシアネート」
(1) TDI;コロネートT-100(東ソー社製)、2,4-TDI、NCO含有量=48.2%
(2) MDI;ミリオネートMT(東ソー社製)、4,4’-MDI、NCO含有量=33.5%
(3) ODI;ミリオネートO(保土谷化学社製)、オクタデシルイソシアネート、NCO含有量=14.2%
「ポリオール」
(4) PBA-2500;ニッポラン3027(東ソー社製)、ポリブチレンアジペート、水酸基価=44.9 KOHmg/g
(5) PEA-2000;ニッポラン4040(東ソー社製)、ポリエチレンアジペート、水酸基価=56.1KOHmg/g
(6) PTMG-1000;PTMG-1000(三菱化学社製)、ポリテトラメチレングリコール、水酸基価=112.0 KOHmg/g
(7) 1.4-BG;1,4-ブタンジオール(三菱化学社製)、水酸基価=1,245 KOHmg/g
(8) TMP;トリメチロールプロパン(三菱瓦斯化学社製)、水酸基価=1,247 KOHmg/g
(9) MOCA;4,4’-ジアミノ-3,3’-ジクロロジフェニルメタン(イハラケミカル工業社製)、水酸基価(アミノ基)=420KOHmg/g
「滑剤」
(10) NIKKOL BC-150;ポリオキシエチレンセチルエーテル(日光ケミカルズ社製)、水酸基価=9KOHmg/g
(11) NIKKOL BO-50V;ポリオキシエチレンオレイルエーテル(日光ケミカルズ社製)、水酸基価=24KOHmg/g
(12) NIKKOL BL-25;ポリオキシエチレンラウリルエーテル(日光ケミカルズ社製)、水酸基価=45KOHmg/g
(13) NIKKOL BB-5;ポリオキシエチレンベヘニルエーテル(日光ケミカルズ社製)、水酸基価=106KOHmg/g
(14) Performacol 350 Alcohol(日光ケミカルズ社製)、C20~C40、融点=68~89℃、水酸基価=129KOHmg/g
(15) Performacol 425 Alcohol(日光ケミカルズ社製)、C20~C40、融点=85~99℃、水酸基価=100KOHmg/g
(16) Performacol 550 Alcohol(日光ケミカルズ社製)、C30~C50、融点=93~106℃、水酸基価=83KOHmg/g
(17) NIKKOL ベヘニルアルコール80(日光ケミカルズ社製)、C22(80%含有)、融点=65~75℃、水酸基価=171KOHmg/g
(18) 1-イコサノール;東京化成社製、C20、融点=64℃、水酸基価=188KOHmg/g
(19) 1-ヘキサデカノール;東京化成社製、C16、融点=50℃、水酸基価=231KOHmg/g
(20) FT-0070;パラフィン系汎用合成WAX(日本精蝋社製)
(21) リケマールSL-900;ステアリルステアレート(理研ビタミン社製)
(22) ダイヤミットO-200;オレイン酸アミド(日本化成社製)、融点=75℃
(23) ニッカアマイドOS;N-オレイルステアリン酸アミド(日本化成社製)、融点=74℃
(24) スリパックO;エチレンビスオレイン酸アミド(日本化成社製)、融点=119℃
(25) リコワックスE;モンタン酸系エステルWAX(クライアントジャパン社製)、融点=79~83℃
「触媒」
(26) POLYCAT-46;(エアプロダクツ社製)、酢酸カリウムとエチレングリコールの混合物
(27) DABCO TMR;(エアプロダクツ社製)、四級アンモニウム塩触媒とエチレングリコールの混合物
(28) TOYOCAT RX-5;(東ソー社製)、トリメチルアミノエチルエタノールアミン
(29) TOYOCAT TEDA-L33E;(東ソー社製)、トリエチレンジアミンとエチレングリコールの混合物
「その他・添加剤」
(30) 反応抑制剤;Phospholan PS-236(Akzo Nobel社製)、モノ・ジ(C10-12)パレス-5リン酸
(31) 酸化防止剤;イルガノックス1010(BASFジャパン社製)ペンタエリスリトールテトラキス[3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]
(32) 消泡剤;BYK-052(ビックケミー・ジャパン社製)
 得られた成形シートの特性評価方法は以下の通り。
"Isocyanate"
(1) TDI; Coronate T-100 (manufactured by Tosoh Corporation), 2,4-TDI, NCO content = 48.2%
(2) MDI: Millionate MT (manufactured by Tosoh Corporation), 4,4′-MDI, NCO content = 33.5%
(3) ODI: Millionate O (manufactured by Hodogaya Chemical Co., Ltd.), octadecyl isocyanate, NCO content = 14.2%
"Polyol"
(4) PBA-2500; Nipponran 3027 (manufactured by Tosoh Corporation), polybutylene adipate, hydroxyl value = 44.9 KOHmg / g
(5) PEA-2000; Nipponran 4040 (manufactured by Tosoh Corporation), polyethylene adipate, hydroxyl value = 56.1 KOHmg / g
(6) PTMG-1000; PTMG-1000 (Mitsubishi Chemical Corporation), polytetramethylene glycol, hydroxyl value = 112.0 KOHmg / g
(7) 1.4-BG; 1,4-butanediol (Mitsubishi Chemical Corporation), hydroxyl value = 1,245 KOHmg / g
(8) TMP: Trimethylolpropane (manufactured by Mitsubishi Gas Chemical Company), hydroxyl value = 1,247 KOHmg / g
(9) MOCA; 4,4′-diamino-3,3′-dichlorodiphenylmethane (manufactured by Ihara Chemical Industry), hydroxyl value (amino group) = 420 KOH mg / g
"Lubricant"
(10) NIKKOL BC-150; polyoxyethylene cetyl ether (manufactured by Nikko Chemicals), hydroxyl value = 9 KOHmg / g
(11) NIKKOL BO-50V; polyoxyethylene oleyl ether (manufactured by Nikko Chemicals), hydroxyl value = 24 KOHmg / g
(12) NIKKOL BL-25; polyoxyethylene lauryl ether (manufactured by Nikko Chemicals), hydroxyl value = 45 KOH mg / g
(13) NIKKOL BB-5; polyoxyethylene behenyl ether (manufactured by Nikko Chemicals), hydroxyl value = 106 KOHmg / g
(14) Permacol 350 Alcohol (Nikko Chemicals), C20 to C40, melting point = 68 to 89 ° C, hydroxyl value = 129 KOHmg / g
(15) Permacol 425 Alcohol (manufactured by Nikko Chemicals), C20 to C40, melting point = 85 to 99 ° C., hydroxyl value = 100 KOHmg / g
(16) Permacol 550 Alcohol (manufactured by Nikko Chemicals), C30 to C50, melting point = 93 to 106 ° C., hydroxyl value = 83 KOHmg / g
(17) NIKKOL behenyl alcohol 80 (manufactured by Nikko Chemicals), C22 (containing 80%), melting point = 65 to 75 ° C., hydroxyl value = 171 KOHmg / g
(18) 1-Icosanol; manufactured by Tokyo Chemical Industry Co., Ltd., C20, melting point = 64 ° C., hydroxyl value = 188 KOH mg / g
(19) 1-hexadecanol; manufactured by Tokyo Chemical Industry Co., Ltd., C16, melting point = 50 ° C., hydroxyl value = 231 KOH mg / g
(20) FT-0070; Paraffin-based general purpose synthetic WAX (manufactured by Nippon Seiwa)
(21) Riquemar SL-900; stearyl stearate (Riken Vitamin Co., Ltd.)
(22) Diamit O-200; oleic amide (manufactured by Nippon Kasei Co., Ltd.), melting point = 75 ° C.
(23) Nikka Amide OS; N-oleyl stearamide (manufactured by Nippon Kasei Co., Ltd.), melting point = 74 ° C.
(24) Slipak O; ethylenebisoleic acid amide (manufactured by Nippon Kasei Co., Ltd.), melting point = 119 ° C.
(25) Lycowax E; Montanic acid ester WAX (manufactured by Client Japan), melting point = 79-83 ° C.
"catalyst"
(26) POLYCAT-46; (Air Products), mixture of potassium acetate and ethylene glycol (27) DABCO TMR; (Air Products), mixture of quaternary ammonium salt catalyst and ethylene glycol (28) TOYOCAT RX- 5; (manufactured by Tosoh Corp.), trimethylaminoethylethanolamine (29) TOYOCAT TEDA-L33E; (manufactured by Tosoh Corp.), a mixture of triethylenediamine and ethylene glycol "Other additives"
(30) Reaction inhibitor: Phospholan PS-236 (manufactured by Akzo Nobel), mono-di (C10-12) palace-5 phosphate (31) antioxidant; Irganox 1010 (manufactured by BASF Japan) pentaerythritol tetrakis [3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate]
(32) Antifoaming agent; BYK-052 (manufactured by Big Chemie Japan)
The characteristic evaluation method of the obtained molded sheet is as follows.
 (1)JIS-A硬度;JIS K7312に準じ、A型硬度計を用い測定。 (1) JIS-A hardness: Measured using a type A hardness meter in accordance with JIS K7312.
 (2)2mm厚の成型シートを用い100%モジュラス(M100)、引張強度(TB)、伸長率(EB);JIS K7312に準じ測定。 (2) 100% modulus (M100), tensile strength (TB), elongation rate (EB) using a 2 mm thick molded sheet; measured according to JIS K7312.
 (3)成型シート表面の静摩擦係数、動摩擦係数;試験片の準備;3mm厚の成型シートを幅25mm×長さ100mmに切り出し、シクロヘキサンを用い脱脂し試験片を準備した。その後、室温23℃、湿度50%の環境下に1日放置後、以下の条件で静摩擦係数、及び動摩擦係数を測定した。測定は連続的に往復繰り返しを1000回実施し、5~10回目の往路の平均値を初期値とし、995~1000往路の平均値を後期値とし持続性の指標とした。
「測定条件」測定冶具=ボール圧子(SUS)、荷重=50g、テーブル移動速度=50mm/min、テーブル移動距離=50mm、往復回数=1000回、測定時間=3時間23分
測定機器;表面性測定機TYPE:38(新東科学製)
(3) Static friction coefficient and dynamic friction coefficient of molded sheet surface: Preparation of test piece: A 3 mm thick molded sheet was cut into a width of 25 mm and a length of 100 mm, and degreased using cyclohexane to prepare a test piece. Thereafter, after standing for 1 day in an environment of room temperature 23 ° C. and humidity 50%, the static friction coefficient and the dynamic friction coefficient were measured under the following conditions. The measurement was continuously repeated 1000 times, and the average value of the 5th to 10th outbound trips was used as the initial value, and the average value of 995 to 1000 outbound trips was used as the late value and used as an indicator of sustainability.
"Measurement conditions" Measuring jig = Ball indenter (SUS), Load = 50 g, Table moving speed = 50 mm / min, Table moving distance = 50 mm, Number of reciprocations = 1000 times, Measuring time = 3 hours and 23 minutes Measuring equipment: Surface property measurement Machine TYPE: 38 (made by Shinto Kagaku)
 (4)切削面の静摩擦係数、動摩擦係数;3mm厚の成型シートを用い、フェザー剃刃S片刃(品番;FAS-10)にて垂直に30mm×10mmの長方形に切り出し、3mm(幅)×30mm(長さ)×10mm(高さ)の試験片を準備した。その後、直ちに、又は加熱処理した後に室温23℃、湿度50%の環境下に1日放置後3mm×30mmの面を用い、以下の条件で静摩擦係数、及び動摩擦係数を測定した。測定は連続的に往復繰り返しを1000回実施し、5~10回目の往路の平均値を初期値とし、995~1000往路の平均値を後期値とし持続性の指標とした。
「測定条件」切削面測定条件;ボール圧子(SUS)、荷重=100g、テーブル移動速度=150mm/min、テーブル移動距離=10mm、往復回数=10回、測定時間=82秒
測定機器;表面性測定機TYPE:38(新東科学製)
(4) Static friction coefficient and dynamic friction coefficient of the cutting surface: Using a 3 mm thick molded sheet, a feather shaving blade S single blade (part number: FAS-10) was cut vertically into a 30 mm × 10 mm rectangle, 3 mm (width) × 30 mm A test piece of (length) × 10 mm (height) was prepared. Then, immediately or after heat treatment, the static friction coefficient and dynamic friction coefficient were measured under the following conditions using a surface of 3 mm × 30 mm after being left for 1 day in an environment of room temperature 23 ° C. and humidity 50%. The measurement was continuously repeated 1000 times, and the average value of the 5th to 10th outbound trips was used as the initial value, and the average value of 995 to 1000 outbound trips was used as the late value and used as an indicator of sustainability.
“Measurement conditions” Cutting surface measurement conditions: Ball indenter (SUS), load = 100 g, table moving speed = 150 mm / min, table moving distance = 10 mm, number of reciprocations = 10 times, measuring time = 82 seconds Measuring instrument: surface property measurement Machine TYPE: 38 (manufactured by Shinto Kagaku)
 (5)成型シート外観;動摩擦試験測定直後に、同試験片を用い目視により、滑剤成分とウレタン成分の相溶性の指標として白濁の有無を観察した。 (5) Appearance of molded sheet; Immediately after the measurement of the dynamic friction test, the presence or absence of white turbidity was observed as an indicator of the compatibility of the lubricant component and the urethane component by visual observation using the test piece.
 (6)ブリード、ブルームの有無;動摩擦係数測定に用いた試験片を室温23℃、湿度50%の環境下に2週間放置し、その後、ガーゼ拭き取り前後の試験片表面状況を目視で観察し、ブリード、ブルームの有無を評価した。 (6) Presence / absence of bleed and bloom: The test piece used for the measurement of the dynamic friction coefficient was left in an environment of room temperature 23 ° C. and humidity 50% for 2 weeks, and then the surface condition of the test piece before and after wiping off the gauze was visually observed. The presence or absence of bleed and bloom was evaluated.
 実施例1~29に実施結果を示す。本発明の課題の滑剤とNCO基末端ウレタンプレポリマーや活性水素基末端硬化剤との相溶性を損ねることなく、ブリード、ブルームを起こさない低摩擦で機械強度が高く強靭な熱硬化性ポリウレタンエラストマーを得ることができた。 Implementation results are shown in Examples 1 to 29. A tough thermosetting polyurethane elastomer with low friction, high mechanical strength and toughness that does not cause bleed and bloom without impairing the compatibility of the lubricant of the present invention with the NCO group-terminated urethane prepolymer and the active hydrogen group terminal curing agent. I was able to get it.
 比較例1は、本発明のポリオキシエチレンアルキルエーテル(C1)が0.1質量%を下回る場合の比較例であり、十分な低摩擦化が図れず適さないものであった。 Comparative Example 1 is a comparative example in which the polyoxyethylene alkyl ether (C1) of the present invention is less than 0.1% by mass, and is not suitable because sufficient friction reduction cannot be achieved.
 比較例2は、本発明のポリオキシエチレンアルキルエーテル(C1)が8質量%を上回る場合の比較例であり、十分に低摩擦化が図れているが、引張物性値が極端に低く適さないものであった。 Comparative Example 2 is a comparative example in which the polyoxyethylene alkyl ether (C1) of the present invention exceeds 8% by mass, and the friction property is sufficiently reduced, but the tensile property value is extremely low and is not suitable. Met.
 比較例3~7は、本発明以外の滑剤を用いた場合の比較例であり、低摩擦化は成されているが、イソシアネート基末端ウレタンプレポリマー、活性水素基末端硬化剤との相溶性が悪く、得られた成型物にブリード、若しくはブルームが見られ適さないものであった。 Comparative Examples 3 to 7 are comparative examples in the case of using a lubricant other than the present invention. Although the friction is reduced, the compatibility with the isocyanate group-terminated urethane prepolymer and the active hydrogen group-end curing agent is low. Unfortunately, bleeding or bloom was seen in the obtained molded product, which was not suitable.
 比較例8は、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)が0.1質量%を下回る場合の比較例であり、十分な低摩擦化が図れず適さないものであった。 Comparative Example 8 is a comparative example in the case where the linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less is less than 0.1% by mass, and sufficient friction reduction cannot be achieved. It was not suitable.
 比較例9は、本発明の炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)が5質量%を上回る場合の比較例であり、十分に低摩擦化が図れているが、引張物性値が極端に低く適さないものであった。 Comparative Example 9 is a comparative example in the case where the linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less of the present invention exceeds 5% by mass, and sufficiently reduces friction. However, the tensile properties were extremely low and not suitable.
 比較例10は、本発明以外の滑剤を用いた場合の比較例であり、炭素数は20~40を満たしているものの、融点が90℃を上回る物質を含有しており、低摩擦化は成されているものの、イソシアネート基末端ウレタンプレポリマー(A)、及び活性水素基末端硬化剤(B)との相溶性が悪く、得られる成型品が不均一となり適さないものであった。 Comparative Example 10 is a comparative example in which a lubricant other than the present invention is used. Although it contains 20 to 40 carbon atoms, it contains a substance having a melting point exceeding 90 ° C., and low friction is achieved. However, the compatibility with the isocyanate group-terminated urethane prepolymer (A) and the active hydrogen group-terminated curing agent (B) was poor, and the resulting molded product was uneven and unsuitable.
 比較例11は、本発明以外の滑剤を用いた場合の比較例であり、炭素数が30~50であり、融点も90℃を上回る物質を含有しており、やや低摩擦化は成されているものの、イソシアネート基末端ウレタンプレポリマー、活性水素基末端硬化剤との相溶性が悪く、得られる成型品が不均一となり適さないものであった。 Comparative Example 11 is a comparative example in which a lubricant other than the present invention is used, and contains a substance having a carbon number of 30 to 50 and a melting point exceeding 90 ° C., and a little lower friction is achieved. However, the compatibility with the isocyanate group-terminated urethane prepolymer and the active hydrogen group-terminated curing agent was poor, and the resulting molded product was uneven and unsuitable.
 比較例12は、本発明以外の滑剤を用いた場合の比較例であり、水酸基を持っていないため、低摩擦化は成されているものの、イソシアネート基末端ウレタンプレポリマー、活性水素基末端硬化剤との相溶性が悪く、得られる成型品が不均一あり、ブリード、ブルームも見られ適さないものであった。 Comparative Example 12 is a comparative example in which a lubricant other than the present invention is used, and since it does not have a hydroxyl group, low friction is achieved, but an isocyanate group-terminated urethane prepolymer, an active hydrogen group-terminated curing agent. The molded product obtained was not uniform and bleeds and blooms were not suitable.
 比較例13は、本発明以外の滑剤を用いた場合の比較例であり、炭素数がC16と短く、十分な低摩擦化が図れずに適さないものであった。 Comparative Example 13 was a comparative example in which a lubricant other than the present invention was used, and the carbon number was as short as C16, which was not suitable because sufficient friction reduction could not be achieved.
 比較例14は、本発明の滑剤を含有していない場合の比較例であり、十分な低摩擦化が図れず産業機械部品用の熱硬化ポリウレタンとしては相応しくないものであった。 Comparative Example 14 was a comparative example in which the lubricant of the present invention was not contained, and was not suitable as a thermosetting polyurethane for industrial machine parts because sufficient friction was not achieved.
 比較例15は、本発明のオクタデシルイソシアネート(C3)のみ含有させた場合の比較例であり、低摩擦化はやや成されているものの産業機械部品用の熱硬化ポリウレタンとしては不十分で相応しくないものであった。 Comparative Example 15 is a comparative example in which only octadecyl isocyanate (C3) of the present invention is contained, and although low friction is somewhat achieved, it is not suitable as a thermosetting polyurethane for industrial machine parts. Met.
 参考例1、3、4は、本発明のポリオキシエチレンアルキルエーテル(C1)、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)の中から選ばれる少なくとも1種類以上の化合物を含有させた場合であり、動摩擦係数初期値は低めであるが、連続繰り返し摩擦試験では摩擦係数の増加が見られる場合があることが理解される。 Reference Examples 1, 3, and 4 are at least one selected from the polyoxyethylene alkyl ether (C1) of the present invention, a linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or lower. This is a case where more than one kind of compound is contained, and the initial value of the dynamic friction coefficient is low, but it is understood that the friction coefficient may be increased in the continuous repeated friction test.
 参考例2は、本発明のポリオキシエチレンアルキルエーテル(C1)、及び一般的な滑剤としてモンタン酸系エステルWAX(リコワックスE)を含有した場合の例であり、静摩擦係数、及び動摩擦係数は非常に低い値であるが、熱硬化性ポリウレタンエラストマー形成性組成物からブリード、ブルームの発生が見られる場合がることが理解される。 Reference Example 2 is an example in which the polyoxyethylene alkyl ether (C1) of the present invention and a montanic acid ester WAX (Licowax E) as a general lubricant are contained, and the static friction coefficient and the dynamic friction coefficient are extremely high. However, it is understood that bleed and bloom may be generated from the thermosetting polyurethane elastomer-forming composition.
 比較例18は、本発明のポリオキシエチレンアルキルエーテル(C1)、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)の中から選ばれる少なくとも1種類以上の化合物の代わりに炭素数20以下の1-ヘキサデカノールを含有させた場合の比較例であり、低摩擦化はやや成されているものの産業機械部品用の熱硬化ポリウレタンとしては不十分で相応しくないものであった。 Comparative Example 18 is at least one compound selected from the polyoxyethylene alkyl ether (C1) of the present invention, a linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or lower. Is a comparative example in which 1-hexadecanol having 20 or less carbon atoms is contained in place of, and although low friction is somewhat achieved, it is not suitable as a thermosetting polyurethane for industrial machine parts. Met.
 参考例5は、本発明のポリオキシエチレンアルキルエーテル(C1)、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)の中から選ばれる少なくとも1種類以上の化合物、並びにオクタデシルイソシアネート(C3)を含有し、これら滑剤(C)の含有量が8質量%を上回る場合であり、十分な低摩擦化が成されているものの、機械強度が低くなる場合があることが理解される。 Reference Example 5 is a polyoxyethylene alkyl ether (C1) of the present invention, at least one compound selected from linear aliphatic alcohols (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or lower. As well as containing octadecyl isocyanate (C3), the content of these lubricants (C) exceeds 8% by mass, and although sufficient friction reduction is achieved, the mechanical strength may be lowered. Is understood.
 参考例6は、滑剤としてポリオキシエチレンアルキルエーテル(C1)を5.0%添加した例である。動摩擦係数は低下したが、後期値は初期値より高い値を示し、低摩擦の持続性が低くなる場合があることが理解される。 Reference Example 6 is an example in which 5.0% of polyoxyethylene alkyl ether (C1) was added as a lubricant. Although the coefficient of dynamic friction has decreased, it is understood that the late value is higher than the initial value, and the persistence of low friction may be reduced.
 参考例7は、ポリオキシエチレンアルキルエーテル(C1)を4.9%、脂肪酸アミド(C4)を0.82%添加した例である。摩擦係数は実用レベルであり、その持続性も良好であったが、ブリード・ブルームが発生する場合があることが理解される。 Reference Example 7 is an example in which 4.9% polyoxyethylene alkyl ether (C1) and 0.82% fatty acid amide (C4) were added. Although the coefficient of friction was at a practical level and its sustainability was good, it is understood that bleed and bloom may occur.
 比較例24は、脂肪酸アミド(C4)を0.30%添加した例である。動摩擦係数の低下は認められなかった。 Comparative Example 24 is an example in which 0.30% of fatty acid amide (C4) was added. No decrease in the dynamic friction coefficient was observed.
 比較例25は、ポリオキシエチレンアルキルエーテル(C1)を4.0%、脂肪酸アミド(C4)の変わりにモンタン酸系エステルワックス(リコワックスE)を0.51%、添加した例である。動摩擦係数は実用レベルであり、その持続性も良好であったが、ブリード・ブルームが発生した。 Comparative Example 25 is an example in which 4.0% of polyoxyethylene alkyl ether (C1) is added and 0.51% of montanic acid ester wax (Licowax E) is added instead of fatty acid amide (C4). The coefficient of dynamic friction was at a practical level and its sustainability was good, but bleed bloom occurred.
 比較例26は、炭素数が20未満の脂肪族アルコールである1-ヘキサデカノールを2.5%、脂肪酸アミド(C4)を0.25%添加した例である。摩擦係数はわずかに低下したが、産業機械部品に使用するには十分なレベルではなかった。 Comparative Example 26 is an example in which 2.5% of 1-hexadecanol, which is an aliphatic alcohol having less than 20 carbon atoms, and 0.25% of fatty acid amide (C4) are added. Although the coefficient of friction decreased slightly, it was not at a sufficient level for use in industrial machine parts.
 比較例27は、ポリオキシエチレンアルキルエーテル(C1)を11.2%、脂肪酸アミドを0.19%添加した例である。摩擦係数はわずかに低下したが、引張強度と伸びが著しく低下した。 Comparative Example 27 is an example in which 11.2% polyoxyethylene alkyl ether (C1) and 0.19% fatty acid amide were added. The coefficient of friction decreased slightly, but the tensile strength and elongation decreased significantly.
 実施例30~37
表1、3に従い同様の工程で作製した3mm厚のシートを用い、フェザー剃刃S片刃(品番;FAS-10)にて3mm(幅)×30mm(長さ)×10mm(高さ)に切り出し、切削面の摩擦係数確認用試験片(D1)を準備した。次いで表9に従い、2mm厚シート(D)、及び切削3mm厚シート(D1)を加熱処理し、静摩擦係数、及び動摩擦係数の測定を行った。結果を表9に示す。
Examples 30-37
Using a sheet of 3 mm thickness prepared in the same process according to Tables 1 and 3, cut out to 3 mm (width) x 30 mm (length) x 10 mm (height) with a feather shaving blade S single blade (product number: FAS-10) A test piece (D1) for confirming the friction coefficient of the cutting surface was prepared. Then, according to Table 9, the 2 mm thick sheet (D) and the cut 3 mm thick sheet (D1) were heat-treated, and the static friction coefficient and the dynamic friction coefficient were measured. The results are shown in Table 9.
 実施例38~45
表5に従い同様の工程で作製した3mm厚のシートを用い、フェザー剃刃S片刃(品番;FAS-10)にて3mm(幅)×30mm(長さ)×10mm(高さ)に切り出し、切削面の摩擦係数確認用試験片(D1)を準備した。次いで表12に従い、2mm厚シート(D)、及び切削3mm厚シート(D1)を加熱処理し、静摩擦係数、及び動摩擦係数の測定を行った。結果を表12に示す。
Examples 38-45
Using a sheet of 3 mm thickness produced in the same process according to Table 5, cut out to 3 mm (width) x 30 mm (length) x 10 mm (height) with a feather shaving blade S single blade (product number: FAS-10) and cut A test piece (D1) for checking the coefficient of friction of the surface was prepared. Next, according to Table 12, the 2 mm thick sheet (D) and the cut 3 mm thick sheet (D1) were heat-treated, and the static friction coefficient and the dynamic friction coefficient were measured. The results are shown in Table 12.
 実施例46~53
表7に従い同様の工程で作製した3mm厚のシートを用い、フェザー剃刃S片刃(品番;FAS-10)にて3mm(幅)×30mm(長さ)×10mm(高さ)に切り出し、切削面の摩擦係数確認用試験片(D1)を準備した。次いで表15に従い、2mm厚シート(D)、及び切削3mm厚シート(D1)を加熱処理し、静摩擦係数、及び動摩擦係数の測定を行った。結果を表15に示す。
Examples 46-53
Using a sheet of 3 mm thickness produced in the same process according to Table 7, cut and cut into 3 mm (width) x 30 mm (length) x 10 mm (height) with a feather shaving blade S single blade (product number: FAS-10) A test piece (D1) for checking the coefficient of friction of the surface was prepared. Next, according to Table 15, the 2 mm thick sheet (D) and the cut 3 mm thick sheet (D1) were heat-treated, and the static friction coefficient and the dynamic friction coefficient were measured. The results are shown in Table 15.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 次に、本発明の離型剤を用いる例を実施例及び比較例により更に詳細に説明するが、本発明はこれらにより何ら限定されるものではない。実施例及び比較例において、特に断りのない限り「%」は全て「質量%」を意味する。またカルボキシル当量について、例えば1000g/molであれば、シリコーン分子量1000単位あたりに1分子のカルボキシル基を有することを表す。 Next, examples using the release agent of the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples. In Examples and Comparative Examples, “%” means “% by mass” unless otherwise specified. Moreover, about carboxyl equivalent, if it is 1000 g / mol, for example, it has having one carboxyl group per 1000 molecular weight silicone units.
 <離型剤1の合成>
マグネチックスターラーを備えた100ミリリットルのナス型フラスコに、オルガノポリシロキサンA(信越シリコーン社製カルボキシル基含有ジメチルポリシロキサン片末端変性型「X-22-3710」、カルボキシル基当量:1450g/mol)を25g、テトラヒドロフラン(キシダ化学試薬「THF」)を25g入れ、室温で30分間攪拌して均一な溶液とした。続いて15%テトラメチルアンモニウムヒドロキシド水溶液(和光純薬試薬、以下「TMAH」と略記)を10.5g(オルガノポリシロキサンAのカルボキシル基に対して等モル)加え、室温で1時間攪拌した。この反応液から減圧下でTHF及び水を除去し、残渣にミネラルスピリットA(JX日鉱日石エネルギー社製石油系溶剤、以下「MSA」と略記)を加え溶解し、不揮発分が50%となるよう調製し、離型剤1を得た。
<Synthesis of release agent 1>
Organopolysiloxane A (carboxyl group-containing dimethylpolysiloxane one-end modified type “X-22-3710” manufactured by Shin-Etsu Silicone Co., Ltd., carboxyl group equivalent: 1450 g / mol) was added to a 100 ml eggplant-shaped flask equipped with a magnetic stirrer. 25 g and 25 g of tetrahydrofuran (Kishida Chemical Reagent “THF”) were added and stirred at room temperature for 30 minutes to obtain a uniform solution. Subsequently, 10.5 g of an aqueous 15% tetramethylammonium hydroxide solution (Wako Pure Chemical Reagent, hereinafter abbreviated as “TMAH”) (equal moles relative to the carboxyl group of organopolysiloxane A) was added, and the mixture was stirred at room temperature for 1 hour. From this reaction solution, THF and water are removed under reduced pressure, and mineral spirit A (a petroleum solvent manufactured by JX Nippon Mining & Energy Co., Ltd., hereinafter abbreviated as “MSA”) is added to the residue and dissolved, resulting in a non-volatile content of 50%. A release agent 1 was obtained.
 <離型剤2の合成>
マグネチックスターラーを備えた100ミリリットルのナス型フラスコに、オルガノポリシロキサンAを25g、THFを25g入れ、室温で30分間攪拌して均一な溶液とした。続いて20%テトラエチルアンモニウムヒドロキシド水溶液(和光純薬試薬、以下「TEAH」と略記)を12.7g(オルガノポリシロキサンAのカルボキシル基に対して等モル)加え、室温で1時間攪拌した。この反応液から減圧下でTHF及び水を除去し、残渣にミネラルスピリットAを加え不揮発分が50%となるよう調製し、離型剤2を得た。
<Synthesis of Release Agent 2>
In a 100 ml eggplant-shaped flask equipped with a magnetic stirrer, 25 g of organopolysiloxane A and 25 g of THF were placed and stirred at room temperature for 30 minutes to obtain a uniform solution. Subsequently, 12.7 g (equal moles relative to the carboxyl group of organopolysiloxane A) of 20% tetraethylammonium hydroxide aqueous solution (Wako Pure Chemical Reagent, hereinafter abbreviated as “TEAH”) was added and stirred at room temperature for 1 hour. From this reaction solution, THF and water were removed under reduced pressure, and mineral spirit A was added to the residue to prepare a non-volatile content of 50%, whereby a release agent 2 was obtained.
 <離型剤3の合成>
マグネチックスターラーを備えた100ミリリットルのナス型フラスコに、オルガノポリシロキサンAを25g、THFを25g入れ、室温で30分間攪拌して均一な溶液とした。続いて10%テトラブチルアンモニウムヒドロキシド水溶液(和光純薬試薬、以下「TBAH」と略記)を44.7g(オルガノポリシロキサンAのカルボキシル基に対して等モル)加え、室温で1時間攪拌した。この反応液から減圧下でTHF及び水を除去し、残渣にミネラルスピリットAを加え不揮発分が50%となるよう調製し、離型剤3を得た。
<Synthesis of release agent 3>
In a 100 ml eggplant-shaped flask equipped with a magnetic stirrer, 25 g of organopolysiloxane A and 25 g of THF were placed and stirred at room temperature for 30 minutes to obtain a uniform solution. Subsequently, 44.7 g (equal moles with respect to the carboxyl group of organopolysiloxane A) of 10% tetrabutylammonium hydroxide aqueous solution (Wako Pure Chemicals Reagents, hereinafter abbreviated as “TBAH”) was added and stirred at room temperature for 1 hour. From this reaction solution, THF and water were removed under reduced pressure, and mineral spirit A was added to the residue to prepare a non-volatile content of 50%, whereby a release agent 3 was obtained.
 <離型剤4の合成>
マグネチックスターラーを備えた100ミリリットルのナス型フラスコに、オルガノポリシロキサンAを25g、THFを25g入れ、室温で30分間攪拌して均一な溶液とした。続いて40%ベンジルトリメチルアンモニウムヒドロキシド、メタノール溶液(和光純薬試薬、以下「BTMAH」と略記)を7.2g(オルガノポリシロキサンAのカルボキシル基に対して等モル)加え、室温で1時間攪拌した。この反応液から減圧下でTHF及びメタノールを除去し、残渣にMSAを加え不揮発分が50%となるよう調製し、離型剤4を得た。
<Synthesis of Release Agent 4>
In a 100 ml eggplant-shaped flask equipped with a magnetic stirrer, 25 g of organopolysiloxane A and 25 g of THF were placed and stirred at room temperature for 30 minutes to obtain a uniform solution. Subsequently, 7.2 g (equal moles to the carboxyl group of organopolysiloxane A) of 40% benzyltrimethylammonium hydroxide and methanol solution (Wako Pure Chemicals Reagents, hereinafter abbreviated as “BTMAH”) was added and stirred at room temperature for 1 hour. did. From this reaction solution, THF and methanol were removed under reduced pressure, and MSA was added to the residue to prepare a non-volatile content of 50%, whereby a release agent 4 was obtained.
 <離型剤5の合成>
マグネチックスターラーを備えた100ミリリットルのナス型フラスコに、オルガノポリシロキサンAを25g、THFを25g入れ、室温で30分間攪拌して均一な溶液とした。続いて45%2-ヒドロキシエチルトリメチルアンモニウム、メタノール溶液(和光純薬試薬「45%コリン、メタノール溶液」、以下「2-HETMAH」と略記)4.6g(オルガノポリシロキサンAのカルボキシル基に対して等モル)加え、室温で1時間攪拌した。この反応液から減圧下でTHF及びメタノールを除去し、残渣にMSAを加え不揮発分が50%となるよう調製し、離型剤5を得た。
<Synthesis of Release Agent 5>
In a 100 ml eggplant-shaped flask equipped with a magnetic stirrer, 25 g of organopolysiloxane A and 25 g of THF were placed and stirred at room temperature for 30 minutes to obtain a uniform solution. Subsequently, 4.6 g (based on the carboxyl group of organopolysiloxane A) of 45% 2-hydroxyethyltrimethylammonium and methanol solution (Wako Pure Chemicals Reagent “45% choline, methanol solution”, hereinafter abbreviated as “2-HETMAH”) Equimolar) and stirred at room temperature for 1 hour. From this reaction solution, THF and methanol were removed under reduced pressure, and MSA was added to the residue to prepare a non-volatile content of 50%, whereby a release agent 5 was obtained.
 <離型剤6の合成>
離型剤1と離型剤4を1:1の質量比で混合し、離型剤6とした。
<Synthesis of release agent 6>
Release agent 1 and release agent 4 were mixed at a mass ratio of 1: 1 to obtain release agent 6.
 <離型剤7の合成>
マグネチックスターラーを備えた100ミリリットルのナス型フラスコに、オルガノポリシロキサンB(信越シリコーン社製カルボキシル基含有ジメチルポリシロキサン両末端変性型「X-22-162C」、カルボキシル基当量:2300g/mol)を25g、テトラヒドロフラン(キシダ化学試薬「THF」)を25g入れ、室温で30分間攪拌して均一な溶液とした。続いてTMAHを6.6g(オルガノポリシロキサンBのカルボキシル基に対して等モル)加え、室温で1時間攪拌した。この反応液から減圧下でTHF及び水を除去し、残渣にMSAを加え不揮発分が50%となるよう調製し、離型剤7を得た。
<Synthesis of Release Agent 7>
Into a 100 ml eggplant-shaped flask equipped with a magnetic stirrer, organopolysiloxane B (carboxyl group-containing dimethylpolysiloxane modified at both ends “X-22-162C” manufactured by Shin-Etsu Silicone Co., Ltd., carboxyl group equivalent: 2300 g / mol) was added. 25 g and 25 g of tetrahydrofuran (Kishida Chemical Reagent “THF”) were added and stirred at room temperature for 30 minutes to obtain a uniform solution. Subsequently, 6.6 g of TMAH (equal moles relative to the carboxyl group of organopolysiloxane B) was added, and the mixture was stirred at room temperature for 1 hour. From this reaction solution, THF and water were removed under reduced pressure, and MSA was added to the residue to prepare a non-volatile content of 50%, whereby a release agent 7 was obtained.
 <離型剤8の合成>
マグネチックスターラーを備えた100ミリリットルのナス型フラスコに、オルガノポリシロキサンAを5.7g、オルガノポリシロキサンC(信越シリコーン社製カルボキシル基含有ジメチルポリシロキサン側鎖変性型「X-22-3701E」、カルボキシル基当量:4000g/mol)を19.3g、THFを25g入れ、室温で30分間攪拌して均一な溶液とした。続いてTMAHを5.3g(オルガノポリシロキサンA、オルガノポリシロキサンCのカルボキシル基に対して等モル)加え、室温で1時間攪拌した。この反応液から減圧下でTHF及び水を除去し、残渣にMSAを加え不揮発分が50%となるよう調製し、離型剤8を得た。
<Synthesis of Release Agent 8>
In a 100 ml eggplant-shaped flask equipped with a magnetic stirrer, 5.7 g of organopolysiloxane A and organopolysiloxane C (carboxy group-containing dimethylpolysiloxane side chain modified type “X-22-3701E” manufactured by Shin-Etsu Silicone Co., Ltd.), 19.3 g of carboxyl group equivalent: 4000 g / mol) and 25 g of THF were added and stirred at room temperature for 30 minutes to obtain a uniform solution. Subsequently, 5.3 g of TMAH (equimolar to the carboxyl groups of organopolysiloxane A and organopolysiloxane C) was added and stirred at room temperature for 1 hour. From this reaction solution, THF and water were removed under reduced pressure, and MSA was added to the residue to prepare a non-volatile content of 50%, whereby a release agent 8 was obtained.
 <離型剤9の合成>
マグネチックスターラーを備えた100ミリリットルのナス型フラスコに、オルガノポリシロキサンCを25g、THFを25g入れ、室温で30分攪拌して均一な溶液とした。続いてTMAHを6.3g加え、室温で1時間攪拌した。この反応液から減圧下でTHF及び水を除去し、残渣にMSAを加え不揮発分が50%となるよう調製し、離型剤9を得た。
<Synthesis of Release Agent 9>
In a 100 ml eggplant-shaped flask equipped with a magnetic stirrer, 25 g of organopolysiloxane C and 25 g of THF were placed and stirred at room temperature for 30 minutes to obtain a uniform solution. Subsequently, 6.3 g of TMAH was added and stirred at room temperature for 1 hour. From this reaction solution, THF and water were removed under reduced pressure, and MSA was added to the residue to prepare a non-volatile content of 50%. Thus, a release agent 9 was obtained.
 <離型剤10の合成>
マグネチックスターラーを備えた100ミリリットルのナス型フラスコに、オルガノポリシロキサンAを25g、THFを25g入れ、室温で30分攪拌して均一な溶液とした。続いてテトラブチルアンモニウムクロリド(和光純薬試薬、以下「TBAC」と略記)を4.8g加え、室温で1時間攪拌した。この反応液から減圧下でTHFを除去し、残渣にMSAを加え不揮発分が50%となるよう調製し、離型剤10を得た。
<Synthesis of Release Agent 10>
In a 100 ml eggplant-shaped flask equipped with a magnetic stirrer, 25 g of organopolysiloxane A and 25 g of THF were placed and stirred at room temperature for 30 minutes to obtain a uniform solution. Subsequently, 4.8 g of tetrabutylammonium chloride (Wako Pure Chemical Reagent, hereinafter abbreviated as “TBAC”) was added, and the mixture was stirred at room temperature for 1 hour. From this reaction solution, THF was removed under reduced pressure, and MSA was added to the residue to prepare a non-volatile content of 50%, whereby a release agent 10 was obtained.
 <離型剤11>
オルガノポリシロキサンAを離型剤11とした。
<Releasing agent 11>
Organopolysiloxane A was used as the release agent 11.
 <離型剤12の合成>
マグネチックスターラーを備えた100ミリリットルのナス型フラスコに、2-エチルヘキサン酸を12.5g、THFを12.5g入れ、室温で30分攪拌して均一な溶液とした。続いてTMAHを52.7g加え、室温で1時間攪拌した。この反応液から減圧下でTHFと水を除去し、残渣にMSAを加え不揮発分が50%となるよう調製し、離型剤11を得た。
<Synthesis of Release Agent 12>
In a 100 ml eggplant-shaped flask equipped with a magnetic stirrer, 12.5 g of 2-ethylhexanoic acid and 12.5 g of THF were placed and stirred at room temperature for 30 minutes to obtain a uniform solution. Subsequently, 52.7 g of TMAH was added and stirred at room temperature for 1 hour. From this reaction solution, THF and water were removed under reduced pressure, and MSA was added to the residue to prepare a non-volatile content of 50%, whereby a release agent 11 was obtained.
 <離型剤13>
オルガノポリシロキサンD(信越シリコーン社製無変性ジメチルポリシロキサン「KF-96」)を離型剤13とした。
<Releasing agent 13>
Organopolysiloxane D (unmodified dimethylpolysiloxane “KF-96” manufactured by Shin-Etsu Silicone) was used as the release agent 13.
 <離型剤14>
離型剤12と離型剤13を15:85の質量比で混合し、離型剤14とした。
<Releasing agent 14>
The release agent 12 and the release agent 13 were mixed at a mass ratio of 15:85 to obtain a release agent 14.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
<ウレタンプレポリマー1(UP-1)の合成>
攪拌機、温度計、冷却管を備えた容量1000ミリリットルの四つ口フラスコに、ジフェニルメタンジイソシアネート(日本ポリウレタン工業社製「ミリオネートMT」、NCO含有量:33.5%)を520g、ポリブチレンアジペート(日本ポリウレタン工業社製「ニッポラン4010」、水酸基価56.0 KOHmg/g)480gを仕込み、窒素を通じながら80℃で3時間ウレタン化反応を行った。得られたウレタンプレポリマーは、NCO含量が15.4%であった。
<Synthesis of Urethane Prepolymer 1 (UP-1)>
520 g of diphenylmethane diisocyanate (“Millionate MT” manufactured by Nippon Polyurethane Industry Co., Ltd., NCO content: 33.5%), polybutylene adipate (Japan), in a four-necked flask with a capacity of 1000 ml equipped with a stirrer, thermometer and condenser. 480 g of “Nipporan 4010” manufactured by Polyurethane Industry Co., Ltd., hydroxyl value 56.0 KOH mg / g) was charged, and urethanization reaction was performed at 80 ° C. for 3 hours while introducing nitrogen. The obtained urethane prepolymer had an NCO content of 15.4%.
 <ウレタンプレポリマー2(UP-2)の合成>
攪拌機、温度計、冷却管を備えた容量1000ミリリットルの四つ口フラスコに、トリレンジイソシアネート(日本ポリウレタン工業社製「コロネートT-100」、NCO含有量:48.2%)225g、ポリテトラメチレングリコール(三菱化学社製「PTMG1000」、水酸基価112.0 KOHmg/g)775gを仕込み、窒素を通じながら80℃で3時間ウレタン化反応を行った。得られたウレタンプレポリマーは、NCO含量が4.2%であった。
<Synthesis of Urethane Prepolymer 2 (UP-2)>
In a four-necked flask with a capacity of 1000 ml equipped with a stirrer, a thermometer and a cooling tube, 225 g of tolylene diisocyanate (“Coronate T-100” manufactured by Nippon Polyurethane Industry Co., Ltd., NCO content: 48.2%), polytetramethylene 775 g of glycol (“PTMG1000” manufactured by Mitsubishi Chemical Corporation, hydroxyl value 112.0 KOHmg / g) was charged, and urethanization reaction was performed at 80 ° C. for 3 hours while passing nitrogen. The obtained urethane prepolymer had an NCO content of 4.2%.
 <ポリオール1(PO-1)の調製>
攪拌機、温度計、冷却管を備えた容量1000ミリリットルの四つ口フラスコに、ニッポラン4010を900g、1,4-ブタンジオール(三菱化学社製、以下「1,4-BD」と略記)を70g、トリメチロールプロパン(三菱ガス化学社製、以下「TMP」と略記)を30g、トリエチレンジアミン(東ソー社製、以下「TEDA」と略記)を0.2g仕込み、80℃で2時間攪拌混合した。得られたポリオールは水酸基価が175.0KOHmg/gであった。
<Preparation of polyol 1 (PO-1)>
In a four-necked flask with a capacity of 1000 ml equipped with a stirrer, thermometer, and cooling tube, 900 g of Nipponran 4010 and 70 g of 1,4-butanediol (Mitsubishi Chemical Co., Ltd., hereinafter abbreviated as “1,4-BD”) Then, 30 g of trimethylolpropane (manufactured by Mitsubishi Gas Chemical Co., Inc., hereinafter abbreviated as “TMP”) and 0.2 g of triethylenediamine (manufactured by Tosoh Corporation, hereinafter abbreviated as “TEDA”) were charged and mixed with stirring at 80 ° C. for 2 hours. The resulting polyol had a hydroxyl value of 175.0 KOHmg / g.
 <ポリオール2(PO-2)の調製>
攪拌機、温度計、冷却管を備えた容量1000ミリリットルの四つ口フラスコに、1,4-BDを750g、トリメチロールプロパンを250g、TEDAを1g仕込み、80℃で2時間攪拌混合した。得られたポリオールは水酸基価が1247KOHmg/gであった。
<Preparation of polyol 2 (PO-2)>
A 1000 ml four-necked flask equipped with a stirrer, a thermometer, and a cooling tube was charged with 750 g of 1,4-BD, 250 g of trimethylolpropane, and 1 g of TEDA, and stirred and mixed at 80 ° C. for 2 hours. The obtained polyol had a hydroxyl value of 1247 KOHmg / g.
 <ポリオール3(PO-3)の調製>
攪拌機、温度計、冷却管を備えた容量1000ミリリットルの四つ口フラスコに、ニッポラン4010を900g、1,4-BDを70g、トリメチロールプロパンを30g、N,N,N’-トリメチルアミノエチルエタノールアミン(東ソー社製「TOYOCAT RX-5」)を2.5g仕込み、80℃で2時間攪拌混合した。得られたポリオールは水酸基価が175.0KOHmg/gであった。
<Preparation of polyol 3 (PO-3)>
A 1000 ml four-necked flask equipped with a stirrer, a thermometer, and a condenser, 900 g of Nipponran 4010, 70 g of 1,4-BD, 30 g of trimethylolpropane, N, N, N′-trimethylaminoethylethanol 2.5 g of amine (“TOYOCAT RX-5” manufactured by Tosoh Corporation) was charged, and the mixture was stirred and mixed at 80 ° C. for 2 hours. The resulting polyol had a hydroxyl value of 175.0 KOHmg / g.
 次に、表18及び表19に示す配合比に従って、NCO基末端ウレタンプレポリマーと、触媒入り活性水素基末端硬化剤とを2液混合ウレタン注型機により混合することにより、ポリウレタン樹脂形成性組成物を調製し、この組成物を、予め本発明の離型剤組成物を塗布しキュア温度に予熱された2mm厚の平板シート形成用の金型に注入し、この成型物を金型から取り出し(脱型)が可能な最小限の時間、金型内で加熱硬化させ、速やかにこの成型物を脱型することにより、本発明のポリウレタンエラストマー成型物(シート)を得た。 Next, according to the blending ratio shown in Table 18 and Table 19, the NCO group-terminated urethane prepolymer and the catalyst-containing active hydrogen group-end curing agent are mixed by a two-component mixed urethane casting machine, thereby forming a polyurethane resin-forming composition. A composition is prepared, and this composition is poured into a mold for forming a flat sheet having a thickness of 2 mm, which has been preheated to the curing temperature and coated with the release agent composition of the present invention, and the molded product is removed from the mold. The polyurethane elastomer molded product (sheet) of the present invention was obtained by heat-curing in a mold for a minimum time (demolding) and quickly demolding the molded product.
 得られた成形シートの特性評価方法は以下の通り。 The characteristics evaluation method of the obtained molded sheet is as follows.
 (1)JIS-A硬度:JIS K7312に準じ、A型硬度計を用い測定。 (1) JIS-A hardness: Measured using an A-type hardness meter according to JIS K7312.
 (2)引張強度(TB)、伸長率(EB):JIS K7312に準じ測定。 (2) Tensile strength (TB), elongation rate (EB): Measured according to JIS K7312.
 (3)動摩擦係数:
「試験片の準備」
成型シートを幅25mm×長さ100mmに切り出し、シクロヘキサンを用い脱脂し試験片を準備した。その後、室温23℃、湿度50%の環境下に1日放置後、以下の条件で動摩擦係数を測定した。
「測定条件」
測定機器:表面性測定機TYPE:38(新東科学製)
測定条件:測定冶具=ボール圧子(SUS)、荷重=20g、テーブル移動速度=50mm/min。
(3) Dynamic friction coefficient:
"Preparation of specimen"
The molded sheet was cut into a width of 25 mm and a length of 100 mm and degreased using cyclohexane to prepare a test piece. Then, after leaving in an environment of room temperature 23 ° C. and humidity 50% for 1 day, the dynamic friction coefficient was measured under the following conditions.
"Measurement condition"
Measuring equipment: Surface property measuring machine TYPE: 38 (manufactured by Shinto Kagaku)
Measurement conditions: measurement jig = ball indenter (SUS), load = 20 g, table moving speed = 50 mm / min.
 (4)離型性:平板シート形成用の金型からポリウレタン樹脂を脱型する際、脱型しやすさを以下の通り評価した。
○:剥離が軽く即座に脱型できる(5秒以内)
△:剥離が僅かに重いが短時間で脱型できる(10秒程度)
×:剥離が重く脱型に時間を要する(30秒以上)
(4) Releasability: When removing the polyurethane resin from the mold for forming the flat sheet, the ease of demolding was evaluated as follows.
○: Peeling is light and can be removed immediately (within 5 seconds)
Δ: Slightly heavy peeling but demolding in a short time (about 10 seconds)
X: Heavy peeling and time required for demolding (30 seconds or more)
 実施例101~112に本発明の実施結果を示す。実施例中いずれの条件においても、本発明の離型剤を使用することで、動摩擦係数が低く、機械強度が高く強靭なポリウレタン樹脂を得ることができた。 Examples 101 to 112 show the implementation results of the present invention. Under any of the conditions in the examples, by using the release agent of the present invention, a tough polyurethane resin having a low dynamic friction coefficient, high mechanical strength, and high strength could be obtained.
 比較例101~104は、離型剤中に本発明の、4級アンモニウム、及び/又は4級ホスホニウムのカルボキシレートを分子構造中に有するオルガノポリシロキサン(J)を含有しないため、動摩擦係数の高いポリウレタン樹脂となった。 Since Comparative Examples 101 to 104 do not contain the organopolysiloxane (J) having a quaternary ammonium and / or quaternary phosphonium carboxylate of the present invention in the molecular structure in the release agent, the dynamic friction coefficient is high. It became a polyurethane resin.
 比較例105は、本発明の実施形態に近いが、4級アンモニウム、及び4級ホスホニウムからなる群より選ばれる少なくとも一種のカルボキシレートがオルガノポリシロキサンと結合していない、つまり4級アンモニウム、及び4級ホスホニウムからなる群より選ばれる少なくとも一種のカルボキシレートを分子構造中に有するオルガノポリシロキサン(J)ではないため、動摩擦係数の高いポリウレタン樹脂となった。 Comparative Example 105 is close to the embodiment of the present invention, but at least one carboxylate selected from the group consisting of quaternary ammonium and quaternary phosphonium is not bonded to organopolysiloxane, that is, quaternary ammonium and 4 Since this is not an organopolysiloxane (J) having in its molecular structure at least one carboxylate selected from the group consisting of secondary phosphoniums, a polyurethane resin having a high dynamic friction coefficient was obtained.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 実施例113
離型剤3にシリコーン(I)(信越シリコーン社製片末端水酸基含有「X-22-170BX」、水酸基当量:2800g/mol)を29g添加後、TBAH変性オルガノポリシロキサンA/片末端水酸基含有シリコーン含量=50/50の離型剤組成物を調製した。本離型剤組成物を使用した以外は、実施例103と同様の方法でポリウレタンエラストマー成型物を得た。結果を表21に示す。
Example 113
After adding 29 g of silicone (I) (single-end hydroxyl group-containing “X-22-170BX”, hydroxyl group equivalent: 2800 g / mol) manufactured by Shin-Etsu Silicone Co., Ltd. to release agent 3, TBAH-modified organopolysiloxane A / one-end hydroxyl group-containing silicone A release agent composition having a content of 50/50 was prepared. A polyurethane elastomer molded article was obtained in the same manner as in Example 103, except that this release agent composition was used. The results are shown in Table 21.
 実施例114~120
実施例113で使用した片末端水酸基含有シリコーンの量、種類を変えて離型剤組成物を調製し、実施例103と同様の方法でポリウレタンエラストマー成型物を得た。使用したシリコーンを以下に示す。
シリコーン(I):
信越シリコーン社製片末端水酸基含有型「X-22-170BX」、官能基当量:2800g/mol
シリコーン(II):
信越シリコーン社製片末端水酸基含有型「X-22-170DX」、官能基当量:4667g/mol
シリコーン(III)
信越シリコーン社製両末端水酸基含有型「X-22-160AS」、官能基当量:470g/mol
シリコーン(IV)
信越シリコーン社製側鎖アミノ基含有型「KF-8004」、官能基当量:1500g/mol
シリコーン(V)
信越シリコーン社製側鎖アミノ基含有型「KF-8005」、官能基当量:11000g/mol
シリコーン(VI)
信越シリコーン社製側鎖アミノ基含有型「KF-868」、官能基当量:8800g/mol
シリコーン(VII)
信越シリコーン社製両末端アミノ基含有型「KF-8008」、官能基当量:5700g/mol
離型剤中の組成と成型物の動摩擦係数を表21にまとめた。成型物の動摩擦係数は、実施例103で得た成型物の値より低く、シリコーンの導入により、さらに低摩擦化が進行した。
Examples 114-120
A release agent composition was prepared by changing the amount and type of one-end hydroxyl group-containing silicone used in Example 113, and a polyurethane elastomer molded product was obtained in the same manner as in Example 103. The silicone used is shown below.
Silicone (I):
One-end hydroxyl group-containing type “X-22-170BX” manufactured by Shin-Etsu Silicone Co., functional group equivalent: 2800 g / mol
Silicone (II):
One-end hydroxyl group-containing type “X-22-170DX” manufactured by Shin-Etsu Silicone Co., functional group equivalent: 4667 g / mol
Silicone (III)
Hydroxyl group-containing type “X-22-160AS” from Shin-Etsu Silicone Co., functional group equivalent: 470 g / mol
Silicone (IV)
Side chain amino group-containing type “KF-8004” manufactured by Shin-Etsu Silicone Co., Ltd., functional group equivalent: 1500 g / mol
Silicone (V)
Side chain amino group-containing type “KF-8005” manufactured by Shin-Etsu Silicone Co., Ltd., functional group equivalent: 11000 g / mol
Silicone (VI)
Side chain amino group containing type “KF-868” manufactured by Shin-Etsu Silicone Co., functional group equivalent: 8800 g / mol
Silicone (VII)
Amino group-containing type “KF-8008” manufactured by Shin-Etsu Silicone Co., functional group equivalent: 5700 g / mol
Table 21 summarizes the composition in the release agent and the dynamic friction coefficient of the molded product. The dynamic friction coefficient of the molded product was lower than the value of the molded product obtained in Example 103, and the introduction of silicone further reduced the friction.
 比較例106、107
離型剤にシリコーン(I)、又はシリコーン(IV)を使用した以外は、実施例103と同様の方法でポリウレタンエラストマー成型物を得た。結果を表21に示す。活性水素基を有するシリコーンを離型剤に使用しても、動摩擦係数を低下させる効果は小さい。
Comparative Examples 106 and 107
A polyurethane elastomer molded product was obtained in the same manner as in Example 103, except that silicone (I) or silicone (IV) was used as the release agent. The results are shown in Table 21. Even if silicone having an active hydrogen group is used as a release agent, the effect of reducing the dynamic friction coefficient is small.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 実施例121
ウレタンプレポリマー1(UP-1)の合成において、ジフェニルメタンジイソシアネートの量を515gに変更し、さらにオクタデシルイソシアネート(保土谷化学社製「ミリオネートO」)を5g(ポリウレタン樹脂形成性組成物中に0.25質量%)加えてウレタンプレポリマー3(UP-3)を調製した。UP-1をUP-3に変更した以外は、実施例103と同様の方法でポリウレタンエラストマー成型物を得た。
Example 121
In the synthesis of urethane prepolymer 1 (UP-1), the amount of diphenylmethane diisocyanate was changed to 515 g, and further 5 g of octadecyl isocyanate (“Millionate O” manufactured by Hodogaya Chemical Co., Ltd.) was added to the polyurethane resin-forming composition. 25 mass%) was added to prepare urethane prepolymer 3 (UP-3). A polyurethane elastomer molded product was obtained in the same manner as in Example 103 except that UP-1 was changed to UP-3.
 実施例122
ポリオール1(PO-1)の調製において、ポリブチレンアジペート「ニッポラン4010」の量を880gに変更し、さらにポリオキシエチレンセチルエーテル(日光ケミカルズ社製「NIKKOL BC-150」)を20g(ポリウレタン樹脂形成性組成物中に1質量%)加えてポリオール4(PO-4)を調製した。PO-1をPO-4に変更した以外は、実施例103と同様の方法でポリウレタンエラストマー成型物を得た。
Example 122
In the preparation of polyol 1 (PO-1), the amount of polybutylene adipate “Niporan 4010” was changed to 880 g, and 20 g of polyoxyethylene cetyl ether (“NIKKOL BC-150” manufactured by Nikko Chemicals Co., Ltd.) was formed. Polyol 4 (PO-4) was prepared by adding 1% by mass in the active composition. A polyurethane elastomer molded product was obtained in the same manner as in Example 103 except that PO-1 was changed to PO-4.
 実施例123
ポリオール1(PO-1)の調製において、ポリブチレンアジペート「ニッポラン4010」の量を840gに変更し、さらにポリオキシエチレンセチルエーテル「NIKKOL BC-150」を60g(ポリウレタン樹脂形成性組成物中に3質量%)加えてポリオール5(PO-5)を調製した。PO-1をPO-5に変更した以外は、実施例103と同様の方法でポリウレタンエラストマー成型物を得た。
Example 123
In the preparation of polyol 1 (PO-1), the amount of polybutylene adipate “Nippolan 4010” was changed to 840 g, and further 60 g of polyoxyethylene cetyl ether “NIKKOL BC-150” (3% in the polyurethane resin-forming composition). (Mass%) was added to prepare polyol 5 (PO-5). A polyurethane elastomer molded product was obtained in the same manner as in Example 103 except that PO-1 was changed to PO-5.
 実施例124
ウレタンプレポリマー3(UP-3)とポリオール4(PO-4)を用いた以外は、実施例103と同様の方法でポリウレタンエラストマー成型物を得た。
Example 124
A molded polyurethane elastomer was obtained in the same manner as in Example 103, except that urethane prepolymer 3 (UP-3) and polyol 4 (PO-4) were used.
 実施例125
ポリオール4(PO-4)の調製において、ポリオキシエチレンセチルエーテルの変わりに、ベヘニルアルコール(日光ケミカルズ社製「NIKKOL ベヘニルアルコール80」、融点65~75℃)を20g(ポリウレタン樹脂形成性組成物中に1質量%)を用いてポリオール(PO-6)を調製した。PO-1をPO-6に変更した以外は、実施例103と同様の方法でポリウレタンエラストマー成型物を得た。
Example 125
In the preparation of polyol 4 (PO-4), instead of polyoxyethylene cetyl ether, 20 g of behenyl alcohol (“NIKKOL behenyl alcohol 80” manufactured by Nikko Chemicals Co., Ltd., melting point: 65 to 75 ° C.) was added to the polyurethane resin-forming composition. (Mass%) was used to prepare polyol (PO-6). A polyurethane elastomer molded product was obtained in the same manner as in Example 103 except that PO-1 was changed to PO-6.
 実施例126
ポリオール1(PO-1)の調製において、飽和脂肪酸アミドとしてN-オレイルステアリン酸アミド(日本化成社製ニッカアマイドOS)を10g(ポリウレタン樹脂形成性組成物中に0.5質量%)添加してポリオール7(PO-7)を調製した。PO-1をPO-7に変更した以外は、実施例103と同様の方法でポリウレタンエラストマー成型物を得た。
Example 126
In the preparation of polyol 1 (PO-1), 10 g of N-oleyl stearamide (Nikka Amide OS manufactured by Nippon Kasei Co., Ltd.) as a saturated fatty acid amide (0.5% by mass in the polyurethane resin-forming composition) was added. Polyol 7 (PO-7) was prepared. A polyurethane elastomer molded product was obtained in the same manner as in Example 103 except that PO-1 was changed to PO-7.
 結果を表22にまとめた。ウレタンプレポリマー、あるいはポリオールに滑剤を添加して成型することにより、離型剤単独使用時(実施例103)より動摩擦係数の低いポリウレタンエラストマー成型物が得られた。 The results are summarized in Table 22. By molding by adding a lubricant to the urethane prepolymer or polyol, a polyurethane elastomer molded product having a lower dynamic friction coefficient than that obtained when the release agent was used alone (Example 103) was obtained.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の本質と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 なお、2014年9月5日に出願された日本特許出願2014-181077号、2014年9月25日に出願された日本特許出願2014-194778号、2014年9月29日に出願された日本特許出願2014-198063号の明細書、特許請求の範囲、要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 Japanese Patent Application No. 2014-181777 filed on September 5, 2014, Japanese Patent Application No. 2014-194778 filed on September 25, 2014, Japanese Patent Application filed on September 29, 2014 The entire contents of the specification, claims, and abstract of application 2014-198063 are incorporated herein by reference as the disclosure of the specification of the present invention.

Claims (26)

  1.  イソシアネート基末端ウレタンプレポリマー(A)、活性水素基末端硬化剤(B)、及び滑剤(C)を含み、滑剤(C)が、熱硬化性ポリウレタンエラストマー形成性組成物中に0.1~8質量%のポリオキシエチレンアルキルエーテル(C1)を含むこと、又は熱硬化性ポリウレタンエラストマー形成性組成物中に0.1~5質量%の炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)を含むこと、を特徴とする熱硬化性ポリウレタンエラストマー形成性組成物。 An isocyanate group-terminated urethane prepolymer (A), an active hydrogen group-terminated curing agent (B), and a lubricant (C), wherein the lubricant (C) is 0.1 to 8 in the thermosetting polyurethane elastomer-forming composition. Containing 0.1% by mass of polyoxyethylene alkyl ether (C1), or 0.1 to 5% by mass of carbon number 20 to 40% and a melting point of 90 ° C. or less in the thermosetting polyurethane elastomer-forming composition. A thermosetting polyurethane elastomer-forming composition comprising a chain aliphatic alcohol (C2).
  2.  滑剤(C)が、ポリオキシエチレンアルキルエーテル(C1)、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)、及びオクタデシルイソシアネート(C3)からなる群より選ばれる少なくとも2種の化合物を含み、滑剤(C)が熱硬化性ポリウレタンエラストマー形成性組成物中に0.2~8質量%含まれることを特徴とする請求項1に記載の熱硬化性ポリウレタンエラストマー形成性組成物。 The lubricant (C) is selected from the group consisting of polyoxyethylene alkyl ether (C1), linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less, and octadecyl isocyanate (C3). 2. The thermosetting polyurethane elastomer formation according to claim 1, comprising at least two kinds of compounds, and the lubricant (C) is contained in the thermosetting polyurethane elastomer-forming composition in an amount of 0.2 to 8% by mass. Sex composition.
  3.  滑剤(C)が、ポリオキシエチレンアルキルエーテル(C1)、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)、及びオクタデシルイソシアネート(C3)からなる群より選ばれる少なくとも一種と、脂肪酸アミド(C4)とを含み、ポリオキシエチレンアルキルエーテル(C1)、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)、及びオクタデシルイソシアネート(C3)の総量として熱硬化性ポリウレタンエラストマー形成性組成物中に0.2~8質量%含み、かつ熱硬化性ポリウレタンエラストマー形成性組成物中に脂肪酸アミド(C4)を0.05~0.5質量%含むことを特徴とする請求項1に記載の熱硬化性ポリウレタンエラストマー形成性組成物。 The lubricant (C) is selected from the group consisting of polyoxyethylene alkyl ether (C1), linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less, and octadecyl isocyanate (C3). At least one kind and fatty acid amide (C4), polyoxyethylene alkyl ether (C1), linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and melting point of 90 ° C. or less, and octadecyl isocyanate (C3 ) In the thermosetting polyurethane elastomer-forming composition in an amount of 0.2 to 8% by mass, and the thermosetting polyurethane elastomer-forming composition contains 0.05 to 0.5 mass of the fatty acid amide (C4). The thermosetting polyurethane elastomer-forming composition according to claim 1, comprising:
  4.  ポリオキシエチレンアルキルエーテル(C1)の水酸基価が5~70KOHmg/gであることを特徴とする請求項1乃至3のいずれかに記載の熱硬化性ポリウレタンエラストマー形成性組成物。 The thermosetting polyurethane elastomer-forming composition according to any one of claims 1 to 3, wherein the hydroxyl value of the polyoxyethylene alkyl ether (C1) is 5 to 70 KOHmg / g.
  5.  ポリオキシエチレンアルキルエーテル(C1)、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)、オクタデシルイソシアネート(C3)、及び脂肪酸アミド(C4)からなる群より選ばれる少なくとも一種にて、少なくともポリイソシアネート(A6)とポリオール(A7)から成るイソシアネート基末端ウレタンプレポリマー(A0)を予め変性させたイソシアネート基末端プレポリマーを用いることを特徴とする請求項1乃至4のいずれかに記載の熱硬化性ポリウレタンエラストマー形成性組成物。 Selected from the group consisting of polyoxyethylene alkyl ether (C1), linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and melting point of 90 ° C. or lower, octadecyl isocyanate (C3), and fatty acid amide (C4) The isocyanate group-terminated prepolymer obtained by modifying an isocyanate group-terminated urethane prepolymer (A0) comprising at least a polyisocyanate (A6) and a polyol (A7) in advance is used as at least one kind. The thermosetting polyurethane elastomer-forming composition according to any one of the above.
  6.  ポリオキシエチレンアルキルエーテル(C1)、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)、及び脂肪酸アミド(C4)からなる群より選ばれる少なくとも一種と、活性水素基末端硬化剤(B0)とを含むことを特徴とする活性水素基末端硬化剤を用いることを特徴とする請求項1乃至4のいずれかに記載の熱硬化性ポリウレタンエラストマー形成性組成物。 At least one selected from the group consisting of polyoxyethylene alkyl ether (C1), linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or lower, and fatty acid amide (C4), and active hydrogen The thermosetting polyurethane elastomer-forming composition according to any one of claims 1 to 4, wherein an active hydrogen group terminal curing agent containing a group terminal curing agent (B0) is used.
  7.  ポリオキシエチレンアルキルエーテル(C1)の水酸基価が5~70KOHmg/g、脂肪酸アミド(C4)の融点が90℃以下であることを特徴とする請求項3に記載の熱硬化性ポリウレタンエラストマー形成性組成物。 4. The thermosetting polyurethane elastomer-forming composition according to claim 3, wherein the polyoxyethylene alkyl ether (C1) has a hydroxyl value of 5 to 70 KOHmg / g and the fatty acid amide (C4) has a melting point of 90 ° C. or less. object.
  8.  請求項1乃至7のいずれかに記載の熱硬化性ポリウレタンエラストマー形成性組成物を熱硬化処理することを特徴とする熱硬化性ポリウレタンエラストマーの製造方法。 A method for producing a thermosetting polyurethane elastomer, comprising subjecting the thermosetting polyurethane elastomer-forming composition according to any one of claims 1 to 7 to thermosetting treatment.
  9.  請求項1乃至7のいずれかに記載の熱硬化性ポリウレタンエラストマー形成性組成物を熱硬化処理して得られたJIS-A硬度が60~98の範囲の硬化物からなる産業機械部品。 An industrial machine part comprising a cured product having a JIS-A hardness in the range of 60 to 98 obtained by thermosetting the thermosetting polyurethane elastomer-forming composition according to any one of claims 1 to 7.
  10.  請求項1乃至7のいずれかに記載の熱硬化性ポリウレタンエラストマー形成性組成物を熱硬化処理して得られたJIS-A硬度が60~98の範囲の硬化物(D)の静摩擦係数が0.8以下、かつ動摩擦係数が0.6以下である産業機械部品。 A static friction coefficient of a cured product (D) having a JIS-A hardness of 60 to 98 obtained by thermosetting the thermosetting polyurethane elastomer-forming composition according to any one of claims 1 to 7 is 0. .8 Industrial machinery parts with a coefficient of dynamic friction of 0.6 or less.
  11.  請求項1乃至7のいずれかに記載の熱硬化性ポリウレタンエラストマー形成性組成物を熱硬化処理して得られるJIS-A硬度が60~98の範囲の硬化物(D)を切削加工して得られる硬化物(D1)の静摩擦係数が0.8以下、かつ動摩擦係数が0.6以下である産業機械部品。 A cured product (D) having a JIS-A hardness in the range of 60 to 98 obtained by thermosetting the thermosetting polyurethane elastomer-forming composition according to any one of claims 1 to 7 is obtained by cutting. An industrial machine part in which the cured product (D1) has a static friction coefficient of 0.8 or less and a dynamic friction coefficient of 0.6 or less.
  12.  請求項10に記載の硬化物(D)を100~200℃で1~120分間さらに加熱処理した硬化物の静摩擦係数が0.8以下、かつ動摩擦係数が0.6以下である産業機械部品。 An industrial machine part having a static friction coefficient of 0.8 or less and a dynamic friction coefficient of 0.6 or less of a cured product obtained by further heat-treating the cured product (D) according to claim 10 at 100 to 200 ° C. for 1 to 120 minutes.
  13.  請求項11に記載の硬化物(D)を切削加工して得られる硬化物(D1)を100~200℃で1~120分間さらに加熱処理した硬化物(D2)の静摩擦係数が0.8以下、かつ動摩擦係数が0.6以下である産業機械部品。 The static friction coefficient of a cured product (D2) obtained by further heat-treating the cured product (D1) obtained by cutting the cured product (D) according to claim 11 at 100 to 200 ° C. for 1 to 120 minutes is 0.8 or less. Industrial machinery parts with a coefficient of dynamic friction of 0.6 or less.
  14.  4級アンモニウム、及び4級ホスホニウムからなる群より選ばれる少なくとも一種のカルボキシレートを分子構造中に有するオルガノポリシロキサン(J)を含有することを特徴とする、樹脂成型に用いられる離型剤組成物。 A release agent composition used for resin molding, comprising an organopolysiloxane (J) having in its molecular structure at least one carboxylate selected from the group consisting of quaternary ammonium and quaternary phosphonium. .
  15.  請求項14に記載の樹脂成型に用いられる離型剤組成物に、さらに活性水素基を有するシリコーン(L)を含有することを特徴とする、樹脂成型に用いられる離型剤組成物。 15. A release agent composition used for resin molding, wherein the release agent composition used for resin molding according to claim 14 further contains silicone (L) having an active hydrogen group.
  16.  4級アンモニウム、及び4級ホスホニウムからなる群より選ばれる少なくとも一種のカルボキシレートを分子構造中に有するオルガノポリシロキサン(J)が、4級アンモニウム(J1)、4級ホスホニウム(J2)、及びカルボキシル基含有オルガノポリシロキサン(J3)からなる群より選ばれる少なくとも一種を含むことを特徴とする、請求項14又は15に記載の樹脂成型に用いられる離型剤組成物。 Organopolysiloxane (J) having at least one carboxylate selected from the group consisting of quaternary ammonium and quaternary phosphonium in the molecular structure is quaternary ammonium (J1), quaternary phosphonium (J2), and carboxyl group The mold release agent composition used for resin molding according to claim 14 or 15, comprising at least one selected from the group consisting of containing organopolysiloxane (J3).
  17.  4級アンモニウム(J1)、及び4級ホスホニウム(J2)からなる群より選ばれる少なくとも一種のカルボキシレートの合計含有量が、4級アンモニウム、及び4級ホスホニウムからなる群より選ばれる少なくとも一種のカルボキシレートを分子構造中に有するオルガノポリシロキサン(J)の合計含有量に対して、0.3mmol/g以上含まれることを特徴とする、請求項14乃至16のいずれかに記載の樹脂成型に用いられる離型剤組成物。 The total content of at least one carboxylate selected from the group consisting of quaternary ammonium (J1) and quaternary phosphonium (J2) is at least one carboxylate selected from the group consisting of quaternary ammonium and quaternary phosphonium. It is used for the resin molding according to any one of claims 14 to 16, wherein 0.3 mmol / g or more is contained with respect to the total content of the organopolysiloxane (J) having in the molecular structure. Release agent composition.
  18.  4級アンモニウム(J1)、及び4級ホスホニウム(J2)からなる群より選ばれる少なくとも一種のカルボキシレートを分子構造中に有するオルガノポリシロキサン(J)100質量部に対し、活性水素基を有するシリコーン(L)を5~150質量部含有することを特徴とする、請求項15乃至17のいずれかに記載の樹脂成型に用いられる離型剤組成物。 Silicone having an active hydrogen group with respect to 100 parts by mass of organopolysiloxane (J) having at least one carboxylate selected from the group consisting of quaternary ammonium (J1) and quaternary phosphonium (J2) in the molecular structure ( The release agent composition for use in resin molding according to any one of claims 15 to 17, characterized in that it contains 5 to 150 parts by mass of L).
  19.  活性水素基を有するシリコーン(L)がアミノ基含有シリコーンであることを特徴とする請求項15乃至18のいずれかに記載の樹脂成型に用いられる離型剤組成物。 The release agent composition used for resin molding according to any one of claims 15 to 18, wherein the silicone (L) having an active hydrogen group is an amino group-containing silicone.
  20.  ポリウレタン樹脂形成性組成物(K)が、請求項14乃至19のいずれかに記載の樹脂成型に用いられる離型剤組成物が塗布された成形型にて成形されたポリウレタン樹脂成型物。 A polyurethane resin-molded product obtained by molding a polyurethane resin-forming composition (K) with a mold to which a release agent composition used for resin molding according to any one of claims 14 to 19 is applied.
  21.  請求項14乃至19のいずれかに記載の樹脂成型に用いられる離型剤組成物を成形型に塗布し、ポリウレタン樹脂形成性組成物(K)をその成形型に注入し成型して得られること特徴とするポリウレタン樹脂成型物の製造方法。 A mold release agent composition used for resin molding according to any one of claims 14 to 19 is applied to a mold, and the polyurethane resin-forming composition (K) is injected into the mold and molded. A method for producing a molded polyurethane resin product.
  22.  ポリウレタン樹脂形成性組成物(K)が、イソシアネート基末端ウレタンプレポリマー(A0)、活性水素基末端硬化剤(B0)からなることを特徴とする、請求項20に記載のポリウレタン樹脂成型物。 The polyurethane resin molded product according to claim 20, wherein the polyurethane resin-forming composition (K) comprises an isocyanate group-terminated urethane prepolymer (A0) and an active hydrogen group-terminated curing agent (B0).
  23.  ポリウレタン樹脂形成性組成物(K)が、滑剤(C)としてポリオキシエチレンアルキルエーテル(C1)、炭素数20~40で、且つ融点が90℃以下の直鎖脂肪族アルコール(C2)、オクタデシルイソシアネート(C3)、脂肪酸アミド(C4)からなる群より選ばれる少なくとも1種の化合物を含有することを特徴とする、請求項20又は22に記載のポリウレタン樹脂成型物。 The polyurethane resin-forming composition (K) is a polyoxyethylene alkyl ether (C1) as a lubricant (C), a linear aliphatic alcohol (C2) having 20 to 40 carbon atoms and a melting point of 90 ° C. or less, octadecyl isocyanate The polyurethane resin molded article according to claim 20 or 22, comprising at least one compound selected from the group consisting of (C3) and fatty acid amide (C4).
  24.  イソシアネート基末端ウレタンプレポリマー(A0)のイソシアネート成分として、ジフェニルメタンジイソシアネート又はトリレンジイソシアネートを含むことを特徴とする、請求項22又は23に記載のポリウレタン樹脂成型物。 The polyurethane resin molded product according to claim 22 or 23, wherein the isocyanate component of the isocyanate group-terminated urethane prepolymer (A0) contains diphenylmethane diisocyanate or tolylene diisocyanate.
  25.  イソシアネート基末端ウレタンプレポリマー(A0)と活性水素基末端硬化剤(B0)とを混合する際のイソシアネート基/活性水素基のモル比が1.0~3.0であることを特徴とする、請求項20、22、23、又は24のいずれかに記載のポリウレタン樹脂成型物。 The isocyanate group / active hydrogen group molar ratio when mixing the isocyanate group-terminated urethane prepolymer (A0) and the active hydrogen group terminal curing agent (B0) is 1.0 to 3.0, The polyurethane resin molded product according to any one of claims 20, 22, 23, and 24.
  26.  動摩擦係数0.8以下、且つJIS-A硬度60~98の範囲である、請求項20、22、23,24、又は25のいずれかに記載のポリウレタン樹脂成型物を用いる産業機械部品。 The industrial machine part using the polyurethane resin molded product according to any one of claims 20, 22, 23, 24, or 25 having a dynamic friction coefficient of 0.8 or less and a JIS-A hardness of 60 to 98.
PCT/JP2015/075125 2014-09-05 2015-09-03 Polyurethane elastomer-forming composition, industrial machine component using same, mold release agent composition used for resin molding, and polyurethane resin molded article which is molded using said mold release agent composition WO2016035865A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014181077 2014-09-05
JP2014-181077 2014-09-05
JP2014194778A JP6387763B2 (en) 2014-09-25 2014-09-25 Polyurethane elastomer-forming composition used for industrial machine parts and industrial machine parts using the same
JP2014-194778 2014-09-25
JP2014-198063 2014-09-29
JP2014198063 2014-09-29

Publications (1)

Publication Number Publication Date
WO2016035865A1 true WO2016035865A1 (en) 2016-03-10

Family

ID=55439922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075125 WO2016035865A1 (en) 2014-09-05 2015-09-03 Polyurethane elastomer-forming composition, industrial machine component using same, mold release agent composition used for resin molding, and polyurethane resin molded article which is molded using said mold release agent composition

Country Status (2)

Country Link
TW (1) TW201638214A (en)
WO (1) WO2016035865A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021024929A1 (en) * 2019-08-07 2021-02-11 三井化学株式会社 Polyurethane resin composition and molded article
CN112533992A (en) * 2018-08-03 2021-03-19 艾维恩股份有限公司 Bloomless thermoplastic polyurethane compounds and thermoplastic articles molded therefrom
CN114026401A (en) * 2019-06-28 2022-02-08 富士胶片株式会社 Sheet set for pressure measurement, sheet for pressure measurement, and dispersion liquid

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53111395A (en) * 1977-03-11 1978-09-28 Hitachi Chem Co Ltd Preparation of nonfoamable urethane elastomer
JPS543198A (en) * 1977-06-03 1979-01-11 Thiokol Chemical Corp Urethane composition having
JPS60179211A (en) * 1984-02-27 1985-09-13 Toray Silicone Co Ltd Lubricant composition of bladder for tyre molding
JP2004067776A (en) * 2002-08-02 2004-03-04 Toyota Motor Corp Internal mold release agent for slush molding polyurethane skin forming agent
JP2014037505A (en) * 2012-08-20 2014-02-27 Mitsui Chemicals Inc Production method of polyurethane elastomer, polyurethane elastomer, and formed part
JP2014152239A (en) * 2013-02-08 2014-08-25 F Consultant:Kk Resin composition and molded article using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53111395A (en) * 1977-03-11 1978-09-28 Hitachi Chem Co Ltd Preparation of nonfoamable urethane elastomer
JPS543198A (en) * 1977-06-03 1979-01-11 Thiokol Chemical Corp Urethane composition having
JPS60179211A (en) * 1984-02-27 1985-09-13 Toray Silicone Co Ltd Lubricant composition of bladder for tyre molding
JP2004067776A (en) * 2002-08-02 2004-03-04 Toyota Motor Corp Internal mold release agent for slush molding polyurethane skin forming agent
JP2014037505A (en) * 2012-08-20 2014-02-27 Mitsui Chemicals Inc Production method of polyurethane elastomer, polyurethane elastomer, and formed part
JP2014152239A (en) * 2013-02-08 2014-08-25 F Consultant:Kk Resin composition and molded article using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112533992A (en) * 2018-08-03 2021-03-19 艾维恩股份有限公司 Bloomless thermoplastic polyurethane compounds and thermoplastic articles molded therefrom
CN112533992B (en) * 2018-08-03 2023-02-03 埃万特公司 Bloomless thermoplastic polyurethane compounds and thermoplastic articles molded therefrom
CN114026401A (en) * 2019-06-28 2022-02-08 富士胶片株式会社 Sheet set for pressure measurement, sheet for pressure measurement, and dispersion liquid
WO2021024929A1 (en) * 2019-08-07 2021-02-11 三井化学株式会社 Polyurethane resin composition and molded article
JP7280954B2 (en) 2019-08-07 2023-05-24 三井化学株式会社 Polyurethane resin composition and molded article

Also Published As

Publication number Publication date
TW201638214A (en) 2016-11-01

Similar Documents

Publication Publication Date Title
JP6428208B2 (en) Coating composition, self-healing type coating film using the composition
JP5412067B2 (en) Allophanate-modified diphenylmethane diisocyanate, its prepolymer and its use in the production of polyurea and polyureaurethane
JP2017048319A (en) Composition for forming polyurethane elastomer, and industrial mechanical component using the same
JP6617479B2 (en) Mold release agent composition used for resin molding, and polyurethane resin molded product molded using this mold release agent
WO2016035865A1 (en) Polyurethane elastomer-forming composition, industrial machine component using same, mold release agent composition used for resin molding, and polyurethane resin molded article which is molded using said mold release agent composition
JP3905895B2 (en) Low hardness thermosetting polyurethane elastomer and method for producing the same
JP2023123719A (en) Thermosetting polyurethane elastomer-forming composition, thermosetting polyurethane elastomer, industrial machinery component and method for producing industrial machinery component
JP6565501B2 (en) Polyurethane elastomer-forming composition and industrial machine parts using the same
JP6558159B2 (en) Polyurethane elastomer-forming composition used for industrial machine parts and industrial machine parts using the same
JP7286958B2 (en) Thermosetting polyurethane elastomer-forming composition, thermosetting polyurethane elastomer, industrial machine part, and method for producing industrial machine part
JP6427990B2 (en) Polyurethane elastomer-forming composition used for industrial machine parts and industrial machine parts using the same
JP2008266451A (en) Soft polyurethane foam
JP6387763B2 (en) Polyurethane elastomer-forming composition used for industrial machine parts and industrial machine parts using the same
JP6801425B2 (en) Polyurethane elastomer-forming composition and industrial machine parts using it
JP5419341B2 (en) Allophanate-modified isocyanates containing reactive unsaturation
JP7404618B2 (en) Thermosetting polyurethane elastomer-forming composition and industrial machine parts using the same
JP6413244B2 (en) Polyurethane elastomer-forming composition for roll elastic member, and roll elastic member using the composition
JP6645544B2 (en) Polyurethane elastomer-forming composition used for industrial machine parts, and industrial machine parts using the same
JP6903895B2 (en) Thermosetting polyurethane elastomer forming composition
JP4466006B2 (en) Polyurethane elastomer-forming composition, polyurethane elastomer molded product and method for producing the same
JP4088960B2 (en) Urethane elastomer-forming composition and process for producing cast urethane elastomer
JP6891477B2 (en) Polyurethane elastomer-forming composition and industrial machine parts using it
JP4186652B2 (en) Catalyst composition for producing polyurethane resin and method for producing polyurethane resin
JP2006002054A (en) Terminal isocyanate group-containing prepolymer, method for producing polyurethane by using the same, and polyurethane for roll
EP4303280A1 (en) Coating material composition, kit, coating film, and coating film forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15838433

Country of ref document: EP

Kind code of ref document: A1