WO2015098511A1 - Pushcart - Google Patents

Pushcart Download PDF

Info

Publication number
WO2015098511A1
WO2015098511A1 PCT/JP2014/082622 JP2014082622W WO2015098511A1 WO 2015098511 A1 WO2015098511 A1 WO 2015098511A1 JP 2014082622 W JP2014082622 W JP 2014082622W WO 2015098511 A1 WO2015098511 A1 WO 2015098511A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
unit
inclination
main body
dead zone
Prior art date
Application number
PCT/JP2014/082622
Other languages
French (fr)
Japanese (ja)
Inventor
辻滋
白土賢一
久保昌幸
羽根宜孝
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2015554726A priority Critical patent/JP5979321B2/en
Publication of WO2015098511A1 publication Critical patent/WO2015098511A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H3/04Wheeled walking aids for patients or disabled persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H3/04Wheeled walking aids for patients or disabled persons
    • A61H2003/043Wheeled walking aids for patients or disabled persons with a drive mechanism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/12Driving means
    • A61H2201/1207Driving means with electric or magnetic drive
    • A61H2201/1215Rotary drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/1635Hand or arm, e.g. handle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5007Control means thereof computer controlled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5069Angle sensors

Definitions

  • This invention relates to a wheelbarrow provided with wheels, and more particularly to a wheelbarrow that drives and controls wheels.
  • Patent Document 1 a handcart that assists walking by driving and controlling wheels and performing inverted pendulum control is known (for example, see Patent Document 1).
  • an inclination angle is detected by an inclination sensor, and in accordance with the detected inclination angle, an assist force is increased on an upward gradient, and a force to push back in a reverse direction is applied on a downward gradient.
  • FIG. 10A shows an example of a tilt sensor.
  • the tilt sensor 20 is formed by processing a thin plate-like silicon wafer, and includes a spring 201, a movable portion 202, and a comb-shaped electrode portion 203.
  • the tilt sensor as shown in FIG. 10 may erroneously detect acceleration or deceleration as a change in tilt angle because the capacitance of the comb-shaped electrode portion also changes depending on the acceleration in the traveling direction (Y direction). .
  • the assist force may be adjusted despite the fact that the actual ground inclination angle has not changed, and the assist force adjustment behavior may become unstable.
  • an object of the present invention is to stabilize the adjustment behavior of the assist force in a handcart that performs inverted pendulum control and adjusts the assist force according to the inclination angle.
  • the wheelbarrow of the present invention is connected to a main body, a plurality of main wheels rotatably supported by the main body, and a rotation in the pitch direction with respect to a rotation axis of the main body or the plurality of main wheels.
  • An angle change detection unit that detects the inclination of the support unit with respect to the horizontal direction.
  • the control unit sets a target angle of the main body unit based on the output of the tilt angle detection unit, and outputs the angle change detection unit so that the angle of the main body unit in the pitch direction becomes the target angle. Based on the above, the drive unit is controlled so that the angle change of the main body unit in the pitch direction becomes zero.
  • the control unit provides a dead zone that does not use the output change of the tilt angle detection unit for resetting the target angle, based on the output value of the tilt angle detection unit when the handcart is on a flat ground,
  • the target angle is reset, and a new dead zone is reset based on the output value of the tilt angle detector when the dead zone is exceeded. It is characterized by.
  • the control unit provides a dead zone (for example, about ⁇ 5 °) that does not use the output change of the tilt angle detection unit, which is a tilt sensor, for resetting the target angle.
  • the assisting force is adjusted by changing the torque applied to the plurality of main wheels by the drive unit by resetting the target angle.
  • the actual inclination angle of the ground is a value close to the boundary of the dead zone (for example, 5 °)
  • the inclination sensor erroneously detects the change in inclination angle due to acceleration or deceleration
  • control unit resets a new dead zone based on the output value of the tilt sensor at the time when the dead zone is exceeded (for example, 0 ° to 10 ° as a dead zone from 5 ° as a reference), thereby assisting force.
  • the adjustment behavior can be stabilized.
  • the assist force can be adjusted by, for example, resetting the target angle so that the main body portion is tilted forward from the vertical direction, thereby obtaining a force that pulls the user.
  • resetting the target angle so that the portion is inclined it is possible to obtain a force to push the user backward.
  • the adjustment behavior of the assist force can be stabilized in the handcart that performs the inverted pendulum control and adjusts the assist force according to the inclination angle.
  • FIG. 1 is a left side view of a handcart 1 according to an embodiment of the present invention
  • FIG. 2 is a front view
  • FIG. 3 is a block diagram showing a hardware configuration of the handcart 1.
  • the handcart 1 includes a main body 10 that is long in the vertical direction (Z direction in the figure) and short in the depth direction (Y direction in the figure) and in the left-right direction (X direction in the figure).
  • a box 30 containing a control board, a battery, and the like is attached to the main body 10.
  • the main body 10 is actually provided with a cover so that the internal substrate and the like cannot be seen in appearance.
  • a pair of main wheels 11 are attached to the left and right ends of the lower part of the main body 10 in the vertically downward direction.
  • the main wheel 11 has shown the example which is 2 wheels, 1 wheel or 3 wheels or more may be sufficient.
  • the two rod-like main body parts 10 connected to each main wheel 11 are connected via a cylindrical gripping part 15 and are rotatable in the pitch direction around the axis of the main wheel 11.
  • the main body 10 does not have to be two rods as in this example, and may be one rod-like member or a thin plate-like member.
  • a support part 112 and an auxiliary wheel 113 are installed on the rotating shaft (or main body part 10) of the main wheel 11 in front of the main wheel 11 (forward direction) with respect to the traveling direction.
  • the support part 112 is a thin plate-like member.
  • the support portion 112 is connected to the rotation axis (or the main body portion 10) of the main wheel 11 so as to be rotatable in the pitch direction so as to extend in parallel with the horizontal ground.
  • an auxiliary wheel 113 is connected to the support portion 112 on the lower surface in the direction opposite to the side connected to the main wheel 11. As a result, both the main wheel 11 and the auxiliary wheel 113 are in contact with the ground.
  • the support part 112 may be an aspect that extends rearward from the main wheel 11 with respect to the traveling direction.
  • the auxiliary wheel 113 is in contact with the ground, but the support portion 112 and the auxiliary wheel 113 are not essential components in the present invention.
  • the handcart 1 can be independent even when only the main wheel 11 is grounded.
  • a motor is attached to the connecting portion between the rotation shaft (or main body portion 10) of the main wheel 11 and the support portion 112, and the rotation shaft (or main body portion 10) of the main wheel 11 and the support portion 112 are driven by driving the motor. You may make it control the crossing angle which is an angle which forms.
  • the grip 15 is provided with a user interface (I / F) 28 such as a power switch.
  • the user can hold the grip portion 15 or place a forearm or the like on the grip portion 15 and press the handcart 1 by friction between the grip portion and the forearm or the like.
  • the handcart 1 includes a tilt sensor 20, a control unit 21, a ROM 22, a RAM 23, a gyro sensor 24, a drive unit 25, a support unit rotary encoder 27, and a user I / F 28.
  • the control unit 21 is a functional unit that comprehensively controls the handcart 1 and reads out a program stored in the ROM 22 and develops the program in the RAM 23 to realize various operations.
  • the tilt sensor 20 detects the tilt angle with respect to the horizontal direction and outputs it to the control unit 21.
  • the inclination sensor 20 is formed by processing a thin plate-like silicon wafer, and includes a spring 201, a movable portion 202, and a comb-shaped electrode portion 203.
  • the inclination sensor 20 receives Mg ⁇ A force of sin ⁇ acts.
  • the spring 201 is displaced by ⁇ Y in the Y direction.
  • the inclination sensor 20 detects this displacement ⁇ Y as a change in capacitance by the comb-shaped electrode portion 203.
  • the tilt sensor 20 outputs the change in capacitance to the control unit 21 as a tilt angle.
  • the gyro sensor 24 corresponds to the main body angle change detecting means of the present invention, detects the angular velocity of the main body portion 10 in the pitch direction, and outputs it to the control unit 21.
  • the support unit rotary encoder 27 detects an intersection angle that is an angle formed by the main body unit 10 and the support unit 112, and outputs the detection result to the control unit 21.
  • the support part 112 does not necessarily have to extend parallel to the horizontal ground.
  • the control unit 21 may measure the angle between the horizontal ground and the support unit 112 in advance and detect the crossing angle in consideration of the angle.
  • the handcart 1 includes an acceleration sensor that detects acceleration in each direction of the main body 10, a rotary encoder that detects the rotation angle of the main wheel 11, a rotary encoder that detects the rotation angle of the auxiliary wheel 113, and the like. May be further provided. Further, when the handcart 1 detects an acceleration or deceleration that is equal to or higher than a certain set value by using the rotary encoder of the main wheel 11, the wheelbarrow 1 may increase a threshold value of a dead zone described later. Conversely, when the handcart 1 detects that the acceleration or deceleration is equal to or lower than a certain set value, the dead zone threshold may be narrowed. Thereby, in the former case, erroneous detection is prevented, and in the latter case, it is possible to adjust the assist force substantially coincident with the change in the inclination.
  • FIG. 4 is a control configuration diagram of the control unit 21.
  • the control unit 21 includes a target angle determination unit 211, a target angular velocity calculation unit 212, a torque command generation unit 213, and an inclination estimation unit 214.
  • the target angular velocity calculation unit 212 inputs a difference value between the first angle and the current inclination angle of the main body unit 10 and calculates the inclination angular velocity of the main body unit 10 such that the difference value becomes zero.
  • the current inclination angle of the main body 10 is calculated from, for example, the intersection angle between the main body 10 and the support 112 input from the support rotary encoder 27.
  • the support portion 112 is connected to the shaft (or the main body portion 10) of the main wheel 11 so as to be parallel to the horizontal ground. Therefore, when the crossing angle is 90 degrees, the inclination angle of the main body 10 with respect to the ground is assumed to be 0 degree, and when the crossing angle is large, the inclination is backward with respect to the traveling direction, and the crossing angle is small. Assuming that the vehicle body is inclined forward with respect to the traveling direction, the current inclination angle of the main body 10 is estimated.
  • the inclination angle can be obtained from the inclination sensor 20 attached to the main body 10 when the output value of the gyro sensor 24 is integrated or when the inclination sensor 20 is attached to the main body 10.
  • the torque command generation unit 213 inputs a difference value between the inclination angular velocity calculated by the target angular velocity calculation unit 212 and the current inclination angular velocity of the main body unit 10 input from the gyro sensor 24, and the difference value is 0.
  • the applied torque is calculated as follows.
  • a control signal based on the applied torque calculated in this way is input to the drive unit 25.
  • the drive unit 25 is a functional unit that drives a motor that rotates a shaft attached to the main wheel 11 to power the main wheel 11, and drives the motor of the main wheel 11 based on an input control signal. The main wheel 11 is rotated.
  • the handcart 1 performs the inverted pendulum control, and controls the posture of the main body 10 to be kept constant. If the user performs an operation of pushing the handcart 1 forward with respect to the traveling direction, the inclination angle of the main body 10 is inclined forward with respect to the target inclination angle. In order to maintain the target inclination angle, a torque that rotates the main wheel 11 in the forward direction works. Thereby, the handcart 1 also moves following the movement of the user.
  • the inclination estimation unit 214 inputs the value of the inclination sensor 20, and determines whether or not the value of the inclination sensor 20 is within a predetermined range (dead zone).
  • the slope estimation unit 214 determines that the value of the tilt sensor 20 has exceeded the dead zone
  • the slope estimation unit 214 outputs the value of the tilt sensor 20 to the target angular velocity calculation unit 211 and notifies the target angle determination unit 211 that the dead zone has been exceeded. Notice.
  • the target angle determination unit 211 is notified that the dead zone has been exceeded, the target angle determination unit 211 resets the target inclination angle ⁇ 1.
  • the target angle determination unit 211 may reset the target tilt angle when the value of the tilt sensor 20 exceeds the dead zone even for a moment, but the target tilt angle when the value exceeds the dead zone continuously for a predetermined time or more. It may be a mode of resetting. Furthermore, the handcart 1 is in a situation where, after resetting the target inclination angle, it becomes necessary to reset again, when traveling on a rough road, or when an operator is scolding. Since there is a possibility, emergency control such as stopping traveling may be performed.
  • FIG. 6 is a flowchart showing the operation of the control unit 21.
  • the inclination estimation unit 214 inputs the value of the inclination sensor 20 (s11), and determines whether or not the value of the inclination sensor 20 is within a predetermined range (dead zone) (s12). ).
  • FIG. 7 is a diagram showing the relationship between the dead zone and the target inclination angle.
  • the horizontal axis of the graph shown in FIG. 7 is the value of the tilt sensor 20, and the vertical axis is the target tilt angle.
  • the target angle determination unit 211 resets the target tilt angle ⁇ 1 (s13).
  • the target angle determination unit 211 considers the upward gradient.
  • the target angle determination unit 211 tilts the main body 10 backward from the first angle as the target tilt angle ⁇ 1.
  • the target angle determination unit 211 considers the downward gradient.
  • the main body portion 10 is tilted further rearward, so that torque that rotates the main wheel 11 rearward is exerted.
  • the braking effect works and a force to push the user back can be obtained, and the user can go down the slope more safely.
  • the control unit 21 detects that the actual inclination angle of the ground is a value close to the boundary of the dead zone (for example, 5 ° or ⁇ 5 °), or the inclination sensor 20 erroneously detects the change of the inclination angle by acceleration or deceleration.
  • the assist force adjustment behavior is not frequently repeated, and the assist force adjustment behavior can be stabilized.
  • FIG. 8A is a diagram showing the relationship between the dead zone and the target inclination angle in the first modification.
  • the value of the tilt sensor 20 is decreased and the assist force is adjusted strongly, and then the value of the tilt sensor 20 is further decreased, or the value of the tilt sensor 20 is increased and the assist force is weakly adjusted ( Alternatively, when the value of the tilt sensor 20 further increases after the assist force in the reverse direction is set), a new target tilt angle and dead zone are set again.
  • the inclination estimation unit 214 sets ⁇ 5 ° to about ⁇ 5 ° of the inclination sensor 20 when the dead zone is exceeded.
  • a new dead zone is set between 0 °.
  • the target angle determination unit 211 considers the upward gradient.
  • the inclination estimation unit 214 sets a new dead zone on the basis of the value ⁇ 8 ° of the tilt sensor 20 when the dead zone is exceeded.
  • the new dead zone is - ⁇ to -5 °.
  • the inclination estimation unit 214 newly sets a value between 0 ° and 8 ° with reference to the value 5 ° of the inclination sensor 20 when the dead zone is exceeded. Set a dead zone.
  • the target angle determination unit 211 considers the downward gradient.
  • the inclination estimation unit 214 sets a new dead zone with reference to the value 8 ° of the tilt sensor 20 when the dead zone is exceeded.
  • the new dead zone is 5 ° to ⁇ .
  • the target inclination angle ⁇ 1 is reset to the fifth angle, and is fixed at the fifth angle until it becomes less than 5 ° again.
  • the target tilt angle ⁇ 1 is reset to the third angle, and a new dead zone of 0 ° to 8 ° is reset.
  • the control unit 21 does not need to set a dead zone having the same width (for example, ⁇ 5 °) with reference to the value exceeding the dead zone, and adjusts appropriately. Is possible.
  • FIG. 8B is a diagram showing the relationship between the dead zone and the target inclination angle in the second modification.
  • the inclination estimation unit 214 sets ⁇ to ⁇ 3 ° as a new dead zone.
  • the target tilt angle ⁇ 1 is reset to the fourth angle, and is fixed at the fourth angle until it exceeds ⁇ 3 °.
  • Assist power is maintained.
  • the target tilt angle ⁇ 1 is reset to the second angle, and a new dead zone of ⁇ 8 ° to 0 ° is reset.
  • the inclination estimation unit 214 sets 3 ° to ⁇ as a new dead zone.
  • the target inclination angle ⁇ 1 is reset to the fifth angle and is fixed at the fifth angle until it becomes less than 3 °, and the strong brake The effect is maintained.
  • the target tilt angle ⁇ 1 is reset to the third angle, and a new dead zone of 0 ° to 8 ° is reset.
  • the boundary of each dead zone does not need to be the same value, and the value of the tilt sensor 20 for returning to the original target tilt angle may be set to a smaller value or a larger value.
  • adjusting the assist force is not limited to changing the target inclination angle, and for example, as shown in FIG. 9A, an offset torque may be applied.
  • the inclination estimation unit 214 determines an offset torque for compensating for the gravitational torque generated by the ground inclination angle according to the ground inclination angle estimated based on the value of the inclination sensor 20 as a gravity torque calculation unit 214A. Calculate with The offset torque is added to the torque calculated by the torque command generator 213 and applied to the drive unit 25. Further, as shown in FIG. 9B, offset torque may be further applied while changing the target inclination angle.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Rehabilitation Tools (AREA)
  • Handcart (AREA)

Abstract

When a value of an inclination sensor (20) is less than -5°, a target angle determination unit (211) sets an angle whereat a main body unit (10) inclines forward (ex., θ1=2°). When the value of the inclination sensor (20) is less than -5°, a inclination estimation unit (214) sets a new dead zone of ±5° with the -5° value of the inclination sensor (20) at the time that the dead zone is exceeded as a reference. In the present example, however, an adjustment of an assist force is not carried out when the value of the inclination sensor (20) becomes even smaller, and thus, the dead zone is set from -∞ to 0°. Thus, the target inclination angle θ1 is fixed to a second angle (θ1=2°) while the value of the inclination sensor (20) is (0)° or less.

Description

手押し車Wheelbarrow
 この発明は、車輪を備えた手押し車に関し、特に車輪を駆動、制御する手押し車に関するものである。 This invention relates to a wheelbarrow provided with wheels, and more particularly to a wheelbarrow that drives and controls wheels.
 従来、車輪を駆動、制御して倒立振子制御を行うことで、歩行をアシストする手押し車が知られている(例えば、特許文献1を参照)。 Conventionally, a handcart that assists walking by driving and controlling wheels and performing inverted pendulum control is known (for example, see Patent Document 1).
 このような手押し車では、斜面におけるアシスト力の調整が重要になる。例えば、傾斜センサで傾斜角を検出し、検出した傾斜角に応じて、上り勾配ではアシスト力を強くして、下り勾配では逆方向に押し返す力を与えることが好ましい。 In such a wheelbarrow, it is important to adjust the assist force on the slope. For example, it is preferable that an inclination angle is detected by an inclination sensor, and in accordance with the detected inclination angle, an assist force is increased on an upward gradient, and a force to push back in a reverse direction is applied on a downward gradient.
 図10(A)は、傾斜センサの一例を示すものである。傾斜センサ20は、薄い板状のシリコンウェハを加工することにより形成され、バネ201、可動部202、櫛形電極部203からなる。 FIG. 10A shows an example of a tilt sensor. The tilt sensor 20 is formed by processing a thin plate-like silicon wafer, and includes a spring 201, a movable portion 202, and a comb-shaped electrode portion 203.
 図10(B)に示すように、水平に配置された傾斜センサ20のX軸回りに傾斜角θが入力されると、質量Mである可動部202にMg・sinθの力が作用する。これにより、バネ201は、Y方向にΔYだけ変位する。傾斜センサ20は、この変位ΔYを櫛形電極部203における静電容量の変化として検出する。傾斜センサ20は、この静電容量の変化を傾斜角として出力する。これにより、傾斜センサ20は、傾斜角を検出する。 As shown in FIG. 10B, when a tilt angle θ is input around the X axis of the tilt sensor 20 arranged horizontally, a force of Mg · sin θ acts on the movable portion 202 having the mass M. As a result, the spring 201 is displaced by ΔY in the Y direction. The inclination sensor 20 detects this displacement ΔY as a change in capacitance in the comb-shaped electrode portion 203. The tilt sensor 20 outputs this change in capacitance as a tilt angle. Thereby, the inclination sensor 20 detects an inclination angle.
国際公開第2012/114597号International Publication No. 2012/114597
 しかし、図10に示したような傾斜センサは、進行方向(Y方向)の加速度によっても櫛形電極部の静電容量が変化するため、加速または減速を傾斜角の変化として誤検出する場合がある。この場合、実際の地面の傾斜角が変化していないにも関わらずアシスト力が調整されてしまう可能性があり、アシスト力の調整挙動が不安定になる場合があった。 However, the tilt sensor as shown in FIG. 10 may erroneously detect acceleration or deceleration as a change in tilt angle because the capacitance of the comb-shaped electrode portion also changes depending on the acceleration in the traveling direction (Y direction). . In this case, there is a possibility that the assist force may be adjusted despite the fact that the actual ground inclination angle has not changed, and the assist force adjustment behavior may become unstable.
 そこで、この発明は、倒立振子制御を行い、傾斜角に応じてアシスト力を調整する手押し車において、当該アシスト力の調整挙動を安定させることを目的とする。 Therefore, an object of the present invention is to stabilize the adjustment behavior of the assist force in a handcart that performs inverted pendulum control and adjusts the assist force according to the inclination angle.
 本発明の手押し車は、本体部と、前記本体部に回転可能に支持されている複数の主輪と、前記本体部または前記複数の主輪の回転軸に対してピッチ方向に回転可能に連結された支持部と、前記支持部に連結された補助輪と、前記複数の主輪を回転させる駆動部と、前記駆動部を制御する制御部と、前記本体部のピッチ方向の角度変化を検出する角度変化検出部と、前記支持部の水平方向に対する傾きを検出する傾斜角検出部と、を備えている。 The wheelbarrow of the present invention is connected to a main body, a plurality of main wheels rotatably supported by the main body, and a rotation in the pitch direction with respect to a rotation axis of the main body or the plurality of main wheels. An angle change in the pitch direction of the main body unit, a control unit that controls the driving unit, a driving unit that rotates the plurality of main wheels, a driving unit that rotates the plurality of main wheels, and an auxiliary wheel coupled to the supporting unit. An angle change detection unit that detects the inclination of the support unit with respect to the horizontal direction.
 制御部は、前記傾斜角検出部の出力に基づいて前記本体部の目標角度を設定し、前記本体部の前記ピッチ方向の角度が前記目標角度になるように、かつ前記角度変化検出部の出力に基づいて前記本体部の前記ピッチ方向への角度変化が0となるように、前記駆動部を制御する。 The control unit sets a target angle of the main body unit based on the output of the tilt angle detection unit, and outputs the angle change detection unit so that the angle of the main body unit in the pitch direction becomes the target angle. Based on the above, the drive unit is controlled so that the angle change of the main body unit in the pitch direction becomes zero.
 そして、制御部は、前記手押し車が平地にある場合の前記傾斜角検出部の出力値を基準として、前記傾斜角検出部の出力変化を前記目標角度の再設定に利用しない不感帯を設け、前記傾斜角検出部の出力が前記不感帯を超えた場合、前記目標角度を再設定するとともに、前記不感帯を超えた時点の前記傾斜角検出部の出力値を基準として、新たな不感帯を再設定することを特徴とする。 The control unit provides a dead zone that does not use the output change of the tilt angle detection unit for resetting the target angle, based on the output value of the tilt angle detection unit when the handcart is on a flat ground, When the output of the tilt angle detector exceeds the dead zone, the target angle is reset, and a new dead zone is reset based on the output value of the tilt angle detector when the dead zone is exceeded. It is characterized by.
 このように、制御部は、傾斜センサである傾斜角検出部の出力変化を目標角度の再設定に利用しない不感帯(例えば±5°程度)を設ける。傾斜角検出部の出力が不感帯を超えた場合、目標角度の再設定することにより、駆動部が前記複数の前記主輪に印加するトルクを変更してアシスト力を調整する。ここで、実際の地面の傾斜角が当該不感帯の境界に近い値(例えば5°)であったり、加速または減速によって傾斜センサが傾斜角の変化として誤検出したりする場合、アシスト力の調整を頻繁に繰り返すことになってしまう。そこで、制御部は、不感帯を超えた時点の傾斜センサの出力値を基準として、新たな不感帯を再設定する(例えば5°を基準として0°~10°を不感帯とする)ことで、アシスト力の調整挙動を安定させることができる。 Thus, the control unit provides a dead zone (for example, about ± 5 °) that does not use the output change of the tilt angle detection unit, which is a tilt sensor, for resetting the target angle. When the output of the tilt angle detection unit exceeds the dead zone, the assisting force is adjusted by changing the torque applied to the plurality of main wheels by the drive unit by resetting the target angle. Here, if the actual inclination angle of the ground is a value close to the boundary of the dead zone (for example, 5 °), or if the inclination sensor erroneously detects the change in inclination angle due to acceleration or deceleration, the assist force is adjusted. It will be repeated frequently. Therefore, the control unit resets a new dead zone based on the output value of the tilt sensor at the time when the dead zone is exceeded (for example, 0 ° to 10 ° as a dead zone from 5 ° as a reference), thereby assisting force. The adjustment behavior can be stabilized.
 なお、アシスト力の調整は、例えば、鉛直方向よりも前方に本体部が傾斜するように目標角度を再設定することで使用者を牽引する力を得ることができ、鉛直方向よりも後方に本体部が傾斜するように目標角度を再設定することで使用者を後方に押し返す力を得ることができる。 The assist force can be adjusted by, for example, resetting the target angle so that the main body portion is tilted forward from the vertical direction, thereby obtaining a force that pulls the user. By resetting the target angle so that the portion is inclined, it is possible to obtain a force to push the user backward.
 この発明によれば、倒立振子制御を行い、傾斜角に応じてアシスト力を調整する手押し車において、当該アシスト力の調整挙動を安定させることができる。 According to the present invention, the adjustment behavior of the assist force can be stabilized in the handcart that performs the inverted pendulum control and adjusts the assist force according to the inclination angle.
手押し車の側面図である。It is a side view of a wheelbarrow. 手押し車の正面図である。It is a front view of a wheelbarrow. 手押し車の構成を示すブロック線図である。It is a block diagram which shows the structure of a handcart. 制御部の構成を示す制御構成図である。It is a control block diagram which shows the structure of a control part. 目標傾斜角度の設定と地面の傾斜角との関係を示す図である。It is a figure which shows the relationship between the setting of a target inclination angle, and the inclination angle of the ground. 制御部21の動作を示すフローチャートである。3 is a flowchart showing an operation of a control unit 21. 不感帯と目標傾斜角度の関係を示す図である。It is a figure which shows the relationship between a dead zone and a target inclination angle. 変形例1および変形例2における不感帯と目標傾斜角度の関係を示す図である。It is a figure which shows the relationship between a dead zone and the target inclination angle in the modification 1 and the modification 2. 制御部の構成を示す制御構成図である。It is a control block diagram which shows the structure of a control part. 傾斜センサの構成を示す図である。It is a figure which shows the structure of an inclination sensor.
 図1は、本発明の実施形態に係る手押し車1の左側面図であり、図2は、正面図である。図3は、手押し車1のハードウェア構成を示すブロック線図である。 FIG. 1 is a left side view of a handcart 1 according to an embodiment of the present invention, and FIG. 2 is a front view. FIG. 3 is a block diagram showing a hardware configuration of the handcart 1.
 手押し車1は、鉛直方向(図中Z方向)に長く、奥行き方向(図中Y方向)および左右方向(図中X方向)に短い形状の本体部10を備えている。本体部10には、制御用の基板や電池等を内蔵したボックス30が取り付けられている。なお、本体部10は、実際にはカバーが取り付けられ、内部の基板等が外観上見えないようになっている。 The handcart 1 includes a main body 10 that is long in the vertical direction (Z direction in the figure) and short in the depth direction (Y direction in the figure) and in the left-right direction (X direction in the figure). A box 30 containing a control board, a battery, and the like is attached to the main body 10. The main body 10 is actually provided with a cover so that the internal substrate and the like cannot be seen in appearance.
 本体部10の鉛直下方向の下部のうち、左右方向の端部には、一対の主輪11が取り付けられている。この実施形態においては、主輪11は2輪である例を示しているが、1輪あるいは3輪以上であってもよい。 A pair of main wheels 11 are attached to the left and right ends of the lower part of the main body 10 in the vertically downward direction. In this embodiment, although the main wheel 11 has shown the example which is 2 wheels, 1 wheel or 3 wheels or more may be sufficient.
 各主輪11に連結された2つの棒状の本体部10は、円筒形状の把持部15を介して接続され、主輪11の軸を中心としてピッチ方向に回転可能になっている。ただし、本体部10は、この例のように2つの棒状である必要はなく、1つの棒状の部材であってもよいし、薄い板状の部材であってもよい。 The two rod-like main body parts 10 connected to each main wheel 11 are connected via a cylindrical gripping part 15 and are rotatable in the pitch direction around the axis of the main wheel 11. However, the main body 10 does not have to be two rods as in this example, and may be one rod-like member or a thin plate-like member.
 主輪11の回転軸(または本体部10)には、進行方向に対して主輪11よりも前方(順方向)に支持部112と、補助輪113が設置されている。支持部112は、薄い板状の部材である。支持部112は、水平な地面と平行に延びるように、主輪11の回転軸(または本体部10)に対してピッチ方向に回転可能に接続されている。また、支持部112には、主輪11に連結されている側とは反対方向の下面に補助輪113が連結されている。これにより、主輪11と補助輪113の両方が地面に接するようになっている。なお、支持部112は、進行方向に対して主輪11よりも後方に延びる態様であってもよい。 A support part 112 and an auxiliary wheel 113 are installed on the rotating shaft (or main body part 10) of the main wheel 11 in front of the main wheel 11 (forward direction) with respect to the traveling direction. The support part 112 is a thin plate-like member. The support portion 112 is connected to the rotation axis (or the main body portion 10) of the main wheel 11 so as to be rotatable in the pitch direction so as to extend in parallel with the horizontal ground. Further, an auxiliary wheel 113 is connected to the support portion 112 on the lower surface in the direction opposite to the side connected to the main wheel 11. As a result, both the main wheel 11 and the auxiliary wheel 113 are in contact with the ground. In addition, the support part 112 may be an aspect that extends rearward from the main wheel 11 with respect to the traveling direction.
 なお、図1および図2においては、補助輪113が地面に接した状態を示しているが、支持部112および補助輪113は、本発明において必須の構成ではない。手押し車1は、倒立振子制御を行うことにより、主輪11だけが接地された状態であっても自立することが可能である。 1 and 2, the auxiliary wheel 113 is in contact with the ground, but the support portion 112 and the auxiliary wheel 113 are not essential components in the present invention. By performing inverted pendulum control, the handcart 1 can be independent even when only the main wheel 11 is grounded.
 なお、主輪11の回転軸(または本体部10)と支持部112との接続部分にモータを取り付け、このモータを駆動することで主輪11の回転軸(または本体部10)と支持部112との成す角度である交差角を制御するようにしてもよい。 A motor is attached to the connecting portion between the rotation shaft (or main body portion 10) of the main wheel 11 and the support portion 112, and the rotation shaft (or main body portion 10) of the main wheel 11 and the support portion 112 are driven by driving the motor. You may make it control the crossing angle which is an angle which forms.
 把持部15には、電源スイッチ等のユーザインタフェース(I/F)28が設けられている。使用者は、把持部15を握る、あるいは前腕等を把持部15に載せ、グリップ部と前腕等の摩擦により、手押し車1を押すことができる。 The grip 15 is provided with a user interface (I / F) 28 such as a power switch. The user can hold the grip portion 15 or place a forearm or the like on the grip portion 15 and press the handcart 1 by friction between the grip portion and the forearm or the like.
 次に、手押し車1のハードウェア構成および動作について説明する。図3に示すように、手押し車1は、傾斜センサ20、制御部21、ROM22、RAM23、ジャイロセンサ24、駆動部25、支持部用ロータリエンコーダ27、およびユーザI/F28を備えている。 Next, the hardware configuration and operation of the handcart 1 will be described. As shown in FIG. 3, the handcart 1 includes a tilt sensor 20, a control unit 21, a ROM 22, a RAM 23, a gyro sensor 24, a drive unit 25, a support unit rotary encoder 27, and a user I / F 28.
 制御部21は、手押し車1を統括的に制御する機能部であり、ROM22に記憶されているプログラムを読み出し、当該プログラムをRAM23に展開することで種々の動作を実現する。 The control unit 21 is a functional unit that comprehensively controls the handcart 1 and reads out a program stored in the ROM 22 and develops the program in the RAM 23 to realize various operations.
 傾斜センサ20は、水平方向に対する傾斜角を検出し、制御部21に出力する。傾斜センサ20は、具体的には、図10(A)に示すように、薄い板状のシリコンウェハを加工することにより形成され、バネ201、可動部202、櫛形電極部203からなる。そして、傾斜センサ20は、図10(B)に示すように、水平に配置された傾斜センサ20のX軸回りにθの傾斜角が入力されると、質量Mである可動部202にMg・sinθの力が作用する。これにより、バネ201は、Y方向にΔYだけ変位する。傾斜センサ20は、この変位ΔYを櫛形電極部203で静電容量の変化として検出する。傾斜センサ20は、この静電容量の変化を傾斜角として制御部21に出力する。 The tilt sensor 20 detects the tilt angle with respect to the horizontal direction and outputs it to the control unit 21. Specifically, as shown in FIG. 10A, the inclination sensor 20 is formed by processing a thin plate-like silicon wafer, and includes a spring 201, a movable portion 202, and a comb-shaped electrode portion 203. Then, as shown in FIG. 10B, when the inclination angle of θ is input around the X axis of the inclination sensor 20 arranged horizontally, the inclination sensor 20 receives Mg · A force of sin θ acts. As a result, the spring 201 is displaced by ΔY in the Y direction. The inclination sensor 20 detects this displacement ΔY as a change in capacitance by the comb-shaped electrode portion 203. The tilt sensor 20 outputs the change in capacitance to the control unit 21 as a tilt angle.
 ジャイロセンサ24は、本発明の本体角度変化検出手段に相当し、本体部10のピッチ方向の角速度を検出し、制御部21に出力する。支持部用ロータリエンコーダ27は、本体部10と支持部112との成す角度である交差角を検出し、検出結果を制御部21に出力する。また、支持部112は、水平な地面に対し必ず平行に延びる必要はない。制御部21は、あらかじめ水平な地面と支持部112との角度を測定しておいて、その角度を考慮して交差角を検出すればよい。 The gyro sensor 24 corresponds to the main body angle change detecting means of the present invention, detects the angular velocity of the main body portion 10 in the pitch direction, and outputs it to the control unit 21. The support unit rotary encoder 27 detects an intersection angle that is an angle formed by the main body unit 10 and the support unit 112, and outputs the detection result to the control unit 21. Moreover, the support part 112 does not necessarily have to extend parallel to the horizontal ground. The control unit 21 may measure the angle between the horizontal ground and the support unit 112 in advance and detect the crossing angle in consideration of the angle.
 なお、手押し車1は、他にも本体部10の各方向の加速度を検出する加速度センサや、主輪11の回転角度を検出するロータリエンコーダや、補助輪113の回転角度を検出するロータリエンコーダ等をさらに備えていてもよい。また、手押し車1は、主輪11のロータリエンコーダを利用して加速度または減速度がある設定値以上を検知した場合には、後述の不感帯の閾値を広げるようにしてもよい。逆に、手押し車1は、加速度または減速度がある設定値以下であることを検知した場合には、不感帯の閾値を狭めるようにしてもよい。これにより、前者の場合は、誤検知を防ぎ、後者の場合は、斜度の変化にほぼ一致したアシスト力の調整が可能となる。 In addition, the handcart 1 includes an acceleration sensor that detects acceleration in each direction of the main body 10, a rotary encoder that detects the rotation angle of the main wheel 11, a rotary encoder that detects the rotation angle of the auxiliary wheel 113, and the like. May be further provided. Further, when the handcart 1 detects an acceleration or deceleration that is equal to or higher than a certain set value by using the rotary encoder of the main wheel 11, the wheelbarrow 1 may increase a threshold value of a dead zone described later. Conversely, when the handcart 1 detects that the acceleration or deceleration is equal to or lower than a certain set value, the dead zone threshold may be narrowed. Thereby, in the former case, erroneous detection is prevented, and in the latter case, it is possible to adjust the assist force substantially coincident with the change in the inclination.
 図4は、制御部21の制御構成図である。制御部21は、目標角度決定部211、目標角速度計算部212、トルク指令生成部213、および斜度推定部214を備えている。 FIG. 4 is a control configuration diagram of the control unit 21. The control unit 21 includes a target angle determination unit 211, a target angular velocity calculation unit 212, a torque command generation unit 213, and an inclination estimation unit 214.
 目標角度決定部211は、支持部112の傾斜角度(地面に対する傾斜角度)の目標である目標傾斜角度θ1を設定する。例えば、図5(A)に示すように、目標傾斜角度θ1として、鉛直方向に対して0度より少し後方である第1の角度(θ1=-3°)を出力する。 The target angle determination unit 211 sets a target tilt angle θ1 that is a target of the tilt angle of the support unit 112 (tilt angle with respect to the ground). For example, as shown in FIG. 5A, as the target inclination angle θ1, a first angle (θ1 = −3 °) slightly behind 0 degrees with respect to the vertical direction is output.
 目標角速度計算部212は、当該第1の角度と、現時点の本体部10の傾斜角度と、の差分値を入力し、この差分値が0となるような本体部10の傾斜角速度を算出する。 The target angular velocity calculation unit 212 inputs a difference value between the first angle and the current inclination angle of the main body unit 10 and calculates the inclination angular velocity of the main body unit 10 such that the difference value becomes zero.
 現時点の本体部10の傾斜角度は、例えば支持部用ロータリエンコーダ27から入力された本体部10と支持部112の交差角から算出する。支持部112は、水平な地面と平行になるように主輪11の軸(または本体部10)に接続されている。したがって、交差角が90度である場合に本体部10の地面に対する傾斜角度が0度であるとし、交差角が大きくなる場合に進行方向に対して後方に傾斜し、交差角が小さくなる場合に進行方向に対して前方に傾斜しているとして、現時点の本体部10の傾斜角度を推定する。 The current inclination angle of the main body 10 is calculated from, for example, the intersection angle between the main body 10 and the support 112 input from the support rotary encoder 27. The support portion 112 is connected to the shaft (or the main body portion 10) of the main wheel 11 so as to be parallel to the horizontal ground. Therefore, when the crossing angle is 90 degrees, the inclination angle of the main body 10 with respect to the ground is assumed to be 0 degree, and when the crossing angle is large, the inclination is backward with respect to the traveling direction, and the crossing angle is small. Assuming that the vehicle body is inclined forward with respect to the traveling direction, the current inclination angle of the main body 10 is estimated.
 なお、傾斜角度は、ジャイロセンサ24の出力値を積分する、あるいは本体部10に傾斜センサ20を取り付ける場合には、当該本体部10に取り付けられた傾斜センサ20から得ることもできる。 Note that the inclination angle can be obtained from the inclination sensor 20 attached to the main body 10 when the output value of the gyro sensor 24 is integrated or when the inclination sensor 20 is attached to the main body 10.
 トルク指令生成部213は、目標角速度計算部212で算出された傾斜角速度と、ジャイロセンサ24から入力された現時点の本体部10の傾斜角速度と、の差分値を入力し、この差分値が0となるような印加トルクを算出する。 The torque command generation unit 213 inputs a difference value between the inclination angular velocity calculated by the target angular velocity calculation unit 212 and the current inclination angular velocity of the main body unit 10 input from the gyro sensor 24, and the difference value is 0. The applied torque is calculated as follows.
 このようにして算出された印加トルクに基づく制御信号が、駆動部25に入力される。駆動部25は、主輪11に取り付けられた軸を回転させるモータを駆動して主輪11に動力を与える機能部であり、入力された制御信号に基づいて主輪11のモータを駆動し、主輪11を回転させる。 A control signal based on the applied torque calculated in this way is input to the drive unit 25. The drive unit 25 is a functional unit that drives a motor that rotates a shaft attached to the main wheel 11 to power the main wheel 11, and drives the motor of the main wheel 11 based on an input control signal. The main wheel 11 is rotated.
 これにより、手押し車1は、倒立振子制御を行い、本体部10の姿勢を一定に保つように制御する。仮に、使用者が手押し車1を進行方向に対して前方に押す動作を行うと、本体部10の傾斜角度が目標傾斜角度に対して前方に傾くことになるため、本体部10の傾斜角度を目標傾斜角度に維持するために、主輪11を順方向に回転させるトルクが働く。これにより、使用者の移動に追従して手押し車1も移動する。 Thereby, the handcart 1 performs the inverted pendulum control, and controls the posture of the main body 10 to be kept constant. If the user performs an operation of pushing the handcart 1 forward with respect to the traveling direction, the inclination angle of the main body 10 is inclined forward with respect to the target inclination angle. In order to maintain the target inclination angle, a torque that rotates the main wheel 11 in the forward direction works. Thereby, the handcart 1 also moves following the movement of the user.
 そして、斜度推定部214は、傾斜センサ20の値を入力し、当該傾斜センサ20の値が所定の範囲(不感帯)以内であるか否かを判断する。斜度推定部214は、傾斜センサ20の値が不感帯を超えたと判断した場合に、傾斜センサ20の値を目標角速度計算部211に出力し、不感帯を超えた旨を当該目標角度決定部211に通知する。目標角度決定部211は、不感帯を超えた旨が通知された場合、目標傾斜角度θ1を再設定する。また、目標角度決定部211は、傾斜センサ20の値が一瞬でも不感帯を超えた時点で目標傾斜角度を再設定してもよいが、所定時間以上継続して不感帯を超えた時点で目標傾斜角度を再設定する態様であってもよい。さらに、手押し車1は、目標傾斜角度を再設定した直後にまた再設定が必要になった場合は、凹凸の激しい道を走行している場合、または操作者が躓いている等の状況である可能性もあるため、走行を停止する等の緊急制御をおこなってもよい。 Then, the inclination estimation unit 214 inputs the value of the inclination sensor 20, and determines whether or not the value of the inclination sensor 20 is within a predetermined range (dead zone). When the slope estimation unit 214 determines that the value of the tilt sensor 20 has exceeded the dead zone, the slope estimation unit 214 outputs the value of the tilt sensor 20 to the target angular velocity calculation unit 211 and notifies the target angle determination unit 211 that the dead zone has been exceeded. Notice. When the target angle determination unit 211 is notified that the dead zone has been exceeded, the target angle determination unit 211 resets the target inclination angle θ1. The target angle determination unit 211 may reset the target tilt angle when the value of the tilt sensor 20 exceeds the dead zone even for a moment, but the target tilt angle when the value exceeds the dead zone continuously for a predetermined time or more. It may be a mode of resetting. Furthermore, the handcart 1 is in a situation where, after resetting the target inclination angle, it becomes necessary to reset again, when traveling on a rough road, or when an operator is scolding. Since there is a possibility, emergency control such as stopping traveling may be performed.
 図6は、制御部21の動作を示すフローチャートである。図6に示すように、斜度推定部214は、傾斜センサ20の値を入力し(s11)、当該傾斜センサ20の値が所定の範囲(不感帯)以内であるか否かを判断する(s12)。 FIG. 6 is a flowchart showing the operation of the control unit 21. As shown in FIG. 6, the inclination estimation unit 214 inputs the value of the inclination sensor 20 (s11), and determines whether or not the value of the inclination sensor 20 is within a predetermined range (dead zone) (s12). ).
 図7は、不感帯と目標傾斜角度の関係を示す図である。図7に示すグラフの横軸は傾斜センサ20の値であり、縦軸は目標傾斜角度である。初期状態(平地)では、傾斜センサの値0°を基準として、±5°の不感帯が設定されている。すなわち、傾斜センサ20の値が-5°~5°の間では、目標傾斜角度θ1は、第1の角度(θ1=-3°)に固定され、傾斜センサの出力変化を駆動部25の制御には利用しないようになっている。そして、斜度推定部214が傾斜センサ20の値が不感帯を超えたと判断した場合(s12:Yes)、目標角度決定部211は、目標傾斜角度θ1を再設定する(s13)。 FIG. 7 is a diagram showing the relationship between the dead zone and the target inclination angle. The horizontal axis of the graph shown in FIG. 7 is the value of the tilt sensor 20, and the vertical axis is the target tilt angle. In the initial state (flat ground), a dead zone of ± 5 ° is set with the inclination sensor value of 0 ° as a reference. That is, when the value of the tilt sensor 20 is between −5 ° and 5 °, the target tilt angle θ1 is fixed to the first angle (θ1 = −3 °), and the output change of the tilt sensor is controlled by the drive unit 25. Is not to be used. When the inclination estimation unit 214 determines that the value of the tilt sensor 20 has exceeded the dead zone (s12: Yes), the target angle determination unit 211 resets the target tilt angle θ1 (s13).
 例えば、図7に示すように、目標角度決定部211は、傾斜センサ20の値が-5°未満となった場合、目標傾斜角度θ1を第1の角度より本体部10が前方に傾く角度である第2の角度(例えばθ1=2°)に再設定する。ただし、現時点の本体部10の傾斜角度を支持部用ロータリエンコーダ27から入力された本体部10と支持部112の交差角から算出している場合、目標角度決定部211は、上がり勾配を考慮して、本体部10が鉛直方向に対して前方に2°傾くように、不感帯を超えた時点の傾斜センサ20の値-5°を差分した値(θ1=7°)を目標傾斜角度として出力する。 For example, as shown in FIG. 7, when the value of the tilt sensor 20 is less than −5 °, the target angle determination unit 211 sets the target tilt angle θ1 to an angle at which the main body unit 10 tilts forward from the first angle. It is reset to a certain second angle (for example, θ1 = 2 °). However, when the current inclination angle of the main body 10 is calculated from the intersection angle between the main body 10 and the support 112 input from the support rotary encoder 27, the target angle determination unit 211 considers the upward gradient. Then, a value (θ1 = 7 °) obtained by subtracting the value −5 ° of the tilt sensor 20 at the time when the dead zone is exceeded is output as the target tilt angle so that the main body 10 tilts 2 ° forward with respect to the vertical direction. .
 これにより、図5(B)に示すように、本体部10が前方に傾くため、主輪11を順方向に回転させるトルクがより強く働く。これにより、使用者を牽引する力を得ることができ、より快適に坂道を上ることができる。 Thereby, as shown in FIG. 5 (B), the main body portion 10 is tilted forward, so that the torque for rotating the main wheel 11 in the forward direction works more strongly. Thereby, the force which pulls a user can be acquired and it can climb a slope more comfortably.
 また、例えば、図7に示すように、目標角度決定部211は、傾斜センサ20の値が5°より大きくなった場合、目標傾斜角度θ1として、第1の角度より本体部10が後方に傾く角度である第3の角度(例えばθ1=-6°)を出力する。ただし、現時点の本体部10の傾斜角度を支持部用ロータリエンコーダ27から入力された本体部10と支持部112の交差角から算出している場合、目標角度決定部211は、下り勾配を考慮して、本体部10が鉛直方向に対して後方に6°傾くように、不感帯を超えた時点の傾斜センサ20の値5°を差分した値(θ1=-11°)を目標傾斜角度として出力する。 For example, as illustrated in FIG. 7, when the value of the tilt sensor 20 is greater than 5 °, the target angle determination unit 211 tilts the main body 10 backward from the first angle as the target tilt angle θ1. A third angle that is an angle (for example, θ1 = −6 °) is output. However, when the current inclination angle of the main body 10 is calculated from the intersection angle between the main body 10 and the support 112 input from the support rotary encoder 27, the target angle determination unit 211 considers the downward gradient. Thus, a value (θ1 = −11 °) obtained by subtracting the value 5 ° of the tilt sensor 20 when the dead zone is exceeded is output as the target tilt angle so that the main body 10 tilts backward 6 ° with respect to the vertical direction. .
 これにより、図5(C)に示すように、本体部10がより後方に傾くため、主輪11を後方に回転させるトルクが働く。これにより、ブレーキ効果が働いて、使用者を後方に押し返す力を得ることができ、使用者がより安全に坂道を下ることができる。 As a result, as shown in FIG. 5 (C), the main body portion 10 is tilted further rearward, so that torque that rotates the main wheel 11 rearward is exerted. As a result, the braking effect works and a force to push the user back can be obtained, and the user can go down the slope more safely.
 そして、このようにしてアシスト力が調整されると、斜度推定部214は、新たな不感帯を再設定する(s14)。例えば、斜度推定部214は、図7に示すように、傾斜センサ20の値が-5°未満となった場合、当該不感帯を超えた時点の傾斜センサ20の値-5°を基準として、±5°の新たな不感帯を設定する。ただし、この例では傾斜センサ20の値がさらに小さくなる場合にはアシスト力の調整を行わない態様とするため、不感帯は-∞~0°とする。これにより、傾斜センサ20の値が0°以下である間は、目標傾斜角度θ1は、第2の角度(θ1=2°)に固定される。傾斜センサ20の値が0°より大きくなった場合には、目標傾斜角度θ1として、第1の角度が再設定され、0°を基準として、±5°の不感帯が再設定されることになる。 Then, when the assist force is adjusted in this way, the gradient estimation unit 214 resets a new dead zone (s14). For example, as shown in FIG. 7, when the value of the inclination sensor 20 is less than −5 °, the inclination estimation unit 214 uses the value −5 ° of the inclination sensor 20 when the dead zone is exceeded as a reference. Set a new deadband of ± 5 °. However, in this example, when the value of the tilt sensor 20 is further reduced, the assist force is not adjusted, so the dead zone is set to −∞ to 0 °. Thus, while the value of the tilt sensor 20 is 0 ° or less, the target tilt angle θ1 is fixed at the second angle (θ1 = 2 °). When the value of the tilt sensor 20 is greater than 0 °, the first angle is reset as the target tilt angle θ1, and the dead zone of ± 5 ° is reset with respect to 0 °. .
 また、斜度推定部214は、傾斜センサ20の値が5°より大きくなった場合、当該不感帯を超えた時点の傾斜センサ20の値5°を基準として、±5°の新たな不感帯を設定する。ただし、この例では傾斜センサ20の値がさらに大きくなる場合にはアシスト力の調整を行わない態様とするため、不感帯は0°~∞とする。これにより、傾斜センサ20の値が0°以上である間は、目標傾斜角θ1は、第3の角度(θ1=-6°)に固定される。傾斜センサ20の値が0°未満となった場合には、目標傾斜角度θ1として、第1の角度が再設定され、0°を基準として、±5°の不感帯が再設定されることになる。 In addition, when the value of the inclination sensor 20 is greater than 5 °, the inclination estimation unit 214 sets a new dead zone of ± 5 ° with reference to the value 5 ° of the inclination sensor 20 when the value exceeds the dead zone. To do. However, in this example, when the value of the tilt sensor 20 is further increased, the dead zone is set to 0 ° to ∞ so that the assist force is not adjusted. Thus, while the value of the tilt sensor 20 is 0 ° or more, the target tilt angle θ1 is fixed at the third angle (θ1 = −6 °). When the value of the tilt sensor 20 is less than 0 °, the first angle is reset as the target tilt angle θ1, and the dead zone of ± 5 ° is reset with respect to 0 °. .
 これにより、制御部21は、実際の地面の傾斜角が不感帯の境界に近い値(例えば5°または-5°)であったり、加速または減速によって傾斜センサ20が傾斜角の変化として誤検出したりしても、アシスト力の調整を頻繁に繰り返すことがなく、アシスト力の調整挙動を安定させることができる。 As a result, the control unit 21 detects that the actual inclination angle of the ground is a value close to the boundary of the dead zone (for example, 5 ° or −5 °), or the inclination sensor 20 erroneously detects the change of the inclination angle by acceleration or deceleration. The assist force adjustment behavior is not frequently repeated, and the assist force adjustment behavior can be stabilized.
 次に、図8(A)は、変形例1における不感帯と目標傾斜角度の関係を示す図である。変形例1では、傾斜センサ20の値が小さくなってアシスト力が強く調整された後にさらに傾斜センサ20の値が小さくなった場合、または傾斜センサ20の値が大きくなってアシスト力が弱く調整(または逆方向のアシスト力が設定)された後にさらに傾斜センサ20の値が大きくなった場合に、再び新たな目標傾斜角度と不感帯を設定する。 Next, FIG. 8A is a diagram showing the relationship between the dead zone and the target inclination angle in the first modification. In the first modification, the value of the tilt sensor 20 is decreased and the assist force is adjusted strongly, and then the value of the tilt sensor 20 is further decreased, or the value of the tilt sensor 20 is increased and the assist force is weakly adjusted ( Alternatively, when the value of the tilt sensor 20 further increases after the assist force in the reverse direction is set), a new target tilt angle and dead zone are set again.
 変形例1では、斜度推定部214は、傾斜センサ20の値が-5°未満となった場合、当該不感帯を超えた時点の傾斜センサ20の値-5°を基準として、-8°~0°の間に新たな不感帯を設定する。 In the first modification, when the value of the inclination sensor 20 is less than −5 °, the inclination estimation unit 214 sets −5 ° to about −5 ° of the inclination sensor 20 when the dead zone is exceeded. A new dead zone is set between 0 °.
 そして、目標角度決定部211は、傾斜センサ20の値が-8°未満となった場合、目標傾斜角度θ1として、第2の角度よりさらに本体部10が前方に傾く角度である第4の角度(例えばθ1=6°)を設定する。ただし、現時点の本体部10の傾斜角度を支持部用ロータリエンコーダ27から入力された本体部10と支持部112の交差角から算出している場合、目標角度決定部211は、上がり勾配を考慮して、本体部10が鉛直方向に対して前方に6°傾くように、不感帯を超えた時点の傾斜センサ20の値-8°を差分した値(θ1=14°)を出力する。 Then, when the value of the tilt sensor 20 becomes less than −8 °, the target angle determination unit 211 sets a fourth angle that is an angle at which the main body 10 tilts further forward than the second angle as the target tilt angle θ1. (For example, θ1 = 6 °) is set. However, when the current inclination angle of the main body 10 is calculated from the intersection angle between the main body 10 and the support 112 input from the support rotary encoder 27, the target angle determination unit 211 considers the upward gradient. Thus, a value (θ1 = 14 °) obtained by subtracting the value −8 ° of the tilt sensor 20 when the dead zone is exceeded is output so that the main body 10 tilts 6 ° forward with respect to the vertical direction.
 これにより、本体部10がさらに前方に傾くため、主輪11を順方向に回転させるトルクがより強く働き、アシスト力がさらに強く調整される。また、斜度推定部214は、不感帯を超えた時点の傾斜センサ20の値-8°を基準として、新たな不感帯を設定する。この例では新たな不感帯は-∞~-5°とする。これにより、傾斜センサ20の値が-8°未満となった場合には目標傾斜角θ1が第4の角度に再設定され、再び-5°を超えるまでは当該第4の角度に固定される。傾斜センサ20の値が-5°を超えた場合には、目標傾斜角度θ1は第2の角度に再設定され、-8°~0°の新たな不感帯が再設定される。 Thereby, since the main body 10 is further tilted forward, the torque for rotating the main wheel 11 in the forward direction works more strongly, and the assist force is adjusted more strongly. In addition, the inclination estimation unit 214 sets a new dead zone on the basis of the value −8 ° of the tilt sensor 20 when the dead zone is exceeded. In this example, the new dead zone is -∞ to -5 °. As a result, when the value of the tilt sensor 20 becomes less than −8 °, the target tilt angle θ1 is reset to the fourth angle, and is fixed at the fourth angle until it exceeds −5 ° again. . When the value of the tilt sensor 20 exceeds −5 °, the target tilt angle θ1 is reset to the second angle, and a new dead zone of −8 ° to 0 ° is reset.
 一方、斜度推定部214は、傾斜センサ20の値が5°より大きくなった場合、当該不感帯を超えた時点の傾斜センサ20の値5°を基準として、0°~8°の間に新たな不感帯を設定する。 On the other hand, when the value of the inclination sensor 20 is greater than 5 °, the inclination estimation unit 214 newly sets a value between 0 ° and 8 ° with reference to the value 5 ° of the inclination sensor 20 when the dead zone is exceeded. Set a dead zone.
 そして、目標角度決定部211は、傾斜センサ20の値が8°より大きくなった場合、目標傾斜角度θ1として、第3の角度よりさらに本体部10が後方に傾く角度である第5の角度(例えばθ1=-9°)を設定する。ただし、現時点の本体部10の傾斜角度を支持部用ロータリエンコーダ27から入力された本体部10と支持部112の交差角から算出している場合、目標角度決定部211は、下り勾配を考慮して、本体部10が鉛直方向に対して後方に-9°傾くように、不感帯を超えた時点の傾斜センサ20の値8°を差分した値(θ1=-17°)を出力する。これにより、本体部10がさらに後方に傾くため、主輪11を後方に回転させるトルクがより強く働き、より強いブレーキ効果が働いて、使用者を後方に押し返す力を得ることができる。 Then, when the value of the tilt sensor 20 becomes larger than 8 °, the target angle determination unit 211 sets the fifth angle (the angle at which the main body 10 tilts further backward than the third angle as the target tilt angle θ1). For example, θ1 = −9 °) is set. However, when the current inclination angle of the main body 10 is calculated from the intersection angle between the main body 10 and the support 112 input from the support rotary encoder 27, the target angle determination unit 211 considers the downward gradient. Thus, a value (θ1 = −17 °) obtained by subtracting the value 8 ° of the tilt sensor 20 when the dead zone is exceeded is output so that the main body 10 tilts backward by −9 ° with respect to the vertical direction. Thereby, since the main-body part 10 inclines further back, the torque which rotates the main wheel 11 back acts more strongly, the stronger brake effect works, and the force which pushes a user back can be acquired.
 また、斜度推定部214は、不感帯を超えた時点の傾斜センサ20の値8°を基準として、新たな不感帯を設定する。この例では新たな不感帯は5°~∞とする。これにより、傾斜センサ20の値が8°を超えた場合には目標傾斜角θ1が第5の角度に再設定され、再び5°未満となるまでは当該第5の角度に固定される。傾斜センサ20の値が5°未満となった場合には、目標傾斜角度θ1は第3の角度に再設定され、0°~8°の新たな不感帯が再設定される。 Also, the inclination estimation unit 214 sets a new dead zone with reference to the value 8 ° of the tilt sensor 20 when the dead zone is exceeded. In this example, the new dead zone is 5 ° to ∞. Thereby, when the value of the inclination sensor 20 exceeds 8 °, the target inclination angle θ1 is reset to the fifth angle, and is fixed at the fifth angle until it becomes less than 5 ° again. When the value of the tilt sensor 20 is less than 5 °, the target tilt angle θ1 is reset to the third angle, and a new dead zone of 0 ° to 8 ° is reset.
 このように、制御部21は、傾斜センサ20の値が不感帯を超えた場合に、当該不感帯を超えた値を基準として同じ幅(例えば±5°)の不感帯を設定する必要はなく、適宜調整することが可能である。 As described above, when the value of the tilt sensor 20 exceeds the dead zone, the control unit 21 does not need to set a dead zone having the same width (for example, ± 5 °) with reference to the value exceeding the dead zone, and adjusts appropriately. Is possible.
 次に、図8(B)は、変形例2における不感帯と目標傾斜角度の関係を示す図である。変形例2では、斜度推定部214は、傾斜センサ20の値が-8°未満となった場合、新たな不感帯として、-∞~-3°を設定する。これにより、傾斜センサ20の値が-8°未満となった場合には目標傾斜角θ1が第4の角度に再設定され、-3°を超えるまでは当該第4の角度に固定され、強いアシスト力が維持される。傾斜センサ20の値が-3°を超えた場合には、目標傾斜角度θ1は第2の角度に再設定され、-8°~0°の新たな不感帯が再設定される。同様に、斜度推定部214は、傾斜センサ20の値が8°より大きくなった場合、新たな不感帯として、3°~∞を設定する。これにより、傾斜センサ20の値が8°より大きくなった場合には目標傾斜角θ1が第5の角度に再設定され、3°未満となるまでは当該第5の角度に固定され、強いブレーキ効果が維持される。傾斜センサ20の値が3°未満となった場合には、目標傾斜角度θ1は第3の角度に再設定され、0°~8°の新たな不感帯が再設定される。 Next, FIG. 8B is a diagram showing the relationship between the dead zone and the target inclination angle in the second modification. In the second modification, when the value of the inclination sensor 20 is less than −8 °, the inclination estimation unit 214 sets −∞ to −3 ° as a new dead zone. As a result, when the value of the tilt sensor 20 is less than −8 °, the target tilt angle θ1 is reset to the fourth angle, and is fixed at the fourth angle until it exceeds −3 °. Assist power is maintained. When the value of the tilt sensor 20 exceeds −3 °, the target tilt angle θ1 is reset to the second angle, and a new dead zone of −8 ° to 0 ° is reset. Similarly, when the value of the inclination sensor 20 is greater than 8 °, the inclination estimation unit 214 sets 3 ° to ∞ as a new dead zone. Thereby, when the value of the inclination sensor 20 becomes larger than 8 °, the target inclination angle θ1 is reset to the fifth angle and is fixed at the fifth angle until it becomes less than 3 °, and the strong brake The effect is maintained. When the value of the tilt sensor 20 is less than 3 °, the target tilt angle θ1 is reset to the third angle, and a new dead zone of 0 ° to 8 ° is reset.
 このように、各不感帯の境界は、同じ値である必要はなく、元の目標傾斜角度に戻すための傾斜センサ20の値は、より小さい値またはより大きい値に設定する態様としてもよい。 Thus, the boundary of each dead zone does not need to be the same value, and the value of the tilt sensor 20 for returning to the original target tilt angle may be set to a smaller value or a larger value.
 なお、アシスト力を調整するためには、目標傾斜角度の変更に限らず、例えば図9(A)に示すように、オフセットトルクを加えるようにしてもよい。この場合、斜度推定部214は、傾斜センサ20の値に基づいて推定した地面の傾斜角に応じて、当該地面の傾斜角によって生じる重力トルクを補償するためのオフセットトルクを重力トルク計算部214Aで算出する。そして、当該オフセットトルクは、トルク指令生成部213で算出されたトルクに加算され、駆動部25に印加される。また、図9(B)に示すように、目標傾斜角度を変更しつつ、さらにオフセットトルクを印加するようにしてもよい。 Note that adjusting the assist force is not limited to changing the target inclination angle, and for example, as shown in FIG. 9A, an offset torque may be applied. In this case, the inclination estimation unit 214 determines an offset torque for compensating for the gravitational torque generated by the ground inclination angle according to the ground inclination angle estimated based on the value of the inclination sensor 20 as a gravity torque calculation unit 214A. Calculate with The offset torque is added to the torque calculated by the torque command generator 213 and applied to the drive unit 25. Further, as shown in FIG. 9B, offset torque may be further applied while changing the target inclination angle.
1…手押し車
10…本体部
11…主輪
15…把持部
20…傾斜センサ
21…制御部
22…ROM
23…RAM
24…ジャイロセンサ
25…駆動部
27…支持部用ロータリエンコーダ
30…ボックス
112…支持部
113…補助輪
201…バネ
202…可動部
203…櫛形電極部
211…目標角度決定部
212…目標角速度計算部
213…トルク指令生成部
214…斜度推定部
DESCRIPTION OF SYMBOLS 1 ... Wheelbarrow 10 ... Main-body part 11 ... Main wheel 15 ... Holding part 20 ... Inclination sensor 21 ... Control part 22 ... ROM
23 ... RAM
24 ... Gyro sensor 25 ... Driving unit 27 ... Rotary encoder 30 for supporting unit ... Box 112 ... Supporting unit 113 ... Auxiliary wheel 201 ... Spring 202 ... Movable unit 203 ... Comb electrode unit 211 ... Target angle determining unit 212 ... Target angular velocity calculating unit 213 ... Torque command generator 214 ... Slope estimation unit

Claims (2)

  1.  本体部と、
     前記本体部に回転可能に支持されている複数の主輪と、
     前記本体部または前記複数の主輪の回転軸に対してピッチ方向に回転可能に連結された支持部と、
     前記支持部に連結された補助輪と、
     前記複数の主輪を回転させる駆動部と、
     前記駆動部を制御する制御部と、
     前記本体部のピッチ方向の角度変化を検出する角度変化検出部と、
     前記支持部の水平方向に対する傾きを検出する傾斜角検出部と、を備えた手押し車であって、
     前記制御部は、前記傾斜角検出部の出力に基づいて前記本体部の目標角度を設定し、前記本体部の前記ピッチ方向の角度が前記目標角度になるように、かつ前記角度変化検出部の出力に基づいて前記本体部の前記ピッチ方向への角度変化が0となるように、前記駆動部を制御し、
     前記手押し車が平地にある場合の前記傾斜角検出部の出力値を基準として、前記傾斜角検出部の出力変化を前記目標角度の再設定に利用しない不感帯を設け、前記傾斜角検出部の出力が前記不感帯を超えた場合、前記目標角度を再設定するとともに、前記不感帯を超えた時点の前記傾斜角検出部の出力値を基準として、新たな不感帯を再設定することを特徴とする手押し車。
    The main body,
    A plurality of main wheels rotatably supported by the main body;
    A support portion coupled to be rotatable in a pitch direction with respect to a rotation axis of the main body portion or the plurality of main wheels;
    An auxiliary wheel connected to the support,
    A drive unit for rotating the plurality of main wheels;
    A control unit for controlling the driving unit;
    An angle change detector that detects an angle change in the pitch direction of the main body;
    A handcart provided with an inclination angle detection unit for detecting an inclination of the support unit with respect to a horizontal direction,
    The control unit sets a target angle of the main body unit based on an output of the tilt angle detection unit, the angle of the pitch direction of the main body unit becomes the target angle, and the angle change detection unit Based on the output, the drive unit is controlled so that the angle change in the pitch direction of the main body unit becomes zero,
    Based on the output value of the inclination angle detection unit when the handcart is on a flat ground, a dead zone is provided in which the output change of the inclination angle detection unit is not used for resetting the target angle, and the output of the inclination angle detection unit When the vehicle exceeds the dead zone, the target angle is reset, and a new dead zone is reset based on the output value of the tilt angle detection unit when the dead zone is exceeded. .
  2.  前記制御部は、前記傾斜角検出部の出力に基づいて前記目標角度を設定し、
     前記傾斜角検出部の出力が前記不感帯を超えた場合に、前記目標角度を再設定することを特徴とする請求項1に記載の手押し車。
    The control unit sets the target angle based on the output of the tilt angle detection unit,
    The handcart according to claim 1, wherein the target angle is reset when an output of the tilt angle detection unit exceeds the dead zone.
PCT/JP2014/082622 2013-12-25 2014-12-10 Pushcart WO2015098511A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015554726A JP5979321B2 (en) 2013-12-25 2014-12-10 Wheelbarrow

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-266657 2013-12-25
JP2013266657 2013-12-25

Publications (1)

Publication Number Publication Date
WO2015098511A1 true WO2015098511A1 (en) 2015-07-02

Family

ID=53478375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082622 WO2015098511A1 (en) 2013-12-25 2014-12-10 Pushcart

Country Status (2)

Country Link
JP (1) JP5979321B2 (en)
WO (1) WO2015098511A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11623001B2 (en) 2015-10-12 2023-04-11 Nantomics, Llc Compositions and methods for viral cancer neoepitopes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009073281A (en) * 2007-09-19 2009-04-09 Equos Research Co Ltd Vehicle
WO2012114597A1 (en) * 2011-02-23 2012-08-30 株式会社村田製作所 Walking frame
DE102011084236A1 (en) * 2011-10-10 2013-04-11 Technische Universität München Walking aid has control unit that is provided to drive the drive arranged in vicinity of lower end of connecting element to keep walking aid in balance

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014188726A1 (en) * 2013-05-22 2014-11-27 ナブテスコ株式会社 Electric walking assistance device, program for controlling electric walking assistance device, and method of controlling electric walking assistance device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009073281A (en) * 2007-09-19 2009-04-09 Equos Research Co Ltd Vehicle
WO2012114597A1 (en) * 2011-02-23 2012-08-30 株式会社村田製作所 Walking frame
DE102011084236A1 (en) * 2011-10-10 2013-04-11 Technische Universität München Walking aid has control unit that is provided to drive the drive arranged in vicinity of lower end of connecting element to keep walking aid in balance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11623001B2 (en) 2015-10-12 2023-04-11 Nantomics, Llc Compositions and methods for viral cancer neoepitopes

Also Published As

Publication number Publication date
JPWO2015098511A1 (en) 2017-03-23
JP5979321B2 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
US10232871B2 (en) Pushcart
US8862301B2 (en) Inverted pendulum type vehicle
JP6164300B2 (en) Wheelbarrow
JP5959928B2 (en) Inverted pendulum type vehicle
JP5935964B1 (en) Wheelbarrow
JP5943154B2 (en) Wheelbarrow
US9317039B2 (en) Inverted pendulum type vehicle
JP5979322B2 (en) Wheelbarrow
JP5652578B2 (en) Wheelbarrow
JP6252683B2 (en) Wheelbarrow
JPWO2011013217A1 (en) Steering control device
JP6123907B2 (en) Wheelbarrow
JP5979321B2 (en) Wheelbarrow
JP6920871B2 (en) Inverted pendulum type vehicle
US9724261B2 (en) Handcart
JP5800110B2 (en) Wheelbarrow
WO2014132520A1 (en) Hand cart
JP5958546B2 (en) Wheelbarrow
JP5935965B1 (en) Wheelbarrow
JPWO2014045823A1 (en) Wheelbarrow

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875497

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554726

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875497

Country of ref document: EP

Kind code of ref document: A1