WO2016035683A1 - Pushcart - Google Patents

Pushcart Download PDF

Info

Publication number
WO2016035683A1
WO2016035683A1 PCT/JP2015/074333 JP2015074333W WO2016035683A1 WO 2016035683 A1 WO2016035683 A1 WO 2016035683A1 JP 2015074333 W JP2015074333 W JP 2015074333W WO 2016035683 A1 WO2016035683 A1 WO 2016035683A1
Authority
WO
WIPO (PCT)
Prior art keywords
main body
wheel
angular velocity
pitch direction
unit
Prior art date
Application number
PCT/JP2015/074333
Other languages
French (fr)
Japanese (ja)
Inventor
林毅至
辻滋
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2016509173A priority Critical patent/JP5935965B1/en
Publication of WO2016035683A1 publication Critical patent/WO2016035683A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H3/04Wheeled walking aids for disabled persons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B3/00Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw

Definitions

  • This invention relates to a wheelbarrow provided with wheels, and more particularly to a wheelbarrow that drives and controls wheels.
  • Patent Document 1 a two-wheeled vehicle that performs inverted pendulum control by driving and controlling wheels is known (see, for example, Patent Document 1).
  • the inverted motorcycle of Patent Document 1 includes a main body, two wheels, and drive means for driving the two wheels. Further, the inverted two-wheeled vehicle of Patent Document 1 includes an operation state detection unit that detects the posture of the main body and a sensor (for example, a gyro sensor) that detects a driving speed.
  • a sensor for example, a gyro sensor
  • the inverted motorcycle of Patent Document 1 calculates a driving speed command by feedback control based on the posture information command and the current posture (operation state) detected by the posture detection device. Furthermore, the inverted two-wheeled vehicle of Patent Document 1 calculates torque to be applied to the driving means by feedback control based on the driving speed command and the current driving speed detected by the gyro sensor.
  • the inverted motorcycle of Patent Document 1 requires a sensor for detecting the current driving speed (angular speed in the pitch direction).
  • a gyro sensor is described as an example of the sensor.
  • the inverted two-wheeled vehicle of Patent Document 1 cannot satisfy the requirement for performing the inverted pendulum control without using the gyro sensor due to design reasons and the like.
  • the rotation angle in the pitch direction of the main body is limited within a predetermined range by providing a stopper for limiting the rotation of the main body before and after the pitch direction. It is preferable to do. Thereby, for example, even when the power is turned off, the main body does not tilt more than necessary in the pitch direction. In addition, even when the user puts weight on the grip provided on the main body, there is no fear of falling, and the user can be given a sense of security.
  • the angular velocity detected by the gyro sensor may become zero, so that the inverted pendulum control may fail.
  • an object of the present invention is to provide a handcart that realizes inverted pendulum control without using a sensor that detects angular velocity.
  • the handcart of the present invention includes a main body, a wheel rotatably supported by the main body, a driving unit that rotates the wheel in a pitch direction, a control unit that performs feedback control of the driving unit, and the main body.
  • a body angle detector that detects a rotation angle of the wheel in the pitch direction
  • a wheel angle detector that detects a rotation angle of the wheel in the pitch direction.
  • control unit calculates the angular velocity in the pitch direction of the main body based on the rotation angle in the pitch direction of the wheel detected by the wheel angle detection unit, and the calculated angular velocity in the pitch direction of the main body,
  • the drive unit is controlled so that the rotation angle in the pitch direction of the main body unit becomes a target rotation angle based on the rotation angle in the pitch direction of the main body unit detected by the main body unit angle detection unit.
  • the control unit can detect the angular velocity of the main body without using a sensor for detecting the angular velocity such as a gyro sensor by calculating the angular velocity of the main body from the rotation angle in the pitch direction of the wheels. Therefore, the handcart of the present invention can realize inverted pendulum control without using a sensor that detects the angular velocity of the main body.
  • the angular velocity of the main body can be obtained by multiplying the wheel rotation angle by the ratio of the rotation radius of the wheel and the rotation radius of the main body to differentiate it. For example, if the rotation radius of the wheel is r, the rotation radius of the main body portion is l, and the rotation angle of the wheel is ⁇ t, when the wheel is rotated by (r / l) ⁇ ⁇ t, the target rotation angle ⁇ hr of the main body portion, The deviation angle from the current rotation angle ⁇ h of the main body is zero.
  • the target angular velocity ⁇ hr can be obtained by multiplying the difference between the target rotation angle ⁇ hr of the main body and the current rotation angle ⁇ h of the main body by a predetermined response coefficient Kp (1 / s).
  • the control unit calculates an angular acceleration ⁇ hr at which the deviation between the angular velocity ⁇ h in the pitch direction of the main body and the target angular velocity ⁇ hr becomes zero.
  • the control unit multiplies the calculated angular acceleration by values such as the moment of inertia, the reduction ratio, and the efficiency, thereby calculating the torque that the driving unit applies to the wheels.
  • control unit performs inverted pendulum control by feedback control of the drive unit.
  • the wheelbarrow is provided with speed limiting means for converting the target angular velocity into the traveling speed of the main body, limiting the converted traveling speed to a predetermined speed, and converting the limited traveling speed into the target angular speed again.
  • the embodiment may be sufficient.
  • the traveling speed of the handcart can be prevented from exceeding the speed limit.
  • control unit reduces the target angular velocity as the operation amount of the brake operation increases, thereby limiting the speed according to the degree of grip of the brake. Can also be realized.
  • the inverted pendulum control can be realized without using the sensor for detecting the angular velocity.
  • FIG. 2A is a front view of the handcart
  • FIG. 2B is a plan view of the handcart.
  • FIG. 4A is a diagram for explaining the limitation on the pitch angle of the main body
  • FIG. 4B is a diagram showing the relationship between the pitch angle of the main body and the rotation angle of the wheels.
  • FIG. 1 is a left side view of the wheelbarrow 10
  • FIG. 2A is a front view
  • FIG. 2B is a plan view.
  • the handcart 10 includes a main body 11 having a shape that is relatively long in the vertical direction (Z direction in the drawing) and relatively short in the depth direction (Y direction in the drawing) and the left and right direction (X direction in the drawing). .
  • a pair of wheels 12 is attached to an end in the left-right direction in the lower portion of the main body 11 in the vertically downward direction.
  • the wheel 12 has shown the example which is 2 wheels, 1 wheel or 3 wheels or more may be sufficient.
  • the wheel 12 rotates around the rotation axis (axle) of the wheel 12 having a central axis. That is, it can rotate in the pitch direction. In this example, the wheel 12 does not rotate in the yaw direction and the roll direction. However, for example, the wheel 12 may be rotated in the yaw direction and change its direction with respect to the main body 11.
  • the two rod-shaped main body parts 11 connected to each wheel 12 are connected to the gripping part 15 at the upper part and are rotatable in the pitch direction around the axis of the wheel 12.
  • the main body 11 does not need to have two rod shapes as in this example, and may be one rod-like member, a thin plate-like member, or the like.
  • a box 16 containing a control board, a battery, and the like is disposed near the lower portion of the main body 11.
  • the main body 11 is actually provided with a cover so that the internal substrate and the like cannot be seen in appearance.
  • the grip portion 15 has a cylindrical shape that is long in the left-right direction, is bent in the reverse direction (backward) with respect to the traveling direction near the left and right ends, and extends rearward. Thereby, the position where the user grips the grip portion 15 can be shifted backward, and the space at the user's feet can be widened.
  • a thin plate-like support portion 13 extending rearward is connected to the rotating shaft of the wheel 12.
  • the support portion 13 is connected to the rotation axis of the wheel 12 so as to be rotatable in the pitch direction so as to extend in parallel with the road surface.
  • the supporting wheel 13 has an auxiliary wheel 14 connected to the lower surface in the direction opposite to the side connected to the rotating shaft of the wheel 12. Thereby, both the wheel 12 and the auxiliary wheel 14 come into contact with the road surface.
  • the support portion 13 extends rearward from the wheel 12 with respect to the traveling direction. For this reason, the wheel 12 having a relatively large inner diameter is disposed forward with respect to the traveling direction, and it is easy to get over the step.
  • the support portion 13 may extend in front of the wheel 12 with respect to the traveling direction, and the auxiliary wheel 14 may be disposed in front of the wheel 12. If the support portion 13 extends in front of the wheels 12, the space at the foot of the user U can be widened.
  • a motor may be attached to a connection portion between the rotating shaft of the wheel 12 and the support portion 13, and the support portion 13 may be actively rotated in the pitch direction by driving the motor.
  • two support portions 13 and two auxiliary wheels 14 are provided and connected to the rotation shafts of the left and right wheels 12, respectively, but one or three support portions 13 and auxiliary wheels 14 are provided. Two or more modes may be provided. However, as shown in FIG. 2, the space at the foot of the user U can be widened by connecting to the rotating shafts of the left and right wheels 12.
  • the grip 15 is provided with a user interface (I / F) 27 such as a power switch.
  • the user U can push the handcart 10 in the traveling direction by grasping the grip portion 15.
  • the user U places the forearm or the like on the gripping part 15 without pressing the gripping part 15 from above, and the forearm or the like is applied to the gripping part 15 by friction generated between the gripping part 15 and the forearm or the like. It is also possible to push the wheelbarrow 10 in the traveling direction while putting
  • the handcart 10 includes a control unit 21, a ROM 22, a RAM 23, a drive unit 24, a wheel rotary encoder 25, a main body rotary encoder 26, and a user I / F 27.
  • the wheel rotary encoder 25 corresponds to a wheel angle detector of the present invention
  • the main body rotary encoder 26 corresponds to a main body angle detector.
  • the control unit 21 is a functional unit that controls the wheelbarrow 10 in an integrated manner, and implements various operations by reading a program stored in the ROM 22 and developing the program in the RAM 23.
  • the driving unit 24 is a functional unit that drives a motor that rotates a rotating shaft attached to the wheel 12 to provide power to the wheel 12.
  • the drive unit 24 drives the motor of the wheel 12 based on a torque command value described later output from the control unit 21 and rotates the wheel 12 in the pitch direction.
  • the wheel rotary encoder 25 detects the rotation angle of the wheel 12 in the pitch direction and outputs the detection result to the control unit 21.
  • the main body rotary encoder 26 detects a crossing angle, which is an angle formed by the main body 11 and the support 13, and outputs a detection result to the control unit 21.
  • the control unit 21 calculates the rotation angle in the pitch direction of the main body 11 from the intersecting angle input from the main body rotary encoder 26.
  • the rotation angle in the pitch direction is referred to as a pitch angle.
  • the support part 13 is connected to the rotating shaft of the wheel 12 so as to be parallel to the horizontal road surface. Therefore, the control unit 21 determines that the pitch angle is 0 degree when the intersection angle is 90 degrees, that is, the inclination angle with respect to the normal of the road surface of the main body 11 is 0 degree, and the traveling direction is increased when the intersection angle increases.
  • the current pitch angle of the main body 11 is calculated assuming that the vehicle body is inclined forward and the vehicle is inclined backward with respect to the traveling direction when the intersection angle is small.
  • the pitch angle of the main body 11 is a positive value when tilted forward with respect to the traveling direction, and a negative value when tilted backward with respect to the traveling direction.
  • “Degree" is calculated as the pitch angle.
  • the support part 13 does not necessarily need to be parallel to a horizontal road surface.
  • the angle between the road surface and the support portion 13 (the angle in the pitch direction) is known in advance, the difference between the angle formed in the pitch direction (the angle in the pitch direction) By calculating (change), the pitch angle of the main body 11 can be calculated.
  • the pitch angle of the main body 11 is limited to a predetermined range (for example, ⁇ 30 degrees) by a stopper or the like, as shown in FIG. Thereby, for example, even when the power is turned off, the main body 11 does not tilt more than necessary. Further, even when the user U puts weight on the gripping part 15, there is no fear of falling, and the user can be provided with a sense of security.
  • a predetermined range for example, ⁇ 30 degrees
  • FIG. 5 is a control configuration diagram of the control unit 21.
  • the control unit 21 functionally includes a target angular velocity calculation unit 31, a feedback (FB) control unit 32, a torque command value conversion unit 33, and a conversion processing unit 34.
  • FB feedback
  • the target angular velocity calculation unit 31 calculates the target angular velocity ⁇ hr based on the input target pitch angle ⁇ hr and the current pitch angle ⁇ h of the main body 11.
  • the target angular velocity ⁇ hr is calculated by the following formula 1 using a coefficient Kp representing control responsiveness.
  • the calculated target angular velocity ⁇ hr is input to the FB control unit 32.
  • the FB control unit 32 inputs the target angular velocity ⁇ hr and the current angular velocity ⁇ h of the main body 11.
  • the current angular velocity ⁇ h of the main body 11 is obtained by the conversion processing unit 34.
  • the conversion processing unit 34 calculates the current angular velocity ⁇ h of the main body 11 based on the rotation angle in the pitch direction of the wheel 12 detected by the wheel rotary encoder 25.
  • the angular velocity ⁇ h can be obtained from the ratio between the rotation radius r of the wheel and the rotation radius l of the main body.
  • Equation 2 When both sides of Equation 2 are differentiated, Equation 2 is converted into Equation 3 below.
  • the conversion processing unit 34 can obtain the current angular velocity ⁇ h in the pitch direction of the main body 11 from the rotation angle ⁇ t in the pitch direction of the wheel 12 detected by the wheel rotary encoder 25.
  • the control part 21 can detect angular velocity (omega) h of the main-body part 11 without using the sensor which detects angular velocity, such as a gyro sensor.
  • the FB control unit 32 obtains the angular acceleration ⁇ hr so that the current angular velocity ⁇ h of the main body 11 becomes the target angular velocity ⁇ hr. That is, the FB control unit 32 calculates the angular acceleration ⁇ hr at which the deviation between the current angular velocity ⁇ h of the main body 11 and the target angular velocity ⁇ hr becomes zero.
  • the FB control unit 32 calculates the angular acceleration ⁇ hr by PI control as expressed by the following mathematical formula 4.
  • Kv in Equation 4 is a proportional gain
  • Tv is an integration time.
  • the feedback control is not limited to PI control, and may be PID control to which differential control is added, for example, or only proportional control.
  • the angular acceleration ⁇ hr calculated by the FB control unit 32 is output to the torque command value conversion unit 33.
  • the torque command value conversion unit 33 converts the input angular acceleration ⁇ hr into a torque command value tr.
  • the torque command value tr can be obtained by the following Equation 5 from the moment of inertia J of the main body 11, the reduction ratio 1 / k of the reduction system related to the wheel 12 from the motor, and the efficiency ⁇ of the reduction system.
  • the torque command value conversion unit 33 inputs the calculated torque command value tr to the drive unit 24.
  • the drive unit 24 applies torque based on the input torque command value tr to a motor (a motor that rotates a shaft attached to the wheel 12), drives the motor, and rotates the wheel 12.
  • the handcart 10 performs the inverted pendulum control, and controls the posture so that the pitch angle ⁇ h of the main body 11 is maintained at the target pitch angle ⁇ hr.
  • the handcart 10 moves the wheel 12 to keep the pitch angle ⁇ h at the target pitch angle ⁇ hr (for example, 0 degree). Rotate forward. Thereby, the handcart 10 moves forward, and the handcart 10 also moves following the movement of the user U.
  • the handcart 10 in the present embodiment limits the pitch angle of the main body 11 within a predetermined range by a stopper or the like, and therefore performs feedback control using a sensor that detects an angular velocity such as a gyro sensor. There are cases where it cannot be performed (the detected angular velocity becomes zero). Further, the angular velocity of the main body 11 can be obtained by differentiating the pitch angle of the main body 11. However, when the change of the pitch angle is also limited, the differential value becomes extremely small and the calculated angular velocity. May become zero and feedback control may fail.
  • the handcart 10 calculates the angular velocity in the pitch direction of the main body 11 based on the rotation angle in the pitch direction of the wheel 12 detected by the wheel rotary encoder 25, thereby the pitch angle of the main body 11. Even when the change of the above is restricted, the inverted pendulum control by the feedback control can be realized.
  • the target angular velocity calculation unit 31 calculates the target angular velocity ⁇ hr using the coefficient Kp, and the torque command value conversion unit 33 converts the angular acceleration into a torque command value. All of these operations are simple multiplications, and the processing load is small. On the other hand, feedback control with a large processing load is performed only by the FB control unit 32. In the conventional control method, for example, feedback control is performed based on the target pitch angle and the current pitch angle to calculate the target angular velocity, and further, feedback control is performed based on the angular velocity detected by the gyro sensor to generate torque. Although the two-stage feedback control of calculating the command value was performed, the wheelbarrow 10 of the present embodiment does not need to perform such a two-stage feedback control, and thus can reduce the processing load. .
  • FIG. 6 is a control configuration diagram of the control unit 21 ⁇ / b> A according to a modification of the control unit 21.
  • the same components as those of the control unit 21 are denoted by the same reference numerals and description thereof is omitted.
  • the control unit 21 ⁇ / b> A includes a speed limiting unit 35 in the subsequent stage of the target angular velocity calculation unit 31 and the previous stage of the FB control unit 32.
  • the speed limiter 35 is a means for limiting the traveling speed of the main body 11 to a predetermined value or less.
  • the speed limiter 35 converts the target angular velocity ⁇ hr (rad / s) input from the target angular velocity calculator 31 into the traveling speed v (m / s) of the main body 11 using the following formula 6.
  • the converted target angular velocity ⁇ ′hr is input to the FB control unit 32. Therefore, the target angular velocity ⁇ ′hr is limited, the calculated torque command value ⁇ tr is limited, and the traveling speed of the main body 11 is limited. Thereby, even if the controller which performs feedback control is only the FB control part 32, the advancing speed of the main-body part 11 can be restrict
  • the rotation angle of the main body 11 is limited to a predetermined range, if a gyro sensor is used, the detected angular velocity of the main body 11 becomes 0, and the target angular velocity Even if ⁇ ′hr is limited, the calculated torque command value ⁇ hr may become large.
  • the control unit 21A obtains the angular velocity of the main body 11 based on the angular velocity of the wheel 12, the angular velocity ⁇ h output from the conversion processing unit 34 does not become zero while the wheel 12 is rotating, The traveling speed of the part 11 does not increase significantly.
  • FIG. 7 is a block diagram showing a hardware configuration of a handcart 10A according to a modification of the handcart 10.
  • the components common to the wheelbarrow 10 are denoted by the same reference numerals and description thereof is omitted.
  • the handcart 10 ⁇ / b> A includes a control unit 21 ⁇ / b> A instead of the control unit 21, and further includes a brake operation reception unit 45.
  • the brake operation reception unit 45 is, for example, a brake lever adjacent to the grip unit 15.
  • the brake operation accepting unit 45 accepts a brake operation and its operation amount (brake operation amount b).
  • the brake operation amount b is 0 when the user U does not operate the brake, and is 1 when the user U has the maximum brake operation. That is, the brake operation reception unit 45 detects the brake operation amount b (0 ⁇ b ⁇ 1) and outputs the detected brake operation amount b to the control unit 21A.
  • the speed limiting unit 35 of the control unit 21A inputs the brake operation amount b from the brake operation receiving unit 45, and the progress after the limitation according to the traveling speed v and the brake operation amount b with a function as shown in the following formula 7.
  • the speed v ′ is calculated.
  • v ′ f (b, v) (7)
  • the function f (b, v) is a function that linearly limits the traveling speed according to the brake operation amount of the brake operation receiving unit 45, for example, as shown in Equation 8 below.
  • the function f (b, v) may be a function that limits the traveling speed so that the deceleration acceleration increases as the brake operation amount of the brake operation receiving unit 45 increases, for example, as shown in Equation 9 below. Is possible.
  • v 0 is the traveling speed when the brake operation reception unit 45 receives the brake operation.
  • a is the deceleration when the brake operation amount is maximum, v becomes a negative value in a range where v 'is not a negative value when 0 is positive (during forward), v 0 is negative (backward movement)
  • v 0 is negative (backward movement)
  • it becomes a positive value in a range where v ′ does not become a positive value.
  • the value of v 0 is a value of zero in the case of zero. Therefore, in this example, f (b, v) is limited in terms of acceleration as the brake operation amount increases.
  • the integration time Tv of the integral term in the FB control unit 32 in accordance with the brake operation amount. For example, when the user U continues to stop the wheel 12 by applying a large load to the gripping part 15, the value of the angular velocity ⁇ h, which is the output value of the conversion processing part 34, becomes 0. The integral term indicated by becomes larger. Therefore, even if the user U performs a brake operation immediately after releasing the load on the gripping part 15, the traveling speed may not be immediately reduced. Therefore, if the integration time Tv of the integral term in the FB control unit 32 is reduced as the brake operation amount of the brake operation accepting unit 45 is increased, it proceeds quickly according to the brake operation even immediately after the wheels 12 are kept stopped. The speed will decrease.
  • FIG. 8 is a block diagram showing a hardware configuration of a handcart 10B according to a modification of the handcart 10A.
  • the components common to the wheelbarrow 10A are denoted by the same reference numerals, and the description thereof is omitted.
  • the handcart 10 ⁇ / b> B further includes a contact detection sensor 46.
  • the contact detection sensor 46 is a sensor that is provided in the grip 15 and detects whether or not the user U is holding the grip 15 by detecting the contact of the user U. The detection result is input to the control unit 21A.
  • the speed limiter 35 of the control unit 21 ⁇ / b> A determines the traveling speed v ′. Set to 0 and stop the handcart 10B. However, when the traveling speed v ′ is suddenly set to 0 and the target angular speed ⁇ ′hr is set to 0, the behavior of the main body 11 may become unstable. Therefore, it is preferable to reduce the traveling speed v ′ at a predetermined deceleration acceleration “a” as shown in Equation 10 below.
  • v 0 is the traveling speed when the contact detection sensor 46 stops detecting the contact of the user U.
  • a is a predetermined deceleration
  • v 0 is when a negative (reverse travel)
  • the value of v 0 is a value of zero in the case of zero.
  • movement which stops the handcart 10 by applying Formula 10 is, for example, when a failure of the own device is detected by the self-failure detection function, or when the user U performs an unreasonable operation (for example, pushing the handcart extremely When the object is detected by an obstacle detection sensor or the like.
  • the speed limiter 35 determines whether or not the contact detection sensor 46 detects the contact of the user U (s14). If it is determined that the user U is not gripping the grip 15, the speed limiter 35 reduces the travel speed v ′ at a predetermined deceleration acceleration a using Equation 10 (s 15). After that, the speed limiting unit 35 reconverts the traveling speed v ′ into the target angular speed ⁇ ′hr and outputs it to the FB control unit 32 (s21).
  • the speed limiting unit 35 inputs the brake operation amount b from the brake operation receiving unit 45, and determines whether or not the brake operation is performed (s18). If it is determined that the brake operation is performed, the traveling speed v 'corresponding to the brake operation amount b is calculated by a function as shown in Formula 7 (s19).
  • the current pitch angle ⁇ h of the main body 11 is far from the target pitch angle ⁇ hr (for example, larger than ⁇ 2 degrees) when the brake is released, the current pitch angle ⁇ h is close to the target pitch angle ⁇ hr. Limit the rate of progress until
  • the speed limiting unit 35 detects a failure of the own device by the self-failure detection function, when the user U performs an unreasonable operation (for example, when pushing the wheelbarrow extremely strongly), or an obstacle.
  • an obstacle is detected by the detection sensor or the like, it is determined whether or not there is an abnormality such as (s20). If it is determined that there is an abnormality, the speed limiting unit 35 reduces the traveling speed v 'at a predetermined deceleration acceleration a using Equation 10 (s21).
  • the speed limiter 35 reconverts the traveling speed v ′ into the target angular speed ⁇ ′hr and outputs it to the FB controller 32 (s21).
  • the control unit 21A repeats the above processing to perform the travel speed limit processing.

Abstract

A conversion processing part (34) calculates the current angular velocity (ωh) of a main body section (11) on the basis of a pitch-direction rotation angle of wheels (12) detected by a wheel rotary encoder (25). The angular velocity (ωh) can be obtained from the ratio between turning radius (r) of the wheels and the turning radius (l) of the main body section. To tilt the main body section (11) rearward by θh, the wheels (12) have to be rotated forward by (r/l) × θ, so a relation expressed by rθt ≈ lθh is established. Differentiation of both sides of this mathematical expression yields ωh ≈ (r/l)ωt. The conversion processing part (34) can calculate the current pitch-direction angular velocity (ωh) of the main body section (11) from the pitch-direction rotation angle (θt) detected for the wheels (12) by the wheel rotary encoder (25). Consequently, a control unit (21) can detect the angular velocity (ωh) of the main body section (11) without using a gyro sensor or other sensor for detecting an angular velocity.

Description

手押し車Wheelbarrow
 この発明は、車輪を備えた手押し車に関し、特に車輪を駆動、制御する手押し車に関するものである。 This invention relates to a wheelbarrow provided with wheels, and more particularly to a wheelbarrow that drives and controls wheels.
 従来、車輪を駆動および制御して倒立振子制御を行う二輪車が知られている(例えば、特許文献1を参照)。 Conventionally, a two-wheeled vehicle that performs inverted pendulum control by driving and controlling wheels is known (see, for example, Patent Document 1).
 特許文献1の倒立二輪車は、本体と、二つの車輪と、二つの車輪を駆動する駆動手段と、を備えている。さらに、特許文献1の倒立二輪車は、本体の姿勢を検出する動作状態検出手段と、駆動速度を検出するセンサ(例えばジャイロセンサ)と、を備えている。 The inverted motorcycle of Patent Document 1 includes a main body, two wheels, and drive means for driving the two wheels. Further, the inverted two-wheeled vehicle of Patent Document 1 includes an operation state detection unit that detects the posture of the main body and a sensor (for example, a gyro sensor) that detects a driving speed.
 特許文献1の倒立二輪車は、姿勢情報指令と、姿勢検出装置で検出された現在の姿勢(動作状態)と、に基づいてフィードバック制御により駆動速度指令を算出する。さらに、特許文献1の倒立二輪車は、駆動速度指令と、ジャイロセンサで検出された現在の駆動速度と、に基づいてフィードバック制御により駆動手段に印加するトルクを算出する。 The inverted motorcycle of Patent Document 1 calculates a driving speed command by feedback control based on the posture information command and the current posture (operation state) detected by the posture detection device. Furthermore, the inverted two-wheeled vehicle of Patent Document 1 calculates torque to be applied to the driving means by feedback control based on the driving speed command and the current driving speed detected by the gyro sensor.
特開2011-207277号公報JP 2011-207277 A
 特許文献1の倒立二輪車は、現在の駆動速度(ピッチ方向の角速度)を検知するためのセンサが必要である。特許文献1では、当該センサの一例として、ジャイロセンサが記載されている。しかし、特許文献1の倒立二輪車では、設計上の都合等によりジャイロセンサを用いずに倒立振子制御を行いたい、という要求を満たすことができない。 The inverted motorcycle of Patent Document 1 requires a sensor for detecting the current driving speed (angular speed in the pitch direction). In Patent Document 1, a gyro sensor is described as an example of the sensor. However, the inverted two-wheeled vehicle of Patent Document 1 cannot satisfy the requirement for performing the inverted pendulum control without using the gyro sensor due to design reasons and the like.
 また、例えば、手押し車において倒立振子制御を行うためには、ピッチ方向の前後に本体部の回転を制限するストッパを設ける等して、本体部のピッチ方向の回転角度を所定の範囲内に制限することが好ましい。これにより、例えば電源が切れた場合であっても本体部がピッチ方向に必要以上に傾斜することがない。また、利用者が本体部に設けられた把持部に体重をかけた場合であっても、転倒するおそれがなく、利用者に安心感を与えることができる。 For example, in order to perform inverted pendulum control in a handcart, the rotation angle in the pitch direction of the main body is limited within a predetermined range by providing a stopper for limiting the rotation of the main body before and after the pitch direction. It is preferable to do. Thereby, for example, even when the power is turned off, the main body does not tilt more than necessary in the pitch direction. In addition, even when the user puts weight on the grip provided on the main body, there is no fear of falling, and the user can be given a sense of security.
 しかし、本体部の回転角度が制限された場合、ジャイロセンサで検出される角速度が0となる場合があるため、倒立振子制御が破綻する可能性がある。 However, when the rotation angle of the main body is limited, the angular velocity detected by the gyro sensor may become zero, so that the inverted pendulum control may fail.
 そこで、この発明は、角速度を検出するセンサを用いずに倒立振子制御を実現する手押し車を提供することを目的とする。 Therefore, an object of the present invention is to provide a handcart that realizes inverted pendulum control without using a sensor that detects angular velocity.
 本発明の手押し車は、本体部と、前記本体部に回転可能に支持されている車輪と、前記車輪をピッチ方向に回転させる駆動部と、前記駆動部をフィードバック制御する制御部と、前記本体部のピッチ方向の回転角度を検出する本体部角度検出部と、前記車輪のピッチ方向の回転角度を検出する車輪角度検出部と、を備えている。 The handcart of the present invention includes a main body, a wheel rotatably supported by the main body, a driving unit that rotates the wheel in a pitch direction, a control unit that performs feedback control of the driving unit, and the main body. A body angle detector that detects a rotation angle of the wheel in the pitch direction, and a wheel angle detector that detects a rotation angle of the wheel in the pitch direction.
 そして、前記制御部は、前記車輪角度検出部が検出した前記車輪のピッチ方向の回転角度に基づいて前記本体部のピッチ方向の角速度を算出し、算出した前記本体部のピッチ方向の角速度と、前記本体部角度検出部が検出した前記本体部のピッチ方向の回転角度と、に基づいて前記本体部のピッチ方向の回転角度が目標回転角度になるように前記駆動部を制御することを特徴とする。 And the control unit calculates the angular velocity in the pitch direction of the main body based on the rotation angle in the pitch direction of the wheel detected by the wheel angle detection unit, and the calculated angular velocity in the pitch direction of the main body, The drive unit is controlled so that the rotation angle in the pitch direction of the main body unit becomes a target rotation angle based on the rotation angle in the pitch direction of the main body unit detected by the main body unit angle detection unit. To do.
 このように、制御部は、車輪のピッチ方向の回転角度から本体部の角速度を算出することで、ジャイロセンサ等の角速度を検出するセンサを用いずに本体部の角速度を検出することができる。したがって、本発明の手押し車は、本体部の角速度を検出するセンサを用いずに倒立振子制御を実現することができる。 Thus, the control unit can detect the angular velocity of the main body without using a sensor for detecting the angular velocity such as a gyro sensor by calculating the angular velocity of the main body from the rotation angle in the pitch direction of the wheels. Therefore, the handcart of the present invention can realize inverted pendulum control without using a sensor that detects the angular velocity of the main body.
 具体的には、本体部の角速度は、車輪の回転半径と、本体部の回転半径と、の比を車輪の回転角度に乗算して微分することにより求めることができる。例えば、車輪の回転半径をr、本体部の回転半径をl、車輪の回転角度をθtとすれば、(r/l)×θtだけ車輪を回転させると、本体部の目標回転角度θhrと、現在の本体部の回転角度θhと、の偏角が0となる。したがって、rθt≒lθhの関係式が成り立ち、当該関係式の両辺を微分すると、本体部の回転角速度ωhは、ωh≒(r/l)ωtの式から求めることができる。ただし、当該関係式は、利用者Uが本体部11を移動させていないとき、または車輪12が回転していないときに成り立つものである。 More specifically, the angular velocity of the main body can be obtained by multiplying the wheel rotation angle by the ratio of the rotation radius of the wheel and the rotation radius of the main body to differentiate it. For example, if the rotation radius of the wheel is r, the rotation radius of the main body portion is l, and the rotation angle of the wheel is θt, when the wheel is rotated by (r / l) × θt, the target rotation angle θhr of the main body portion, The deviation angle from the current rotation angle θh of the main body is zero. Therefore, the relational expression rθt≈lθh is established, and when both sides of the relational expression are differentiated, the rotational angular velocity ωh of the main body can be obtained from the expression ωh≈ (r / l) ωt. However, this relational expression holds when the user U does not move the main body 11 or when the wheel 12 is not rotating.
 また、目標角速度ωhrは、本体部の目標回転角度θhrと、本体部の現在の回転角度θhと、の差分に所定の応答係数Kp(1/s)を乗算することで求めることができる。制御部は、本体部のピッチ方向の角速度ωhと目標角速度ωhrとの偏差が0となる角加速度αhrを算出する。最後に、制御部は、当該算出した角加速度に慣性モーメント、減速比、および効率等の値を乗算することで、駆動部が車輪に印加するトルクを算出する。 Further, the target angular velocity ωhr can be obtained by multiplying the difference between the target rotation angle θhr of the main body and the current rotation angle θh of the main body by a predetermined response coefficient Kp (1 / s). The control unit calculates an angular acceleration αhr at which the deviation between the angular velocity ωh in the pitch direction of the main body and the target angular velocity ωhr becomes zero. Finally, the control unit multiplies the calculated angular acceleration by values such as the moment of inertia, the reduction ratio, and the efficiency, thereby calculating the torque that the driving unit applies to the wheels.
 このようにして、制御部は、駆動部をフィードバック制御することで倒立振子制御を行う。 In this way, the control unit performs inverted pendulum control by feedback control of the drive unit.
 なお、手押し車は、目標角速度を本体部の進行速度に変換し、該変換後の進行速度を所定の速度に制限し、制限後の進行速度を再度、目標角速度に変換する速度制限手段を備えた態様であってもよい。 The wheelbarrow is provided with speed limiting means for converting the target angular velocity into the traveling speed of the main body, limiting the converted traveling speed to a predetermined speed, and converting the limited traveling speed into the target angular speed again. The embodiment may be sufficient.
 このように、フィードバック制御の入力となる目標角速度を制限することで、例えば利用者が手押し車を強く押した場合にも、手押し車の進行速度が制限速度を超えないようにすることができる。 As described above, by limiting the target angular velocity as an input for feedback control, for example, even when the user strongly pushes the handcart, the traveling speed of the handcart can be prevented from exceeding the speed limit.
 また、車輪に対するブレーキ操作を受け付けるブレーキ操作受付部を備えた態様である場合、制御部は、ブレーキ操作の操作量が大きくなるにつれて目標角速度を小さくすることで、ブレーキの握り具合に応じた速度制限を実現することもできる。 In addition, in the case of a mode including a brake operation reception unit that receives a brake operation on the wheel, the control unit reduces the target angular velocity as the operation amount of the brake operation increases, thereby limiting the speed according to the degree of grip of the brake. Can also be realized.
 この発明によれば、角速度を検出するセンサを用いずに倒立振子制御を実現することができる。 According to the present invention, the inverted pendulum control can be realized without using the sensor for detecting the angular velocity.
手押し車の側面図である。It is a side view of a wheelbarrow. 図2(A)は、手押し車の正面図であり、図2(B)は、手押し車の平面図である。FIG. 2A is a front view of the handcart, and FIG. 2B is a plan view of the handcart. 手押し車のハードウェア構成を示すブロック線図である。It is a block diagram which shows the hardware constitutions of a handcart. 図4(A)は、本体部のピッチ角度の制限を説明するための図であり、図4(B)は、本体部のピッチ角度と、車輪の回転角度との関係を示す図である。FIG. 4A is a diagram for explaining the limitation on the pitch angle of the main body, and FIG. 4B is a diagram showing the relationship between the pitch angle of the main body and the rotation angle of the wheels. 制御部の制御構成図である。It is a control block diagram of a control part. 変形例に係る制御部の制御構成図である。It is a control block diagram of the control part which concerns on a modification. 変形例に係る手押し車10Aのハードウェア構成を示すブロック線図である。It is a block diagram which shows the hardware constitutions of the handcart 10A which concerns on a modification. 変形例に係る手押し車10Bのハードウェア構成を示すブロック線図である。It is a block diagram which shows the hardware constitutions of the handcart 10B which concerns on a modification. 進行速度の制限処理を示すフローチャートである。It is a flowchart which shows the restriction process of advancing speed.
 図1は、手押し車10の左側面図であり、図2(A)は、正面図であり、図2(B)は、平面図である。 FIG. 1 is a left side view of the wheelbarrow 10, FIG. 2A is a front view, and FIG. 2B is a plan view.
 手押し車10は、鉛直方向(図中Z方向)において相対的に長く、奥行き方向(図中Y方向)および左右方向(図中X方向)において相対的に短い形状の本体部11を備えている。本体部11の鉛直下方向の下部のうち、左右方向の端部には、一対の車輪12が取り付けられている。この実施形態においては、車輪12は2輪である例を示しているが、1輪あるいは3輪以上であってもよい。 The handcart 10 includes a main body 11 having a shape that is relatively long in the vertical direction (Z direction in the drawing) and relatively short in the depth direction (Y direction in the drawing) and the left and right direction (X direction in the drawing). . A pair of wheels 12 is attached to an end in the left-right direction in the lower portion of the main body 11 in the vertically downward direction. In this embodiment, although the wheel 12 has shown the example which is 2 wheels, 1 wheel or 3 wheels or more may be sufficient.
 車輪12は、それぞれ中心軸を有する車輪12の回転軸(車軸)の周りに回転する。すなわち、ピッチ方向に回転可能になっている。この例では、車輪12は、ヨー方向およびロール方向には回転しないが、例えばヨー方向に回転可能にして本体部11に対して向きを変える態様としてもよい。 The wheel 12 rotates around the rotation axis (axle) of the wheel 12 having a central axis. That is, it can rotate in the pitch direction. In this example, the wheel 12 does not rotate in the yaw direction and the roll direction. However, for example, the wheel 12 may be rotated in the yaw direction and change its direction with respect to the main body 11.
 各車輪12に連結された2つの棒状の本体部11は、上部で把持部15に接続され、車輪12の軸を中心としてピッチ方向に回転可能になっている。ただし、本体部11は、この例のように2つの棒状である必要はなく、1つの棒状の部材であってもよいし、薄い板状の部材等であってもよい。また、本体部11の下部付近には、制御用の基板や電池等を内蔵したボックス16が配置されている。なお、本体部11は、実際にはカバーが取り付けられ、内部の基板等が外観上見えないようになっている。 The two rod-shaped main body parts 11 connected to each wheel 12 are connected to the gripping part 15 at the upper part and are rotatable in the pitch direction around the axis of the wheel 12. However, the main body 11 does not need to have two rod shapes as in this example, and may be one rod-like member, a thin plate-like member, or the like. A box 16 containing a control board, a battery, and the like is disposed near the lower portion of the main body 11. The main body 11 is actually provided with a cover so that the internal substrate and the like cannot be seen in appearance.
 把持部15は、左右方向に長い円筒形状であり、左右端付近で進行方向に対して逆方向(後方)に向かって曲げられ、後方に向かって延びている。これにより、利用者が把持部15を把持する位置を後方にシフトさせることができ、利用者の足元の空間を広くすることができる。 The grip portion 15 has a cylindrical shape that is long in the left-right direction, is bent in the reverse direction (backward) with respect to the traveling direction near the left and right ends, and extends rearward. Thereby, the position where the user grips the grip portion 15 can be shifted backward, and the space at the user's feet can be widened.
 車輪12の回転軸には、後方に延びる薄い板状の支持部13が連結されている。支持部13は、路面と平行に延びるように、車輪12の回転軸に対してピッチ方向に回転可能に接続されている。 A thin plate-like support portion 13 extending rearward is connected to the rotating shaft of the wheel 12. The support portion 13 is connected to the rotation axis of the wheel 12 so as to be rotatable in the pitch direction so as to extend in parallel with the road surface.
 支持部13には、車輪12の回転軸に連結されている側とは反対方向の下面に補助輪14が連結されている。これにより、車輪12と補助輪14の両方が路面に接するようになっている。支持部13は、進行方向に対して車輪12よりも後方に延びている。このため、相対的に内径の大きい車輪12が進行方向に対して前方に配置されることになり、段差を乗り越えやすくなる。なお、支持部13は、進行方向に対して車輪12よりも前方に延び、補助輪14が車輪12よりも前方に配置される態様であってもよい。支持部13が車輪12よりも前方に延びる態様であれば、利用者Uの足元の空間を広くすることができる。 The supporting wheel 13 has an auxiliary wheel 14 connected to the lower surface in the direction opposite to the side connected to the rotating shaft of the wheel 12. Thereby, both the wheel 12 and the auxiliary wheel 14 come into contact with the road surface. The support portion 13 extends rearward from the wheel 12 with respect to the traveling direction. For this reason, the wheel 12 having a relatively large inner diameter is disposed forward with respect to the traveling direction, and it is easy to get over the step. The support portion 13 may extend in front of the wheel 12 with respect to the traveling direction, and the auxiliary wheel 14 may be disposed in front of the wheel 12. If the support portion 13 extends in front of the wheels 12, the space at the foot of the user U can be widened.
 なお、車輪12の回転軸と支持部13との接続部分にモータを取り付け、このモータを駆動することで支持部13をピッチ方向に能動的に回転させるようにしてもよい。 Note that a motor may be attached to a connection portion between the rotating shaft of the wheel 12 and the support portion 13, and the support portion 13 may be actively rotated in the pitch direction by driving the motor.
 また、この例では、支持部13および補助輪14を2つずつ設け、それぞれ左右の車輪12の回転軸に対して連結されているが、支持部13および補助輪14は、それぞれ1つあるいは3つ以上設ける態様であってもよい。ただし、図2に示すように左右の車輪12の回転軸に対して連結することで、利用者Uの足元の空間を広くすることができる。 Further, in this example, two support portions 13 and two auxiliary wheels 14 are provided and connected to the rotation shafts of the left and right wheels 12, respectively, but one or three support portions 13 and auxiliary wheels 14 are provided. Two or more modes may be provided. However, as shown in FIG. 2, the space at the foot of the user U can be widened by connecting to the rotating shafts of the left and right wheels 12.
 把持部15には、電源スイッチ等のユーザインタフェース(I/F)27が設けられている。利用者Uは、把持部15を握ることで手押し車10を進行方向に押すことができる。あるいは、利用者Uは、把持部15を握らずに前腕等を把持部15に上から押し付けるように載せて、把持部15と前腕等との間で発生する摩擦により、把持部15に前腕等を載せながら手押し車10を進行方向に押すこともできる。 The grip 15 is provided with a user interface (I / F) 27 such as a power switch. The user U can push the handcart 10 in the traveling direction by grasping the grip portion 15. Alternatively, the user U places the forearm or the like on the gripping part 15 without pressing the gripping part 15 from above, and the forearm or the like is applied to the gripping part 15 by friction generated between the gripping part 15 and the forearm or the like. It is also possible to push the wheelbarrow 10 in the traveling direction while putting
 次に、手押し車10のハードウェア構成および動作について説明する。図3に示すように、手押し車10は、制御部21、ROM22、RAM23、駆動部24、車輪用ロータリエンコーダ25、本体部用ロータリエンコーダ26、およびユーザI/F27を備えている。車輪用ロータリエンコーダ25は、本発明の車輪角度検出部に相当し、本体部用ロータリエンコーダ26は、本体部角度検出部に相当する。 Next, the hardware configuration and operation of the handcart 10 will be described. As shown in FIG. 3, the handcart 10 includes a control unit 21, a ROM 22, a RAM 23, a drive unit 24, a wheel rotary encoder 25, a main body rotary encoder 26, and a user I / F 27. The wheel rotary encoder 25 corresponds to a wheel angle detector of the present invention, and the main body rotary encoder 26 corresponds to a main body angle detector.
 制御部21は、手押し車10を統括的に制御する機能部であり、ROM22に記憶されているプログラムを読み出し、当該プログラムをRAM23に展開することで種々の動作を実現する。 The control unit 21 is a functional unit that controls the wheelbarrow 10 in an integrated manner, and implements various operations by reading a program stored in the ROM 22 and developing the program in the RAM 23.
 駆動部24は、車輪12に取り付けられた回転軸を回転させるモータを駆動して車輪12に動力を与える機能部である。駆動部24は、制御部21が出力する後述のトルク指令値に基づいて車輪12のモータを駆動し、車輪12をピッチ方向に回転させる。 The driving unit 24 is a functional unit that drives a motor that rotates a rotating shaft attached to the wheel 12 to provide power to the wheel 12. The drive unit 24 drives the motor of the wheel 12 based on a torque command value described later output from the control unit 21 and rotates the wheel 12 in the pitch direction.
 車輪用ロータリエンコーダ25は、車輪12のピッチ方向の回転角度を検出し、検出結果を制御部21に出力する。 The wheel rotary encoder 25 detects the rotation angle of the wheel 12 in the pitch direction and outputs the detection result to the control unit 21.
 本体部用ロータリエンコーダ26は、本体部11と支持部13との成す角度である交差角度を検出し、検出結果を制御部21に出力する。制御部21は、本体部用ロータリエンコーダ26から入力された交差角度から本体部11のピッチ方向の回転角度を算出する。以下、ピッチ方向の回転角度は、ピッチ角度と称する。 The main body rotary encoder 26 detects a crossing angle, which is an angle formed by the main body 11 and the support 13, and outputs a detection result to the control unit 21. The control unit 21 calculates the rotation angle in the pitch direction of the main body 11 from the intersecting angle input from the main body rotary encoder 26. Hereinafter, the rotation angle in the pitch direction is referred to as a pitch angle.
 支持部13は、水平な路面と平行になるように車輪12の回転軸に接続されている。したがって、制御部21は、交差角度が90度である場合にピッチ角度が0度、すなわち本体部11の路面の垂線に対する傾斜角度が0度であるとし、交差角度が大きくなる場合に進行方向に対して前方に傾斜し、交差角度が小さくなる場合に進行方向に対して後方に傾斜しているとして、現時点の本体部11のピッチ角度を算出する。例えば、本体部11のピッチ角度は、進行方向に対して前方に傾斜する場合に正の値となり、進行方向に対して後方に傾斜する場合を負の値となるように、「交差角度-90度」をピッチ角度として算出する。ただし、支持部13は、必ずしも水平な路面と平行になっている必要はない。例えば、手押し車10を水平な路面に配置した時に、路面と支持部13との成す角度(ピッチ方向の角度)が予め分かっていれば、当該ピッチ方向の成す角度との差分(ピッチ方向の角度変化)を求めることで、本体部11のピッチ角度を算出することができる。 The support part 13 is connected to the rotating shaft of the wheel 12 so as to be parallel to the horizontal road surface. Therefore, the control unit 21 determines that the pitch angle is 0 degree when the intersection angle is 90 degrees, that is, the inclination angle with respect to the normal of the road surface of the main body 11 is 0 degree, and the traveling direction is increased when the intersection angle increases. On the other hand, the current pitch angle of the main body 11 is calculated assuming that the vehicle body is inclined forward and the vehicle is inclined backward with respect to the traveling direction when the intersection angle is small. For example, the pitch angle of the main body 11 is a positive value when tilted forward with respect to the traveling direction, and a negative value when tilted backward with respect to the traveling direction. "Degree" is calculated as the pitch angle. However, the support part 13 does not necessarily need to be parallel to a horizontal road surface. For example, when the wheelbarrow 10 is arranged on a horizontal road surface, if the angle between the road surface and the support portion 13 (the angle in the pitch direction) is known in advance, the difference between the angle formed in the pitch direction (the angle in the pitch direction) By calculating (change), the pitch angle of the main body 11 can be calculated.
 なお、本体部11のピッチ角度は、図4(A)に示すように、ストッパ等により所定の範囲(例えば±30度)に制限される。これにより、例えば電源が切れた場合であっても本体部11が必要以上に傾斜することがない。また、利用者Uが把持部15に体重をかけた場合であっても、転倒するおそれがなく、利用者に安心感を与えることができる。 Note that the pitch angle of the main body 11 is limited to a predetermined range (for example, ± 30 degrees) by a stopper or the like, as shown in FIG. Thereby, for example, even when the power is turned off, the main body 11 does not tilt more than necessary. Further, even when the user U puts weight on the gripping part 15, there is no fear of falling, and the user can be provided with a sense of security.
 なお、本体部11のピッチ角度は、ロータリエンコーダだけでなく、ポテンショメータで検出してもよい。 In addition, you may detect the pitch angle of the main-body part 11 not only with a rotary encoder but with a potentiometer.
 次に、図5は、制御部21の制御構成図である。制御部21は、機能的に、目標角速度算出部31、フィードバック(FB)制御部32、トルク指令値換算部33、および変換処理部34を備えている。 Next, FIG. 5 is a control configuration diagram of the control unit 21. The control unit 21 functionally includes a target angular velocity calculation unit 31, a feedback (FB) control unit 32, a torque command value conversion unit 33, and a conversion processing unit 34.
 目標角速度算出部31は、本体部11の目標ピッチ角度θhr(例えばθhr=0)と、現在の本体部11のピッチ角度θhと、を入力する。なお、上述のように、本体部用ロータリエンコーダ26は交差角度を検出しているため、目標角速度算出部31は、入力された交差角度から90度を差分した値「交差角度-90度」をピッチ角度θhとして入力する。 The target angular velocity calculation unit 31 inputs the target pitch angle θhr (for example, θhr = 0) of the main body 11 and the current pitch angle θh of the main body 11. As described above, since the main body rotary encoder 26 detects the intersection angle, the target angular velocity calculation unit 31 calculates a value “intersection angle−90 degrees” obtained by subtracting 90 degrees from the input intersection angle. Input as pitch angle θh.
 目標角速度算出部31は、入力された目標ピッチ角度θhrと、現在の本体部11のピッチ角度θhと、に基づいて目標角速度ωhrを算出する。目標角速度ωhrは、制御の応答性を表す係数Kpを用いて、以下の数式1により算出する。 The target angular velocity calculation unit 31 calculates the target angular velocity ωhr based on the input target pitch angle θhr and the current pitch angle θh of the main body 11. The target angular velocity ωhr is calculated by the following formula 1 using a coefficient Kp representing control responsiveness.
 ωhr=Kp(θhr-θh)・・・数式1
 算出された目標角速度ωhrは、FB制御部32に入力される。FB制御部32は、当該目標角速度ωhrと、現在の本体部11の角速度ωhと、を入力する。現在の本体部11の角速度ωhは、変換処理部34により求められる。
ωhr = Kp (θhr−θh) Equation 1
The calculated target angular velocity ωhr is input to the FB control unit 32. The FB control unit 32 inputs the target angular velocity ωhr and the current angular velocity ωh of the main body 11. The current angular velocity ωh of the main body 11 is obtained by the conversion processing unit 34.
 変換処理部34は、車輪用ロータリエンコーダ25で検出される車輪12のピッチ方向の回転角度に基づいて現在の本体部11の角速度ωhを算出する。角速度ωhは、車輪の回転半径rと、本体部の回転半径lと、の比から、求めることができる。図4(B)に示すように、本体部11の目標ピッチ角度θhrと、現在の本体部11のピッチ角度θhとの偏角(目標ピッチ角度θhr=0であれば、偏角=θhとなる。)は、車輪12を(r/l)×θtだけ回転させると、0となる。すなわち、本体部11をθhだけ後傾させるためには、車輪12を(r/l)×θtだけ前方に回転させることになり、以下のような関係式が成り立つ。 The conversion processing unit 34 calculates the current angular velocity ωh of the main body 11 based on the rotation angle in the pitch direction of the wheel 12 detected by the wheel rotary encoder 25. The angular velocity ωh can be obtained from the ratio between the rotation radius r of the wheel and the rotation radius l of the main body. As shown in FIG. 4B, the deflection angle between the target pitch angle θhr of the main body 11 and the current pitch angle θh of the main body 11 (if the target pitch angle θhr = 0, the deflection angle = θh. .) Becomes 0 when the wheel 12 is rotated by (r / l) × θt. That is, in order to tilt the main body 11 backward by θh, the wheel 12 is rotated forward by (r / l) × θt, and the following relational expression is established.
 rθt≒lθh・・・数式2
 この数式2の両辺を微分すると、数式2は、以下の数式3に変換される。
rθt≈lθh Equation 2
When both sides of Equation 2 are differentiated, Equation 2 is converted into Equation 3 below.
 ωh≒(r/l)ωt・・・数式3
 このようにして、変換処理部34は、車輪用ロータリエンコーダ25で検出される車輪12のピッチ方向の回転角度θtから、現在の本体部11のピッチ方向の角速度ωhを求めることができる。これにより、制御部21は、ジャイロセンサ等の角速度を検出するセンサを用いずに本体部11の角速度ωhを検出することができる。
ωh≈ (r / l) ωt Equation 3
In this way, the conversion processing unit 34 can obtain the current angular velocity ωh in the pitch direction of the main body 11 from the rotation angle θt in the pitch direction of the wheel 12 detected by the wheel rotary encoder 25. Thereby, the control part 21 can detect angular velocity (omega) h of the main-body part 11 without using the sensor which detects angular velocity, such as a gyro sensor.
 そして、FB制御部32は、現在の本体部11の角速度ωhが目標角速度ωhrになるような角加速度αhrを求める。すなわち、FB制御部32は、現在の本体部11の角速度ωhと目標角速度ωhrとの偏差が0となる角加速度αhrを算出する。 Then, the FB control unit 32 obtains the angular acceleration αhr so that the current angular velocity ωh of the main body 11 becomes the target angular velocity ωhr. That is, the FB control unit 32 calculates the angular acceleration αhr at which the deviation between the current angular velocity ωh of the main body 11 and the target angular velocity ωhr becomes zero.
 本実施形態では、FB制御部32は、以下の数式4で表されるようなPI制御により、角加速度αhrを算出する。 In the present embodiment, the FB control unit 32 calculates the angular acceleration αhr by PI control as expressed by the following mathematical formula 4.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 数式4におけるKvは、比例ゲインであり、Tvは、積分時間である。なお、フィードバック制御は、PI制御に限るものではなく、例えば微分制御を加えたPID制御であってもよいし、比例制御だけであってもよい。 Kv in Equation 4 is a proportional gain, and Tv is an integration time. Note that the feedback control is not limited to PI control, and may be PID control to which differential control is added, for example, or only proportional control.
 FB制御部32が算出した角加速度αhrは、トルク指令値換算部33に出力される。トルク指令値換算部33は、入力された角加速度αhrをトルク指令値trに換算する。トルク指令値trは、本体部11の慣性モーメントJ、モータから車輪12に係る減速系の減速比1/k、および減速系の効率ηにより、以下の数式5で求めることができる。 The angular acceleration αhr calculated by the FB control unit 32 is output to the torque command value conversion unit 33. The torque command value conversion unit 33 converts the input angular acceleration αhr into a torque command value tr. The torque command value tr can be obtained by the following Equation 5 from the moment of inertia J of the main body 11, the reduction ratio 1 / k of the reduction system related to the wheel 12 from the motor, and the efficiency η of the reduction system.
 tr=J・η・k・αhr・・・数式5
 トルク指令値換算部33は、算出したトルク指令値trを駆動部24に入力する。駆動部24は、入力されたトルク指令値trに基づくトルクをモータ(車輪12に取り付けられた軸を回転させるモータ)に印加して、当該モータを駆動し、車輪12を回転させる。
tr = J · η · k · αhr Equation 5
The torque command value conversion unit 33 inputs the calculated torque command value tr to the drive unit 24. The drive unit 24 applies torque based on the input torque command value tr to a motor (a motor that rotates a shaft attached to the wheel 12), drives the motor, and rotates the wheel 12.
 このようにして、手押し車10は、倒立振子制御を行い、本体部11のピッチ角度θhが目標ピッチ角度θhrに保たれるように姿勢を制御する。例えば、利用者Uが手押し車10を進行方向に押して本体部11を進行方向に傾けると、手押し車10は、ピッチ角度θhを目標ピッチ角度θhr(例えば0度)に保つために、車輪12を前方に回転させる。これにより、手押し車10は前進し、利用者Uの移動に追従して手押し車10も移動することになる。 Thus, the handcart 10 performs the inverted pendulum control, and controls the posture so that the pitch angle θh of the main body 11 is maintained at the target pitch angle θhr. For example, when the user U pushes the handcart 10 in the traveling direction and tilts the main body 11 in the traveling direction, the handcart 10 moves the wheel 12 to keep the pitch angle θh at the target pitch angle θhr (for example, 0 degree). Rotate forward. Thereby, the handcart 10 moves forward, and the handcart 10 also moves following the movement of the user U.
 上述したように、本実施形態における手押し車10は、ストッパ等により本体部11のピッチ角度を所定の範囲内に制限しているため、ジャイロセンサ等の角速度を検出するセンサを用いてフィードバック制御を行うことができない(検出される角速度が0になる)場合がある。また、本体部11の角速度は、本体部11のピッチ角度を微分することでも求めることができるが、やはりピッチ角度の変化が制限された場合には、微分値が著しく小さくなり、算出される角速度が0になってフィードバック制御が破綻する場合がある。しかし、本実施形態の手押し車10は、車輪用ロータリエンコーダ25が検出した車輪12のピッチ方向の回転角度に基づいて本体部11のピッチ方向の角速度を算出することで、本体部11のピッチ角度の変化が制限された場合でも、フィードバック制御による倒立振子制御を実現することができる。 As described above, the handcart 10 in the present embodiment limits the pitch angle of the main body 11 within a predetermined range by a stopper or the like, and therefore performs feedback control using a sensor that detects an angular velocity such as a gyro sensor. There are cases where it cannot be performed (the detected angular velocity becomes zero). Further, the angular velocity of the main body 11 can be obtained by differentiating the pitch angle of the main body 11. However, when the change of the pitch angle is also limited, the differential value becomes extremely small and the calculated angular velocity. May become zero and feedback control may fail. However, the handcart 10 according to the present embodiment calculates the angular velocity in the pitch direction of the main body 11 based on the rotation angle in the pitch direction of the wheel 12 detected by the wheel rotary encoder 25, thereby the pitch angle of the main body 11. Even when the change of the above is restricted, the inverted pendulum control by the feedback control can be realized.
 また、本実施形態の手押し車10では、目標角速度算出部31が係数Kpを用いて目標角速度ωhrを求め、トルク指令値換算部33が角加速度をトルク指令値に換算する。これらの演算は、いずれも単なる乗算であり、処理負荷は小さい。一方で、処理負荷の大きいフィードバック制御は、FB制御部32だけが行う。従来の制御手法では、例えば目標ピッチ角度と、現在のピッチ角度と、に基づいてフィードバック制御を行って目標角速度を算出し、さらに、ジャイロセンサで検出された角速度に基づいてフィードバック制御を行ってトルク指令値を算出する、という2段階のフィードバック制御を行っていたが、本実施形態の手押し車10は、このような2段階のフィードバック制御を行う必要はないため、処理負荷を軽減することができる。 In the handcart 10 of the present embodiment, the target angular velocity calculation unit 31 calculates the target angular velocity ωhr using the coefficient Kp, and the torque command value conversion unit 33 converts the angular acceleration into a torque command value. All of these operations are simple multiplications, and the processing load is small. On the other hand, feedback control with a large processing load is performed only by the FB control unit 32. In the conventional control method, for example, feedback control is performed based on the target pitch angle and the current pitch angle to calculate the target angular velocity, and further, feedback control is performed based on the angular velocity detected by the gyro sensor to generate torque. Although the two-stage feedback control of calculating the command value was performed, the wheelbarrow 10 of the present embodiment does not need to perform such a two-stage feedback control, and thus can reduce the processing load. .
 次に、図6は、制御部21の変形例に係る制御部21Aの制御構成図である。制御部21と共通する構成は、同一の符号を付し、説明を省略する。制御部21Aは、目標角速度算出部31の後段およびFB制御部32の前段に、速度制限部35を備えている。 Next, FIG. 6 is a control configuration diagram of the control unit 21 </ b> A according to a modification of the control unit 21. The same components as those of the control unit 21 are denoted by the same reference numerals and description thereof is omitted. The control unit 21 </ b> A includes a speed limiting unit 35 in the subsequent stage of the target angular velocity calculation unit 31 and the previous stage of the FB control unit 32.
 速度制限部35は、本体部11の進行速度を所定の値以下に制限する手段である。速度制限部35は、目標角速度算出部31から入力された目標角速度ωhr(rad/s)を、以下の数式6により本体部11の進行速度v(m/s)に変換する。 The speed limiter 35 is a means for limiting the traveling speed of the main body 11 to a predetermined value or less. The speed limiter 35 converts the target angular velocity ωhr (rad / s) input from the target angular velocity calculator 31 into the traveling speed v (m / s) of the main body 11 using the following formula 6.
 v=l・ωhr・・・数式6
 速度制限部35は、算出した進行速度vを所定の値v’(例えばv’=1.5m/s)以下に制限する。そして、速度制限部35は、制限後の進行速度v’(m/s)を数式5により目標角速度ω’hr(rad/s)に再変換する。この変換後の目標角速度ω’hrがFB制御部32に入力される。したがって、目標角速度ω’hrが制限され、算出されるトルク指令値αtrが制限されることになり、本体部11の進行速度が制限されることになる。これにより、フィードバック制御を行う制御器がFB制御部32だけであっても、本体部11の進行速度を制限することができる。
v = l · ωhr (6)
The speed limiter 35 limits the calculated traveling speed v to a predetermined value v ′ (for example, v ′ = 1.5 m / s) or less. Then, the speed limiter 35 reconverts the travel speed v ′ (m / s) after the limit into the target angular speed ω′hr (rad / s) using Equation 5. The converted target angular velocity ω′hr is input to the FB control unit 32. Therefore, the target angular velocity ω′hr is limited, the calculated torque command value αtr is limited, and the traveling speed of the main body 11 is limited. Thereby, even if the controller which performs feedback control is only the FB control part 32, the advancing speed of the main-body part 11 can be restrict | limited.
 また、本実施形態では、本体部11の回転角度を所定の範囲内に制限しているため、仮にジャイロセンサを用いた場合には、検出される本体部11の角速度が0になり、目標角速度ω’hrを制限したとしても算出されるトルク指令値αhrが大きくなる可能性がある。しかし、制御部21Aでは、車輪12の角速度に基づいて本体部11の角速度を求めるため、車輪12が回転している間は、変換処理部34が出力する角速度ωhが0にはならず、本体部11の進行速度が著しく大きくなることはない。 In this embodiment, since the rotation angle of the main body 11 is limited to a predetermined range, if a gyro sensor is used, the detected angular velocity of the main body 11 becomes 0, and the target angular velocity Even if ω′hr is limited, the calculated torque command value αhr may become large. However, since the control unit 21A obtains the angular velocity of the main body 11 based on the angular velocity of the wheel 12, the angular velocity ωh output from the conversion processing unit 34 does not become zero while the wheel 12 is rotating, The traveling speed of the part 11 does not increase significantly.
 次に、図7は、手押し車10の変形例に係る手押し車10Aのハードウェア構成を示すブロック線図である。手押し車10と共通する構成については同一の符号を付し、説明を省略する。手押し車10Aは、制御部21に代えて制御部21Aを備え、さらにブレーキ操作受付部45を備えている。 Next, FIG. 7 is a block diagram showing a hardware configuration of a handcart 10A according to a modification of the handcart 10. The components common to the wheelbarrow 10 are denoted by the same reference numerals and description thereof is omitted. The handcart 10 </ b> A includes a control unit 21 </ b> A instead of the control unit 21, and further includes a brake operation reception unit 45.
 ブレーキ操作受付部45は、例えば、把持部15に隣接されたブレーキレバーである。ブレーキ操作受付部45は、ブレーキ操作およびその操作量(ブレーキ操作量b)を受け付ける。ブレーキ操作量bは、利用者Uがブレーキを操作しないときには0となり、利用者Uのブレーキ操作が最大のときは1となる。すなわち、ブレーキ操作受付部45は、ブレーキ操作量b(0≦b≦1)を検出し、当該検出したブレーキ操作量bを制御部21Aに出力する。 The brake operation reception unit 45 is, for example, a brake lever adjacent to the grip unit 15. The brake operation accepting unit 45 accepts a brake operation and its operation amount (brake operation amount b). The brake operation amount b is 0 when the user U does not operate the brake, and is 1 when the user U has the maximum brake operation. That is, the brake operation reception unit 45 detects the brake operation amount b (0 ≦ b ≦ 1) and outputs the detected brake operation amount b to the control unit 21A.
 制御部21Aの速度制限部35は、ブレーキ操作受付部45からブレーキ操作量bを入力し、以下の数式7に示すような関数で、進行速度vおよびブレーキ操作量bに応じた制限後の進行速度v’を算出する。 The speed limiting unit 35 of the control unit 21A inputs the brake operation amount b from the brake operation receiving unit 45, and the progress after the limitation according to the traveling speed v and the brake operation amount b with a function as shown in the following formula 7. The speed v ′ is calculated.
 v’=f(b,v)・・・数式7
 関数f(b,v)は、例えば以下の数式8に示すように、ブレーキ操作受付部45のブレーキ操作量に応じて線形的に進行速度を制限する関数である。
v ′ = f (b, v) (7)
The function f (b, v) is a function that linearly limits the traveling speed according to the brake operation amount of the brake operation receiving unit 45, for example, as shown in Equation 8 below.
 f(b,v)=(1.0-b)・v・・・数式8
 これにより、ブレーキ操作受付部45のブレーキ操作量が大きくなるほど、線形的に本体部11の進行速度が小さくなる。
f (b, v) = (1.0−b) · v Equation 8
Thereby, the traveling speed of the main body 11 decreases linearly as the brake operation amount of the brake operation receiving unit 45 increases.
 また、関数f(b,v)は、例えば以下の数式9に示すように、ブレーキ操作受付部45のブレーキ操作量が大きくなるほど減速加速度が大きくなるように進行速度を制限する関数とすることも可能である。 Also, the function f (b, v) may be a function that limits the traveling speed so that the deceleration acceleration increases as the brake operation amount of the brake operation receiving unit 45 increases, for example, as shown in Equation 9 below. Is possible.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 vは、ブレーキ操作受付部45がブレーキ操作を受け付けたときの進行速度である。aは、ブレーキ操作量が最大のときの減速加速度であり、vが正(前進時)のときにはv’が負の値とならない範囲で負の値となり、vが負(後進時)のときにはv’が正の値とならない範囲で正の値となる。また、vの値がゼロの場合にはゼロの値となる。したがって、この例では、ブレーキ操作量が大きくなるほどf(b,v)が加速度的に制限されることになる。 v 0 is the traveling speed when the brake operation reception unit 45 receives the brake operation. a is the deceleration when the brake operation amount is maximum, v becomes a negative value in a range where v 'is not a negative value when 0 is positive (during forward), v 0 is negative (backward movement) Sometimes, it becomes a positive value in a range where v ′ does not become a positive value. The value of v 0 is a value of zero in the case of zero. Therefore, in this example, f (b, v) is limited in terms of acceleration as the brake operation amount increases.
 なお、ブレーキ操作受付部45でブレーキ操作を受け付けた場合、ブレーキ操作量に応じてFB制御部32における積分項の積分時間Tvを変化させることが好ましい。例えば、利用者Uが把持部15に大きな荷重をかける等して、車輪12を停止させ続けた場合には、変換処理部34の出力値である角速度ωhの値が0になるため、数式4で示した積分項が大きくなる。そのため、利用者Uが把持部15への荷重を解除した直後にブレーキ操作を行ったとしても、即座に進行速度が低下しない可能性がある。そこで、ブレーキ操作受付部45のブレーキ操作量が大きくなるほどFB制御部32における積分項の積分時間Tvを小さくすれば、車輪12を停止させ続けた直後であっても、ブレーキ操作に応じて素早く進行速度が低下することになる。 In addition, when the brake operation is received by the brake operation receiving unit 45, it is preferable to change the integration time Tv of the integral term in the FB control unit 32 in accordance with the brake operation amount. For example, when the user U continues to stop the wheel 12 by applying a large load to the gripping part 15, the value of the angular velocity ωh, which is the output value of the conversion processing part 34, becomes 0. The integral term indicated by becomes larger. Therefore, even if the user U performs a brake operation immediately after releasing the load on the gripping part 15, the traveling speed may not be immediately reduced. Therefore, if the integration time Tv of the integral term in the FB control unit 32 is reduced as the brake operation amount of the brake operation accepting unit 45 is increased, it proceeds quickly according to the brake operation even immediately after the wheels 12 are kept stopped. The speed will decrease.
 次に、図8は、手押し車10Aの変形例に係る手押し車10Bのハードウェア構成を示すブロック線図である。手押し車10Aと共通する構成については同一の符号を付し、説明を省略する。手押し車10Bは、さらに接触感知センサ46を備えている。 Next, FIG. 8 is a block diagram showing a hardware configuration of a handcart 10B according to a modification of the handcart 10A. The components common to the wheelbarrow 10A are denoted by the same reference numerals, and the description thereof is omitted. The handcart 10 </ b> B further includes a contact detection sensor 46.
 接触感知センサ46は、把持部15に設けられ、利用者Uの接触を感知することにより、利用者Uが把持部15を握っているか否かを検知するためのセンサである。検知結果は、制御部21Aに入力される。 The contact detection sensor 46 is a sensor that is provided in the grip 15 and detects whether or not the user U is holding the grip 15 by detecting the contact of the user U. The detection result is input to the control unit 21A.
 制御部21Aの速度制限部35は、接触感知センサ46が利用者Uの接触を検知していない場合、すなわち、利用者Uが把持部15を握っていないと判断した場合、進行速度v’を0に設定し、手押し車10Bを停止させる。ただし、突然、進行速度v’を0にして目標角速度ω’hrを0にすると、本体部11の挙動が不安定になる可能性がある。そこで、以下の数式10に示すように、所定の減速加速度aで進行速度v’を小さくすることが好ましい。 When the contact detection sensor 46 has not detected the contact of the user U, that is, when it is determined that the user U is not gripping the grip 15, the speed limiter 35 of the control unit 21 </ b> A determines the traveling speed v ′. Set to 0 and stop the handcart 10B. However, when the traveling speed v ′ is suddenly set to 0 and the target angular speed ω′hr is set to 0, the behavior of the main body 11 may become unstable. Therefore, it is preferable to reduce the traveling speed v ′ at a predetermined deceleration acceleration “a” as shown in Equation 10 below.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここでは、vは、接触感知センサ46が利用者Uの接触を検知しなくなったときの進行速度である。aは、所定の減速加速度であり、vが正(前進時)のときにはv’が負の値とならない範囲で負の値となり、vが負(後進時)のときにはv’が正の値とならない範囲で正の値となる。また、vの値がゼロの場合にはゼロの値となる。 Here, v 0 is the traveling speed when the contact detection sensor 46 stops detecting the contact of the user U. a is a predetermined deceleration, v 0 positive 'becomes a negative value in the range where does not become a negative value, v 0 is when a negative (reverse travel) v' v when the (forward-movement) is positive It becomes a positive value in the range that does not become a value. The value of v 0 is a value of zero in the case of zero.
 これにより、利用者Uが把持部15を離した場合には、手押し車10が安全に停止することになる。 Thus, when the user U releases the grip portion 15, the wheelbarrow 10 is safely stopped.
 なお、数式10を適用して手押し車10を停止させる動作は、例えば自己故障検知機能により自装置の故障を検知したとき、利用者Uが無理な操作を行ったとき(例えば手押し車を極端に強く押したとき)、あるいは障害物検知センサ等により障害物を検知したとき、等をトリガとして行ってもよい。 In addition, the operation | movement which stops the handcart 10 by applying Formula 10 is, for example, when a failure of the own device is detected by the self-failure detection function, or when the user U performs an unreasonable operation (for example, pushing the handcart extremely When the object is detected by an obstacle detection sensor or the like.
 なお、利用者Uが把持部15が離して手押し車10が停止した後に、再び利用者Uが把持部15を握ったとき、本体部11のピッチ角度と、目標ピッチ角度と、の偏差が大きい場合には、比例制御により大きなトルク指令値trが算出され、急激に本体部11がピッチ方向に回転する可能性がある。そこで、速度制限部35は、接触感知センサ46が利用者Uの接触を検知した場合、進行速度v’をさらに小さく(例えばv’=0.5m/s)制限する。そして、本体部11の現在のピッチ角度θhが目標ピッチ角度θhrに近づいた場合(例えば±2度以内になった場合)に、進行速度v’の制限を通常の値(例えばv’=1.5m/s)に戻す動作を行う。また、この動作は、ブレーキを離した際にも適用できる。 Note that when the user U grips the grip 15 again after the hand U 10 has been released and the handcart 10 has stopped, there is a large deviation between the pitch angle of the main body 11 and the target pitch angle. In this case, a large torque command value tr is calculated by proportional control, and the main body 11 may suddenly rotate in the pitch direction. Therefore, when the contact detection sensor 46 detects the contact of the user U, the speed limiting unit 35 limits the traveling speed v ′ to be further reduced (for example, v ′ = 0.5 m / s). Then, when the current pitch angle θh of the main body 11 approaches the target pitch angle θhr (for example, within ± 2 degrees), the limit of the traveling speed v ′ is set to a normal value (for example, v ′ = 1. 5m / s) is performed. This operation can also be applied when the brake is released.
 以上のような動作をフローチャートにまとめると、図9に示すような動作になる。すなわち、制御部21Aの目標角速度算出部31は、まず目標角速度ωhrを算出する(s11)。そして、速度制限部35は、目標角速度ωhr(rad/s)を、本体部11の進行速度v(m/s)に変換し、当該進行速度vが所定の値v’(例えばv’=1.5m/s)以内であるか否かを判断する(s12)。速度制限部35は、進行速度vが所定の値を超えている場合には、当該所定の値v’(例えばv’=1.5m/s)以下に制限する(s13)。 The above operations are summarized in the flowchart as shown in FIG. That is, the target angular velocity calculation unit 31 of the control unit 21A first calculates the target angular velocity ωhr (s11). Then, the speed limiting unit 35 converts the target angular speed ωhr (rad / s) into the traveling speed v (m / s) of the main body unit 11, and the traveling speed v is a predetermined value v ′ (for example, v ′ = 1). .5 m / s) or not (s12). When the traveling speed v exceeds a predetermined value, the speed limiter 35 limits the speed to a predetermined value v ′ (for example, v ′ = 1.5 m / s) or less (s13).
 次に、速度制限部35は、接触感知センサ46が利用者Uの接触を検知しているか否かを判断する(s14)。速度制限部35は、利用者Uが把持部15を握っていないと判断した場合、数式10を用いて所定の減速加速度aで進行速度v’を小さくする(s15)。その後、速度制限部35は、進行速度v’を目標角速度ω’hrに再変換し、FB制御部32に出力する(s21)。 Next, the speed limiter 35 determines whether or not the contact detection sensor 46 detects the contact of the user U (s14). If it is determined that the user U is not gripping the grip 15, the speed limiter 35 reduces the travel speed v ′ at a predetermined deceleration acceleration a using Equation 10 (s 15). After that, the speed limiting unit 35 reconverts the traveling speed v ′ into the target angular speed ω′hr and outputs it to the FB control unit 32 (s21).
 速度制限部35は、利用者Uが把持部15を握っていると判断した場合、さらに本体部11の現在のピッチ角度θhが目標ピッチ角度θhrに近い(例えば±2度以内である)か否かを判断する(s16)。速度制限部35は、利用者Uの接触感知後、一度でもピッチ角度θhが目標ピッチ角度θhrに近い(例えば±2度以内である)状態になったか否かを判断し、その状態になっていないと判断した場合には、進行速度v’をさらに小さく(例えばv’=0.5m/s)制限する(s17)。ただし、この進行速度v’がさらに制限された状態で、ピッチ角度θhが目標ピッチ角度θhr付近になった場合には、進行速度の制限を解除する。 If the speed limiter 35 determines that the user U is holding the grip 15, whether or not the current pitch angle θh of the main body 11 is closer to the target pitch angle θhr (for example, within ± 2 degrees). Is determined (s16). The speed limiter 35 determines whether or not the pitch angle θh is close to the target pitch angle θhr (for example, within ± 2 degrees) even after the user U senses contact, and is in that state. If it is determined that there is not, the traveling speed v ′ is further reduced (for example, v ′ = 0.5 m / s) and limited (s17). However, in the state where the traveling speed v ′ is further limited, when the pitch angle θh is near the target pitch angle θhr, the restriction on the traveling speed is released.
 その後、速度制限部35は、ブレーキ操作受付部45からブレーキ操作量bを入力し、ブレーキ操作がなされているか否かを判断する(s18)。ブレーキ操作がなされていると判断した場合には、数式7に示すような関数で、ブレーキ操作量bに応じた進行速度v’を算出する(s19)。また、ブレーキが離されたとき、本体部11の現在のピッチ角度θhが目標ピッチ角度θhrから遠い(例えば±2度よりも大きい)場合には、現在のピッチ角度θhが目標ピッチ角度θhr付近になるまで進行速度を制限する。 Thereafter, the speed limiting unit 35 inputs the brake operation amount b from the brake operation receiving unit 45, and determines whether or not the brake operation is performed (s18). If it is determined that the brake operation is performed, the traveling speed v 'corresponding to the brake operation amount b is calculated by a function as shown in Formula 7 (s19). When the current pitch angle θh of the main body 11 is far from the target pitch angle θhr (for example, larger than ± 2 degrees) when the brake is released, the current pitch angle θh is close to the target pitch angle θhr. Limit the rate of progress until
 次に、速度制限部35は、自己故障検知機能により自装置の故障を検知したとき、利用者Uが無理な操作を行ったとき(例えば手押し車を極端に強く押したとき)、あるいは障害物検知センサ等により障害物を検知したとき、等のような異常があったか否かを判断する(s20)。速度制限部35は、異常があると判断した場合には、数式10を用いて所定の減速加速度aで進行速度v’を小さくする(s21)。 Next, the speed limiting unit 35 detects a failure of the own device by the self-failure detection function, when the user U performs an unreasonable operation (for example, when pushing the wheelbarrow extremely strongly), or an obstacle. When an obstacle is detected by the detection sensor or the like, it is determined whether or not there is an abnormality such as (s20). If it is determined that there is an abnormality, the speed limiting unit 35 reduces the traveling speed v 'at a predetermined deceleration acceleration a using Equation 10 (s21).
 最後に、速度制限部35は、進行速度v’を目標角速度ω’hrに再変換し、FB制御部32に出力する(s21)。 Finally, the speed limiter 35 reconverts the traveling speed v ′ into the target angular speed ω′hr and outputs it to the FB controller 32 (s21).
 制御部21Aは、以上のような処理を繰り返し、進行速度の制限処理を行う。 The control unit 21A repeats the above processing to perform the travel speed limit processing.
10,10A,10B…手押し車
11…本体部
12…車輪
13…支持部
14…補助輪
15…把持部
16…ボックス
21,21A…制御部
22…ROM
23…RAM
24…駆動部
25…車輪用ロータリエンコーダ
26…本体部用ロータリエンコーダ
31…目標角速度算出部
32…FB制御部
33…トルク指令値換算部
34…変換処理部
35…速度制限部
45…ブレーキ操作受付部
46…接触感知センサ
DESCRIPTION OF SYMBOLS 10, 10A, 10B ... Wheelbarrow 11 ... Main-body part 12 ... Wheel 13 ... Supporting part 14 ... Auxiliary wheel 15 ... Grasping part 16 ... Box 21, 21A ... Control part 22 ... ROM
23 ... RAM
DESCRIPTION OF SYMBOLS 24 ... Drive part 25 ... Wheel rotary encoder 26 ... Main body rotary encoder 31 ... Target angular velocity calculation part 32 ... FB control part 33 ... Torque command value conversion part 34 ... Conversion processing part 35 ... Speed restriction part 45 ... Brake operation reception Unit 46 ... contact detection sensor

Claims (5)

  1.  本体部と、
     前記本体部に回転可能に支持されている車輪と、
     前記車輪をピッチ方向に回転させる駆動部と、
     前記駆動部をフィードバック制御する制御部と、
     前記本体部のピッチ方向の回転角度を検出する本体部角度検出部と、
     前記車輪のピッチ方向の回転角度を検出する車輪角度検出部と、
     を備えた手押し車であって、
     前記制御部は、前記車輪角度検出部が検出した前記車輪のピッチ方向の回転角度に基づいて前記本体部のピッチ方向の角速度を算出し、
     算出した前記本体部のピッチ方向の角速度と、前記本体部角度検出部が検出した前記本体部のピッチ方向の回転角度と、に基づいて前記本体部のピッチ方向の回転角度が目標回転角度になるように前記駆動部を制御することを特徴とする手押し車。
    The main body,
    A wheel rotatably supported by the main body,
    A drive unit for rotating the wheels in the pitch direction;
    A control unit that feedback-controls the driving unit;
    A main body angle detector for detecting a rotation angle of the main body in the pitch direction;
    A wheel angle detector for detecting a rotation angle of the wheel in the pitch direction;
    A wheelbarrow with
    The control unit calculates an angular velocity in the pitch direction of the main body based on a rotation angle in the pitch direction of the wheel detected by the wheel angle detection unit,
    Based on the calculated angular velocity in the pitch direction of the main body and the rotation angle in the pitch direction of the main body detected by the main body angle detector, the rotation angle in the pitch direction of the main body becomes the target rotation angle. The wheelbarrow is characterized by controlling the drive unit as described above.
  2.  前記制御部は、前記車輪の回転半径と、前記本体部の回転半径と、の比を前記車輪角度検出部が検出した前記車輪のピッチ方向の回転角度に乗算して微分することにより、前記本体部のピッチ方向の角速度を算出することを特徴とする請求項1に記載の手押し車。 The control unit multiplies the rotation angle in the pitch direction of the wheel detected by the wheel angle detection unit by a ratio between the rotation radius of the wheel and the rotation radius of the main body, and differentiates the main body. The handcart according to claim 1, wherein an angular velocity in a pitch direction of the portion is calculated.
  3.  前記制御部は、前記目標回転角度と、前記本体部角度検出部が検出した前記本体部のピッチ方向の回転角度と、に基づいて目標角速度を算出し、
     算出した前記本体部のピッチ方向の角速度が前記目標角速度になるように、前記駆動部が前記車輪に印加するトルクを算出する請求項1または請求項2に記載の手押し車。
    The control unit calculates a target angular velocity based on the target rotation angle and the rotation angle in the pitch direction of the main body detected by the main body angle detection unit,
    The handcart of Claim 1 or Claim 2 which calculates the torque which the said drive part applies to the said wheel so that the calculated angular velocity of the pitch direction of the said main-body part may become the said target angular velocity.
  4.  前記目標角速度を前記本体部の進行速度に変換し、変換後の進行速度を所定の速度に制限し、制限後の進行速度を前記目標角速度に再変換する速度制限手段を備え、
     前記制御部は、前記速度制限手段が再変換した後の前記目標角速度に基づいて、前記駆動部が前記車輪に印加するトルクを算出する請求項3に記載の手押し車。
    The target angular velocity is converted into the traveling speed of the main body, the converted traveling speed is limited to a predetermined speed, and the speed limiting means for reconverting the limited traveling speed into the target angular speed,
    4. The handcart according to claim 3, wherein the control unit calculates a torque that the drive unit applies to the wheel based on the target angular velocity after the speed limiting unit reconverts.
  5.  前記車輪に対するブレーキ操作を受け付けるブレーキ操作受付部を備え、
     前記制御部は、前記ブレーキ操作受付部が受け付ける前記ブレーキ操作の操作量が大きくなるにつれて、前記速度制限手段が制限する進行速度を小さく設定する請求項4に記載の手押し車。
    A brake operation reception unit for receiving a brake operation on the wheel;
    The handcart according to claim 4, wherein the control unit sets a traveling speed limited by the speed limiting unit to be smaller as an operation amount of the brake operation received by the brake operation receiving unit increases.
PCT/JP2015/074333 2014-09-02 2015-08-28 Pushcart WO2016035683A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016509173A JP5935965B1 (en) 2014-09-02 2015-08-28 Wheelbarrow

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014177953 2014-09-02
JP2014-177953 2014-09-02

Publications (1)

Publication Number Publication Date
WO2016035683A1 true WO2016035683A1 (en) 2016-03-10

Family

ID=55439747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074333 WO2016035683A1 (en) 2014-09-02 2015-08-28 Pushcart

Country Status (2)

Country Link
JP (1) JP5935965B1 (en)
WO (1) WO2016035683A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045696A1 (en) * 2012-09-18 2014-03-27 株式会社村田製作所 Moving body
WO2014045821A1 (en) * 2012-09-18 2014-03-27 株式会社村田製作所 Handcart

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045696A1 (en) * 2012-09-18 2014-03-27 株式会社村田製作所 Moving body
WO2014045821A1 (en) * 2012-09-18 2014-03-27 株式会社村田製作所 Handcart

Also Published As

Publication number Publication date
JP5935965B1 (en) 2016-06-15
JPWO2016035683A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP4240114B2 (en) Traveling device
JP4577442B2 (en) Traveling apparatus and control method thereof
JP6081081B2 (en) Inverted pendulum type vehicle
JP6164300B2 (en) Wheelbarrow
US20120232757A1 (en) Coaxial two-wheeled vehicle and its control method
US20160221595A1 (en) Pushcart
JP5935964B1 (en) Wheelbarrow
US9089460B2 (en) Pushcart
JP6252683B2 (en) Wheelbarrow
JP5958581B2 (en) Wheelbarrow
JP6123907B2 (en) Wheelbarrow
JP5979322B2 (en) Wheelbarrow
JP5935965B1 (en) Wheelbarrow
JP5800110B2 (en) Wheelbarrow
WO2014132520A1 (en) Hand cart
JP5927031B2 (en) Inverted pendulum type vehicle
JP2008262455A (en) Operation device of vehicle
WO2015098511A1 (en) Pushcart
JP6020386B2 (en) MOBILE BODY, CONTROL METHOD, CONTROL PROGRAM

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016509173

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15837536

Country of ref document: EP

Kind code of ref document: A1