WO2016035250A1 - Method for manufacturing polishing composition - Google Patents

Method for manufacturing polishing composition Download PDF

Info

Publication number
WO2016035250A1
WO2016035250A1 PCT/JP2015/003830 JP2015003830W WO2016035250A1 WO 2016035250 A1 WO2016035250 A1 WO 2016035250A1 JP 2015003830 W JP2015003830 W JP 2015003830W WO 2016035250 A1 WO2016035250 A1 WO 2016035250A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing composition
polishing
stock solution
water
less
Prior art date
Application number
PCT/JP2015/003830
Other languages
French (fr)
Japanese (ja)
Inventor
公亮 土屋
雄介 川▲崎▼
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Publication of WO2016035250A1 publication Critical patent/WO2016035250A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a method for producing a polishing composition. Specifically, the present invention mainly relates to a method for producing a polishing composition that is preferably used for polishing a semiconductor substrate such as a silicon wafer and other polishing objects.
  • Polishing using a polishing liquid is performed on the surface of materials such as metal, metalloid, nonmetal, and oxides thereof.
  • the surface of a silicon wafer used as a component of a semiconductor product is generally finished to a high-quality mirror surface through a lapping process (rough polishing process) and a polishing process (precision polishing process).
  • the polishing process typically includes a preliminary polishing process (preliminary polishing process) and a final polishing process (final polishing process).
  • This type of polishing composition is in a concentrated form (that is, a concentrated liquid for polishing liquid) before being supplied to the object to be polished from the viewpoint of convenience, cost reduction, etc. during manufacture, distribution, storage, etc. (Hereinafter also referred to as “stock solution”).
  • a concentrated solution prepared as a stock solution is diluted with water or the like and then used as a polishing solution for polishing.
  • Patent Documents 1 to 3 are listed as technical documents disclosing this type of prior art.
  • JP 2014-90100 A Japanese Patent Laid-Open No. 2014-41978 JP 2013-34026 A
  • the above-mentioned polishing composition stock solution typically contains components such as abrasive grains and a water-soluble polymer at a higher concentration than ordinary polishing liquids. Therefore, depending on the component concentration (concentration degree) of the stock solution, the component tends to aggregate, and there is a possibility that good dispersion stability (stability of the dispersion state of the components in the stock solution) may not be obtained. For example, a stock solution used after diluting at a high magnification tends to have a high concentration, so that the dispersion stability tends to be significantly reduced. In addition, since the component concentration basically decreases in conjunction with the dilution ratio, there is a possibility that the role that the component should play is not fully exhibited depending on the degree of dilution.
  • the dilution ratio of the stock solution is usually limited within a reasonable range.
  • the pH can also vary depending on the dilution method (eg dilution factor). The pH can be a factor affecting dispersion stability in the stock solution.
  • CMP chemical mechanical polishing
  • Polishing satisfying the dispersion stability in the stock solution and the polishing performance after dilution for example, the surface quality such as polishing rate and haze
  • the present condition is that the composition for use is not yet realized.
  • the present invention was created in view of the above circumstances, and is a polishing composition that has good dispersion stability when used as a stock solution and that can achieve good surface quality even when diluted at a high magnification, for example. It aims at providing the manufacturing method of a thing.
  • a method for producing a polishing composition includes a step of diluting a polishing composition stock solution containing abrasive grains, a basic compound, a water-soluble polymer, and water so that the pH change is 0.15 or more.
  • the content (% by weight) of the water-soluble polymer in the composition stock solution, and the pH A is the pH value of the polishing composition stock solution.
  • the molar concentration of the water-soluble polymer in the polishing composition after dilution is 7.0 ⁇ 10 ⁇ 8 mol / L or more.
  • the index A is limited to a predetermined value or less as described above.
  • the index A being not more than a predetermined value means that the upper limit of the product of the content of abrasive grains and the content of water-soluble polymer is not more than a predetermined value in relation to the stock solution pH value that can contribute to dispersibility. It means that it is limited to. Briefly, it means that the content of abrasive grains and water-soluble polymer that can be coagulation factors is limited under a predetermined pH condition or more. Since the index A having such a technical meaning is limited to a predetermined value or less, components such as abrasive grains and water-soluble polymers can maintain a stable dispersion state in the stock solution.
  • the number of molecules of the water-soluble polymer after dilution is maintained at a predetermined value or more despite the above quantitative limitations before dilution. Therefore, even in an embodiment in which dilution (dilution in which the pH change becomes a predetermined value or more) in which the state change between the undiluted undiluted solution and the composition after dilution becomes significant (preferably a change in pH), the presence of the water-soluble polymer allows good surface quality (typical Specifically, a low haze surface) can be realized. Therefore, according to the production method of the present invention, it is possible to realize a polishing composition that has good dispersion stability when used as a stock solution and that can realize good surface quality even when diluted at a high magnification, for example.
  • the dilution step is performed using a liquid that does not substantially contain a basic compound.
  • a dilution method it is possible to preferably carry out dilution such that the pH change becomes a predetermined value or more.
  • the dilution step is a step of diluting the polishing composition stock solution so that the pH change is 0.3 or more.
  • the technique disclosed herein it is possible to realize good surface stability after dilution and good dispersion stability in the case of a stock solution.
  • a polishing composition is preferably realized.
  • the dilution step is a step of diluting the polishing composition stock solution 50 times or more on a volume basis.
  • the stock solution diluted and used at such a high magnification tends to have a high concentration of the components contained therein, so that the components are likely to aggregate and it is difficult to obtain good dispersion stability.
  • the stock solution can exhibit good dispersion stability by designing the stock solution composition so that the index A is a predetermined value or less.
  • the pH change before and after dilution also increases, and it tends to be difficult to achieve both dispersion stability before dilution and surface quality by the composition after dilution.
  • the surface concentration (typically low haze surface) is excellent. This can be realized particularly preferably. Achieving a desired effect (for example, compatibility between polishing rate and surface quality) with the polishing liquid diluted at the above magnification is particularly advantageous from the viewpoint of cost reduction, and the practical advantage is great.
  • the diluted polishing composition has a pH of 8-12.
  • a good polishing rate can be preferably realized.
  • the pH change due to dilution is a change in which the pH decreases.
  • silica abrasive grains are used as the abrasive grains. According to the technique disclosed herein, in the embodiment using silica abrasive grains as the abrasive grains, both the dispersion stability of the stock solution and the surface quality after polishing are preferably realized.
  • the water-soluble polymer has a weight average molecular weight of 90 ⁇ 10 4 or less.
  • Mw weight average molecular weight of the water-soluble polymer
  • the dispersion stability of the stock solution is further improved, and good surface quality (typically haze reduction) is easily obtained.
  • the polishing composition is used for polishing a silicon wafer.
  • the polishing composition produced by the method disclosed herein is preferably used for polishing a silicon wafer that has undergone lapping, for example. Among these, it is particularly preferably used for final polishing of a silicon wafer.
  • stock solution used by diluting so that pH change may be set to 0.15 or more contains abrasive grains, a basic compound, a water-soluble polymer and water.
  • A [CA ⁇ CP] / pHC (in the relational expression, CA is the content (% by weight) of abrasive grains in the polishing composition stock solution, and CP is water-soluble in the polishing composition stock solution).
  • Polymer A content (% by weight), and pHC is the pH value of the polishing composition stock solution.);
  • the molar concentration of the water-soluble polymer is 4.3 ⁇ 10 ⁇ 6 mol / L or more.
  • the polishing composition stock solution having the above structure exhibits good dispersion stability because the index A is limited to a predetermined value or less.
  • the polishing composition stock solution contains a sufficient amount of water-soluble polymer even after dilution, according to polishing using the diluted composition, good surface quality (typically Can realize a low haze surface).
  • the polishing composition stock solution in the technology disclosed herein contains abrasive grains, a basic compound, a water-soluble polymer, and water. Moreover, various additives can be contained as needed. Similarly, the polishing composition prepared by diluting the stock solution contains abrasive grains, a basic compound, a water-soluble polymer, and water, and may contain various additives as optional components.
  • the material and properties of the abrasive grains contained in the polishing composition stock solution and the polishing composition diluted with the stock solution are not particularly limited, and are appropriately selected according to the purpose of use, use mode, and the like. be able to.
  • the abrasive grains include inorganic particles, organic particles, and organic-inorganic composite particles.
  • the inorganic particles include silica particles, alumina particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese dioxide particles, zinc oxide particles, oxide particles such as bengara particles; Examples thereof include nitride particles such as silicon nitride particles and boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; diamond particles; carbonates such as calcium carbonate and barium carbonate.
  • Specific examples of the organic particles include polymethyl methacrylate (PMMA) particles and poly (meth) acrylic acid particles (here, (meth) acrylic acid is a generic term for acrylic acid and methacrylic acid). And polyacrylonitrile particles.
  • PMMA polymethyl methacrylate
  • acrylic acid is a generic term for acrylic acid and methacrylic acid
  • polyacrylonitrile particles Such an abrasive grain may be used individually by 1 type, and may be used in combination of 2 or more type.
  • abrasive inorganic particles are preferable, and particles made of metal or metalloid oxide are particularly preferable.
  • particularly preferable abrasive grains include silica particles.
  • Silica particles can exhibit excellent dispersibility in high pH stock solutions.
  • silica particles when applying the technique disclosed herein to a polishing composition that can be used for polishing a silicon wafer, it is particularly preferable to use silica particles as abrasive grains. The reason is as follows. That is, when the object to be polished is a silicon wafer, if silica particles composed of the same elements and oxygen atoms as the object to be polished are used as abrasive grains, no metal or metalloid residue different from silicon is generated after polishing.
  • a polishing composition containing only silica particles as abrasive grains is exemplified as a preferred polishing composition from such a viewpoint.
  • Silica has a property that it can be easily obtained in high purity. This is also cited as the reason why silica particles are preferable as the abrasive grains. Specific examples of the silica particles include colloidal silica, fumed silica, precipitated silica and the like.
  • colloidal silica and fumed silica are preferable as silica particles from the viewpoint that scratches are hardly generated on the surface of the object to be polished and a surface having a lower haze can be realized.
  • colloidal silica is preferred.
  • colloidal silica can be preferably employed as the abrasive grains of the polishing composition used for polishing (particularly final polishing) of a silicon wafer.
  • the true specific gravity of silica constituting the silica particles is preferably 1.5 or more, more preferably 1.6 or more, and even more preferably 1.7 or more.
  • the polishing rate can be improved when polishing an object to be polished (for example, a silicon wafer).
  • silica particles having a true specific gravity of 2.2 or less are preferable.
  • a measured value by a liquid substitution method using ethanol as a substitution liquid can be adopted.
  • the abrasive grains in the technology disclosed herein may be in the form of primary particles, or may be in the form of secondary particles in which a plurality of primary particles are aggregated. Further, abrasive grains in the form of primary particles and abrasive grains in the form of secondary particles may be mixed. In a preferred embodiment, at least some of the abrasive grains are in the form of secondary particles.
  • the average primary particle diameter of the abrasive grains is not particularly limited, but is preferably 5 nm or more, more preferably 10 nm or more from the viewpoint of polishing efficiency and the like. From the viewpoint of obtaining a higher polishing effect (for example, effects such as haze reduction and defect removal), the average primary particle size is preferably 15 nm or more, and more preferably 20 nm or more (for example, more than 20 nm). Further, from the viewpoint that a smoother surface can be easily obtained, the average primary particle diameter of the abrasive grains is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 40 nm or less.
  • the average primary particle diameter is typically 35 nm or less (typically Abrasive grains of less than 35 nm, preferably 32 nm or less, such as less than 30 nm may be used.
  • the measurement of the specific surface area of the abrasive grains can be performed using, for example, a surface area measuring device manufactured by Micromerex, Inc., trade name “FlowSorb II 2300”.
  • the average secondary particle diameter of the abrasive grains is not particularly limited, but is preferably 10 nm or more, more preferably 20 nm or more from the viewpoint of the polishing rate and the like. From the viewpoint of obtaining a higher polishing effect, the average secondary particle diameter is preferably 30 nm or more, more preferably 35 nm or more, and further preferably 40 nm or more (for example, more than 40 nm). Further, from the viewpoint of obtaining a surface with higher smoothness, the average secondary particle diameter of the abrasive grains is suitably 200 nm or less, preferably 150 nm or less, more preferably 100 nm or less.
  • the average secondary particle diameter of the abrasive grains is measured, for example, as a volume average particle diameter (volume-based arithmetic average diameter; Mv) by a dynamic light scattering method using a model “UPA-UT151” manufactured by Nikkiso Co., Ltd. Can do.
  • the average secondary particle diameter D2 of the abrasive grains is generally equal to or greater than the average primary particle diameter D1 of the abrasive grains (D2 / D1 ⁇ 1), and typically larger than D1 (D2 / D1> 1).
  • the D2 / D1 of the abrasive grains is usually suitably in the range of 1.2 to 3, 1.5 to A range of 2.5 is preferable, and a range of 1.7 to 2.3 (for example, 1.8 to 2.2) is more preferable.
  • the shape (outer shape) of the abrasive grains may be spherical or non-spherical.
  • specific examples of non-spherical abrasive grains include a peanut shape (that is, a peanut shell shape), a bowl shape, a confetti shape, and a rugby ball shape.
  • abrasive grains in which most of the abrasive grains have a peanut shape can be preferably employed.
  • the average value of the major axis / minor axis ratio (average aspect ratio) of the primary particles of the abrasive grains is in principle 1.0 or more, preferably 1.05 or more, more preferably 1. 1 or more. Higher polishing rates can be achieved by increasing the average aspect ratio of the abrasive grains.
  • the average aspect ratio of the abrasive grains is preferably 3.0 or less, more preferably 2.0 or less, and still more preferably 1.5 or less, from the viewpoint of reducing scratches.
  • the shape (outer shape) and average aspect ratio of the abrasive grains can be grasped by, for example, observation with an electron microscope.
  • a predetermined number for example, 200
  • SEM scanning electron microscope
  • the value obtained by dividing the length of the long side (major axis value) by the length of the short side (minor axis value) is the major axis / minor axis ratio (aspect ratio).
  • An average aspect ratio can be obtained by arithmetically averaging the aspect ratios of the predetermined number of particles.
  • the polishing composition stock solution and the polishing composition diluted with the stock solution contain a basic compound.
  • the basic compound refers to a compound having a function of dissolving in water and increasing the pH of an aqueous solution.
  • the basic compound functions to chemically polish the surface to be polished, and can contribute to the improvement of the polishing rate.
  • the basic compound can be useful for improving the dispersion stability of the polishing composition (particularly the polishing composition stock solution).
  • an organic or inorganic basic compound containing nitrogen, an alkali metal or alkaline earth metal hydroxide, various carbonates or hydrogencarbonates, and the like can be used.
  • alkali metal hydroxide, quaternary ammonium hydroxide or a salt thereof, ammonia, amine and the like can be mentioned.
  • Specific examples of the alkali metal hydroxide include potassium hydroxide and sodium hydroxide.
  • Specific examples of the carbonate or bicarbonate include ammonium bicarbonate, ammonium carbonate, potassium bicarbonate, potassium carbonate, sodium bicarbonate, sodium carbonate and the like.
  • quaternary ammonium hydroxide or a salt thereof examples include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide and the like.
  • amines include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, monoethanolamine, N- ( ⁇ -aminoethyl) ethanolamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, anhydrous piperazine , Piperazine hexahydrate, 1- (2-aminoethyl) piperazine, N-methylpiperazine, guanidine, azoles such as imidazole and triazole, and the like.
  • Such basic compounds can be used singly or in combination of two or more.
  • ammonia and ammonium salts for example, quaternary ammonium salts such as tetramethylammonium hydroxide and tetraethylammonium hydroxide, ammonium hydrogencarbonate, ammonium carbonate, etc.
  • examples include potassium hydroxide, sodium hydroxide, potassium bicarbonate, potassium carbonate, sodium bicarbonate and sodium carbonate.
  • ammonia, ammonium salts such as tetramethylammonium hydroxide and tetraethylammonium hydroxide, potassium hydroxide and sodium hydroxide are preferred. More preferred are ammonia and ammonium salts such as tetramethylammonium hydroxide.
  • a particularly preferred basic compound is ammonia.
  • the type of the water-soluble polymer contained in the polishing composition stock solution disclosed herein and the polishing composition diluted with the stock solution is not particularly limited, and is appropriately selected from water-soluble polymers known in the field of polishing compositions. You can choose.
  • a water-soluble polymer can be used individually by 1 type or in combination of 2 or more types.
  • the water-soluble polymer may have at least one functional group selected from a cationic group, an anionic group and a nonionic group in the molecule.
  • the water-soluble polymer may have, for example, a hydroxyl group, a carboxyl group, an acyloxy group, a sulfo group, a primary amide structure, a heterocyclic structure, a vinyl structure, or a polyoxyalkylene structure in the molecule. From the standpoint of reducing aggregates and improving detergency, a nonionic polymer can be preferably used as the water-soluble polymer.
  • water-soluble polymers examples include cellulose derivatives, starch derivatives, polymers containing oxyalkylene units, polymers containing nitrogen atoms, and polyvinyl alcohol. Of these, cellulose derivatives and starch derivatives are preferable, and cellulose derivatives are more preferable.
  • Cellulose derivatives are polymers containing ⁇ -glucose units as the main repeating unit.
  • Specific examples of the cellulose derivative include hydroxyethyl cellulose (HEC), hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl cellulose and the like. Of these, HEC is preferable.
  • Starch derivatives are polymers that contain ⁇ -glucose units as the main repeating unit. Specific examples of starch derivatives include pregelatinized starch, pullulan, carboxymethyl starch, and cyclodextrin. Of these, pullulan is preferred.
  • Polymers containing oxyalkylene units include polyethylene oxide (PEO), block copolymers of ethylene oxide (EO) and propylene oxide (PO) or butylene oxide (BO), and random copolymerization of EO and PO or BO. Examples include coalescence. Among these, a block copolymer of EO and PO or a random copolymer of EO and PO is preferable.
  • the block copolymer of EO and PO may be a diblock body, a triblock body or the like including a PEO block and a polypropylene oxide (PPO) block. Examples of the triblock body include a PEO-PPO-PEO type triblock body and a PPO-PEO-PPO type triblock body.
  • a PEO-PPO-PEO type triblock body is more preferable.
  • the molar ratio (EO / PO) of EO and PO constituting the copolymer is determined from the viewpoint of solubility in water, detergency, and the like. It is preferably larger than 1, more preferably 2 or more, and further preferably 3 or more (for example, 5 or more).
  • both a polymer containing a nitrogen atom in the main chain and a polymer having a nitrogen atom in a side chain functional group (pendant group) can be used.
  • the polymer containing a nitrogen atom in the main chain include homopolymers and copolymers of N-acylalkylenimine type monomers.
  • Specific examples of the N-acylalkyleneimine monomer include N-acetylethyleneimine, N-propionylethyleneimine and the like.
  • Examples of the polymer having a nitrogen atom in the pendant group include a polymer containing an N-vinyl type monomer unit. For example, homopolymers and copolymers of N-vinylpyrrolidone can be employed.
  • the saponification degree of the polyvinyl alcohol is not particularly limited.
  • the molecular weight of the water-soluble polymer is not particularly limited.
  • the weight average molecular weight (Mw) of the water-soluble polymer can be, for example, 200 ⁇ 10 4 or less, and is usually 150 ⁇ 10 4 or less (typically 100 ⁇ 10 4 or less).
  • the Mw is preferably 90 ⁇ 10 4 or less, more preferably 80 ⁇ 10 4 or less, and further preferably 60 ⁇ 10 4 or less.
  • Mw is suitably 1 ⁇ 10 4 or more, more preferably 10 ⁇ 10 4 or more, and further preferably 20 ⁇ 10 4 or more.
  • the above Mw can be particularly preferably applied to a cellulose derivative (for example, HEC).
  • the relationship between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the water-soluble polymer is not particularly limited. From the viewpoint of preventing the occurrence of aggregates, for example, the molecular weight distribution (Mw / Mn) is preferably 10.0 or less, and more preferably 7.0 or less.
  • Mw and Mn of the water-soluble polymer values based on aqueous gel permeation chromatography (GPC) (aqueous, polyethylene oxide equivalent) can be adopted.
  • water As the water constituting the polishing composition stock solution disclosed herein and the polishing composition diluted with the stock solution, ion-exchanged water (deionized water), pure water, ultrapure water, distilled water, etc. are preferably used. Can do.
  • the water to be used preferably has, for example, a total content of transition metal ions of 100 ppb or less in order to avoid as much as possible the action of other components contained in the polishing composition.
  • the purity of water can be increased by operations such as removal of impurity ions with an ion exchange resin, removal of foreign matter with a filter, distillation, and the like.
  • the polishing composition stock solution disclosed herein and the polishing composition diluted with the stock solution may further contain an organic solvent (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water, if necessary. Good.
  • an organic solvent lower alcohol, lower ketone, etc.
  • 90% by volume or more of the solvent contained in the polishing composition is preferably water, and more preferably 95% by volume or more (typically 99 to 100% by volume) is water.
  • aqueous solvent may be used as a general term including the solvent and water.
  • polishing composition stock solution disclosed here and the polishing composition diluted with the stock solution are surfactants, chelating agents, organic acids, organic acid salts, inorganic acids as long as the effects of the present invention are not significantly hindered.
  • Known additives that can be used in polishing compositions typically, polishing compositions used in silicon wafer polishing processes), such as inorganic acid salts, preservatives, and fungicides, as necessary. It may be further contained.
  • a surfactant typically a water-soluble organic compound having a molecular weight of less than 1 ⁇ 10 4
  • a surfactant that can be included as needed can contribute to an improvement in dispersion stability.
  • an anionic or nonionic surfactant can be preferably used. From the viewpoint of low foaming property and ease of pH adjustment, a nonionic surfactant is more preferable.
  • oxyalkylene polymers such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol; polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene alkylamine, polyoxyethylene fatty acid ester, polyoxyethylene glyceryl ether fatty acid
  • Nonionic surfactants such as esters, polyoxyalkylene adducts such as polyoxyethylene sorbitan fatty acid esters; copolymers of plural types of oxyalkylene (diblock type, triblock type, random type, alternating type); It is done.
  • Surfactant can be used individually by 1 type or in combination of 2 or more types.
  • the molecular weight of the surfactant is typically less than 1 ⁇ 10 4 and is preferably 9500 or less from the viewpoints of filterability of the polishing composition, cleanability of the object to be polished, and the like.
  • the molecular weight of the surfactant is typically 200 or more, preferably 250 or more, and more preferably 300 or more (for example, 500 or more) from the viewpoint of the haze reduction effect and the like.
  • the molecular weight of the surfactant may be a weight average molecular weight (Mw) determined by GPC (aqueous, polyethylene glycol equivalent) or a molecular weight calculated from a chemical formula.
  • Mw weight average molecular weight
  • the chelating agent that can be contained as an optional component functions to suppress contamination of the object to be polished by metal impurities by forming and capturing metal ions and complex ions that can be contained in the polishing composition.
  • chelating agents include aminocarboxylic acid chelating agents and organic phosphonic acid chelating agents.
  • aminocarboxylic acid chelating agents include ethylenediaminetetraacetic acid, ethylenediaminetetraacetic acid sodium, nitrilotriacetic acid, nitrilotriacetic acid sodium, nitrilotriacetic acid ammonium, hydroxyethylethylenediaminetriacetic acid, hydroxyethylethylenediamine sodium triacetate, diethylenetriaminepentaacetic acid Diethylenetriamine sodium pentaacetate, triethylenetetramine hexaacetic acid and sodium triethylenetetramine hexaacetate.
  • organic phosphonic acid chelating agents examples include 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic).
  • organic phosphonic acid-based chelating agents are more preferable, and aminotri (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), and diethylenetriaminepenta (methylenephosphonic acid) are particularly preferable.
  • a chelating agent can be used individually by 1 type or in combination of 2 or more types.
  • the technique disclosed here can be implemented in the aspect using the polishing composition which does not contain a chelating agent substantially.
  • organic acids include fatty acids such as formic acid, acetic acid and propionic acid, aromatic carboxylic acids such as benzoic acid and phthalic acid, citric acid, oxalic acid, tartaric acid, malic acid, maleic acid, fumaric acid, succinic acid, organic Examples include sulfonic acid and organic phosphonic acid.
  • organic acid salts include alkali metal salts (sodium salts, potassium salts, etc.) and ammonium salts of organic acids.
  • inorganic acids include sulfuric acid, nitric acid, hydrochloric acid, carbonic acid and the like.
  • inorganic acid salts include alkali metal salts (sodium salts, potassium salts, etc.) and ammonium salts of inorganic acids.
  • An organic acid and its salt, and an inorganic acid and its salt can be used individually by 1 type or in combination of 2 or more types.
  • antiseptics and fungicides include isothiazoline compounds, paraoxybenzoates, phenoxyethanol and the like.
  • the polishing composition stock solution disclosed here and the polishing composition diluted with the stock solution are substantially free of an oxidizing agent.
  • an oxidizing agent is contained in the polishing composition, the composition is supplied to an object to be polished (for example, a silicon wafer), whereby the surface of the object to be polished is oxidized to produce an oxide film. This is because the polishing rate may decrease.
  • the oxidizing agent herein include hydrogen peroxide (H 2 O 2 ), sodium persulfate, ammonium persulfate, sodium dichloroisocyanurate, and the like.
  • that polishing composition does not contain an oxidizing agent substantially means not containing an oxidizing agent at least intentionally.
  • the polishing composition disclosed herein can be produced by diluting a polishing composition stock solution containing the above-mentioned abrasive grains, basic compound, water-soluble polymer and water, and optionally containing optional components.
  • the manufacturing method of the polishing composition disclosed here includes a step of diluting the polishing composition stock solution (dilution step).
  • the polishing composition stock solution disclosed herein is defined as a product obtained by concentrating a polishing composition (polishing liquid) supplied to an object to be polished (ie, a concentrated liquid of the polishing liquid).
  • the concentrated composition stock solution in such a concentrated form is advantageous from the viewpoints of convenience, cost reduction, etc. during production, distribution, storage, and the like.
  • stock solution for use is 0.8 or less. As a result, the polishing composition stock solution exhibits good dispersion stability.
  • the index A obtained from the above relational expression is the stock solution that contributes to the dispersion of the product [CA ⁇ CP] of the abrasive content CA and the water-soluble polymer content CP that contributes to aggregation in the polishing composition stock solution. It is a value divided by pH (pHC).
  • This index A is suitable as a criterion for determining the dispersion stability of components (typically abrasive grains and water-soluble polymers) in the stock solution. When the index A is not more than a predetermined value, the stock solution is well dispersed. Shows stability.
  • the index A is more preferably 0.6 or less (for example, 0.45 or less, typically 0.25 or less) from the viewpoint of improving dispersion stability.
  • the lower limit of the index A is greater than 0, and is usually 0.05 or more (for example, 0.1 or more) from the viewpoint of polishing performance or the like.
  • the content of abrasive grains in the polishing composition stock solution disclosed herein can typically be set within a range where the index A is a predetermined value or less.
  • the upper limit of the content of abrasive grains in the stock solution can be, for example, 50% by weight or less.
  • the content of abrasive grains is usually suitably 45% by weight or less (eg 40% by weight or less, typically 30% by weight or less), Preferably it is 25 weight% or less, More preferably, it is 20 weight% or less (for example, 15 weight% or less).
  • the content of the abrasive grains in the stock solution is usually 0.5% by weight or more (for example, 1% by weight) from the viewpoints of the abrasive concentration of the polishing composition after dilution, convenience of production, distribution, storage and the like. As mentioned above, it is suitable that it is typically 3% by weight or more), preferably 5% by weight or more (for example, 9% by weight or more).
  • the content of the water-soluble polymer in the polishing composition stock solution disclosed herein can be typically set within a range in which the index A is a predetermined value or less, as in the case of the content of abrasive grains. .
  • the upper limit of the content of the water-soluble polymer in the stock solution can be, for example, 5% by weight or less.
  • the content of the water-soluble polymer should be 3% by weight or less (eg, 1% by weight or less, typically 0.75% by weight or less). preferable.
  • the content of the water-soluble polymer in the stock solution is 0.001% by weight or more (for example, 0.01% by weight) from the viewpoints of the water-soluble polymer molar concentration in the diluted polishing composition, surface quality improvement (for example, haze reduction), and the like. % Or more), and preferably 0.1% by weight or more (typically 0.2% by weight or more).
  • the molar concentration of the water-soluble polymer in the polishing composition stock solution disclosed herein can typically be set so that the molar concentration of the water-soluble polymer in the polishing composition after dilution is a predetermined value or more. Specifically, the molar concentration of the water-soluble polymer in the polishing composition stock solution is higher than 7.0 ⁇ 10 ⁇ 8 mol / L.
  • the molar concentration is 1.0 ⁇ 10 ⁇ 7 mol / L or more (for example, 1.0 ⁇ 10 ⁇ 6 mol / L or more, typically 3.0 ⁇ 10 ⁇ 6 mol / L or more).
  • the molar concentration (mol / L) of the water-soluble polymer is the weight (g) of the water-soluble polymer contained in 1 liter of the polishing composition (including the stock solution and the diluted polishing solution). Is divided by the molecular weight (typically Mw) of the water-soluble polymer.
  • the content of the basic compound in the polishing composition stock solution disclosed herein is, for example, 0.1% by weight or more (typically) from the viewpoint of dispersion stability, improvement of the polishing rate by the polishing composition after dilution, and the like. Is preferably 0.3% by weight or more), preferably 0.5% by weight or more, more preferably 0.6% by weight or more, and even more preferably 0.8% by weight or more (eg, 1.0% by weight). % Or more, typically 1.2% by weight or more).
  • the abrasive concentration after dilution is relatively low, and the processing force by the abrasive may tend to decrease.
  • the upper limit of the content of the basic compound in the stock solution is suitably 5% by weight or less, preferably 3% by weight or less (eg, 2% by weight or less, typically from the viewpoint of storage stability, surface quality, etc. Specifically, it is 1.5% by weight or less).
  • ammonia is used as the basic compound, the above content is particularly significant.
  • the index B is suitably 6.5 or less (for example, 6.2 or less), more preferably 6.0 or less, and even more preferably 5.0 or less from the viewpoint of improving dispersion stability. Especially preferably, it is 4.5 or less (for example, 4.0 or less, typically 3.8 or less).
  • the lower limit of the index B is larger than 0, and is usually 1.0 or more (typically 1.5 or more, for example, 2.5 or more) from the viewpoint of polishing performance or the like.
  • the index B can be particularly preferably used as a criterion for determining the dispersion stability of a polishing composition stock solution when the basic compound is ammonia or an ammonium salt (typically ammonia).
  • the ratio (CA / CB) of the abrasive content CA (wt%) to the basic compound content CB (wt%) in the polishing composition stock solution is less than 25.
  • the dispersibility of the abrasive grains for example, silica abrasive grains
  • a polishing rate can be preferably realized.
  • the ratio (CA / CB) is suitably 24 or less (for example, 20 or less), more preferably 15 or less, still more preferably 12 or less, and particularly preferably 10 or less (for example, 9 or less, Typically 8 or less).
  • the lower limit of the ratio (CA / CB) is usually larger than 1 and about 3 or more (for example, 5 or more, typically 6 or more) from the viewpoint of performing well-balanced CMP polishing. .
  • the value of the ratio (CA / CB) can be particularly preferably applied when the basic compound is ammonia or an ammonium salt (typically ammonia).
  • the pH of the polishing composition stock solution disclosed herein is usually suitably 8.0 or more (for example, 8.5 or more, typically 9.0 or more), preferably 9.0 or more. More preferably 9.5 or more, still more preferably 10.0 or more (typically 10.5 or more, for example 10.7 or more).
  • pH is increased, the index A is decreased, and the dispersion stability of the stock solution tends to be easily obtained.
  • the pH of the polishing composition after dilution can also become high in conjunction. In that case, the polishing rate tends to improve. In other words, by increasing the pH of the stock solution, both the dispersion stability and the polishing rate can be improved.
  • the high pH design as described above permits, for example, polishing in which the stock solution is highly concentrated and the abrasive concentration tends to be relatively low in an embodiment in which the stock solution is diluted at a high magnification. It can help to supplement the processing force by the liquid with chemical polishing.
  • the upper limit of the pH of the stock solution is not particularly limited, but is preferably 12.0 or less (for example, 11.5 or less) and more preferably 11.0 or less from the viewpoint of surface quality and the like. From the viewpoint of better exerting the effect of applying the technology disclosed herein, when the basic compound is ammonia or ammonium salt (typically ammonia), the pH of the stock solution is set to 10.8. This is particularly meaningful.
  • the pH of the polishing composition stock solution (concentrated solution) and the polishing composition (polishing solution) is a pH meter (for example, a glass electrode type hydrogen ion concentration indicator (model number F-23 manufactured by Horiba, Ltd.)). )), Standard buffer (phthalate pH buffer pH: 4.01 (25 ° C.), neutral phosphate pH buffer pH: 6.86 (25 ° C.), carbonate pH buffer pH : 10.01 (25 ° C)), then calibrate three points, put the glass electrode in the concentrate or polishing liquid, and grasp the value by measuring the value after 2 minutes or more has stabilized Can do.
  • Standard buffer phthalate pH buffer pH: 4.01 (25 ° C.), neutral phosphate pH buffer pH: 6.86 (25 ° C.), carbonate pH buffer pH : 10.01 (25 ° C)
  • the polishing composition stock solution having the index A of a predetermined value or less is diluted.
  • the dilution is specifically performed until the pH change is 0.15 or more.
  • the pH change is the difference between the pH of the stock solution before dilution and the pH of the polishing composition (typically polishing solution) after dilution.
  • the dispersion stability is good in the case of a stock solution, and after dilution, A polishing composition capable of realizing good surface quality can be realized.
  • the change in pH due to dilution being not less than a predetermined value can be advantageous for realizing a good polishing rate.
  • the pH change is 0.3 or more (typically 0.35 or more, for example, 0.4 or more)
  • the effect of the technique disclosed herein is better exhibited.
  • a large pH change means that the pH of the stock solution is higher in a polishing composition having a pH of 8 or higher.
  • Such a high pH undiluted solution can contribute to the improvement of dispersion stability by increasing the electrostatic repulsion force of abrasive grains (for example, silica abrasive grains) before dilution.
  • the pH is appropriately lowered depending on the degree of dilution, and a polishing composition suitable for maintaining and improving surface quality (for example, reducing haze) can be obtained.
  • the upper limit of the pH change is suitably 0.6 or less (for example 0.5 or less) in consideration of the balance between the dispersion stability of the stock solution and the polishing performance of the diluted composition, 0.45 or less (for example, 0.4 or less).
  • the dilution step is a step of diluting the polishing composition stock solution 50 times or more on a volume basis.
  • the stock solution diluted and used at such a high magnification tends to have a high concentration of the components contained therein, so that the components are likely to aggregate and it is difficult to obtain good dispersion stability.
  • the stock solution can exhibit good dispersion stability by setting the index A to a predetermined value or less. According to the technique disclosed herein, even in a configuration using a stock solution that is diluted 60 times or more (for example, 80 times or more) on a volume basis, when the stock solution is used, the dispersion stability is good, and the diluted polishing composition is used. And good surface quality can be realized.
  • the dilution ratio is not particularly limited, but may be about 200 times or less (eg, 140 times or less, typically 120 times or less) on a volume basis.
  • the above dilution can be performed at a desired timing.
  • the dilution can be performed by adding the above-mentioned aqueous solvent (typically water) to the stock solution and mixing.
  • aqueous solvent typically water
  • the aqueous solvent is a mixed solvent
  • only a part of the components of the aqueous solvent may be added for dilution, and a mixture containing these components in a different ratio from the aqueous solvent.
  • a solvent may be added for dilution.
  • a part of the agent (stock solution) may be diluted and then mixed with another agent to prepare a polishing composition (polishing solution). After mixing these agents, the mixture (stock solution) may be diluted to prepare a polishing composition (polishing solution).
  • dilution is preferably performed using a liquid that does not substantially contain a basic compound.
  • the liquid does not substantially contain a basic compound means that the liquid does not contain a basic compound at least intentionally. Therefore, a liquid that inevitably contains a small amount (for example, 0.001% by weight or less, preferably 0.0001% by weight or less) of a basic compound is a liquid that does not substantially contain a basic compound.
  • the pH of the liquid (typically an aqueous solvent) used in the dilution step is around 7 (for example, more than 6 and less than 8, typically 7 ⁇ 0.5).
  • an aqueous solvent substantially composed of water for example, an aqueous solvent in which 99.5 to 100% by volume is water
  • the molar concentration of the water-soluble polymer in the diluted polishing composition is 7.0 ⁇ 10 ⁇ 8 mol / L or more.
  • the polishing composition is diluted so that the molar concentration of the water-soluble polymer is 7.0 ⁇ 10 ⁇ 8 mol / L or more.
  • good surface quality typically a low haze surface
  • the molar concentration is 7.1 ⁇ 10 ⁇ 8 mol / L or more (for example, 7.5 ⁇ 10 ⁇ 8 mol / L or more, typically 9.0 ⁇ 10 ⁇ 8 mol / L or more).
  • Appropriate preferably 1.0 ⁇ 10 ⁇ 7 mol / L or more, more preferably 1.25 ⁇ 10 ⁇ 7 mol / L or more (eg 1.3 ⁇ 10 ⁇ 7 mol / L or more, typically 2.0 ⁇ 10 ⁇ 7 mol / L or more).
  • the upper limit of the molar concentration is usually 1.0 ⁇ 10 ⁇ 4 mol / L or less (for example, 5.0 ⁇ 10 ⁇ 5 mol / L or less) from the viewpoint of dispersion stability, polishing rate, detergency, and the like. Is preferably 1.0 ⁇ 10 ⁇ 5 mol / L or less (for example, 1.0 ⁇ 10 ⁇ 6 mol / L or less).
  • the content of the water-soluble polymer in the polishing composition can typically be appropriately set within a range that satisfies the molar concentration.
  • the content of the water-soluble polymer is 1 ⁇ 10 ⁇ 4 wt% or more (for example, 5 ⁇ 10 ⁇ 4 wt% or more) from the viewpoint of improving the water-soluble polymer molar concentration, improving the surface quality (typically haze reduction) It is suitable that it is 1 ⁇ 10 ⁇ 3 wt% or more (for example, 2 ⁇ 10 ⁇ 3 wt% or more).
  • the upper limit of the content of the water-soluble polymer in the polishing composition can be, for example, 5% by weight or less.
  • the content of the water-soluble polymer is 0.5% by weight or less (eg 0.2% by weight or less, typically 0.1% by weight or less). It is preferable that
  • the content of abrasive grains in the polishing composition is typically 0.01% by weight or more, preferably 0.03% by weight or more, and preferably 0.06% by weight. % Or more (for example, 0.1% by weight or more) is more preferable. Higher polishing rates can be achieved by increasing the abrasive content. From the viewpoint of detergency, the content is suitably about 10% by weight or less (eg, 3% by weight or less), preferably less than 1% by weight, more preferably 0.8% by weight. And more preferably less than 0.6% by weight (eg less than 0.4% by weight, typically less than 0.2% by weight).
  • the content of the basic compound in the polishing composition is, for example, 0.001% by weight or more (typically 0.003% by weight or more). From the viewpoint of improving the rate, etc., it is preferably 0.005% by weight or more, more preferably 0.006% by weight or more, still more preferably 0.008% by weight or more (eg, 0.01% by weight or more, typically 0.8% or more. 012% by weight or more). Dispersion stability can also be improved by increasing the content of the basic compound.
  • the upper limit of the content of the basic compound is suitably 1% by weight or less, and is preferably 0.1% by weight or less (eg 0.05% by weight or less, typically from the viewpoint of surface quality) Is 0.02% by weight or less).
  • the pH of the polishing composition in the technique disclosed herein is preferably 8.0 or more (for example, 8.5 or more), more preferably 9.0 or more, and further preferably 9.5 or more (for example, 10). 0.0 or more).
  • the upper limit value of the pH of the polishing liquid is not particularly limited, but is preferably 12.0 or less (for example, 11.5 or less) and more preferably 11.0 or less from the viewpoint of better polishing the object to be polished. preferable. From the viewpoint of improving the surface quality (typically haze reduction), the pH is more preferably 10.8 or less (for example, 10.6 or less, typically 10.5 or less).
  • the pH can be preferably applied to, for example, a polishing liquid used for polishing a silicon wafer (for example, a polishing liquid for final polishing).
  • the amount used is not particularly limited. Usually, from the viewpoint of detergency and the like, it is appropriate to use the surfactant in an amount of 20 parts by weight or less with respect to 100 parts by weight of the abrasive contained in the polishing composition, preferably 15 parts by weight or less, 10 parts by weight or less (for example, 6 parts by weight or less) is more preferable. From the viewpoint of better exerting the effect of using the surfactant, the amount of the surfactant to be used with respect to 100 parts by weight of the abrasive is suitably 0.001 part by weight or more, preferably 0.005 part by weight or more. 01 parts by weight or more (for example, 0.1 parts by weight or more) is more preferable. Alternatively, from the viewpoint of simplification of the composition and the like, the surfactant may not be substantially used.
  • the polishing composition produced as described above can be used as a polishing liquid supplied to the object to be polished.
  • the manufacturing method disclosed here may include the process of preparing polishing composition stock solution before a dilution process.
  • the preparation of the polishing composition stock solution can typically be the preparation or acquisition of the stock solution.
  • the stock solution may be prepared by, for example, mixing each component contained in the polishing composition stock solution using a well-known mixing device such as a wing stirrer, an ultrasonic disperser, or a homomixer.
  • a well-known mixing device such as a wing stirrer, an ultrasonic disperser, or a homomixer.
  • the aspect which mixes these components is not specifically limited, For example, all the components may be mixed at once and may be mixed in the order set suitably.
  • the polishing composition in the technique disclosed herein can be applied to polishing a polishing object having various materials and shapes.
  • the material of the polishing object is, for example, a metal or semimetal such as silicon, aluminum, nickel, tungsten, copper, tantalum, titanium, stainless steel, or an alloy thereof; glass such as quartz glass, aluminosilicate glass, glassy carbon, etc.
  • a ceramic material such as alumina, silica, sapphire, silicon nitride, tantalum nitride, and titanium carbide; a compound semiconductor substrate material such as silicon carbide, gallium nitride, and gallium arsenide; a resin material such as polyimide resin; Of these, a polishing object composed of a plurality of materials may be used. Especially, it is suitable for grinding
  • the technique disclosed here is, for example, a polishing composition containing silica particles as abrasive grains (typically, a polishing composition containing only silica particles as abrasive grains), and the object to be polished is silicon.
  • the shape of the object to be polished is not particularly limited.
  • the polishing composition in the technique disclosed herein can be preferably applied to polishing a polishing object having a flat surface such as a plate shape or a polyhedron shape.
  • the polishing composition in the technique disclosed herein can be preferably used for final polishing of an object to be polished. Therefore, the matter disclosed by this specification includes a manufacturing method of a polished article (for example, a manufacturing method of a silicon wafer) including a final polishing step using the polishing composition.
  • final polishing refers to the final polishing step in the manufacturing process of the object (that is, a step in which no further polishing is performed after that step).
  • the polishing composition in the technology disclosed herein also refers to a polishing step upstream of final polishing (a step between a rough polishing step and a final polishing step.
  • the polishing composition includes at least a primary polishing step. Further, it may include a polishing process such as secondary, tertiary, etc.). For example, it may be used in a polishing process performed immediately before final polishing.
  • the polishing composition in the technique disclosed herein can be particularly preferably used for polishing a surface made of silicon (typically polishing a silicon wafer).
  • a surface made of silicon typically polishing a silicon wafer
  • it is suitable as a polishing composition used for final polishing of a silicon wafer or a polishing process upstream thereof.
  • application to polishing (typically final polishing or polishing immediately before) of a silicon wafer prepared to have a surface roughness of 0.01 nm to 100 nm by an upstream process is effective.
  • Application to final polishing is particularly preferable.
  • Polishing of the object to be polished can be performed, for example, as follows. That is, any polishing composition disclosed herein is prepared. Next, the polishing composition is supplied to the object to be polished and polished by a conventional method. For example, when final polishing of a silicon wafer is performed, the silicon wafer that has undergone the lapping process and the primary polishing process is set in a general polishing apparatus, and the surface of the silicon wafer (surface to be polished) is passed through the polishing pad of the polishing apparatus. ) Is supplied with the polishing composition. Typically, while continuously supplying the polishing composition, a polishing pad is pressed against the surface of the silicon wafer to relatively move (for example, rotate) the two.
  • the polishing of the object to be polished is completed through this polishing step.
  • the polishing pad used in the polishing step is not particularly limited. For example, any of non-woven fabric type, suede type, those containing abrasive grains, those not containing abrasive grains, etc. may be used.
  • the polishing step as described above may be a part of a manufacturing process of a polished object (for example, a substrate such as a silicon wafer). Therefore, according to this specification, a method for producing a polished article (preferably, a method for producing a silicon wafer) including the polishing step is provided.
  • the polished article after the polishing step is typically washed. This washing can be performed using an appropriate washing solution.
  • the cleaning solution to be used is not particularly limited.
  • an SC-1 cleaning solution (ammonium hydroxide (NH 4 OH), hydrogen peroxide (H 2 O 2 ), water (H 2 O), etc.
  • SC-1 cleaning ammonium hydroxide (NH 4 OH), hydrogen peroxide (H 2 O 2 ), water (H 2 O), etc.
  • SC-1 cleaning ammonium hydroxide (NH 4 OH), hydrogen peroxide (H 2 O 2 ), water (H 2 O), etc.
  • SC-1 cleaning cleaning with the SC-1 cleaning solution
  • SC-2 cleaning solution mixed solution of HCl, H 2 O 2 and H 2 O
  • the temperature of the cleaning liquid can be, for example, about room temperature to 90 ° C. From the viewpoint of improving the cleaning effect, a cleaning solution of about 50 ° C. to 85 ° C. can be preferably used.
  • polishing composition stock solution according to (1) or (2) wherein the polishing composition is used so that the pH change is 0.15 or more.
  • the polishing composition stock solution according to any one of the above (1) to (3) which is used after being diluted 50 times or more on a volume basis.
  • polishing composition stock solution according to (6) or (7) wherein the polishing composition is used so that the pH change is 0.15 or more.
  • the basic compound is ammonia and / or an ammonium salt.
  • a polishing composition stock solution used in a method for producing a polishing composition wherein the molar concentration of the water-soluble polymer is 7.0 ⁇ 10 ⁇ 8 mol / L or more, Including abrasive grains, basic compounds, water-soluble polymers and water, Characteristic (A) The index A is 0.8 or less; Characteristic (B) The index B is 7.0 or less; and Characteristic (C) The ratio (CA / CB) is less than 25; A polishing composition stock solution that satisfies at least one of (eg, two, typically all). (18) The polishing composition stock solution according to (17), wherein the polishing composition is produced by diluting the polishing composition stock solution until the pH change becomes 0.15 or more. (19) The polishing composition stock solution according to (17) or (18), wherein the polishing composition is produced by diluting the polishing composition stock solution 50 times or more on a volume basis.
  • a method for producing a polishing composition comprising the step of diluting a polishing composition stock solution containing abrasive grains, a basic compound, a water-soluble polymer and water 50 times or more on a volume basis,
  • the index A obtained from the above is a pH value of 0.8 or less, and the molar concentration of the water-soluble polymer in the polishing composition after dilution is 7.0 ⁇ 10 ⁇ 8 mol.
  • the manufacturing method of the polishing composition which is more than / L.
  • Example 1 Colloidal silica as abrasive grains, ammonia (NH 3 ) as a basic compound, HEC (Mw 25 ⁇ 10 4 ) as a water-soluble polymer, and pure water are mixed, and the polishing composition stock solution according to this example Was prepared. Abrasive grains, ammonia, and HEC are used in an amount of 9.2% in the stock solution, 1.27% in ammonia, and 0.49% in HEC (molar concentration 2.0). ⁇ 10 ⁇ 5 mol / L). The pH of the obtained stock solution was 10.82. As the abrasive grains, colloidal silica having an average primary particle diameter of 35 nm and an average secondary particle diameter of 66 nm was used.
  • the average primary particle size is measured using a surface area measuring device manufactured by Micromerex, Inc., trade name “FlowSorb II 2300”.
  • the average secondary particle diameter is a volume average secondary particle diameter measured using a model “UPA-UT151” manufactured by Nikkiso Co., Ltd.
  • a polishing composition according to this example was obtained by adding pure water to the stock solution and diluting the stock solution 80 times on a volume basis.
  • the composition of the polishing composition stock solution of Example 1 is shown in Table 1.
  • the composition of the polishing composition after dilution is shown in Table 2.
  • Table 1 also shows the value of the index A obtained from the above relational expression.
  • Table 2 also shows the dilution ratio (volume basis) and pH change (difference between the pH of the polishing composition stock solution and the pH of the polishing composition after dilution).
  • Example 2 Examples 2 to 7, Comparative Examples 1 to 3
  • the polishing composition stock solution abrasive grain concentration, basic compound species and concentration, water-soluble polymer species (Mw) and concentration were changed to the contents shown in Table 1, and the dilution factor was changed to the magnification shown in Table 2
  • polishing compositions according to each example were prepared.
  • Table 1 also shows the pH and index A of the stock solution according to each example.
  • the composition of the polishing composition after dilution is shown in Table 2.
  • polishing compositions according to Examples 1 to 7 and Comparative Example 3 were directly used as a polishing liquid, and the surface of the silicon wafer was polished under the following conditions.
  • a silicon wafer having a diameter of 300 mm, a conductivity type of P type, a crystal orientation of ⁇ 100>, and a resistivity of 0.1 ⁇ ⁇ cm to less than 100 ⁇ ⁇ cm is a polishing slurry (manufactured by Fujimi Incorporated, product
  • the surface roughness was adjusted to 0.1 nm to 10 nm by performing preliminary polishing using the name “GLANZOX2100”).
  • polishing was not implemented because of stability stability of a stock solution.
  • Polishing machine Single wafer polishing machine manufactured by Okamoto Machine Tool Manufacturing Co., Ltd. Model “PNX-332B” Polishing table: Final polishing 1st stage and 2nd stage after preliminary polishing were carried out using 2 tables at the back stage among the 3 tables of the polishing machine. (The following conditions are the same for each table.) Polishing load: 15 kPa Plate rotation speed: 30 rpm Head rotation speed: 30rpm Polishing time: 2 minutes Polishing liquid temperature: 20 ° C Polishing liquid supply rate: 2.0 l / min
  • the stock solutions of Examples 1 to 7 having an index A of 0.8 or less showed good dispersion stability in the stability test.
  • the stock solutions of Comparative Examples 1 and 2 in which the index A exceeded 0.8 sediment was observed in the stability test, and a stable dispersion state could not be maintained.
  • a polishing liquid obtained by diluting a stock solution having an index A of 0.8 or less so that the pH change is 0.15 or more, and the molar concentration of the water-soluble polymer is 7.0 ⁇ 10.
  • Example 1 which were -8 mol / L or more, the haze reduction effect was superior to Comparative Example 3 in which the molar concentration of the water-soluble polymer was less than 7.0 ⁇ 10 -8 mol / L. It was. From these results, the molar concentration (mol / L) of the water-soluble polymer in the polishing composition after dilution was 7.0 ⁇ 10 ⁇ using a polishing composition stock solution having an index A of 0.8 or more. By setting it to 8 or more, it can be seen that dispersion stability is good in the case of a stock solution, and even when diluted at a high magnification, good surface quality can be realized after dilution.

Abstract

The purpose of the present invention is to provide a method for manufacturing a polishing composition for which dispersion stability as an undiluted solution is good and which even when diluted, for example, at a high ratio, is able to achieve good surface quality. A method for manufacturing a polishing composition is provided. Said manufacturing method comprises a step for diluting an undiluted polishing composition solution containing abrasive grains, a basic compound, a water-soluble polymer, and water so that the pH change is at least 0.15. For the undiluted polishing composition solution, an index (A) determined from the relational expression: (A) = [(CA) x (CP)]/(pHC) (in the relational expression, (CA) is the content (mass%) of abrasive grains in the undiluted polishing composition solution, (CP) is the content (mass%) of water-soluble polymer in the undiluted polishing composition solution, and (pHC) is the pH value of the undiluted polishing composition solution) is not more than 0.8. The molarity of the water-soluble polymer in the polishing composition after the dilution is at least 7.0 x 10-8 moles/L.

Description

研磨用組成物の製造方法Method for producing polishing composition
 本発明は、研磨用組成物の製造方法に関する。詳しくは、主にシリコンウェーハ等の半導体基板その他の研磨対象物の研磨に好ましく用いられる研磨用組成物の製造方法に関する。 The present invention relates to a method for producing a polishing composition. Specifically, the present invention mainly relates to a method for producing a polishing composition that is preferably used for polishing a semiconductor substrate such as a silicon wafer and other polishing objects.
 金属や半金属、非金属、その酸化物等の材料表面に対して研磨液を用いた研磨(典型的には精密研磨)が行われている。例えば、半導体製品の構成要素等として用いられるシリコンウェーハの表面は、一般に、ラッピング工程(粗研磨工程)とポリシング工程(精密研磨工程)とを経て高品位の鏡面に仕上げられる。上記ポリシング工程は、典型的には、予備ポリシング工程(予備研磨工程)とファイナルポリシング工程(最終研磨工程)とを含む。この種の研磨用組成物は、製造や流通、保存等の際における利便性やコスト低減等の観点から、研磨対象物に供給される前には濃縮された形態(すなわち、研磨液の濃縮液の形態。以下「原液」ともいう。)であり得る。原液として調製された濃縮液は、水等で希釈された後、研磨液として研磨に用いられる。この種の従来技術を開示する技術文献として、特許文献1~3が挙げられる。 Polishing using a polishing liquid (typically precision polishing) is performed on the surface of materials such as metal, metalloid, nonmetal, and oxides thereof. For example, the surface of a silicon wafer used as a component of a semiconductor product is generally finished to a high-quality mirror surface through a lapping process (rough polishing process) and a polishing process (precision polishing process). The polishing process typically includes a preliminary polishing process (preliminary polishing process) and a final polishing process (final polishing process). This type of polishing composition is in a concentrated form (that is, a concentrated liquid for polishing liquid) before being supplied to the object to be polished from the viewpoint of convenience, cost reduction, etc. during manufacture, distribution, storage, etc. (Hereinafter also referred to as “stock solution”). A concentrated solution prepared as a stock solution is diluted with water or the like and then used as a polishing solution for polishing. Patent Documents 1 to 3 are listed as technical documents disclosing this type of prior art.
特開2014-90100号公報JP 2014-90100 A 特開2014-41978号公報Japanese Patent Laid-Open No. 2014-41978 特開2013-34026号公報JP 2013-34026 A
 上述のような研磨用組成物原液は、典型的には、砥粒、水溶性ポリマー等の成分を通常の研磨液よりも高濃度で含有する。そのため、当該原液の成分濃度(濃縮度合い)によっては、当該成分が凝集する傾向があり、良好な分散安定性(原液中における成分の分散状態の安定性)が得られない虞がある。例えば、高倍率に希釈して用いられる原液は、高濃度になりがちであるため、分散安定性の低下が顕著となる傾向がある。また、成分濃度は基本的に希釈倍率と連動して低下するため、希釈の程度によっては、成分が果たすべき役割が充分に発揮されない虞がある。例えば、水溶性ポリマー量が低下した場合には、良好な表面品質(例えば低ヘイズ表面)が得られ難くなる傾向がある。これらの実用上の理由から、通常、原液の希釈倍率は妥当な範囲内に制限されている。さらに、希釈方法(例えば希釈倍率)によってpHも変化し得ることが留意される。pHは、原液では分散安定性に影響する因子となり得るものであり、希釈後には、砥粒と塩基性化合物との相互作用に基づくケミカルメカニカルポリシング(CMP)法において、研磨レートや表面品質に影響し得る重要な因子となる。上記pHその他の考慮すべき種々の事情から、例えば高倍率に希釈する態様において、原液における分散安定性と、希釈後の研磨性能(例えば研磨レートや、ヘイズ等の表面品質)とを満足する研磨用組成物は未だ実現されていないのが現状である。 The above-mentioned polishing composition stock solution typically contains components such as abrasive grains and a water-soluble polymer at a higher concentration than ordinary polishing liquids. Therefore, depending on the component concentration (concentration degree) of the stock solution, the component tends to aggregate, and there is a possibility that good dispersion stability (stability of the dispersion state of the components in the stock solution) may not be obtained. For example, a stock solution used after diluting at a high magnification tends to have a high concentration, so that the dispersion stability tends to be significantly reduced. In addition, since the component concentration basically decreases in conjunction with the dilution ratio, there is a possibility that the role that the component should play is not fully exhibited depending on the degree of dilution. For example, when the amount of the water-soluble polymer is lowered, it tends to be difficult to obtain good surface quality (for example, a low haze surface). For these practical reasons, the dilution ratio of the stock solution is usually limited within a reasonable range. It is further noted that the pH can also vary depending on the dilution method (eg dilution factor). The pH can be a factor affecting dispersion stability in the stock solution. After dilution, the chemical mechanical polishing (CMP) method based on the interaction between the abrasive grains and the basic compound affects the polishing rate and surface quality. Can be an important factor. Polishing satisfying the dispersion stability in the stock solution and the polishing performance after dilution (for example, the surface quality such as polishing rate and haze) in the aspect of diluting at a high magnification, for example, from the above pH and other various circumstances to be considered The present condition is that the composition for use is not yet realized.
 本発明は、上記の事情に鑑みて創出されたものであり、原液のときには分散安定性がよく、かつ例えば高倍率に希釈した場合においても良好な表面品質を実現することが可能な研磨用組成物の製造方法を提供することを目的とする。 The present invention was created in view of the above circumstances, and is a polishing composition that has good dispersion stability when used as a stock solution and that can achieve good surface quality even when diluted at a high magnification, for example. It aims at providing the manufacturing method of a thing.
 本発明によると、研磨用組成物を製造する方法が提供される。この製造方法は、砥粒、塩基性化合物、水溶性ポリマーおよび水を含む研磨用組成物原液をpH変化が0.15以上となるように希釈する工程、を含む。前記研磨用組成物原液は、関係式:A=[CA×CP]/pHC(前記関係式中、CAは研磨用組成物原液における砥粒の含有量(重量%)であり、CPは研磨用組成物原液における水溶性ポリマーの含有量(重量%)であり、pHCは研磨用組成物原液のpH値である。);から求められる指標Aが0.8以下である。また、前記希釈後の研磨用組成物における水溶性ポリマーのモル濃度は、7.0×10-8モル/L以上である。 According to the present invention, a method for producing a polishing composition is provided. This manufacturing method includes a step of diluting a polishing composition stock solution containing abrasive grains, a basic compound, a water-soluble polymer, and water so that the pH change is 0.15 or more. The polishing composition stock solution is a relational expression: A = [CA × CP] / pHC (in the relational expression, CA is the content (% by weight) of abrasive grains in the polishing composition stock solution, and CP is for polishing. The content (% by weight) of the water-soluble polymer in the composition stock solution, and the pH A is the pH value of the polishing composition stock solution. The molar concentration of the water-soluble polymer in the polishing composition after dilution is 7.0 × 10 −8 mol / L or more.
 上記研磨用組成物原液は、上記のように指標Aが所定値以下に制限されている。ここで、指標Aが所定値以下であることは、砥粒の含有量と水溶性ポリマーの含有量との積の上限が、分散性に寄与し得る原液pH値との相対的関係において所定以下に制限されていることを意味する。簡潔にいうと、凝集因子となり得る砥粒と水溶性ポリマーの含有量が、所定以上のpH条件下において制限されていることを意味する。このような技術的意味を持つ指標Aが所定値以下に制限されていることにより、砥粒や水溶性ポリマー等の含有成分は、原液中において安定した分散状態を保つことができる。また、希釈前には上記のような量的制限があるにもかかわらず、希釈後における水溶性ポリマーの分子数は所定以上に維持されている。そのため、希釈前の原液と希釈後組成物との状態変化が顕著となり得る希釈(pH変化が所定以上となる希釈)を行う態様においても、当該水溶性ポリマーの存在により、良好な表面品質(典型的には低ヘイズ表面)を実現することができる。したがって、本発明の製造方法によると、原液のときには分散安定性がよく、かつ例えば高倍率に希釈した場合においても良好な表面品質を実現することが可能な研磨用組成物が実現される。 In the polishing composition stock solution, the index A is limited to a predetermined value or less as described above. Here, the index A being not more than a predetermined value means that the upper limit of the product of the content of abrasive grains and the content of water-soluble polymer is not more than a predetermined value in relation to the stock solution pH value that can contribute to dispersibility. It means that it is limited to. Briefly, it means that the content of abrasive grains and water-soluble polymer that can be coagulation factors is limited under a predetermined pH condition or more. Since the index A having such a technical meaning is limited to a predetermined value or less, components such as abrasive grains and water-soluble polymers can maintain a stable dispersion state in the stock solution. In addition, the number of molecules of the water-soluble polymer after dilution is maintained at a predetermined value or more despite the above quantitative limitations before dilution. Therefore, even in an embodiment in which dilution (dilution in which the pH change becomes a predetermined value or more) in which the state change between the undiluted undiluted solution and the composition after dilution becomes significant (preferably a change in pH), the presence of the water-soluble polymer allows good surface quality (typical Specifically, a low haze surface) can be realized. Therefore, according to the production method of the present invention, it is possible to realize a polishing composition that has good dispersion stability when used as a stock solution and that can realize good surface quality even when diluted at a high magnification, for example.
 ここに開示される技術の好ましい一態様では、前記希釈工程は、塩基性化合物を実質的に含有しない液体を用いて行う。このような希釈方法を採用することで、pH変化が所定以上となるような希釈を好ましく実施することができる。 In a preferred embodiment of the technology disclosed herein, the dilution step is performed using a liquid that does not substantially contain a basic compound. By adopting such a dilution method, it is possible to preferably carry out dilution such that the pH change becomes a predetermined value or more.
 ここに開示される技術の好ましい一態様では、前記希釈工程は、pH変化が0.3以上となるように前記研磨用組成物原液を希釈する工程である。上記のように希釈前後のpH変化が大きい態様において、ここに開示される技術を適用することで、原液のときには分散安定性がよく、かつ希釈後には良好な表面品質を実現することが可能な研磨用組成物が好ましく実現される。 In a preferred aspect of the technology disclosed herein, the dilution step is a step of diluting the polishing composition stock solution so that the pH change is 0.3 or more. As described above, in a mode in which the pH change before and after dilution is large, by applying the technique disclosed herein, it is possible to realize good surface stability after dilution and good dispersion stability in the case of a stock solution. A polishing composition is preferably realized.
 ここに開示される技術の好ましい一態様では、前記希釈工程は、前記研磨用組成物原液を体積基準で50倍以上に希釈する工程である。このように高倍率で希釈して用いられる原液は、含有成分が高濃度になりがちであるため、当該成分は凝集しやすく良好な分散安定性が得られ難い。このような構成において、上記指標Aが所定値以下となるように原液組成を設計することで、上記原液は良好な分散安定性を示すことができる。また、希釈倍率が大きくなるほど、希釈前後のpH変化も大きくなり、希釈前の分散安定性と、希釈後組成物による表面品質との両立は困難になる傾向があるところ、希釈後の水溶性ポリマーのモル濃度が所定値以上となるように構成することで、希釈前の分散安定性を保持しつつ、上記の倍率に希釈する態様において、良好な表面品質(典型的には低ヘイズ表面)を特に好ましく実現することができる。上記倍率で希釈した研磨液で所望の効果(例えば、研磨レートおよび表面品質の両立)を実現できることは、コスト低減の観点において特に有利であり、それによる実用上の利点は大きい。 In a preferred aspect of the technology disclosed herein, the dilution step is a step of diluting the polishing composition stock solution 50 times or more on a volume basis. The stock solution diluted and used at such a high magnification tends to have a high concentration of the components contained therein, so that the components are likely to aggregate and it is difficult to obtain good dispersion stability. In such a configuration, the stock solution can exhibit good dispersion stability by designing the stock solution composition so that the index A is a predetermined value or less. In addition, as the dilution factor increases, the pH change before and after dilution also increases, and it tends to be difficult to achieve both dispersion stability before dilution and surface quality by the composition after dilution. In the aspect of diluting to the above magnification while maintaining the dispersion stability before dilution, the surface concentration (typically low haze surface) is excellent. This can be realized particularly preferably. Achieving a desired effect (for example, compatibility between polishing rate and surface quality) with the polishing liquid diluted at the above magnification is particularly advantageous from the viewpoint of cost reduction, and the practical advantage is great.
 ここに開示される技術の好ましい一態様では、前記希釈後の研磨用組成物のpHは8~12である。これによって、良好な研磨レートが好ましく実現され得る。なお、この態様では、希釈によるpH変化はpHが減少する変化となる。 In a preferred embodiment of the technology disclosed herein, the diluted polishing composition has a pH of 8-12. Thereby, a good polishing rate can be preferably realized. In this embodiment, the pH change due to dilution is a change in which the pH decreases.
 ここに開示される技術の好ましい一態様では、前記砥粒としてシリカ砥粒を使用する。ここに開示される技術によると、砥粒としてシリカ砥粒を用いる態様において、原液の分散安定性と研磨後の表面品質との両立が好ましく実現される。 In a preferred embodiment of the technology disclosed herein, silica abrasive grains are used as the abrasive grains. According to the technique disclosed herein, in the embodiment using silica abrasive grains as the abrasive grains, both the dispersion stability of the stock solution and the surface quality after polishing are preferably realized.
 ここに開示される技術の好ましい一態様では、前記水溶性ポリマーの重量平均分子量は、90×10以下である。水溶性ポリマーの重量平均分子量(Mw)が所定値以下であることにより、原液の分散安定性はより改善され、良好な表面品質(典型的にはヘイズ低減)が得られやすくなる。 In a preferred embodiment of the technology disclosed herein, the water-soluble polymer has a weight average molecular weight of 90 × 10 4 or less. When the weight average molecular weight (Mw) of the water-soluble polymer is not more than a predetermined value, the dispersion stability of the stock solution is further improved, and good surface quality (typically haze reduction) is easily obtained.
 ここに開示される技術の好ましい一態様では、前記研磨用組成物は、シリコンウェーハを研磨するために用いられる。ここに開示される方法によって製造される研磨用組成物は、例えばラッピングを経たシリコンウェーハのポリシングに好ましく用いられる。なかでも、シリコンウェーハのファイナルポリシングに特に好ましく用いられる。 In a preferred embodiment of the technology disclosed herein, the polishing composition is used for polishing a silicon wafer. The polishing composition produced by the method disclosed herein is preferably used for polishing a silicon wafer that has undergone lapping, for example. Among these, it is particularly preferably used for final polishing of a silicon wafer.
 また、本発明によると、pH変化が0.15以上となるように希釈して使用される研磨用組成物原液が提供される。この原液は、砥粒、塩基性化合物、水溶性ポリマーおよび水を含む。また、関係式:A=[CA×CP]/pHC(前記関係式中、CAは研磨用組成物原液における砥粒の含有量(重量%)であり、CPは研磨用組成物原液における水溶性ポリマーの含有量(重量%)であり、pHCは研磨用組成物原液のpH値である。);から求められる指標Aが0.8以下である。さらに、前記水溶性ポリマーのモル濃度は4.3×10-6モル/L以上である。上記構成の研磨用組成物原液は、上記指標Aが所定値以下に制限されているので、良好な分散安定性を示す。また、上記研磨用組成物原液には、希釈後においても充分数となり得る水溶性ポリマーが含まれているので、当該希釈後の組成物を用いた研磨によると、良好な表面品質(典型的には低ヘイズ表面)を実現することができる。 Moreover, according to this invention, the polishing composition undiluted | stock solution used by diluting so that pH change may be set to 0.15 or more is provided. This stock solution contains abrasive grains, a basic compound, a water-soluble polymer and water. Further, the relational expression: A = [CA × CP] / pHC (in the relational expression, CA is the content (% by weight) of abrasive grains in the polishing composition stock solution, and CP is water-soluble in the polishing composition stock solution). Polymer A content (% by weight), and pHC is the pH value of the polishing composition stock solution.); Further, the molar concentration of the water-soluble polymer is 4.3 × 10 −6 mol / L or more. The polishing composition stock solution having the above structure exhibits good dispersion stability because the index A is limited to a predetermined value or less. In addition, since the polishing composition stock solution contains a sufficient amount of water-soluble polymer even after dilution, according to polishing using the diluted composition, good surface quality (typically Can realize a low haze surface).
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。 Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.
<研磨組成物原液および研磨用組成物の含有成分>
 ここに開示される技術における研磨用組成物原液は、砥粒、塩基性化合物、水溶性ポリマーおよび水を含む。また、必要に応じて各種添加剤を含有し得る。同様に、上記原液を希釈して調製される研磨用組成物も、砥粒、塩基性化合物、水溶性ポリマーおよび水を含み、また任意成分として各種添加剤を含有し得る。
<Containing components of polishing composition stock solution and polishing composition>
The polishing composition stock solution in the technology disclosed herein contains abrasive grains, a basic compound, a water-soluble polymer, and water. Moreover, various additives can be contained as needed. Similarly, the polishing composition prepared by diluting the stock solution contains abrasive grains, a basic compound, a water-soluble polymer, and water, and may contain various additives as optional components.
(砥粒)
 ここに開示される技術において、研磨用組成物原液、当該原液を希釈した研磨用組成物に含まれる砥粒の材質や性状は特に制限されず、使用目的や使用態様等に応じて適宜選択することができる。砥粒の例としては、無機粒子、有機粒子、および有機無機複合粒子が挙げられる。無機粒子の具体例としては、シリカ粒子、アルミナ粒子、酸化セリウム粒子、酸化クロム粒子、二酸化チタン粒子、酸化ジルコニウム粒子、酸化マグネシウム粒子、二酸化マンガン粒子、酸化亜鉛粒子、ベンガラ粒子等の酸化物粒子;窒化ケイ素粒子、窒化ホウ素粒子等の窒化物粒子;炭化ケイ素粒子、炭化ホウ素粒子等の炭化物粒子;ダイヤモンド粒子;炭酸カルシウムや炭酸バリウム等の炭酸塩等が挙げられる。有機粒子の具体例としては、ポリメタクリル酸メチル(PMMA)粒子やポリ(メタ)アクリル酸粒子(ここで(メタ)アクリル酸とは、アクリル酸およびメタクリル酸を包括的に指す意味である。)、ポリアクリロニトリル粒子等が挙げられる。このような砥粒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Abrasive grains)
In the technology disclosed herein, the material and properties of the abrasive grains contained in the polishing composition stock solution and the polishing composition diluted with the stock solution are not particularly limited, and are appropriately selected according to the purpose of use, use mode, and the like. be able to. Examples of the abrasive grains include inorganic particles, organic particles, and organic-inorganic composite particles. Specific examples of the inorganic particles include silica particles, alumina particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese dioxide particles, zinc oxide particles, oxide particles such as bengara particles; Examples thereof include nitride particles such as silicon nitride particles and boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; diamond particles; carbonates such as calcium carbonate and barium carbonate. Specific examples of the organic particles include polymethyl methacrylate (PMMA) particles and poly (meth) acrylic acid particles (here, (meth) acrylic acid is a generic term for acrylic acid and methacrylic acid). And polyacrylonitrile particles. Such an abrasive grain may be used individually by 1 type, and may be used in combination of 2 or more type.
 上記砥粒としては、無機粒子が好ましく、なかでも金属または半金属の酸化物からなる粒子が好ましい。ここに開示される技術において特に好ましい砥粒としてシリカ粒子が挙げられる。シリカ粒子は、高pH原液において優れた分散性を示し得る。また例えば、ここに開示される技術をシリコンウェーハの研磨に使用され得る研磨用組成物に適用する場合、砥粒としてシリカ粒子を用いることが特に好ましい。その理由は次のとおりである。すなわち、研磨対象物がシリコンウェーハである場合、研磨対象物と同じ元素と酸素原子とからなるシリカ粒子を砥粒として使用すれば研磨後にシリコンとは異なる金属または半金属の残留物が発生しない。シリコンウェーハ表面の汚染や研磨対象物内部にシリコンとは異なる金属または半金属が拡散することによるシリコンウェーハとしての電気特性の劣化等の虞がなくなる。さらに、シリコンとシリカの硬度が近いため、シリコンウェーハ表面に過度なダメージを与えることなく研磨加工を行うことができる。このような観点から好ましい研磨用組成物の一形態として、砥粒としてシリカ粒子のみを含有する研磨用組成物が例示される。また、シリカは高純度のものが得られやすいという性質を有する。このことも砥粒としてシリカ粒子が好ましい理由として挙げられる。シリカ粒子の具体例としては、コロイダルシリカ、フュームドシリカ、沈降シリカ等が挙げられる。研磨対象物表面にスクラッチを生じにくく、よりヘイズの低い表面を実現し得るという観点から、好ましいシリカ粒子としてコロイダルシリカおよびフュームドシリカが挙げられる。なかでもコロイダルシリカが好ましい。例えば、シリコンウェーハのポリシング(特に、ファイナルポリシング)に用いられる研磨用組成物の砥粒として、コロイダルシリカを好ましく採用し得る。 As the abrasive, inorganic particles are preferable, and particles made of metal or metalloid oxide are particularly preferable. In the technology disclosed herein, particularly preferable abrasive grains include silica particles. Silica particles can exhibit excellent dispersibility in high pH stock solutions. Further, for example, when applying the technique disclosed herein to a polishing composition that can be used for polishing a silicon wafer, it is particularly preferable to use silica particles as abrasive grains. The reason is as follows. That is, when the object to be polished is a silicon wafer, if silica particles composed of the same elements and oxygen atoms as the object to be polished are used as abrasive grains, no metal or metalloid residue different from silicon is generated after polishing. There is no risk of contamination on the surface of the silicon wafer or deterioration of electrical characteristics of the silicon wafer due to diffusion of a metal or metalloid different from silicon into the object to be polished. Furthermore, since the hardness of silicon and silica is close, polishing can be performed without undue damage to the silicon wafer surface. A polishing composition containing only silica particles as abrasive grains is exemplified as a preferred polishing composition from such a viewpoint. Silica has a property that it can be easily obtained in high purity. This is also cited as the reason why silica particles are preferable as the abrasive grains. Specific examples of the silica particles include colloidal silica, fumed silica, precipitated silica and the like. Colloidal silica and fumed silica are preferable as silica particles from the viewpoint that scratches are hardly generated on the surface of the object to be polished and a surface having a lower haze can be realized. Of these, colloidal silica is preferred. For example, colloidal silica can be preferably employed as the abrasive grains of the polishing composition used for polishing (particularly final polishing) of a silicon wafer.
 シリカ粒子を構成するシリカの真比重は、1.5以上であることが好ましく、より好ましくは1.6以上、さらに好ましくは1.7以上である。シリカの真比重の増大によって、研磨対象物(例えばシリコンウェーハ)を研磨する際に、研磨レートが向上し得る。研磨対象物の表面(研磨面)に生じるスクラッチを低減する観点からは、真比重が2.2以下のシリカ粒子が好ましい。シリカの真比重としては、置換液としてエタノールを用いた液体置換法による測定値を採用し得る。 The true specific gravity of silica constituting the silica particles is preferably 1.5 or more, more preferably 1.6 or more, and even more preferably 1.7 or more. By increasing the true specific gravity of silica, the polishing rate can be improved when polishing an object to be polished (for example, a silicon wafer). From the viewpoint of reducing scratches generated on the surface (polishing surface) of the object to be polished, silica particles having a true specific gravity of 2.2 or less are preferable. As the true specific gravity of silica, a measured value by a liquid substitution method using ethanol as a substitution liquid can be adopted.
 ここに開示される技術における砥粒は、一次粒子の形態であってもよく、複数の一次粒子が凝集した二次粒子の形態であってもよい。また、一次粒子の形態の砥粒と二次粒子の形態の砥粒とが混在していてもよい。好ましい一態様では、少なくとも一部の砥粒が二次粒子の形態をとっている。 The abrasive grains in the technology disclosed herein may be in the form of primary particles, or may be in the form of secondary particles in which a plurality of primary particles are aggregated. Further, abrasive grains in the form of primary particles and abrasive grains in the form of secondary particles may be mixed. In a preferred embodiment, at least some of the abrasive grains are in the form of secondary particles.
 砥粒の平均一次粒子径は特に制限されないが、研磨効率等の観点から、好ましくは5nm以上、より好ましくは10nm以上である。より高い研磨効果(例えば、ヘイズの低減、欠陥の除去等の効果)を得る観点から、平均一次粒子径は、15nm以上が好ましく、20nm以上(例えば20nm超)がより好ましい。また、より平滑性の高い表面が得られやすいという観点から、砥粒の平均一次粒子径は、好ましくは100nm以下、より好ましくは50nm以下、さらに好ましくは40nm以下である。より高品位の表面(例えば、LPD(Light Point Defect)やPID(Polishing Induced Defect)等の欠陥が低減された表面)を得やすい等の観点から、平均一次粒子径が35nm以下(典型的には35nm未満、好ましくは32nm以下、例えば30nm未満)の砥粒を用いてもよい。 The average primary particle diameter of the abrasive grains is not particularly limited, but is preferably 5 nm or more, more preferably 10 nm or more from the viewpoint of polishing efficiency and the like. From the viewpoint of obtaining a higher polishing effect (for example, effects such as haze reduction and defect removal), the average primary particle size is preferably 15 nm or more, and more preferably 20 nm or more (for example, more than 20 nm). Further, from the viewpoint that a smoother surface can be easily obtained, the average primary particle diameter of the abrasive grains is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 40 nm or less. From the viewpoint of easily obtaining a higher quality surface (for example, a surface with reduced defects such as LPD (Light Point Defect) and PID (Polishing Induced Defect)), the average primary particle diameter is typically 35 nm or less (typically Abrasive grains of less than 35 nm, preferably 32 nm or less, such as less than 30 nm may be used.
 なお、砥粒の平均一次粒子径は、例えば、BET法により測定される比表面積S(m/g)から平均一次粒子径(nm)=2727/Sの式により算出することができる。砥粒の比表面積の測定は、例えば、マイクロメリテックス社製の表面積測定装置、商品名「FlowSorb II 2300」を用いて行うことができる。 In addition, the average primary particle diameter of an abrasive grain can be calculated by the formula of average primary particle diameter (nm) = 2727 / S from the specific surface area S (m 2 / g) measured by the BET method, for example. The measurement of the specific surface area of the abrasive grains can be performed using, for example, a surface area measuring device manufactured by Micromerex, Inc., trade name “FlowSorb II 2300”.
 砥粒の平均二次粒子径は特に限定されないが、研磨レート等の観点から、好ましくは10nm以上、より好ましくは20nm以上である。より高い研磨効果を得る観点から、平均二次粒子径は、30nm以上であることが好ましく、35nm以上であることがより好ましく、40nm以上(例えば40nm超)であることがさらに好ましい。また、より平滑性の高い表面を得るという観点から、砥粒の平均二次粒子径は、200nm以下が適当であり、好ましくは150nm以下、より好ましくは100nm以下である。より高品位の表面(例えば、LPDやPID等の欠陥が低減された表面)を得やすい等の観点から、平均二次粒子径が60nm未満(より好ましくは55nm以下、例えば50nm未満)の砥粒を用いてもよい。砥粒の平均二次粒子径は、例えば、日機装社製の型式「UPA-UT151」を用いた動的光散乱法により、体積平均粒子径(体積基準の算術平均径;Mv)として測定することができる。 The average secondary particle diameter of the abrasive grains is not particularly limited, but is preferably 10 nm or more, more preferably 20 nm or more from the viewpoint of the polishing rate and the like. From the viewpoint of obtaining a higher polishing effect, the average secondary particle diameter is preferably 30 nm or more, more preferably 35 nm or more, and further preferably 40 nm or more (for example, more than 40 nm). Further, from the viewpoint of obtaining a surface with higher smoothness, the average secondary particle diameter of the abrasive grains is suitably 200 nm or less, preferably 150 nm or less, more preferably 100 nm or less. Abrasive grains having an average secondary particle diameter of less than 60 nm (more preferably less than 55 nm, for example, less than 50 nm) from the viewpoint of easily obtaining a higher quality surface (for example, a surface with reduced defects such as LPD and PID). May be used. The average secondary particle diameter of the abrasive grains is measured, for example, as a volume average particle diameter (volume-based arithmetic average diameter; Mv) by a dynamic light scattering method using a model “UPA-UT151” manufactured by Nikkiso Co., Ltd. Can do.
 砥粒の平均二次粒子径D2は、一般に砥粒の平均一次粒子径D1と同等以上(D2/D1≧1)であり、典型的にはD1よりも大きい(D2/D1>1)。特に限定するものではないが、研磨効果および研磨後の表面平滑性の観点から、砥粒のD2/D1は、通常は1.2~3の範囲にあることが適当であり、1.5~2.5の範囲が好ましく、1.7~2.3(例えば1.8以上2.2以下)の範囲がより好ましい。 The average secondary particle diameter D2 of the abrasive grains is generally equal to or greater than the average primary particle diameter D1 of the abrasive grains (D2 / D1 ≧ 1), and typically larger than D1 (D2 / D1> 1). Although not particularly limited, from the viewpoint of polishing effect and surface smoothness after polishing, the D2 / D1 of the abrasive grains is usually suitably in the range of 1.2 to 3, 1.5 to A range of 2.5 is preferable, and a range of 1.7 to 2.3 (for example, 1.8 to 2.2) is more preferable.
 砥粒の形状(外形)は、球形であってもよく、非球形であってもよい。非球形をなす砥粒の具体例としては、ピーナッツ形状(すなわち、落花生の殻の形状)、繭型形状、金平糖形状、ラグビーボール形状等が挙げられる。例えば、砥粒の多くがピーナッツ形状をした砥粒を好ましく採用し得る。 The shape (outer shape) of the abrasive grains may be spherical or non-spherical. Specific examples of non-spherical abrasive grains include a peanut shape (that is, a peanut shell shape), a bowl shape, a confetti shape, and a rugby ball shape. For example, abrasive grains in which most of the abrasive grains have a peanut shape can be preferably employed.
 特に限定するものではないが、砥粒の一次粒子の長径/短径比の平均値(平均アスペクト比)は、原理上1.0以上であり、好ましくは1.05以上、より好ましくは1.1以上である。砥粒の平均アスペクト比の増大によって、より高い研磨レートが実現され得る。また、砥粒の平均アスペクト比は、スクラッチ低減等の観点から、好ましくは3.0以下であり、より好ましくは2.0以下、さらに好ましくは1.5以下である。 Although not particularly limited, the average value of the major axis / minor axis ratio (average aspect ratio) of the primary particles of the abrasive grains is in principle 1.0 or more, preferably 1.05 or more, more preferably 1. 1 or more. Higher polishing rates can be achieved by increasing the average aspect ratio of the abrasive grains. The average aspect ratio of the abrasive grains is preferably 3.0 or less, more preferably 2.0 or less, and still more preferably 1.5 or less, from the viewpoint of reducing scratches.
 上記砥粒の形状(外形)や平均アスペクト比は、例えば、電子顕微鏡観察により把握することができる。平均アスペクト比を把握する具体的な手順としては、例えば、走査型電子顕微鏡(SEM)を用いて、独立した粒子の形状を認識できる所定個数(例えば200個)の砥粒粒子について、各々の粒子画像に外接する最小の長方形を描く。そして、各粒子画像に対して描かれた長方形について、その長辺の長さ(長径の値)を短辺の長さ(短径の値)で除した値を長径/短径比(アスペクト比)として算出する。上記所定個数の粒子のアスペクト比を算術平均することにより、平均アスペクト比を求めることができる。 The shape (outer shape) and average aspect ratio of the abrasive grains can be grasped by, for example, observation with an electron microscope. As a specific procedure for grasping the average aspect ratio, for example, a predetermined number (for example, 200) of abrasive particles capable of recognizing the shape of independent particles using a scanning electron microscope (SEM) is used. Draw the smallest rectangle that circumscribes the image. For the rectangle drawn for each particle image, the value obtained by dividing the length of the long side (major axis value) by the length of the short side (minor axis value) is the major axis / minor axis ratio (aspect ratio). ). An average aspect ratio can be obtained by arithmetically averaging the aspect ratios of the predetermined number of particles.
(塩基性化合物)
 ここに開示される技術において、研磨用組成物原液、当該原液を希釈した研磨用組成物は塩基性化合物を含有する。ここで塩基性化合物とは、水に溶解して水溶液のpHを上昇させる機能を有する化合物を指す。塩基性化合物は、研磨対象となる面を化学的に研磨する働きをし、研磨レートの向上に寄与し得る。また、塩基性化合物は、研磨用組成物(特に研磨組成物原液)の分散安定性の向上に役立ち得る。
(Basic compound)
In the technology disclosed herein, the polishing composition stock solution and the polishing composition diluted with the stock solution contain a basic compound. Here, the basic compound refers to a compound having a function of dissolving in water and increasing the pH of an aqueous solution. The basic compound functions to chemically polish the surface to be polished, and can contribute to the improvement of the polishing rate. In addition, the basic compound can be useful for improving the dispersion stability of the polishing composition (particularly the polishing composition stock solution).
 塩基性化合物としては、窒素を含む有機または無機の塩基性化合物、アルカリ金属またはアルカリ土類金属の水酸化物、各種の炭酸塩や炭酸水素塩等を用いることができる。例えば、アルカリ金属の水酸化物、水酸化第四級アンモニウムまたはその塩、アンモニア、アミン等が挙げられる。アルカリ金属の水酸化物の具体例としては、水酸化カリウム、水酸化ナトリウム等が挙げられる。炭酸塩または炭酸水素塩の具体例としては、炭酸水素アンモニウム、炭酸アンモニウム、炭酸水素カリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸ナトリウム等が挙げられる。水酸化第四級アンモニウムまたはその塩の具体例としては、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム等が挙げられる。アミンの具体例としては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、モノエタノールアミン、N-(β-アミノエチル)エタノールアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、無水ピペラジン、ピペラジン六水和物、1-(2-アミノエチル)ピペラジン、N-メチルピペラジン、グアニジン、イミダゾールやトリアゾール等のアゾール類等が挙げられる。このような塩基性化合物は、1種を単独でまたは2種以上を組み合わせて用いることができる。 As the basic compound, an organic or inorganic basic compound containing nitrogen, an alkali metal or alkaline earth metal hydroxide, various carbonates or hydrogencarbonates, and the like can be used. For example, alkali metal hydroxide, quaternary ammonium hydroxide or a salt thereof, ammonia, amine and the like can be mentioned. Specific examples of the alkali metal hydroxide include potassium hydroxide and sodium hydroxide. Specific examples of the carbonate or bicarbonate include ammonium bicarbonate, ammonium carbonate, potassium bicarbonate, potassium carbonate, sodium bicarbonate, sodium carbonate and the like. Specific examples of the quaternary ammonium hydroxide or a salt thereof include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide and the like. Specific examples of amines include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, monoethanolamine, N- (β-aminoethyl) ethanolamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, anhydrous piperazine , Piperazine hexahydrate, 1- (2-aminoethyl) piperazine, N-methylpiperazine, guanidine, azoles such as imidazole and triazole, and the like. Such basic compounds can be used singly or in combination of two or more.
 研磨レート向上等の観点から好ましい塩基性化合物として、アンモニアやアンモニウム塩(例えば、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム等の水酸化第四級アンモニウム塩や、炭酸水素アンモニウム、炭酸アンモニウム等)、水酸化カリウム、水酸化ナトリウム、炭酸水素カリウム、炭酸カリウム、炭酸水素ナトリウムおよび炭酸ナトリウムが挙げられる。なかでも好ましいものとして、アンモニアや、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム等のアンモニウム塩、水酸化カリウム、水酸化ナトリウムが例示される。より好ましいものとしてアンモニアおよび水酸化テトラメチルアンモニウム等のアンモニウム塩が挙げられる。特に好ましい塩基性化合物としてアンモニアが挙げられる。 As basic compounds preferable from the viewpoint of improving the polishing rate, ammonia and ammonium salts (for example, quaternary ammonium salts such as tetramethylammonium hydroxide and tetraethylammonium hydroxide, ammonium hydrogencarbonate, ammonium carbonate, etc.), Examples include potassium hydroxide, sodium hydroxide, potassium bicarbonate, potassium carbonate, sodium bicarbonate and sodium carbonate. Of these, ammonia, ammonium salts such as tetramethylammonium hydroxide and tetraethylammonium hydroxide, potassium hydroxide and sodium hydroxide are preferred. More preferred are ammonia and ammonium salts such as tetramethylammonium hydroxide. A particularly preferred basic compound is ammonia.
(水溶性ポリマー)
 ここに開示される研磨用組成物原液、当該原液を希釈した研磨用組成物に含まれる水溶性ポリマーの種類は特に制限されず、研磨用組成物の分野において公知の水溶性ポリマーのなかから適宜選択することができる。水溶性ポリマーは、1種を単独でまたは2種以上を組み合わせて用いることができる。
(Water-soluble polymer)
The type of the water-soluble polymer contained in the polishing composition stock solution disclosed herein and the polishing composition diluted with the stock solution is not particularly limited, and is appropriately selected from water-soluble polymers known in the field of polishing compositions. You can choose. A water-soluble polymer can be used individually by 1 type or in combination of 2 or more types.
 上記水溶性ポリマーは、分子中に、カチオン性基、アニオン性基およびノニオン性基から選ばれる少なくとも1種の官能基を有するものであり得る。上記水溶性ポリマーは、例えば、分子中に水酸基、カルボキシル基、アシルオキシ基、スルホ基、第1級アミド構造、複素環構造、ビニル構造、ポリオキシアルキレン構造等を有するものであり得る。凝集物の低減や洗浄性向上等の観点から、上記水溶性ポリマーとしてノニオン性のポリマーを好ましく採用し得る。 The water-soluble polymer may have at least one functional group selected from a cationic group, an anionic group and a nonionic group in the molecule. The water-soluble polymer may have, for example, a hydroxyl group, a carboxyl group, an acyloxy group, a sulfo group, a primary amide structure, a heterocyclic structure, a vinyl structure, or a polyoxyalkylene structure in the molecule. From the standpoint of reducing aggregates and improving detergency, a nonionic polymer can be preferably used as the water-soluble polymer.
 水溶性ポリマーの例としては、セルロース誘導体、デンプン誘導体、オキシアルキレン単位を含むポリマー、窒素原子を含有するポリマー、ポリビニルアルコール等が挙げられる。なかでも、セルロース誘導体、デンプン誘導体が好ましく、セルロース誘導体がより好ましい。 Examples of water-soluble polymers include cellulose derivatives, starch derivatives, polymers containing oxyalkylene units, polymers containing nitrogen atoms, and polyvinyl alcohol. Of these, cellulose derivatives and starch derivatives are preferable, and cellulose derivatives are more preferable.
 セルロース誘導体は、主たる繰返し単位としてβ-グルコース単位を含むポリマーである。セルロース誘導体の具体例としては、ヒドロキシエチルセルロース(HEC)、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロース等が挙げられる。なかでもHECが好ましい。 Cellulose derivatives are polymers containing β-glucose units as the main repeating unit. Specific examples of the cellulose derivative include hydroxyethyl cellulose (HEC), hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl cellulose and the like. Of these, HEC is preferable.
 デンプン誘導体は、主たる繰返し単位としてα-グルコース単位を含むポリマーである。デンプン誘導体の具体例としては、アルファ化デンプン、プルラン、カルボキシメチルデンプン、シクロデキストリン等が挙げられる。なかでもプルランが好ましい。 Starch derivatives are polymers that contain α-glucose units as the main repeating unit. Specific examples of starch derivatives include pregelatinized starch, pullulan, carboxymethyl starch, and cyclodextrin. Of these, pullulan is preferred.
 オキシアルキレン単位を含むポリマーとしては、ポリエチレンオキサイド(PEO)や、エチレンオキサイド(EO)とプロピレンオキサイド(PO)またはブチレンオキサイド(BO)とのブロック共重合体、EOとPOまたはBOとのランダム共重合体等が例示される。そのなかでも、EOとPOのブロック共重合体またはEOとPOのランダム共重合体が好ましい。EOとPOとのブロック共重合体は、PEOブロックとポリプロピレンオキサイド(PPO)ブロックとを含むジブロック体、トリブロック体等であり得る。上記トリブロック体の例には、PEO-PPO-PEO型トリブロック体およびPPO-PEO-PPO型トリブロック体が含まれる。通常は、PEO-PPO-PEO型トリブロック体がより好ましい。EOとPOとのブロック共重合体またはランダム共重合体において、該共重合体を構成するEOとPOとのモル比(EO/PO)は、水への溶解性や洗浄性等の観点から、1より大きいことが好ましく、2以上であることがより好ましく、3以上(例えば5以上)であることがさらに好ましい。 Polymers containing oxyalkylene units include polyethylene oxide (PEO), block copolymers of ethylene oxide (EO) and propylene oxide (PO) or butylene oxide (BO), and random copolymerization of EO and PO or BO. Examples include coalescence. Among these, a block copolymer of EO and PO or a random copolymer of EO and PO is preferable. The block copolymer of EO and PO may be a diblock body, a triblock body or the like including a PEO block and a polypropylene oxide (PPO) block. Examples of the triblock body include a PEO-PPO-PEO type triblock body and a PPO-PEO-PPO type triblock body. Usually, a PEO-PPO-PEO type triblock body is more preferable. In the block copolymer or random copolymer of EO and PO, the molar ratio (EO / PO) of EO and PO constituting the copolymer is determined from the viewpoint of solubility in water, detergency, and the like. It is preferably larger than 1, more preferably 2 or more, and further preferably 3 or more (for example, 5 or more).
 窒素原子を含有するポリマーとしては、主鎖に窒素原子を含有するポリマーおよび側鎖官能基(ペンダント基)に窒素原子を有するポリマーのいずれも使用可能である。主鎖に窒素原子を含有するポリマーの例としては、N-アシルアルキレンイミン型モノマーの単独重合体および共重合体が挙げられる。N-アシルアルキレンイミン型モノマーの具体例としては、N-アセチルエチレンイミン、N-プロピオニルエチレンイミン等が挙げられる。ペンダント基に窒素原子を有するポリマーとしては、例えばN-ビニル型のモノマー単位を含むポリマー等が挙げられる。例えば、N-ビニルピロリドンの単独重合体および共重合体等を採用し得る。 As the polymer containing a nitrogen atom, both a polymer containing a nitrogen atom in the main chain and a polymer having a nitrogen atom in a side chain functional group (pendant group) can be used. Examples of the polymer containing a nitrogen atom in the main chain include homopolymers and copolymers of N-acylalkylenimine type monomers. Specific examples of the N-acylalkyleneimine monomer include N-acetylethyleneimine, N-propionylethyleneimine and the like. Examples of the polymer having a nitrogen atom in the pendant group include a polymer containing an N-vinyl type monomer unit. For example, homopolymers and copolymers of N-vinylpyrrolidone can be employed.
 水溶性ポリマーとしてポリビニルアルコールを用いる場合、該ポリビニルアルコールのけん化度は特に限定されない。 When using polyvinyl alcohol as the water-soluble polymer, the saponification degree of the polyvinyl alcohol is not particularly limited.
 ここに開示される技術において、水溶性ポリマーの分子量は特に限定されない。水溶性ポリマーの重量平均分子量(Mw)は、例えば200×10以下とすることができ、通常は150×10以下(典型的には100×10以下)が適当である。分散安定性等の観点から、上記Mwは、90×10以下が好ましく、80×10以下がより好ましく、60×10以下がさらに好ましい。また、研磨後の表面保護性向上の観点から、通常は、Mwが1×10以上が適当であり、10×10以上がより好ましく、20×10以上がさらに好ましい。上記Mwは、セルロース誘導体(例えばHEC)に対して特に好ましく適用され得る。 In the technique disclosed herein, the molecular weight of the water-soluble polymer is not particularly limited. The weight average molecular weight (Mw) of the water-soluble polymer can be, for example, 200 × 10 4 or less, and is usually 150 × 10 4 or less (typically 100 × 10 4 or less). From the viewpoint of dispersion stability and the like, the Mw is preferably 90 × 10 4 or less, more preferably 80 × 10 4 or less, and further preferably 60 × 10 4 or less. Further, from the viewpoint of improving the surface protection after polishing, usually, Mw is suitably 1 × 10 4 or more, more preferably 10 × 10 4 or more, and further preferably 20 × 10 4 or more. The above Mw can be particularly preferably applied to a cellulose derivative (for example, HEC).
 水溶性ポリマーの重量平均分子量(Mw)と数平均分子量(Mn)との関係は特に制限されない。凝集物の発生防止等の観点から、例えば分子量分布(Mw/Mn)が10.0以下であるものが好ましく、7.0以下であるものがさらに好ましい。 The relationship between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the water-soluble polymer is not particularly limited. From the viewpoint of preventing the occurrence of aggregates, for example, the molecular weight distribution (Mw / Mn) is preferably 10.0 or less, and more preferably 7.0 or less.
 なお、水溶性ポリマーのMwおよびMnとしては、水系のゲルパーミエーションクロマトグラフィ(GPC)に基づく値(水系、ポリエチレンオキサイド換算)を採用することができる。 In addition, as Mw and Mn of the water-soluble polymer, values based on aqueous gel permeation chromatography (GPC) (aqueous, polyethylene oxide equivalent) can be adopted.
(水)
 ここに開示される研磨用組成物原液、当該原液を希釈した研磨用組成物を構成する水としては、イオン交換水(脱イオン水)、純水、超純水、蒸留水等を好ましく用いることができる。使用する水は、研磨用組成物に含有される他の成分の働きが阻害されることを極力回避するため、例えば遷移金属イオンの合計含有量が100ppb以下であることが好ましい。例えば、イオン交換樹脂による不純物イオンの除去、フィルタによる異物の除去、蒸留等の操作によって水の純度を高めることができる。
(water)
As the water constituting the polishing composition stock solution disclosed herein and the polishing composition diluted with the stock solution, ion-exchanged water (deionized water), pure water, ultrapure water, distilled water, etc. are preferably used. Can do. The water to be used preferably has, for example, a total content of transition metal ions of 100 ppb or less in order to avoid as much as possible the action of other components contained in the polishing composition. For example, the purity of water can be increased by operations such as removal of impurity ions with an ion exchange resin, removal of foreign matter with a filter, distillation, and the like.
 ここに開示される研磨用組成物原液、当該原液を希釈した研磨用組成物は、必要に応じて、水と均一に混合し得る有機溶剤(低級アルコール、低級ケトン等)をさらに含有してもよい。通常は、研磨用組成物に含まれる溶媒の90体積%以上が水であることが好ましく、95体積%以上(典型的には99~100体積%)が水であることがより好ましい。なお本明細書では、上記溶媒および水を包含する総称として水系溶媒という語を用いる場合がある。 The polishing composition stock solution disclosed herein and the polishing composition diluted with the stock solution may further contain an organic solvent (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water, if necessary. Good. Usually, 90% by volume or more of the solvent contained in the polishing composition is preferably water, and more preferably 95% by volume or more (typically 99 to 100% by volume) is water. In the present specification, the term “aqueous solvent” may be used as a general term including the solvent and water.
<その他の成分>
 ここに開示される研磨用組成物原液、当該原液を希釈した研磨用組成物は、本発明の効果が著しく妨げられない範囲で、界面活性剤、キレート剤、有機酸、有機酸塩、無機酸、無機酸塩、防腐剤、防カビ剤等の、研磨用組成物(典型的には、シリコンウェーハのポリシング工程に用いられる研磨用組成物)に用いられ得る公知の添加剤を、必要に応じてさらに含有してもよい。
<Other ingredients>
The polishing composition stock solution disclosed here, and the polishing composition diluted with the stock solution are surfactants, chelating agents, organic acids, organic acid salts, inorganic acids as long as the effects of the present invention are not significantly hindered. Known additives that can be used in polishing compositions (typically, polishing compositions used in silicon wafer polishing processes), such as inorganic acid salts, preservatives, and fungicides, as necessary. It may be further contained.
 必要に応じて含まれ得る界面活性剤(典型的には、分子量1×10未満の水溶性有機化合物)は、分散安定性向上に寄与し得る。界面活性剤としては、アニオン性またはノニオン性のものを好ましく採用し得る。低起泡性やpH調整の容易性の観点から、ノニオン性の界面活性剤がより好ましい。例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のオキシアルキレン重合体;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルアミン、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレングリセリルエーテル脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル等のポリオキシアルキレン付加物;複数種のオキシアルキレンの共重合体(ジブロック型、トリブロック型、ランダム型、交互型);等のノニオン性界面活性剤が挙げられる。界面活性剤は、1種を単独でまたは2種以上を組み合わせて用いることができる。 A surfactant (typically a water-soluble organic compound having a molecular weight of less than 1 × 10 4 ) that can be included as needed can contribute to an improvement in dispersion stability. As the surfactant, an anionic or nonionic surfactant can be preferably used. From the viewpoint of low foaming property and ease of pH adjustment, a nonionic surfactant is more preferable. For example, oxyalkylene polymers such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol; polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene alkylamine, polyoxyethylene fatty acid ester, polyoxyethylene glyceryl ether fatty acid Nonionic surfactants such as esters, polyoxyalkylene adducts such as polyoxyethylene sorbitan fatty acid esters; copolymers of plural types of oxyalkylene (diblock type, triblock type, random type, alternating type); It is done. Surfactant can be used individually by 1 type or in combination of 2 or more types.
 界面活性剤の分子量は、典型的には1×10未満であり、研磨用組成物の濾過性や研磨対象物の洗浄性等の観点から9500以下が好ましい。また、界面活性剤の分子量は、典型的には200以上であり、ヘイズ低減効果等の観点から250以上が好ましく、300以上(例えば500以上)がより好ましい。なお、界面活性剤の分子量としては、GPCにより求められる重量平均分子量(Mw)(水系、ポリエチレングリコール換算)または化学式から算出される分子量を採用することができる。なお、ここに開示される技術は、上述のような界面活性剤を実質的に含まない研磨用組成物を用いる態様で実施することができる。 The molecular weight of the surfactant is typically less than 1 × 10 4 and is preferably 9500 or less from the viewpoints of filterability of the polishing composition, cleanability of the object to be polished, and the like. The molecular weight of the surfactant is typically 200 or more, preferably 250 or more, and more preferably 300 or more (for example, 500 or more) from the viewpoint of the haze reduction effect and the like. The molecular weight of the surfactant may be a weight average molecular weight (Mw) determined by GPC (aqueous, polyethylene glycol equivalent) or a molecular weight calculated from a chemical formula. In addition, the technique disclosed here can be implemented in the aspect using the polishing composition which does not contain surfactant as mentioned above substantially.
 任意成分として含有され得るキレート剤は、研磨用組成物中に含まれ得る金属不純物と錯イオンを形成してこれを捕捉することにより、金属不純物による研磨対象物の汚染を抑制する働きをする。キレート剤の例としては、アミノカルボン酸系キレート剤および有機ホスホン酸系キレート剤が挙げられる。アミノカルボン酸系キレート剤の例には、エチレンジアミン四酢酸、エチレンジアミン四酢酸ナトリウム、ニトリロ三酢酸、ニトリロ三酢酸ナトリウム、ニトリロ三酢酸アンモニウム、ヒドロキシエチルエチレンジアミン三酢酸、ヒドロキシエチルエチレンジアミン三酢酸ナトリウム、ジエチレントリアミン五酢酸、ジエチレントリアミン五酢酸ナトリウム、トリエチレンテトラミン六酢酸およびトリエチレンテトラミン六酢酸ナトリウムが含まれる。有機ホスホン酸系キレート剤の例には、2-アミノエチルホスホン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン-1,1-ジホスホン酸、エタン-1,1,2-トリホスホン酸、エタン-1-ヒドロキシ-1,1-ジホスホン酸、エタン-1-ヒドロキシ-1,1,2-トリホスホン酸、エタン-1,2-ジカルボキシ-1,2-ジホスホン酸、メタンヒドロキシホスホン酸、2-ホスホノブタン-1,2-ジカルボン酸、1-ホスホノブタン-2,3,4-トリカルボン酸およびα-メチルホスホノコハク酸が含まれる。これらのうち有機ホスホン酸系キレート剤がより好ましく、なかでも好ましいものとしてアミノトリ(メチレンホスホン酸)、エチレンジアミンテトラキス(メチレンホスホン酸)およびジエチレントリアミンペンタ(メチレンホスホン酸)が挙げられる。キレート剤は、1種を単独でまたは2種以上を組み合わせて用いることができる。なお、ここに開示される技術は、キレート剤を実質的に含まない研磨用組成物を用いる態様で実施することができる。 The chelating agent that can be contained as an optional component functions to suppress contamination of the object to be polished by metal impurities by forming and capturing metal ions and complex ions that can be contained in the polishing composition. Examples of chelating agents include aminocarboxylic acid chelating agents and organic phosphonic acid chelating agents. Examples of aminocarboxylic acid chelating agents include ethylenediaminetetraacetic acid, ethylenediaminetetraacetic acid sodium, nitrilotriacetic acid, nitrilotriacetic acid sodium, nitrilotriacetic acid ammonium, hydroxyethylethylenediaminetriacetic acid, hydroxyethylethylenediamine sodium triacetate, diethylenetriaminepentaacetic acid Diethylenetriamine sodium pentaacetate, triethylenetetramine hexaacetic acid and sodium triethylenetetramine hexaacetate. Examples of organic phosphonic acid chelating agents include 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic). Acid), ethane-1,1-diphosphonic acid, ethane-1,1,2-triphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, ethane-1-hydroxy-1,1,2-triphosphonic acid Ethane-1,2-dicarboxy-1,2-diphosphonic acid, methanehydroxyphosphonic acid, 2-phosphonobutane-1,2-dicarboxylic acid, 1-phosphonobutane-2,3,4-tricarboxylic acid and α-methylphospho Nosuccinic acid is included. Of these, organic phosphonic acid-based chelating agents are more preferable, and aminotri (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), and diethylenetriaminepenta (methylenephosphonic acid) are particularly preferable. A chelating agent can be used individually by 1 type or in combination of 2 or more types. In addition, the technique disclosed here can be implemented in the aspect using the polishing composition which does not contain a chelating agent substantially.
 有機酸の例としては、ギ酸、酢酸、プロピオン酸等の脂肪酸、安息香酸、フタル酸等の芳香族カルボン酸、クエン酸、シュウ酸、酒石酸、リンゴ酸、マレイン酸、フマル酸、コハク酸、有機スルホン酸、有機ホスホン酸等が挙げられる。有機酸塩の例としては、有機酸のアルカリ金属塩(ナトリウム塩、カリウム塩等)やアンモニウム塩等が挙げられる。無機酸の例としては、硫酸、硝酸、塩酸、炭酸等が挙げられる。無機酸塩の例としては、無機酸のアルカリ金属塩(ナトリウム塩、カリウム塩等)やアンモニウム塩が挙げられる。有機酸およびその塩、ならびに無機酸およびその塩は、1種を単独でまたは2種以上を組み合わせて用いることができる。防腐剤および防カビ剤の例としては、イソチアゾリン系化合物、パラオキシ安息香酸エステル類、フェノキシエタノール等が挙げられる。 Examples of organic acids include fatty acids such as formic acid, acetic acid and propionic acid, aromatic carboxylic acids such as benzoic acid and phthalic acid, citric acid, oxalic acid, tartaric acid, malic acid, maleic acid, fumaric acid, succinic acid, organic Examples include sulfonic acid and organic phosphonic acid. Examples of organic acid salts include alkali metal salts (sodium salts, potassium salts, etc.) and ammonium salts of organic acids. Examples of inorganic acids include sulfuric acid, nitric acid, hydrochloric acid, carbonic acid and the like. Examples of inorganic acid salts include alkali metal salts (sodium salts, potassium salts, etc.) and ammonium salts of inorganic acids. An organic acid and its salt, and an inorganic acid and its salt can be used individually by 1 type or in combination of 2 or more types. Examples of antiseptics and fungicides include isothiazoline compounds, paraoxybenzoates, phenoxyethanol and the like.
 ここに開示される研磨用組成物原液、当該原液を希釈した研磨用組成物は、酸化剤を実質的に含まないことが好ましい。研磨用組成物中に酸化剤が含まれていると、当該組成物が研磨対象物(例えばシリコンウェーハ)に供給されることで該研磨対象物の表面が酸化されて酸化膜が生じ、これにより研磨レートが低下してしまうことがあり得るためである。ここでいう酸化剤の具体例としては、過酸化水素(H)、過硫酸ナトリウム、過硫酸アンモニウム、ジクロロイソシアヌル酸ナトリウム等が挙げられる。なお、研磨用組成物が酸化剤を実質的に含まないとは、少なくとも意図的には酸化剤を含有させないことをいう。 It is preferable that the polishing composition stock solution disclosed here and the polishing composition diluted with the stock solution are substantially free of an oxidizing agent. When an oxidizing agent is contained in the polishing composition, the composition is supplied to an object to be polished (for example, a silicon wafer), whereby the surface of the object to be polished is oxidized to produce an oxide film. This is because the polishing rate may decrease. Specific examples of the oxidizing agent herein include hydrogen peroxide (H 2 O 2 ), sodium persulfate, ammonium persulfate, sodium dichloroisocyanurate, and the like. In addition, that polishing composition does not contain an oxidizing agent substantially means not containing an oxidizing agent at least intentionally.
<研磨用組成物の製造方法>
 ここに開示される研磨用組成物は、上述の砥粒、塩基性化合物、水溶性ポリマーおよび水を含み、必要に応じて任意成分を含み得る研磨用組成物原液を希釈することにより製造され得る。換言すると、ここに開示される研磨組成物の製造方法は、上記研磨用組成物原液を希釈する工程(希釈工程)、を含む。
<Method for producing polishing composition>
The polishing composition disclosed herein can be produced by diluting a polishing composition stock solution containing the above-mentioned abrasive grains, basic compound, water-soluble polymer and water, and optionally containing optional components. . In other words, the manufacturing method of the polishing composition disclosed here includes a step of diluting the polishing composition stock solution (dilution step).
(研磨組成物原液)
 ここに開示される研磨用組成物原液は、研磨対象物に供給される研磨用組成物(研磨液)が濃縮されたもの(すなわち、研磨液の濃縮液)として定義される。このように濃縮された形態の研磨用組成物原液は、製造、流通、保存等の際における利便性やコスト低減等の観点から有利である。
(Polishing composition stock solution)
The polishing composition stock solution disclosed herein is defined as a product obtained by concentrating a polishing composition (polishing liquid) supplied to an object to be polished (ie, a concentrated liquid of the polishing liquid). The concentrated composition stock solution in such a concentrated form is advantageous from the viewpoints of convenience, cost reduction, etc. during production, distribution, storage, and the like.
 好ましい一態様では、上記希釈工程に用いられる研磨用組成物原液は、関係式:
  A=[CA×CP]/pHC
(前記関係式中、CAは研磨用組成物原液における砥粒の含有量(重量%)であり、CPは研磨用組成物原液における水溶性ポリマーの含有量(重量%)であり、pHCは研磨用組成物原液のpH値である。);から求められる指標Aが0.8以下である。これにより、研磨用組成物原液は良好な分散安定性を示す。上記関係式から求められる指標Aは、研磨用組成物原液において、凝集に寄与する砥粒の含有量CAと水溶性ポリマーの含有量CPとの積[CA×CP]を、分散に寄与する原液pH(pHC)で除した値である。この指標Aは、原液中成分(典型的には砥粒および水溶性ポリマー)の分散安定性の判断基準として適しており、当該指標Aが所定値以下であることにより、当該原液は良好な分散安定性を示す。指標Aは、分散安定性向上の観点から、より好ましくは0.6以下(例えば0.45以下、典型的には0.25以下)である。上記指標Aの下限は0より大きく、研磨性能等の観点から、通常は0.05以上(例えば0.1以上)である。
In a preferred embodiment, the polishing composition stock solution used in the dilution step has the relation:
A = [CA × CP] / pHC
(In the above relational expression, CA is the content (% by weight) of abrasive grains in the polishing composition stock solution, CP is the content (% by weight) of the water-soluble polymer in the polishing composition stock solution, and pHC is polishing. The index A calculated | required from the pH value of the composition undiluted | stock solution for use is 0.8 or less. As a result, the polishing composition stock solution exhibits good dispersion stability. The index A obtained from the above relational expression is the stock solution that contributes to the dispersion of the product [CA × CP] of the abrasive content CA and the water-soluble polymer content CP that contributes to aggregation in the polishing composition stock solution. It is a value divided by pH (pHC). This index A is suitable as a criterion for determining the dispersion stability of components (typically abrasive grains and water-soluble polymers) in the stock solution. When the index A is not more than a predetermined value, the stock solution is well dispersed. Shows stability. The index A is more preferably 0.6 or less (for example, 0.45 or less, typically 0.25 or less) from the viewpoint of improving dispersion stability. The lower limit of the index A is greater than 0, and is usually 0.05 or more (for example, 0.1 or more) from the viewpoint of polishing performance or the like.
 ここに開示される研磨用組成物原液における砥粒の含有量は、典型的には、上記指標Aが所定値以下となる範囲で設定され得る。上記原液における砥粒の含有量の上限は、例えば50重量%以下とすることができる。原液の分散安定性や濾過性等の観点から、通常は砥粒の含有量は、45重量%以下(例えば40重量%以下、典型的には30重量%以下)とすることが適当であり、好ましくは25重量%以下であり、より好ましくは20重量%以下(例えば15重量%以下)である。上記原液における砥粒の含有量は、希釈後の研磨用組成物の砥粒濃度や、製造、流通、保存等の利便性等の観点から、通常は0.5重量%以上(例えば1重量%以上、典型的には3重量%以上)とすることが適当であり、好ましくは5重量%以上(例えば9重量%以上)である。 The content of abrasive grains in the polishing composition stock solution disclosed herein can typically be set within a range where the index A is a predetermined value or less. The upper limit of the content of abrasive grains in the stock solution can be, for example, 50% by weight or less. From the viewpoint of dispersion stability of the stock solution, filterability, etc., the content of abrasive grains is usually suitably 45% by weight or less (eg 40% by weight or less, typically 30% by weight or less), Preferably it is 25 weight% or less, More preferably, it is 20 weight% or less (for example, 15 weight% or less). The content of the abrasive grains in the stock solution is usually 0.5% by weight or more (for example, 1% by weight) from the viewpoints of the abrasive concentration of the polishing composition after dilution, convenience of production, distribution, storage and the like. As mentioned above, it is suitable that it is typically 3% by weight or more), preferably 5% by weight or more (for example, 9% by weight or more).
 ここに開示される研磨用組成物原液における水溶性ポリマーの含有量についても、砥粒の含有量の場合と同様に、典型的には、上記指標Aが所定値以下となる範囲で設定され得る。上記原液における水溶性ポリマーの含有量の上限は、例えば5重量%以下とすることができる。原液の分散安定性や研磨レート、洗浄性等の観点から、水溶性ポリマーの含有量は、3重量%以下(例えば1重量%以下、典型的には0.75重量%以下)とすることが好ましい。上記原液における水溶性ポリマーの含有量は、希釈後の研磨用組成物における水溶性ポリマーモル濃度、表面品質向上(例えばヘイズ低減)等の観点から、0.001重量%以上(例えば0.01重量%以上)とすることが適当であり、好ましくは0.1重量%以上(典型的には0.2重量%以上)である。 The content of the water-soluble polymer in the polishing composition stock solution disclosed herein can be typically set within a range in which the index A is a predetermined value or less, as in the case of the content of abrasive grains. . The upper limit of the content of the water-soluble polymer in the stock solution can be, for example, 5% by weight or less. From the viewpoint of dispersion stability of the stock solution, polishing rate, detergency, etc., the content of the water-soluble polymer should be 3% by weight or less (eg, 1% by weight or less, typically 0.75% by weight or less). preferable. The content of the water-soluble polymer in the stock solution is 0.001% by weight or more (for example, 0.01% by weight) from the viewpoints of the water-soluble polymer molar concentration in the diluted polishing composition, surface quality improvement (for example, haze reduction), and the like. % Or more), and preferably 0.1% by weight or more (typically 0.2% by weight or more).
 ここに開示される研磨用組成物原液における水溶性ポリマーのモル濃度は、典型的には、希釈後の研磨用組成物における水溶性ポリマーのモル濃度が所定値以上となるように設定され得る。具体的には、上記研磨用組成物原液における水溶性ポリマーのモル濃度は、7.0×10-8モル/Lよりも高い。上記モル濃度は、1.0×10-7モル/L以上(例えば1.0×10-6モル/L以上、典型的には3.0×10-6モル/L以上)とすることが適当であり、好ましくは4.3×10-6モル/L以上(典型的には1.0×10-5モル/L以上)である。上記原液における水溶性ポリマーのモル濃度の上限は、分散安定性や研磨レート、洗浄性等の観点から、通常は1.0×10-4モル/L以下(例えば5.0×10-5モル/L以下)とすることができる。なお、この明細書において、水溶性ポリマーのモル濃度(モル/L)は、研磨用組成物(原液、希釈後の研磨液を包含する。)1リットルに含まれる水溶性ポリマーの重量(g)を当該水溶性ポリマーの分子量(典型的にはMw)で除した値として定義される。 The molar concentration of the water-soluble polymer in the polishing composition stock solution disclosed herein can typically be set so that the molar concentration of the water-soluble polymer in the polishing composition after dilution is a predetermined value or more. Specifically, the molar concentration of the water-soluble polymer in the polishing composition stock solution is higher than 7.0 × 10 −8 mol / L. The molar concentration is 1.0 × 10 −7 mol / L or more (for example, 1.0 × 10 −6 mol / L or more, typically 3.0 × 10 −6 mol / L or more). It is suitable, and preferably 4.3 × 10 −6 mol / L or more (typically 1.0 × 10 −5 mol / L or more). The upper limit of the molar concentration of the water-soluble polymer in the stock solution is usually 1.0 × 10 −4 mol / L or less (for example, 5.0 × 10 −5 mol) from the viewpoint of dispersion stability, polishing rate, detergency and the like. / L or less). In this specification, the molar concentration (mol / L) of the water-soluble polymer is the weight (g) of the water-soluble polymer contained in 1 liter of the polishing composition (including the stock solution and the diluted polishing solution). Is divided by the molecular weight (typically Mw) of the water-soluble polymer.
 ここに開示される研磨用組成物原液における塩基性化合物の含有量は、分散安定性、希釈後の研磨用組成物による研磨レート向上等の観点から、例えば0.1重量%以上(典型的には0.3重量%以上)とすることが適当であり、好ましくは0.5重量%以上、より好ましくは0.6重量%以上、さらに好ましくは0.8重量%以上(例えば1.0重量%以上、典型的には1.2重量%以上)である。例えば、原液を高倍率で希釈して使用する場合には、希釈後における砥粒濃度は相対的に低くなり、砥粒による加工力も低下傾向となる場合がある。そのような場合においても、原液の段階で塩基性化合物を増量しておくことで、希釈後における化学的研磨を強化することができる。上記原液における塩基性化合物の含有量の上限は、保存安定性や表面品質等の観点から、5重量%以下とすることが適当であり、好ましくは3重量%以下(例えば2重量%以下、典型的には1.5重量%以下)である。塩基性化合物としてアンモニアを用いる態様において、上述の含有量とすることが特に有意義である。 The content of the basic compound in the polishing composition stock solution disclosed herein is, for example, 0.1% by weight or more (typically) from the viewpoint of dispersion stability, improvement of the polishing rate by the polishing composition after dilution, and the like. Is preferably 0.3% by weight or more), preferably 0.5% by weight or more, more preferably 0.6% by weight or more, and even more preferably 0.8% by weight or more (eg, 1.0% by weight). % Or more, typically 1.2% by weight or more). For example, when diluting the stock solution at a high magnification and using it, the abrasive concentration after dilution is relatively low, and the processing force by the abrasive may tend to decrease. Even in such a case, chemical polishing after dilution can be strengthened by increasing the amount of the basic compound at the stage of the stock solution. The upper limit of the content of the basic compound in the stock solution is suitably 5% by weight or less, preferably 3% by weight or less (eg, 2% by weight or less, typically from the viewpoint of storage stability, surface quality, etc. Specifically, it is 1.5% by weight or less). In the embodiment in which ammonia is used as the basic compound, the above content is particularly significant.
 好ましい一態様では、研磨用組成物原液は、関係式:
  B=[CA×CP]/CB
(前記関係式中、CAは研磨用組成物原液における砥粒の含有量(重量%)であり、CPは研磨用組成物原液における水溶性ポリマーの含有量(重量%)であり、CBは研磨用組成物原液における塩基性化合物の含有量(重量%)である。);から求められる指標Bが7.0以下である。指標Bは、6.5以下(例えば6.2以下)とすることが適当であり、分散安定性向上の観点から、より好ましくは6.0以下であり、さらに好ましくは5.0以下であり、特に好ましくは4.5以下(例えば4.0以下、典型的には3.8以下)である。上記指標Bの下限は0より大きく、研磨性能等の観点から、通常は1.0以上(典型的には1.5以上、例えば2.5以上)である。上記指標Bは、塩基性化合物がアンモニアやアンモニウム塩である場合(典型的にはアンモニアの場合)に、研磨用組成物原液の分散安定性の判断基準として特に好ましく利用することができる。
In a preferred embodiment, the polishing composition stock solution has the relation:
B = [CA × CP] / CB
(In the above relational expression, CA is the content (% by weight) of abrasive grains in the polishing composition stock solution, CP is the content (% by weight) of the water-soluble polymer in the polishing composition stock solution, and CB is polishing. Is the basic compound content (% by weight) in the composition stock solution.); The index B is suitably 6.5 or less (for example, 6.2 or less), more preferably 6.0 or less, and even more preferably 5.0 or less from the viewpoint of improving dispersion stability. Especially preferably, it is 4.5 or less (for example, 4.0 or less, typically 3.8 or less). The lower limit of the index B is larger than 0, and is usually 1.0 or more (typically 1.5 or more, for example, 2.5 or more) from the viewpoint of polishing performance or the like. The index B can be particularly preferably used as a criterion for determining the dispersion stability of a polishing composition stock solution when the basic compound is ammonia or an ammonium salt (typically ammonia).
 好ましい一態様では、研磨用組成物原液において、塩基性化合物の含有量CB(重量%)に対する砥粒の含有量CA(重量%)の比(CA/CB)が25未満である。これにより、砥粒(例えばシリカ砥粒)の分散性は向上する傾向があり、かつ、希釈後の研磨用組成物の化学的研磨力が強化され、例えば高倍率に希釈した場合においても所望の研磨レートを好ましく実現することができる。上記比(CA/CB)は、24以下(例えば20以下)であることが適当であり、より好ましくは15以下であり、さらに好ましくは12以下であり、特に好ましくは10以下(例えば9以下、典型的には8以下)である。上記比(CA/CB)の下限は、バランスのよいCMP研磨を実施する観点から、通常は1より大きく、凡そ3以上(例えば5以上、典型的には6以上)とすることが適当である。上記比(CA/CB)の値は、塩基性化合物がアンモニアやアンモニウム塩(典型的にはアンモニアの場合)である場合に、特に好ましく適用され得る。 In a preferred embodiment, the ratio (CA / CB) of the abrasive content CA (wt%) to the basic compound content CB (wt%) in the polishing composition stock solution is less than 25. Thereby, the dispersibility of the abrasive grains (for example, silica abrasive grains) tends to be improved, and the chemical polishing power of the polishing composition after dilution is strengthened. A polishing rate can be preferably realized. The ratio (CA / CB) is suitably 24 or less (for example, 20 or less), more preferably 15 or less, still more preferably 12 or less, and particularly preferably 10 or less (for example, 9 or less, Typically 8 or less). The lower limit of the ratio (CA / CB) is usually larger than 1 and about 3 or more (for example, 5 or more, typically 6 or more) from the viewpoint of performing well-balanced CMP polishing. . The value of the ratio (CA / CB) can be particularly preferably applied when the basic compound is ammonia or an ammonium salt (typically ammonia).
 ここに開示される研磨用組成物原液のpHは、通常は8.0以上(例えば8.5以上、典型的には9.0以上)とすることが適当であり、好ましくは9.0以上、より好ましくは9.5以上、さらに好ましくは10.0以上(典型的には10.5以上、例えば10.7以上)である。pHが高くなると上記指標Aが低くなり、原液の分散安定性が得られやすい傾向がある。またpHが高くなると、希釈後の研磨用組成物のpHも連動して高くなり得る。その場合、研磨レートが向上する傾向にある。換言すると、原液のpHを高めることにより、分散安定性および研磨レートの両方を向上させることができる。さらにいえば、上記のような高pH設計は、例えば、原液を高倍率で希釈して使用する態様においては原液の高濃縮化を許容し、また砥粒濃度が相対的に低下傾向となる研磨液による加工力を化学的研磨で補うのに役立ち得る。上記原液のpHの上限値は特に制限されないが、表面品質等の観点から、12.0以下(例えば11.5以下)であることが好ましく、11.0以下であることがより好ましい。ここに開示される技術を適用することの効果をよりよく発揮する観点から、塩基性化合物がアンモニアやアンモニウム塩である場合(典型的にはアンモニアの場合)には、原液のpHを10.8以上にすることが特に有意義である。なお、この明細書において研磨用組成物原液(濃縮液)および研磨用組成物(研磨液)のpHは、pHメータ(例えば、堀場製作所製のガラス電極式水素イオン濃度指示計(型番F-23))を使用し、標準緩衝液(フタル酸塩pH緩衝液pH:4.01(25℃)、中性リン酸塩pH緩衝液pH:6.86(25℃)、炭酸塩pH緩衝液pH:10.01(25℃))を用いて3点校正した後で、ガラス電極を濃縮液または研磨液に入れて、2分以上経過して安定した後の値を測定することにより把握することができる。 The pH of the polishing composition stock solution disclosed herein is usually suitably 8.0 or more (for example, 8.5 or more, typically 9.0 or more), preferably 9.0 or more. More preferably 9.5 or more, still more preferably 10.0 or more (typically 10.5 or more, for example 10.7 or more). When the pH is increased, the index A is decreased, and the dispersion stability of the stock solution tends to be easily obtained. Moreover, when pH becomes high, the pH of the polishing composition after dilution can also become high in conjunction. In that case, the polishing rate tends to improve. In other words, by increasing the pH of the stock solution, both the dispersion stability and the polishing rate can be improved. Furthermore, the high pH design as described above permits, for example, polishing in which the stock solution is highly concentrated and the abrasive concentration tends to be relatively low in an embodiment in which the stock solution is diluted at a high magnification. It can help to supplement the processing force by the liquid with chemical polishing. The upper limit of the pH of the stock solution is not particularly limited, but is preferably 12.0 or less (for example, 11.5 or less) and more preferably 11.0 or less from the viewpoint of surface quality and the like. From the viewpoint of better exerting the effect of applying the technology disclosed herein, when the basic compound is ammonia or ammonium salt (typically ammonia), the pH of the stock solution is set to 10.8. This is particularly meaningful. In this specification, the pH of the polishing composition stock solution (concentrated solution) and the polishing composition (polishing solution) is a pH meter (for example, a glass electrode type hydrogen ion concentration indicator (model number F-23 manufactured by Horiba, Ltd.)). )), Standard buffer (phthalate pH buffer pH: 4.01 (25 ° C.), neutral phosphate pH buffer pH: 6.86 (25 ° C.), carbonate pH buffer pH : 10.01 (25 ° C)), then calibrate three points, put the glass electrode in the concentrate or polishing liquid, and grasp the value by measuring the value after 2 minutes or more has stabilized Can do.
(希釈)
 ここに開示される製造方法では、上記指標Aが所定値以下の研磨用組成物原液を希釈する。好ましい一態様では、上記希釈は、具体的にはpH変化が0.15以上となるまで希釈する。ここでpH変化とは、希釈前の原液のpHと希釈後の研磨用組成物(典型的には研磨液)のpHとの差である。上記のように所定以上のpH変化が生じるような希釈で研磨用組成物を製造する場合において、ここに開示される技術を適用することにより、原液のときには分散安定性がよく、かつ希釈後には良好な表面品質を実現することが可能な研磨用組成物を実現することができる。また、希釈によるpH変化が所定以上であることは、良好な研磨レートを実現するうえで有利となり得る。上記pH変化が0.3以上(典型的には0.35以上、例えば0.4以上)である構成において、ここに開示される技術による効果はよりよく発揮される。また、pH変化が大きいことは、pH8以上の研磨用組成物においては、原液のpHはさらに高いことを意味する。このような高pH原液は、希釈前においては砥粒(例えばシリカ砥粒)の静電反発力を強めて分散安定性の向上に寄与し得る。また、希釈後においては、その希釈の程度によってpHは適度に低下し、表面品質の維持向上(例えばヘイズ低減)に適した研磨用組成物となり得る。上記pH変化の上限は、原液の分散安定性と希釈後の組成物による研磨性能とのバランスを考慮して、0.6以下(例えば0.5以下)とすることが適当であり、好ましくは0.45以下(例えば0.4以下)である。
(Dilution)
In the production method disclosed herein, the polishing composition stock solution having the index A of a predetermined value or less is diluted. In a preferred embodiment, the dilution is specifically performed until the pH change is 0.15 or more. Here, the pH change is the difference between the pH of the stock solution before dilution and the pH of the polishing composition (typically polishing solution) after dilution. In the case of producing a polishing composition at a dilution that causes a pH change of a predetermined value or more as described above, by applying the technique disclosed herein, the dispersion stability is good in the case of a stock solution, and after dilution, A polishing composition capable of realizing good surface quality can be realized. Further, the change in pH due to dilution being not less than a predetermined value can be advantageous for realizing a good polishing rate. In the configuration in which the pH change is 0.3 or more (typically 0.35 or more, for example, 0.4 or more), the effect of the technique disclosed herein is better exhibited. Moreover, a large pH change means that the pH of the stock solution is higher in a polishing composition having a pH of 8 or higher. Such a high pH undiluted solution can contribute to the improvement of dispersion stability by increasing the electrostatic repulsion force of abrasive grains (for example, silica abrasive grains) before dilution. Further, after dilution, the pH is appropriately lowered depending on the degree of dilution, and a polishing composition suitable for maintaining and improving surface quality (for example, reducing haze) can be obtained. The upper limit of the pH change is suitably 0.6 or less (for example 0.5 or less) in consideration of the balance between the dispersion stability of the stock solution and the polishing performance of the diluted composition, 0.45 or less (for example, 0.4 or less).
 好ましい一態様では、上記希釈工程は、研磨用組成物原液を体積基準で50倍以上に希釈する工程である。このように高倍率で希釈して用いられる原液は、含有成分が高濃度になりがちであるため、当該成分は凝集しやすく良好な分散安定性が得られ難い。このような構成において、典型的には指標Aを所定値以下に設定することにより、上記原液は良好な分散安定性を示すことができる。ここに開示される技術によると、体積基準で60倍以上(例えば80倍以上)に希釈する原液を用いる構成においても、原液のときには分散安定性がよく、かつ希釈後の研磨用組成物を用いて良好な表面品質を実現することができる。ここに開示される技術を適用することにより、上記原液を体積基準で100倍を超えて希釈(例えば110倍以上で希釈)する構成においても、所望の効果を実現することが可能である。上記希釈倍率の上限は特に制限されないが、体積基準で凡そ200倍以下(例えば140倍以下、典型的には120倍以下)であり得る。 In a preferred embodiment, the dilution step is a step of diluting the polishing composition stock solution 50 times or more on a volume basis. The stock solution diluted and used at such a high magnification tends to have a high concentration of the components contained therein, so that the components are likely to aggregate and it is difficult to obtain good dispersion stability. In such a configuration, typically, the stock solution can exhibit good dispersion stability by setting the index A to a predetermined value or less. According to the technique disclosed herein, even in a configuration using a stock solution that is diluted 60 times or more (for example, 80 times or more) on a volume basis, when the stock solution is used, the dispersion stability is good, and the diluted polishing composition is used. And good surface quality can be realized. By applying the technique disclosed herein, it is possible to achieve a desired effect even in a configuration in which the stock solution is diluted more than 100 times (for example, diluted by 110 times or more) on a volume basis. The upper limit of the dilution ratio is not particularly limited, but may be about 200 times or less (eg, 140 times or less, typically 120 times or less) on a volume basis.
 上記希釈は、所望のタイミングで行うことができる。典型的には、上記希釈は、上記原液に上述の水系溶媒(典型的には水)を加えて混合することにより行うことができる。また、上記水系溶媒が混合溶媒である場合、該水系溶媒の構成成分のうち一部の成分のみを加えて希釈してもよく、それらの構成成分を上記水系溶媒とは異なる量比で含む混合溶媒を加えて希釈してもよい。また、多剤型の研磨用組成物においては、それらのうち一部の剤(原液)を希釈した後に他の剤と混合して研磨用組成物(研磨液)を調製してもよく、複数の剤を混合した後にその混合物(原液)を希釈して研磨用組成物(研磨液)を調製してもよい。 The above dilution can be performed at a desired timing. Typically, the dilution can be performed by adding the above-mentioned aqueous solvent (typically water) to the stock solution and mixing. In addition, when the aqueous solvent is a mixed solvent, only a part of the components of the aqueous solvent may be added for dilution, and a mixture containing these components in a different ratio from the aqueous solvent. A solvent may be added for dilution. Further, in a multi-drug type polishing composition, a part of the agent (stock solution) may be diluted and then mixed with another agent to prepare a polishing composition (polishing solution). After mixing these agents, the mixture (stock solution) may be diluted to prepare a polishing composition (polishing solution).
 上記希釈工程では、塩基性化合物を実質的に含有しない液体を用いて希釈を行うことが好ましい。このような希釈方法を採用することで、pH変化が所定以上となるような希釈を好ましく実施することができる。ここで、上記液体が塩基性化合物を実質的に含有しないとは、上記液体に少なくとも意図的には塩基性化合物を含有させないことをいう。したがって、微量(例えば、0.001重量%以下、好ましくは0.0001重量%以下)の塩基性化合物が不可避的に含まれている液体は、ここでいう塩基性化合物を実質的に含有しない液体の概念に包含され得る。また、希釈工程に用いられる液体(典型的には水系溶媒)のpHは7付近(例えば6超8未満、典型的には7±0.5)となる。希釈に用いられる液体としては、取扱い性、作業性等の観点から、実質的に水からなる水系溶媒(例えば、99.5~100体積%が水である水系溶媒)の使用が好ましい。 In the dilution step, dilution is preferably performed using a liquid that does not substantially contain a basic compound. By adopting such a dilution method, it is possible to preferably carry out dilution such that the pH change becomes a predetermined value or more. Here, the phrase “the liquid does not substantially contain a basic compound” means that the liquid does not contain a basic compound at least intentionally. Therefore, a liquid that inevitably contains a small amount (for example, 0.001% by weight or less, preferably 0.0001% by weight or less) of a basic compound is a liquid that does not substantially contain a basic compound. It can be included in the concept of Further, the pH of the liquid (typically an aqueous solvent) used in the dilution step is around 7 (for example, more than 6 and less than 8, typically 7 ± 0.5). As the liquid used for the dilution, it is preferable to use an aqueous solvent substantially composed of water (for example, an aqueous solvent in which 99.5 to 100% by volume is water) from the viewpoints of handleability and workability.
(研磨用組成物)
 好ましい一態様では、希釈された研磨用組成物における水溶性ポリマーのモル濃度は、7.0×10-8モル/L以上である。換言すると、ここに開示される製造方法において、研磨用組成物は、上記水溶性ポリマーのモル濃度が7.0×10-8モル/L以上となるように希釈される。これによって、良好な表面品質(典型的には低ヘイズ表面)を実現することができる。上記モル濃度は、7.1×10-8モル/L以上(例えば7.5×10-8モル/L以上、典型的には9.0×10-8モル/L以上)とすることが適当であり、好ましくは1.0×10-7モル/L以上、より好ましくは1.25×10-7モル/L以上(例えば1.3×10-7モル/L以上、典型的には2.0×10-7モル/L以上)である。上記モル濃度の上限は、分散安定性や研磨レート、洗浄性等の観点から、通常は1.0×10-4モル/L以下(例えば5.0×10-5モル/L以下)とすることが適当であり、好ましくは1.0×10-5モル/L以下(例えば1.0×10-6モル/L以下)である。
(Polishing composition)
In a preferred embodiment, the molar concentration of the water-soluble polymer in the diluted polishing composition is 7.0 × 10 −8 mol / L or more. In other words, in the production method disclosed herein, the polishing composition is diluted so that the molar concentration of the water-soluble polymer is 7.0 × 10 −8 mol / L or more. Thereby, good surface quality (typically a low haze surface) can be achieved. The molar concentration is 7.1 × 10 −8 mol / L or more (for example, 7.5 × 10 −8 mol / L or more, typically 9.0 × 10 −8 mol / L or more). Appropriate, preferably 1.0 × 10 −7 mol / L or more, more preferably 1.25 × 10 −7 mol / L or more (eg 1.3 × 10 −7 mol / L or more, typically 2.0 × 10 −7 mol / L or more). The upper limit of the molar concentration is usually 1.0 × 10 −4 mol / L or less (for example, 5.0 × 10 −5 mol / L or less) from the viewpoint of dispersion stability, polishing rate, detergency, and the like. Is preferably 1.0 × 10 −5 mol / L or less (for example, 1.0 × 10 −6 mol / L or less).
 上記研磨用組成物における水溶性ポリマーの含有量は、典型的には、上記モル濃度を満たす範囲で適切に設定され得る。上記水溶性ポリマーの含有量は、水溶性ポリマーモル濃度、表面品質向上(典型的にはヘイズ低減)等の観点から、1×10-4重量%以上(例えば5×10-4重量%以上)とすることが適当であり、好ましくは1×10-3重量%以上(例えば2×10-3重量%以上)である。上記研磨用組成物における水溶性ポリマーの含有量の上限は、例えば5重量%以下とすることができる。原液の分散安定性や研磨レート、洗浄性等の観点から、水溶性ポリマーの含有量は、0.5重量%以下(例えば0.2重量%以下、典型的には0.1重量%以下)とすることが好ましい。 The content of the water-soluble polymer in the polishing composition can typically be appropriately set within a range that satisfies the molar concentration. The content of the water-soluble polymer is 1 × 10 −4 wt% or more (for example, 5 × 10 −4 wt% or more) from the viewpoint of improving the water-soluble polymer molar concentration, improving the surface quality (typically haze reduction) It is suitable that it is 1 × 10 −3 wt% or more (for example, 2 × 10 −3 wt% or more). The upper limit of the content of the water-soluble polymer in the polishing composition can be, for example, 5% by weight or less. From the viewpoint of dispersion stability of the stock solution, polishing rate, detergency, etc., the content of the water-soluble polymer is 0.5% by weight or less (eg 0.2% by weight or less, typically 0.1% by weight or less). It is preferable that
 ここに開示される技術において、研磨用組成物中の砥粒の含有量は、典型的には0.01重量%以上であり、0.03重量%以上であることが好ましく、0.06重量%以上(例えば0.1重量%以上)であることがより好ましい。砥粒の含有量の増大によって、より高い研磨レートが実現され得る。また、洗浄性の観点から、上記含有量は、10重量%以下(例えば3重量%以下)程度とすることが適当であり、好ましくは1重量%未満であり、より好ましくは0.8重量%未満であり、さらに好ましくは0.6重量%未満(例えば0.4重量%未満、典型的には0.2重量%未満)である。 In the technique disclosed herein, the content of abrasive grains in the polishing composition is typically 0.01% by weight or more, preferably 0.03% by weight or more, and preferably 0.06% by weight. % Or more (for example, 0.1% by weight or more) is more preferable. Higher polishing rates can be achieved by increasing the abrasive content. From the viewpoint of detergency, the content is suitably about 10% by weight or less (eg, 3% by weight or less), preferably less than 1% by weight, more preferably 0.8% by weight. And more preferably less than 0.6% by weight (eg less than 0.4% by weight, typically less than 0.2% by weight).
 ここに開示される技術において、研磨用組成物中の塩基性化合物の含有量は、例えば0.001重量%以上(典型的には0.003重量%以上)とすることが適当であり、研磨レート向上等の観点から、好ましくは0.005重量%以上、より好ましくは0.006重量%以上、さらに好ましくは0.008重量%以上(例えば0.01重量%以上、典型的には0.012重量%以上)である。塩基性化合物の含有量の増加によって、分散安定性も向上し得る。上記塩基性化合物の含有量の上限は、1重量%以下とすることが適当であり、表面品質等の観点から、好ましくは0.1重量%以下(例えば0.05重量%以下、典型的には0.02重量%以下)である。 In the technique disclosed herein, it is appropriate that the content of the basic compound in the polishing composition is, for example, 0.001% by weight or more (typically 0.003% by weight or more). From the viewpoint of improving the rate, etc., it is preferably 0.005% by weight or more, more preferably 0.006% by weight or more, still more preferably 0.008% by weight or more (eg, 0.01% by weight or more, typically 0.8% or more. 012% by weight or more). Dispersion stability can also be improved by increasing the content of the basic compound. The upper limit of the content of the basic compound is suitably 1% by weight or less, and is preferably 0.1% by weight or less (eg 0.05% by weight or less, typically from the viewpoint of surface quality) Is 0.02% by weight or less).
 ここに開示される技術における研磨用組成物のpHは、8.0以上(例えば8.5以上)であることが好ましく、より好ましくは9.0以上、さらに好ましくは9.5以上(例えば10.0以上)である。研磨液のpHが高くなると、研磨レートが向上する傾向にある。研磨液のpHの上限値は特に制限されないが、研磨対象物をよりよく研磨する観点から、12.0以下(例えば11.5以下)であることが好ましく、11.0以下であることがより好ましい。表面品質向上(典型的にはヘイズ低減)の観点から、上記pHは、10.8以下(例えば10.6以下、典型的には10.5以下)とすることがさらに好ましい。上記pHは、例えば、シリコンウェーハの研磨に用いられる研磨液(例えばファイナルポリシング用の研磨液)に好ましく適用され得る。 The pH of the polishing composition in the technique disclosed herein is preferably 8.0 or more (for example, 8.5 or more), more preferably 9.0 or more, and further preferably 9.5 or more (for example, 10). 0.0 or more). When the pH of the polishing liquid increases, the polishing rate tends to improve. The upper limit value of the pH of the polishing liquid is not particularly limited, but is preferably 12.0 or less (for example, 11.5 or less) and more preferably 11.0 or less from the viewpoint of better polishing the object to be polished. preferable. From the viewpoint of improving the surface quality (typically haze reduction), the pH is more preferably 10.8 or less (for example, 10.6 or less, typically 10.5 or less). The pH can be preferably applied to, for example, a polishing liquid used for polishing a silicon wafer (for example, a polishing liquid for final polishing).
 また、界面活性剤を使用する場合、その使用量は特に制限されない。通常は、洗浄性等の観点から、上記研磨用組成物に含まれる砥粒100重量部に対する界面活性剤の使用量を20重量部以下とすることが適当であり、15重量部以下が好ましく、10重量部以下(例えば6重量部以下)がより好ましい。界面活性剤の使用効果をよりよく発揮させる観点から、砥粒100重量部に対する界面活性剤の使用量は、0.001重量部以上が適当であり、0.005重量部以上が好ましく、0.01重量部以上(例えば0.1重量部以上)がより好ましい。あるいは、組成の単純化等の観点から、界面活性剤を実質的に使用しなくてもよい。 Also, when a surfactant is used, the amount used is not particularly limited. Usually, from the viewpoint of detergency and the like, it is appropriate to use the surfactant in an amount of 20 parts by weight or less with respect to 100 parts by weight of the abrasive contained in the polishing composition, preferably 15 parts by weight or less, 10 parts by weight or less (for example, 6 parts by weight or less) is more preferable. From the viewpoint of better exerting the effect of using the surfactant, the amount of the surfactant to be used with respect to 100 parts by weight of the abrasive is suitably 0.001 part by weight or more, preferably 0.005 part by weight or more. 01 parts by weight or more (for example, 0.1 parts by weight or more) is more preferable. Alternatively, from the viewpoint of simplification of the composition and the like, the surfactant may not be substantially used.
 上記のようにして製造された研磨用組成物は、研磨液として研磨対象物に供給する態様で使用することができる。なお、ここに開示される製造方法は、希釈工程の前に、研磨用組成物原液を用意する工程を含み得る。上記研磨用組成物原液の用意は、典型的には上記原液の調製または入手等であり得る。上記原液の調製は、例えば、翼式攪拌機、超音波分散機、ホモミキサー等の周知の混合装置を用いて、研磨用組成物原液に含まれる各成分を混合して行うとよい。これらの成分を混合する態様は特に限定されず、例えば全成分を一度に混合してもよく、適宜設定した順序で混合してもよい。 The polishing composition produced as described above can be used as a polishing liquid supplied to the object to be polished. In addition, the manufacturing method disclosed here may include the process of preparing polishing composition stock solution before a dilution process. The preparation of the polishing composition stock solution can typically be the preparation or acquisition of the stock solution. The stock solution may be prepared by, for example, mixing each component contained in the polishing composition stock solution using a well-known mixing device such as a wing stirrer, an ultrasonic disperser, or a homomixer. The aspect which mixes these components is not specifically limited, For example, all the components may be mixed at once and may be mixed in the order set suitably.
<用途>
 ここに開示される技術における研磨用組成物は、種々の材質および形状を有する研磨対象物の研磨に適用され得る。研磨対象物の材質は、例えば、シリコン、アルミニウム、ニッケル、タングステン、銅、タンタル、チタン、ステンレス鋼等の金属もしくは半金属、またはこれらの合金;石英ガラス、アルミノシリケートガラス、ガラス状カーボン等のガラス状物質;アルミナ、シリカ、サファイア、窒化ケイ素、窒化タンタル、炭化チタン等のセラミック材料;炭化ケイ素、窒化ガリウム、ヒ化ガリウム等の化合物半導体基板材料;ポリイミド樹脂等の樹脂材料;等であり得る。これらのうち複数の材質により構成された研磨対象物であってもよい。なかでも、シリコンからなる表面を備えた研磨対象物の研磨に好適である。ここに開示される技術は、例えば、砥粒としてシリカ粒子を含む研磨用組成物(典型的には、砥粒としてシリカ粒子のみを含む研磨用組成物)であって、研磨対象物がシリコンである研磨用組成物を製造する方法として好適である。研磨対象物の形状は特に制限されない。ここに開示される技術における研磨用組成物は、例えば、板状や多面体状等の、平面を有する研磨対象物の研磨に好ましく適用され得る。
<Application>
The polishing composition in the technique disclosed herein can be applied to polishing a polishing object having various materials and shapes. The material of the polishing object is, for example, a metal or semimetal such as silicon, aluminum, nickel, tungsten, copper, tantalum, titanium, stainless steel, or an alloy thereof; glass such as quartz glass, aluminosilicate glass, glassy carbon, etc. A ceramic material such as alumina, silica, sapphire, silicon nitride, tantalum nitride, and titanium carbide; a compound semiconductor substrate material such as silicon carbide, gallium nitride, and gallium arsenide; a resin material such as polyimide resin; Of these, a polishing object composed of a plurality of materials may be used. Especially, it is suitable for grinding | polishing of the grinding | polishing target object provided with the surface which consists of silicon | silicone. The technique disclosed here is, for example, a polishing composition containing silica particles as abrasive grains (typically, a polishing composition containing only silica particles as abrasive grains), and the object to be polished is silicon. This is suitable as a method for producing a polishing composition. The shape of the object to be polished is not particularly limited. The polishing composition in the technique disclosed herein can be preferably applied to polishing a polishing object having a flat surface such as a plate shape or a polyhedron shape.
 ここに開示される技術における研磨用組成物は、研磨対象物のファイナルポリシングに好ましく使用され得る。したがって、この明細書により開示される事項には、上記研磨用組成物を用いたファイナルポリシング工程を含む研磨物の製造方法(例えば、シリコンウェーハの製造方法)が包含される。なお、ファイナルポリシングとは、目的物の製造プロセスにおける最後のポリシング工程(すなわち、その工程の後にはさらなるポリシングを行わない工程)を指す。ここに開示される技術における研磨用組成物は、また、ファイナルポリシングよりも上流のポリシング工程(粗研磨工程と最終研磨工程との間の工程を指す。典型的には少なくとも1次ポリシング工程を含み、さらに2次、3次・・・等のポリシング工程を含み得る。)、例えばファイナルポリシングの直前に行われるポリシング工程に用いられてもよい。 The polishing composition in the technique disclosed herein can be preferably used for final polishing of an object to be polished. Therefore, the matter disclosed by this specification includes a manufacturing method of a polished article (for example, a manufacturing method of a silicon wafer) including a final polishing step using the polishing composition. Note that final polishing refers to the final polishing step in the manufacturing process of the object (that is, a step in which no further polishing is performed after that step). The polishing composition in the technology disclosed herein also refers to a polishing step upstream of final polishing (a step between a rough polishing step and a final polishing step. Typically, the polishing composition includes at least a primary polishing step. Further, it may include a polishing process such as secondary, tertiary, etc.). For example, it may be used in a polishing process performed immediately before final polishing.
 ここに開示される技術における研磨用組成物は、シリコンからなる表面の研磨(典型的にはシリコンウェーハの研磨)に特に好ましく使用され得る。例えば、シリコンウェーハのファイナルポリシングまたはそれよりも上流のポリシング工程に用いられる研磨用組成物として好適である。例えば、上流の工程によって表面粗さ0.01nm~100nmの表面状態に調製されたシリコンウェーハのポリシング(典型的にはファイナルポリシングまたはその直前のポリシング)への適用が効果的である。ファイナルポリシングへの適用が特に好ましい。 The polishing composition in the technique disclosed herein can be particularly preferably used for polishing a surface made of silicon (typically polishing a silicon wafer). For example, it is suitable as a polishing composition used for final polishing of a silicon wafer or a polishing process upstream thereof. For example, application to polishing (typically final polishing or polishing immediately before) of a silicon wafer prepared to have a surface roughness of 0.01 nm to 100 nm by an upstream process is effective. Application to final polishing is particularly preferable.
<研磨>
 研磨対象物の研磨は、例えば以下のようにして行うことができる。すなわち、ここに開示されるいずれかの研磨用組成物を用意する。次いで、その研磨用組成物を研磨対象物に供給し、常法により研磨する。例えば、シリコンウェーハのファイナルポリシングを行う場合には、ラッピング工程および1次ポリシング工程を経たシリコンウェーハを一般的な研磨装置にセットし、該研磨装置の研磨パッドを通じて上記シリコンウェーハの表面(研磨対象面)に研磨用組成物を供給する。典型的には、上記研磨用組成物を連続的に供給しつつ、シリコンウェーハの表面に研磨パッドを押しつけて両者を相対的に移動(例えば回転移動)させる。かかる研磨工程を経て研磨対象物の研磨が完了する。上記研磨工程で使用される研磨パッドは特に限定されない。例えば、不織布タイプ、スウェードタイプ、砥粒を含むもの、砥粒を含まないもの等のいずれを用いてもよい。上述のような研磨工程は、研磨物(例えば、シリコンウェーハ等の基板)の製造プロセスの一部であり得る。したがって、この明細書によると、上記研磨工程を含む研磨物の製造方法(好適には、シリコンウェーハの製造方法)が提供される。
<Polishing>
Polishing of the object to be polished can be performed, for example, as follows. That is, any polishing composition disclosed herein is prepared. Next, the polishing composition is supplied to the object to be polished and polished by a conventional method. For example, when final polishing of a silicon wafer is performed, the silicon wafer that has undergone the lapping process and the primary polishing process is set in a general polishing apparatus, and the surface of the silicon wafer (surface to be polished) is passed through the polishing pad of the polishing apparatus. ) Is supplied with the polishing composition. Typically, while continuously supplying the polishing composition, a polishing pad is pressed against the surface of the silicon wafer to relatively move (for example, rotate) the two. The polishing of the object to be polished is completed through this polishing step. The polishing pad used in the polishing step is not particularly limited. For example, any of non-woven fabric type, suede type, those containing abrasive grains, those not containing abrasive grains, etc. may be used. The polishing step as described above may be a part of a manufacturing process of a polished object (for example, a substrate such as a silicon wafer). Therefore, according to this specification, a method for producing a polished article (preferably, a method for producing a silicon wafer) including the polishing step is provided.
<洗浄>
 研磨工程後の研磨物は、典型的には洗浄される。この洗浄は、適当な洗浄液を用いて行うことができる。使用する洗浄液は特に限定されず、例えば、半導体等の分野において一般的なSC-1洗浄液(水酸化アンモニウム(NHOH)と過酸化水素(H)と水(HO)との混合液。以下、SC-1洗浄液を用いて洗浄することを「SC-1洗浄」という。)、SC-2洗浄液(HClとHとHOとの混合液。)等を用いることができる。洗浄液の温度は、例えば常温~90℃程度とすることができる。洗浄効果を向上させる観点から、50℃~85℃程度の洗浄液を好ましく使用し得る。
<Washing>
The polished article after the polishing step is typically washed. This washing can be performed using an appropriate washing solution. The cleaning solution to be used is not particularly limited. For example, an SC-1 cleaning solution (ammonium hydroxide (NH 4 OH), hydrogen peroxide (H 2 O 2 ), water (H 2 O), etc. Hereinafter, cleaning with the SC-1 cleaning solution is referred to as “SC-1 cleaning”), SC-2 cleaning solution (mixed solution of HCl, H 2 O 2 and H 2 O), etc. Can be used. The temperature of the cleaning liquid can be, for example, about room temperature to 90 ° C. From the viewpoint of improving the cleaning effect, a cleaning solution of about 50 ° C. to 85 ° C. can be preferably used.
 この明細書により開示される事項には以下のものが含まれる。
(1) 砥粒、塩基性化合物、水溶性ポリマーおよび水を含み、関係式:
  A=[CA×CP]/pHC
(前記関係式中、CAは研磨用組成物原液における砥粒の含有量(重量%)であり、CPは研磨用組成物原液における水溶性ポリマーの含有量(重量%)であり、pHCは研磨用組成物原液のpH値である。);から求められる指標Aが0.8以下である、研磨用組成物原液。
(2) 水溶性ポリマーのモル濃度が4.3×10-6モル/L以上である、上記(1)に記載の研磨用組成物原液。
(3) pH変化が0.15以上となるように希釈して使用される、上記(1)または(2)に記載の研磨用組成物原液。
(4) 体積基準で50倍以上に希釈して使用される、上記(1)~(3)のいずれかに記載の研磨用組成物原液。
(5) 塩基性化合物は、アンモニアおよび/またはアンモニウム塩である、上記(1)~(4)のいずれかに記載の研磨用組成物原液。
The matters disclosed by this specification include the following.
(1) Including abrasive grains, basic compound, water-soluble polymer and water, relational formula:
A = [CA × CP] / pHC
(In the above relational expression, CA is the content (% by weight) of abrasive grains in the polishing composition stock solution, CP is the content (% by weight) of the water-soluble polymer in the polishing composition stock solution, and pHC is polishing. A polishing composition stock solution having an index A of 0.8 or less.
(2) The polishing composition stock solution according to (1) above, wherein the molar concentration of the water-soluble polymer is 4.3 × 10 −6 mol / L or more.
(3) The polishing composition stock solution according to (1) or (2), wherein the polishing composition is used so that the pH change is 0.15 or more.
(4) The polishing composition stock solution according to any one of the above (1) to (3), which is used after being diluted 50 times or more on a volume basis.
(5) The polishing composition stock solution according to any one of (1) to (4), wherein the basic compound is ammonia and / or an ammonium salt.
(6) 砥粒、塩基性化合物、水溶性ポリマーおよび水を含み、
 関係式:
  B=[CA×CP]/CB
(前記関係式中、CAは研磨用組成物原液における砥粒の含有量(重量%)であり、CPは研磨用組成物原液における水溶性ポリマーの含有量(重量%)であり、CBは研磨用組成物原液における塩基性化合物の含有量(重量%)である。);から求められる指標Bが7.0以下である、研磨用組成物原液。
(7) 水溶性ポリマーのモル濃度が4.3×10-6モル/L以上である、上記(6)に記載の研磨用組成物原液。
(8) pH変化が0.15以上となるように希釈して使用される、上記(6)または(7)に記載の研磨用組成物原液。
(9) 体積基準で50倍以上に希釈して使用される、上記(6)~(8)のいずれかに記載の研磨用組成物原液。
(10) 塩基性化合物は、アンモニアおよび/またはアンモニウム塩である、上記(6)~(9)のいずれかに記載の研磨用組成物原液。
(6) containing abrasive grains, basic compound, water-soluble polymer and water,
Relational expression:
B = [CA × CP] / CB
(In the above relational expression, CA is the content (% by weight) of abrasive grains in the polishing composition stock solution, CP is the content (% by weight) of the water-soluble polymer in the polishing composition stock solution, and CB is polishing. A basic composition content (% by weight) in the composition stock solution for polishing.) Polishing composition stock solution having an index B calculated from: 7.0 or less.
(7) The polishing composition stock solution according to (6) above, wherein the molar concentration of the water-soluble polymer is 4.3 × 10 −6 mol / L or more.
(8) The polishing composition stock solution according to (6) or (7), wherein the polishing composition is used so that the pH change is 0.15 or more.
(9) The polishing composition stock solution according to any one of (6) to (8), wherein the polishing composition stock solution is used after being diluted 50 times or more on a volume basis.
(10) The polishing composition stock solution according to any one of (6) to (9), wherein the basic compound is ammonia and / or an ammonium salt.
(11) 砥粒、塩基性化合物、水溶性ポリマーおよび水を含み、塩基性化合物の含有量CB(重量%)に対する砥粒の含有量CA(重量%)の比(CA/CB)が25未満である、研磨用組成物原液。
(12) 特性(A)上記指標Aが0.8以下であること;および特性(B)上記指標Bが7.0以下であること;の少なくとも一方(例えば両方)を満足する、上記(11)に記載の研磨用組成物原液。
(13) 水溶性ポリマーのモル濃度が4.3×10-6モル/L以上である、上記(11)または(12)に記載の研磨用組成物原液。
(14) pH変化が0.15以上となるように希釈して使用される、上記(11)~(13)のいずれかに記載の研磨用組成物原液。
(15) 体積基準で50倍以上に希釈して使用される、上記(11)~(14)のいずれかに記載の研磨用組成物原液。
(16) 塩基性化合物は、アンモニアおよび/またはアンモニウム塩である、上記(11)~(15)のいずれかに記載の研磨用組成物原液。
(11) Abrasive grains, basic compound, water-soluble polymer and water are included, and the ratio (CA / CB) of abrasive grain content CA (wt%) to basic compound content CB (wt%) is less than 25 A polishing composition stock solution.
(12) Characteristic (A) The index A is 0.8 or less; and Characteristic (B) The index B is 7.0 or less; ) Polishing composition stock solution.
(13) The polishing composition stock solution according to (11) or (12) above, wherein the molar concentration of the water-soluble polymer is 4.3 × 10 −6 mol / L or more.
(14) The polishing composition stock solution according to any one of (11) to (13), wherein the polishing composition is used by diluting so that the pH change is 0.15 or more.
(15) The polishing composition stock solution according to any one of the above (11) to (14), which is used after being diluted 50 times or more on a volume basis.
(16) The polishing composition stock solution according to any one of (11) to (15) above, wherein the basic compound is ammonia and / or an ammonium salt.
(17) 水溶性ポリマーのモル濃度が7.0×10-8モル/L以上である研磨用組成物の製造方法に用いられる研磨用組成物原液であって、
 砥粒、塩基性化合物、水溶性ポリマーおよび水を含み、
 特性(A)上記指標Aが0.8以下であること;
 特性(B)上記指標Bが7.0以下であること;および
 特性(C)上記比(CA/CB)が25未満である;
 の少なくとも1つ(例えば2つ、典型的には全部)を満足する、研磨用組成物原液。
(18) 研磨用組成物は、研磨用組成物原液をpH変化が0.15以上となるまで希釈して製造される、上記(17)に記載の研磨用組成物原液。
(19) 研磨用組成物は、研磨用組成物原液を体積基準で50倍以上に希釈して製造される、上記(17)または(18)に記載の研磨用組成物原液。
(17) A polishing composition stock solution used in a method for producing a polishing composition, wherein the molar concentration of the water-soluble polymer is 7.0 × 10 −8 mol / L or more,
Including abrasive grains, basic compounds, water-soluble polymers and water,
Characteristic (A) The index A is 0.8 or less;
Characteristic (B) The index B is 7.0 or less; and Characteristic (C) The ratio (CA / CB) is less than 25;
A polishing composition stock solution that satisfies at least one of (eg, two, typically all).
(18) The polishing composition stock solution according to (17), wherein the polishing composition is produced by diluting the polishing composition stock solution until the pH change becomes 0.15 or more.
(19) The polishing composition stock solution according to (17) or (18), wherein the polishing composition is produced by diluting the polishing composition stock solution 50 times or more on a volume basis.
(20) 研磨用組成物を製造する方法であって、砥粒、塩基性化合物、水溶性ポリマーおよび水を含む研磨用組成物原液を体積基準で50倍以上に希釈する工程、を含み、
 前記研磨用組成物原液は、関係式:
  A=[CA×CP]/pHC
(前記関係式中、CAは研磨用組成物原液における砥粒の含有量(重量%)であり、CPは研磨用組成物原液における水溶性ポリマーの含有量(重量%)であり、pHCは研磨用組成物原液のpH値である。);から求められる指標Aが0.8以下であり、前記希釈後の研磨用組成物における水溶性ポリマーのモル濃度は、7.0×10-8モル/L以上である、研磨用組成物の製造方法。
(20) A method for producing a polishing composition, comprising the step of diluting a polishing composition stock solution containing abrasive grains, a basic compound, a water-soluble polymer and water 50 times or more on a volume basis,
The polishing composition stock solution has a relational formula:
A = [CA × CP] / pHC
(In the above relational expression, CA is the content (% by weight) of abrasive grains in the polishing composition stock solution, CP is the content (% by weight) of the water-soluble polymer in the polishing composition stock solution, and pHC is polishing. The index A obtained from the above is a pH value of 0.8 or less, and the molar concentration of the water-soluble polymer in the polishing composition after dilution is 7.0 × 10 −8 mol. The manufacturing method of the polishing composition which is more than / L.
 以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。なお、以下の説明において「%」は、特に断りがない限り重量基準である。 Hereinafter, some examples relating to the present invention will be described. However, the present invention is not intended to be limited to the examples shown in the examples. In the following description, “%” is based on weight unless otherwise specified.
<研磨用組成物の調製>
(実施例1)
 砥粒としてのコロイダルシリカと、塩基性化合物としてのアンモニア(NH)と、水溶性ポリマーとしてのHEC(Mw25×10)と、純水とを混合して本例に係る研磨用組成物原液を調製した。砥粒、アンモニアおよびHECの使用量は、原液中における砥粒の含有量が9.2%、アンモニアの含有量が1.27%、HECの含有量が0.49%(モル濃度2.0×10-5モル/L)となる量とした。得られた原液のpHは10.82であった。砥粒としては、平均一次粒子径35nm、平均二次粒子径66nmのコロイダルシリカを使用した。上記平均一次粒子径は、マイクロメリテックス社製の表面積測定装置、商品名「FlowSorb II 2300」を用いて測定されたものである。また、上記平均二次粒子径は、日機装社製の型式「UPA-UT151」を用いて測定された体積平均二次粒子径である。上記原液に純水を加えて該原液を体積基準で80倍に希釈することにより、本例に係る研磨用組成物を得た。実施例1の研磨用組成物原液の構成を表1に示す。希釈後の研磨用組成物の構成を表2に示す。表1には、上述の関係式から得られた指標Aの値も示す。表2には、希釈倍率(体積基準)およびpH変化(研磨用組成物原液のpHと希釈後の研磨用組成物のpHとの差)も示す。
<Preparation of polishing composition>
(Example 1)
Colloidal silica as abrasive grains, ammonia (NH 3 ) as a basic compound, HEC (Mw 25 × 10 4 ) as a water-soluble polymer, and pure water are mixed, and the polishing composition stock solution according to this example Was prepared. Abrasive grains, ammonia, and HEC are used in an amount of 9.2% in the stock solution, 1.27% in ammonia, and 0.49% in HEC (molar concentration 2.0). × 10 −5 mol / L). The pH of the obtained stock solution was 10.82. As the abrasive grains, colloidal silica having an average primary particle diameter of 35 nm and an average secondary particle diameter of 66 nm was used. The average primary particle size is measured using a surface area measuring device manufactured by Micromerex, Inc., trade name “FlowSorb II 2300”. The average secondary particle diameter is a volume average secondary particle diameter measured using a model “UPA-UT151” manufactured by Nikkiso Co., Ltd. A polishing composition according to this example was obtained by adding pure water to the stock solution and diluting the stock solution 80 times on a volume basis. The composition of the polishing composition stock solution of Example 1 is shown in Table 1. The composition of the polishing composition after dilution is shown in Table 2. Table 1 also shows the value of the index A obtained from the above relational expression. Table 2 also shows the dilution ratio (volume basis) and pH change (difference between the pH of the polishing composition stock solution and the pH of the polishing composition after dilution).
(実施例2~7、比較例1~3)
 研磨用組成物原液の砥粒濃度、塩基性化合物種および濃度、水溶性ポリマー種(Mw)および濃度を表1に示す内容に変更し、希釈倍率を表2に示す倍率に変更した他は実施例1と同様にして各例に係る研磨用組成物を調製した。表1には各例に係る原液のpHおよび指標Aもあわせて示す。希釈後の研磨用組成物の構成については表2に示す。
(Examples 2 to 7, Comparative Examples 1 to 3)
The polishing composition stock solution abrasive grain concentration, basic compound species and concentration, water-soluble polymer species (Mw) and concentration were changed to the contents shown in Table 1, and the dilution factor was changed to the magnification shown in Table 2 In the same manner as in Example 1, polishing compositions according to each example were prepared. Table 1 also shows the pH and index A of the stock solution according to each example. The composition of the polishing composition after dilution is shown in Table 2.
<安定性試験>
 各例に係る研磨用組成物原液を用意(調製)し、25℃で静置して保管した。保管開始から5日間経過後における上記原液中の沈降物の有無を目視にて下記2基準で評価した。すなわち、沈降物なしの場合は「A」と評価し、沈降物が認められた場合は「C」と評価した。結果を表2に示す。
<Stability test>
A polishing composition stock solution according to each example was prepared (prepared) and allowed to stand at 25 ° C. for storage. The presence or absence of sediment in the stock solution after 5 days from the start of storage was evaluated visually according to the following two criteria. That is, when there was no sediment, it was evaluated as “A”, and when sediment was observed, it was evaluated as “C”. The results are shown in Table 2.
<シリコンウェーハの研磨>
 実施例1~7および比較例3に係る研磨用組成物をそのまま研磨液として使用して、シリコンウェーハの表面を下記の条件で研磨した。シリコンウェーハとしては、直径が300mm、伝導型がP型、結晶方位が<100>、抵抗率が0.1Ω・cm以上100Ω・cm未満であるものを、研磨スラリー(フジミインコーポレーテッド社製、商品名「GLANZOX2100」)を用いて予備研磨を行うことにより表面粗さ0.1nm~10nmに調整して使用した。なお、比較例1、2に係る研磨用組成物については、原液の安定性不良のため上記研磨は実施しなかった。
<Polishing of silicon wafer>
The polishing compositions according to Examples 1 to 7 and Comparative Example 3 were directly used as a polishing liquid, and the surface of the silicon wafer was polished under the following conditions. A silicon wafer having a diameter of 300 mm, a conductivity type of P type, a crystal orientation of <100>, and a resistivity of 0.1 Ω · cm to less than 100 Ω · cm is a polishing slurry (manufactured by Fujimi Incorporated, product The surface roughness was adjusted to 0.1 nm to 10 nm by performing preliminary polishing using the name “GLANZOX2100”). In addition, about the polishing composition which concerns on Comparative Examples 1 and 2, the said grinding | polishing was not implemented because of stability stability of a stock solution.
[研磨条件]
 研磨機:岡本工作機械製作所社製の枚葉研磨機、型式「PNX-332B」
 研磨テーブル:上記研磨機の有する3テーブルのうち後段の2テーブルを用いて、予備研磨後のファイナル研磨1段目および2段目を実施した。(以下の条件は各テーブル同一である。)
 研磨荷重:15kPa
 定盤回転数:30rpm
 ヘッド回転数:30rpm
 研磨時間:2分
 研磨液の温度:20℃
 研磨液の供給速度:2.0リットル/分(掛け流し使用)
[Polishing conditions]
Polishing machine: Single wafer polishing machine manufactured by Okamoto Machine Tool Manufacturing Co., Ltd. Model “PNX-332B”
Polishing table: Final polishing 1st stage and 2nd stage after preliminary polishing were carried out using 2 tables at the back stage among the 3 tables of the polishing machine. (The following conditions are the same for each table.)
Polishing load: 15 kPa
Plate rotation speed: 30 rpm
Head rotation speed: 30rpm
Polishing time: 2 minutes Polishing liquid temperature: 20 ° C
Polishing liquid supply rate: 2.0 l / min
<洗浄>
 研磨後のシリコンウェーハを、アンモニア(29%):H2O2(31%):脱イオン水(DIW)=1:3:30(体積比)の洗浄液を用いて洗浄した(SC-1洗浄)。より具体的には、周波数950kHzの超音波発振器を取り付けた洗浄槽を2つ用意し、それら第1および第2の洗浄槽の各々に上記洗浄液を収容して60℃に保持し、研磨後のシリコンウェーハを第1の洗浄槽に6分、その後超純水と超音波によるリンス槽を経て第2の洗浄槽に6分、それぞれ上記超音波発振器を作動させた状態で浸漬した。
<Washing>
The polished silicon wafer was cleaned using a cleaning solution of ammonia (29%): H 2 O 2 (31%): deionized water (DIW) = 1: 3: 30 (volume ratio) (SC-1 cleaning). More specifically, two cleaning tanks equipped with an ultrasonic oscillator with a frequency of 950 kHz are prepared, the cleaning liquid is accommodated in each of the first and second cleaning tanks and held at 60 ° C., and after polishing. The silicon wafer was immersed in the first cleaning tank for 6 minutes, then passed through an ultrapure water and ultrasonic rinsing tank, and then in the second cleaning tank for 6 minutes, each with the ultrasonic oscillator being operated.
<ヘイズ測定>
 洗浄後のシリコンウェーハ表面につき、ケーエルエー・テンコール社製のウェーハ検査装置、商品名「SurfscanSP2」を用いて、DWOモードでヘイズ(ppm)を測定し、下記3水準で評価した。得られた結果を表2の「ヘイズ」の欄に示す。
 A:0.08ppm以下
 B:0.08ppm超0.09ppm以下
 C:0.09ppmより大きい
<Haze measurement>
Using a wafer inspection device manufactured by KLA-Tencor Corporation, trade name “Surfscan SP2”, haze (ppm) was measured in the DWO mode on the cleaned silicon wafer surface, and the following three levels were evaluated. The obtained results are shown in the “Haze” column of Table 2.
A: 0.08 ppm or less B: More than 0.08 ppm and 0.09 ppm or less C: Greater than 0.09 ppm
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1および表2に示されるように、指標Aが0.8以下であった実施例1~7の原液は、上記安定性試験において良好な分散安定性を示した。一方、指標Aが0.8を上回った比較例1、2の原液は、上記安定性試験において沈降物が認められ、安定した分散状態を維持することができなかった。また、指標Aが0.8以下である原液をpH変化が0.15以上となるように希釈した研磨液(研磨用組成物)であって、水溶性ポリマーのモル濃度が7.0×10-8モル/L以上であった実施例1~7では、水溶性ポリマーのモル濃度が7.0×10-8モル/L未満であった比較例3と比べて、ヘイズ低減効果が優れていた。これらの結果から、指標Aが0.8以上である研磨用組成物原液を用いて、かつ希釈後の研磨用組成物の水溶性ポリマーのモル濃度(モル/L)を7.0×10-8以上とすることにより、原液のときには分散安定性がよく、高倍率に希釈した場合においても希釈後には良好な表面品質を実現し得ることがわかる。 As shown in Table 1 and Table 2, the stock solutions of Examples 1 to 7 having an index A of 0.8 or less showed good dispersion stability in the stability test. On the other hand, in the stock solutions of Comparative Examples 1 and 2 in which the index A exceeded 0.8, sediment was observed in the stability test, and a stable dispersion state could not be maintained. Further, it is a polishing liquid (polishing composition) obtained by diluting a stock solution having an index A of 0.8 or less so that the pH change is 0.15 or more, and the molar concentration of the water-soluble polymer is 7.0 × 10. In Examples 1 to 7, which were -8 mol / L or more, the haze reduction effect was superior to Comparative Example 3 in which the molar concentration of the water-soluble polymer was less than 7.0 × 10 -8 mol / L. It was. From these results, the molar concentration (mol / L) of the water-soluble polymer in the polishing composition after dilution was 7.0 × 10 using a polishing composition stock solution having an index A of 0.8 or more. By setting it to 8 or more, it can be seen that dispersion stability is good in the case of a stock solution, and even when diluted at a high magnification, good surface quality can be realized after dilution.
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

Claims (9)

  1.  研磨用組成物を製造する方法であって、
     砥粒、塩基性化合物、水溶性ポリマーおよび水を含む研磨用組成物原液をpH変化が0.15以上となるように希釈する工程、を含み、
     前記研磨用組成物原液は、関係式:
      A=[CA×CP]/pHC
    から求められる指標Aが0.8以下であり、前記希釈後の研磨用組成物における水溶性ポリマーのモル濃度は、7.0×10-8モル/L以上であり、前記関係式中、CAは研磨用組成物原液における砥粒の含有量(重量%)であり、CPは研磨用組成物原液における水溶性ポリマーの含有量(重量%)であり、pHCは研磨用組成物原液のpH値である、研磨用組成物の製造方法。
    A method for producing a polishing composition comprising:
    Diluting a polishing composition stock solution containing abrasive grains, a basic compound, a water-soluble polymer and water so that the pH change is 0.15 or more,
    The polishing composition stock solution has a relational formula:
    A = [CA × CP] / pHC
    And the molar concentration of the water-soluble polymer in the polishing composition after dilution is 7.0 × 10 −8 mol / L or more. Is the content (% by weight) of abrasive grains in the polishing composition stock solution, CP is the content (% by weight) of the water-soluble polymer in the polishing composition stock solution, and pHC is the pH value of the polishing composition stock solution. The manufacturing method of polishing composition which is.
  2.  前記希釈工程は、塩基性化合物を実質的に含有しない液体を用いて行う、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the dilution step is performed using a liquid that does not substantially contain a basic compound.
  3.  前記希釈工程は、pH変化が0.3以上となるように前記研磨用組成物原液を希釈する工程である、請求項1または2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the dilution step is a step of diluting the polishing composition stock solution so that the pH change becomes 0.3 or more.
  4.  前記希釈工程は、前記研磨用組成物原液を体積基準で50倍以上に希釈する工程である、請求項1~3のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the dilution step is a step of diluting the polishing composition stock solution 50 times or more on a volume basis.
  5.  前記希釈後の研磨用組成物のpHは8~12である、請求項1~4のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the diluted polishing composition has a pH of 8 to 12.
  6.  前記砥粒としてシリカ砥粒を使用する、請求項1~5のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 5, wherein silica abrasive is used as the abrasive.
  7.  前記水溶性ポリマーの重量平均分子量は、90×10以下である、請求項1~6のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 6, wherein the water-soluble polymer has a weight average molecular weight of 90 × 10 4 or less.
  8.  前記研磨用組成物は、シリコンウェーハを研磨するために用いられる、請求項1~6のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 6, wherein the polishing composition is used for polishing a silicon wafer.
  9.  pH変化が0.15以上となるように希釈して使用される研磨用組成物原液であって、 砥粒、塩基性化合物、水溶性ポリマーおよび水を含み、関係式:
      A=[CA×CP]/pHC
    から求められる指標Aが0.8以下であり、前記水溶性ポリマーのモル濃度は4.3×10-6モル/L以上であり、、前記関係式中、CAは研磨用組成物原液における砥粒の含有量(重量%)であり、CPは研磨用組成物原液における水溶性ポリマーの含有量(重量%)であり、pHCは研磨用組成物原液のpH値である、研磨用組成物原液。
    A polishing composition stock solution used by diluting so that the pH change is 0.15 or more, comprising abrasive grains, a basic compound, a water-soluble polymer and water, and a relational formula:
    A = [CA × CP] / pHC
    The index A obtained from the formula is 0.8 or less, the molar concentration of the water-soluble polymer is 4.3 × 10 −6 mol / L or more, and in the above relational formula, CA is the abrasive in the polishing composition stock solution. Polishing composition stock solution, which is the content (% by weight) of particles, CP is the content (% by weight) of the water-soluble polymer in the polishing composition stock solution, and pHC is the pH value of the polishing composition stock solution .
PCT/JP2015/003830 2014-09-03 2015-07-29 Method for manufacturing polishing composition WO2016035250A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-179162 2014-09-03
JP2014179162A JP6562605B2 (en) 2014-09-03 2014-09-03 Method for producing polishing composition

Publications (1)

Publication Number Publication Date
WO2016035250A1 true WO2016035250A1 (en) 2016-03-10

Family

ID=55439341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003830 WO2016035250A1 (en) 2014-09-03 2015-07-29 Method for manufacturing polishing composition

Country Status (3)

Country Link
JP (1) JP6562605B2 (en)
TW (1) TW201614035A (en)
WO (1) WO2016035250A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6960328B2 (en) * 2016-12-26 2021-11-05 ニッタ・デュポン株式会社 Polishing composition
JP6951933B2 (en) * 2017-10-10 2021-10-20 花王株式会社 Finish polishing liquid composition for silicon wafer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006352043A (en) * 2005-06-20 2006-12-28 Nitta Haas Inc Composition for polishing semiconductor
JP2009231486A (en) * 2008-03-21 2009-10-08 Kao Corp Polishing liquid composition for silicon wafer
JP2013034026A (en) * 2012-11-14 2013-02-14 Fujimi Inc Polishing composition and method for manufacturing semiconductor wafer using the same
JP2013222863A (en) * 2012-04-17 2013-10-28 Kao Corp Composition for silicon wafer polishing liquid
JP2014090100A (en) * 2012-10-30 2014-05-15 Kao Corp Polishing liquid composition for silicon wafers
JP2014130966A (en) * 2012-12-28 2014-07-10 Kao Corp Polishing liquid composition for silicon wafer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006352043A (en) * 2005-06-20 2006-12-28 Nitta Haas Inc Composition for polishing semiconductor
JP2009231486A (en) * 2008-03-21 2009-10-08 Kao Corp Polishing liquid composition for silicon wafer
JP2013222863A (en) * 2012-04-17 2013-10-28 Kao Corp Composition for silicon wafer polishing liquid
JP2014090100A (en) * 2012-10-30 2014-05-15 Kao Corp Polishing liquid composition for silicon wafers
JP2013034026A (en) * 2012-11-14 2013-02-14 Fujimi Inc Polishing composition and method for manufacturing semiconductor wafer using the same
JP2014130966A (en) * 2012-12-28 2014-07-10 Kao Corp Polishing liquid composition for silicon wafer

Also Published As

Publication number Publication date
JP6562605B2 (en) 2019-08-21
JP2016053114A (en) 2016-04-14
TW201614035A (en) 2016-04-16

Similar Documents

Publication Publication Date Title
JP6513591B2 (en) Polishing composition, method for producing polishing composition, and kit for preparing polishing composition
TWI660037B (en) Silicon wafer polishing composition
JP6279593B2 (en) Polishing composition, method for producing polishing composition, and method for producing silicon wafer
JP6360311B2 (en) Polishing composition and method for producing the same
JP6110681B2 (en) Polishing composition, polishing composition manufacturing method and polishing product manufacturing method
JP6649828B2 (en) Polishing method of silicon substrate and polishing composition set
JP2017101248A (en) Polishing composition, manufacturing method of polishing composition and manufacturing method of polished article
JP6691774B2 (en) Polishing composition and method for producing the same
JP6482200B2 (en) Polishing composition
JPWO2019017407A1 (en) Substrate polishing method and polishing composition set
WO2018150945A1 (en) Silicon substrate intermediate polishing composition and silicon substrate polishing composition set
JP6377656B2 (en) Silicon substrate polishing method and polishing composition set
JP7026043B2 (en) A method for manufacturing a composition for rough polishing a silicon wafer, a composition set for rough polishing a silicon wafer, and a method for polishing a silicon wafer.
JP6562605B2 (en) Method for producing polishing composition
JP5859055B2 (en) Silicon wafer polishing composition
JP6916792B2 (en) Concentrate of composition for rough polishing of silicon wafer
JP6348927B2 (en) Silicon wafer polishing composition
JP6373029B2 (en) Polishing composition
JP5859054B2 (en) Silicon wafer polishing composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15838198

Country of ref document: EP

Kind code of ref document: A1