WO2016035353A1 - Device that supports saving energy, air-conditioning system, and air-conditioning network system - Google Patents

Device that supports saving energy, air-conditioning system, and air-conditioning network system Download PDF

Info

Publication number
WO2016035353A1
WO2016035353A1 PCT/JP2015/052375 JP2015052375W WO2016035353A1 WO 2016035353 A1 WO2016035353 A1 WO 2016035353A1 JP 2015052375 W JP2015052375 W JP 2015052375W WO 2016035353 A1 WO2016035353 A1 WO 2016035353A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioning
conditioning system
unit
energy saving
data
Prior art date
Application number
PCT/JP2015/052375
Other languages
French (fr)
Japanese (ja)
Inventor
松尾 実
隆英 伊藤
篤 塩谷
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP15837376.1A priority Critical patent/EP3171092B1/en
Publication of WO2016035353A1 publication Critical patent/WO2016035353A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers

Definitions

  • the present invention relates to an energy saving support device, an air conditioning system, and an air conditioning network system.
  • Patent Document 1 discloses an apparatus for controlling an electric device according to an operation pattern corresponding to an operation mode selected by a user and confirming that the electric device is reliably controlled. Specifically, in Patent Document 1, an operation pattern that defines in what period and under which operating condition the energy consuming device is operated is stored in a storage unit for each operation mode, and the operation stored in the storage unit is stored. It is disclosed that the operation state of the energy consuming device is controlled according to the operation pattern corresponding to the operation mode selected by the user among the patterns.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide an energy saving support device, an air conditioning system, and an air conditioning network system capable of providing information that contributes to energy saving.
  • a first aspect of the present invention is an energy saving support device connected to a plurality of air conditioning systems via a network, and includes data relating to an installation environment of each air conditioning system, input data and intermediate values in control calculation, and power consumption.
  • Selection means for selecting an air conditioning system with low power consumption or the highest coefficient of performance, and transmission means for transmitting an intermediate value of the air conditioning system selected by the selection means to other air conditioning systems belonging to the same group Is an energy saving support device.
  • various data of each air conditioning system is received by the receiving means, and the air conditioning systems whose installation environment approximates based on these data are grouped by the group creating means, and the power consumption in each group
  • the air conditioning system having the smallest or highest coefficient of performance is selected by the selection means.
  • the intermediate value (for example, low-pressure side pressure target value etc.) of the air conditioning system selected by the selection means is transmitted as a benchmark to the air conditioning systems belonging to the same group by the transmission means.
  • the energy saving support apparatus further includes data storage means for storing data, and the selection means selects an air conditioning system having the largest power consumption or the lowest coefficient of performance among the air conditioning systems belonging to the same group. And all or a part of the data received regarding the selected air conditioning system may be stored in the data storage means.
  • the air conditioning system having the largest power consumption or the lowest coefficient of performance in each group is selected by the selection means, and all or part of the received data of the selected air conditioning system is selected. It will be stored in the data storage means. Thereby, for example, by analyzing the data accumulated in the data accumulating means, the tendency of the abnormality sign can be grasped, and it can be expected that the abnormality sign is effectively used.
  • the data related to the installation environment may include at least one of an outside air temperature, an amount of solar radiation, and a direction of the building.
  • the energy saving support device it is possible to group air conditioning systems whose installation environment approximates using at least one of the outside air temperature, the amount of solar radiation, and the direction of the building.
  • a second aspect of the present invention is an energy saving support apparatus connected to a plurality of air conditioning systems via a network, the receiving means receiving data relating to the configuration of each air conditioning system, an intermediate value in control calculation, and power consumption And using the data relating to the configuration received by the receiving unit, the group creating unit that groups the air conditioning systems that are similar in configuration, and the least power consumption among the air conditioning systems belonging to the same group, or Energy saving comprising: selection means for selecting an air conditioning system having the highest coefficient of performance; and transmission means for transmitting an intermediate control value of the air conditioning system selected by the selection means to other air conditioning systems belonging to the same group It is a support device.
  • various data of each air conditioning system is received by the receiving means, and the air conditioning systems whose device configurations are approximated based on the data are grouped by the group creating means, and the power consumption in each group
  • the air conditioning system having the smallest or highest coefficient of performance is selected by the selection means.
  • the intermediate value of the air conditioning system selected by the selection unit is transmitted as a benchmark to the air conditioning systems belonging to the same group by the transmission unit.
  • the energy saving support apparatus further includes data storage means for storing data, and the selection means selects an air conditioning system having the largest power consumption or the lowest coefficient of performance among the air conditioning systems belonging to the same group. And all or a part of the data received regarding the selected air conditioning system may be stored in the data storage means.
  • the air conditioning system having the largest power consumption or the lowest coefficient of performance in each group is selected by the selection means, and all or part of the received data of the selected air conditioning system is selected. It will be stored in the data storage means. Thereby, for example, by analyzing the data accumulated in the data accumulating means, the tendency of the abnormality sign can be grasped, and it can be expected that the abnormality sign is effectively used.
  • the data related to the configuration may include at least one of an outdoor unit capacity, the number of indoor units, and a capacity configuration of the indoor unit.
  • the energy saving support device it is possible to group the air conditioning systems having similar device configurations using information on at least one of the outdoor unit capacity, the number of indoor units, and the capacity configuration of the indoor units. Become.
  • an air conditioning system connected to the energy saving support apparatus via a network, an outdoor unit including a communication unit, an indoor unit including a communication unit, the outdoor unit and a communication medium.
  • a control device capable of communicating with the indoor unit, the control device comprising: an outdoor unit control unit that controls the outdoor unit; an indoor unit control unit that controls the indoor unit; and a consumption unit that manages power consumption.
  • the outdoor unit control unit includes a power management unit and a display unit, and the outdoor unit control unit obtains device information and sensor values of the outdoor unit via the communication medium, and sends a control command to the unit mounted on the outdoor unit.
  • the indoor unit control means obtains device information and sensor values of the indoor unit via the communication medium, and outputs a control command to the device mounted on the indoor unit. Is the data regarding the installation environment of each air conditioning system, the data regarding the configuration, the input data and intermediate value in the control calculation, and the power consumption can be transmitted to the energy saving support device, and the intermediate value is acquired from the energy saving support device.
  • the air conditioning system displays the intermediate value as an index value on the display means.
  • the indoor unit control unit and the outdoor unit control unit are integrated into one control device, the configuration of the indoor unit and the outdoor unit can be simplified, and the cost can be reduced. Furthermore, it is not necessary to install an advanced program in the indoor unit and outdoor unit (for example, only the communication and actuating functions of components are installed), the equipment is not obsolete, and the outdoor unit and the indoor unit are replaced. Can also be easily performed. Furthermore, since the indoor unit control means and the outdoor unit control unit are provided in a control device provided independently of the indoor unit and the outdoor unit, for example, the indoor unit control unit and the outdoor unit control unit are connected to the air conditioning system. By placing it under the control of the manufacturer, it is possible to easily perform operations such as updating related to the program.
  • the outdoor unit control unit and the indoor unit control unit may be mounted on the control device as a virtualized control unit.
  • a fourth aspect of the present invention is an air conditioning network system including any one of the above energy saving support devices and any one of the above air conditioning systems.
  • the present invention has an effect that information contributing to energy saving can be provided.
  • FIG. 1 is a diagram schematically showing an overall configuration of an air conditioning network system according to the present embodiment.
  • the air conditioning network system 100 includes a plurality of air conditioning systems 1 a, 1 b,... 1 n and an energy saving support device 10.
  • Each of the air conditioning systems 1a to 1n and the energy saving support device 10 are connected via the network 4 so that information can be exchanged between them.
  • FIG. 2 is a diagram showing an example of a refrigerant system of the air conditioning system 1a.
  • the following is an example of the structure of the air-conditioning system which comprises the air-conditioning network system 100, and does not limit the structure of all the air-conditioning systems.
  • each air conditioning system can have various configurations depending on the purpose.
  • outdoor systems such as general multi-type air conditioning systems and home air conditioners can be used.
  • An air conditioning system in which a unit and an indoor unit exist on a one-to-one basis may be used.
  • the air conditioning system 1 a includes one outdoor unit B and a plurality of indoor units A ⁇ b> 1 and A ⁇ b> 2 connected to the outdoor unit B through a common refrigerant pipe.
  • the outdoor unit B includes, for example, a compressor 11 that compresses and sends out refrigerant, a four-way valve 12 that switches a refrigerant circulation direction, an outdoor heat exchanger 13 that exchanges heat between the refrigerant and outside air, an outdoor fan 15, and refrigerant.
  • the accumulator 16 provided in the suction side piping of the compressor 11 is provided for the purpose of gas-liquid separation.
  • the outdoor unit B is provided with various sensors 20 (see FIG. 3) such as a pressure sensor 21 that measures the refrigerant pressure and a temperature sensor 24 that measures the refrigerant temperature and the like.
  • the indoor units A1 and A2 each include an indoor heat exchanger 31, an indoor fan 32, an electronic expansion valve 33, and the like.
  • the two indoor units A1 and A2 are connected to the refrigerant pipes 21A and 21B branched by the header 22 and the distributor 23 in the outdoor unit B, respectively.
  • FIG. 3 is an electrical configuration diagram of the air conditioning system 1a according to the present embodiment.
  • indoor units A1 and A2 an outdoor unit B, and a control device 3 are connected via a common bus 5 and are configured to be able to exchange information.
  • the common bus 5 is an example of a communication medium, and the communication may be wireless or wired.
  • a control device is provided inside each indoor unit and outdoor unit.
  • the indoor unit control units 41 and 42 and the outdoor unit control unit 43 exist independently of the indoor units A1 and A2 and the outdoor unit B, and are integrated in the control device 3. Yes.
  • the indoor unit control units 41 and 42 and the outdoor unit control unit 43 may be provided as individual hardware, or may be virtually generated on one hardware. Good. In the case of virtual generation, a program for causing these control units to exist virtually may be prepared in advance.
  • the indoor unit control units 41 and 42 and the outdoor unit control unit 43 are configured to be able to exchange information with each other.
  • the control device 3 is further provided with a power consumption management unit 44 and a display unit 45.
  • the power consumption management unit 44 is configured to be able to exchange information with the indoor unit control units 41 and 42 and the outdoor unit control unit 43.
  • the power consumption management unit 44 manages, for example, the power consumption of the air conditioning system 1a so as not to exceed a preset demand value.
  • the power consumption management unit 44 compares the power consumption and the demand value, and outputs an operation control command to the outdoor unit control unit 43 according to a predetermined algorithm. Further, as will be described later, the power consumption management unit 44 sends the device information of the indoor units A1 and A2, the input data and intermediate values of the control calculation, and the outdoor unit B from the indoor unit control units 41 and 42 and the outdoor unit control unit 43.
  • the display unit 45 is, for example, a liquid crystal display.
  • indoor unit A1 various drivers 52 provided corresponding to the various devices 51 such as the indoor fan 32, the electronic expansion valve 33 and the like (see FIG. 2) are connected to the common bus 5 via a gateway (communication means) 53. It is connected.
  • indoor unit A2 is also set as the structure similar to indoor unit A1.
  • various drivers 62 provided corresponding to the various devices 61 such as the compressor 11, the four-way valve 12, the outdoor fan 13 and the like (see FIG. 2) are common via a gateway (communication means) 63. It is connected to the bus 5.
  • the gateways 53 and 63 are a collection of functions including, for example, a communication driver, an address storage area, a device attribute storage area, an OS, and a communication framework.
  • the address storage area is a storage area for storing a unique address allocated in advance for communication with the control device 3 or the like.
  • the device attribute storage area is an area for storing its own attribute information and the attribute information of the owned devices 51 and 61, for example, whether it is an indoor unit or an outdoor unit, capability, installed sensors ( For example, information such as a temperature sensor, a pressure sensor, etc.) and device information (for example, the number of fan taps, a full pulse of a valve, etc.) are stored.
  • sensors 20 for example, a pressure sensor for measuring the refrigerant pressure, a temperature sensor for measuring the refrigerant temperature, etc.
  • sensors 20 provided in the outdoor unit B and the indoor units A1 and A2 are respectively connected to the common bus 5 via the AD board 71. It is connected to the.
  • a node having a correction function for correcting the measurement value may be provided between the AD board 71 and the sensors 20. In this way, by providing a correction function, it is possible to use inexpensive sensors that are inexpensive and not so high in measurement accuracy.
  • the indoor unit control units 41 and 42 of the control device 3 receive measurement data (such as input data for control calculation) and the like from the sensors 20 and various drivers 52 and 62 via the common bus 5.
  • Various devices for example, indoor fan 32, electronic expansion valve 33, etc.
  • a control command is output to
  • the control command is sent to various drivers 52 via the common bus 5 and the gateway 53.
  • Various drivers 52 drive corresponding devices based on the received control commands. Thereby, control of indoor unit A1 and A2 based on a control command is implement
  • the outdoor unit control unit 43 of the control device 3 acquires measurement data (control calculation input data, etc.) and control information from the sensors 20 and various drivers 52 and 62 via the common bus 5 and measures these measurements.
  • various devices for example, the compressor 11, the four-way valve 12, the outdoor heat exchanger 13, the outdoor fan 15, etc.
  • Output a control command is sent to various drivers 62 through the common bus 5 and the gateway 63.
  • Various drivers 62 drive corresponding devices based on the received control commands.
  • the indoor units A1 and A2 and the outdoor unit B may be autonomously distributed controlled by the indoor unit controllers 41 and 42 and the outdoor unit controller 43, respectively.
  • a control rule is set between the indoor units A1 and A2 and the outdoor unit B, and each performs control according to the control rule.
  • the indoor units A1 and A2 may be set to a set temperature or setting set by the user or the like when the refrigerant pressure acquired from the sensors 20 is within a predetermined first allowable variation range.
  • a control command for making the actual air flow and the actual air flow coincide with the air flow is determined and output to the indoor units A1 and A2 via the common bus 5, respectively.
  • the indoor unit control units 41 and 42 may determine each control command by mutually exchanging information and cooperating with each other.
  • the outdoor unit control unit 43 controls the output command of the air conditioning system 1 for maintaining the refrigerant pressure within a predetermined second allowable fluctuation range, for example, the rotational speed of the compressor 11 and the rotational speed of the outdoor fan 15.
  • the command is determined and transmitted to the outdoor unit B via the common bus 5.
  • the outdoor unit control unit 43 can grasp the output change information of the indoor units A1 and A2 and determine the behavior of the outdoor unit B. It becomes possible.
  • FIG. 4 is a functional block diagram of the energy saving support device 10 according to the present embodiment.
  • the energy saving support device 10 is, for example, a computer, and includes a processor, a main storage device (for example, a RAM (Random access memory)), a hard disk, and the like. Each function described later is realized by the processor loading and executing various programs (for example, an energy saving support program) stored in the hard disk in the main storage device.
  • various programs for example, an energy saving support program
  • the energy saving support device 10 includes a reception unit 81, a group creation unit 82, a selection unit 83, and a transmission unit 84.
  • the receiving unit 81 receives data transmitted from each air conditioning system.
  • Specific examples of the data to be received include data related to the installation environment of each air conditioning system, input data and intermediate values (for example, low-pressure side pressure target value) in control calculation, power consumption, and the like.
  • examples of the data related to the installation environment include the outside air temperature, the amount of solar radiation, and the direction of the building.
  • Examples of input data in the control calculation include the outside air temperature, the set temperature, the indoor suction temperature, the low pressure side pressure, the high pressure side pressure, the expansion valve opening degree, and the like.
  • Examples of the intermediate value include a low pressure side pressure target value.
  • the group creation unit 82 uses the data regarding the installation environment received by the reception unit 81 to extract an air conditioning system that approximates the installation environment, and creates a group.
  • the selection unit 83 selects an air conditioning system with the least power consumption among the air conditioning systems belonging to the same group.
  • the transmission unit 84 transmits an intermediate value (for example, a low-pressure side pressure target value) of the air conditioning system selected by the selection unit 83 as a benchmark (index value) to other air conditioning systems belonging to the same group.
  • data sent from each of these air conditioning systems is received by the receiving unit 81 (see FIG. 4) and output to the group creating unit 82.
  • the group creation unit 82 compares data related to the installation environment in each air conditioning system, extracts air conditioning systems whose errors are within a predetermined approximate range, and groups the air conditioning systems that approximate the installation environment. For example, air conditioning systems in which the difference in the outside air temperature is within 1 ° C. and the difference in the amount of solar radiation is within 300 [W / m 2 ] are grouped.
  • the selection unit 83 an air conditioning system with the smallest power consumption is selected from the air conditioning systems belonging to the same group. And in the transmission part 84, the intermediate value (for example, low pressure side pressure target value etc.) of the air conditioning system selected by the selection part 83 is transmitted with respect to the other air conditioning system which belongs to the group.
  • an intermediate value of the air conditioning system that is in an installation environment close to itself and that is operating with lower power consumption is obtained as a benchmark (index). It becomes possible to do.
  • the intermediate value as a benchmark is displayed on the display unit 45.
  • each air conditioning system continuously obtains information on the air conditioning system that is operating more effectively from the viewpoint of energy saving than itself. Is possible.
  • each air conditioning system is in an installation environment that is close to itself, and obtains information on the air conditioning system that has achieved energy savings compared to itself, that is, useful control information that contributes to its own energy saving. Can do.
  • the method of determining the low pressure side pressure target value set according to the set temperature is different as the reason why the power consumption in each air conditioning system is different between air conditioning systems with similar operating conditions. Therefore, it is possible to give hints for energy saving by presenting these values (intermediate values) to other air conditioning systems.
  • a threshold value that is referred to when the protection control is operated may be transmitted.
  • the power consumption also varies depending on the thresholds that are referred to when the protection control functions, for example, the low pressure side pressure threshold and the high pressure side pressure threshold that are used for emergency stop of the compressor and protection control. It is possible to give hints for energy saving by presenting each air conditioning system.
  • the data transmitted from the air conditioning systems 1a to 1n to the energy saving support apparatus 10 may be instantaneous values or average values for a predetermined period (for example, average values for one hour).
  • FIG. 5 is a functional block diagram of the energy saving support apparatus according to the present embodiment.
  • the energy saving support device 10 a includes a reception unit 81, a group creation unit 82, a selection unit 83 ′, and a data storage unit 85.
  • the receiving unit 81 and the group creating unit 82 are the same as those in the first embodiment described above.
  • the selection unit 83 ′ selects an air conditioning system having the largest power consumption among the air conditioning systems belonging to the same group, and accumulates reception data regarding the air conditioning system in the data accumulation unit 85. As a result, data relating to the air conditioning system having the largest power consumption in each group is accumulated in the data accumulation unit 85.
  • the data accumulated in this manner is handled as abnormal sign data and analyzed, so that it can be used for detecting an abnormal sign.
  • the reception unit 81 collects various data of each air conditioning system, and the group creation unit 82 uses the data as a basis.
  • the air conditioning systems whose installation environments are approximated are grouped together, and the selection unit 83 ′ selects the air conditioning system having the largest power consumption in each group, and the received data of the selected air conditioning system is stored in the data storage unit 85 as abnormal sign data. accumulate. Thereby, by analyzing the enormous amount of data stored in the data storage unit 85, the tendency of the abnormality sign can be grasped, and it can be expected to be effectively used for detecting the abnormality sign.
  • the received data of the air conditioning system selected by the selection unit 83 ′ is compared with the received data of other air conditioning systems belonging to the same group, or the average data thereof, and the data whose difference exceeds a certain value. May be stored in the data storage unit 85.
  • the amount of data to be accumulated can be reduced, and analysis can be facilitated.
  • an increase in the capacity of the data storage unit 85 can be suppressed.
  • the group creation unit 82 groups the air conditioning systems that approximate the installation environment.
  • the group creation unit groups the air conditioning systems that approximate the configuration of the air conditioning system. The point to be different.
  • the energy saving support apparatus according to the present embodiment will be described mainly with respect to differences from the above-described air conditioning network system according to the first embodiment.
  • FIG. 6 is a functional block diagram of the energy saving support device 10b according to the present embodiment.
  • the energy saving support device 10 b includes a reception unit 81, a group creation unit 82 ′, a selection unit 83, and a transmission unit 84.
  • data related to the configuration for example, outdoor unit output (capacity that the outdoor unit is exhibiting during operation), the number of indoor units that are operated, and the indoor units that are being operated are transmitted from each air conditioning system. Capacity), control input data (outside temperature, set temperature, indoor suction temperature, low pressure side pressure, high pressure side pressure, expansion valve opening, etc.) and intermediate values related to control calculations (eg low pressure side pressure target value) Received by the receiver 81.
  • the group creating unit 82 ′ compares the data regarding the configuration received by the receiving unit 81, and groups the air conditioning systems having the same configuration (or similar). For example, air conditioning systems in which the output of the outdoor unit is within a predetermined range and the total capacity of the indoor units being operated are within the predetermined range are set as the same group.
  • the grouping conditions are not limited to this, and other conditions may be used. For example, the case where the output of an outdoor unit is within a predetermined range, the number of indoor units is the same, and the capacity of the outdoor units within a predetermined range is grouped together is exemplified.
  • the air conditioning system with the lowest power consumption is selected by the selection unit 83 from the air conditioning systems belonging to the same group. And in the transmission part 84, the intermediate value (low pressure side pressure target value etc.) of the air conditioning system selected by the selection part 83 is transmitted with respect to the other air conditioning system which belongs to the group.
  • the air conditioning systems are grouped based on the system configuration.
  • each air conditioning system can obtain information on an air conditioning system that is approximately the same scale as itself and that has achieved energy savings compared to itself, that is, useful control information that contributes to its own energy saving. it can.
  • FIG. 7 is a functional block diagram of the energy saving support device 10c according to the present embodiment.
  • the energy saving support device 10 c includes a receiving unit 81, a group creating unit 82 ′, a selecting unit 83 ′, and a data storage unit 85.
  • the receiving unit 81 and the group creating unit 82 ′ are the same as those in the third embodiment described above.
  • the selection unit 83 ′ selects an air conditioning system having the largest power consumption among the air conditioning systems belonging to the same group, and accumulates reception data regarding the air conditioning system in the data accumulation unit 85. As a result, data relating to the air conditioning system having the largest power consumption in each group is accumulated in the data accumulation unit 85. The data accumulated in this manner is handled as abnormal sign data and analyzed, so that it can be used for detecting an abnormal sign.
  • the energy saving support device according to the fourth embodiment is configured by combining the selection unit 83 ′ and the data storage unit 85 according to the second embodiment with the group creation unit according to the third embodiment. ing.
  • the reception unit 81 collects various data of each air conditioning system
  • the group creation unit 82 ′ collects the data based on the data.
  • the air conditioning systems having similar device configurations are grouped together, and the selection unit 83 ′ selects the air conditioning system with the largest power consumption in each group, and the data storage unit 85 uses the received data of the selected air conditioning system as abnormal sign data. To accumulate. Thereby, by analyzing the enormous amount of data stored in the data storage unit 85, the tendency of the abnormality sign can be grasped, and it can be expected to be effectively used for detecting the abnormality sign.
  • the received data of the air conditioning system selected by the selection unit 83 ′ is compared with the received data of other air conditioning systems belonging to the same group, or the average data thereof, and the difference is obtained. Only data with a value exceeding a certain value may be stored in the data storage unit 85. In this way, for example, by accumulating only data that is clearly different from data with other air conditioning systems, the amount of data to be accumulated can be reduced, and analysis can be facilitated. Thus, an increase in the capacity of the data storage unit 85 can be suppressed.
  • the energy saving support device 10c according to the present embodiment may be combined with the energy saving support device 10b according to the third embodiment described above. As described above, by combining the selection unit 83 ′ and the data storage unit 85 with the energy saving support device 10b according to the third embodiment, information contributing to energy saving can be provided to each air conditioning system. At the same time, it is possible to analyze abnormal signs.
  • selection part 83, 83 'selected the air-conditioning system with the highest power consumption or the lowest, it replaces with this and has the highest coefficient of performance (COP).
  • the lowest air conditioning system may be selected. As described above, by selecting an air conditioning system based on the coefficient of performance, it is possible to obtain data effective for grasping the information that contributes to energy saving and the tendency of abnormal signs.
  • air conditioning systems whose device configurations and installation environments are similar to each other may be grouped, and in addition to these conditions, the suction temperature and the setting are set. It is good also as grouping the air conditioning system with which the difference with temperature is near. In this way, by adding conditions, it becomes possible to group the air conditioning systems that are more similar in operation state.
  • protection control function with respect to each air-conditioning system from the energy saving assistance apparatus 10 and 10b.
  • input data, installation environment data, equipment configuration data, and the like of the air conditioning system having the lowest power consumption in the group may be transmitted.
  • the air conditioning system that acquired this information enables more detailed analysis based on more data, and what kind of measures can be taken to further promote energy savings? It is possible to examine how to change the value.
  • Air conditioning system 3 Control device 10, 10a, 10b, 10c Energy saving support device 41, 42 Indoor unit control unit 43 Outdoor unit control unit 44 Power consumption management unit 45 Display unit 81 Reception unit 82, 82 'Group creation unit 83, 83 'selection part 84 transmission part 85 data storage part 100 air-conditioning network system A1, A2 indoor unit B outdoor unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Information that helps save energy is furnished to this air-conditioning system. This energy saving support device is provided with: a receiving unit (81) which is connected to multiple air-conditioning systems over a network and which receives data relating to the installation environment of each of the air-conditioning systems, input data and intermediary values in control calculations, and power consumption; a group creating unit (82) which uses the data relating to the installation environment received by the receiving unit (81) to create groups of air-conditioning systems in similar environments; a selection unit (83) which, from air-conditioning systems that belong to the same group, selects the air-conditioning system with the lowest power consumption or the highest performance coefficient; and a transmission unit (84) which transmits to other air-conditioning systems belonging to the same group the intermediate values of the air-conditioning system selected by the selection unit (83).

Description

省エネルギー支援装置、空調システム、及び空調ネットワークシステムEnergy saving support device, air conditioning system, and air conditioning network system
 本発明は、省エネルギー支援装置、空調システム、及び空調ネットワークシステムに関するものである。 The present invention relates to an energy saving support device, an air conditioning system, and an air conditioning network system.
 特許文献1には、ユーザが選択した運転モードに対応する運転パターンに従って電気機器を制御するとともに、電気機器が確実に制御されていることを確認するための装置が開示されている。具体的には、特許文献1には、どの期間にどんな運転条件にてエネルギー消費機器を運転させるのかを規定した運転パターンを運転モード別に記憶部に記憶しておき、記憶部に記憶された運転パターンのうち、ユーザが選択した運転モードに対応する運転パターンに従って、エネルギー消費機器の運転状態を制御することが開示されている。 Patent Document 1 discloses an apparatus for controlling an electric device according to an operation pattern corresponding to an operation mode selected by a user and confirming that the electric device is reliably controlled. Specifically, in Patent Document 1, an operation pattern that defines in what period and under which operating condition the energy consuming device is operated is stored in a storage unit for each operation mode, and the operation stored in the storage unit is stored. It is disclosed that the operation state of the energy consuming device is controlled according to the operation pattern corresponding to the operation mode selected by the user among the patterns.
国際公開第2014/049748号International Publication No. 2014/049748
 上述した特許文献1に開示されている装置では、記憶部に格納されている運転パターンが省エネルギー化の観点から最適なパターンとされているかを判断することが難しかった。また、現在の運転パターンよりも更に効果的に省エネルギー化を図れる運転パターンが存在していたとしても、そのようなパターンを積極的に取り入れることができないという不都合があった。 In the apparatus disclosed in Patent Document 1 described above, it is difficult to determine whether the operation pattern stored in the storage unit is an optimal pattern from the viewpoint of energy saving. In addition, even if there is an operation pattern that can save energy more effectively than the current operation pattern, there is a disadvantage that such a pattern cannot be actively introduced.
 本発明は、このような事情に鑑みてなされたものであって、省エネルギー化に貢献する情報を提供することのできる省エネルギー支援装置、空調システム、及び空調ネットワークシステムを提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide an energy saving support device, an air conditioning system, and an air conditioning network system capable of providing information that contributes to energy saving.
 本発明の第1態様は、複数の空調システムとネットワークを介して接続される省エネルギー支援装置であって、各前記空調システムの設置環境に関するデータ、制御演算における入力データ及び中間値、及び消費電力を受信する受信手段と、前記受信手段によって受信された設置環境に関するデータを用いて、設置環境が近似する前記空調システムをグループ化するグループ作成手段と、同じグループに属する前記空調システムの中で、最も消費電力が少ない、または、成績係数が最も高い空調システムを選択する選択手段と、前記選択手段によって選択された前記空調システムの中間値を同じグループに属する他の空調システムに対して送信する送信手段とを具備する省エネルギー支援装置である。 A first aspect of the present invention is an energy saving support device connected to a plurality of air conditioning systems via a network, and includes data relating to an installation environment of each air conditioning system, input data and intermediate values in control calculation, and power consumption. The receiving means for receiving, the group creating means for grouping the air conditioning systems that are similar to the installation environment using the data related to the installation environment received by the receiving means, and the most among the air conditioning systems belonging to the same group Selection means for selecting an air conditioning system with low power consumption or the highest coefficient of performance, and transmission means for transmitting an intermediate value of the air conditioning system selected by the selection means to other air conditioning systems belonging to the same group Is an energy saving support device.
 本態様によれば、受信手段によって、各空調システムの各種データが受信され、それらデータを元に設置環境の近似する空調システム同士がグループ作成手段によってグループ化され、各グループの中で消費電力の最も小さい、または、成績係数の最も高い空調システムが選択手段によって選択される。そして、選択手段によって選択された空調システムの中間値(例えば、低圧側圧力目標値等)が、送信手段によって、同じグループに属する空調システムにベンチマークとして送信される。これにより、各空調システムに対して、その空調システムと設置環境が近似し、かつ、その空調システムよりも省エネルギー化を達成している空調システムの情報、つまり、省エネルギー化に貢献する有用な情報を与えることが可能となる。 According to this aspect, various data of each air conditioning system is received by the receiving means, and the air conditioning systems whose installation environment approximates based on these data are grouped by the group creating means, and the power consumption in each group The air conditioning system having the smallest or highest coefficient of performance is selected by the selection means. And the intermediate value (for example, low-pressure side pressure target value etc.) of the air conditioning system selected by the selection means is transmitted as a benchmark to the air conditioning systems belonging to the same group by the transmission means. As a result, for each air conditioning system, information on the air conditioning system whose installation environment is similar to that of the air conditioning system and that achieves energy saving compared to that air conditioning system, that is, useful information that contributes to energy saving. It becomes possible to give.
 上記省エネルギー支援装置は、データを蓄積するデータ蓄積手段を更に備え、前記選択手段は、同じグループに属する前記空調システムの中で、消費電力が最も大きい、または、成績係数が最も低い空調システムを選択し、選択した空調システムに関して受信したデータの全てまたはその一部を前記データ蓄積手段に蓄積することとしてもよい。 The energy saving support apparatus further includes data storage means for storing data, and the selection means selects an air conditioning system having the largest power consumption or the lowest coefficient of performance among the air conditioning systems belonging to the same group. And all or a part of the data received regarding the selected air conditioning system may be stored in the data storage means.
 この省エネルギー支援装置によれば、各グループの中で消費電力が最も大きな、または、成績係数の最も低い空調システムが選択手段によって選択され、選択された空調システムの受信データの全てまたはその一部がデータ蓄積手段に蓄積されることとなる。これにより、例えば、データ蓄積手段に蓄積されたデータを解析することにより、異常予兆の傾向を把握することができ、異常予兆検知に有効に利用されることが期待できる。 According to this energy saving support device, the air conditioning system having the largest power consumption or the lowest coefficient of performance in each group is selected by the selection means, and all or part of the received data of the selected air conditioning system is selected. It will be stored in the data storage means. Thereby, for example, by analyzing the data accumulated in the data accumulating means, the tendency of the abnormality sign can be grasped, and it can be expected that the abnormality sign is effectively used.
 上記省エネルギー支援装置において、前記設置環境に関するデータは、外気温度、日射量、及び建物の向きの少なくとも一つを含むこととしてもよい。 In the energy saving support apparatus, the data related to the installation environment may include at least one of an outside air temperature, an amount of solar radiation, and a direction of the building.
 上記省エネルギー支援装置によれば、外気温度、日射量、及び建物の向きのうち、少なくともいずれか一つを用いて設置環境が近似する空調システム同士をグループ化することが可能となる。 According to the energy saving support device, it is possible to group air conditioning systems whose installation environment approximates using at least one of the outside air temperature, the amount of solar radiation, and the direction of the building.
 本発明の第2態様は、複数の空調システムとネットワークを介して接続される省エネルギー支援装置であって、各前記空調システムの構成に関するデータ、制御演算における中間値、及び消費電力を受信する受信手段と、前記受信手段によって受信された構成に関するデータを用いて、構成が近似する前記空調システムをグループ化するグループ作成手段と、同じグループに属する前記空調システムの中で、最も消費電力が少ない、または、最も成績係数が高い空調システムを選択する選択手段と、前記選択手段によって選択された前記空調システムの中間制御値を同じグループに属する他の空調システムに対して送信する送信手段とを具備する省エネルギー支援装置である。 A second aspect of the present invention is an energy saving support apparatus connected to a plurality of air conditioning systems via a network, the receiving means receiving data relating to the configuration of each air conditioning system, an intermediate value in control calculation, and power consumption And using the data relating to the configuration received by the receiving unit, the group creating unit that groups the air conditioning systems that are similar in configuration, and the least power consumption among the air conditioning systems belonging to the same group, or Energy saving comprising: selection means for selecting an air conditioning system having the highest coefficient of performance; and transmission means for transmitting an intermediate control value of the air conditioning system selected by the selection means to other air conditioning systems belonging to the same group It is a support device.
 本態様によれば、受信手段によって、各空調システムの各種データが受信され、それらデータを元に機器構成の近似する空調システム同士がグループ作成手段によってグループ化され、各グループの中で消費電力の最も小さい、または、成績係数の最も高い空調システムが選択手段によって選択される。そして、選択手段によって選択された空調システムの中間値が、送信手段によって、同じグループに属する空調システムにベンチマークとして送信される。これにより、各空調システムに対して、その空調システムと機器構成が近似し、かつ、その空調システムよりも省エネルギー化を達成している空調システムの情報、つまり、省エネルギー化に貢献する有用な情報を与えることが可能となる。 According to this aspect, various data of each air conditioning system is received by the receiving means, and the air conditioning systems whose device configurations are approximated based on the data are grouped by the group creating means, and the power consumption in each group The air conditioning system having the smallest or highest coefficient of performance is selected by the selection means. Then, the intermediate value of the air conditioning system selected by the selection unit is transmitted as a benchmark to the air conditioning systems belonging to the same group by the transmission unit. As a result, for each air conditioning system, information on the air conditioning system whose equipment configuration is similar to that of the air conditioning system and has achieved energy saving compared to the air conditioning system, that is, useful information that contributes to energy saving. It becomes possible to give.
 上記省エネルギー支援装置は、データを蓄積するデータ蓄積手段を更に備え、前記選択手段は、同じグループに属する前記空調システムの中で、消費電力が最も大きい、または、成績係数が最も低い空調システムを選択し、選択した空調システムに関して受信したデータの全てまたはその一部を前記データ蓄積手段に蓄積することとしてもよい。 The energy saving support apparatus further includes data storage means for storing data, and the selection means selects an air conditioning system having the largest power consumption or the lowest coefficient of performance among the air conditioning systems belonging to the same group. And all or a part of the data received regarding the selected air conditioning system may be stored in the data storage means.
 この省エネルギー支援装置によれば、各グループの中で消費電力が最も大きな、または、成績係数の最も低い空調システムが選択手段によって選択され、選択された空調システムの受信データの全てまたはその一部がデータ蓄積手段に蓄積されることとなる。これにより、例えば、データ蓄積手段に蓄積されたデータを解析することにより、異常予兆の傾向を把握することができ、異常予兆検知に有効に利用されることが期待できる。 According to this energy saving support device, the air conditioning system having the largest power consumption or the lowest coefficient of performance in each group is selected by the selection means, and all or part of the received data of the selected air conditioning system is selected. It will be stored in the data storage means. Thereby, for example, by analyzing the data accumulated in the data accumulating means, the tendency of the abnormality sign can be grasped, and it can be expected that the abnormality sign is effectively used.
 上記省エネルギー支援装置において、前記構成に関するデータは、室外機容量及び室内機の台数と該室内機の容量構成の少なくともいずれか一方を含むこととしてもよい。 In the energy saving support apparatus, the data related to the configuration may include at least one of an outdoor unit capacity, the number of indoor units, and a capacity configuration of the indoor unit.
 上記省エネルギー支援装置によれば、室外機容量及び室内機の台数と該室内機の容量構成の少なくともいずれか一方の情報を用いて、機器構成が近似する空調システム同士をグループ化することが可能となる。 According to the energy saving support device, it is possible to group the air conditioning systems having similar device configurations using information on at least one of the outdoor unit capacity, the number of indoor units, and the capacity configuration of the indoor units. Become.
 本発明の第3態様は、省エネルギー支援装置とネットワークを介して接続される空調システムであって、通信手段を備える室外機と、通信手段を備える室内機と、通信媒体を介して前記室外機及び前記室内機と通信可能とされた制御装置とを備え、前記制御装置は、前記室外機を制御する室外機制御手段と、前記室内機を制御する室内機制御手段と、消費電力を管理する消費電力管理手段と、表示手段とを備え、前記室外機制御手段は、前記通信媒体を介して前記室外機の機器情報及びセンサ値を取得するとともに、該室外機に搭載される機器へ制御指令を出力し、前記室内機制御手段は、前記通信媒体を介して前記室内機の機器情報及びセンサ値を取得するとともに、該室内機に搭載される機器へ制御指令を出力し、前記消費電力管理手段は、各前記空調システムの設置環境に関するデータ、構成に関するデータ、制御演算における入力データ及び中間値、及び消費電力を省エネルギー支援装置に送信可能とされ、前記省エネルギー支援装置から中間値を取得した場合に、該中間値を指標値として前記表示手段に表示させる空調システムである。 According to a third aspect of the present invention, there is provided an air conditioning system connected to the energy saving support apparatus via a network, an outdoor unit including a communication unit, an indoor unit including a communication unit, the outdoor unit and a communication medium. A control device capable of communicating with the indoor unit, the control device comprising: an outdoor unit control unit that controls the outdoor unit; an indoor unit control unit that controls the indoor unit; and a consumption unit that manages power consumption. The outdoor unit control unit includes a power management unit and a display unit, and the outdoor unit control unit obtains device information and sensor values of the outdoor unit via the communication medium, and sends a control command to the unit mounted on the outdoor unit. And the indoor unit control means obtains device information and sensor values of the indoor unit via the communication medium, and outputs a control command to the device mounted on the indoor unit. Is the data regarding the installation environment of each air conditioning system, the data regarding the configuration, the input data and intermediate value in the control calculation, and the power consumption can be transmitted to the energy saving support device, and the intermediate value is acquired from the energy saving support device. The air conditioning system displays the intermediate value as an index value on the display means.
 本態様によれば、室内機制御手段及び室外機制御手段を1つの制御装置に集約させるので、室内機及び室外機の構成を簡素化することが可能となり、低コスト化を図ることができる。さらに、室内機及び室外機に高度なプログラムを搭載する必要がなく(例えば、通信と部品のアクチュエート機能のみの搭載とされている)、機器の陳腐化がなく、室外機及び室内機の交換も容易に行うことが可能となる。
 更に、室内機制御手段及び室外機制御手段が室内機及び室外機とは独立して設けられた制御装置内に設けられているので、例えば、室内機制御手段及び室外機制御手段を空調システムの製造元の管理下に置くことで、プログラムに関する更新等の作業を容易に行うことが可能となる。
According to this aspect, since the indoor unit control unit and the outdoor unit control unit are integrated into one control device, the configuration of the indoor unit and the outdoor unit can be simplified, and the cost can be reduced. Furthermore, it is not necessary to install an advanced program in the indoor unit and outdoor unit (for example, only the communication and actuating functions of components are installed), the equipment is not obsolete, and the outdoor unit and the indoor unit are replaced. Can also be easily performed.
Furthermore, since the indoor unit control means and the outdoor unit control unit are provided in a control device provided independently of the indoor unit and the outdoor unit, for example, the indoor unit control unit and the outdoor unit control unit are connected to the air conditioning system. By placing it under the control of the manufacturer, it is possible to easily perform operations such as updating related to the program.
 上記空調システムにおいて、前記室外機制御手段及び前記室内機制御手段は、仮想化された制御部として前記制御装置に搭載されていてもよい。 In the air conditioning system, the outdoor unit control unit and the indoor unit control unit may be mounted on the control device as a virtualized control unit.
 このように、仮想化された制御部として存在させることにより、接続機器に応じて柔軟に制御手段を生成することが可能となる。また、空調システムの規模に応じて制御装置のハードウェア資源を決定すればよいので、CPU資源の無駄を低減させることが可能となる。 Thus, by making it exist as a virtualized control unit, it is possible to flexibly generate control means according to the connected device. Moreover, since it is sufficient to determine hardware resources of the control device in accordance with the scale of the air conditioning system, waste of CPU resources can be reduced.
 本発明の第4態様は、上記いずれかの省エネルギー支援装置と、上記いずれかの空調システムとを備える空調ネットワークシステムである。 A fourth aspect of the present invention is an air conditioning network system including any one of the above energy saving support devices and any one of the above air conditioning systems.
 本発明は、省エネルギー化に貢献する情報を提供することができるという効果を奏する。 The present invention has an effect that information contributing to energy saving can be provided.
本発明の第1実施形態に係る空調ネットワークシステムの全体構成を概略的に示した図である。It is the figure which showed roughly the whole structure of the air-conditioning network system which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る空調システムの冷媒系統の一例を示した図である。It is the figure which showed an example of the refrigerant | coolant system | strain of the air conditioning system which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る空調システムの電気的構成の一例を示した図である。It is a figure showing an example of electric composition of an air-conditioning system concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る省エネルギー支援装置の機能ブロック図である。It is a functional block diagram of the energy saving assistance device concerning a 1st embodiment of the present invention. 本発明の第2実施形態に係る省エネルギー支援装置の機能ブロック図である。It is a functional block diagram of the energy saving assistance apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る省エネルギー支援装置の機能ブロック図である。It is a functional block diagram of the energy saving assistance apparatus which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る省エネルギー支援装置の機能ブロック図である。It is a functional block diagram of the energy saving assistance apparatus which concerns on 4th Embodiment of this invention.
 以下に、本発明の第1実施形態に係る空調ネットワークシステムについて、図面を参照して説明する。
 図1は、本実施形態に係る空調ネットワークシステムの全体構成を概略的に示した図である。図1に示すように、空調ネットワークシステム100は、複数の空調システム1a、1b、・・・1nと、省エネルギー支援装置10とを備えている。各空調システム1a~1nと省エネルギー支援装置10とは、ネットワーク4を介して接続され、相互間での情報の授受が可能な構成とされている。
Hereinafter, an air conditioning network system according to a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram schematically showing an overall configuration of an air conditioning network system according to the present embodiment. As shown in FIG. 1, the air conditioning network system 100 includes a plurality of air conditioning systems 1 a, 1 b,... 1 n and an energy saving support device 10. Each of the air conditioning systems 1a to 1n and the energy saving support device 10 are connected via the network 4 so that information can be exchanged between them.
 図2は、空調システム1aの冷媒系統の一例を示した図である。なお、以下は空調ネットワークシステム100を構成する空調システムの構成の一例であり、全ての空調システムの構成を限定するものではない。つまり、各空調システムは、目的に応じて多様な構成を採ることができ、例えば、その一例として、以下の構成の他、一般的なマルチ型空調システムや、家庭用空調機のように、室外機と室内機とが1対1で存在しているような空調システムであってもよい。 FIG. 2 is a diagram showing an example of a refrigerant system of the air conditioning system 1a. In addition, the following is an example of the structure of the air-conditioning system which comprises the air-conditioning network system 100, and does not limit the structure of all the air-conditioning systems. In other words, each air conditioning system can have various configurations depending on the purpose. For example, in addition to the following configurations, as an example, outdoor systems such as general multi-type air conditioning systems and home air conditioners can be used. An air conditioning system in which a unit and an indoor unit exist on a one-to-one basis may be used.
 図2に示すように、空調システム1aは、1台の室外機Bと、該室外機Bと共通の冷媒配管により接続される複数の室内機A1、A2とを備える。
 室外機Bは、例えば、冷媒を圧縮して送出する圧縮機11、冷媒の循環方向を切り換える四方弁12、冷媒と外気との間で熱交換を行う室外熱交換器13、室外ファン15、冷媒の気液分離等を目的として圧縮機11の吸入側配管に設けられたアキュムレータ16等を備えている。また、室外機Bには、冷媒圧力を計測する圧力センサ21、冷媒温度等を計測する温度センサ24等の各種センサ類20(図3参照)が設けられている。
As shown in FIG. 2, the air conditioning system 1 a includes one outdoor unit B and a plurality of indoor units A <b> 1 and A <b> 2 connected to the outdoor unit B through a common refrigerant pipe.
The outdoor unit B includes, for example, a compressor 11 that compresses and sends out refrigerant, a four-way valve 12 that switches a refrigerant circulation direction, an outdoor heat exchanger 13 that exchanges heat between the refrigerant and outside air, an outdoor fan 15, and refrigerant. The accumulator 16 provided in the suction side piping of the compressor 11 is provided for the purpose of gas-liquid separation. Also, the outdoor unit B is provided with various sensors 20 (see FIG. 3) such as a pressure sensor 21 that measures the refrigerant pressure and a temperature sensor 24 that measures the refrigerant temperature and the like.
 室内機A1、A2はそれぞれ、室内熱交換器31、室内ファン32、及び電子膨張弁33等を備えている。2台の室内機A1、A2は、それぞれ室外機B内のヘッダー22、ディストリビュータ23で分岐された各冷媒配管21A、21Bに接続されている。 The indoor units A1 and A2 each include an indoor heat exchanger 31, an indoor fan 32, an electronic expansion valve 33, and the like. The two indoor units A1 and A2 are connected to the refrigerant pipes 21A and 21B branched by the header 22 and the distributor 23 in the outdoor unit B, respectively.
 図3は、本実施形態に係る空調システム1aの電気的構成図である。図3に示すように、室内機A1、A2、室外機B、制御装置3が共通バス5を介して接続されており、相互の情報の授受が可能な構成とされている。なお、共通バス5は、通信媒体の一例であり、通信は無線、有線を問わない。 FIG. 3 is an electrical configuration diagram of the air conditioning system 1a according to the present embodiment. As shown in FIG. 3, indoor units A1 and A2, an outdoor unit B, and a control device 3 are connected via a common bus 5 and are configured to be able to exchange information. The common bus 5 is an example of a communication medium, and the communication may be wireless or wired.
 ここで、一般的なマルチ型空調システムでは、各室内機ユニット及び室外機ユニットの内部に、それぞれ制御装置が設けられている。これに対し、本実施形態では、各室内機制御部41、42及び室外機制御部43は、室内機A1、A2及び室外機Bとは独立して存在し、制御装置3内に集約されている。制御装置3において、室内機制御部41、42及び室外機制御部43は、個別のハードウェアとして設けられていてもよいし、1つのハードウェア上に仮想的に生成されるものであってもよい。仮想的に生成される場合には、それらの制御部を仮想的に存在させるためのプログラムを予め用意しておけばよい。室内機制御部41、42及び室外機制御部43は、互いに情報の授受が可能な構成とされている。 Here, in a general multi-type air conditioning system, a control device is provided inside each indoor unit and outdoor unit. On the other hand, in the present embodiment, the indoor unit control units 41 and 42 and the outdoor unit control unit 43 exist independently of the indoor units A1 and A2 and the outdoor unit B, and are integrated in the control device 3. Yes. In the control device 3, the indoor unit control units 41 and 42 and the outdoor unit control unit 43 may be provided as individual hardware, or may be virtually generated on one hardware. Good. In the case of virtual generation, a program for causing these control units to exist virtually may be prepared in advance. The indoor unit control units 41 and 42 and the outdoor unit control unit 43 are configured to be able to exchange information with each other.
 制御装置3には、更に、消費電力管理部44、及び表示部45が設けられている。
 消費電力管理部44は、室内機制御部41、42及び室外機制御部43との間で情報の授受が可能な構成とされている。消費電力管理部44は、例えば、空調システム1aの消費電力が予め設定されているデマンド値を超えないように管理するものである。消費電力管理部44は、例えば、消費電力とデマンド値とを比較し、所定のアルゴリズムに従って室外機制御部43に対して運転制御指令を出力する。また、消費電力管理部44は、後述するように、室内機制御部41、42及び室外機制御部43から室内機A1,A2の機器情報、制御演算の入力データ及び中間値、並びに室外機Bの機器情報、制御演算の入力データ及び中間値を取得し、これらデータの全部または一部を消費電力とともに省エネルギー支援装置10に送信する。また、省エネルギー支援装置10から中間値等を受信した場合には、その中間値等を表示部45に表示させることにより、ユーザに提示する。消費電力管理部44は、上記室内機制御部41等と同様に、1つのハードウェア上に仮想的に存在してもよいし、別個のハードウェアとして設けられていてもよい。表示部45は、例えば、液晶ディスプレイである。
The control device 3 is further provided with a power consumption management unit 44 and a display unit 45.
The power consumption management unit 44 is configured to be able to exchange information with the indoor unit control units 41 and 42 and the outdoor unit control unit 43. The power consumption management unit 44 manages, for example, the power consumption of the air conditioning system 1a so as not to exceed a preset demand value. For example, the power consumption management unit 44 compares the power consumption and the demand value, and outputs an operation control command to the outdoor unit control unit 43 according to a predetermined algorithm. Further, as will be described later, the power consumption management unit 44 sends the device information of the indoor units A1 and A2, the input data and intermediate values of the control calculation, and the outdoor unit B from the indoor unit control units 41 and 42 and the outdoor unit control unit 43. Device information, control calculation input data and intermediate values are acquired, and all or part of these data is transmitted to the energy saving support apparatus 10 together with power consumption. Further, when an intermediate value or the like is received from the energy saving support device 10, the intermediate value or the like is displayed on the display unit 45 and presented to the user. Similar to the indoor unit control unit 41 and the like, the power consumption management unit 44 may exist virtually on one piece of hardware, or may be provided as separate hardware. The display unit 45 is, for example, a liquid crystal display.
 室内機A1において、室内ファン32、電子膨張弁33等(図2参照)の各種機器51に対応してそれぞれ設けられている各種ドライバ52は、ゲートウェイ(通信手段)53を介して共通バス5に接続されている。なお、図示が省略されているが、室内機A2も室内機A1と同様の構成とされている。
 室外機Bにおいて、圧縮機11、四方弁12、室外ファン13等(図2参照)の各種機器61に対応してそれぞれ設けられている各種ドライバ62は、ゲートウェイ(通信手段)63を介して共通バス5に接続されている。
In the indoor unit A1, various drivers 52 provided corresponding to the various devices 51 such as the indoor fan 32, the electronic expansion valve 33 and the like (see FIG. 2) are connected to the common bus 5 via a gateway (communication means) 53. It is connected. In addition, although illustration is abbreviate | omitted, indoor unit A2 is also set as the structure similar to indoor unit A1.
In the outdoor unit B, various drivers 62 provided corresponding to the various devices 61 such as the compressor 11, the four-way valve 12, the outdoor fan 13 and the like (see FIG. 2) are common via a gateway (communication means) 63. It is connected to the bus 5.
 ゲートウェイ53、63は、例えば、通信ドライバ、アドレス記憶領域、機器属性記憶領域、OS、通信フレームワークを含む機能の集まりである。アドレス記憶領域は、制御装置3等と通信を行うために予め割り振られている固有のアドレスを記憶するための記憶領域である。また、機器属性記憶領域は、自身の属性情報及び保有する機器51、61の属性情報を記憶するための領域であり、例えば、室内機であるか室外機であるか、能力、搭載センサ類(例えば、温度センサ、圧力センサ等)、機器の情報(例えば、ファンタップ数、弁のフルパルス等)等の情報が格納されている。 The gateways 53 and 63 are a collection of functions including, for example, a communication driver, an address storage area, a device attribute storage area, an OS, and a communication framework. The address storage area is a storage area for storing a unique address allocated in advance for communication with the control device 3 or the like. In addition, the device attribute storage area is an area for storing its own attribute information and the attribute information of the owned devices 51 and 61, for example, whether it is an indoor unit or an outdoor unit, capability, installed sensors ( For example, information such as a temperature sensor, a pressure sensor, etc.) and device information (for example, the number of fan taps, a full pulse of a valve, etc.) are stored.
 さらに、室外機B及び室内機A1、A2に設けられたセンサ類20(例えば、冷媒圧力を計測する圧力センサや冷媒温度を計測する温度センサ等)は、それぞれADボード71を介して共通バス5に接続されている。ここで、センサ類20の計測精度が低い場合には、ADボード71とセンサ類20との間に、計測値を補正するための補正機能を有するノードを設けることとしてもよい。このように、補正機能を持たせることにより、センサ類20として廉価で計測精度のさほど高くないセンサを利用することが可能となる。 Further, sensors 20 (for example, a pressure sensor for measuring the refrigerant pressure, a temperature sensor for measuring the refrigerant temperature, etc.) provided in the outdoor unit B and the indoor units A1 and A2 are respectively connected to the common bus 5 via the AD board 71. It is connected to the. Here, when the measurement accuracy of the sensors 20 is low, a node having a correction function for correcting the measurement value may be provided between the AD board 71 and the sensors 20. In this way, by providing a correction function, it is possible to use inexpensive sensors that are inexpensive and not so high in measurement accuracy.
 このような空調システムにおいては、例えば、制御装置3の室内機制御部41、42は、共通バス5を介してセンサ類20、各種ドライバ52、62から計測データ(制御演算の入力データ等)や制御情報を取得し、これらの計測データに基づいて、所定の室内機制御プログラムを実行することにより、室内機A1、A2に設けられた各種機器(例えば、室内ファン32、電子膨張弁33等)に対して制御指令を出力する。制御指令は、共通バス5、ゲートウェイ53を介して各種ドライバ52へ送られる。各種ドライバ52は、受信した制御指令に基づいて、それぞれ対応する機器を駆動する。これにより、制御指令に基づく室内機A1、A2の制御が実現される。 In such an air conditioning system, for example, the indoor unit control units 41 and 42 of the control device 3 receive measurement data (such as input data for control calculation) and the like from the sensors 20 and various drivers 52 and 62 via the common bus 5. Various devices (for example, indoor fan 32, electronic expansion valve 33, etc.) provided in indoor units A1 and A2 by acquiring control information and executing a predetermined indoor unit control program based on these measurement data A control command is output to The control command is sent to various drivers 52 via the common bus 5 and the gateway 53. Various drivers 52 drive corresponding devices based on the received control commands. Thereby, control of indoor unit A1 and A2 based on a control command is implement | achieved.
 同様に、制御装置3の室外機制御部43は、共通バス5を介してセンサ類20、各種ドライバ52、62から計測データ(制御演算の入力データ等)や制御情報を取得し、これらの計測データに基づいて、所定の室外機制御プログラムを実行することにより、室外機Bに設けられた各種機器(例えば、圧縮機11、四方弁12、室外熱交換器13、室外ファン15等)に対して制御指令を出力する。制御指令は、共通バス5、ゲートウェイ63を介して各種ドライバ62へ送られる。各種ドライバ62は、受信した制御指令に基づいて、それぞれ対応する機器を駆動する。 Similarly, the outdoor unit control unit 43 of the control device 3 acquires measurement data (control calculation input data, etc.) and control information from the sensors 20 and various drivers 52 and 62 via the common bus 5 and measures these measurements. By executing a predetermined outdoor unit control program based on the data, various devices (for example, the compressor 11, the four-way valve 12, the outdoor heat exchanger 13, the outdoor fan 15, etc.) provided in the outdoor unit B are executed. Output a control command. The control command is sent to various drivers 62 through the common bus 5 and the gateway 63. Various drivers 62 drive corresponding devices based on the received control commands.
 室内機A1、A2及び室外機Bは、それぞれ室内機制御部41、42及び室外機制御部43によって自律分散制御されてもよい。この場合、室内機A1、A2及び室外機B間には、制御ルールが設定されており、この制御ルールに従ってそれぞれが制御を行う。たとえば、冷媒圧力を例に挙げると、室内機A1、A2は、センサ類20から取得した冷媒圧力が、所定の第1許容変動範囲内の場合には、ユーザなどに設定された設定温度や設定風量に、実温度や実風量を一致させるための制御指令を決定し、共通バス5を介して室内機A1、A2にそれぞれ出力する。ここで、室内機制御部41、42は、互いに情報の授受を行い協調することにより、各々の制御指令を決定することとしてもよい。また、室外機制御部43は、冷媒圧力を所定の第2許容変動範囲内に維持するための空調システム1の出力指令、例えば、圧縮機11の回転数や室外ファン15の回転速度等に関する制御指令を決定し、共通バス5を介して室外機Bに送信する。
 例えば、第1許容範囲を第2許容範囲よりも広く設定しておくことで、室外機制御部43は室内機A1、A2の出力変化情報を把握し、室外機Bの挙動を決定することが可能となる。
The indoor units A1 and A2 and the outdoor unit B may be autonomously distributed controlled by the indoor unit controllers 41 and 42 and the outdoor unit controller 43, respectively. In this case, a control rule is set between the indoor units A1 and A2 and the outdoor unit B, and each performs control according to the control rule. For example, taking the refrigerant pressure as an example, the indoor units A1 and A2 may be set to a set temperature or setting set by the user or the like when the refrigerant pressure acquired from the sensors 20 is within a predetermined first allowable variation range. A control command for making the actual air flow and the actual air flow coincide with the air flow is determined and output to the indoor units A1 and A2 via the common bus 5, respectively. Here, the indoor unit control units 41 and 42 may determine each control command by mutually exchanging information and cooperating with each other. The outdoor unit control unit 43 controls the output command of the air conditioning system 1 for maintaining the refrigerant pressure within a predetermined second allowable fluctuation range, for example, the rotational speed of the compressor 11 and the rotational speed of the outdoor fan 15. The command is determined and transmitted to the outdoor unit B via the common bus 5.
For example, by setting the first allowable range wider than the second allowable range, the outdoor unit control unit 43 can grasp the output change information of the indoor units A1 and A2 and determine the behavior of the outdoor unit B. It becomes possible.
 次に、省エネルギー支援装置10について説明する。図4は、本実施形態に係る省エネルギー支援装置10の機能ブロック図である。省エネルギー支援装置10は、例えば、コンピュータであり、プロセッサ、主記憶装置(例えば、RAM(Random access memory))、ハードディスクなどを備えている。プロセッサは、ハードディスクに格納されている各種プログラム(例えば、省エネルギー支援プログラム)を主記憶装置にロードして実行することにより、後述する各機能が実現される。 Next, the energy saving support device 10 will be described. FIG. 4 is a functional block diagram of the energy saving support device 10 according to the present embodiment. The energy saving support device 10 is, for example, a computer, and includes a processor, a main storage device (for example, a RAM (Random access memory)), a hard disk, and the like. Each function described later is realized by the processor loading and executing various programs (for example, an energy saving support program) stored in the hard disk in the main storage device.
 図4に示すように、省エネルギー支援装置10は、受信部81と、グループ作成部82と、選択部83と、送信部84とを備えている。
 受信部81は、各空調システムから送信されてくるデータを受信する。受信するデータの具体例としては、各空調システムの設置環境に関するデータ、制御演算における入力データ及び中間値(例えば、低圧側圧力目標値等)、及び消費電力等が挙げられる。
 ここで、設置環境に関するデータとしては、例えば、外気温度、日射量、及び建物の向きなどが挙げられる。制御演算における入力データとしては、例えば、外気温度、設定温度、室内吸い込み温度、低圧側圧力、高圧側圧力、膨張弁開度等が挙げられる。中間値としては、例えば、低圧側圧力目標値等が挙げられる。
As illustrated in FIG. 4, the energy saving support device 10 includes a reception unit 81, a group creation unit 82, a selection unit 83, and a transmission unit 84.
The receiving unit 81 receives data transmitted from each air conditioning system. Specific examples of the data to be received include data related to the installation environment of each air conditioning system, input data and intermediate values (for example, low-pressure side pressure target value) in control calculation, power consumption, and the like.
Here, examples of the data related to the installation environment include the outside air temperature, the amount of solar radiation, and the direction of the building. Examples of input data in the control calculation include the outside air temperature, the set temperature, the indoor suction temperature, the low pressure side pressure, the high pressure side pressure, the expansion valve opening degree, and the like. Examples of the intermediate value include a low pressure side pressure target value.
 グループ作成部82は、受信部81によって受信された設置環境に関するデータを用いて、設置環境が近似する空調システムを抽出し、グループを作成する。
 選択部83は、同じグループに属する空調システムの中で、最も消費電力が少ない空調システムを選択する。
 送信部84は、選択部83によって選択された空調システムの中間値(例えば、低圧側圧力目標値等)をベンチマーク(指標値)として、同じグループに属する他の空調システムに対して送信する。
The group creation unit 82 uses the data regarding the installation environment received by the reception unit 81 to extract an air conditioning system that approximates the installation environment, and creates a group.
The selection unit 83 selects an air conditioning system with the least power consumption among the air conditioning systems belonging to the same group.
The transmission unit 84 transmits an intermediate value (for example, a low-pressure side pressure target value) of the air conditioning system selected by the selection unit 83 as a benchmark (index value) to other air conditioning systems belonging to the same group.
 次に、上記構成を備える空調ネットワークシステム100の動作について説明する。
 まず、運転中の各空調システム1a~1nにおいては、設置環境に関するデータ(外気温度、日射量等)、制御入力データ(外気温度、設定温度、室内吸い込み温度、低圧側圧力、高圧側圧力、膨張弁開度等)及び制御演算に関する中間値(例えば、低圧側圧力目標値等)が消費電力管理部44によって収集され、これらの情報が消費電力とともに通信媒体4を介して省エネルギー支援装置10に送信される。
Next, the operation of the air conditioning network system 100 having the above configuration will be described.
First, in each operating air conditioning system 1a to 1n, data related to the installation environment (outside air temperature, amount of solar radiation, etc.), control input data (outside air temperature, set temperature, indoor suction temperature, low pressure side pressure, high pressure side pressure, expansion) And the intermediate value (for example, the low-pressure side pressure target value) is collected by the power consumption management unit 44 and the information is transmitted to the energy saving support apparatus 10 through the communication medium 4 together with the power consumption. Is done.
 省エネルギー支援装置10において、これら各空調システムから送られてきたデータは、受信部81(図4参照)において受信され、グループ作成部82に出力される。
 グループ作成部82では、各空調システムにおける設置環境に関するデータを比較し、それらの誤差が所定の近似範囲内である空調システムを抽出して、設置環境が近似する空調システムのグループ化を行う。例えば、外気温度の差分が1℃以内であり、かつ、日射量の差分が300[W/m]以内である空調システム同士をグループ化する。
In the energy saving support apparatus 10, data sent from each of these air conditioning systems is received by the receiving unit 81 (see FIG. 4) and output to the group creating unit 82.
The group creation unit 82 compares data related to the installation environment in each air conditioning system, extracts air conditioning systems whose errors are within a predetermined approximate range, and groups the air conditioning systems that approximate the installation environment. For example, air conditioning systems in which the difference in the outside air temperature is within 1 ° C. and the difference in the amount of solar radiation is within 300 [W / m 2 ] are grouped.
 続いて、選択部83において、同じグループに属する空調システムのうち、消費電力が最も小さい空調システムが選択される。そして、送信部84では、選択部83によって選択された空調システムの中間値(例えば、低圧側圧力目標値等)が、そのグループに属する他の空調システムに対して送信される。 Subsequently, in the selection unit 83, an air conditioning system with the smallest power consumption is selected from the air conditioning systems belonging to the same group. And in the transmission part 84, the intermediate value (for example, low pressure side pressure target value etc.) of the air conditioning system selected by the selection part 83 is transmitted with respect to the other air conditioning system which belongs to the group.
 これにより、選択部83によって選択されなかった空調システムにおいては、自身と近似する設置環境にあり、かつ、自身よりも小さな消費電力で運転している空調システムの中間値をベンチマーク(指標)として取得することが可能となる。そして、この中間値を受信した各空調システムにおいては、表示部45にベンチマークとしての中間値が表示されることとなる。これにより、ユーザに対して、更に消費電力を落とすための一つの手法を提示することが可能となる。また、省エネルギー支援装置10から受信した中間値を制御に取り入れることにより、消費電力の更なる削減を期待することができる。 As a result, in the air conditioning system that is not selected by the selection unit 83, an intermediate value of the air conditioning system that is in an installation environment close to itself and that is operating with lower power consumption is obtained as a benchmark (index). It becomes possible to do. Then, in each air conditioning system that has received this intermediate value, the intermediate value as a benchmark is displayed on the display unit 45. Thereby, it is possible to present one method for further reducing power consumption to the user. Moreover, further reduction of power consumption can be expected by incorporating the intermediate value received from the energy saving support device 10 into the control.
 そして、上記のような処理が所定の時間間隔で繰り返し行われることにより、各空調システムにおいては、自身よりも省エネルギーの観点から効果的な運転を行っている空調システムの情報を継続的に得ることが可能となる。 Then, by repeatedly performing the processing as described above at predetermined time intervals, each air conditioning system continuously obtains information on the air conditioning system that is operating more effectively from the viewpoint of energy saving than itself. Is possible.
 以上説明したように、本実施形態に係る省エネルギー支援装置、空調システム、及び空調ネットワークシステムによれば、各空調システムの各種データを収集し、それらデータを元に設置環境の近似する空調システム同士をグループ化し、各グループの中で消費電力の最も小さい空調システムを選択し、その空調システムの中間値(例えば、低圧側圧力目標値等)を同じグループに属する空調システムにベンチマークとして送信する。これにより、各空調システムは、自身と近似する設置環境にあり、かつ、自身よりも省エネルギー化を達成している空調システムの情報、つまり、自身の省エネルギー化に貢献する有用な制御情報を得ることができる。 As described above, according to the energy saving support device, the air conditioning system, and the air conditioning network system according to the present embodiment, various types of data of each air conditioning system are collected, and the air conditioning systems that approximate the installation environment based on these data are collected. An air conditioning system with the lowest power consumption is selected from each group, and an intermediate value of the air conditioning system (for example, a low pressure side pressure target value) is transmitted as a benchmark to the air conditioning systems belonging to the same group. As a result, each air conditioning system is in an installation environment that is close to itself, and obtains information on the air conditioning system that has achieved energy savings compared to itself, that is, useful control information that contributes to its own energy saving. Can do.
 例えば、運転状況が似ている空調システム同士において、各空調システムにおける消費電力が異なる理由として、設定温度に応じて設定される低圧側圧力目標値の決め方が異なっている可能性がある。そのため、これらの値(中間値)を他の空調システムに提示することにより、省エネルギー化を図るためのヒントを与えることが可能となる。 For example, there is a possibility that the method of determining the low pressure side pressure target value set according to the set temperature is different as the reason why the power consumption in each air conditioning system is different between air conditioning systems with similar operating conditions. Therefore, it is possible to give hints for energy saving by presenting these values (intermediate values) to other air conditioning systems.
 また、上記中間値に加えて、保護制御を機能させるときに参照される閾値などについても送信することとしてもよい。保護制御を機能させるときに参照される閾値、例えば、圧縮機の緊急停止や保護制御に利用される低圧側圧力閾値や高圧側圧力閾値などによっても消費電力が変わってくるため、これらの値についても各空調システムに提示することにより、省エネルギー化へのヒントを与えることが可能となる。 Further, in addition to the intermediate value, a threshold value that is referred to when the protection control is operated may be transmitted. The power consumption also varies depending on the thresholds that are referred to when the protection control functions, for example, the low pressure side pressure threshold and the high pressure side pressure threshold that are used for emergency stop of the compressor and protection control. It is possible to give hints for energy saving by presenting each air conditioning system.
 なお、各空調システム1a~1nから各種データを省エネルギー支援装置10に送信するデータは、瞬時値でもよいし、所定期間における平均値(例えば、1時間における平均値)であってもよい。 It should be noted that the data transmitted from the air conditioning systems 1a to 1n to the energy saving support apparatus 10 may be instantaneous values or average values for a predetermined period (for example, average values for one hour).
〔第2実施形態〕
 次に、本発明の第2実施形態に係る省エネルギー支援装置、空調システム、及び空調ネットワークシステムについて説明する。
 本実施形態に係る空調ネットワークシステムにおいては、省エネルギー支援装置の構成が上述した第1実施形態と異なる。
 以下、本実施形態の省エネルギー支援装置について、上述した第1実施形態に係る空調ネットワークシステムと異なる点について主に説明する。
 図5は、本実施形態に係る省エネルギー支援装置の機能ブロック図である。図5に示すように、省エネルギー支援装置10aは、受信部81と、グループ作成部82と、選択部83´と、データ蓄積部85とを備えている。受信部81、グループ作成部82については、上述した第1実施形態と同様である。選択部83´は、同じグループに属する空調システムのうち、消費電力が最も大きな空調システムを選択し、その空調システムに関する受信データをデータ蓄積部85に蓄積する。これにより、各グループ内において最も消費電力が大きな空調システムに関するデータがデータ蓄積部85に蓄積されることとなる。
 そして、このように蓄積されたデータは、異常予兆データとして取り扱われ、分析されることにより、異常の予兆検知に利用されることとなる。
[Second Embodiment]
Next, an energy saving support device, an air conditioning system, and an air conditioning network system according to a second embodiment of the present invention will be described.
In the air-conditioning network system according to the present embodiment, the configuration of the energy saving support device is different from that of the first embodiment described above.
Hereinafter, the energy saving support device of the present embodiment will be described mainly with respect to differences from the above-described air conditioning network system according to the first embodiment.
FIG. 5 is a functional block diagram of the energy saving support apparatus according to the present embodiment. As illustrated in FIG. 5, the energy saving support device 10 a includes a reception unit 81, a group creation unit 82, a selection unit 83 ′, and a data storage unit 85. The receiving unit 81 and the group creating unit 82 are the same as those in the first embodiment described above. The selection unit 83 ′ selects an air conditioning system having the largest power consumption among the air conditioning systems belonging to the same group, and accumulates reception data regarding the air conditioning system in the data accumulation unit 85. As a result, data relating to the air conditioning system having the largest power consumption in each group is accumulated in the data accumulation unit 85.
The data accumulated in this manner is handled as abnormal sign data and analyzed, so that it can be used for detecting an abnormal sign.
 以上説明したように、本実施形態に係る省エネルギー支援装置、空調システム、及び空調ネットワークシステムによれば、受信部81が各空調システムの各種データを収集し、グループ作成部82がそれらデータを元に設置環境の近似する空調システム同士をグループ化し、選択部83´が各グループの中で消費電力が最も大きな空調システムを選択し、選択した空調システムの受信データを異常予兆データとしてデータ蓄積部85に蓄積する。これにより、データ蓄積部85に蓄積された膨大なデータを解析することにより、異常予兆の傾向を把握することができ、異常予兆検知に有効に利用されることが期待できる。 As described above, according to the energy saving support device, the air conditioning system, and the air conditioning network system according to the present embodiment, the reception unit 81 collects various data of each air conditioning system, and the group creation unit 82 uses the data as a basis. The air conditioning systems whose installation environments are approximated are grouped together, and the selection unit 83 ′ selects the air conditioning system having the largest power consumption in each group, and the received data of the selected air conditioning system is stored in the data storage unit 85 as abnormal sign data. accumulate. Thereby, by analyzing the enormous amount of data stored in the data storage unit 85, the tendency of the abnormality sign can be grasped, and it can be expected to be effectively used for detecting the abnormality sign.
 更に、選択部83´に選択された空調システムの受信データと、同じグループに属する他の空調システムの受信データ、あるいは、それらの平均データとをそれぞれ比較し、差が一定値を超えているデータのみをデータ蓄積部85に蓄積することとしてもよい。このように、例えば、他の空調システムとのデータと比べて明らかに違いがみられるデータのみを蓄積することにより、蓄積するデータ量を削減することができ、分析を容易にすることができるとともに、データ蓄積部85の容量増加を抑制することが可能となる。 Furthermore, the received data of the air conditioning system selected by the selection unit 83 ′ is compared with the received data of other air conditioning systems belonging to the same group, or the average data thereof, and the data whose difference exceeds a certain value. May be stored in the data storage unit 85. In this way, for example, by accumulating only data that is clearly different from data with other air conditioning systems, the amount of data to be accumulated can be reduced, and analysis can be facilitated. Thus, an increase in the capacity of the data storage unit 85 can be suppressed.
 なお、本実施形態に係る省エネルギー支援装置10aと、上述した第1実施形態に係る省エネルギー支援装置10とを組み合わせることとしてもよい。このように、第1実施形態に係る省エネルギー支援装置10に対して、選択部83´と、データ蓄積部85を組み合わせることにより、各空調システムに対して省エネルギーに貢献する情報を提供することができるとともに、異常予兆の分析を可能とすることができる。 In addition, it is good also as combining the energy saving assistance apparatus 10a which concerns on this embodiment, and the energy saving assistance apparatus 10 which concerns on 1st Embodiment mentioned above. As described above, by combining the selection unit 83 ′ and the data storage unit 85 with respect to the energy saving support device 10 according to the first embodiment, information contributing to energy saving can be provided to each air conditioning system. At the same time, it is possible to analyze abnormal signs.
〔第3実施形態〕
 次に、本発明の第3実施形態に係る省エネルギー支援装置、空調システム、及び空調ネットワークシステムについて説明する。
 上述した第1実施形態では、グループ作成部82が、設置環境の近似する空調システム同士をグループ化していたが、本実施形態では、グループ作成部が空調システムの構成の近似する空調システム同士をグループ化する点が異なる。
 以下、本実施形態に係る省エネルギー支援装置について、上述した第1実施形態に係る空調ネットワークシステムと異なる点について主に説明する。
[Third Embodiment]
Next, an energy saving support device, an air conditioning system, and an air conditioning network system according to a third embodiment of the present invention will be described.
In the first embodiment described above, the group creation unit 82 groups the air conditioning systems that approximate the installation environment. However, in this embodiment, the group creation unit groups the air conditioning systems that approximate the configuration of the air conditioning system. The point to be different.
Hereinafter, the energy saving support apparatus according to the present embodiment will be described mainly with respect to differences from the above-described air conditioning network system according to the first embodiment.
 図6は、本実施形態に係る省エネルギー支援装置10bの機能ブロック図である。図6に示すように、省エネルギー支援装置10bは、受信部81と、グループ作成部82´と、選択部83と、送信部84とを備えている。
 このような省エネルギー支援装置10bでは、各空調システムから送信された、構成に関するデータ(例えば、室外機出力(室外機が運転中に発揮している能力)及び室内機の運転台数と運転中の室内機の容量)、制御入力データ(外気温度、設定温度、室内吸い込み温度、低圧側圧力、高圧側圧力、膨張弁開度等)及び制御演算に関する中間値(例えば、低圧側圧力目標値等)が受信部81によって受信される。
FIG. 6 is a functional block diagram of the energy saving support device 10b according to the present embodiment. As illustrated in FIG. 6, the energy saving support device 10 b includes a reception unit 81, a group creation unit 82 ′, a selection unit 83, and a transmission unit 84.
In such an energy saving support apparatus 10b, data related to the configuration (for example, outdoor unit output (capacity that the outdoor unit is exhibiting during operation), the number of indoor units that are operated, and the indoor units that are being operated are transmitted from each air conditioning system. Capacity), control input data (outside temperature, set temperature, indoor suction temperature, low pressure side pressure, high pressure side pressure, expansion valve opening, etc.) and intermediate values related to control calculations (eg low pressure side pressure target value) Received by the receiver 81.
 続いて、グループ作成部82´は、受信部81によって受信された構成に関するデータを比較し、構成が同一の(または近似する)空調システムのグループ化を行う。例えば、室外機の出力が所定の範囲内であり、かつ、運転中の室内機容量の合計が所定の範囲内にある空調システム同士を同じグループとする。グループ化の条件についてはこれに限定されず、他の条件を用いてもよい。例えば、室外機の出力が所定の範囲内であり、室内機台数が同じであり、かつ、その容量が所定の範囲内にある空調システム同士を同じグループとする場合などが例示される。
 続いて、選択部83によって、同じグループに属する空調システムのうち、消費電力が最も小さい空調システムが選択される。そして、送信部84では、選択部83によって選択された空調システムの中間値(低圧側圧力目標値等)が、そのグループに属する他の空調システムに対して送信される。
Subsequently, the group creating unit 82 ′ compares the data regarding the configuration received by the receiving unit 81, and groups the air conditioning systems having the same configuration (or similar). For example, air conditioning systems in which the output of the outdoor unit is within a predetermined range and the total capacity of the indoor units being operated are within the predetermined range are set as the same group. The grouping conditions are not limited to this, and other conditions may be used. For example, the case where the output of an outdoor unit is within a predetermined range, the number of indoor units is the same, and the capacity of the outdoor units within a predetermined range is grouped together is exemplified.
Subsequently, the air conditioning system with the lowest power consumption is selected by the selection unit 83 from the air conditioning systems belonging to the same group. And in the transmission part 84, the intermediate value (low pressure side pressure target value etc.) of the air conditioning system selected by the selection part 83 is transmitted with respect to the other air conditioning system which belongs to the group.
 上記説明したように、本実施形態に係る省エネルギー支援装置、空調システム、及び空調ネットワークシステムによれば、システム構成に基づいて空調システムがグループ化されることとなる。これにより、各空調システムは、自身とほぼ同一規模であり、かつ、自身よりも省エネルギー化を達成している空調システムの情報、つまり、自身の省エネルギー化に貢献する有用な制御情報を得ることができる。 As described above, according to the energy saving support device, the air conditioning system, and the air conditioning network system according to the present embodiment, the air conditioning systems are grouped based on the system configuration. As a result, each air conditioning system can obtain information on an air conditioning system that is approximately the same scale as itself and that has achieved energy savings compared to itself, that is, useful control information that contributes to its own energy saving. it can.
〔第4実施形態〕
 次に、本発明の第4実施形態に係る省エネルギー支援装置、空調システム、及び空調ネットワークシステムについて説明する。
 本実施形態に係る空調ネットワークシステムにおいては、省エネルギー支援装置の構成が上述した第3実施形態と異なる。
 以下、本実施形態の省エネルギー支援装置10cについて、上述した第1実施形態に係る空調ネットワークシステムと異なる点について主に説明する。
 図7は、本実施形態に係る省エネルギー支援装置10cの機能ブロック図である。図7に示すように、省エネルギー支援装置10cは、受信部81と、グループ作成部82´と、選択部83´と、データ蓄積部85とを備えている。受信部81、グループ作成部82´については、上述した第3実施形態と同様である。選択部83´は、同じグループに属する空調システムのうち、消費電力が最も大きな空調システムを選択し、その空調システムに関する受信データをデータ蓄積部85に蓄積する。これにより、各グループ内において最も消費電力が大きな空調システムに関するデータがデータ蓄積部85に蓄積されることとなる。そして、このように蓄積されたデータは、異常予兆データとして取り扱われ、分析されることにより、異常の予兆検知に利用されることとなる。
 上述のように、第4実施形態に係る省エネルギー支援装置は、第2実施形態に係る選択部83´及びデータ蓄積部85と、第3実施形態に係るグループ作成部等とを組み合わせた構成とされている。
[Fourth Embodiment]
Next, an energy saving support device, an air conditioning system, and an air conditioning network system according to a fourth embodiment of the present invention will be described.
In the air-conditioning network system according to the present embodiment, the configuration of the energy saving support device is different from that of the third embodiment described above.
Hereinafter, the energy saving support device 10c of the present embodiment will be described mainly with respect to differences from the above-described air conditioning network system according to the first embodiment.
FIG. 7 is a functional block diagram of the energy saving support device 10c according to the present embodiment. As shown in FIG. 7, the energy saving support device 10 c includes a receiving unit 81, a group creating unit 82 ′, a selecting unit 83 ′, and a data storage unit 85. The receiving unit 81 and the group creating unit 82 ′ are the same as those in the third embodiment described above. The selection unit 83 ′ selects an air conditioning system having the largest power consumption among the air conditioning systems belonging to the same group, and accumulates reception data regarding the air conditioning system in the data accumulation unit 85. As a result, data relating to the air conditioning system having the largest power consumption in each group is accumulated in the data accumulation unit 85. The data accumulated in this manner is handled as abnormal sign data and analyzed, so that it can be used for detecting an abnormal sign.
As described above, the energy saving support device according to the fourth embodiment is configured by combining the selection unit 83 ′ and the data storage unit 85 according to the second embodiment with the group creation unit according to the third embodiment. ing.
 以上説明したように、本実施形態に係る省エネルギー支援装置、空調システム、及び空調ネットワークシステムによれば、受信部81が各空調システムの各種データを収集し、グループ作成部82´がそれらデータを元に機器構成の近似する空調システム同士をグループ化し、選択部83´が各グループの中で消費電力が最も大きな空調システムを選択し、選択した空調システムの受信データを異常予兆データとしてデータ蓄積部85に蓄積する。これにより、データ蓄積部85に蓄積された膨大なデータを解析することにより、異常予兆の傾向を把握することができ、異常予兆検知に有効に利用されることが期待できる。 As described above, according to the energy saving support device, the air conditioning system, and the air conditioning network system according to the present embodiment, the reception unit 81 collects various data of each air conditioning system, and the group creation unit 82 ′ collects the data based on the data. The air conditioning systems having similar device configurations are grouped together, and the selection unit 83 ′ selects the air conditioning system with the largest power consumption in each group, and the data storage unit 85 uses the received data of the selected air conditioning system as abnormal sign data. To accumulate. Thereby, by analyzing the enormous amount of data stored in the data storage unit 85, the tendency of the abnormality sign can be grasped, and it can be expected to be effectively used for detecting the abnormality sign.
 なお、本実施形態においては、更に、選択部83´に選択された空調システムの受信データと、同じグループに属する他の空調システムの受信データ、あるいは、それらの平均データとをそれぞれ比較し、差が一定値を超えているデータのみをデータ蓄積部85に蓄積することとしてもよい。このように、例えば、他の空調システムとのデータと比べて明らかに違いがみられるデータのみを蓄積することにより、蓄積するデータ量を削減することができ、分析を容易にすることができるとともに、データ蓄積部85の容量増加を抑制することが可能となる。 In the present embodiment, the received data of the air conditioning system selected by the selection unit 83 ′ is compared with the received data of other air conditioning systems belonging to the same group, or the average data thereof, and the difference is obtained. Only data with a value exceeding a certain value may be stored in the data storage unit 85. In this way, for example, by accumulating only data that is clearly different from data with other air conditioning systems, the amount of data to be accumulated can be reduced, and analysis can be facilitated. Thus, an increase in the capacity of the data storage unit 85 can be suppressed.
 また、本実施形態に係る省エネルギー支援装置10cと、上述した第3実施形態に係る省エネルギー支援装置10bとを組み合わせることとしてもよい。このように、第3実施形態に係る省エネルギー支援装置10bに対して、選択部83´と、データ蓄積部85を組み合わせることにより、各空調システムに対して省エネルギーに貢献する情報を提供することができるとともに、異常予兆の分析を可能とすることができる。 Further, the energy saving support device 10c according to the present embodiment may be combined with the energy saving support device 10b according to the third embodiment described above. As described above, by combining the selection unit 83 ′ and the data storage unit 85 with the energy saving support device 10b according to the third embodiment, information contributing to energy saving can be provided to each air conditioning system. At the same time, it is possible to analyze abnormal signs.
 以上、本発明の各実施形態について説明してきたが、本発明は、上述の実施形態のみに限定されるものではなく、種々変形実施が可能である。以下、その一例を例示する。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made. Hereinafter, an example thereof will be described.
 例えば、上述した各実施形態においては、選択部83、83´は消費電力の最も高い、または、最も低い空調システムを選択していたが、これに代えて、成績係数(COP)の最も高い、または、最も低い空調システムを選択することとしてもよい。このように、成績係数に基づいて空調システムを選択することによっても、省エネルギー化に貢献する情報や異常予兆の傾向をつかむのに有効なデータを得ることが可能である。 For example, in each embodiment mentioned above, although selection part 83, 83 'selected the air-conditioning system with the highest power consumption or the lowest, it replaces with this and has the highest coefficient of performance (COP). Alternatively, the lowest air conditioning system may be selected. As described above, by selecting an air conditioning system based on the coefficient of performance, it is possible to obtain data effective for grasping the information that contributes to energy saving and the tendency of abnormal signs.
 更に、グループ作成部82、82´においては、互いに、機器構成及び設置環境の面が互いに近似する空調システム同士をグループ化することとしてもよいし、更にこれらの条件に加えて、吸い込み温度と設定温度との差が近い空調システムをグループ化することとしてもよい。このように、条件を加えることにより、更に運転状態の近似する空調システム同士をグループ化することが可能となる。 Further, in the group creating units 82 and 82 ', air conditioning systems whose device configurations and installation environments are similar to each other may be grouped, and in addition to these conditions, the suction temperature and the setting are set. It is good also as grouping the air conditioning system with which the difference with temperature is near. In this way, by adding conditions, it becomes possible to group the air conditioning systems that are more similar in operation state.
 また、上記実施形態では、省エネルギー支援装置10、10bから各空調システムに対して中間値(例えば、低圧側圧力目標値等)、保護制御を機能させるときに参照される閾値等を送信する場合について例示していたが、これに加えて、グループ内で消費電力が最も低かった空調システムの入力データや設置環境データまたは機器構成データ等についても送信することとしてもよい。このように、より多くのデータを提供することで、これらの情報を取得した空調システムでは、より多くのデータに基づくより詳細な分析が可能となり、省エネルギー化を更に促進させるためにはどのような値をどのように代えたらよいのかを検討することが可能となる。 Moreover, in the said embodiment, about the case where the threshold value etc. which are referred when making an intermediate value (for example, low pressure side pressure target value etc.), protection control function with respect to each air-conditioning system from the energy saving assistance apparatus 10 and 10b. In addition to this, in addition to this, input data, installation environment data, equipment configuration data, and the like of the air conditioning system having the lowest power consumption in the group may be transmitted. In this way, by providing more data, the air conditioning system that acquired this information enables more detailed analysis based on more data, and what kind of measures can be taken to further promote energy savings? It is possible to examine how to change the value.
1a~1n 空調システム
3 制御装置
10、10a、10b、10c 省エネルギー支援装置
41、42 室内機制御部
43 室外機制御部
44 消費電力管理部
45 表示部
81 受信部
82、82´ グループ作成部
83、83´ 選択部
84 送信部
85 データ蓄積部
100 空調ネットワークシステム
A1,A2 室内機
B 室外機
1a to 1n Air conditioning system 3 Control device 10, 10a, 10b, 10c Energy saving support device 41, 42 Indoor unit control unit 43 Outdoor unit control unit 44 Power consumption management unit 45 Display unit 81 Reception unit 82, 82 'Group creation unit 83, 83 'selection part 84 transmission part 85 data storage part 100 air-conditioning network system A1, A2 indoor unit B outdoor unit

Claims (9)

  1.  複数の空調システムとネットワークを介して接続される省エネルギー支援装置であって、
     各前記空調システムの設置環境に関するデータ、制御演算における入力データ及び中間値、及び消費電力を受信する受信手段と、
     前記受信手段によって受信された設置環境に関するデータを用いて、設置環境が近似する前記空調システムをグループ化するグループ作成手段と、
     同じグループに属する前記空調システムの中で、最も消費電力が少ない、または、成績係数が最も高い空調システムを選択する選択手段と、
     前記選択手段によって選択された前記空調システムの中間値を同じグループに属する他の空調システムに対して送信する送信手段と
    を具備する省エネルギー支援装置。
    An energy-saving support device connected to a plurality of air conditioning systems via a network,
    Receiving means for receiving data relating to the installation environment of each air conditioning system, input data and intermediate values in control computation, and power consumption;
    Using data related to the installation environment received by the receiving means, group creation means for grouping the air conditioning systems that approximate the installation environment;
    A selection means for selecting an air conditioning system having the lowest power consumption or the highest coefficient of performance among the air conditioning systems belonging to the same group;
    An energy saving support apparatus comprising: a transmission unit configured to transmit an intermediate value of the air conditioning system selected by the selection unit to another air conditioning system belonging to the same group.
  2.  データを蓄積するデータ蓄積手段を更に備え、
     前記選択手段は、同じグループに属する前記空調システムの中で、消費電力が最も大きい、または、成績係数が最も低い空調システムを選択し、選択した空調システムに関して受信したデータの全てまたはその一部を前記データ蓄積手段に蓄積する請求項1に記載の省エネルギー支援装置。
    Further comprising data storage means for storing data;
    The selection means selects an air conditioning system having the largest power consumption or the lowest coefficient of performance among the air conditioning systems belonging to the same group, and selects all or part of the received data regarding the selected air conditioning system. The energy saving support device according to claim 1, wherein the energy saving support device stores the data in the data storage unit.
  3.  前記設置環境に関するデータは、外気温度、日射量、及び建物の向きの少なくとも一つを含む請求項1または請求項2に記載の省エネルギー支援装置。 The energy saving support device according to claim 1 or 2, wherein the data relating to the installation environment includes at least one of an outside air temperature, an amount of solar radiation, and a direction of a building.
  4.  複数の空調システムとネットワークを介して接続される省エネルギー支援装置であって、
     各前記空調システムの構成に関するデータ、制御演算における中間値、及び消費電力を受信する受信手段と、
     前記受信手段によって受信された構成に関するデータを用いて、構成が近似する前記空調システムをグループ化するグループ作成手段と、
     同じグループに属する前記空調システムの中で、最も消費電力が少ない、または、最も成績係数が高い空調システムを選択する選択手段と、
     前記選択手段によって選択された前記空調システムの中間制御値を同じグループに属する他の空調システムに対して送信する送信手段と
    を具備する省エネルギー支援装置。
    An energy-saving support device connected to a plurality of air conditioning systems via a network,
    Receiving means for receiving data relating to the configuration of each air conditioning system, an intermediate value in control calculation, and power consumption;
    Using data relating to the configuration received by the receiving means, group creating means for grouping the air conditioning systems whose configurations approximate;
    A selection means for selecting an air conditioning system having the lowest power consumption or the highest coefficient of performance among the air conditioning systems belonging to the same group;
    An energy saving support apparatus comprising: a transmission unit configured to transmit an intermediate control value of the air conditioning system selected by the selection unit to another air conditioning system belonging to the same group.
  5.  データを蓄積するデータ蓄積手段を更に備え、
     前記選択手段は、同じグループに属する前記空調システムの中で、消費電力が最も大きい、または、成績係数が最も低い空調システムを選択し、選択した空調システムに関して受信したデータの全てまたはその一部を前記データ蓄積手段に蓄積する請求項4に記載の省エネルギー支援装置。
    Further comprising data storage means for storing data;
    The selection means selects an air conditioning system having the largest power consumption or the lowest coefficient of performance among the air conditioning systems belonging to the same group, and selects all or part of the received data regarding the selected air conditioning system. The energy saving support device according to claim 4, wherein the energy saving support device stores the data in the data storage unit.
  6.  前記構成に関するデータは、室外機容量及び室内機の台数と該室内機の容量構成の少なくともいずれか一方を含む請求項4または請求項5に記載の省エネルギー支援装置。 6. The energy saving support apparatus according to claim 4, wherein the data relating to the configuration includes at least one of an outdoor unit capacity, the number of indoor units, and a capacity configuration of the indoor units.
  7.  省エネルギー支援装置とネットワークを介して接続される空調システムであって、
     通信手段を備える室外機と、
     通信手段を備える室内機と、
     通信媒体を介して前記室外機及び前記室内機と通信可能とされた制御装置と
    を備え、
     前記制御装置は、
     前記室外機を制御する室外機制御手段と、
     前記室内機を制御する室内機制御手段と、
     消費電力を管理する消費電力管理手段と、
     表示手段と
    を備え、
     前記室外機制御手段は、前記通信媒体を介して前記室外機の機器情報及びセンサ値を取得するとともに、該室外機に搭載される機器へ制御指令を出力し、
     前記室内機制御手段は、前記通信媒体を介して前記室内機の機器情報及びセンサ値を取得するとともに、該室内機に搭載される機器へ制御指令を出力し、
     前記消費電力管理手段は、各前記空調システムの設置環境に関するデータ、構成に関するデータ、制御演算における入力データ及び中間値、及び消費電力を省エネルギー支援装置に送信可能とされ、前記省エネルギー支援装置から中間値を取得した場合に、該中間値を指標値として前記表示手段に表示させる空調システム。
    An air conditioning system connected to an energy saving support device via a network,
    An outdoor unit equipped with a communication means;
    An indoor unit comprising a communication means;
    A control device capable of communicating with the outdoor unit and the indoor unit via a communication medium;
    The controller is
    Outdoor unit control means for controlling the outdoor unit;
    Indoor unit control means for controlling the indoor unit;
    Power consumption management means for managing power consumption;
    Display means,
    The outdoor unit control means obtains device information and sensor values of the outdoor unit via the communication medium, and outputs a control command to the device mounted on the outdoor unit,
    The indoor unit control means obtains device information and sensor values of the indoor unit via the communication medium, and outputs a control command to the device mounted on the indoor unit,
    The power consumption management means is capable of transmitting data relating to the installation environment of each air conditioning system, data relating to the configuration, input data and intermediate values in control calculation, and power consumption to the energy saving support device, and the intermediate values from the energy saving support device. The air conditioning system that displays the intermediate value on the display means as an index value when the value is acquired.
  8.  前記室外機制御手段及び前記室内機制御手段は、仮想化された制御部として前記制御装置に搭載されている請求項7に記載の空調システム。 The air conditioning system according to claim 7, wherein the outdoor unit control unit and the indoor unit control unit are mounted on the control device as a virtualized control unit.
  9.  請求項1から請求項6のいずれかに記載の省エネルギー支援装置と、
     請求項7または請求項8に記載の空調システムと
    を備える空調ネットワークシステム。
     
    The energy-saving support device according to any one of claims 1 to 6,
    An air conditioning network system comprising the air conditioning system according to claim 7 or 8.
PCT/JP2015/052375 2014-09-03 2015-01-28 Device that supports saving energy, air-conditioning system, and air-conditioning network system WO2016035353A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15837376.1A EP3171092B1 (en) 2014-09-03 2015-01-28 Device that supports saving energy, air-conditioning system, and air-conditioning network system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014179286A JP6552795B2 (en) 2014-09-03 2014-09-03 Energy saving support device, air conditioning system, and air conditioning network system
JP2014-179286 2014-09-03

Publications (1)

Publication Number Publication Date
WO2016035353A1 true WO2016035353A1 (en) 2016-03-10

Family

ID=55439428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052375 WO2016035353A1 (en) 2014-09-03 2015-01-28 Device that supports saving energy, air-conditioning system, and air-conditioning network system

Country Status (3)

Country Link
EP (1) EP3171092B1 (en)
JP (1) JP6552795B2 (en)
WO (1) WO2016035353A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6405228B2 (en) * 2014-12-24 2018-10-17 アズビル株式会社 Air conditioning control system and method
DE112016006763T5 (en) * 2016-04-19 2019-01-03 Mitsubishi Electric Corporation Air conditioning system, air conditioning control system and program
WO2019244225A1 (en) * 2018-06-19 2019-12-26 日立ジョンソンコントロールズ空調株式会社 State detection device for air conditioners, state detection method for air conditioners, and program
JPWO2022185411A1 (en) * 2021-03-02 2022-09-09

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140419A (en) * 2003-11-06 2005-06-02 Mitsubishi Heavy Ind Ltd Air-conditioning control and monitoring device, and building air-conditioning management system
JP2005180813A (en) * 2003-12-19 2005-07-07 Toshiba Kyaria Kk Air-conditioner data collection system
JP2008128526A (en) * 2006-11-17 2008-06-05 Matsushita Electric Works Ltd Environment control system
JP2008157533A (en) * 2006-12-22 2008-07-10 Daikin Ind Ltd Air-conditioning management device
JP2010112697A (en) * 2008-10-09 2010-05-20 Daikin Ind Ltd Energy saving support device
JP2010121798A (en) * 2008-11-17 2010-06-03 Mitsubishi Electric Corp Air conditioning equipment
JP2012052706A (en) * 2010-08-31 2012-03-15 Daikin Industries Ltd Equipment controller
JP2014016094A (en) * 2012-07-09 2014-01-30 Panasonic Corp Air-conditioning management device, air-conditioning management system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083589A (en) * 2001-09-06 2003-03-19 Toshiba Corp Air-conditioning control parameter setting system
JP4719538B2 (en) * 2004-10-12 2011-07-06 株式会社日立製作所 Air conditioning system
JP5233470B2 (en) * 2008-07-23 2013-07-10 ダイキン工業株式会社 Group management device and group management system
JP5903731B2 (en) * 2011-10-27 2016-04-13 株式会社インティ Air conditioning heat source system for buildings
CN104246384B (en) * 2012-03-26 2016-12-07 三菱电机株式会社 Air conditioner control device and air conditioner control method
JP2014074509A (en) * 2012-10-03 2014-04-24 Hitachi Appliances Inc Air conditioning system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140419A (en) * 2003-11-06 2005-06-02 Mitsubishi Heavy Ind Ltd Air-conditioning control and monitoring device, and building air-conditioning management system
JP2005180813A (en) * 2003-12-19 2005-07-07 Toshiba Kyaria Kk Air-conditioner data collection system
JP2008128526A (en) * 2006-11-17 2008-06-05 Matsushita Electric Works Ltd Environment control system
JP2008157533A (en) * 2006-12-22 2008-07-10 Daikin Ind Ltd Air-conditioning management device
JP2010112697A (en) * 2008-10-09 2010-05-20 Daikin Ind Ltd Energy saving support device
JP2010121798A (en) * 2008-11-17 2010-06-03 Mitsubishi Electric Corp Air conditioning equipment
JP2012052706A (en) * 2010-08-31 2012-03-15 Daikin Industries Ltd Equipment controller
JP2014016094A (en) * 2012-07-09 2014-01-30 Panasonic Corp Air-conditioning management device, air-conditioning management system

Also Published As

Publication number Publication date
EP3171092A1 (en) 2017-05-24
JP6552795B2 (en) 2019-07-31
EP3171092A4 (en) 2018-01-17
JP2016053442A (en) 2016-04-14
EP3171092B1 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
US8301763B2 (en) Air conditioning system
WO2016063552A1 (en) Control device for air conditioning system, air conditioning system, and method for determining anomaly of air conditioning system
JP6021951B2 (en) Air conditioning system
WO2016035353A1 (en) Device that supports saving energy, air-conditioning system, and air-conditioning network system
JP2008232531A (en) Remote performance monitoring device and method
US10274910B2 (en) Air-conditioning control system
JP2007327656A (en) Information management system
WO2020166447A1 (en) Apparatus management system
EP3193510B1 (en) Control device, system and control method therefor
WO2010041386A1 (en) Air conditioning device remote control system and remote control method
WO2016063550A1 (en) Control device for air conditioning system, air conditioning system, and method for determining anomaly of air conditioning system
JP5951270B2 (en) Air conditioner power consumption management control system, server device, client device, and air conditioner power consumption management control method
JP6733704B2 (en) Air conditioning management system and communication control device
US20220217009A1 (en) Device management system
KR20150110876A (en) System and method for remote integrated management in HVAC equipment
JP2016142492A (en) Air conditioning management device and air conditioning management method
WO2020235446A1 (en) Equipment maintenance system
JP6227218B2 (en) Air conditioning system controller
JP2012184919A (en) Monitoring device and monitoring method
JPWO2014041678A1 (en) Air conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837376

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015837376

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015837376

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE