WO2016035481A1 - Power conditioner - Google Patents

Power conditioner Download PDF

Info

Publication number
WO2016035481A1
WO2016035481A1 PCT/JP2015/071434 JP2015071434W WO2016035481A1 WO 2016035481 A1 WO2016035481 A1 WO 2016035481A1 JP 2015071434 W JP2015071434 W JP 2015071434W WO 2016035481 A1 WO2016035481 A1 WO 2016035481A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
breaker
power supply
state
determination unit
Prior art date
Application number
PCT/JP2015/071434
Other languages
French (fr)
Japanese (ja)
Inventor
しおり 増山
俊祐 松永
將紀 栗田
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to CN201580042193.XA priority Critical patent/CN106663946B/en
Publication of WO2016035481A1 publication Critical patent/WO2016035481A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power conditioner.
  • the power generation control unit is provided with a communication state determination unit and an abnormality determination unit, and it is possible to determine the abnormality of the power system and the operation of the breaker.” However, since power is supplied from the battery to the power generation control unit, it is possible to reliably determine whether the power system is abnormal or the breaker is operating. "
  • Patent Document 1 as a method for discriminating an abnormality in the power system and the operation of the breaker, a communication state determination unit is provided in the power generation control unit, and further power supply from the battery is required, but a power supply device is provided outside. As a result, the cost of the system is increased and maintenance is required, and if there is no power supply device, it cannot be determined using the communication state determination means.
  • the present invention eliminates power from the first breaker connected to the solar cell, the second breaker connected to the power supply system, the third breaker connected to the control circuit, the control power supply circuit, and the power supply system.
  • a breaker state detector that holds the ON / OFF state of the first breaker, the second breaker, and the third breaker, and whether a power failure has occurred based on the ON / OFF state.
  • a power conditioner including a control circuit including a determination unit.
  • Configuration diagram of the inverter System abnormality detection means configuration diagram System abnormality detection time chart Power failure detection flow Time chart of system abnormality detection at night power outage
  • the function of knowing whether the breaker is cut off or the power supply from the system or the solar battery is cut off is stored in the memory by storing the state of the breaker when the power supply to the power conditioner is cut off. To do.
  • FIG. 1 is an example of a configuration diagram of the power conditioner of the present embodiment.
  • the power conditioner 100 is supplied with power from the grid 1 and the solar cell 2.
  • the power conditioner 100 includes a system side breaker 10, a DC side breaker 11, a control power source breaker 12, a PT 20, a transformer 21, a filter 22, a CT 23, an inverter 24, a DC unit capacitor 25, a control power source circuit 30, and a control circuit 40.
  • the control circuit 40 includes an operating condition determination unit 41, a pulse generation unit 42, a breaker state detection unit 43, and a system abnormality detection unit 50.
  • the inverter 24 converts the DC power received from the solar cell 2 into AC power, and is connected to the system 1 through the filter 22 and the transformer 21.
  • the system side breaker 10 is mounted on the system 1 side, and the DC side breaker 11 is mounted on the solar cell 2 side.
  • the system 1 supplies power to the control power circuit 30 via the control power circuit breaker 12, and supplies power from the control power circuit 30 to the control circuit 40. Since the control power circuit 30 is also supplied with power from the solar cell 2, the control power circuit 30 supplies power to the control circuit 40 as long as either the system 1 or the solar cell 2 can supply power. Can supply.
  • the control circuit 40 includes a system abnormality detection unit 50, an operation condition determination unit 41, a pulse generation unit 42, and a breaker state detection unit 43.
  • the breaker state detection unit 43 includes the system side breaker 10 and the DC side breaker 11.
  • the auxiliary contact signal of the control power circuit breaker 12 (hereinafter referred to as all breakers) is captured.
  • the system abnormality detection means 50 detects a voltage at the PT 20 and outputs a system abnormality determination signal to the operating condition determination unit 41.
  • the operation condition determination unit 41 monitors the signal input from the system abnormality detection means 50 and the voltage of the DC unit capacitor 25, and outputs a signal to the pulse generation unit 42 if the conditions for operation are complete.
  • the pulse generation unit 42 is supplied to the inverter 24 based on the voltage and current detected from the PT 20 and CT 23 and the voltage of the DC unit capacitor 25 being monitored. 6 switching signals are output.
  • the operation condition is not satisfied, and the system is stopped when the system is in operation.
  • the automatic or manual recovery method selected in advance is performed. If automatic is selected, the operation is automatically resumed. If manual is selected, the operation condition is not satisfied unless there is a manual return signal from the outside.
  • a detection time limit that is set during grid discussions with electric power companies for grid abnormality detection.
  • a system abnormality is determined by detecting an abnormality for the detection time limit.
  • a system abnormality detection means 50 is provided in the control circuit 40.
  • the system abnormality detection means will be described with reference to the system abnormality detection means configuration diagram of FIG.
  • the system abnormality detection means 50 includes an RMS calculation 51, a PLL 52, an isolated operation determination unit 53, an OV determination unit 54, a UV determination unit 55, an OF determination unit 56, and a UF determination unit 57.
  • OV is an overvoltage
  • UV is an undervoltage
  • OF is an overfrequency
  • UF is an underfrequency.
  • an effective value is calculated from the three-phase AC voltage signal detected by the PT 20, and is output to the OV determination unit 54 and the UV determination unit 55.
  • the OV determination unit 54 compares the signal input from the RMS calculation 51 with the OV threshold, and outputs an abnormal signal when a state larger than the OV threshold continues for a longer time than the detection time limit.
  • the UV determination unit 55 compares the signal input from the RMS calculation 51 with the UV threshold, and outputs an abnormal signal when a state smaller than the UV threshold continues for a longer time than the detection time limit.
  • the PLL 52 calculates the frequency from the three-phase AC voltage signal detected by the PT 20 and outputs the frequency to the OF determination unit 56 and the UF determination unit 57.
  • the OF determination unit 56 compares the signal input from the PLL 52 with the OF threshold value, and outputs an abnormal signal when a state larger than the OF threshold value continues for a longer time than the detection time limit.
  • the UF determination unit 57 compares the signal input from the PLL 52 with the UF threshold, and outputs an abnormal signal when a state smaller than the UF threshold continues for a longer time than the detection time limit.
  • the isolated operation determination unit 53 determines the voltage detected by the PT 20, and outputs a signal when performing the isolated operation.
  • the power supply to the power conditioner 100 is interrupted, but the control circuit 40 is provided by a capacitor inside the control power supply circuit 30.
  • the power supply to is sustained. Thereafter, when the power supply is interrupted and the system is restored, the power conditioner 100 is activated.
  • the detection time limit is set short, the power supply to the control circuit 40 is interrupted after the system abnormality is detected.
  • the abnormality detected before the supply of power is interrupted is stored in a storage device or the like and this information is used when the power is turned on next time, a manual recovery standby state is established after the system power is restored.
  • a manual return standby state is entered.
  • the detection time limit is set to be long, if a power failure occurs at night, the power supply to the control circuit 40 is interrupted before it is determined that the system is abnormal, so the system abnormality cannot be detected properly.
  • This detection time limit is determined in accordance with the power system to be connected, and may be a value of several seconds, which is not practical in a circuit such as a generally used electrolytic capacitor. .
  • Night power outage is a state in which no power is supplied to the control circuit 40 because the power supply from the grid 1 is interrupted when there is no DC power supply from the solar cell 2. This is the same when the DC side breaker 11 and the control power source breaker 12 are shut off.
  • PT20 Although the voltage is constantly monitored by PT20, it is not possible to distinguish between nighttime power outage and breaker interruption only by the voltage state.
  • the inverter When the inverter is activated (S401), first the activation process is performed, and the process proceeds to the normal process. In this normal processing, the state of the breaker is confirmed (S404). If all the breakers are turned on, the power failure detection flag is turned ON (S406), and if any one of the breakers is cut off, it is detected. The flag is turned off (S405). During normal processing, the breaker status is always checked.
  • the power supplied to the volatile memory is not a power supply device but a battery having power sufficient to save the state of the memory.
  • non-volatile memory instead of a volatile memory, it is possible to store the breaker state without using a battery.
  • the breaker state detection unit 43 determines that the breaker has been cut off and turns off the power failure detection flag.
  • the voltage of the power signal is set to a voltage that is turned off after the power supply to the control circuit 40 is interrupted until the breaker state detection unit 43 cannot perform processing.
  • the breaker state detection unit 43 ignores the breaker auxiliary contact signal, so that even if the breaker auxiliary contact signal can be detected thereafter, the power failure detection flag is not turned off. .
  • the resistor connected to the power supply signal can be substituted if it is a component having an effect of reducing the voltage, such as a diode.
  • a current detector that captures the current of the control power supply circuit 30 is provided so that the breaker state detection unit 43 ignores the breaker auxiliary contact signal when the current falls below a certain current. And it can be substituted.

Abstract

Providing a power supply device outside leads to an increase in the cost of a system and to time-consuming maintenance. In addition, without the power supply device, discrimination using a communication state determination means is impossible. A power conditioner is equipped with: a first breaker connected to a solar cell; a second breaker connected to a power supply system; a third breaker connected to a control circuit; a control power supply circuit; and the control circuit including a breaker state detection unit for, when power from the power supply system is interrupted, holding the ON/OFF states of the first, second, and third breakers and a determination unit for determining, based on said ON/OFF states, whether there is power outage.

Description

パワーコンディショナInverter
 本発明は、パワーコンディショナに関する。 The present invention relates to a power conditioner.
 本技術分野の背景技術として、特開2013-70569号公報がある。この公報には、「発電制御部に通信状態判定手段及び異常判定手段を設け、電力系統の異常とブレーカの作動を判別することができる。」また、「発電装置が起動時や停止時であっても発電制御部にバッテリから電力が供給されるため、電力系統の異常かブレーカの作動かを確実に判別することができる。」と記載されている。 There is JP 2013-70569 A as a background art in this technical field. In this publication, “the power generation control unit is provided with a communication state determination unit and an abnormality determination unit, and it is possible to determine the abnormality of the power system and the operation of the breaker.” However, since power is supplied from the battery to the power generation control unit, it is possible to reliably determine whether the power system is abnormal or the breaker is operating. "
特開2013-70569号公報JP 2013-70569 A
 前記特許文献1では、電力系統の異常とブレーカの作動を判別する方法として、発電制御部に通信状態判定手段を設け、さらにバッテリからの電力供給を必要としているが、外部に電力供給装置を設けることで、システムのコストアップやメンテナンスの手間がかかる上、電力供給装置が無いと通信状態判定手段を使用して判別することができない。 In Patent Document 1, as a method for discriminating an abnormality in the power system and the operation of the breaker, a communication state determination unit is provided in the power generation control unit, and further power supply from the battery is required, but a power supply device is provided outside. As a result, the cost of the system is increased and maintenance is required, and if there is no power supply device, it cannot be determined using the communication state determination means.
 本発明は、太陽電池と接続する第一のブレーカと、電源系統と接続する第二のブレーカと、制御回路と接続する第三のブレーカと、制御電源回路と、該電源系統からの電力がなくなった場合に、前記第一のブレーカと前記第二のブレーカと前記第三のブレーカのON/OFF状態を保持するブレーカ状態検出部と、前記ON/OFF状態に基づき停電が発生しているか否かを判定する判定部と、を備える制御回路と、を備えるパワーコンディショナである。 The present invention eliminates power from the first breaker connected to the solar cell, the second breaker connected to the power supply system, the third breaker connected to the control circuit, the control power supply circuit, and the power supply system. A breaker state detector that holds the ON / OFF state of the first breaker, the second breaker, and the third breaker, and whether a power failure has occurred based on the ON / OFF state. A power conditioner including a control circuit including a determination unit.
 本発明によれば、低コストで異常を判別するパワーコンディショナを提供することができる。 According to the present invention, it is possible to provide a power conditioner for determining an abnormality at a low cost.
パワーコンディショナの構成説明図Configuration diagram of the inverter 系統異常検出手段構成図System abnormality detection means configuration diagram 系統異常検出のタイムチャートSystem abnormality detection time chart 停電検出フローPower failure detection flow 夜間停電時の系統異常検出のタイムチャートTime chart of system abnormality detection at night power outage
 以下、実施例を図を用いて説明する。 Hereinafter, examples will be described with reference to the drawings.
 本実施例では、パワーコンディショナへの電力供給が途絶えた時点のブレーカの状態をメモリに記憶させることで、ブレーカの遮断か、系統または太陽電池からの電力供給が途絶えたのかがわかる機能を説明する。 In the present embodiment, the function of knowing whether the breaker is cut off or the power supply from the system or the solar battery is cut off is stored in the memory by storing the state of the breaker when the power supply to the power conditioner is cut off. To do.
 図1は、本実施例のパワーコンディショナの構成図の例である。 FIG. 1 is an example of a configuration diagram of the power conditioner of the present embodiment.
 図1にて、パワーコンディショナ100は、系統1と太陽電池2から電力供給を受けている。パワーコンディショナ100には、系統側ブレーカ10、直流側ブレーカ11、制御電源用ブレーカ12、PT20、トランス21、フィルタ22、CT23、インバータ24、直流部コンデンサ25、制御電源回路30、制御回路40を備えて構成され、制御回路40は、運転条件判定部41、パルス生成部42、ブレーカ状態検出部43、系統異常検出手段50を備える。 In FIG. 1, the power conditioner 100 is supplied with power from the grid 1 and the solar cell 2. The power conditioner 100 includes a system side breaker 10, a DC side breaker 11, a control power source breaker 12, a PT 20, a transformer 21, a filter 22, a CT 23, an inverter 24, a DC unit capacitor 25, a control power source circuit 30, and a control circuit 40. The control circuit 40 includes an operating condition determination unit 41, a pulse generation unit 42, a breaker state detection unit 43, and a system abnormality detection unit 50.
 インバータ24は太陽電池2から受けた直流電力を交流電力に変換し、フィルタ22、トランス21を介して系統1に接続されている。 The inverter 24 converts the DC power received from the solar cell 2 into AC power, and is connected to the system 1 through the filter 22 and the transformer 21.
 系統1側には系統側ブレーカ10、太陽電池2側には直流側ブレーカ11を搭載している。 The system side breaker 10 is mounted on the system 1 side, and the DC side breaker 11 is mounted on the solar cell 2 side.
 系統1は、制御電源用ブレーカ12を介して制御電源回路30へ電力を供給し、この制御電源回路30から制御回路40へ電源を供給している。また、制御電源回路30は太陽電池2からも電力供給を受けているため、系統1または太陽電池2のどちらか一方が電力を供給できる状態であれば、制御電源回路30は制御回路40へ電源を供給できる。 The system 1 supplies power to the control power circuit 30 via the control power circuit breaker 12, and supplies power from the control power circuit 30 to the control circuit 40. Since the control power circuit 30 is also supplied with power from the solar cell 2, the control power circuit 30 supplies power to the control circuit 40 as long as either the system 1 or the solar cell 2 can supply power. Can supply.
 この制御回路40は、系統異常検出手段50、運転条件判定部41、パルス生成部42、ブレーカ状態検出部43を有し、また、ブレーカ状態検出部43は、系統側ブレーカ10、直流側ブレーカ11、制御電源用ブレーカ12(以下、全ブレーカとする)の補助接点信号を取り込んでいる。 The control circuit 40 includes a system abnormality detection unit 50, an operation condition determination unit 41, a pulse generation unit 42, and a breaker state detection unit 43. The breaker state detection unit 43 includes the system side breaker 10 and the DC side breaker 11. The auxiliary contact signal of the control power circuit breaker 12 (hereinafter referred to as all breakers) is captured.
 制御回路40が有する系統異常検出手段50は、制御回路40の外部に設けられていても問題ない。 There is no problem even if the system abnormality detection means 50 included in the control circuit 40 is provided outside the control circuit 40.
 系統異常検出手段50は、PT20で電圧を検出し、系統異常判定信号を運転条件判定部41に出力している。 The system abnormality detection means 50 detects a voltage at the PT 20 and outputs a system abnormality determination signal to the operating condition determination unit 41.
 運転条件判定部41は、系統異常検出手段50から入力された信号と、直流部コンデンサ25の電圧を監視し、運転が行える条件が整っていれば、パルス生成部42へ信号を出力する。 The operation condition determination unit 41 monitors the signal input from the system abnormality detection means 50 and the voltage of the DC unit capacitor 25, and outputs a signal to the pulse generation unit 42 if the conditions for operation are complete.
 パルス生成部42は運転条件判定部41から信号を入力されると、PT20とCT23から検出している電圧、電流、また、監視している直流部コンデンサ25の電圧をもとに、インバータ24へ6本のスイッチング信号を出力する。 When a signal is input from the operating condition determination unit 41, the pulse generation unit 42 is supplied to the inverter 24 based on the voltage and current detected from the PT 20 and CT 23 and the voltage of the DC unit capacitor 25 being monitored. 6 switching signals are output.
 系統異常検出手段50にて行っている系統の監視により、系統1に異常が発生すると運転条件を不成立とし、運転中の場合は停止する。系統が復電すると、予め選択していた自動または手動の復帰方法による動作を行う。自動を選択していた場合は自動的に運転を再開し、手動を選択していた場合は、外部からの手動復帰信号が無ければ運転条件を成立させない。 If an abnormality occurs in the system 1 due to the system monitoring performed by the system abnormality detecting means 50, the operation condition is not satisfied, and the system is stopped when the system is in operation. When the power is restored, the automatic or manual recovery method selected in advance is performed. If automatic is selected, the operation is automatically resumed. If manual is selected, the operation condition is not satisfied unless there is a manual return signal from the outside.
 系統異常検出には電力会社との連系協議時に設定する検出時限が存在する。検出時限分の異常を検出することで系統異常と判断する。 ∙ There is a detection time limit that is set during grid discussions with electric power companies for grid abnormality detection. A system abnormality is determined by detecting an abnormality for the detection time limit.
 この系統異常検出を行うため、制御回路40に系統異常検出手段50を設けている。 In order to detect this system abnormality, a system abnormality detection means 50 is provided in the control circuit 40.
 図2の系統異常検出手段構成図を用いて、系統異常検出手段について説明する。 The system abnormality detection means will be described with reference to the system abnormality detection means configuration diagram of FIG.
 系統異常検出手段50には、RMS演算51、PLL52、単独運転判定部53、OV判定部54、UV判定部55、OF判定部56、UF判定部57がある。ここで、OVは過電圧、UVは不足電圧、OFは過周波数、UFは不足周波数を指す。 The system abnormality detection means 50 includes an RMS calculation 51, a PLL 52, an isolated operation determination unit 53, an OV determination unit 54, a UV determination unit 55, an OF determination unit 56, and a UF determination unit 57. Here, OV is an overvoltage, UV is an undervoltage, OF is an overfrequency, and UF is an underfrequency.
 RMS演算51では、PT20で検出した三相の交流電圧信号から実効値を計算し、OV判定部54とUV判定部55へ出力する。 In the RMS calculation 51, an effective value is calculated from the three-phase AC voltage signal detected by the PT 20, and is output to the OV determination unit 54 and the UV determination unit 55.
 OV判定部54は、RMS演算51より入力された信号を、OV閾値と比較し、OV閾値よりも大きい状態が、検出時限よりも長い時間継続した場合に異常信号を出力する。 The OV determination unit 54 compares the signal input from the RMS calculation 51 with the OV threshold, and outputs an abnormal signal when a state larger than the OV threshold continues for a longer time than the detection time limit.
 UV判定部55は、RMS演算51より入力された信号を、UV閾値と比較し、UV閾値よりも小さい状態が、検出時限よりも長い時間継続した場合に異常信号を出力する。 The UV determination unit 55 compares the signal input from the RMS calculation 51 with the UV threshold, and outputs an abnormal signal when a state smaller than the UV threshold continues for a longer time than the detection time limit.
 同様にPLL52では、PT20で検出した三相の交流電圧信号から周波数を演算し、OF判定部56、UF判定部57へ周波数を出力する。 Similarly, the PLL 52 calculates the frequency from the three-phase AC voltage signal detected by the PT 20 and outputs the frequency to the OF determination unit 56 and the UF determination unit 57.
 OF判定部56は、PLL52より入力された信号を、OF閾値と比較し、OF閾値よりも大きい状態が、検出時限よりも長い時間継続した場合に異常信号を出力する。 The OF determination unit 56 compares the signal input from the PLL 52 with the OF threshold value, and outputs an abnormal signal when a state larger than the OF threshold value continues for a longer time than the detection time limit.
 UF判定部57は、PLL52より入力された信号を、UF閾値と比較し、UF閾値よりも小さい状態が、検出時限よりも長い時間継続した場合に異常信号を出力する。 The UF determination unit 57 compares the signal input from the PLL 52 with the UF threshold, and outputs an abnormal signal when a state smaller than the UF threshold continues for a longer time than the detection time limit.
 単独運転判定部53は、PT20で検出した電圧を判定し、単独運転動作を行っていた場合、信号を出力する。 The isolated operation determination unit 53 determines the voltage detected by the PT 20, and outputs a signal when performing the isolated operation.
 これら、OV判定部54、UV判定部55、OF判定部56、UF判定部57、単独運転判定部53のいずれかから異常信号が出力された場合に系統異常と判断し、系統異常信号を運転条件判定部41へ出力する。 When an abnormal signal is output from any of these OV determination unit 54, UV determination unit 55, OF determination unit 56, UF determination unit 57, and single operation determination unit 53, it is determined that the system is abnormal, and the system abnormality signal is operated. Output to the condition determination unit 41.
 ここで、図3の系統異常検出のタイムチャートを用いて、夜間に停電が発生した場合の動作を説明する。 Here, the operation when a power failure occurs at night will be described using the system abnormality detection time chart of FIG.
 夜間及び直流側からの制御電源回路30への電力供給が無い状態で停電が発生すると、パワーコンディショナ100への電力供給が途絶えてしまうが、制御電源回路30の内部にあるコンデンサによって制御回路40への電源供給が持続される。その後電源供給が途絶え、系統が復電するとパワーコンディショナ100が起動する。 When a power failure occurs at night and when there is no power supply to the control power supply circuit 30 from the DC side, the power supply to the power conditioner 100 is interrupted, but the control circuit 40 is provided by a capacitor inside the control power supply circuit 30. The power supply to is sustained. Thereafter, when the power supply is interrupted and the system is restored, the power conditioner 100 is activated.
 このとき、検出時限が短く設定された場合は、系統異常を検出してから制御回路40への電源供給が途絶える。この場合、電源供給が途絶える前に検出した異常を記憶装置等に保存し、次回の電源投入時に本情報を利用すれば、系統復電後は手動復帰待機状態となる。しかしながら、ブレーカ遮断時においても系統異常が検出できてしまうため、手動復帰待機状態となってしまう。 At this time, if the detection time limit is set short, the power supply to the control circuit 40 is interrupted after the system abnormality is detected. In this case, if the abnormality detected before the supply of power is interrupted is stored in a storage device or the like and this information is used when the power is turned on next time, a manual recovery standby state is established after the system power is restored. However, since a system abnormality can be detected even when the breaker is shut off, a manual return standby state is entered.
 一方、検出時限を長く設定していた場合は、夜間に停電が発生すると、系統異常と判断する前に制御回路40への電源供給が途絶えるため、系統異常を適切に検出することはできない。 On the other hand, when the detection time limit is set to be long, if a power failure occurs at night, the power supply to the control circuit 40 is interrupted before it is determined that the system is abnormal, so the system abnormality cannot be detected properly.
 この検出時限は、連系される電力系統に合わせて適切な値が決定されるため、数秒程度の値となる場合もあり、一般的に利用される電解コンデンサ等の回路では、現実的ではない。 This detection time limit is determined in accordance with the power system to be connected, and may be a value of several seconds, which is not practical in a circuit such as a generally used electrolytic capacitor. .
 外部に電力供給装置を設けることで、夜間に停電が発生した場合でも制御回路40へ電源を供給することが可能となるため、系統異常検出処理が正常に動作することができるが、システムのコストアップのみならず、定期的にメンテナンスを行わなければ故障の際に正常に動作しない可能性がある。 By providing an external power supply device, it is possible to supply power to the control circuit 40 even when a power failure occurs at night, so that the system abnormality detection process can operate normally, but the system cost In addition to up, there is a possibility that it will not operate normally in the event of a failure unless it is regularly maintained.
 上記に述べるように、外部からの電力供給装置無しで長時間の系統異常を検出することは非常に困難である。 As described above, it is very difficult to detect a system abnormality for a long time without an external power supply device.
 そこで、制御電源回路30に電力が供給され、制御回路40が起動した際に必ず手動復帰とする方法がある。 Therefore, there is a method in which power is supplied to the control power supply circuit 30 and a manual return is always performed when the control circuit 40 is activated.
 この場合も長く設定された系統異常の検出は不可能だが、系統復電後に手動復帰操作が無く、自動的に運転を再開してしまうことを回避できる。 In this case as well, it is impossible to detect a system abnormality that has been set for a long time, but there is no manual return operation after system power recovery, and it is possible to avoid restarting operation automatically.
 この場合、ユーザによるブレーカ遮断後の再投入時にも本来不要な手動復帰操作が要求されることから、使い勝手の低下が懸念される。 In this case, there is a concern that the user-friendliness may be reduced because an unnecessary manual return operation is required even when the user re-enters the circuit after the breaker is shut off.
 そこで、夜間停電とユーザによるブレーカ遮断を区別し、停電時のみを手動復帰状態とする方法が考えられる。 Therefore, it is possible to distinguish between nighttime power outage and breaker interruption by the user, and to make a manual return state only at the time of power outage.
 夜間停電は、太陽電池2からの直流電力供給がない状態で、系統1からの電力供給が途絶えるため、制御回路40への電源供給が無くなる状態である。これは、直流側ブレーカ11と制御電源用ブレーカ12を遮断した場合にも同様となる。 Night power outage is a state in which no power is supplied to the control circuit 40 because the power supply from the grid 1 is interrupted when there is no DC power supply from the solar cell 2. This is the same when the DC side breaker 11 and the control power source breaker 12 are shut off.
 PT20にて電圧を常に監視しているが、電圧の状態だけでは夜間停電とブレーカ遮断の区別をすることができない。 PT Although the voltage is constantly monitored by PT20, it is not possible to distinguish between nighttime power outage and breaker interruption only by the voltage state.
 そこで本発明では、パワーコンディショナ100への電力供給が途絶えた時点のブレーカの状態を次の電源投入時に確認することで、電力の供給が無くなった要因が夜間停電か、ブレーカ遮断によるものかを判別できる手段を提供する。 Therefore, in the present invention, by checking the state of the breaker when the power supply to the power conditioner 100 is interrupted when the power is next turned on, it is possible to determine whether the cause of the power supply being lost is due to a nighttime power failure or a breaker interruption. Provides a means for discrimination.
 この方法として、夜間停電直前までパワーコンディショナが運用されている場合、全ブレーカが投入された状態でパワーコンディショナ100への電力供給が無くなるため、全ブレーカが投入された時点でその情報を記憶し、系統復電時にその情報を確認することで、夜間停電が発生したかどうかが判別できる。 In this method, when the power conditioner is operated until just before the night power outage, the power is not supplied to the power conditioner 100 with all the breakers turned on, so that information is stored when all the breakers are turned on. Then, by checking the information at the time of power recovery, it can be determined whether or not a night power outage has occurred.
 系統側ブレーカ10を含め、どれか一つでもブレーカが遮断された場合は、全ブレーカが投入された時点の情報を無効とする。 If any one of the breakers including the system-side breaker 10 is shut off, the information at the time when all the breakers are turned on is invalid.
 この判別方法を図4の停電検出フローを用いて説明する。 This discrimination method will be described using the power failure detection flow in FIG.
 パワーコンディショナが起動すると(S401)、初めに起動時処理を行い、通常処理に遷移する。この通常処理では、ブレーカの状態を確認しており(S404)、全ブレーカが投入されていれば停電検出フラグをONし(S406)、どれか一つでもブレーカが遮断されていた場合は、検出フラグをOFFする(S405)。通常処理中は、常にブレーカの状態を確認している。 When the inverter is activated (S401), first the activation process is performed, and the process proceeds to the normal process. In this normal processing, the state of the breaker is confirmed (S404). If all the breakers are turned on, the power failure detection flag is turned ON (S406), and if any one of the breakers is cut off, it is detected. The flag is turned off (S405). During normal processing, the breaker status is always checked.
 そして、起動時処理の際に手動復帰待機状態へ遷移するかどうかを、この停電検出フラグを確認することで判定を行っている(S402)。停電検出フラグがONであった場合、手動復帰待機状態へ遷移し(S403)、通常処理へ移行する。 Then, it is determined by checking this power failure detection flag whether or not to transit to the manual return standby state during the startup process (S402). If the power failure detection flag is ON, a transition to the manual return standby state is made (S403), and a transition is made to normal processing.
 この停電検出フラグの情報を記憶させる方法として、電源を供給された揮発性メモリに書込む方法がある。このとき、揮発性メモリに供給する電源は、電力供給装置ではなく、メモリの状態を保存するだけの電力を備えたバッテリを指す。 As a method of storing the information of the power failure detection flag, there is a method of writing in a volatile memory to which power is supplied. At this time, the power supplied to the volatile memory is not a power supply device but a battery having power sufficient to save the state of the memory.
 また、揮発性メモリの代わりに不揮発性メモリを使用することで、バッテリを使用すること無く、ブレーカの状態を記憶することも可能である。 Also, by using a non-volatile memory instead of a volatile memory, it is possible to store the breaker state without using a battery.
 ここで、図5の夜間停電時の検出処理を用いて、正確にブレーカ状態を検出する方法について説明する。 Here, a method for accurately detecting the breaker state using the detection process at the time of a night power failure in FIG. 5 will be described.
 夜間停電時にブレーカ状態検出部43よりもブレーカの補助接点信号が先に切れてしまった場合、ブレーカ状態検出部43はブレーカが遮断されたと判断し、停電検出フラグをOFFしてしまう。 When the auxiliary contact signal of the breaker is cut earlier than the breaker state detection unit 43 during a night power failure, the breaker state detection unit 43 determines that the breaker has been cut off and turns off the power failure detection flag.
 ブレーカ状態検出部43よりもブレーカの補助接点信号が後に切れた場合は、停電検出フラグがONの状態を継続し、電源供給が無くなるため、系統復電後に手動復帰待機状態に遷移することが可能となる。 If the breaker auxiliary contact signal is cut off later than the breaker state detection unit 43, the power failure detection flag remains on and power supply is lost. It becomes.
 このことから、ブレーカ補助接点信号はブレーカ状態検出部43が処理を行えなくなるまでONし続ける必要がある。 For this reason, it is necessary to keep the breaker auxiliary contact signal ON until the breaker state detection unit 43 cannot perform processing.
 この動作を実現するために、例えば、制御電源回路30が生成する電源を、抵抗を接続してブレーカの補助接点信号の電圧よりも低くなるようにし、ブレーカ状態検出部43に入力する方法がある。これは、制御回路への電源供給が弱くなっていることを知らせる信号となる。 In order to realize this operation, for example, there is a method in which the power generated by the control power supply circuit 30 is connected to a resistor so as to be lower than the voltage of the auxiliary contact signal of the breaker and input to the breaker state detection unit 43. . This is a signal notifying that the power supply to the control circuit is weak.
 そのためこの電源信号の電圧は、制御回路40への電源供給が途絶えてから、ブレーカ状態検出部43が処理を行えなくなるまでの間にOFFとなる電圧とする。 Therefore, the voltage of the power signal is set to a voltage that is turned off after the power supply to the control circuit 40 is interrupted until the breaker state detection unit 43 cannot perform processing.
 この電源信号がOFFとなった時点で、ブレーカ状態検出部43がブレーカ補助接点信号を無視することで、ブレーカ補助接点信号のOFFがその後検出できたとしても、停電検出フラグをOFFすることはない。 When the power supply signal is turned off, the breaker state detection unit 43 ignores the breaker auxiliary contact signal, so that even if the breaker auxiliary contact signal can be detected thereafter, the power failure detection flag is not turned off. .
 ここで、電源信号に接続した抵抗は、例えばダイオードなど、電圧を低下させる効果を持つ部品であれば代用可能である。 Here, the resistor connected to the power supply signal can be substituted if it is a component having an effect of reducing the voltage, such as a diode.
 また、電源信号を作成する方法の他に、制御電源回路30の電流を取り込む電流検出器を設け、ある一定の電流以下になるとブレーカ状態検出部43がブレーカ補助接点信号を無視するようにすることで、代用可能である。 In addition to the method for generating the power supply signal, a current detector that captures the current of the control power supply circuit 30 is provided so that the breaker state detection unit 43 ignores the breaker auxiliary contact signal when the current falls below a certain current. And it can be substituted.
 上記の方法を用いれば、外部に電力供給装置を設けること無く、夜間に系統異常が発生した場合でも、系統復電後に確実に手動復帰状態とすることが可能となる。また、ユーザによるブレーカ遮断後の再投入操作において、余計な手動復帰操作を行う必要がなく、安価で使いやすいシステムを提供できる。 If the above method is used, even if a system abnormality occurs at night without providing an external power supply device, it is possible to ensure a manual return state after system power recovery. Further, it is not necessary to perform an extra manual return operation in the re-insertion operation after the breaker is shut off by the user, and an inexpensive and easy-to-use system can be provided.
 以上のように、パワーコンディショナへの電力供給が途絶えた時点のブレーカの状態を記憶することで、外部に電力供給装置を設けることや、複雑な通信状態判定手段を用いること無く、電力系統の異常かブレーカの作動かを判別できる機能を提供することができる。外部に電力供給装置を設けることなく、パワーコンディショナへの電力供給が途絶えた時点のブレーカの状態を記憶することで、電力系統の異常かブレーカの作動かを判別できるため、システムの低コスト化が実現できる。また、判別方法に通信状態判定手段を用いることも無いため、システムの複雑化を防ぐことが可能となる。 As described above, by storing the state of the breaker when the power supply to the power conditioner is interrupted, it is possible to provide the power system without providing an external power supply device or using complicated communication state determination means. It is possible to provide a function capable of determining whether an abnormality or a breaker is operating. By storing the state of the breaker when the power supply to the inverter is interrupted without installing an external power supply device, it is possible to determine whether the power system is abnormal or the breaker is operating, thus reducing the system cost Can be realized. In addition, since the communication state determination means is not used for the determination method, it is possible to prevent the system from becoming complicated.
10系統側ブレーカ
11直流側ブレーカ
12制御電源用ブレーカ
10 system side breaker 11 DC side breaker 12 control power supply breaker

Claims (4)

  1.  太陽電池と接続する第一のブレーカと、
     電源系統と接続する第二のブレーカと、
     制御回路と接続する第三のブレーカと、
     制御電源回路と、
     該電源系統からの電力がなくなった場合に、前記第一のブレーカと前記第二のブレーカと前記第三のブレーカのON/OFF状態を保持するブレーカ状態検出部と、前記ON/OFF状態に基づき停電が発生しているか否かを判定する判定部と、を備える制御回路と、
    を備えるパワーコンディショナ。
    A first breaker connected to the solar cell;
    A second breaker connected to the power system;
    A third breaker connected to the control circuit;
    A control power circuit;
    Based on the ON / OFF state, a breaker state detection unit for holding the ON / OFF state of the first breaker, the second breaker, and the third breaker when power from the power supply system is lost A determination circuit that determines whether or not a power failure has occurred, and a control circuit comprising:
    Power conditioner with
  2.  請求項1記載のパワーコンディショナであって、
     前記判定部では、前記第一のブレーカと前記第二のブレーカと前記第三のブレーカとが全てON状態である場合に停電が発生していると判定することを特徴とするパワーコンディショナ。
    The power conditioner according to claim 1,
    In the power conditioner, the determination unit determines that a power failure has occurred when all of the first breaker, the second breaker, and the third breaker are in an ON state.
  3.  請求項2記載のパワーコンディショナであって、
     前記判定部では、前記第一のブレーカと前記第二のブレーカと前記第三のブレーカのうちいずれか一のブレーカがOFF状態である場合には、電源が遮断されていると判定することを特徴とするパワーコンディショナ。
    A power conditioner according to claim 2,
    The determination unit determines that the power is cut off when any one of the first breaker, the second breaker, and the third breaker is in an OFF state. A power conditioner.
  4.  請求項3記載のパワーコンディショナであって、 
     さらに、前記判定部にて停電が発生していると判定された場合に、警告を出す表示部を備えることを特徴とするパワーコンディショナ。
    A power conditioner according to claim 3, wherein
    The power conditioner further comprises a display unit that issues a warning when the determination unit determines that a power failure has occurred.
PCT/JP2015/071434 2014-09-03 2015-07-29 Power conditioner WO2016035481A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580042193.XA CN106663946B (en) 2014-09-03 2015-07-29 Power governor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-178678 2014-09-03
JP2014178678A JP6268068B2 (en) 2014-09-03 2014-09-03 Inverter

Publications (1)

Publication Number Publication Date
WO2016035481A1 true WO2016035481A1 (en) 2016-03-10

Family

ID=55439550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071434 WO2016035481A1 (en) 2014-09-03 2015-07-29 Power conditioner

Country Status (3)

Country Link
JP (1) JP6268068B2 (en)
CN (1) CN106663946B (en)
WO (1) WO2016035481A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017169263A (en) * 2016-03-14 2017-09-21 株式会社日立産機システム Power conditioner and method of detecting theft of cable connected thereto
JP2017169264A (en) * 2016-03-14 2017-09-21 株式会社日立産機システム Power conditioner and method of detecting theft of cable connected thereto
JP2017192270A (en) * 2016-04-15 2017-10-19 河村電器産業株式会社 Power conditioner housing box

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6838433B2 (en) * 2017-03-13 2021-03-03 オムロン株式会社 Safe discharge method of inverter output residual voltage and inverter device
JP7118783B2 (en) * 2018-07-12 2022-08-16 新電元工業株式会社 Grid-connected inverter device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013070569A (en) * 2011-09-26 2013-04-18 Aisin Seiki Co Ltd Distributed type power supply system
JP2013230002A (en) * 2012-04-25 2013-11-07 Mitsubishi Electric Corp Power conditioner
WO2014125520A1 (en) * 2013-02-18 2014-08-21 三洋電機株式会社 Energy storage system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979163A (en) * 1982-10-27 1984-05-08 Hitachi Ltd Power failure detecting circuit
JPH1023671A (en) * 1996-07-03 1998-01-23 Omron Corp Power conditioner and dispersed power supplying system
JP3633123B2 (en) * 1996-07-31 2005-03-30 松下電工株式会社 Distributed power system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013070569A (en) * 2011-09-26 2013-04-18 Aisin Seiki Co Ltd Distributed type power supply system
JP2013230002A (en) * 2012-04-25 2013-11-07 Mitsubishi Electric Corp Power conditioner
WO2014125520A1 (en) * 2013-02-18 2014-08-21 三洋電機株式会社 Energy storage system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017169263A (en) * 2016-03-14 2017-09-21 株式会社日立産機システム Power conditioner and method of detecting theft of cable connected thereto
JP2017169264A (en) * 2016-03-14 2017-09-21 株式会社日立産機システム Power conditioner and method of detecting theft of cable connected thereto
JP2017192270A (en) * 2016-04-15 2017-10-19 河村電器産業株式会社 Power conditioner housing box

Also Published As

Publication number Publication date
CN106663946B (en) 2019-10-01
JP6268068B2 (en) 2018-01-24
JP2016054577A (en) 2016-04-14
CN106663946A (en) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2016035481A1 (en) Power conditioner
CN103390879A (en) Alternating current power supply input high voltage protection device
KR20170078989A (en) Quality evaluation Method of standby Generator-EESS operating system
JP2012226569A (en) Data protection device for storage device
JP2016027785A (en) Power converter
JP2013150415A (en) Ups system
KR20150129517A (en) Electronic Device with memory data backup function
CN104407300A (en) UPS (uninterruptible power supply) battery detection method
JP5286935B2 (en) Distributed power supply
JP2014143789A (en) Uninterruptible power supply device
JP2011176987A (en) Power supply apparatus
KR101032487B1 (en) Power conditioner for solar power generation
KR20160069341A (en) Current detecting circuit
JP3918833B2 (en) Remote monitoring system
JP5288757B2 (en) Electronic circuit breaker
KR20170068000A (en) Apparatus for managing power of vehicle and method for controlling the same
KR20120103836A (en) Electric device for storing an event
JP6611475B2 (en) Abnormality judgment system
JP2009207331A (en) Power supply protection control circuit
JP5176720B2 (en) Equipment control device and cogeneration system
JP2018042376A (en) Seismoscopic protection system and distribution board comprising the same
JP2011041410A (en) Overcurrent protective device for electronic apparatus, power supply cut-off control method, and program
CN113395177B (en) Power failure protection method for 5G gateway
KR101456339B1 (en) Relay for Detecting Under-Voltage
JP4513519B2 (en) Uninterruptible power system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15837495

Country of ref document: EP

Kind code of ref document: A1