WO2016035777A1 - METHOD FOR FORMING ORGAN HAVING THREE-DIMENSIONAL VASCULAR NETWORK in vivo, AND COMPOSITION FOR FORMING ORGAN HAVING THREE-DIMENSIONAL VASCULAR NETWORK - Google Patents
METHOD FOR FORMING ORGAN HAVING THREE-DIMENSIONAL VASCULAR NETWORK in vivo, AND COMPOSITION FOR FORMING ORGAN HAVING THREE-DIMENSIONAL VASCULAR NETWORK Download PDFInfo
- Publication number
- WO2016035777A1 WO2016035777A1 PCT/JP2015/074782 JP2015074782W WO2016035777A1 WO 2016035777 A1 WO2016035777 A1 WO 2016035777A1 JP 2015074782 W JP2015074782 W JP 2015074782W WO 2016035777 A1 WO2016035777 A1 WO 2016035777A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- organ
- primordium
- vascular network
- blood vessel
- cells
- Prior art date
Links
- 210000000056 organ Anatomy 0.000 title claims abstract description 251
- 230000002792 vascular Effects 0.000 title claims abstract description 142
- 238000000034 method Methods 0.000 title claims abstract description 75
- 238000001727 in vivo Methods 0.000 title claims abstract description 27
- 239000000203 mixture Substances 0.000 title claims description 31
- 210000004204 blood vessel Anatomy 0.000 claims abstract description 168
- 238000012258 culturing Methods 0.000 claims abstract description 8
- 210000004027 cell Anatomy 0.000 claims description 103
- 230000001172 regenerating effect Effects 0.000 claims description 39
- 239000000470 constituent Substances 0.000 claims description 31
- 239000002870 angiogenesis inducing agent Substances 0.000 claims description 17
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 claims description 13
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 claims description 13
- 210000000130 stem cell Anatomy 0.000 claims description 11
- 210000004185 liver Anatomy 0.000 claims description 10
- 210000000246 tooth germ Anatomy 0.000 claims description 9
- 239000012528 membrane Substances 0.000 claims description 8
- 210000002901 mesenchymal stem cell Anatomy 0.000 claims description 7
- 230000002124 endocrine Effects 0.000 claims description 6
- 210000003734 kidney Anatomy 0.000 claims description 6
- 238000000338 in vitro Methods 0.000 claims description 5
- 210000003556 vascular endothelial cell Anatomy 0.000 claims description 5
- 102000004887 Transforming Growth Factor beta Human genes 0.000 claims description 4
- 108090001012 Transforming Growth Factor beta Proteins 0.000 claims description 4
- 238000000502 dialysis Methods 0.000 claims description 4
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 claims description 4
- 210000003780 hair follicle Anatomy 0.000 claims description 3
- -1 PDGF Proteins 0.000 claims description 2
- 210000004504 adult stem cell Anatomy 0.000 claims description 2
- 241001465754 Metazoa Species 0.000 abstract description 23
- 210000001519 tissue Anatomy 0.000 description 50
- 238000002054 transplantation Methods 0.000 description 45
- 230000006870 function Effects 0.000 description 14
- 230000033115 angiogenesis Effects 0.000 description 13
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 12
- 210000003754 fetus Anatomy 0.000 description 12
- 241000699666 Mus <mouse, genus> Species 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 230000002107 myocardial effect Effects 0.000 description 9
- 239000000512 collagen gel Substances 0.000 description 8
- 239000003814 drug Substances 0.000 description 8
- 239000000499 gel Substances 0.000 description 8
- 230000000149 penetrating effect Effects 0.000 description 7
- 101150095323 Adcy10 gene Proteins 0.000 description 6
- 238000010276 construction Methods 0.000 description 6
- 241000700159 Rattus Species 0.000 description 5
- 239000002473 artificial blood Substances 0.000 description 5
- 210000004413 cardiac myocyte Anatomy 0.000 description 5
- 230000001605 fetal effect Effects 0.000 description 5
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 210000002889 endothelial cell Anatomy 0.000 description 4
- 210000003566 hemangioblast Anatomy 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 235000015097 nutrients Nutrition 0.000 description 4
- 230000010412 perfusion Effects 0.000 description 4
- 210000003668 pericyte Anatomy 0.000 description 4
- 210000001778 pluripotent stem cell Anatomy 0.000 description 4
- 238000010186 staining Methods 0.000 description 4
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 3
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 3
- 210000000709 aorta Anatomy 0.000 description 3
- 210000000601 blood cell Anatomy 0.000 description 3
- 230000017531 blood circulation Effects 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 229940126864 fibroblast growth factor Drugs 0.000 description 3
- 210000002216 heart Anatomy 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 238000011580 nude mouse model Methods 0.000 description 3
- 230000035935 pregnancy Effects 0.000 description 3
- 210000003491 skin Anatomy 0.000 description 3
- 208000007204 Brain death Diseases 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 108010037462 Cyclooxygenase 2 Proteins 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 102000003951 Erythropoietin Human genes 0.000 description 2
- 108090000394 Erythropoietin Proteins 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 208000010496 Heart Arrest Diseases 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000595923 Homo sapiens Placenta growth factor Proteins 0.000 description 2
- 241000699660 Mus musculus Species 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 102000011779 Nitric Oxide Synthase Type II Human genes 0.000 description 2
- 108010076864 Nitric Oxide Synthase Type II Proteins 0.000 description 2
- 102100035194 Placenta growth factor Human genes 0.000 description 2
- 102100038280 Prostaglandin G/H synthase 2 Human genes 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 230000004087 circulation Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000012136 culture method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000004043 dyeing Methods 0.000 description 2
- 230000007368 endocrine function Effects 0.000 description 2
- 208000030172 endocrine system disease Diseases 0.000 description 2
- 230000003511 endothelial effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 2
- 229940105423 erythropoietin Drugs 0.000 description 2
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 210000001161 mammalian embryo Anatomy 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 206010033675 panniculitis Diseases 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 230000035790 physiological processes and functions Effects 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000010349 pulsation Effects 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 210000004304 subcutaneous tissue Anatomy 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920001059 synthetic polymer Polymers 0.000 description 2
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 241001103870 Adia Species 0.000 description 1
- 102000009840 Angiopoietins Human genes 0.000 description 1
- 108010009906 Angiopoietins Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- 206010010099 Combined immunodeficiency Diseases 0.000 description 1
- 241000938605 Crocodylia Species 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 208000002720 Malnutrition Diseases 0.000 description 1
- 102000005741 Metalloproteases Human genes 0.000 description 1
- 108010006035 Metalloproteases Proteins 0.000 description 1
- 206010029113 Neovascularisation Diseases 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- 102000001938 Plasminogen Activators Human genes 0.000 description 1
- 108010001014 Plasminogen Activators Proteins 0.000 description 1
- 102100024616 Platelet endothelial cell adhesion molecule Human genes 0.000 description 1
- 102100033237 Pro-epidermal growth factor Human genes 0.000 description 1
- 101100215490 Rattus norvegicus Adcy10 gene Proteins 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000008790 VE-cadherin Human genes 0.000 description 1
- 208000032594 Vascular Remodeling Diseases 0.000 description 1
- SMEGJBVQLJJKKX-HOTMZDKISA-N [(2R,3S,4S,5R,6R)-5-acetyloxy-3,4,6-trihydroxyoxan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@@H]1[C@H]([C@@H]([C@H]([C@@H](O1)O)OC(=O)C)O)O SMEGJBVQLJJKKX-HOTMZDKISA-N 0.000 description 1
- 229940081735 acetylcellulose Drugs 0.000 description 1
- 210000004100 adrenal gland Anatomy 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- 238000011316 allogeneic transplantation Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 210000004618 arterial endothelial cell Anatomy 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000005252 bulbus oculi Anatomy 0.000 description 1
- 108010018828 cadherin 5 Proteins 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 238000009172 cell transfer therapy Methods 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 108060002566 ephrin Proteins 0.000 description 1
- 102000012803 ephrin Human genes 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- 210000004700 fetal blood Anatomy 0.000 description 1
- 230000008175 fetal development Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 229960003444 immunosuppressant agent Drugs 0.000 description 1
- 230000001861 immunosuppressant effect Effects 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 1
- 230000000849 parathyroid Effects 0.000 description 1
- 210000004738 parenchymal cell Anatomy 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000001817 pituitary effect Effects 0.000 description 1
- 229940127126 plasminogen activator Drugs 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000000541 pulsatile effect Effects 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 210000000515 tooth Anatomy 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 210000003954 umbilical cord Anatomy 0.000 description 1
- 235000000112 undernutrition Nutrition 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- 210000004509 vascular smooth muscle cell Anatomy 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
- 238000002689 xenotransplantation Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/10—Cells modified by introduction of foreign genetic material
Definitions
- Non-Patent Document 1 discloses that the thickness of the regenerated myocardial tissue changes even when three or more layers of myocardial cell sheets are laminated in the vicinity of a blood vessel that can be accessed surgically in the treatment of a damaged part of the myocardial tissue. On the other hand, a period in which a first layer of cardiomyocyte sheet is transplanted near the blood vessel and the blood vessel enters the cell sheet to form a sufficient vasculature.
- Non-Patent Document 2 when a cardiomyocyte sheet mixed with endothelial cells was prepared to promote angiogenesis in a layered sheet of transplanted cardiomyocytes, formation of a network of endothelial cells was observed in the cell sheet. It has been reported that the transplantation of the cell sheet promoted the regeneration of myocardial tissue as compared to the cell sheet containing only cardiomyocytes.
- the three-dimensional vascular network is indispensable for constructing a regenerative organ, not only in the construction of a two-dimensional vascular network using a sheet (planar (two-dimensional)) sheet called a cell sheet. Has not yet been provided efficiently.
- This report shows the applicability of an autonomously pulsating myocardial tube as an auxiliary heart, and shows the applicability as an auxiliary organ that can replace part of the organ function.
- the technique of the non-patent document is simply intended to give a part of organ function to an existing biological blood vessel, and is a technique for actively constructing a vascularized three-dimensional blood vessel network. Completely different.
- Non-Patent Document 4 describes that human mesenchymal stem cells (hMSC) and human umbilical cord upper vein endothelial cells (HUVEC) are mixed in a collagen gel, and then hMSC-HUVEC-mixed collagen gel is mixed with severe combined immunodeficiency (SCID). It has been reported that blood vessels derived from hMSC and HUVEC were stable and functional in vivo for a long time when transplanted into the calvaria of mice. However, in the technique of the non-patent document, various cells (for example, mesenchymal cells and the like) derived from the recipient (target to be transplanted) are mixed from the surrounding tissue of the transplanted part. In addition, since blood vessel induction from surrounding tissues is not controlled, new blood vessels enter the transplanted cells from any place. Therefore, even if the technique of the said nonpatent literature is used, the formed three-dimensional vascular network cannot be extracted and transplanted.
- SCID severe combined immunodeficiency
- vascular endothelial cells respond to angiogenic factors such as VEGF released from cells that have fallen into hypoxia or undernutrition, resulting in new branching and elongation of blood vessels.
- VEGF vascular endothelial growth factor
- the surrounding area is covered with vascular pericytes (pericytes) to form a newly matured vascular network.
- organs eg, liver and kidney
- organs eg, liver and kidney
- three-dimensional (capillary) blood vessels spread inside the organ converged again into one vein, and moved out of the organ. It is known that it communicates with a blood vessel of a living body by a vascular route to be performed.
- a vascular route to be performed.
- it is not sufficient to produce only the cells and tissues that make up the organ parenchyma, and it is necessary to form a three-dimensional vascular network with the organ parenchyma in a transplantable manner. It is.
- the step (a) (I) before placing the blood vessel so as to penetrate the structure, the organ primordium is included in the structure, or (Ii) After arranging the blood vessel so as to penetrate the structure, the organ primordium is included in the structure.
- the vascular constituent cells include vascular endothelial cells and / or mesenchymal stem cells.
- the organ primordium is selected from the group consisting of hair follicle primordia, tooth germ primordium, liver primordium, kidney primordium, ratchet sac, and endocrine organ primordium.
- the organ primordium is a regenerated organ primordia prepared from ES cells, iPS cells, pluripotent progenitor cells, adult stem cells, or pluripotent cells genetically modified from these.
- the structure is characterized by comprising a dialysis membrane that does not allow passage of cells but allows passage of humoral factors.
- a human is used instead of the non-human animal.
- compositions for forming an organ having a three-dimensional vascular network include: A composition for forming an organ having a three-dimensional vascular network,
- the composition is a substantially sheet-like composition, and can be configured as a structure including one or a plurality of openings and a hollow portion inside.
- One or more blood vessels are disposed through the opening and through the structure;
- the structure is substantially closed except for the opening through which the blood vessel passes;
- an organ primordium is included, and an organ having a three-dimensional vascular network is formed in a hollow portion in the structure. It is related with the composition characterized by the above-mentioned.
- inventions of the present invention relate to organs having a three-dimensional vascular network that can be obtained by any of the methods of the present invention described above.
- inventions of the present invention relate to organs having a three-dimensional vascular network obtained by any of the methods of the present invention described above.
- inventions of the present invention relate to regenerative organs, including organs having a three-dimensional vascular network that can be obtained or obtained by any of the methods of the present invention described above.
- the blood vessel that has converged again into one or a plurality of blood vessels is exported from the inside of the structure, and an organ that mimics the blood vessel structure of a living organ can be formed.
- blood vessels other than one or more initially encapsulated blood vessels cannot penetrate from the surroundings into the structure where a three-dimensional vascular network is formed. Therefore, the number of blood vessels that move into and out of the structure can be controlled.
- the organ having the formed three-dimensional vascular network can be used in vitro while being included in the structure or removed from the structure. Since the blood vessels transferred into and out of the structure are maintained, these blood vessels can be connected to the blood vessels of the same or different species by vascular sutures or the like.
- the formed three-dimensional vascular network can be easily transplanted.
- an organ having a three-dimensional vascular network produced by the method of the present invention is connected to an organ or tissue perfusion culture method and perfusion culture apparatus as described in WO2011 / 093268, for example, before transplantation. You may perform culture
- an organ having a three-dimensional vascular network of a desired size can be formed by changing the size of the hollow part in which the three-dimensional vascular network is formed as desired.
- the shape of the hollow part in which the three-dimensional vascular network is formed is changed as desired, for example, substantially the same or similar to the form of the three-dimensional vascular network possessed by the desired organ or tissue
- An organ having a three-dimensional vascular network having a form can be formed.
- FIG. 1 is a schematic view of a method for producing an organ having a three-dimensional vascular network, which is an embodiment of the present invention.
- the left lobe of the liver primordium obtained from a fetus at 12 days of gestation and a gel containing vascular component cells (HUVEC and hMSC) (upper figure 2), or the left of the liver primordium obtained from a fetus at 12 days of fetus A chamber obtained after 7 days or 14 days after transplanting a gel containing leaves and vascular constituent cells (HUVEC and hMSC) and VEGF (bottom of FIG. 2) into the back of a Balb / c slnu / nu mouse.
- Ratoke sac obtained from a fetus at the age of fetus 18 days and blood vessel constituent cells (HUVEC and hMSC) and VEGF (lower part of FIG. 4) ) Is a graph showing the analysis results of the tissue structure by HE staining of the formation in the chamber obtained 7 days or 14 days after transplanting the gel containing) into the back of the Balb / c slnu / nu mouse. is there.
- the “three-dimensional vascular network” is not two-dimensional (planar) as observed in a three-dimensional cell mass (for example, an organ or tissue in a living body), It means a network structure with three-dimensionally expanded blood vessel pathways.
- organ-type three-dimensional vascular network means a blood vessel of an organ in a living body in which a three-dimensional (capillary) blood vessel spreads from one arterial route and converges again into one venous route. Similar to the network structure, it means a three-dimensional blood vessel network in which blood vessels expand three-dimensionally (capillary) from one blood vessel route and converge again into one blood vessel route.
- an organ-type three-dimensional vascular network is a structure of the present invention, as in the case of a three-dimensional vascular network including a specific blood vessel serving as an entrance / exit of blood flow that passes through an organ in a living body. It may mean a three-dimensional vascular network including specific blood vessels that serve as entrances and exits for blood flow through the interior.
- organ or tissue is not particularly limited as long as it is an organ or tissue intended for orthotopic transplantation or ectopic transplantation.
- organ or tissue intended for orthotopic transplantation or ectopic transplantation.
- transplantation refers to transplanting an organ, tissue, cell, or the like from a donor (providing an organ, tissue, cell, or the like to be transplanted) to a recipient (subject to be transplanted).
- the type is not particularly limited.
- Examples of the type of transplantation include autotransplantation, syngeneic transplantation, allogeneic transplantation, xenotransplantation and the like in classification based on the relationship between the donor and the recipient.
- classification according to the state of the donor includes living transplantation, brain death transplantation, cardiac arrest transplantation, and the like.
- the donor that provides the blood vessel used for the chamber transplant is an organ having a three-dimensional vascular network formed in the living body of the recipient who has undergone the chamber transplant, or a regenerative organ, or a structure including the same. It is understood that the recipient can be provided. It is also understood that a recipient undergoing chamber implantation can also be a donor that provides an organ or regenerative organ having a three-dimensional vascular network formed in vivo or a structure containing the same.
- the regenerative organ is an organ that is manufactured using biotechnology or regenerative medicine technology, and is an organ that imitates part or all of the function or structure of an organ in a living body, or It may mean a tissue having a function of part or all of an organ.
- a regenerating organ can substitute for an in vivo organ, or assist or restore the function of the in vivo organ.
- One embodiment of the present invention is a method of forming an organ having a three-dimensional vascular network in vivo in an animal, comprising the following steps: (A) In the animal, the step of arranging one or more blood vessels so as to penetrate the structure while being connected to the living body, or one or more blood vessels isolated outside the body, Connecting the “isolated one or more blood vessels” to a blood vessel in a living body after being disposed so as to penetrate the structure, wherein the structure is configured to have a hollow portion therein And the structure includes an organ primordium; (B) Inside the structure, the organ having a three-dimensional vascular network in the hollow portion of the structure is obtained by in vivo culturing the blood vessels and the organ primordium contained in the structure. It is a manufacturing method including the step to form. As long as there is no technical contradiction, the present invention may be implemented by appropriately combining any one or more of all aspects described
- chamber transplantation means that a chamber (closed space) is provided, and an organ, tissue or organ to be transplanted is enclosed therein, and the chamber is penetrated by a blood vessel.
- an organ, a tissue, an organ, and the like are transplanted into a transplanted portion so as to come into contact with a living tissue in a recipient (a subject to receive the transplant).
- the organ primordium or the like that is the material of the organ (or organ) to be transplanted is isolated within the structure (that is, isolated in a closed space (chamber)).
- the organ primordium can communicate with living tissue in the recipient only through the blood vessels used to cause the recipient to form a vascular network. Since the blood vessel is configured to penetrate the structure, it is possible to communicate / contact with the organ primordial or the like in a closed space. As a result, the organ primordium that has received nutrient supply from the blood vessels can proliferate without contact with the living tissue in the recipient other than the blood vessels.
- chamber transplantation By using such a chamber transplantation, it is possible to form a blood vessel in a hollow portion provided inside the structure and form an organ having a three-dimensional vascular network.
- chamber implantation (method) will be further described below, and those skilled in the art will understand that all relevant descriptions are one non-limiting aspect of chamber implantation (method).
- an animal that can be used is not limited.
- non-human animals non-human mammals (mouse, rat, dog, cat, rabbit, cow, horse, sheep, goat, pig, monkey, etc.)
- Non-mammals fish, reptiles, amphibians, birds, etc.
- an organ having a three-dimensional vascular network or a regenerative organ including the three-dimensional vascular network may be formed by culturing in vivo using any animal.
- an organ having a three-dimensional vascular network to be formed, a regenerative organ including the three-dimensional vascular network, or a structure including the same is orthotopically or ectopically with respect to any animal. It may be used for transplantation (autologous transplant, syngeneic transplant, allogeneic transplant, xenotransplant, artificial transplant, etc.).
- the animal used in the present invention is immunodeficient in order to be compatible with ectopic transplantation, or the immune response is temporarily dysfunctional using an immunosuppressant or the like.
- the blood vessel used by penetrating the structure for the formation of the three-dimensional vascular network is: It is preferably a blood vessel derived from an animal that undergoes transplantation of the formed “organ having a three-dimensional vascular network, or a regenerative organ including the three-dimensional vascular network, or a structure including the same”.
- one or more blood vessels” used to form a three-dimensional blood vessel network may be one or more blood vessels that are non-branched or branched.
- the blood vessel may be derived from the same or different species of animals that form an organ having a three-dimensional vascular network, and is preferably different.
- the blood vessel may be a blood vessel extracted from a mouse or a human, respectively.
- the “extracted blood vessel” may be derived from a human transplant donor who died due to brain death or cardiac arrest.
- the blood vessel may be an artificial blood vessel prepared by differentiation from ES cells, iPS cells, pluripotent progenitor cells, or the like, which are pluripotent stem cells.
- An “iPS cell” is a pluripotent stem cell similar to an ES cell prepared by introducing, for example, four genes encoding transcription factors into an adult cell (Cell., Vol 126, Issue 4, 25 August 2006, pp. 663-676).
- iPS cells that can be used in the present invention may be iPS cells produced by any method as long as they have iPS cell properties. Since iPS cells can be prepared from somatic cells derived from patients, iPS cells are preferred as cells capable of regenerating transplantable tissues and organs with little risk of ethical problems and immune rejection.
- pluripotent stem cells and pluripotent progenitor cells are not limited, and for example, cells derived from humans, mice, rats, pigs, and monkeys can be used.
- the blood vessel may contain a material not derived from a living body, for example, a synthetic polymer material such as nylon or Teflon, or may be used in combination with an artificial blood vessel made of the synthetic polymer material.
- the “structure” that penetrates “one or more blood vessels” has a hollow portion (closed space) inside thereof, the blood vessel penetrates the hollow portion, and the organ source in the hollow portion.
- Any configuration may be used as long as a configuration including a group or the like can be adopted.
- the said structure does not permeate
- the structure is formed from, for example, the “substantially sheet-like composition” in the present invention, or formed from the substantially sheet-like composition (that is, the substantially sheet-like composition is molded in advance, For example, it may be a three-dimensional form such as a bag.
- the structure in the present invention is not limited, but is preferably formed from a material that can be easily molded.
- the structure in the present invention is a blood vessel or an organ source contained in the structure. It is preferably non-adhesive with the group or the like or can be easily separated.
- a material that can be expanded and contracted or deformed may be used.
- an organ having a three-dimensional vascular network having a desired size or a regenerated organ can be formed in the hollow part.
- the shape of the hollow part provided in the structure of the present invention for example, the form of an organ or tissue intended for transplantation or the three-dimensional vascular network that they have is substantially the same or similar.
- a reconstructed organ having a three-dimensional vascular network having the above-described form can be formed in the hollow portion.
- the structure in the present invention may be disposed in the living body so that a part of the structure protrudes (protrudes) out of the living body of the animal receiving the chamber transplantation.
- the “structure” may include an organ primordium or the like in advance inside the structure before penetrating the blood vessel or before being placed in a living body.
- the “structure” may include an organ primordia or the like inside the structure after penetrating the blood vessel or after being placed in a living body.
- the angiogenic factor is not particularly limited as long as it is a factor involved in angiogenesis or angiogenesis.
- the angiogenic factor include, but are not limited to, fibroblast growth factor (FGF) (eg, b-FGF), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), angiopoietin, platelets Derived growth factor (PDGF), transforming growth factor- ⁇ (TGF- ⁇ ), matrix metalloprotease (MMP), VE-cadherin (CD144), CD31, ephrin, plasminogen activator, inducible nitric oxide synthase (INOS), cyclooxygenase-2 (COX-2), prostaglandins, placental growth factor (PIGF).
- FGF fibroblast growth factor
- EGF epidermal growth factor
- VEGF vascular endothelial growth factor
- PDGF vascular endothelial growth factor
- TGF- ⁇ transforming growth
- the organ primordium refers to a region of the embryo or the structure of the embryo that is determined to occur in a specific organ as the developmental stage proceeds in the living body, and may be simply referred to as “primordium”. . Almost all organs in a living body are generated from organ primordia derived from epithelial stem cells and mesenchymal stem cells by a fetal development program, and develop into a predetermined position and a predetermined number. The organ primordium produces a blood vessel producing factor in the course of development, and induces blood vessels inside or around the organ primordium. By culturing the organ primordia in the structure of the present invention, An organ having a three-dimensional vascular structure can be produced.
- the organ primordium used in the present invention may be fetal or may be an organ prima artificially derived from ES cells or iPS cells (may be called regenerative organ primordia).
- organ primordium used in the method of the present invention is not particularly limited.
- an organ having a three-dimensional vascular network formed by the method of the present invention may be an organ having a complete structure and function similar to an organ in a living body, and a part of the structure and function of the organ in the living body. It may be an organ.
- the method of the present invention when the method of the present invention is performed using an organ primordium of an endocrine organ, the formed organ has at least an endocrine function even if it does not have a structure and function that can completely replace the endocrine organ in the living body. If it has, it can be suitably used for the treatment of endocrine diseases, for example.
- the kidney functions not only as a urinary organ but also as an endocrine organ that secretes erythropoietin.
- the formed organ may have at least an endocrine function (for example, an erythropoietin secretion function) even if it does not have a structure and function that can completely replace the kidney in the living body.
- an endocrine function for example, an erythropoietin secretion function
- the type, shape, size, number of cells of vascular constituent cells contained in the structure the size of the organ having the desired three-dimensional vascular network, the size of the regenerated organ, etc. Depending on the situation, those skilled in the art can appropriately determine.
- “place one or more blood vessels so as to penetrate the structure while being connected to the living body” means that when the blood vessel is placed in the structure, the blood vessel is the recipient ( It may mean that the structure is arranged while being physically connected to the living body without being separated (isolated) from the living body. It is preferable that the blood vessel is enclosed with the structure in such a manner that the blood vessel is entirely or partially detached from the organ or tissue of the living body while being connected to the living body and penetrates the structure.
- the blood vessel to be exfoliated is preferably a blood vessel or an artificial blood vessel derived from the same or different animal previously transplanted to the recipient, and more preferably a blood vessel derived from a different animal.
- a blood vessel or an artificial blood vessel derived from the same or different animal is previously transplanted to the recipient, it is preferable to replace the previously prepared blood vessel with the recipient's existing blood vessel in the recipient who is preferably an immunodeficient animal.
- it is preferably transplanted as a shunt (to create a state in which blood flows through a different route from the blood vessel through which blood originally passes), and the structure is penetrated through the transplanted blood vessel.
- the transplanted blood vessel is a blood vessel derived from a heterogeneous animal, an organ having a three-dimensional blood vessel network to be formed, a regenerative organ containing the three-dimensional blood vessel network, or a structure containing the same is referred to as the “heterologous animal”. It is preferable to transplant (in such a mode that the transplanted blood vessel is returned to the living body again).
- the blood vessel In the process of penetrating the blood vessel into the structure, for example, the blood vessel is arranged so as to penetrate the structure in vitro, and then the blood vessel penetrating the structure is intended for transplantation. It may be connected to a blood vessel in a living body by vascular suture or the like at a place. In such a case, organ primordia and vascular constituent cells may be included in the structure before the blood vessel penetrating the structure is connected to the blood vessel in the living body. Or after connecting the said blood vessel which penetrated the said structure to the blood vessel in a biological body, you may include an organ primordia and a blood vessel constituent cell.
- the organ primordium and blood vessel constituent cells contained in the structure and the blood vessel penetrating the structure do not contact each other as long as nutrient supply or the like is performed from the blood vessels to the organ primordia or blood vessel constituent cells. It may be, but it is preferable to touch.
- the phrase “one or more blood vessels penetrate the structure” may mean that the hollow portion provided in the structure is moved in and out so that the blood vessel penetrates. There may be one or a plurality of portions where the blood vessel enters and exits the structure, that is, the opening provided in the structure.
- a plurality of (for example, two) branched blood vessels are transferred to the hollow portion of the structure through a number of openings corresponding to the number of the branched blood vessels provided in the structure, and the transferred blood vessels
- the blood vessels branched into a plurality which may be the same as or different from each other, are transferred from the hollow portion of the structure through an opening (export opening) different from the transferred opening (transfer opening). May be.
- one or a plurality of blood vessels can be configured to move in and out of the hollow portion provided in the structure through the same opening.
- one unbranched blood vessel may be configured to import into one opening, penetrate the hollow portion of the structure, and exit from another opening.
- an organ having an organ-type three-dimensional vascular network can be constructed in the hollow portion of the structure.
- the structure is substantially removed except for the opening through which the blood vessel passes. It is desirable to close it.
- substantially close means that the structure is structured such that cells and blood vessels do not invade from the outside, and the organ primordia and blood vessel constituent cells are formed from the inside to the outside of the structure. This means that the neovascularization formed in the hollow portion of the structure does not leak out and does not leak out.
- the organ primordium, blood vessel constituent cells, and the like contained in the structure may be included in a gel substance or the like so as not to leak from the structure to the outside. Alternatively, it may be embedded or adhered inside the structure.
- “culturing in vivo” is not limited, but may mean growing a recipient who has undergone chamber transplantation.
- the in vivo culture period is the size of the structure used for chamber transplantation; the type of cells contained in the structure, the number of cells and the cell growth rate; an organ having a three-dimensional vascular network to be formed or a regenerative organ Those skilled in the art can appropriately determine the size according to the size.
- the blood vessel constituent cell is not particularly limited as long as it is a cell constituting a blood vessel.
- Angiogenesis can be stabilized by combining vascular constituent cells with the organ primordia and including them in the structure, followed by in vivo culture.
- Vascular component cells include, but are not limited to, vascular endothelial progenitor cells such as blood cell hemangioblasts and hemangioblasts; vascular endothelial cells (eg, venous endothelial cells and arterial endothelial cells); vascular stem cells; vascular smooth muscle cells and blood vessels Vascular wall cells such as pericytes (pericytes); mesenchymal stem cells; fibroblasts; blood cells; and other cells that assist in angiogenesis.
- vascular endothelial progenitor cells such as blood cell hemangioblasts and hemangioblasts
- vascular endothelial cells eg, venous endothelial cells and arterial endothelial cells
- the mesenchymal stem cells can efficiently stabilize blood vessels as progenitor cells of vascularized blood vessels and mural cells.
- the vascular component cells included with the organ primordium preferably comprise vascular endothelial cells and / or mesenchymal stem cells.
- the vascular constituent cells used in the present invention may be derived from living organisms, and are vascular constituent cells produced by differentiation from ES cells, iPS cells, pluripotent progenitor cells, etc., which are pluripotent stem cells. Also good.
- Organ primordia and vascular constituent cells are the nature, type, and growth stability of organ primordia; the efficiency of angiogenesis; the mode of the three-dimensional vascular network that is formed; the function of the cells that form the network with the three-dimensional vascular network Depending on the properties and the like, those skilled in the art can appropriately include them in the structure at a predetermined mixing ratio.
- the structure may further contain an angiogenic factor. That is, in addition to the angiogenic factor produced from the organ primordia, an angiogenic factor may be additionally injected into the hollow part of the structure.
- the organ having the three-dimensional vascular network formed by the step (b) in the present invention can function as a regenerative organ having or imitating all or part of the function of the organ or tissue intended for transplantation or the like. Let's be done.
- the formed regenerative organ may be used after being removed from the living body and taken out (removed) from the inside of the structure or included in the structure.
- a regenerated organ removed from a living body may be used for orthotopic or ectopic transplantation.
- the regenerative organ moves into and out of the structure that was originally used to form the three-dimensional vascular network to replace, reinforce, or restore the target organ or tissue or part thereof.
- the vascularized blood vessel and the blood vessel of the living body to be transplanted may be connected to the living body by, for example, vascular stitching.
- organ primordia vascular constituent cells
- factors such as angiogenic factors and drugs
- the vascular constituent cells may be included in the structure simultaneously with the organ primordium, or may be included in the structure before or after the organ primordium.
- the additional angiogenic factor is included when the organ primordia or vascular constituent cells are included in the structure. May be injected at the same time, or an additional angiogenic factor may be injected at a different time from when organ primordia or vascular constituent cells are included in the structure.
- a living body that has been excised using, for example, an artificial blood vessel from the viewpoint of life maintenance. It is preferable to connect blood vessels in the body.
- the present invention can be formed (obtainable) by the “method of forming an organ having a three-dimensional vascular network in vivo in an animal” of the present invention. Or a regenerative organ or a structure containing the same.
- the organ or regenerative organ having a three-dimensional vascular network that can be formed (obtainable) or a structure including the same is limited to that manufactured by the method specifically exemplified in this specification. Of course, those manufactured by any forming method included in the concept of the present invention are also targeted.
- the present invention is a three-dimensional shape formed (obtained) by the “method for forming an organ having a three-dimensional vascular network in vivo in an animal” of the present invention.
- the formed organ or regenerative organ having a three-dimensional vascular network or a structure containing the same may be used for transplantation after being removed from a living body.
- an organ having a three-dimensional vascular network produced by the method of the present invention is connected to an organ or tissue perfusion culture method and perfusion culture apparatus as described in WO2011 / 093268, for example, before transplantation. You may perform culture
- the transplantation of an organ having a three-dimensional vascular network to be formed or a regenerative organ or a structure including the same is performed by setting the temperature of the organ having a three-dimensional vascular network to be formed or a structure including the organ to 4. It can be carried out while maintaining a state of from 35 ° C. to 37 ° C., preferably carried out while maintaining a state of from 15 ° C. to 33 ° C., and most preferably carried out while maintaining a state of from 20 ° C. to 25 ° C.
- composition for forming a three-dimensional vascular network comprising:
- the composition is a substantially sheet-like composition, and can be configured as a structure including one or a plurality of openings and a hollow portion inside.
- One or more blood vessels are disposed through the opening and through the structure;
- the structure is substantially closed except for the opening through which the blood vessel passes;
- an organ primordium is included, and an organ having a three-dimensional vascular network is formed in a hollow portion in the structure. It is characterized by that.
- the present invention may be implemented by appropriately combining any one or more of all aspects described in this specification.
- a substantially sheet-like composition that is, a substantially sheet-like composition that can be used to form (manufacture) an organ having a three-dimensional vascular network of the present invention finally encloses (encloses) the blood vessel.
- the substantially sheet-like composition may be molded in advance so as to have a hollow portion inside, or when arranged so as to enclose the blood vessel, it is molded so as to have a hollow portion inside. Also good.
- a structure in which the inner peripheries of two substantially sheet-shaped compositions that are overlapped are finally fixed over one circumference so as to form a bag (closed space), and a hollow portion is provided inside. May be provided.
- one substantially sheet-shaped composition is folded in half, and the inner peripheries that come into contact with each other, for example, are wrapped in the skin of dumplings (a kind of Chinese or Japanese food), and there is a space inside It may be fixed as possible.
- one substantially sheet-shaped composition is folded, or a plurality of substantially sheet-shaped compositions are joined together to have a hollow portion inside, for example, a substantially columnar body (including a cylinder and a prism (including a rectangular parallelepiped and a cube). Etc.), a substantially conical shape (such as a cone or a pyramid), or a substantially spherical shape.
- the substantially sheet-like composition does not permeate cells contained in the structure and cells derived from the recipient tissue existing outside the structure (cell-impermeable material, membrane, film, etc.) Any material may be used as long as it is. Moreover, it is preferable that the said substantially sheet-like composition is comprised with a biocompatible material.
- the substantially sheet-like composition may be made of a material that can be stretched or deformed.
- the substantially sheet-shaped composition does not pass cells contained in the structure and cells derived from the recipient tissue existing outside the structure, but humoral factors (water, cytokines, etc.) ) May be (freely) allowed to pass through (eg, a semipermeable membrane / porous membrane such as a dialysis membrane).
- the material of the substantially sheet-shaped composition is not limited, but may be, for example, regenerated cellulose (cellophane), acetylcellulose, polyacrylonitrile, Teflon, polyester polymer alloy, or polysulfone.
- the substantially sheet-like composition when it is intended to use an organ having a three-dimensional vascular network formed or a regenerative organ by removing it from the structure, contains blood vessels and cells contained in the structure. It is preferable that it is non-adhesive or can be easily separated. Moreover, it is preferable that the said substantially sheet-like composition is transparent or semi-transparent so that the inside of a structure can be confirmed easily.
- the terms “comprising” or “including” include the items (members, steps, elements, numbers, etc.) described, unless the context clearly requires different understanding. It does not exclude the presence of other matters (members, steps, elements, numbers, etc.). When it is possible to exclude the presence of other items (members, steps, elements, numbers, etc.), the term “consist of” may be used. The term “contains” or “includes” encompasses the concept of the term “consisting of”.
- first, second, etc. are used to represent various elements, it is understood that these elements should not be limited by those terms. These terms are only used to distinguish one element from another, for example, the first element is referred to as the second element, and similarly, the second element is the first element. Can be made without departing from the scope of the present invention.
- any numerical value used to indicate the component content, numerical value range, etc. is interpreted as including the meaning of the term “about” unless otherwise specified.
- organ primordia and vascular constituent cells release abundant angiogenic factors.
- chamber transplantation using a plurality of types of fetal organ primordia was performed.
- the organ primordium immediately after transplantation is maintained only by substance supply by natural diffusion.
- the present inventors have found that it is preferable to place the organ primordium close to the blood vessel and reduce the volume of the suspension of vascular constituent cells relative to the organ primordia.
- tissue can be used for chamber transplantation. The present inventors have found that can be used.
- HUVEC Longza, Basel, Switzerland
- hMSC Longza, Basel, Switzerland
- HUVEC 8 ⁇ 10 5 cells
- hMSC 2 ⁇ 10 5 cells
- BD Falcon 50 ml tube
- an additive-free DMEM medium was added and centrifugation was repeated twice to wash the cells.
- the cell suspension was transferred to a 1.5 ml tube (eppendorf, Tokyo, Japan), centrifuged again, and all the supernatant was removed and tapped. Then, it was suspended in collagen gel type-IA (Nitta Gelatin, Osaka, Japan) and used for chamber transplantation.
- collagen gel type-IA Nita Gelatin, Osaka, Japan
- a subcutaneous tissue including blood vessels in the dorsal skin of a nude mouse was partially exfoliated, and then a dialysis membrane with a molecular weight of 50 kD cut-off using Aron Alpha A (Sankyo, Tokyo, Japan) on one exfoliated blood vessel part ( (Adia, Tokyo, Japan).
- the organ primordium so as to directly touch the blood vessel in the peeled subcutaneous tissue from the unencapsulated part provided in the upper part of the chamber
- the already prepared HUVEC and hMSC cell suspension-containing gel was prepared. It added so that it might cover from a top with respect to a base.
- organ primordia and vascular constituent cells used for chamber transplantation are as follows: (1) The left lobe of the liver primordium obtained from a fetal mouse of day 12; collagen gel type-IA supplemented with vascular constituent cells (HUVEC and hMSC); (2) The left lobe of the liver primordium obtained from a fetus at 12 days of gestation; collagen gel type-IA supplemented with vascular constituent cells (HUVEC and hMSC) and VEGF; (3) Collagen gel type-IA supplemented with a tooth germ obtained from a 14-day-old mouse fetus and VEGF; (4) Collagen gel type-IA supplemented with ratoke sac obtained from a fetus at 18 days of age and VEGF; (5) Collagen gel type-IA supplemented with ratchet sac obtained from a
- tissue analysis after organ transplantation of organ primordia (and vascular constituent cells)>
- nude mice transplanted with each organ primorum excluding the above-mentioned tooth germ were bred up to 7th or 14th day after transplantation.
- nude mice transplanted with tooth germs were grown until the third or seventh day after transplantation.
- Each mouse was then sacrificed and the formation in the chamber was formalin fixed.
- 5 ⁇ m tissue slices were prepared and stained with hematoxylin and eosin (HE).
- HE staining was performed by staining with 1% eosin solution (Mudo Chemical Co., Tokyo, Japan) after staining with Mayer's hematoxylin (Wako, Osaka, Japan) by a conventional method.
- eosin solution Modo Chemical Co., Tokyo, Japan
- Mayer's hematoxylin Mayer's hematoxylin
- the method for forming an organ having a three-dimensional vascular network of the present invention in vivo can be advantageously used in the field of regenerative medicine, application to a screening system for evaluating the effects of drugs, and the like.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Environmental Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Dermatology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Epidemiology (AREA)
- Animal Husbandry (AREA)
- Transplantation (AREA)
- Cell Biology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Microbiology (AREA)
- Veterinary Medicine (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Public Health (AREA)
- Materials For Medical Uses (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
[Problem] To provide a technique for forming an organ having a three-dimensional vascular network. [Solution] A method for forming an organ having a three-dimensional vascular network in a nonhuman animal in vivo, the method including the following steps: (a) a step for arranging, in a nonhuman animal, one or a plurality of blood vessels so as to pass through a structure, the blood vessels remaining connected in a living body, or a step for arranging one or a plurality of isolated blood vessels so as to pass through a structure outside the living body, then connecting the "one or a plurality of isolated blood vessels" to a blood vessel in the living body, the structure being configured so that a hollow section is provided in the inside thereof, and an organ primordium being included inside the structure; and (b) a step for culturing the blood vessels and the organ primordium included inside the structure in vivo inside the structure, and thereby forming an organ having a three-dimensional vascular network in the hollow section inside the structure.
Description
本発明は、三次元血管網を有する器官をin vivoで形成させる方法に関する。また、本発明は、三次元血管網を有する器官の形成用組成物にも関する。
The present invention relates to a method for forming an organ having a three-dimensional vascular network in vivo. The present invention also relates to a composition for forming an organ having a three-dimensional vascular network.
現在の再生医療では、幹細胞を移植して、移植先の臓器又は組織の生理機能を回復させる、「細胞移入療法」が実用化されている。しかしながら、次世代の再生医療として、機能不全に陥った臓器を、再生医学を用いて人為的に構築した、再生臓器に置き換えることにより、生理機能を回復させる、いわゆる「臓器置換再生医療」の実現が望まれている。
In current regenerative medicine, “cell transfer therapy” in which stem cells are transplanted and the physiological function of the organ or tissue of the transplant destination is restored has been put into practical use. However, as a next-generation regenerative medicine, the realization of so-called "organ replacement regenerative medicine" that restores physiological functions by replacing dysfunctional organs with regenerative organs artificially constructed using regenerative medicine. Is desired.
生体内の臓器は、高密度な細胞の三次元的な集合体である。その内部には、三次元的な(毛細)血管網が張り巡らされており、この血管網を介した、ガス交換、栄養供給、老廃物の代謝等により、臓器は、高密度な細胞集団であるにも関わらず、維持され、かつ機能している。
An organ in a living body is a three-dimensional collection of high-density cells. Inside, a three-dimensional (capillary) vascular network is stretched, and the organ is a high-density cell population through gas exchange, nutrient supply, waste metabolism, etc. through this vascular network. Despite being maintained and functioning.
したがって、人為的に、移植可能な再生臓器を構築する際には、生体内の臓器が有する三次元血管網と同様の三次元血管網が必要不可欠となる。
Therefore, when artificially constructing a transplantable regenerative organ, a three-dimensional vascular network similar to the three-dimensional vascular network of an organ in a living body is indispensable.
これまでに、生体内損傷部位の再生のために、細胞シートを積層化(多層化)して移植させる技術が報告されている。非特許文献1は、心筋組織の損傷部位の治療において、外科的にアクセスが可能な血管の近くに、3層以上の心筋細胞シートの積層を行っても、再生される心筋組織の厚みは変化しなかったことを報告する一方で、前記血管の近くに、第1の1層の心筋細胞シートを移植し、前記血管が当該細胞シート内へ侵入して十分な血管系が形成される期間を待ってから、第2の1層の細胞シートを第1の細胞シート上に移植するといった態様で、血管新生の期間を置きながら、細胞シートの積層を複数回行うことにより、従来よりも厚い心筋組織を構築することができたことを報告している。しかしながら、当該非特許文献の技術では、損傷組織の回復に、複数回の手術が必要となり、再生臓器の構築に不可欠な三次元血管網の構築の速度や損傷組織の再生の速度を促進することはできない。
So far, a technique has been reported in which cell sheets are laminated (multi-layered) and transplanted in order to regenerate a damaged part in a living body. Non-Patent Document 1 discloses that the thickness of the regenerated myocardial tissue changes even when three or more layers of myocardial cell sheets are laminated in the vicinity of a blood vessel that can be accessed surgically in the treatment of a damaged part of the myocardial tissue. On the other hand, a period in which a first layer of cardiomyocyte sheet is transplanted near the blood vessel and the blood vessel enters the cell sheet to form a sufficient vasculature. After waiting, the second one-layer cell sheet is transplanted onto the first cell sheet, and the cell sheets are stacked several times while angiogenesis period is provided. It reports that it was able to build an organization. However, the technique of the non-patent literature requires multiple operations to recover damaged tissue, and accelerates the speed of construction of a three-dimensional vascular network and the speed of regeneration of damaged tissue, which are indispensable for the construction of a regenerated organ. I can't.
非特許文献2は、移植した心筋細胞の層状シート内の血管新生を促進するために、内皮細胞を混入させた心筋細胞シートを作製したところ、当該細胞シート内で内皮細胞のネットワークの形成が認められたこと、当該細胞シートを移植することで、心筋細胞のみの細胞シートと比較して、心筋組織の再生が促進されたことを報告している。しかしながら、当該非特許文献の技術では、細胞シートという、平面(2次元的な)構造のシートを用いた、2次元的な血管網構築に留まり、再生臓器の構築に不可欠な、三次元血管網の効率的な提供には至っていない。
In Non-Patent Document 2, when a cardiomyocyte sheet mixed with endothelial cells was prepared to promote angiogenesis in a layered sheet of transplanted cardiomyocytes, formation of a network of endothelial cells was observed in the cell sheet. It has been reported that the transplantation of the cell sheet promoted the regeneration of myocardial tissue as compared to the cell sheet containing only cardiomyocytes. However, in the technology of the non-patent document, the three-dimensional vascular network is indispensable for constructing a regenerative organ, not only in the construction of a two-dimensional vascular network using a sheet (planar (two-dimensional)) sheet called a cell sheet. Has not yet been provided efficiently.
また、非特許文献3は、心筋細胞シートを、ラットから切除した大動脈外周に巻きつけることで、三次元的な管状の心筋組織をin vitroで構築し、次いで、異なるラット個体の大動脈との置換移植を行ったところ、ホスト心臓の自律拍動とは異なる、移植心筋組織独自の自律拍動が確認できたこと(自律拍動する心筋チューブ(pulsatile myocardial tubes)が形成できたこと)を報告している。かかる報告は、自律拍動する心筋チューブの、補助心臓としての利用可能性を示すものであり、臓器機能の一部を代替できる、補助臓器としての利用可能性を示すものである。しかしながら、当該非特許文献の技術は、単に、既存の生体血管に臓器機能の一部を付与することを意図したものであり、血管新生させた三次元血管網を積極的に構築する技術とは全く異なる。
Non-Patent Document 3 discloses that a three-dimensional tubular myocardial tissue is constructed in vitro by wrapping a cardiomyocyte sheet around an aorta outer periphery excised from a rat, and then replacing the aorta of a different rat individual with the aorta. After transplantation, we reported that the transplanted myocardial tissue had its own autonomous pulsation that was different from the autonomous pulsation of the host heart (i.e., the formation of myocardial tubes (pulsatile myocardial tubes) that autonomously pulsated). ing. This report shows the applicability of an autonomously pulsating myocardial tube as an auxiliary heart, and shows the applicability as an auxiliary organ that can replace part of the organ function. However, the technique of the non-patent document is simply intended to give a part of organ function to an existing biological blood vessel, and is a technique for actively constructing a vascularized three-dimensional blood vessel network. Completely different.
非特許文献4は、ヒト間葉系幹細胞(hMSC)とヒト臍帯上位脈内皮細胞(HUVEC)をコラーゲンゲルに混入させ、次いで、hMSC‐HUVEC混入コラーゲンゲルを、重症複合型免疫不全症(SCID)マウスの頭蓋冠に移植したところ、hMSCとHUVECに由来する血管が、長期間、in vivoで安定し、かつ、機能的であったことを報告している。しかしながら、当該非特許文献の技術では、レシピエント(移植を受ける対象)由来の様々な細胞(例えば、間葉系細胞等)が、移植部分の周辺組織から混入する。また、周辺組織からの血管誘導を制御していないので、あらゆる所から新生血管が移植細胞中に侵入する。したがって、当該非特許文献の技術を用いても、形成される三次元血管網を摘出及び移植することはできない。
Non-Patent Document 4 describes that human mesenchymal stem cells (hMSC) and human umbilical cord upper vein endothelial cells (HUVEC) are mixed in a collagen gel, and then hMSC-HUVEC-mixed collagen gel is mixed with severe combined immunodeficiency (SCID). It has been reported that blood vessels derived from hMSC and HUVEC were stable and functional in vivo for a long time when transplanted into the calvaria of mice. However, in the technique of the non-patent document, various cells (for example, mesenchymal cells and the like) derived from the recipient (target to be transplanted) are mixed from the surrounding tissue of the transplanted part. In addition, since blood vessel induction from surrounding tissues is not controlled, new blood vessels enter the transplanted cells from any place. Therefore, even if the technique of the said nonpatent literature is used, the formed three-dimensional vascular network cannot be extracted and transplanted.
このように、従来技術では、移植可能な再生臓器構築に必要な、三次元血管網の構築が十分ではない。このような背景から、再生臓器構築に向けて、臓器の実質細胞(主要な機能を担う細胞)を維持し、かつ、機能させるための、三次元血管網の構築技術の確立が望まれている。
Thus, in the conventional technique, the construction of the three-dimensional vascular network necessary for constructing a transplantable regenerative organ is not sufficient. From such a background, establishment of a three-dimensional vascular network construction technique is desired for maintaining and functioning organ parenchymal cells (cells responsible for major functions) for the construction of regenerative organs. .
本発明は、移植可能な再生臓器構築に必要となる、三次元血管網を有する器官の形成技術を提供することを目的とする。
An object of the present invention is to provide a technique for forming an organ having a three-dimensional vascular network, which is necessary for constructing a transplantable regenerative organ.
生体内における血管形成は、胎児期の血管発生と、成熟血管から新たな血管が分岐する、血管新生に大別される。
胎児期の血管の発生は、中胚葉由来の血球血管芽細胞や血管芽細胞などの血管内皮前駆細胞が集積して管腔構造を作り、一様な血管径の血管が集合した原始血管叢の形成(脈管形成)から始まる。その後、血管新生、動静脈分化、及び、血管の成熟化といった、血管リモデリングにより、機能的な血管網が形成される。
一方、成熟血管からの血管新生は、腫瘍細胞や創傷治癒などの限られた場合にのみ生じる。具体的には、低酸素や低栄養状態に陥った細胞から放出される、VEGFなどの血管新生因子に、既存の血管内皮細胞が応答することで、新たに血管の分岐・伸長が生じ、さらにその周囲を、血管周皮細胞(ぺリサイト)が被覆することで、新たに成熟した血管網が形成される。 Angiogenesis in a living body is roughly classified into angiogenesis in which fetal blood vessel generation and new blood vessels branch from mature blood vessels.
The development of blood vessels in the fetal period is the accumulation of blood vessel hemangioblasts and vascular endothelial progenitor cells such as hemangioblasts to form a luminal structure, and the vascular plexus is a collection of blood vessels of uniform vascular diameter. Begins with formation (angiogenesis). A functional vascular network is then formed by vascular remodeling, such as angiogenesis, arteriovenous differentiation, and vascular maturation.
On the other hand, angiogenesis from mature blood vessels occurs only in limited cases such as tumor cells and wound healing. Specifically, existing vascular endothelial cells respond to angiogenic factors such as VEGF released from cells that have fallen into hypoxia or undernutrition, resulting in new branching and elongation of blood vessels. The surrounding area is covered with vascular pericytes (pericytes) to form a newly matured vascular network.
胎児期の血管の発生は、中胚葉由来の血球血管芽細胞や血管芽細胞などの血管内皮前駆細胞が集積して管腔構造を作り、一様な血管径の血管が集合した原始血管叢の形成(脈管形成)から始まる。その後、血管新生、動静脈分化、及び、血管の成熟化といった、血管リモデリングにより、機能的な血管網が形成される。
一方、成熟血管からの血管新生は、腫瘍細胞や創傷治癒などの限られた場合にのみ生じる。具体的には、低酸素や低栄養状態に陥った細胞から放出される、VEGFなどの血管新生因子に、既存の血管内皮細胞が応答することで、新たに血管の分岐・伸長が生じ、さらにその周囲を、血管周皮細胞(ぺリサイト)が被覆することで、新たに成熟した血管網が形成される。 Angiogenesis in a living body is roughly classified into angiogenesis in which fetal blood vessel generation and new blood vessels branch from mature blood vessels.
The development of blood vessels in the fetal period is the accumulation of blood vessel hemangioblasts and vascular endothelial progenitor cells such as hemangioblasts to form a luminal structure, and the vascular plexus is a collection of blood vessels of uniform vascular diameter. Begins with formation (angiogenesis). A functional vascular network is then formed by vascular remodeling, such as angiogenesis, arteriovenous differentiation, and vascular maturation.
On the other hand, angiogenesis from mature blood vessels occurs only in limited cases such as tumor cells and wound healing. Specifically, existing vascular endothelial cells respond to angiogenic factors such as VEGF released from cells that have fallen into hypoxia or undernutrition, resulting in new branching and elongation of blood vessels. The surrounding area is covered with vascular pericytes (pericytes) to form a newly matured vascular network.
また、臓器(例えば、肝臓や腎臓)は、1つの動脈が臓器内に移入し、臓器の内部で三次元的に(毛細)血管が広がり、1つの静脈へと再び収束して臓器外に移出する血管経路により、生体の血管と連絡していることが知られている。すなわち、移植可能な臓器の人工的な製造には、臓器実質を構成する細胞・組織を製造するのみでは足りず、臓器実質とともに、移植可能な態様で三次元血管網が形成されることが必要である。
In addition, organs (eg, liver and kidney) have one artery transferred into the organ, three-dimensional (capillary) blood vessels spread inside the organ, converged again into one vein, and moved out of the organ. It is known that it communicates with a blood vessel of a living body by a vascular route to be performed. In other words, for the artificial production of transplantable organs, it is not sufficient to produce only the cells and tissues that make up the organ parenchyma, and it is necessary to form a three-dimensional vascular network with the organ parenchyma in a transplantable manner. It is.
本発明者らは、上記課題を解決するために検討を重ねた結果、胎児性の器官原基が、正常な発育を経て臓器実質を構成する細胞・組織へと発達するという特徴だけではなく、発育の過程で血管新生因子を産生して、器官の内部および周囲の血管新生を促進するという特徴を有することに着目し、これらの特徴を利用することで、生体内の臓器が有する三次元血管網と同様の三次元血管網を有する器官を、人為的に誘導・構築できることを見出した。すなわち、本発明者らは、生体内の血管を、構造物で包むようにして、前記構造物の内部に閉鎖空間(本明細書において、場合により、「チャンバー」とも呼ぶ)を創り出し、その閉鎖空間内に、器官原基を含めて、前記血管を生体に接続させて、in vivoで培養すると、臓器型の三次元血管網を有する器官の形成(製造)が可能となることを見出し、本発明を完成させた。
As a result of repeated studies to solve the above problems, the present inventors have not only the feature that the fetal organ primordium develops into cells / tissues constituting the organ parenchyma through normal development, Focusing on the fact that angiogenesis factors are produced during development and promotes angiogenesis inside and around the organ, and by utilizing these features, the three-dimensional blood vessels of organs in the body It has been found that an organ having a three-dimensional vascular network similar to a network can be artificially guided and constructed. That is, the present inventors create a closed space (sometimes referred to as “chamber” in this specification) inside the structure so as to wrap blood vessels in the living body with the structure, and within the closed space. In addition, it is found that organs having an organ-type three-dimensional vascular network can be formed (manufactured) by connecting the blood vessel including the organ primordia to a living body and culturing in vivo. Completed.
すなわち、本発明は、一実施態様において、
三次元血管網を有する器官を、非ヒト動物におけるin vivoで、形成させる方法であって、
下記のステップ:
(a)前記非ヒト動物において、
生体に接続されたまま、1又は複数の血管を、構造体を貫通するように、配置するステップ、または、生体外で、単離された1又は複数の血管を、構造体を貫通するように配置した後に、前記「単離された1又は複数の血管」を生体内の血管に接続するステップ、ここで、前記構造体はその内部に中空部を備えるように構成され、かつ、前記構造体の内部には、器官原基が含まれており;
(b)前記構造体の内部において、前記血管および前記構造体の内部に含まれる前記器官原基をin vivoで培養することにより、前記構造体の内部の中空部において三次元血管網を有する器官を形成させるステップ
を含む、方法に関する。 That is, the present invention, in one embodiment,
A method of forming an organ having a three-dimensional vascular network in vivo in a non-human animal, comprising:
The following steps:
(A) in the non-human animal,
Arranging one or more blood vessels to penetrate the structure while connected to the living body, or to pass the isolated blood vessel or blood vessels through the structure in vitro. Connecting the “isolated one or more blood vessels” to a blood vessel in a living body after placement, wherein the structure is configured to have a hollow portion therein, and the structure Contains an organ primordium;
(B) An organ having a three-dimensional vascular network in a hollow portion inside the structure by culturing the blood vessel and the organ primordium contained in the structure in vivo inside the structure. A method comprising the steps of:
三次元血管網を有する器官を、非ヒト動物におけるin vivoで、形成させる方法であって、
下記のステップ:
(a)前記非ヒト動物において、
生体に接続されたまま、1又は複数の血管を、構造体を貫通するように、配置するステップ、または、生体外で、単離された1又は複数の血管を、構造体を貫通するように配置した後に、前記「単離された1又は複数の血管」を生体内の血管に接続するステップ、ここで、前記構造体はその内部に中空部を備えるように構成され、かつ、前記構造体の内部には、器官原基が含まれており;
(b)前記構造体の内部において、前記血管および前記構造体の内部に含まれる前記器官原基をin vivoで培養することにより、前記構造体の内部の中空部において三次元血管網を有する器官を形成させるステップ
を含む、方法に関する。 That is, the present invention, in one embodiment,
A method of forming an organ having a three-dimensional vascular network in vivo in a non-human animal, comprising:
The following steps:
(A) in the non-human animal,
Arranging one or more blood vessels to penetrate the structure while connected to the living body, or to pass the isolated blood vessel or blood vessels through the structure in vitro. Connecting the “isolated one or more blood vessels” to a blood vessel in a living body after placement, wherein the structure is configured to have a hollow portion therein, and the structure Contains an organ primordium;
(B) An organ having a three-dimensional vascular network in a hollow portion inside the structure by culturing the blood vessel and the organ primordium contained in the structure in vivo inside the structure. A method comprising the steps of:
また、本発明の方法の一実施態様においては、
前記ステップ(a)は、
(i)前記血管を前記構造体に貫通するように配置する前に、前記構造体の内部に、前記器官原基を含めることを特徴とするか、又は、
(ii)前記血管を前記構造体に貫通するように配置した後に、前記構造体の内部に、前記器官原基を含めることを特徴とする。 In one embodiment of the method of the present invention,
The step (a)
(I) before placing the blood vessel so as to penetrate the structure, the organ primordium is included in the structure, or
(Ii) After arranging the blood vessel so as to penetrate the structure, the organ primordium is included in the structure.
前記ステップ(a)は、
(i)前記血管を前記構造体に貫通するように配置する前に、前記構造体の内部に、前記器官原基を含めることを特徴とするか、又は、
(ii)前記血管を前記構造体に貫通するように配置した後に、前記構造体の内部に、前記器官原基を含めることを特徴とする。 In one embodiment of the method of the present invention,
The step (a)
(I) before placing the blood vessel so as to penetrate the structure, the organ primordium is included in the structure, or
(Ii) After arranging the blood vessel so as to penetrate the structure, the organ primordium is included in the structure.
また、本発明の方法の一実施態様においては、
前記ステップ(a)において、前記構造体の内部には、前記器官原基に加えて、さらに血管構成細胞が含まれていることを特徴とする。 In one embodiment of the method of the present invention,
In the step (a), the structure further includes vascular constituent cells in addition to the organ primordia.
前記ステップ(a)において、前記構造体の内部には、前記器官原基に加えて、さらに血管構成細胞が含まれていることを特徴とする。 In one embodiment of the method of the present invention,
In the step (a), the structure further includes vascular constituent cells in addition to the organ primordia.
また、本発明の方法の一実施態様においては、
前記血管構成細胞が、血管内皮細胞及び/又は間葉系幹細胞を含むことを特徴とする。 In one embodiment of the method of the present invention,
The vascular constituent cells include vascular endothelial cells and / or mesenchymal stem cells.
前記血管構成細胞が、血管内皮細胞及び/又は間葉系幹細胞を含むことを特徴とする。 In one embodiment of the method of the present invention,
The vascular constituent cells include vascular endothelial cells and / or mesenchymal stem cells.
また、本発明の方法の一実施態様においては、
前記ステップ(a)において、前記構造体の内部には、さらに血管新生因子が含まれていることを特徴とする。 In one embodiment of the method of the present invention,
In the step (a), an angiogenic factor is further included in the structure.
前記ステップ(a)において、前記構造体の内部には、さらに血管新生因子が含まれていることを特徴とする。 In one embodiment of the method of the present invention,
In the step (a), an angiogenic factor is further included in the structure.
また、本発明の方法の一実施態様においては、
前記血管新生因子が、VEGF、FGF、EGF、PDGF、TGF-βからなる群から選択されることを特徴とする。 In one embodiment of the method of the present invention,
The angiogenic factor is selected from the group consisting of VEGF, FGF, EGF, PDGF, and TGF-β.
前記血管新生因子が、VEGF、FGF、EGF、PDGF、TGF-βからなる群から選択されることを特徴とする。 In one embodiment of the method of the present invention,
The angiogenic factor is selected from the group consisting of VEGF, FGF, EGF, PDGF, and TGF-β.
また、本発明の方法の一実施態様においては、
前記器官原基が、毛包原基、歯胚原基、肝臓原基、腎臓原基、ラトケ嚢、および、内分泌器官の原基からなる群から選択されることを特徴とする。 In one embodiment of the method of the present invention,
The organ primordium is selected from the group consisting of hair follicle primordia, tooth germ primordium, liver primordium, kidney primordium, ratchet sac, and endocrine organ primordium.
前記器官原基が、毛包原基、歯胚原基、肝臓原基、腎臓原基、ラトケ嚢、および、内分泌器官の原基からなる群から選択されることを特徴とする。 In one embodiment of the method of the present invention,
The organ primordium is selected from the group consisting of hair follicle primordia, tooth germ primordium, liver primordium, kidney primordium, ratchet sac, and endocrine organ primordium.
また、本発明の方法の一実施態様においては、
前記器官原基が、ES細胞、iPS細胞、多能性前駆細胞、成体幹細胞、又は、これらを遺伝的に改変させた多能性細胞より作製した再生器官原基であることを特徴とする。 In one embodiment of the method of the present invention,
The organ primordium is a regenerated organ primordia prepared from ES cells, iPS cells, pluripotent progenitor cells, adult stem cells, or pluripotent cells genetically modified from these.
前記器官原基が、ES細胞、iPS細胞、多能性前駆細胞、成体幹細胞、又は、これらを遺伝的に改変させた多能性細胞より作製した再生器官原基であることを特徴とする。 In one embodiment of the method of the present invention,
The organ primordium is a regenerated organ primordia prepared from ES cells, iPS cells, pluripotent progenitor cells, adult stem cells, or pluripotent cells genetically modified from these.
また、本発明の方法の一実施態様においては、前記方法において、
下記のステップ:
(c)前記ステップ(b)の後に、形成された三次元血管網を有する器官を、同所的又は異所的に移植するステップ
をさらに含むことを特徴とする。 In one embodiment of the method of the present invention, in the method,
The following steps:
(C) After the step (b), the method further includes a step of orthotopically or ectopically transplanting the organ having the formed three-dimensional vascular network.
下記のステップ:
(c)前記ステップ(b)の後に、形成された三次元血管網を有する器官を、同所的又は異所的に移植するステップ
をさらに含むことを特徴とする。 In one embodiment of the method of the present invention, in the method,
The following steps:
(C) After the step (b), the method further includes a step of orthotopically or ectopically transplanting the organ having the formed three-dimensional vascular network.
また、本発明の方法の一実施態様においては、
前記構造体が、細胞を通過させないが、液性因子を通過させることが可能な透析膜からなることを特徴とする。 In one embodiment of the method of the present invention,
The structure is characterized by comprising a dialysis membrane that does not allow passage of cells but allows passage of humoral factors.
前記構造体が、細胞を通過させないが、液性因子を通過させることが可能な透析膜からなることを特徴とする。 In one embodiment of the method of the present invention,
The structure is characterized by comprising a dialysis membrane that does not allow passage of cells but allows passage of humoral factors.
また、本発明の方法の一実施態様においては、
前記非ヒト動物の代わりに、ヒトを用いることを特徴とする。 In one embodiment of the method of the present invention,
A human is used instead of the non-human animal.
前記非ヒト動物の代わりに、ヒトを用いることを特徴とする。 In one embodiment of the method of the present invention,
A human is used instead of the non-human animal.
本発明の他の実施形態は、
三次元血管網を有する器官の形成用組成物であって、
前記組成物は、略シート状組成物であり、1又は複数の開口部を備え、かつ、内部に中空部を備える構造体として構成させることができ、
ここで、
1又は複数の血管が、前記開口部を通じて、前記構造体を貫通するように配置され、
前記構造体は、前記血管が通過する前記開口部を除き、実質的に閉鎖され、
前記構造体の内部には、器官原基が含まれ、及び
前記構造体の内部の中空部において三次元血管網を有する器官が形成される、
ことを特徴とする、組成物に関する。 Other embodiments of the invention include:
A composition for forming an organ having a three-dimensional vascular network,
The composition is a substantially sheet-like composition, and can be configured as a structure including one or a plurality of openings and a hollow portion inside.
here,
One or more blood vessels are disposed through the opening and through the structure;
The structure is substantially closed except for the opening through which the blood vessel passes;
In the structure, an organ primordium is included, and an organ having a three-dimensional vascular network is formed in a hollow portion in the structure.
It is related with the composition characterized by the above-mentioned.
三次元血管網を有する器官の形成用組成物であって、
前記組成物は、略シート状組成物であり、1又は複数の開口部を備え、かつ、内部に中空部を備える構造体として構成させることができ、
ここで、
1又は複数の血管が、前記開口部を通じて、前記構造体を貫通するように配置され、
前記構造体は、前記血管が通過する前記開口部を除き、実質的に閉鎖され、
前記構造体の内部には、器官原基が含まれ、及び
前記構造体の内部の中空部において三次元血管網を有する器官が形成される、
ことを特徴とする、組成物に関する。 Other embodiments of the invention include:
A composition for forming an organ having a three-dimensional vascular network,
The composition is a substantially sheet-like composition, and can be configured as a structure including one or a plurality of openings and a hollow portion inside.
here,
One or more blood vessels are disposed through the opening and through the structure;
The structure is substantially closed except for the opening through which the blood vessel passes;
In the structure, an organ primordium is included, and an organ having a three-dimensional vascular network is formed in a hollow portion in the structure.
It is related with the composition characterized by the above-mentioned.
本発明の他の実施形態は、上述の本発明のいずれかの方法によって得られ得る(obtainable)、三次元血管網を有する器官に関する。
Other embodiments of the present invention relate to organs having a three-dimensional vascular network that can be obtained by any of the methods of the present invention described above.
本発明の他の実施形態は、上述の本発明のいずれかの方法によって得られた(obtained)、三次元血管網を有する器官に関する。
Other embodiments of the present invention relate to organs having a three-dimensional vascular network obtained by any of the methods of the present invention described above.
本発明の他の実施形態は、上記の本発明のいずれかの方法によって得られ得る(obtainable)、または、得られ得た(obtained)三次元血管網を有する器官を含む、再生臓器に関する。
Other embodiments of the present invention relate to regenerative organs, including organs having a three-dimensional vascular network that can be obtained or obtained by any of the methods of the present invention described above.
以上述べた本発明の一又は複数の特徴を、任意に組み合わせたものも、本発明に含まれることはいうまでもない。
Needless to say, any combination of one or more features of the present invention described above is included in the present invention.
本発明の方法によれば、1又は複数の血管が構造体の内部に移入し、構造体が内部に有する中空部(好ましくは、実質的に閉鎖的な空間)に三次元血管網を有する器官が形成され、1又は複数の血管へと再び収束した血管が構造体の内部から移出する、生体の臓器の血管構造を模した器官を形成することができる。
好ましい一態様において、最初に封入した1又は複数の血管以外の血管は、三次元血管網が形成される、前記構造体の内部に、周囲から侵入することができない。したがって、構造体の内部に移出入する血管の数を制御することができる。
形成される三次元血管網を有する器官は、構造体の内部に含めたまま、又は、構造体から取り外して、生体外で用いることができる。構造体の内部に移入した血管と移出した血管とは維持されているので、これらの血管を、同種又は異種の動物の血管に、同所的又は異所的に血管縫合等により接続することで、形成される三次元血管網を容易に移植することが可能である。また、本発明の方法によって製造した三次元血管網を有する器官は、移植を行う前に、例えばWO2011/093268に記載のような臓器又は組織の灌流培養方法及び灌流培養装置に接続し、生体外での培養を行ってもよい。
好ましい別の態様において、三次元血管網が形成される中空部のサイズを所望により変更することで、所望のサイズの三次元血管網を有する器官を形成させることができる。
好ましいさらに別の態様において、三次元血管網が形成される中空部の形状を所望により変更することで、例えば、所望の臓器又は組織が有する三次元血管網の形態と実質的に同一または類似する形態を有する、三次元血管網を有する器官を形成することができる。 According to the method of the present invention, an organ having a three-dimensional vascular network in which one or a plurality of blood vessels are transferred to the inside of a structure and the hollow portion (preferably a substantially closed space) of the structure is inside. Can be formed, and the blood vessel that has converged again into one or a plurality of blood vessels is exported from the inside of the structure, and an organ that mimics the blood vessel structure of a living organ can be formed.
In a preferred embodiment, blood vessels other than one or more initially encapsulated blood vessels cannot penetrate from the surroundings into the structure where a three-dimensional vascular network is formed. Therefore, the number of blood vessels that move into and out of the structure can be controlled.
The organ having the formed three-dimensional vascular network can be used in vitro while being included in the structure or removed from the structure. Since the blood vessels transferred into and out of the structure are maintained, these blood vessels can be connected to the blood vessels of the same or different species by vascular sutures or the like. The formed three-dimensional vascular network can be easily transplanted. In addition, an organ having a three-dimensional vascular network produced by the method of the present invention is connected to an organ or tissue perfusion culture method and perfusion culture apparatus as described in WO2011 / 093268, for example, before transplantation. You may perform culture | cultivation in.
In another preferred embodiment, an organ having a three-dimensional vascular network of a desired size can be formed by changing the size of the hollow part in which the three-dimensional vascular network is formed as desired.
In still another preferred embodiment, the shape of the hollow part in which the three-dimensional vascular network is formed is changed as desired, for example, substantially the same or similar to the form of the three-dimensional vascular network possessed by the desired organ or tissue An organ having a three-dimensional vascular network having a form can be formed.
好ましい一態様において、最初に封入した1又は複数の血管以外の血管は、三次元血管網が形成される、前記構造体の内部に、周囲から侵入することができない。したがって、構造体の内部に移出入する血管の数を制御することができる。
形成される三次元血管網を有する器官は、構造体の内部に含めたまま、又は、構造体から取り外して、生体外で用いることができる。構造体の内部に移入した血管と移出した血管とは維持されているので、これらの血管を、同種又は異種の動物の血管に、同所的又は異所的に血管縫合等により接続することで、形成される三次元血管網を容易に移植することが可能である。また、本発明の方法によって製造した三次元血管網を有する器官は、移植を行う前に、例えばWO2011/093268に記載のような臓器又は組織の灌流培養方法及び灌流培養装置に接続し、生体外での培養を行ってもよい。
好ましい別の態様において、三次元血管網が形成される中空部のサイズを所望により変更することで、所望のサイズの三次元血管網を有する器官を形成させることができる。
好ましいさらに別の態様において、三次元血管網が形成される中空部の形状を所望により変更することで、例えば、所望の臓器又は組織が有する三次元血管網の形態と実質的に同一または類似する形態を有する、三次元血管網を有する器官を形成することができる。 According to the method of the present invention, an organ having a three-dimensional vascular network in which one or a plurality of blood vessels are transferred to the inside of a structure and the hollow portion (preferably a substantially closed space) of the structure is inside. Can be formed, and the blood vessel that has converged again into one or a plurality of blood vessels is exported from the inside of the structure, and an organ that mimics the blood vessel structure of a living organ can be formed.
In a preferred embodiment, blood vessels other than one or more initially encapsulated blood vessels cannot penetrate from the surroundings into the structure where a three-dimensional vascular network is formed. Therefore, the number of blood vessels that move into and out of the structure can be controlled.
The organ having the formed three-dimensional vascular network can be used in vitro while being included in the structure or removed from the structure. Since the blood vessels transferred into and out of the structure are maintained, these blood vessels can be connected to the blood vessels of the same or different species by vascular sutures or the like. The formed three-dimensional vascular network can be easily transplanted. In addition, an organ having a three-dimensional vascular network produced by the method of the present invention is connected to an organ or tissue perfusion culture method and perfusion culture apparatus as described in WO2011 / 093268, for example, before transplantation. You may perform culture | cultivation in.
In another preferred embodiment, an organ having a three-dimensional vascular network of a desired size can be formed by changing the size of the hollow part in which the three-dimensional vascular network is formed as desired.
In still another preferred embodiment, the shape of the hollow part in which the three-dimensional vascular network is formed is changed as desired, for example, substantially the same or similar to the form of the three-dimensional vascular network possessed by the desired organ or tissue An organ having a three-dimensional vascular network having a form can be formed.
以下、本発明の実施態様について説明する。
Hereinafter, embodiments of the present invention will be described.
本明細書において、「三次元血管網」とは、三次元的な細胞の塊(例えば、生体内の臓器又は組織)中に観察されるような、二次元的(平面的)ではなくて、三次元的に広がった血管経路による網状構造を意味する。
In the present specification, the “three-dimensional vascular network” is not two-dimensional (planar) as observed in a three-dimensional cell mass (for example, an organ or tissue in a living body), It means a network structure with three-dimensionally expanded blood vessel pathways.
本明細書において、「臓器型の三次元血管網」とは、1つの動脈経路から、三次元的に(毛細)血管が広がり、1つの静脈経路へと再び収束する、生体内の臓器の血管網構造と同様に、1つの血管経路から、三次元的に(毛細)血管が広がり、1つの血管経路へと再び収束する、三次元血管網を意味する。本発明において、臓器型の三次元血管網とは、場合により、生体内の臓器内を通り抜ける血流の出入口となる特定の血管を含む、三次元血管網と同様に、本発明における構造体の内部を通り抜ける血流の出入口となる特定の血管を含む、三次元血管網を意味してよい。
In this specification, “organ-type three-dimensional vascular network” means a blood vessel of an organ in a living body in which a three-dimensional (capillary) blood vessel spreads from one arterial route and converges again into one venous route. Similar to the network structure, it means a three-dimensional blood vessel network in which blood vessels expand three-dimensionally (capillary) from one blood vessel route and converge again into one blood vessel route. In the present invention, an organ-type three-dimensional vascular network is a structure of the present invention, as in the case of a three-dimensional vascular network including a specific blood vessel serving as an entrance / exit of blood flow that passes through an organ in a living body. It may mean a three-dimensional vascular network including specific blood vessels that serve as entrances and exits for blood flow through the interior.
本発明において、「臓器又は組織」とは、同所性移植又は異所性移植を意図する臓器又は組織であれば特に限定されず、例えば、肝臓、心臓、脳、肺、腎臓、胃、腸、膵臓、精巣、卵巣、眼球、骨、歯、及びそれらの構成器官や周囲組織を挙げてもよい。
In the present invention, “organ or tissue” is not particularly limited as long as it is an organ or tissue intended for orthotopic transplantation or ectopic transplantation. For example, liver, heart, brain, lung, kidney, stomach, intestine , Pancreas, testis, ovary, eyeball, bone, teeth, and their constituent organs and surrounding tissues.
本発明において、「移植」とは、ドナー(移植される臓器又は組織又は細胞等を提供する)からレシピエント(移植を受ける対象)に臓器又は組織又は細胞等を移し植えることであり、移植の種類は特に限定されない。移植の種類は、例えば、ドナーとレシピエントの関係による分類では、自家移植、同系移植、同種移植、異種移植等が挙げられる。また、例えば、ドナーの状態による分類では、生体移植、脳死移植、心停止移植等が挙げられる。
一態様において、本発明において、チャンバー移植に用いられる血管を提供するドナーは、チャンバー移植を受けたレシピエントの生体内で形成された三次元血管網を有する器官もしくは再生臓器又はそれを含む構造体を提供される、レシピエントとなり得ることが理解される。また、チャンバー移植を受けるレシピエントは、生体内で形成された三次元血管網を有する器官もしくは再生臓器又はそれを含む構造体を提供する、ドナーともなり得ることが理解される。 In the present invention, “transplantation” refers to transplanting an organ, tissue, cell, or the like from a donor (providing an organ, tissue, cell, or the like to be transplanted) to a recipient (subject to be transplanted). The type is not particularly limited. Examples of the type of transplantation include autotransplantation, syngeneic transplantation, allogeneic transplantation, xenotransplantation and the like in classification based on the relationship between the donor and the recipient. In addition, for example, classification according to the state of the donor includes living transplantation, brain death transplantation, cardiac arrest transplantation, and the like.
In one embodiment, in the present invention, the donor that provides the blood vessel used for the chamber transplant is an organ having a three-dimensional vascular network formed in the living body of the recipient who has undergone the chamber transplant, or a regenerative organ, or a structure including the same. It is understood that the recipient can be provided. It is also understood that a recipient undergoing chamber implantation can also be a donor that provides an organ or regenerative organ having a three-dimensional vascular network formed in vivo or a structure containing the same.
一態様において、本発明において、チャンバー移植に用いられる血管を提供するドナーは、チャンバー移植を受けたレシピエントの生体内で形成された三次元血管網を有する器官もしくは再生臓器又はそれを含む構造体を提供される、レシピエントとなり得ることが理解される。また、チャンバー移植を受けるレシピエントは、生体内で形成された三次元血管網を有する器官もしくは再生臓器又はそれを含む構造体を提供する、ドナーともなり得ることが理解される。 In the present invention, “transplantation” refers to transplanting an organ, tissue, cell, or the like from a donor (providing an organ, tissue, cell, or the like to be transplanted) to a recipient (subject to be transplanted). The type is not particularly limited. Examples of the type of transplantation include autotransplantation, syngeneic transplantation, allogeneic transplantation, xenotransplantation and the like in classification based on the relationship between the donor and the recipient. In addition, for example, classification according to the state of the donor includes living transplantation, brain death transplantation, cardiac arrest transplantation, and the like.
In one embodiment, in the present invention, the donor that provides the blood vessel used for the chamber transplant is an organ having a three-dimensional vascular network formed in the living body of the recipient who has undergone the chamber transplant, or a regenerative organ, or a structure including the same. It is understood that the recipient can be provided. It is also understood that a recipient undergoing chamber implantation can also be a donor that provides an organ or regenerative organ having a three-dimensional vascular network formed in vivo or a structure containing the same.
本明細書において、再生臓器とは、バイオテクノロジーや再生医療の技術を用いて製造される臓器であって、生体内の臓器の機能や構造等を、一部又は全部模倣した臓器、又は、当該臓器の一部又は全部の機能を有する組織を意味してよい。再生臓器は、生体内の臓器を代用するか、又は、生体内の臓器の機能を補助するか、又は、回復することが可能である。
In this specification, the regenerative organ is an organ that is manufactured using biotechnology or regenerative medicine technology, and is an organ that imitates part or all of the function or structure of an organ in a living body, or It may mean a tissue having a function of part or all of an organ. A regenerating organ can substitute for an in vivo organ, or assist or restore the function of the in vivo organ.
<三次元血管網を有する器官を、動物におけるin vivoで、形成させる方法>
本発明の一実施態様は、三次元血管網を有する器官を、動物におけるin vivoで、形成させる方法であって、下記のステップ:
(a)前記動物において、生体に接続されたまま、1又は複数の血管を、構造体を貫通するように、配置するステップ、または、生体外で、単離された1又は複数の血管を、構造体を貫通するように配置した後に、前記「単離された1又は複数の血管」を生体内の血管に接続するステップ、ここで、前記構造体はその内部に中空部を備えるように構成され、かつ、前記構造体の内部には、器官原基が含まれており;
(b)前記構造体の内部において、前記血管および前記構造体の内部に含まれる器官原基をin vivoで培養することにより、前記構造体の内部の中空部において三次元血管網を有する器官を形成させるステップ
を含む、製造方法であることを特徴とする。技術的に矛盾しない限り、本明細書に記載の、あらゆる態様の任意の1又は複数を適宜組み合わせて、本発明を実施してよい。 <Method of forming an organ having a three-dimensional vascular network in vivo in an animal>
One embodiment of the present invention is a method of forming an organ having a three-dimensional vascular network in vivo in an animal, comprising the following steps:
(A) In the animal, the step of arranging one or more blood vessels so as to penetrate the structure while being connected to the living body, or one or more blood vessels isolated outside the body, Connecting the “isolated one or more blood vessels” to a blood vessel in a living body after being disposed so as to penetrate the structure, wherein the structure is configured to have a hollow portion therein And the structure includes an organ primordium;
(B) Inside the structure, the organ having a three-dimensional vascular network in the hollow portion of the structure is obtained by in vivo culturing the blood vessels and the organ primordium contained in the structure. It is a manufacturing method including the step to form. As long as there is no technical contradiction, the present invention may be implemented by appropriately combining any one or more of all aspects described in this specification.
本発明の一実施態様は、三次元血管網を有する器官を、動物におけるin vivoで、形成させる方法であって、下記のステップ:
(a)前記動物において、生体に接続されたまま、1又は複数の血管を、構造体を貫通するように、配置するステップ、または、生体外で、単離された1又は複数の血管を、構造体を貫通するように配置した後に、前記「単離された1又は複数の血管」を生体内の血管に接続するステップ、ここで、前記構造体はその内部に中空部を備えるように構成され、かつ、前記構造体の内部には、器官原基が含まれており;
(b)前記構造体の内部において、前記血管および前記構造体の内部に含まれる器官原基をin vivoで培養することにより、前記構造体の内部の中空部において三次元血管網を有する器官を形成させるステップ
を含む、製造方法であることを特徴とする。技術的に矛盾しない限り、本明細書に記載の、あらゆる態様の任意の1又は複数を適宜組み合わせて、本発明を実施してよい。 <Method of forming an organ having a three-dimensional vascular network in vivo in an animal>
One embodiment of the present invention is a method of forming an organ having a three-dimensional vascular network in vivo in an animal, comprising the following steps:
(A) In the animal, the step of arranging one or more blood vessels so as to penetrate the structure while being connected to the living body, or one or more blood vessels isolated outside the body, Connecting the “isolated one or more blood vessels” to a blood vessel in a living body after being disposed so as to penetrate the structure, wherein the structure is configured to have a hollow portion therein And the structure includes an organ primordium;
(B) Inside the structure, the organ having a three-dimensional vascular network in the hollow portion of the structure is obtained by in vivo culturing the blood vessels and the organ primordium contained in the structure. It is a manufacturing method including the step to form. As long as there is no technical contradiction, the present invention may be implemented by appropriately combining any one or more of all aspects described in this specification.
本明細書において、「チャンバー移植(法)」とは、チャンバー(閉鎖空間)を設けて、その内部に、移植等する臓器、組織又は器官を封入し、かつ、チャンバーを血管で貫通させて、当該血管により、チャンバーの内部の臓器、組織又は器官等に栄養供給等を行い、チャンバーの内部の臓器、組織又は器官等をin vivoで培養させる、本発明者らが発明した新しい移植(法)である。
従来の皮下移植では、移植部分に、臓器、組織、器官等を、レシピエント(移植を受ける対象)中の生体組織に接触させるようにして移植していた。
本発明に用いられるチャンバー移植では、移植の対象となる器官(又は臓器)の材料となる器官原基等は、構造体の内部に隔離される状態(すなわち、閉鎖空間(チャンバー)内に隔離される状態)でレシピエントに提供される。当該器官原基は、レシピエントに血管網を形成させるのに用いる血管を介してのみ、レシピエント中の生体組織と連絡することができる。前記血管は、構造体を貫通させるように構成されるので、閉鎖空間内で、前記器官原基等と連絡/接触することが可能である。これにより、前記血管から栄養供給等を受けた前記器官原基は、前記血管以外とは、レシピエント中の生体組織と接触せずに増殖することができる。このようなチャンバー移植を用いることにより、構造体の内部に備えられる中空部に、血管を新生させて、三次元血管網を有する器官を形成することができる。本明細書において、チャンバー移植(法)は、以下に、さらに説明され、関連するすべての記述が、チャンバー移植(法)の、非限定的な一態様であることを、当業者は理解する。 In this specification, “chamber transplantation (method)” means that a chamber (closed space) is provided, and an organ, tissue or organ to be transplanted is enclosed therein, and the chamber is penetrated by a blood vessel. A new transplantation (method) invented by the present inventors, in which an organ, tissue or organ inside the chamber is fed with nutrients by the blood vessel, and the organ, tissue or organ inside the chamber is cultured in vivo. It is.
In conventional subcutaneous transplantation, an organ, a tissue, an organ, and the like are transplanted into a transplanted portion so as to come into contact with a living tissue in a recipient (a subject to receive the transplant).
In the chamber transplantation used in the present invention, the organ primordium or the like that is the material of the organ (or organ) to be transplanted is isolated within the structure (that is, isolated in a closed space (chamber)). Provided to the recipient. The organ primordium can communicate with living tissue in the recipient only through the blood vessels used to cause the recipient to form a vascular network. Since the blood vessel is configured to penetrate the structure, it is possible to communicate / contact with the organ primordial or the like in a closed space. As a result, the organ primordium that has received nutrient supply from the blood vessels can proliferate without contact with the living tissue in the recipient other than the blood vessels. By using such a chamber transplantation, it is possible to form a blood vessel in a hollow portion provided inside the structure and form an organ having a three-dimensional vascular network. In this specification, chamber implantation (method) will be further described below, and those skilled in the art will understand that all relevant descriptions are one non-limiting aspect of chamber implantation (method).
従来の皮下移植では、移植部分に、臓器、組織、器官等を、レシピエント(移植を受ける対象)中の生体組織に接触させるようにして移植していた。
本発明に用いられるチャンバー移植では、移植の対象となる器官(又は臓器)の材料となる器官原基等は、構造体の内部に隔離される状態(すなわち、閉鎖空間(チャンバー)内に隔離される状態)でレシピエントに提供される。当該器官原基は、レシピエントに血管網を形成させるのに用いる血管を介してのみ、レシピエント中の生体組織と連絡することができる。前記血管は、構造体を貫通させるように構成されるので、閉鎖空間内で、前記器官原基等と連絡/接触することが可能である。これにより、前記血管から栄養供給等を受けた前記器官原基は、前記血管以外とは、レシピエント中の生体組織と接触せずに増殖することができる。このようなチャンバー移植を用いることにより、構造体の内部に備えられる中空部に、血管を新生させて、三次元血管網を有する器官を形成することができる。本明細書において、チャンバー移植(法)は、以下に、さらに説明され、関連するすべての記述が、チャンバー移植(法)の、非限定的な一態様であることを、当業者は理解する。 In this specification, “chamber transplantation (method)” means that a chamber (closed space) is provided, and an organ, tissue or organ to be transplanted is enclosed therein, and the chamber is penetrated by a blood vessel. A new transplantation (method) invented by the present inventors, in which an organ, tissue or organ inside the chamber is fed with nutrients by the blood vessel, and the organ, tissue or organ inside the chamber is cultured in vivo. It is.
In conventional subcutaneous transplantation, an organ, a tissue, an organ, and the like are transplanted into a transplanted portion so as to come into contact with a living tissue in a recipient (a subject to receive the transplant).
In the chamber transplantation used in the present invention, the organ primordium or the like that is the material of the organ (or organ) to be transplanted is isolated within the structure (that is, isolated in a closed space (chamber)). Provided to the recipient. The organ primordium can communicate with living tissue in the recipient only through the blood vessels used to cause the recipient to form a vascular network. Since the blood vessel is configured to penetrate the structure, it is possible to communicate / contact with the organ primordial or the like in a closed space. As a result, the organ primordium that has received nutrient supply from the blood vessels can proliferate without contact with the living tissue in the recipient other than the blood vessels. By using such a chamber transplantation, it is possible to form a blood vessel in a hollow portion provided inside the structure and form an organ having a three-dimensional vascular network. In this specification, chamber implantation (method) will be further described below, and those skilled in the art will understand that all relevant descriptions are one non-limiting aspect of chamber implantation (method).
本発明において、用いることのできる動物としては、限定はされないが、例えば、非ヒト動物(非ヒト哺乳動物(マウス、ラット、イヌ、ネコ、ウサギ、ウシ、ウマ、ヒツジ、ヤギ、ブタ、サル等)、非哺乳動物(魚類、爬虫類、両生類、鳥類等))、及び、ヒトであってよい。
In the present invention, an animal that can be used is not limited. For example, non-human animals (non-human mammals (mouse, rat, dog, cat, rabbit, cow, horse, sheep, goat, pig, monkey, etc.) ), Non-mammals (fish, reptiles, amphibians, birds, etc.)) and humans.
本発明は、あらゆる動物を用いて、in vivoで培養することにより、三次元血管網を有する器官又は当該三次元血管網を含む再生臓器を形成させてよい。また、形成される三次元血管網を有する器官又は当該三次元血管網を含む再生臓器、又は、それを含む構造体は、あらゆる動物に対して、同所的又は異所的に、あらゆる移植態様(自家移植、同系移植、同種移植、異種移植、人工移植等)で移植するのに用いてよい。好ましい一実施態様において、本発明において用いられる動物は、異所性の移植に適合するために、免疫不全であるか、又は、免疫抑制剤等を用いて、一時的に、免疫反応が機能不全であってよい。
in vivoで三次元血管網を有する器官又は再生臓器を形成させる動物と、形成された三次元血管網を有する器官又は当該三次元血管網を含む再生臓器、又は、それを含む構造体の移植を受ける動物が異種である場合や異なる個体である場合、三次元血管網を有する器官又は再生臓器を形成させる動物において、三次元血管網の形成のために構造体に貫通させて用いられる血管は、形成された「三次元血管網を有する器官又は当該三次元血管網を含む再生臓器、又は、それを含む構造体」の移植を受ける動物由来の血管であることが好ましい。 In the present invention, an organ having a three-dimensional vascular network or a regenerative organ including the three-dimensional vascular network may be formed by culturing in vivo using any animal. In addition, an organ having a three-dimensional vascular network to be formed, a regenerative organ including the three-dimensional vascular network, or a structure including the same is orthotopically or ectopically with respect to any animal. It may be used for transplantation (autologous transplant, syngeneic transplant, allogeneic transplant, xenotransplant, artificial transplant, etc.). In a preferred embodiment, the animal used in the present invention is immunodeficient in order to be compatible with ectopic transplantation, or the immune response is temporarily dysfunctional using an immunosuppressant or the like. It may be.
In vivo transplantation of an animal having a three-dimensional vascular network or a regenerative organ, an organ having a formed three-dimensional vascular network, a regenerative organ containing the three-dimensional vascular network, or a structure containing the same When the recipient animal is a heterogeneous or different individual, in an animal that forms an organ having a three-dimensional vascular network or a regenerative organ, the blood vessel used by penetrating the structure for the formation of the three-dimensional vascular network is: It is preferably a blood vessel derived from an animal that undergoes transplantation of the formed “organ having a three-dimensional vascular network, or a regenerative organ including the three-dimensional vascular network, or a structure including the same”.
in vivoで三次元血管網を有する器官又は再生臓器を形成させる動物と、形成された三次元血管網を有する器官又は当該三次元血管網を含む再生臓器、又は、それを含む構造体の移植を受ける動物が異種である場合や異なる個体である場合、三次元血管網を有する器官又は再生臓器を形成させる動物において、三次元血管網の形成のために構造体に貫通させて用いられる血管は、形成された「三次元血管網を有する器官又は当該三次元血管網を含む再生臓器、又は、それを含む構造体」の移植を受ける動物由来の血管であることが好ましい。 In the present invention, an organ having a three-dimensional vascular network or a regenerative organ including the three-dimensional vascular network may be formed by culturing in vivo using any animal. In addition, an organ having a three-dimensional vascular network to be formed, a regenerative organ including the three-dimensional vascular network, or a structure including the same is orthotopically or ectopically with respect to any animal. It may be used for transplantation (autologous transplant, syngeneic transplant, allogeneic transplant, xenotransplant, artificial transplant, etc.). In a preferred embodiment, the animal used in the present invention is immunodeficient in order to be compatible with ectopic transplantation, or the immune response is temporarily dysfunctional using an immunosuppressant or the like. It may be.
In vivo transplantation of an animal having a three-dimensional vascular network or a regenerative organ, an organ having a formed three-dimensional vascular network, a regenerative organ containing the three-dimensional vascular network, or a structure containing the same When the recipient animal is a heterogeneous or different individual, in an animal that forms an organ having a three-dimensional vascular network or a regenerative organ, the blood vessel used by penetrating the structure for the formation of the three-dimensional vascular network is: It is preferably a blood vessel derived from an animal that undergoes transplantation of the formed “organ having a three-dimensional vascular network, or a regenerative organ including the three-dimensional vascular network, or a structure including the same”.
本発明において、三次元血管網を形成するのに利用される「1又は複数の血管」とは、非分岐状又は分岐状である、1又は複数の血管であってよい。前記血管は、三次元血管網を有する器官を形成させる動物に対して、同種または異種の動物由来のものであってよく、異種であるのが好ましい。例えば、三次元血管網を有する器官をラットやブタでin vivoで形成させる場合、前記血管は、それぞれ、マウスやヒトから摘出された血管を用いてよい。前記「摘出される血管」は、脳死又は心停止によって死亡した、ヒト移植提供者由来であってもよい。あるいは、前記血管は、多能性幹細胞であるES細胞やiPS細胞や多能性前駆細胞等から分化させて作製した、人工血管であってもよい。「iPS細胞」は、例えば成体の細胞に転写因子をコードする4つの遺伝子を導入することで作製された、ES細胞によく似た多能性幹細胞である(Cell., Vol 126, Issue 4, 25 August 2006, pp. 663‐676)。ただし、本発明において用いることのできるiPS細胞は、iPS細胞としての性質を有している限り、どのような方法によって製造されたiPS細胞であってもよい。iPS細胞は、患者由来の体細胞から作製可能であるため、倫理的問題や免疫拒絶のリスクも少なく、移植可能な組織や器官を再生し得る細胞として、好ましい。多能性幹細胞や多能性前駆細胞の由来としては、限定はされないが、例えば、ヒト、マウス、ラット、ブタ、サル由来の細胞を用いることができる。また、前記血管は、生体に由来しない材料、例えば、ナイロンやテフロンなどの合成高分子材料を含むか、又は、当該合成高分子材料で製造した人工血管と組み合わせて用いてもよい。
In the present invention, “one or more blood vessels” used to form a three-dimensional blood vessel network may be one or more blood vessels that are non-branched or branched. The blood vessel may be derived from the same or different species of animals that form an organ having a three-dimensional vascular network, and is preferably different. For example, when an organ having a three-dimensional vascular network is formed in vivo in a rat or pig, the blood vessel may be a blood vessel extracted from a mouse or a human, respectively. The “extracted blood vessel” may be derived from a human transplant donor who died due to brain death or cardiac arrest. Alternatively, the blood vessel may be an artificial blood vessel prepared by differentiation from ES cells, iPS cells, pluripotent progenitor cells, or the like, which are pluripotent stem cells. An “iPS cell” is a pluripotent stem cell similar to an ES cell prepared by introducing, for example, four genes encoding transcription factors into an adult cell (Cell., Vol 126, Issue 4, 25 August 2006, pp. 663-676). However, iPS cells that can be used in the present invention may be iPS cells produced by any method as long as they have iPS cell properties. Since iPS cells can be prepared from somatic cells derived from patients, iPS cells are preferred as cells capable of regenerating transplantable tissues and organs with little risk of ethical problems and immune rejection. The origin of pluripotent stem cells and pluripotent progenitor cells is not limited, and for example, cells derived from humans, mice, rats, pigs, and monkeys can be used. Further, the blood vessel may contain a material not derived from a living body, for example, a synthetic polymer material such as nylon or Teflon, or may be used in combination with an artificial blood vessel made of the synthetic polymer material.
本発明において、「1又は複数の血管」を貫通させる「構造体」は、その内部に中空部(閉鎖空間)を備え、当該中空部を前記血管が貫通し、かつ、当該中空部に器官原基等が含まれる構成を採用できるものであれば、どのような形態であってもよい。前記構造体は、構造体の内部に含まれる細胞及び構造体の外部に存在するレシピエントの組織由来の細胞を透過させないもの(細胞不透過性の材料、膜、フィルムなど)であればどのような材料で構成されていてもよい。前記構造体は、例えば、本発明における、「略シート状組成物」から形成されるか、当該略シート状組成物から形成されたもの(すなわち、前記略シート状組成物があらかじめ成形されて、例えば、袋状などの、三次元的な形態を有する)であってよい。本発明における構造体は、限定はされないが、成形しやすい材料から形成されるのが好ましい。また、例えば形成される三次元血管網を有する器官又は再生臓器を、構造体から取り外して使用することを企図する場合、本発明における構造体は、血管や、構造体の内部に含まれる器官原基等と、非接着性であるか、又は、容易に分離できることが好ましい。当該構造体は、伸縮又は変形が可能な材料を用いてもよい。
In the present invention, the “structure” that penetrates “one or more blood vessels” has a hollow portion (closed space) inside thereof, the blood vessel penetrates the hollow portion, and the organ source in the hollow portion. Any configuration may be used as long as a configuration including a group or the like can be adopted. As long as the said structure does not permeate | transmit the cell contained in the inside of a structure, and the cell derived from the tissue of the recipient which exists in the exterior of a structure (cell impermeable material, a film | membrane, a film, etc.) It may be composed of various materials. The structure is formed from, for example, the “substantially sheet-like composition” in the present invention, or formed from the substantially sheet-like composition (that is, the substantially sheet-like composition is molded in advance, For example, it may be a three-dimensional form such as a bag. The structure in the present invention is not limited, but is preferably formed from a material that can be easily molded. For example, when it is intended to remove and use an organ having a three-dimensional vascular network or a regenerated organ formed from a structure, the structure in the present invention is a blood vessel or an organ source contained in the structure. It is preferably non-adhesive with the group or the like or can be easily separated. For the structure, a material that can be expanded and contracted or deformed may be used.
本発明における構造体の内部に備えられる中空部のサイズを所望により変更することで、所望のサイズを有する三次元血管網を有する器官又は再生臓器を、当該中空部内で形成させることができる。また、本発明における構造体の内部に備えられる中空部の形状を所望により変更することで、例えば、移植を意図する臓器又は組織の形態又はそれらが有する三次元血管網と実質的に同一または類似した形態を有する、三次元血管網を有する又は再生臓器を、当該中空部内で形成することができる。本発明における構造体は、チャンバー移植を受ける動物の生体外に、構造体の一部が突出する(はみ出す)ように、生体内に配置してもよい。
By changing the size of the hollow part provided in the structure of the present invention as desired, an organ having a three-dimensional vascular network having a desired size or a regenerated organ can be formed in the hollow part. Further, by changing the shape of the hollow part provided in the structure of the present invention as desired, for example, the form of an organ or tissue intended for transplantation or the three-dimensional vascular network that they have is substantially the same or similar. A reconstructed organ having a three-dimensional vascular network having the above-described form can be formed in the hollow portion. The structure in the present invention may be disposed in the living body so that a part of the structure protrudes (protrudes) out of the living body of the animal receiving the chamber transplantation.
一実施態様において、前記「構造体」は、前記血管に貫通させる前に、又は、生体内に配置される前に、前記構造体の内部に、器官原基等が、あらかじめ含まれていてよい。あるいは、別の実施態様において、前記「構造体」は、前記血管を貫通させた後に、又は、生体内に配置された後に、前記構造体の内部に、器官原基等が含まれてよい。
In one embodiment, the “structure” may include an organ primordium or the like in advance inside the structure before penetrating the blood vessel or before being placed in a living body. . Alternatively, in another embodiment, the “structure” may include an organ primordia or the like inside the structure after penetrating the blood vessel or after being placed in a living body.
本発明において、血管新生因子とは、脈管形成又は血管新生に関与する因子であれば、特に限定されない。血管新生因子としては、限定はされないが、例えば、線維芽細胞増殖因子(FGF)(例えば、b-FGF)、上皮成長因子(EGF)、血管内皮細胞増殖因子(VEGF)、アンギオポエチン、血小板由来増殖因子(PDGF)、トランスフォーミング増殖因子-β(TGF-β)、マトリックスメタロプロテアーゼ(MMP)、VE-カドヘリン(CD144)、CD31、エフリン、プラスミノーゲンアクチベーター、誘導型一酸化窒素合成酵素(iNOS)、シクロオキシゲナーゼ-2(COX-2)、プロスタグランジン類、胎盤成長因子(PIGF)を挙げてもよい。
In the present invention, the angiogenic factor is not particularly limited as long as it is a factor involved in angiogenesis or angiogenesis. Examples of the angiogenic factor include, but are not limited to, fibroblast growth factor (FGF) (eg, b-FGF), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), angiopoietin, platelets Derived growth factor (PDGF), transforming growth factor-β (TGF-β), matrix metalloprotease (MMP), VE-cadherin (CD144), CD31, ephrin, plasminogen activator, inducible nitric oxide synthase (INOS), cyclooxygenase-2 (COX-2), prostaglandins, placental growth factor (PIGF).
本発明において、器官原基とは、生体において、発生の段階が進むと特定の器官に発生することが決定づけられた胚の領域または胚の構造をいい、単に「原基」と呼ばれることもある。生体におけるほぼ全ての器官は、胎児期の発生プログラムによって上皮系幹細胞と間葉系幹細胞から誘導された器官原基から発生し、所定の位置、所定の数に発達する。器官原基は発生の過程で血管産生因子を産生し、器官原基の内部又は周囲に血管を誘導することから、本発明における構造体の内部に器官原基を内包させて培養することにより、三次元血管構造を有する器官を製造することができる。本発明において用いる器官原基は、胎児性のものであってもよく、ES細胞やiPS細胞から人工的に誘導した器官原基(再生器官原基といってもよい)であってもよい。
In the present invention, the organ primordium refers to a region of the embryo or the structure of the embryo that is determined to occur in a specific organ as the developmental stage proceeds in the living body, and may be simply referred to as “primordium”. . Almost all organs in a living body are generated from organ primordia derived from epithelial stem cells and mesenchymal stem cells by a fetal development program, and develop into a predetermined position and a predetermined number. The organ primordium produces a blood vessel producing factor in the course of development, and induces blood vessels inside or around the organ primordium. By culturing the organ primordia in the structure of the present invention, An organ having a three-dimensional vascular structure can be produced. The organ primordium used in the present invention may be fetal or may be an organ prima artificially derived from ES cells or iPS cells (may be called regenerative organ primordia).
本発明の方法に用いられる器官原基の種類は特に限定されないが、例えば毛包原基、歯胚原基、肝臓原基、腎臓原基、ラトケ嚢、または、内分泌器官(例えば、副腎、膵臓、甲状腺、副甲状腺)の原基を挙げることができる。
The type of organ primordium used in the method of the present invention is not particularly limited. For example, hair follicle primordium, tooth germ primordium, liver primordium, kidney primordium, rat sac, or endocrine organ (eg, adrenal gland, pancreas) , Thyroid, parathyroid)).
また、本発明の方法によって形成される、三次元血管網を有する器官は、生体における器官と同様に完全な構造および機能を有する器官であってよく、生体における器官の構造および機能の一部を有する器官であってもよい。例えば、内分泌器官の器官原基を用いて本発明の方法を実施する場合、形成される器官は、生体における内分泌器官を完全に代替しうる構造および機能を有していなくとも、少なくとも内分泌機能を有していれば、例えば内分泌疾患の治療に好適に用いることができる。また、腎臓は泌尿器系器官としての機能だけでなく、エリスロポエチンを分泌する内分泌器官としての機能も有する。腎臓原基を用いて本発明の方法を実施する場合、形成される器官は、生体における腎臓を完全に代替しうる構造および機能を有していなくとも、少なくとも内分泌機能(例えば、エリスロポエチン分泌機能)を有していれば、例えば内分泌疾患の治療に好適に用いることができる。
In addition, an organ having a three-dimensional vascular network formed by the method of the present invention may be an organ having a complete structure and function similar to an organ in a living body, and a part of the structure and function of the organ in the living body. It may be an organ. For example, when the method of the present invention is performed using an organ primordium of an endocrine organ, the formed organ has at least an endocrine function even if it does not have a structure and function that can completely replace the endocrine organ in the living body. If it has, it can be suitably used for the treatment of endocrine diseases, for example. In addition, the kidney functions not only as a urinary organ but also as an endocrine organ that secretes erythropoietin. When the method of the present invention is performed using a renal primordium, the formed organ may have at least an endocrine function (for example, an erythropoietin secretion function) even if it does not have a structure and function that can completely replace the kidney in the living body. Can be suitably used for the treatment of endocrine diseases, for example.
また、本発明において、構造体の内部に含まれる、器官原基の種類、形状、大きさ、血管構成細胞の細胞数等は、目的とする三次元血管網を有する器官や再生臓器のサイズ等に応じて、当業者が、適宜、決定することができる。
Further, in the present invention, the type, shape, size, number of cells of vascular constituent cells contained in the structure, the size of the organ having the desired three-dimensional vascular network, the size of the regenerated organ, etc. Depending on the situation, those skilled in the art can appropriately determine.
本発明において、「生体に接続されたまま、1又は複数の血管を、構造体を貫通するように、配置する」とは、前記血管が構造体に配置される際、前記血管がレシピエント(生体)から分離(単離)されることなく、生体に物理的に連結したまま、構造体が配置されることを意味してよい。前記血管は、生体に接続されたまま、生体の臓器又は組織から、全体的又は部分的に剥離されて、構造体を貫通するような態様で、当該構造体で封入されるのが好ましい。当該剥離される血管は、レシピエントにあらかじめ移植された同種もしく異種の動物由来の血管又は人工血管であるのが好ましく、異種の動物由来の血管であるのがより好ましい。同種もしく異種の動物由来の血管又は人工血管をあらかじめレシピエントに移植しておく場合、好ましくは免疫不全動物であるレシピエントに、あらかじめ用意した前記血管を、レシピエントが有する既存の血管と置換するか、又は、シャントとして(血液が本来通るべき血管と別のルートを流れる状態を作り出すように)移植しておき、前記移植した血管に、構造体を貫通させるのが好ましい。前記移植した血管が異種の動物由来の血管である場合、形成される三次元血管網を有する器官もしくは当該三次元血管網を含む再生臓器又はそれを含む構造体は、前記「異種の動物」に(前記移植した血管を再度、生体内に戻すような態様で、)移植することが好ましい。
In the present invention, “place one or more blood vessels so as to penetrate the structure while being connected to the living body” means that when the blood vessel is placed in the structure, the blood vessel is the recipient ( It may mean that the structure is arranged while being physically connected to the living body without being separated (isolated) from the living body. It is preferable that the blood vessel is enclosed with the structure in such a manner that the blood vessel is entirely or partially detached from the organ or tissue of the living body while being connected to the living body and penetrates the structure. The blood vessel to be exfoliated is preferably a blood vessel or an artificial blood vessel derived from the same or different animal previously transplanted to the recipient, and more preferably a blood vessel derived from a different animal. When a blood vessel or an artificial blood vessel derived from the same or different animal is previously transplanted to the recipient, it is preferable to replace the previously prepared blood vessel with the recipient's existing blood vessel in the recipient who is preferably an immunodeficient animal. Alternatively, it is preferably transplanted as a shunt (to create a state in which blood flows through a different route from the blood vessel through which blood originally passes), and the structure is penetrated through the transplanted blood vessel. When the transplanted blood vessel is a blood vessel derived from a heterogeneous animal, an organ having a three-dimensional blood vessel network to be formed, a regenerative organ containing the three-dimensional blood vessel network, or a structure containing the same is referred to as the “heterologous animal”. It is preferable to transplant (in such a mode that the transplanted blood vessel is returned to the living body again).
前記血管を前記構造体に貫通させるプロセスは、例えば、前記血管を、あらかじめ、生体外で構造体に貫通するように配置してから、前記構造体を貫通させた前記血管を、移植を意図する場所で、生体内の血管に、血管縫合等により接続させてもよい。かかる場合、前記構造体を貫通させた前記血管を、生体内の血管に連結させる前に、前記構造体の内部に、器官原基や血管構成細胞を含めてもよい。あるいは、前記構造体を貫通させた前記血管を、生体内の血管に接続させた後に、器官原基や血管構成細胞を含めてもよい。
In the process of penetrating the blood vessel into the structure, for example, the blood vessel is arranged so as to penetrate the structure in vitro, and then the blood vessel penetrating the structure is intended for transplantation. It may be connected to a blood vessel in a living body by vascular suture or the like at a place. In such a case, organ primordia and vascular constituent cells may be included in the structure before the blood vessel penetrating the structure is connected to the blood vessel in the living body. Or after connecting the said blood vessel which penetrated the said structure to the blood vessel in a biological body, you may include an organ primordia and a blood vessel constituent cell.
前記構造体の内部に含まれる器官原基や血管構成細胞と、前記構造体を貫通する血管とは、前記器官原基や血管構成細胞に、前記血管から栄養供給等が行われる限り、接しなくてもよいが、接するのが好ましい。
The organ primordium and blood vessel constituent cells contained in the structure and the blood vessel penetrating the structure do not contact each other as long as nutrient supply or the like is performed from the blood vessels to the organ primordia or blood vessel constituent cells. It may be, but it is preferable to touch.
本発明において、1又は複数の血管が構造体を貫通するとは、構造体に備えられる中空部を、血管が貫通するようにして移出入することを意味してよい。血管が構造体を移出入する部分、すなわち、構造体に備えられる開口部は、1又は複数であってよい。例えば、複数(例えば2つ)に分岐した血管が、構造体に備えられる、前記分岐した血管の数に対応した数の開口部を通じて、構造体の中空部に移入し、さらに、移入した血管の数と同一でも異なっていてもよい、複数に分岐した血管が、それぞれ、移入した開口部(移入用開口部)とは別の開口部(移出用開口部)を通じて、構造体の中空部から移出してもよい。また、例えば、当該開口部が1つの場合には、1又は複数の血管が、同一の開口部を通じて、構造体に備えられる中空部を移出入するように構成させることができる。
好ましい一実施態様において、1つの非分岐状の血管が、1つの開口部に移入し、構造体の中空部を貫通し、かつ、別の1つの開口部から移出するように構成させてよい。これにより、構造体の中空部に、臓器型の三次元血管網を有する器官を構築させることができる。 In the present invention, the phrase “one or more blood vessels penetrate the structure” may mean that the hollow portion provided in the structure is moved in and out so that the blood vessel penetrates. There may be one or a plurality of portions where the blood vessel enters and exits the structure, that is, the opening provided in the structure. For example, a plurality of (for example, two) branched blood vessels are transferred to the hollow portion of the structure through a number of openings corresponding to the number of the branched blood vessels provided in the structure, and the transferred blood vessels The blood vessels branched into a plurality, which may be the same as or different from each other, are transferred from the hollow portion of the structure through an opening (export opening) different from the transferred opening (transfer opening). May be. For example, when there is one opening, one or a plurality of blood vessels can be configured to move in and out of the hollow portion provided in the structure through the same opening.
In a preferred embodiment, one unbranched blood vessel may be configured to import into one opening, penetrate the hollow portion of the structure, and exit from another opening. As a result, an organ having an organ-type three-dimensional vascular network can be constructed in the hollow portion of the structure.
好ましい一実施態様において、1つの非分岐状の血管が、1つの開口部に移入し、構造体の中空部を貫通し、かつ、別の1つの開口部から移出するように構成させてよい。これにより、構造体の中空部に、臓器型の三次元血管網を有する器官を構築させることができる。 In the present invention, the phrase “one or more blood vessels penetrate the structure” may mean that the hollow portion provided in the structure is moved in and out so that the blood vessel penetrates. There may be one or a plurality of portions where the blood vessel enters and exits the structure, that is, the opening provided in the structure. For example, a plurality of (for example, two) branched blood vessels are transferred to the hollow portion of the structure through a number of openings corresponding to the number of the branched blood vessels provided in the structure, and the transferred blood vessels The blood vessels branched into a plurality, which may be the same as or different from each other, are transferred from the hollow portion of the structure through an opening (export opening) different from the transferred opening (transfer opening). May be. For example, when there is one opening, one or a plurality of blood vessels can be configured to move in and out of the hollow portion provided in the structure through the same opening.
In a preferred embodiment, one unbranched blood vessel may be configured to import into one opening, penetrate the hollow portion of the structure, and exit from another opening. As a result, an organ having an organ-type three-dimensional vascular network can be constructed in the hollow portion of the structure.
血管を構造体に貫通させて、かつ、前記構造体の内部に器官原基や血管構成細胞等が含まれる状態にした後には、前記血管が通過する前記開口部を除き、構造体を実質的に閉鎖させるのが望ましい。ここで、「実質的に閉鎖させる」とは、構造体の内部に、外部から細胞や血管が侵入しないように構成させ、かつ、構造体の内部から外部に器官原基や血管構成細胞等が漏れ出さず、構造体の中空部に形成される新生血管が、外部に侵出しないように構成させることを意味する。一実施態様において、構造体の内部に含まれる器官原基や血管構成細胞等は、構造体の内部から外部に漏れ出さないように、例えば、ゲル状物質等に混合されて含まれていてもよく、又は、前記構造体の内部に包埋又は接着されていてもよい。
After the blood vessel has penetrated the structure and the internal structure of the structure contains the organ primordium and blood vessel constituent cells, the structure is substantially removed except for the opening through which the blood vessel passes. It is desirable to close it. Here, “substantially close” means that the structure is structured such that cells and blood vessels do not invade from the outside, and the organ primordia and blood vessel constituent cells are formed from the inside to the outside of the structure. This means that the neovascularization formed in the hollow portion of the structure does not leak out and does not leak out. In one embodiment, the organ primordium, blood vessel constituent cells, and the like contained in the structure may be included in a gel substance or the like so as not to leak from the structure to the outside. Alternatively, it may be embedded or adhered inside the structure.
本発明において、「in vivoで培養する」とは、限定はされないが、チャンバー移植を受けたレシピエントを生育させることを意味してよい。in vivoで培養する期間は、チャンバー移植に用いる構造体の大きさ;構造体の内部に含まれる、細胞の種類、細胞数や細胞の増殖速度;形成させる三次元血管網を有する器官又は再生臓器のサイズ等に応じて、当業者が、適宜、決定することができる。
In the present invention, “culturing in vivo” is not limited, but may mean growing a recipient who has undergone chamber transplantation. The in vivo culture period is the size of the structure used for chamber transplantation; the type of cells contained in the structure, the number of cells and the cell growth rate; an organ having a three-dimensional vascular network to be formed or a regenerative organ Those skilled in the art can appropriately determine the size according to the size.
本発明において、血管構成細胞とは、血管を構成する細胞であれば特に限定されない。器官原基に、血管構成細胞を組み合わせて、構造体の内部に含め、in vivo培養させることで、血管新生を安定化することができる。血管構成細胞としては、限定はされないが、血球血管芽細胞や血管芽細胞などの血管内皮前駆細胞;血管内皮細胞(例えば、静脈内皮細胞及び動脈内皮細胞);血管幹細胞;血管平滑筋細胞や血管周皮細胞(ペリサイト)などの血管壁細胞;間葉系幹細胞;繊維芽細胞;血球細胞;その他の血管形成を補助する細胞を挙げてもよい。前記間葉系幹細胞は、血管新生された血管の、壁細胞の前駆細胞として、血管を効率的に安定化できる。一実施態様において、器官原基と一緒に含まれる血管構成細胞は、血管内皮細胞及び/又は間葉系幹細胞を含むことが好ましい。本発明で用いる血管構成細胞は、生体由来のものであってもよく、多能性幹細胞であるES細胞やiPS細胞や多能性前駆細胞等から分化させて作製した、血管構成細胞であってもよい。
In the present invention, the blood vessel constituent cell is not particularly limited as long as it is a cell constituting a blood vessel. Angiogenesis can be stabilized by combining vascular constituent cells with the organ primordia and including them in the structure, followed by in vivo culture. Vascular component cells include, but are not limited to, vascular endothelial progenitor cells such as blood cell hemangioblasts and hemangioblasts; vascular endothelial cells (eg, venous endothelial cells and arterial endothelial cells); vascular stem cells; vascular smooth muscle cells and blood vessels Vascular wall cells such as pericytes (pericytes); mesenchymal stem cells; fibroblasts; blood cells; and other cells that assist in angiogenesis. The mesenchymal stem cells can efficiently stabilize blood vessels as progenitor cells of vascularized blood vessels and mural cells. In one embodiment, the vascular component cells included with the organ primordium preferably comprise vascular endothelial cells and / or mesenchymal stem cells. The vascular constituent cells used in the present invention may be derived from living organisms, and are vascular constituent cells produced by differentiation from ES cells, iPS cells, pluripotent progenitor cells, etc., which are pluripotent stem cells. Also good.
器官原基と血管構成細胞とは、器官原基の性質、種類、増殖安定性;血管新生の効率;形成される三次元血管網の態様;三次元血管網とネットワークを形成する細胞の機能や性質等に応じて、当業者が、適宜、所定の混合比率で、前記構造体の内部に含めることができる。
Organ primordia and vascular constituent cells are the nature, type, and growth stability of organ primordia; the efficiency of angiogenesis; the mode of the three-dimensional vascular network that is formed; the function of the cells that form the network with the three-dimensional vascular network Depending on the properties and the like, those skilled in the art can appropriately include them in the structure at a predetermined mixing ratio.
一実施態様において、前記構造体の内部には、さらに、血管新生因子が含まれていてよい。すなわち、前記構造体が備える中空部に、器官原基から産生される血管新生因子とは別に、追加で血管新生因子を注入等してもよい。
In one embodiment, the structure may further contain an angiogenic factor. That is, in addition to the angiogenic factor produced from the organ primordia, an angiogenic factor may be additionally injected into the hollow part of the structure.
本発明における前記ステップ(b)により形成される三次元血管網を有する器官は、移植等を意図する臓器又は組織の機能の全部又は一部を有するか又は模倣する、再生臓器として機能できることが理解されよう。形成される再生臓器は、生体から摘出後、構造体の内部から取り出して(取り外して)、又は、構造体の内部に含めたままで、用いてよい。また、生体から摘出した再生臓器は、同所的又は異所的な移植に用いてもよい。前記再生臓器は、対象となる臓器又は組織又はそれらの一部と、機能を代替、補強又は回復させるために、三次元血管網を形成させる際に最初に用いた、構造体の内部に移出入させた血管と、移植を受ける生体の血管とを、血管縫合等させることで、生体に接続させてもよい。
It is understood that the organ having the three-dimensional vascular network formed by the step (b) in the present invention can function as a regenerative organ having or imitating all or part of the function of the organ or tissue intended for transplantation or the like. Let's be done. The formed regenerative organ may be used after being removed from the living body and taken out (removed) from the inside of the structure or included in the structure. In addition, a regenerated organ removed from a living body may be used for orthotopic or ectopic transplantation. The regenerative organ moves into and out of the structure that was originally used to form the three-dimensional vascular network to replace, reinforce, or restore the target organ or tissue or part thereof. The vascularized blood vessel and the blood vessel of the living body to be transplanted may be connected to the living body by, for example, vascular stitching.
当業者であれば、器官原基、血管構成細胞や、場合により、血管新生因子や薬剤等の各因子を、所望の順番で、適宜、構造体の内部に含めて、チャンバー移植、三次元血管網の形成又は再生臓器の形成等を行うことができることが理解されよう。例えば、血管構成細胞は、器官原基と同時に構造体の内部に含めてもよいし、あるいは、器官原基よりも前又は後に構造体の内部に含めてもよい。また、器官原基から産生される血管新生因子とは別に、構造体へ追加の血管新生因子を注入する場合には、器官原基や血管構成細胞を構造体へ含める際に追加の血管新生因子を同時に注入してもよく、器官原基や血管構成細胞を構造体へ含める際とは異時に追加の血管新生因子を注入してもよい。
A person skilled in the art will include organ primordia, vascular constituent cells, and optionally, factors such as angiogenic factors and drugs, in the desired order, as appropriate, within the structure, chamber transplantation, three-dimensional vessel It will be understood that formation of a net or formation of a regenerative organ can be performed. For example, the vascular constituent cells may be included in the structure simultaneously with the organ primordium, or may be included in the structure before or after the organ primordium. In addition to the angiogenic factor produced from the organ primordia, when an additional angiogenic factor is injected into the structure, the additional angiogenic factor is included when the organ primordia or vascular constituent cells are included in the structure. May be injected at the same time, or an additional angiogenic factor may be injected at a different time from when organ primordia or vascular constituent cells are included in the structure.
本発明において、in vivoで形成された三次元血管網を有する器官もしくは再生臓器又はそれを含む構造体を摘出した後には、生命維持の観点から、例えば人工血管等を用いて、切除された生体内の血管どうしを連結することが好ましい。
In the present invention, after removing an organ having a three-dimensional vascular network formed in vivo or a reconstructed organ or a structure containing the same, a living body that has been excised using, for example, an artificial blood vessel from the viewpoint of life maintenance. It is preferable to connect blood vessels in the body.
別の実施態様において、本発明は、本発明の「三次元血管網を有する器官を、動物におけるin vivoで、形成させる方法」によって形成され得る(得られ得る(obtainable))、三次元血管網を有する器官もしくは再生臓器又はそれを含む構造体を提供する。ここで、形成され得る(得られうる)三次元血管網を有する器官もしくは再生臓器又はそれを含む構造体とは、本明細書において具体的に例示された方法によって製造されるものには限定されず、本発明の概念に含まれるあらゆる形成方法によって製造されるものも対象となる。
In another embodiment, the present invention can be formed (obtainable) by the “method of forming an organ having a three-dimensional vascular network in vivo in an animal” of the present invention. Or a regenerative organ or a structure containing the same. Here, the organ or regenerative organ having a three-dimensional vascular network that can be formed (obtainable) or a structure including the same is limited to that manufactured by the method specifically exemplified in this specification. Of course, those manufactured by any forming method included in the concept of the present invention are also targeted.
さらに、別の実施態様において、本発明は、本発明の「三次元血管網を有する器官を、動物におけるin vivoで、形成させる方法」によって形成された(得られた(obtained))、三次元血管網を有する器官もしくは再生臓器又はそれを含む構造体を提供する。形成された三次元血管網を有する器官もしくは再生臓器又はそれを含む構造体は、生体から摘出後、移植等に用いてよい。また、本発明の方法によって製造した三次元血管網を有する器官は、移植を行う前に、例えばWO2011/093268に記載のような臓器又は組織の灌流培養方法及び灌流培養装置に接続し、生体外での培養を行ってもよい。
Furthermore, in another embodiment, the present invention is a three-dimensional shape formed (obtained) by the “method for forming an organ having a three-dimensional vascular network in vivo in an animal” of the present invention. Provided is an organ having a vascular network or a regenerative organ or a structure including the same. The formed organ or regenerative organ having a three-dimensional vascular network or a structure containing the same may be used for transplantation after being removed from a living body. In addition, an organ having a three-dimensional vascular network produced by the method of the present invention is connected to an organ or tissue perfusion culture method and perfusion culture apparatus as described in WO2011 / 093268, for example, before transplantation. You may perform culture | cultivation in.
本発明において、形成される三次元血管網を有する器官もしくは再生臓器又はそれを含む構造体の移植は、形成される三次元血管網を有する器官もしくは再生臓器又はそれを含む構造体の温度を4℃~37℃の状態を維持しながら行うことができ、15℃~33℃の状態を維持しながら行われることが好ましく、20℃~25℃の状態を維持しながら行われることが最も好ましい。
In the present invention, the transplantation of an organ having a three-dimensional vascular network to be formed or a regenerative organ or a structure including the same is performed by setting the temperature of the organ having a three-dimensional vascular network to be formed or a structure including the organ to 4. It can be carried out while maintaining a state of from 35 ° C. to 37 ° C., preferably carried out while maintaining a state of from 15 ° C. to 33 ° C., and most preferably carried out while maintaining a state of from 20 ° C. to 25 ° C.
<三次元血管網の形成用組成物>
本発明の別の実施態様は、三次元血管網を有する器官の形成用組成物であって、
前記組成物は、略シート状組成物であり、1又は複数の開口部を備え、かつ、内部に中空部を備える構造体として構成させることができ、
ここで、
1又は複数の血管が、前記開口部を通じて、前記構造体を貫通するように配置され、
前記構造体は、前記血管が通過する前記開口部を除き、実質的に閉鎖され、
前記構造体の内部には、器官原基が含まれ、及び
前記構造体の内部の中空部において三次元血管網を有する器官が形成される、
ことを特徴とする。
技術的に矛盾しない限り、本明細書に記載の、あらゆる態様の任意の1又は複数を適宜組み合わせて、本発明を実施してよい。 <Composition for forming a three-dimensional vascular network>
Another embodiment of the present invention is a composition for forming an organ having a three-dimensional vascular network, comprising:
The composition is a substantially sheet-like composition, and can be configured as a structure including one or a plurality of openings and a hollow portion inside.
here,
One or more blood vessels are disposed through the opening and through the structure;
The structure is substantially closed except for the opening through which the blood vessel passes;
In the structure, an organ primordium is included, and an organ having a three-dimensional vascular network is formed in a hollow portion in the structure.
It is characterized by that.
As long as there is no technical contradiction, the present invention may be implemented by appropriately combining any one or more of all aspects described in this specification.
本発明の別の実施態様は、三次元血管網を有する器官の形成用組成物であって、
前記組成物は、略シート状組成物であり、1又は複数の開口部を備え、かつ、内部に中空部を備える構造体として構成させることができ、
ここで、
1又は複数の血管が、前記開口部を通じて、前記構造体を貫通するように配置され、
前記構造体は、前記血管が通過する前記開口部を除き、実質的に閉鎖され、
前記構造体の内部には、器官原基が含まれ、及び
前記構造体の内部の中空部において三次元血管網を有する器官が形成される、
ことを特徴とする。
技術的に矛盾しない限り、本明細書に記載の、あらゆる態様の任意の1又は複数を適宜組み合わせて、本発明を実施してよい。 <Composition for forming a three-dimensional vascular network>
Another embodiment of the present invention is a composition for forming an organ having a three-dimensional vascular network, comprising:
The composition is a substantially sheet-like composition, and can be configured as a structure including one or a plurality of openings and a hollow portion inside.
here,
One or more blood vessels are disposed through the opening and through the structure;
The structure is substantially closed except for the opening through which the blood vessel passes;
In the structure, an organ primordium is included, and an organ having a three-dimensional vascular network is formed in a hollow portion in the structure.
It is characterized by that.
As long as there is no technical contradiction, the present invention may be implemented by appropriately combining any one or more of all aspects described in this specification.
本発明の三次元血管網を有する器官の形成(製造)に用いることができる略シート状組成物(すなわち、実質的にシート状の組成物)は、前記血管を最終的に封入する(包み込む)ことができれば、どのような形状であってもよい。略シート状組成物は、あらかじめ、内部に中空部を有するように成形されていてもよいし、又は、前記血管を封入するように配置させる際に、内部に中空部を有するように成形されてもよい。例えば、重ね合わせた2つの略シート状組成物の内側の外周同士を、袋状になる(閉鎖空間となる)ように、最終的には一周にわたって固定して、内部に中空部を備える構造体を設けてもよい。あるいは、1つの略シート状組成物を半分に折り曲げて、接触する内側の外周同士を、例えば、餃子(中国や日本の食べ物の一種)の皮で食材を包むような態様で、内部に空間ができるように固定してもよい。あるいは、1つの略シート状組成物を折りたたむか、複数の略シート状組成物を繋ぎ合わせて、内部に中空部を有する、例えば、実質的に柱体(円柱や角柱(直方体、立方体を含む)等)の形状、実質的に錐体(円錐や角錐等)の形状、実質的に球の形状等に構成してもよい。
A substantially sheet-like composition (that is, a substantially sheet-like composition) that can be used to form (manufacture) an organ having a three-dimensional vascular network of the present invention finally encloses (encloses) the blood vessel. Any shape is possible as long as it is possible. The substantially sheet-like composition may be molded in advance so as to have a hollow portion inside, or when arranged so as to enclose the blood vessel, it is molded so as to have a hollow portion inside. Also good. For example, a structure in which the inner peripheries of two substantially sheet-shaped compositions that are overlapped are finally fixed over one circumference so as to form a bag (closed space), and a hollow portion is provided inside. May be provided. Alternatively, one substantially sheet-shaped composition is folded in half, and the inner peripheries that come into contact with each other, for example, are wrapped in the skin of dumplings (a kind of Chinese or Japanese food), and there is a space inside It may be fixed as possible. Alternatively, one substantially sheet-shaped composition is folded, or a plurality of substantially sheet-shaped compositions are joined together to have a hollow portion inside, for example, a substantially columnar body (including a cylinder and a prism (including a rectangular parallelepiped and a cube). Etc.), a substantially conical shape (such as a cone or a pyramid), or a substantially spherical shape.
前記略シート状組成物は、構造体の内部に含まれる細胞、及び、構造体の外部に存在するレシピエントの組織由来の細胞を透過させないもの(細胞不透過性の材料、膜、フィルムなど)であればどのような材料で構成されていてもよい。また、前記略シート状組成物は、生体適合性の材料で構成されるのが好ましい。また、前記略シート状組成物は、伸縮又は変形が可能な材料を用いてもよい。好ましい一実施態様において、前記略シート状組成物は、構造体の内部に含まれる細胞及び構造体の外部に存在するレシピエントの組織由来の細胞を通過させないが、液性因子(水やサイトカイン等)を(自由に)通過させることが可能な材料(例えば、透析膜などの半透膜/多孔質膜)からなってよい。前記略シート状組成物の材料としては、限定はされないが、例えば、再生セルロース(セロファン)、アセチルセルロース、ポリアクリロニトリル、テフロン、ポリエステル系ポリマーアロイ、又は、ポリスルホンであってよい。
The substantially sheet-like composition does not permeate cells contained in the structure and cells derived from the recipient tissue existing outside the structure (cell-impermeable material, membrane, film, etc.) Any material may be used as long as it is. Moreover, it is preferable that the said substantially sheet-like composition is comprised with a biocompatible material. The substantially sheet-like composition may be made of a material that can be stretched or deformed. In a preferred embodiment, the substantially sheet-shaped composition does not pass cells contained in the structure and cells derived from the recipient tissue existing outside the structure, but humoral factors (water, cytokines, etc.) ) May be (freely) allowed to pass through (eg, a semipermeable membrane / porous membrane such as a dialysis membrane). The material of the substantially sheet-shaped composition is not limited, but may be, for example, regenerated cellulose (cellophane), acetylcellulose, polyacrylonitrile, Teflon, polyester polymer alloy, or polysulfone.
また、例えば、形成される三次元血管網を有する器官又は再生臓器を構造体から取り外して使用することを企図する場合、前記略シート状組成物は、血管や、構造体の内部に含まれる細胞等と、非接着性であるか、又は、容易に分離できることが好ましい。また、前記略シート状組成物は、構造体の内部を容易に確認できるように、透明又は半透明であるのが好ましい。
In addition, for example, when it is intended to use an organ having a three-dimensional vascular network formed or a regenerative organ by removing it from the structure, the substantially sheet-like composition contains blood vessels and cells contained in the structure. It is preferable that it is non-adhesive or can be easily separated. Moreover, it is preferable that the said substantially sheet-like composition is transparent or semi-transparent so that the inside of a structure can be confirmed easily.
本明細書において用いられる用語は、特定の実施態様を説明するために用いられるのであり、発明を限定する意図ではない。
The terms used in the present specification are used to describe a specific embodiment, and are not intended to limit the invention.
本明細書において用いられる「含有する」又は「含む」との用語は、文脈上明らかに異なる理解をすべき場合を除き、記載された事項(部材、ステップ、要素または数字等)が存在することを意図するものであり、それ以外の事項(部材、ステップ、要素または数字等)が存在することを排除しない。前記それ以外の事項(部材、ステップ、要素または数字等)が存在することを排除してもよい場合、「からなる(consist of)」という用語があてられてよい。用語「含有する」又は「含む」の概念は、用語「からなる」の概念を包含する。
As used herein, the terms “comprising” or “including” include the items (members, steps, elements, numbers, etc.) described, unless the context clearly requires different understanding. It does not exclude the presence of other matters (members, steps, elements, numbers, etc.). When it is possible to exclude the presence of other items (members, steps, elements, numbers, etc.), the term “consist of” may be used. The term “contains” or “includes” encompasses the concept of the term “consisting of”.
異なる定義が無い限り、ここに用いられるすべての用語(技術用語及び科学用語を含む。)は、本発明が属する技術の当業者によって広く理解されるのと同じ意味を有する。ここに用いられる用語は、異なる定義が明示されていない限り、本明細書及び関連技術分野における意味と整合的な意味を有するものとして解釈されるべきであり、理想化され、又は、過度に形式的な意味において解釈されるべきではない。
Unless otherwise defined, all terms used herein (including technical and scientific terms) have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms used herein should be interpreted as having a meaning consistent with the meaning in this specification and the related technical field, unless otherwise defined, idealized, or overly formal. It should not be interpreted in a general sense.
本発明の実施態様は模式図を参照しつつ説明される場合があるが、模式図である場合、説明を明確にするために、誇張されて表現されている場合がある。
The embodiment of the present invention may be described with reference to a schematic diagram, but in the case of a schematic diagram, it may be exaggerated for clarity of explanation.
第1の、第2の等の用語が種々の要素を表現するために用いられるが、これらの要素はそれらの用語によって限定されるべきではないことが理解される。これらの用語は一つの要素を他の要素と区別するためのみに用いられているのであり、例えば、第1の要素を第2の要素と記し、同様に、第2の要素は第1の要素と記すことは、本発明の範囲を逸脱することなく可能である。
Although terms such as first, second, etc. are used to represent various elements, it is understood that these elements should not be limited by those terms. These terms are only used to distinguish one element from another, for example, the first element is referred to as the second element, and similarly, the second element is the first element. Can be made without departing from the scope of the present invention.
本明細書において、成分含有量や数値範囲等を示すのに用いられるあらゆる数値は、特に明示がない限り、用語「約」の意味を包含するものとして解釈される。
In the present specification, any numerical value used to indicate the component content, numerical value range, etc. is interpreted as including the meaning of the term “about” unless otherwise specified.
本明細書中に引用される文献は、それらのすべての開示が、本明細書中に援用されているとみなされるべきであって、当業者は、本明細書の文脈に従って、本発明の精神及び範囲を逸脱することなく、それらの先行技術文献における関連する開示内容を、本明細書の一部として援用して理解する。
References cited in this specification are to be regarded as the entire disclosure of which is hereby incorporated by reference, and those skilled in the art will recognize the spirit of the invention in accordance with the context of this specification. And without departing from the scope, the relevant disclosures in those prior art documents are hereby incorporated by reference.
以下において、本発明を、実施例を参照してより詳細に説明する。しかしながら、本発明はいろいろな態様により具現化することができ、ここに記載される実施例に限定されるものとして解釈されてはならない。
In the following, the present invention will be described in more detail with reference to examples. However, the invention can be embodied in various ways and should not be construed as limited to the embodiments set forth herein.
器官原基(及び血管構成細胞)のチャンバー移植
発生過程にある胎児から取得した未熟な細胞は、血管新生因子を豊富に放出することで知られている。本実施例においては、複数種の胎児性の器官原基を用いた、チャンバー移植を行った。
移植直後の器官原基は、自然拡散による物質供給のみによって維持される。したがって、器官原基を血管に近接して設置し、かつ、器官原基に対する血管構成細胞の懸濁液の容量を少なくすることが好ましいことを本発明者らは発見した。また、血管に近接して設置することを可能とし、かつ、移植物の大きさを最小限にするために、使用するゲルの量や細胞数を減少させたところ、チャンバー移植に多種多様な組織が利用できることを本発明者らは発見した。 It is known that immature cells obtained from fetuses in the process of organ transplantation of organ primordia (and vascular constituent cells) release abundant angiogenic factors. In this example, chamber transplantation using a plurality of types of fetal organ primordia was performed.
The organ primordium immediately after transplantation is maintained only by substance supply by natural diffusion. Accordingly, the present inventors have found that it is preferable to place the organ primordium close to the blood vessel and reduce the volume of the suspension of vascular constituent cells relative to the organ primordia. In addition, to reduce the amount of gel and the number of cells that can be placed in close proximity to blood vessels and to minimize the size of the implant, a wide variety of tissues can be used for chamber transplantation. The present inventors have found that can be used.
発生過程にある胎児から取得した未熟な細胞は、血管新生因子を豊富に放出することで知られている。本実施例においては、複数種の胎児性の器官原基を用いた、チャンバー移植を行った。
移植直後の器官原基は、自然拡散による物質供給のみによって維持される。したがって、器官原基を血管に近接して設置し、かつ、器官原基に対する血管構成細胞の懸濁液の容量を少なくすることが好ましいことを本発明者らは発見した。また、血管に近接して設置することを可能とし、かつ、移植物の大きさを最小限にするために、使用するゲルの量や細胞数を減少させたところ、チャンバー移植に多種多様な組織が利用できることを本発明者らは発見した。 It is known that immature cells obtained from fetuses in the process of organ transplantation of organ primordia (and vascular constituent cells) release abundant angiogenic factors. In this example, chamber transplantation using a plurality of types of fetal organ primordia was performed.
The organ primordium immediately after transplantation is maintained only by substance supply by natural diffusion. Accordingly, the present inventors have found that it is preferable to place the organ primordium close to the blood vessel and reduce the volume of the suspension of vascular constituent cells relative to the organ primordia. In addition, to reduce the amount of gel and the number of cells that can be placed in close proximity to blood vessels and to minimize the size of the implant, a wide variety of tissues can be used for chamber transplantation. The present inventors have found that can be used.
<器官原基のチャンバー移植>
血管構成細胞として、HUVEC(Lonza、バーゼル、スイス)及びhMSC(Lonza、バーゼル、スイス)をそれぞれ培養後、回収し、セルカウントを行った。HUVEC(8×105細胞)とhMSC(2×105細胞)を、50mlチューブ(BD Falcon、ニュージャージー州、アメリカ)中で混合した。培養培地に含まれるサイトカインの影響を除くために、無添加DMEM培地を添加して遠心を2回繰り返し、細胞の洗浄を行った。細胞懸濁液を1.5mlチューブ(eppendorf、東京、日本)に移し、再度遠心を行った後に上清を全て取り除き、タッピングを行った。次いで、collagen gel type-IA(新田ゼラチン、大阪、日本)中に懸濁し、チャンバー移植に用いた。 <Chamber transplantation of organ primordia>
As vascular constituent cells, HUVEC (Lonza, Basel, Switzerland) and hMSC (Lonza, Basel, Switzerland) were each collected after culture and subjected to cell count. HUVEC (8 × 10 5 cells) and hMSC (2 × 10 5 cells) were mixed in a 50 ml tube (BD Falcon, NJ, USA). In order to remove the influence of cytokines contained in the culture medium, an additive-free DMEM medium was added and centrifugation was repeated twice to wash the cells. The cell suspension was transferred to a 1.5 ml tube (eppendorf, Tokyo, Japan), centrifuged again, and all the supernatant was removed and tapped. Then, it was suspended in collagen gel type-IA (Nitta Gelatin, Osaka, Japan) and used for chamber transplantation.
血管構成細胞として、HUVEC(Lonza、バーゼル、スイス)及びhMSC(Lonza、バーゼル、スイス)をそれぞれ培養後、回収し、セルカウントを行った。HUVEC(8×105細胞)とhMSC(2×105細胞)を、50mlチューブ(BD Falcon、ニュージャージー州、アメリカ)中で混合した。培養培地に含まれるサイトカインの影響を除くために、無添加DMEM培地を添加して遠心を2回繰り返し、細胞の洗浄を行った。細胞懸濁液を1.5mlチューブ(eppendorf、東京、日本)に移し、再度遠心を行った後に上清を全て取り除き、タッピングを行った。次いで、collagen gel type-IA(新田ゼラチン、大阪、日本)中に懸濁し、チャンバー移植に用いた。 <Chamber transplantation of organ primordia>
As vascular constituent cells, HUVEC (Lonza, Basel, Switzerland) and hMSC (Lonza, Basel, Switzerland) were each collected after culture and subjected to cell count. HUVEC (8 × 10 5 cells) and hMSC (2 × 10 5 cells) were mixed in a 50 ml tube (BD Falcon, NJ, USA). In order to remove the influence of cytokines contained in the culture medium, an additive-free DMEM medium was added and centrifugation was repeated twice to wash the cells. The cell suspension was transferred to a 1.5 ml tube (eppendorf, Tokyo, Japan), centrifuged again, and all the supernatant was removed and tapped. Then, it was suspended in collagen gel type-IA (Nitta Gelatin, Osaka, Japan) and used for chamber transplantation.
ヌードマウスの背部皮下の血管を含む皮下組織を部分的に剥離し、次いで、剥離した一本の血管部分に、アロンアルファA(三共、東京、日本)を用いて、分子量50kDカットオフの透析膜(エーディア、東京、日本)製のチャンバーを設置した。次いで、チャンバー上部に設けていた未封入部分から、剥離した皮下組織内の血管に直接触れるように器官原基を設置した後、既に調製したHUVEC及びhMSCの細胞懸濁液含有ゲルを、当該器官原基に対して、上からかぶせるように添加した。次いで、当該未封入部分を密封し、チャンバー内には剥離した血管が一本貫通している以外は、完全に閉鎖的な空間を作った。
チャンバー移植に使用した器官原基と血管構成細胞等の組み合わせは次の通りである:
(1)胎齢12日のマウス胎児から取得した肝臓原基の左葉;血管構成細胞(HUVEC及びhMSC)を添加したcollagen gel type-IA;
(2)胎齢12日のマウス胎児から取得した肝臓原基の左葉;血管構成細胞(HUVEC及びhMSC)とVEGFを添加したcollagen gel type-IA;
(3)胎齢14日のマウス胎児から取得した歯胚とVEGFを添加したcollagen gel type-IA;
(4)胎齢18日のマウス胎児から取得したラトケ嚢とVEGFを添加したcollagen gel type-IA;
(5)胎齢18日のマウス胎児から取得したラトケ嚢と血管構成細胞(HUVEC及びhMSC)とVEGFを添加したcollagen gel type-IA
なお、VEGFは終濃度100ng/mlにて使用した。
チャンバーを設置した皮膚をそれぞれ縫合し、経過を観察した。 A subcutaneous tissue including blood vessels in the dorsal skin of a nude mouse was partially exfoliated, and then a dialysis membrane with a molecular weight of 50 kD cut-off using Aron Alpha A (Sankyo, Tokyo, Japan) on one exfoliated blood vessel part ( (Adia, Tokyo, Japan). Next, after placing the organ primordium so as to directly touch the blood vessel in the peeled subcutaneous tissue from the unencapsulated part provided in the upper part of the chamber, the already prepared HUVEC and hMSC cell suspension-containing gel was prepared. It added so that it might cover from a top with respect to a base. Next, the unencapsulated portion was sealed, and a completely closed space was created except that one peeled blood vessel penetrated the chamber.
The combinations of organ primordia and vascular constituent cells used for chamber transplantation are as follows:
(1) The left lobe of the liver primordium obtained from a fetal mouse of day 12; collagen gel type-IA supplemented with vascular constituent cells (HUVEC and hMSC);
(2) The left lobe of the liver primordium obtained from a fetus at 12 days of gestation; collagen gel type-IA supplemented with vascular constituent cells (HUVEC and hMSC) and VEGF;
(3) Collagen gel type-IA supplemented with a tooth germ obtained from a 14-day-old mouse fetus and VEGF;
(4) Collagen gel type-IA supplemented with ratoke sac obtained from a fetus at 18 days of age and VEGF;
(5) Collagen gel type-IA supplemented with ratchet sac obtained from a mouse fetus at 18 days of gestation, vascular component cells (HUVEC and hMSC) and VEGF
VEGF was used at a final concentration of 100 ng / ml.
The skin in which the chamber was installed was sutured and the progress was observed.
チャンバー移植に使用した器官原基と血管構成細胞等の組み合わせは次の通りである:
(1)胎齢12日のマウス胎児から取得した肝臓原基の左葉;血管構成細胞(HUVEC及びhMSC)を添加したcollagen gel type-IA;
(2)胎齢12日のマウス胎児から取得した肝臓原基の左葉;血管構成細胞(HUVEC及びhMSC)とVEGFを添加したcollagen gel type-IA;
(3)胎齢14日のマウス胎児から取得した歯胚とVEGFを添加したcollagen gel type-IA;
(4)胎齢18日のマウス胎児から取得したラトケ嚢とVEGFを添加したcollagen gel type-IA;
(5)胎齢18日のマウス胎児から取得したラトケ嚢と血管構成細胞(HUVEC及びhMSC)とVEGFを添加したcollagen gel type-IA
なお、VEGFは終濃度100ng/mlにて使用した。
チャンバーを設置した皮膚をそれぞれ縫合し、経過を観察した。 A subcutaneous tissue including blood vessels in the dorsal skin of a nude mouse was partially exfoliated, and then a dialysis membrane with a molecular weight of 50 kD cut-off using Aron Alpha A (Sankyo, Tokyo, Japan) on one exfoliated blood vessel part ( (Adia, Tokyo, Japan). Next, after placing the organ primordium so as to directly touch the blood vessel in the peeled subcutaneous tissue from the unencapsulated part provided in the upper part of the chamber, the already prepared HUVEC and hMSC cell suspension-containing gel was prepared. It added so that it might cover from a top with respect to a base. Next, the unencapsulated portion was sealed, and a completely closed space was created except that one peeled blood vessel penetrated the chamber.
The combinations of organ primordia and vascular constituent cells used for chamber transplantation are as follows:
(1) The left lobe of the liver primordium obtained from a fetal mouse of day 12; collagen gel type-IA supplemented with vascular constituent cells (HUVEC and hMSC);
(2) The left lobe of the liver primordium obtained from a fetus at 12 days of gestation; collagen gel type-IA supplemented with vascular constituent cells (HUVEC and hMSC) and VEGF;
(3) Collagen gel type-IA supplemented with a tooth germ obtained from a 14-day-old mouse fetus and VEGF;
(4) Collagen gel type-IA supplemented with ratoke sac obtained from a fetus at 18 days of age and VEGF;
(5) Collagen gel type-IA supplemented with ratchet sac obtained from a mouse fetus at 18 days of gestation, vascular component cells (HUVEC and hMSC) and VEGF
VEGF was used at a final concentration of 100 ng / ml.
The skin in which the chamber was installed was sutured and the progress was observed.
<器官原基(及び血管構成細胞)のチャンバー移植後の組織解析>
移植した器官原基の組織構造の解析を行うために、上記歯胚を除く各器官原基を移植したヌードマウスを、移植後7日目又は14日目まで育成した。また、歯胚の移植を行ったヌードマウスを移植後3日目又は7日目まで育成した。次いで、各マウスを屠殺し、チャンバー内の形成物をホルマリン固定した。それぞれの形成物について、5μmの組織薄片を作成し、ヘマトキシリン・エオジン(HE)染色を行った。HE染色は、常法により、マイヤーヘマトキシリン(Wako、大阪、日本)で染色した後に、1%エオシン液(武藤化学株式会社、東京、日本)で染色して実施した。
その結果、肝臓原基を用いたチャンバー移植では、7日目、14日目において肝細胞の生着が確認できた(図2)。歯胚を用いたチャンバー移植では、3日目において歯胚の組織構造が維持され、間葉側からの血管の侵入も確認された。さらに、7日目においては、3日目と比べて、硬組織の蓄積が進み、組織発生が進んでいる事が確認できた(図3)。ラトケ嚢を用いたチャンバー移植では、7日目において組織構造の維持が認められ、14日目においては脳下垂体に認められる房状の組織構造が確認できた(図4)。
以上の結果から、器官原基を用いてチャンバー移植を行った場合、器官原基の発生に伴い組織内に三次元血管網が構築されたことが確認され、チャンバー内での再生器官の培養ならびに育成が可能であることが示された。 <Tissue analysis after organ transplantation of organ primordia (and vascular constituent cells)>
In order to analyze the tissue structure of the transplanted organ primordia, nude mice transplanted with each organ primorum excluding the above-mentioned tooth germ were bred up to 7th or 14th day after transplantation. In addition, nude mice transplanted with tooth germs were grown until the third or seventh day after transplantation. Each mouse was then sacrificed and the formation in the chamber was formalin fixed. For each formation, 5 μm tissue slices were prepared and stained with hematoxylin and eosin (HE). HE staining was performed by staining with 1% eosin solution (Mudo Chemical Co., Tokyo, Japan) after staining with Mayer's hematoxylin (Wako, Osaka, Japan) by a conventional method.
As a result, in the chamber transplantation using the liver primordium, hepatocyte engraftment was confirmed on the 7th and 14th days (FIG. 2). In the chamber transplantation using the tooth germ, the tissue structure of the tooth germ was maintained on the third day, and the invasion of blood vessels from the mesenchymal side was also confirmed. Furthermore, on the 7th day, it was confirmed that the accumulation of hard tissue progressed and the generation of tissue progressed compared to the 3rd day (FIG. 3). In the chamber transplantation using Ratoke sac, maintenance of the tissue structure was observed on the 7th day, and the tuft-like tissue structure observed in the pituitary was confirmed on the 14th day (FIG. 4).
From the above results, when chamber transplantation was performed using organ primordia, it was confirmed that a three-dimensional vascular network was constructed in the tissue along with the generation of organ primordia. It was shown that training is possible.
移植した器官原基の組織構造の解析を行うために、上記歯胚を除く各器官原基を移植したヌードマウスを、移植後7日目又は14日目まで育成した。また、歯胚の移植を行ったヌードマウスを移植後3日目又は7日目まで育成した。次いで、各マウスを屠殺し、チャンバー内の形成物をホルマリン固定した。それぞれの形成物について、5μmの組織薄片を作成し、ヘマトキシリン・エオジン(HE)染色を行った。HE染色は、常法により、マイヤーヘマトキシリン(Wako、大阪、日本)で染色した後に、1%エオシン液(武藤化学株式会社、東京、日本)で染色して実施した。
その結果、肝臓原基を用いたチャンバー移植では、7日目、14日目において肝細胞の生着が確認できた(図2)。歯胚を用いたチャンバー移植では、3日目において歯胚の組織構造が維持され、間葉側からの血管の侵入も確認された。さらに、7日目においては、3日目と比べて、硬組織の蓄積が進み、組織発生が進んでいる事が確認できた(図3)。ラトケ嚢を用いたチャンバー移植では、7日目において組織構造の維持が認められ、14日目においては脳下垂体に認められる房状の組織構造が確認できた(図4)。
以上の結果から、器官原基を用いてチャンバー移植を行った場合、器官原基の発生に伴い組織内に三次元血管網が構築されたことが確認され、チャンバー内での再生器官の培養ならびに育成が可能であることが示された。 <Tissue analysis after organ transplantation of organ primordia (and vascular constituent cells)>
In order to analyze the tissue structure of the transplanted organ primordia, nude mice transplanted with each organ primorum excluding the above-mentioned tooth germ were bred up to 7th or 14th day after transplantation. In addition, nude mice transplanted with tooth germs were grown until the third or seventh day after transplantation. Each mouse was then sacrificed and the formation in the chamber was formalin fixed. For each formation, 5 μm tissue slices were prepared and stained with hematoxylin and eosin (HE). HE staining was performed by staining with 1% eosin solution (Mudo Chemical Co., Tokyo, Japan) after staining with Mayer's hematoxylin (Wako, Osaka, Japan) by a conventional method.
As a result, in the chamber transplantation using the liver primordium, hepatocyte engraftment was confirmed on the 7th and 14th days (FIG. 2). In the chamber transplantation using the tooth germ, the tissue structure of the tooth germ was maintained on the third day, and the invasion of blood vessels from the mesenchymal side was also confirmed. Furthermore, on the 7th day, it was confirmed that the accumulation of hard tissue progressed and the generation of tissue progressed compared to the 3rd day (FIG. 3). In the chamber transplantation using Ratoke sac, maintenance of the tissue structure was observed on the 7th day, and the tuft-like tissue structure observed in the pituitary was confirmed on the 14th day (FIG. 4).
From the above results, when chamber transplantation was performed using organ primordia, it was confirmed that a three-dimensional vascular network was constructed in the tissue along with the generation of organ primordia. It was shown that training is possible.
本発明の三次元血管網を有する器官をin vivoで形成させる方法は、再生医療分野や、医薬品等の効果を評価するスクリーニングシステムへの応用等において有利に利用することができる。
The method for forming an organ having a three-dimensional vascular network of the present invention in vivo can be advantageously used in the field of regenerative medicine, application to a screening system for evaluating the effects of drugs, and the like.
Claims (15)
- 三次元血管網を有する器官を、非ヒト動物におけるin vivoで、形成させる方法であって、
下記のステップ:
(a)前記非ヒト動物において、
生体に接続されたまま、1又は複数の血管を、構造体を貫通するように、配置するステップ、または、生体外で、単離された1又は複数の血管を、構造体を貫通するように配置した後に、前記「単離された1又は複数の血管」を生体内の血管に接続するステップ、ここで、前記構造体はその内部に中空部を備えるように構成され、かつ、前記構造体の内部には、器官原基が含まれており;
(b)前記構造体の内部において、前記血管および前記構造体の内部に含まれる前記器官原基をin vivoで培養することにより、前記構造体の内部の中空部において三次元血管網を有する器官を形成させるステップ
を含む、方法。 A method of forming an organ having a three-dimensional vascular network in vivo in a non-human animal, comprising:
The following steps:
(A) in the non-human animal,
Arranging one or more blood vessels to penetrate the structure while connected to the living body, or to pass the isolated blood vessel or blood vessels through the structure in vitro. Connecting the “isolated one or more blood vessels” to a blood vessel in a living body after placement, wherein the structure is configured to have a hollow portion therein, and the structure Contains an organ primordium;
(B) An organ having a three-dimensional vascular network in a hollow portion inside the structure by culturing the blood vessel and the organ primordium contained in the structure in vivo inside the structure. Forming the method. - 請求項1に記載の方法であって、
前記ステップ(a)は、
(i)前記血管を前記構造体に貫通するように配置する前に、前記構造体の内部に、前記器官原基を含めることを特徴とするか、又は、
(ii)前記血管を前記構造体に貫通するように配置した後に、前記構造体の内部に、前記器官原基を含めることを特徴とする、
方法。 The method of claim 1, comprising:
The step (a)
(I) before placing the blood vessel so as to penetrate the structure, the organ primordium is included in the structure, or
(Ii) The organ primordium is included in the structure after the blood vessel is disposed so as to penetrate the structure.
Method. - 請求項1又は2に記載の方法であって、
前記ステップ(a)において、前記構造体の内部には、前記器官原基に加えて、さらに血管構成細胞が含まれている、
方法。 The method according to claim 1 or 2, wherein
In the step (a), in addition to the organ primordium, the structure further contains vascular constituent cells.
Method. - 請求項3に記載の方法であって、
前記血管構成細胞が、血管内皮細胞及び/又は間葉系幹細胞を含む、
方法。 The method of claim 3, comprising:
The vascular constituent cells include vascular endothelial cells and / or mesenchymal stem cells,
Method. - 請求項3又は4に記載の方法であって、
前記ステップ(a)において、前記構造体の内部には、さらに血管新生因子が含まれている、
方法。 A method according to claim 3 or 4, wherein
In the step (a), the structure further contains an angiogenic factor.
Method. - 請求項5に記載の方法であって、
前記血管新生因子が、VEGF、FGF、EGF、PDGF、TGF-βからなる群から選択される、
方法。 6. A method according to claim 5, wherein
The angiogenic factor is selected from the group consisting of VEGF, FGF, EGF, PDGF, TGF-β;
Method. - 請求項1に記載の方法であって、
前記器官原基が、毛包原基、歯胚原基、肝臓原基、腎臓原基、ラトケ嚢、および、内分泌器官の原基からなる群から選択される、
方法。 The method of claim 1, comprising:
The organ primordium is selected from the group consisting of hair follicle primordium, tooth germ primordium, liver primordium, kidney primordium, ratchet sac, and endocrine organ primordium,
Method. - 請求項1に記載の方法であって、
前記器官原基が、ES細胞、iPS細胞、多能性前駆細胞、成体幹細胞、又は、これらを遺伝的に改変させた多能性細胞より作製した再生器官原基である、
方法。 The method of claim 1, comprising:
The organ primordium is an ES cell, iPS cell, pluripotent progenitor cell, adult stem cell, or regenerative organ primordium prepared from a pluripotent cell genetically modified from these.
Method. - 請求項1から8のいずれか一項に記載の方法であって、
下記のステップ:
(c)前記ステップ(b)の後に、形成された三次元血管網を有する器官を、同所的又は異所的に移植するステップ
をさらに含む、
方法。 A method according to any one of claims 1 to 8, comprising
The following steps:
(C) after the step (b), further comprising the step of orthotopically or ectopically transplanting the organ having the formed three-dimensional vascular network,
Method. - 請求項1から9のいずれか一項に記載の方法であって、
前記構造体が、細胞を通過させないが、液性因子を通過させることが可能な透析膜からなる、
方法。 A method according to any one of claims 1 to 9, comprising
The structure consists of a dialysis membrane that does not allow cells to pass but allows humoral factors to pass through.
Method. - 請求項1から10のいずれか一項に記載の方法であって、
前記非ヒト動物の代わりに、ヒトを用いる、
方法。 A method according to any one of claims 1 to 10, comprising
Instead of the non-human animal, a human is used.
Method. - 三次元血管網を有する器官の形成用組成物であって、
前記組成物は、略シート状組成物であり、1又は複数の開口部を備え、かつ、内部に中空部を備える構造体として構成させることができ、
ここで、
1又は複数の血管が、前記開口部を通じて、前記構造体を貫通するように配置され、
前記構造体は、前記血管が通過する前記開口部を除き、実質的に閉鎖され、
前記構造体の内部には、器官原基が含まれ、及び
前記構造体の内部の中空部において三次元血管網を有する器官が形成される、
ことを特徴とする、組成物。 A composition for forming an organ having a three-dimensional vascular network,
The composition is a substantially sheet-like composition, and can be configured as a structure including one or a plurality of openings and a hollow portion inside.
here,
One or more blood vessels are disposed through the opening and through the structure;
The structure is substantially closed except for the opening through which the blood vessel passes;
In the structure, an organ primordium is included, and an organ having a three-dimensional vascular network is formed in a hollow portion in the structure.
The composition characterized by the above-mentioned. - 請求項1から11のいずれか一項に記載の方法によって得られ得る(obtainable)、三次元血管網を有する器官。 An organ having a three-dimensional vascular network, obtainable by the method according to any one of claims 1 to 11.
- 請求項1から11のいずれか一項に記載の方法によって得られた(obtained)、三次元血管網を有する器官。 An organ having a three-dimensional vascular network obtained by the method according to any one of claims 1 to 11 (obtained).
- 請求項13又は14に記載の三次元血管網を有する器官を含む、再生臓器。 A regenerative organ including the organ having the three-dimensional vascular network according to claim 13 or 14.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-177346 | 2014-09-01 | ||
JP2014177346A JP2017195778A (en) | 2014-09-01 | 2014-09-01 | Method of forming organ having three-dimensional vascular network in vivo and composition for forming organ having three-dimensional vascular network |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016035777A1 true WO2016035777A1 (en) | 2016-03-10 |
Family
ID=55439838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/074782 WO2016035777A1 (en) | 2014-09-01 | 2015-08-31 | METHOD FOR FORMING ORGAN HAVING THREE-DIMENSIONAL VASCULAR NETWORK in vivo, AND COMPOSITION FOR FORMING ORGAN HAVING THREE-DIMENSIONAL VASCULAR NETWORK |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2017195778A (en) |
WO (1) | WO2016035777A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113631034A (en) * | 2019-03-29 | 2021-11-09 | 公立大学法人横滨市立大学 | Matrix composition |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0511689A (en) * | 1991-06-29 | 1993-01-22 | Sekisui Chem Co Ltd | Manufacture of solid model of internal organ or the like |
WO2001000859A1 (en) * | 1999-06-25 | 2001-01-04 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Method of inducing angiogenesis by micro-organs |
JP2009213716A (en) * | 2008-03-11 | 2009-09-24 | Tokyo Metropolitan Univ | Blood vessel histogenesis |
JP2011104346A (en) * | 2009-10-22 | 2011-06-02 | Neocel:Kk | Dialyzer device |
JP2012120696A (en) * | 2010-12-08 | 2012-06-28 | Univ Of Tokyo | Three dimensional cell cultured matter containing blood vessel-like structure |
JP2012245664A (en) * | 2011-05-26 | 2012-12-13 | Polymatech Co Ltd | Heat conductive sheet |
-
2014
- 2014-09-01 JP JP2014177346A patent/JP2017195778A/en active Pending
-
2015
- 2015-08-31 WO PCT/JP2015/074782 patent/WO2016035777A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0511689A (en) * | 1991-06-29 | 1993-01-22 | Sekisui Chem Co Ltd | Manufacture of solid model of internal organ or the like |
WO2001000859A1 (en) * | 1999-06-25 | 2001-01-04 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Method of inducing angiogenesis by micro-organs |
JP2009213716A (en) * | 2008-03-11 | 2009-09-24 | Tokyo Metropolitan Univ | Blood vessel histogenesis |
JP2011104346A (en) * | 2009-10-22 | 2011-06-02 | Neocel:Kk | Dialyzer device |
JP2012120696A (en) * | 2010-12-08 | 2012-06-28 | Univ Of Tokyo | Three dimensional cell cultured matter containing blood vessel-like structure |
JP2012245664A (en) * | 2011-05-26 | 2012-12-13 | Polymatech Co Ltd | Heat conductive sheet |
Non-Patent Citations (7)
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113631034A (en) * | 2019-03-29 | 2021-11-09 | 公立大学法人横滨市立大学 | Matrix composition |
CN113631034B (en) * | 2019-03-29 | 2024-04-26 | 公立大学法人横滨市立大学 | Matrix composition |
Also Published As
Publication number | Publication date |
---|---|
JP2017195778A (en) | 2017-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7998735B2 (en) | Vascularized tissue graft | |
Scarritt et al. | A review of cellularization strategies for tissue engineering of whole organs | |
US11617817B2 (en) | Biomaterials for enhanced implant-host integration | |
Taylor et al. | Building a total bioartificial heart: harnessing nature to overcome the current hurdles | |
US20040052768A1 (en) | Vascularised tissue graft | |
US11559605B2 (en) | Kidney production method | |
CN103534346A (en) | Cell-synthesized particles | |
JP7548803B2 (en) | How kidneys are made | |
US20150093812A1 (en) | Bioartificial filtration organ | |
CA2419923C (en) | Vascularised tissue graft | |
WO2016093362A1 (en) | Artificial tissue and method for producing same | |
WO2016035777A1 (en) | METHOD FOR FORMING ORGAN HAVING THREE-DIMENSIONAL VASCULAR NETWORK in vivo, AND COMPOSITION FOR FORMING ORGAN HAVING THREE-DIMENSIONAL VASCULAR NETWORK | |
US20190269825A1 (en) | Organ production method | |
CN112272517B (en) | Method for decellularizing tissue | |
JP2021069432A (en) | Graft material and stent | |
Sapoznik et al. | Regeneration of the vascular system | |
WO2024006421A1 (en) | Method to direct vascularization of tissue grafts | |
AU2001283687B2 (en) | Vascularised tissue graft | |
BAPTISTA et al. | Ex vivo revascularization in liver bioengineering. A critical first step towards effective transplantation of bioengineered livers. | |
AU2001283687A1 (en) | Vascularised tissue graft |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15838952 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15838952 Country of ref document: EP Kind code of ref document: A1 |