WO2016034754A1 - Heat storage method and system for a solar steam generation plant and solar steam generation plant - Google Patents

Heat storage method and system for a solar steam generation plant and solar steam generation plant Download PDF

Info

Publication number
WO2016034754A1
WO2016034754A1 PCT/ES2015/070645 ES2015070645W WO2016034754A1 WO 2016034754 A1 WO2016034754 A1 WO 2016034754A1 ES 2015070645 W ES2015070645 W ES 2015070645W WO 2016034754 A1 WO2016034754 A1 WO 2016034754A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase change
superheater
thermal storage
thermal
transfer fluid
Prior art date
Application number
PCT/ES2015/070645
Other languages
Spanish (es)
French (fr)
Inventor
Aleix JOVÉ LLOVERA
Cristina PRIETO RÍOS
Carlos RUBIO ABUJAS
Alfonso Rodríguez Sánchez
María ALGUACIL CUBERO
Original Assignee
Abengoa Solar New Technologies, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abengoa Solar New Technologies, S.A. filed Critical Abengoa Solar New Technologies, S.A.
Publication of WO2016034754A1 publication Critical patent/WO2016034754A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/12Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having two or more accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention is framed in the field of solar thermal power generation, specifically in the configuration of direct steam generation plants and corresponding thermal storage systems.
  • the configuration and the proposed method allow to store heat thanks to the steam produced during the day and deliver this heat when necessary, producing superheated steam at the most similar conditions possible to those of nominal operation of the plant.
  • the configuration of the proposed storage systems has application both in solar thermal power plants for steam production, and in production processes where heat storage can be a differentiating factor from the point of view of energy and economic efficiency.
  • thermal storage materials in known solar thermal plants are molten salts and thermal oil.
  • the former can create problems in operation such as the risk of freezing the salts in the different parts of the installation and the latter represent a very important cost of the plant in addition to not allowing to reach high temperatures (about 400 ° C) which implies low efficiency in the subsequent steam cycle.
  • both technologies have thermal storage systems based on heat accumulation in double tank systems of molten salts.
  • Solar thermal direct generation superheated steam plants are presented as an alternative to technologies that use oils and salts to reduce the costs of generating electricity.
  • This type of plant simplifies the design by using steam as a thermal transfer fluid, which allows the elimination of steam exchanger / generator systems in the installation.
  • the main disadvantage of this Technology is that there is no competitive storage system with large capacities.
  • the power cycles of these superheated steam plants are usually Rankine cycles with or without overheating, with operating pressures between 100 bar and 170 bar and with overheating temperatures between 585 ° C and 360 ° C.
  • these cycles are usually designed for daily operation by providing a configuration of extractions and recuperators that maximizes their performance while the plant operates during the day, generating electricity and in parallel charging the storage system during daylight hours, in case there is .
  • the known storage systems associated with these plants are divided into: a) thermal storage systems that store heat from exclusively saturated steam, b) thermal storage systems that store heat from saturated and superheated steam at the same time. In these systems the performance of the cycle in the case of the discharge is penalized by the fact of discharging the steam at pressures and / or temperatures significantly below the nominal ones.
  • the systems in case b) can operate with superheated steam cycles (turbines that only accept superheated steam). If an overheated steam turbine is used, the discharged steam must ensure a minimum superheat temperature for each operating pressure, usually 50 ° C above the saturation temperature. Due to this there are also many combinations of operation, however, and as in the previous case, moving away from the nominal pressure and temperature conditions decreases the cycle performance.
  • thermal storage systems based on saturated steam accumulators, the so-called Ruth's tanks. These tanks can accumulate steam at the same pressure with which they are loaded, but only allow the discharge at a pressure significantly lower than the nominal one, either with sliding pressure or with constant pressure steps in the saturation module.
  • a thermal storage configuration without steam accumulation with two salt tanks, a cold tank and a hot tank is also known. This configuration includes a heat exchanger connected between the two tanks where, in the case of the discharge, the water from the power cycle evaporates and overheats thanks to the salts that pass from the hot tank to the cold through the heat exchanger.
  • the present invention minimizes the effect of loading and / or unloading in conditions that differ from the nominal ones by proposing a system consisting of three blocks: i) a saturation block based on phase change materials and ii) an overheating block that raises the steam temperature of a thermal transfer fluid up to the desired values and iii) a preheating block that increases the temperature difference between a cold tank and a hot tank of a thermal storage material without phase change.
  • This application refers to a thermal storage material without phase change as a material that can be solid, liquid or gas, which stores heat by increasing its temperature, without changing phase under system conditions.
  • this type of material may be molten salts.
  • thermal transfer fluid means the fluid that circulates from the solar field to the cycle and is returned to the solar field and which could optionally also be used in an electrical generation system.
  • the saturation block is based on the latent heat of a phase-changing material at a temperature similar to that of saturated steam. The thermal energy transmission is carried out in an isothermal process, allowing saturated steam to be generated at constant pressure. In this way the hysteresis between loading and unloading pressures is minimized.
  • the superheat block is responsible for raising the temperature of the steam coming from the saturation block until it reaches temperature values as close to the nominal one.
  • the preheating block allows, in the case of the discharge, the thermal exchange between the thermal storage material without phase change from a superheater and the thermal transfer fluid from the power cycle.
  • the thermal storage material without phase change reduces its temperature to the minimum values that it allows without changing phase.
  • This increase in the temperature difference in the thermal storage material without phase change between the cold tank and the hot tank up to maximum values allows the use of a smaller amount of said material taking advantage of the entire available temperature range thereof and with it reduce investment both in the material itself and in volume of the tanks and foundations.
  • the present invention proposes a configuration of a storage system for direct steam generation technology based on a phase change system and a double tank system of thermal storage material without phase change. This configuration allows the system to be downloaded maximizing the performance of the discharge power cycle.
  • the invention consists in the method for carrying out the heat exchange between thermal storage materials and the thermal transfer fluid both in the loading and unloading process, in the system for carrying out said method and in a solar power plant.
  • thermal storage comprising said system.
  • the proposed configuration consists of a phase change module, a cold tank of thermal storage material without phase change (cold tank), a hot tank of thermal storage material without phase change (hot tank) , a superheater that performs the heat exchange between the thermal storage material without phase change and the thermal transfer fluid in superheated steam state and a preheater that performs an exchange between the thermal storage material without phase change and the flow fluid thermal transfer in subcooled liquid state.
  • both exchangers are mounted in series with the phase change module and in the direction of lower to higher temperature we would find: preheater, phase change module and superheater.
  • the phase change module is used to evaporate the liquid or condense the steam as the system is in discharge or load mode respectively and can be designed to further heat subcooled liquid to saturation conditions in the discharge. To implement this configuration, it will be necessary to include a piping system that allows the preheated liquid from the preheater to circulate in the discharge to the phase change module and in the load the saturated thermal transfer liquid leaving the phase change module directly to the solar field, not circulating this current to the preheater.
  • the circuit of the thermal storage material without phase change and from lower to higher temperature we find the cold tank, the preheater, the superheater and the hot tank.
  • the circuit In the case of the load the circuit would be cold tank, superheater and hot tank.
  • the piping system in the load must circulate the thermal storage material without phase change from the cold tank to the hot tank through the superheater while in the discharge the piping system circulates the thermal storage material without changing the phase of the tank heat the cold tank through superheater and preheater.
  • the thermal storage method is characterized by comprising the following steps:
  • the steam coming from the solar plant is superheated and is cooled in the superheater until it is transformed into saturated steam and subsequently introduced into the phase change module where it is transformed into saturated liquid while that in the circuit of the thermal storage material without phase change, all the thermal storage material without phase change leaving the cold tank is heated in the superheater and stored in the hot tank.
  • the cold tank can be emptied totally or partially, but always the entire thermal material without phase change leaving the cold tank is stored in the hot tank.
  • the thermal transfer fluid under conditions of subcooled liquid is preheated in the preheater, increasing its temperature and maintaining under conditions of subcooled liquid. It is subsequently introduced into the phase change module where it is transformed into saturated liquid and subsequently saturated steam and is finally superheated to superheated steam in the superheater. While in the material circuit of Thermal storage without phase change, all said material leaving the hot tank, is cooled in the superheater and then in the preheater and finally stored in the cold tank. As with the load, the hot tank can be emptied totally or partially, but always all the thermal material without phase change leaving the hot tank is stored in the cold tank.
  • the system is characterized in that it comprises the module with the phase change material, the thermal transfer fluid circuit and the thermal storage material circuit without phase change, the circuits being configured so that they are different in the case of loading and unloading the system, where,
  • the thermal transfer fluid circuit comprises the superheater in connection with the solar plant and with the phase change module
  • the circuit of thermal storage material without phase change comprises the superheater, the cold tank and the hot tank, the cold tank, the superheater and the hot tank being configured so that the entire thermal storage material without phase change coming from the cold tank passes to the hot tank through the superheater.
  • the thermal transfer fluid circuit comprises the phase change module, the superheater and the preheater, being configured so that the preheater is arranged followed by the phase change module and followed by the superheater and the preheater being configured to raise the temperature of the thermal transfer fluid without reaching saturation conditions and the phase change module to perform both the heating of the thermal transfer fluid to the saturation conditions and its phase change to saturated steam,
  • the circuit of thermal storage material without phase change comprises the cold tank, the hot tank, the superheater and the preheater, being configured so that the hot tank is arranged followed by the superheater in turn followed by the preheater and followed by the tank cold and passing all of the thermal storage material without phase change from the hot tank to the cold tank through the superheater and preheater so that the entire material of Thermal storage without phase change leaving the hot tank passes to the cold tank through the superheater and preheater.
  • the method and configuration of the invention allow obtaining the minimum possible temperature in the cold tank and the maximum possible temperature in the hot tank.
  • the energy stored in a phase change storage system is directly proportional to the latent heat of phase change of the phase change material itself, so it is directly proportional to the amount of this material.
  • the energy storage in the phase change system occurs because the phase change module maintains a condensation-solidification temperature such that it allows a thermal gradient with the thermal transfer fluid under conditions of liquid-vapor saturation that ensures the transfer of hot. In an exemplary embodiment this thermal gradient is at least 2 ° C.
  • the maximum ⁇ or maximum temperature difference between the cold tank and the possible hot tank must be achieved.
  • a larger ⁇ allows the thermal storage material tanks to be sized without phase change of a smaller size to store the same amount of energy.
  • the thermal storage material without phase change at the minimum possible temperature that allows its operation circulates from cold tank to hot tank through the superheater.
  • This thermal storage material without phase change gains the heat transferred by the thermal transfer fluid under conditions of superheated steam circulating from the solar field to the superheater.
  • the superheated thermal transfer fluid acquires saturated steam quality thanks to having yielded the sensitive heat corresponding to the superheated part to the thermal storage material without phase change.
  • the thermal transfer fluid already in saturated steam conditions passes through the phase change module condensing and giving all the heat of its condensation to the phase change material. The latter gains the heat ceded by the thermal transfer fluid and It changes phase. This heat exchange is due to the existence of a thermal gradient between the phase change material and the thermal transfer fluid under saturated liquid-vapor conditions.
  • the thermal transfer fluid, in a saturated liquid state, leaving the phase change module is circulated to the process under saturation conditions to be again vaporized and superheated in the solar field receiver.
  • the circuit In the download process the circuit is different.
  • the thermal transfer fluid under conditions of subcooled liquid passes through the preheater and increases its energy, leaving the preheater with a degree of subcooling less than at its inlet. Subsequently, it is introduced in the phase change module, where the thermal transfer fluid in the subcooled liquid state increases its energy and changes phase until it exits in saturated steam conditions. This heat exchange is due to the existence of a thermal gradient between the phase change material and the thermal transfer fluid under saturated liquid-vapor conditions. Finally it passes through the superheater and increases its energy, leaving in a state of superheated steam.
  • the thermal storage material without phase change of the hot tank passes through the superheater yielding part of its sensible heat.
  • This same storage material without change of phase at its outlet of the superheater is introduced into the preheater so that it continues to transfer energy to the thermal transfer fluid in the subcooled liquid state, in this way the minimum temperature is reached, achieving a greater temperature difference between the cold and hot tank. Subsequently the thermal storage material without phase change is housed in the cold tank.
  • the thermal transfer fluid in the state of subcooled liquid from the cycle does not reach saturation conditions at the outlet of the preheater, this fluid actually gains heat by raising its temperature but always in the range of subcooled liquid.
  • the temperature reached by the thermal transfer fluid at the outlet of the preheater is determined by the heat transferred by the flow of thermal storage material without phase change from the superheater. Said flow delivers only part of the power that the thermal transfer fluid would require under conditions of subcooled liquid to achieve saturation conditions in the preheater. This is because the thermal energy required to pass from subcooled liquid to saturation conditions in the Preheater is greater than the thermal energy that is capable of transmitting the thermal storage material flow rate without phase change, since this flow rate is the same as exchanging heat in the superheater.
  • the same flow of thermal storage material is maintained without phase change through the superheater and preheater, this having the advantage that it allows to take advantage of the entire operating range of the thermal storage material without phase change.
  • This also avoids the need for an intermediate tank that stores the excess thermal storage material without phase change that would be necessary in the preheater to bring the thermal transfer fluid from subcooled liquid conditions to saturation conditions.
  • the temperature of the thermal storage material is decreased without changing phase maximizing the temperature difference between hot and cold tank.
  • the thermal storage material tanks without phase change yield energy to two different processes: i) to bring the thermal transfer fluid from subcooled to subcooled liquid conditions with a lower degree of subcooling through the preheater; and also ii) to bring the thermal transfer fluid in saturated steam conditions to superheated conditions through the superheater.
  • the solar steam generation plant comprising a thermal storage system as described above is also object of the invention.
  • Figure 1 shows a schematic representation of an exemplary embodiment of the plant configuration object of the invention.
  • Figure 2 shows the temperature (T) - heat (Q) graph of the loading process of the storage system of the plant configuration corresponding to Figure 1.
  • Figure 3 shows the temperature (T) - heat (Q) graph of the unloading process of the storage system of the plant configuration corresponding to figure 1.
  • the thermal transfer fluid is water.
  • a solar field (10) and a power block (70) are shown.
  • Figure 1 represents the power block (70) only by means of a turbine although it would comprise the elements of a power element.
  • the system consists of a preheating system comprising a preheater (40) and two salt tanks: a cold tank (50) and a hot tank (60), an evaporation system consisting of a module (30) for changing the phase and an overheating system, consisting of a superheater (20).
  • the thermal transfer fluid exits the superheater charge (20) under conditions of superheated steam with a degree of superheat that is lower than that of its entrance to the superheater (20).
  • Figures 2 and 3 show the thermal cycle experienced by steam and salts in the exemplary embodiment shown in Figure 1.
  • the preferred embodiment of the present invention is developed for a direct superheated steam generation plant of 530 ° C at 130 bar pressure.
  • the proposed phase change module (30) is a module with a phase change temperature preferably of 312 ° C.
  • the subcooled return water temperature of the power block (70) is considered 232 ° C.
  • the minimum operating temperature of molten salts is set as 265 ° C.
  • the load graph of Figure 2 is obtained where a indicates water circuit, s indicates the salt circuit and m the phase change material circuit .
  • the saturation temperature of the steam at 130 bar is 331 ° C, so the condensation of this steam is represented at the constant temperature of 331 ° C.
  • the temperature gradient between 331 ° C and 312 ° C allows for a thermal transfer between the heat of the condensing steam and the melting phase change material.
  • the temperature of the hot tank (60) is represented as 522 ° C since due to the thermal nature of the salts and superheated steam it is the maximum temperature that can be achieved respecting a minimum thermal gradient between salts and steam of 5 ° C ( represented in the graph as p). Thus, a minimum thermal transfer between steam and salts is always ensured due to this gradient of 5 ° C.
  • the loading procedure of the system described above would then be according to Figure 2:
  • phase change module (30) gains the heat ceded by the steam condensing and passes from solid to liquid state (line between points 32m and 31m in Figure 2).
  • the thermal exchange in the preheater (40) implies the thermal transfer of heat from the salts to the subcooled water: the salts would reduce their temperature from 315 ° C (point 41 s of Figure 3) temperature at which they are at superheater output (20) up to 265 ° C (point 42s in figure 3) which is when they are poured into the cold tank (50).
  • the subcooled water gains temperature from 232 ° C (point 42a of figure 3) at its entrance to the preheater (40), coming from the power block (((70), up to 266 ° C (point 41 a of the figure 3), temperature at which it is at its outlet from the preheater (40) At all times there is a high temperature gradient that allows efficient thermal transfer.
  • the steam in saturation conditions at 97 bar has a saturation temperature of 308 ° C and the phase change module solidifies at 312 ° C ( line between points 31 m and 32m) so there is also a minimum gradient of 4 ° C that allows the thermal transfer of the phase change module (30) to the liquid water / steam first being subcooled water heating from 266 ° C up to 308 ° C and then evaporating completely at 308 ° C.
  • Subcooled water enters 232 ° C (point 42a in Figure 3) into the preheater (40), coming from the power block (70).
  • phase change module (30) gives heat to the subcooled water in a first stage and then to the saturated water, evaporating completely.
  • the phase change material passes from a liquid state (point 31 m of figure 3) to a solid state (point 32m of figure 3).
  • Saturated steam at the output of the phase change module (30) is introduced to the superheater (20) where it gains temperature by overheating up to 517 ° C (line between points 22a and 21a of Figure 3) thanks to the heat ceded by salts from the hot tank (60) which pass from 522 ° C to 315 ° C (line between points 21 s and 22s of Figure 3).
  • the system proposed in the invention thanks to the phase change module (30), the tanks (50, 60), the preheater (40) and the superheater (20), circulates in discharge the same flow of salts per preheater (40) and superheater (20), obtaining at the same time a maximum temperature difference in the double tank system (50, 60). It does not therefore require the use of intermediate tanks that store the surplus of salts that would originate if their flow through preheater (40) and superheater (20) were different.
  • the commissioning, in the download mode is carried out according to two possible options of initial system status:
  • Subcooled water from the power block (70) is circulated through the preheater (40) through which no salts pass at an initial moment.
  • the subcooled water passes to the phase change module (30) where saturated steam is produced which passes to the superheater (20) from which it is superheated again towards the power block.
  • the salts can follow two routes:
  • Subcooled water from the power block (70) is introduced to the phase change module (30) from which it exits under saturated steam conditions and circulates to the superheater (20) from which it is superheated again to The power cycle
  • the sales circuit can also follow two options:
  • This embodiment introduces a degree of freedom since the saturation state of the liquid and vapor is not conditioning at the input or output of the phase change module (30) and therefore the system is more versatile against changes in temperature and pressure getting greater flexibility in plant control.

Abstract

The invention relates to a heat storage method and system for a steam generation plant, and to the solar plant comprising said system. The method according to the invention minimises the charging and/or discharging effect in conditions that differ from the nominal conditions by means of a system consisting of three blocks: i) a saturating block based on phase-change materials, ii) an over-heating block that increases the temperature of the steam of the heat-transfer fluid to the desired values, and iii) a pre-heating block that increases the difference in temperature between a cold tank and a hot tank of a heat storage material without phase change.

Description

DESCRIPCIÓN  DESCRIPTION
Método y sistema de almacenamiento térmico para planta solar de generación de vapor y planta solar de generación de vapor Method and thermal storage system for solar steam generation plant and solar steam generation plant
Campo de la invención La presente invención se enmarca en el sector de la generación eléctrica termosolar, concretamente en la configuración de las plantas de generación directa de vapor y los sistemas de almacenamiento térmico correspondientes. Field of the Invention The present invention is framed in the field of solar thermal power generation, specifically in the configuration of direct steam generation plants and corresponding thermal storage systems.
En particular, se refiere a la configuración y dimensionamiento de los sistemas de almacenamiento térmico dentro de una planta termosolar de generación directa de vapor. La configuración y el método que se proponen permiten almacenar calor gracias al vapor producido durante el día y entregar este calor cuando sea necesario, produciendo vapor sobrecalentado a las condiciones más similares posibles a las de operación nominal de la planta. In particular, it refers to the configuration and sizing of thermal storage systems within a direct steam generating solar thermal plant. The configuration and the proposed method allow to store heat thanks to the steam produced during the day and deliver this heat when necessary, producing superheated steam at the most similar conditions possible to those of nominal operation of the plant.
La configuración de los sistemas de almacenamiento propuestos tiene aplicación tanto en centrales termosolares para la producción de vapor, como en procesos de producción dónde el almacenamiento de calor puede ser un factor diferenciador desde el punto de vista de eficiencia energética y económica. The configuration of the proposed storage systems has application both in solar thermal power plants for steam production, and in production processes where heat storage can be a differentiating factor from the point of view of energy and economic efficiency.
Antecedentes de la invención Background of the invention
Los materiales de almacenamiento térmico más comúnmente utilizados en las plantas termosolares conocidas son las sales fundidas y el aceite térmico. Los primeros pueden crear problemas en operación como el riesgo de congelación de las sales en las distintas partes de la instalación y los segundos representan un coste muy importante de la planta además de que no permiten alcanzar temperaturas elevadas (unos 400 °C) lo que implica una baja eficiencia en el ciclo de vapor posterior. Aun así, ambas tecnologías disponen de sistemas de almacenamiento térmico basados en acumulación de calor en sistemas de doble tanque de sales fundidas. The most commonly used thermal storage materials in known solar thermal plants are molten salts and thermal oil. The former can create problems in operation such as the risk of freezing the salts in the different parts of the installation and the latter represent a very important cost of the plant in addition to not allowing to reach high temperatures (about 400 ° C) which implies low efficiency in the subsequent steam cycle. Even so, both technologies have thermal storage systems based on heat accumulation in double tank systems of molten salts.
Las plantas termosolares de generación directa de vapor sobrecalentado se presentan como una alternativa a las tecnologías que utilizan aceites y sales para reducir los costes de generación de energía eléctrica. Este tipo de plantas permite simplificar el diseño al utilizar el vapor como fluido de transferencia térmica, lo que permite eliminar sistemas de intercambiadores/generadores de vapor en la instalación. La principal desventaja de esta tecnología es que no existe un sistema de almacenamiento competitivo de grandes capacidades. Solar thermal direct generation superheated steam plants are presented as an alternative to technologies that use oils and salts to reduce the costs of generating electricity. This type of plant simplifies the design by using steam as a thermal transfer fluid, which allows the elimination of steam exchanger / generator systems in the installation. The main disadvantage of this Technology is that there is no competitive storage system with large capacities.
Los ciclos de potencia de estas plantas de vapor sobrecalentado acostumbran a ser generalmente ciclos Rankine con o sin recalentamiento, con presiones de funcionamiento entre los 100 bar y los 170 bar y con temperaturas de sobrecalentamiento entre los 585 °C y los 360 °C. Además estos ciclos suelen estar diseñados para el funcionamiento diario disponiendo una configuración de extracciones y recuperadores que maximiza su rendimiento mientras la planta opera durante el día, generando electricidad y en paralelo cargando el sistema de almacenamiento durante las horas de sol, en caso de que exista. Los sistemas de almacenamiento conocidos asociados a estas plantas se dividen en: a) sistemas de almacenamiento térmico que almacenan calor proveniente de vapor saturado exclusivamente, b) sistemas de almacenamiento térmico que almacenan calor proveniente de vapor saturado y sobrecalentado a la vez. En estos sistemas el rendimiento del ciclo en el caso de la descarga se ve penalizado por el hecho de descargar el vapor a presiones y/o temperaturas significativamente por debajo de las nominales. The power cycles of these superheated steam plants are usually Rankine cycles with or without overheating, with operating pressures between 100 bar and 170 bar and with overheating temperatures between 585 ° C and 360 ° C. In addition, these cycles are usually designed for daily operation by providing a configuration of extractions and recuperators that maximizes their performance while the plant operates during the day, generating electricity and in parallel charging the storage system during daylight hours, in case there is . The known storage systems associated with these plants are divided into: a) thermal storage systems that store heat from exclusively saturated steam, b) thermal storage systems that store heat from saturated and superheated steam at the same time. In these systems the performance of the cycle in the case of the discharge is penalized by the fact of discharging the steam at pressures and / or temperatures significantly below the nominal ones.
Los sistemas del caso a) pueden funcionar exclusivamente con ciclos de vapor saturado (turbinas que solo aceptan vapor saturado). Aun así permiten un rango de funcionamiento a distintas presiones siempre y cuando el vapor entre al ciclo en estado saturado. Cabe decir que cada ciclo está diseñado para su funcionamiento nominal a una presión determinada (la máxima) y al disminuir esta presión el rendimiento disminuye. The systems in case a) can operate exclusively with saturated steam cycles (turbines that only accept saturated steam). Even so, they allow a range of operation at different pressures as long as the steam enters the cycle in a saturated state. It should be said that each cycle is designed for its nominal operation at a certain pressure (the maximum) and as this pressure decreases, the performance decreases.
Los sistemas del caso b) pueden funcionar con ciclos de vapor sobrecalentado (turbinas que solo aceptan vapor sobrecalentado). Si se utiliza una turbina de vapor sobrecalentado el vapor descargado debe asegurar una temperatura de sobrecalentamiento mínima para cada presión de funcionamiento, normalmente de 50 °C por encima de la temperatura de saturación. Debido a esto también existen infinidad de combinaciones de funcionamiento, aun así, y como en el anterior caso, al alejarnos de las condiciones de presión y temperatura nominales disminuye el rendimiento del ciclo. The systems in case b) can operate with superheated steam cycles (turbines that only accept superheated steam). If an overheated steam turbine is used, the discharged steam must ensure a minimum superheat temperature for each operating pressure, usually 50 ° C above the saturation temperature. Due to this there are also many combinations of operation, however, and as in the previous case, moving away from the nominal pressure and temperature conditions decreases the cycle performance.
Hasta el momento estas plantas de vapor se diseñan con sistemas de almacenamiento térmico basados en acumuladores de vapor saturado, los llamados tanques Ruth's. Estos tanques pueden llegar a acumular vapor a la misma presión con la cual son cargados, pero permiten solamente la descarga a una presión significativamente menor de la nominal ya sea con presión deslizante o con escalones de presión constante en el módulo de saturado. Es también conocida una configuración de almacenamiento térmico sin acumulación de vapor con dos tanques de sales, un tanque frío y un tanque caliente. Esta configuración incluye un intercambiador de calor conectado entre los dos tanques donde, en el caso de la descarga, se evapora y sobrecalienta el agua proveniente del ciclo de potencia gracias a las sales que pasan del tanque caliente al frío a través del intercambiador de calor. Durante la carga se introduce vapor sobrecalentado al intercambiador de calor que se enfría y condensa parcialmente intercambiando calor con las sales que pasan del tanque frío al tanque caliente a través del intercambiador de calor. Esta configuración incluye además un recuperador de calor que aprovecha el calor de la corriente de agua saliente del intercambiador de sales en la carga. Este recuperador es necesario para condensar completamente el vapor parcialmente condensado en el intercambiador de calor. Esta configuración con el recuperador implica la modificación de las condiciones de las extracciones del ciclo de potencia con lo que se aleja del funcionamiento nominal y con ello del máximo rendimiento posible. Descripción de la invención So far these steam plants are designed with thermal storage systems based on saturated steam accumulators, the so-called Ruth's tanks. These tanks can accumulate steam at the same pressure with which they are loaded, but only allow the discharge at a pressure significantly lower than the nominal one, either with sliding pressure or with constant pressure steps in the saturation module. A thermal storage configuration without steam accumulation with two salt tanks, a cold tank and a hot tank is also known. This configuration includes a heat exchanger connected between the two tanks where, in the case of the discharge, the water from the power cycle evaporates and overheats thanks to the salts that pass from the hot tank to the cold through the heat exchanger. During charging, superheated steam is introduced into the heat exchanger that cools and partially condenses by exchanging heat with the salts that pass from the cold tank to the hot tank through the heat exchanger. This configuration also includes a heat recuperator that takes advantage of the heat of the outgoing water flow of the salt exchanger in the load. This recuperator is necessary to completely condense partially condensed steam in the heat exchanger. This configuration with the recuperator implies the modification of the conditions of the extractions of the power cycle, thus moving away from the nominal operation and with it the maximum possible performance. Description of the invention
La presente invención minimiza el efecto de carga y/o descarga en condiciones que difieren de las nominales planteando un sistema compuesto por tres bloques: i) un bloque de saturado basado en materiales de cambio de fase y ii) un bloque de sobrecalentado que eleva la temperatura del vapor de un fluido de transferencia térmica hasta los valores deseados y iii) un bloque de precalentado que aumenta la diferencia de temperaturas entre un tanque frío y un tanque caliente de un material de almacenamiento térmico sin cambio de fase. The present invention minimizes the effect of loading and / or unloading in conditions that differ from the nominal ones by proposing a system consisting of three blocks: i) a saturation block based on phase change materials and ii) an overheating block that raises the steam temperature of a thermal transfer fluid up to the desired values and iii) a preheating block that increases the temperature difference between a cold tank and a hot tank of a thermal storage material without phase change.
Esta solicitud se refiere a un material de almacenamiento térmico sin cambio de fase como un material que puede ser sólido, líquido o gas, que almacena calor aumentando su temperatura, sin que cambie de fase en las condiciones del sistema. En un ejemplo de realización este tipo de material pueden ser sales fundidas. This application refers to a thermal storage material without phase change as a material that can be solid, liquid or gas, which stores heat by increasing its temperature, without changing phase under system conditions. In an exemplary embodiment this type of material may be molten salts.
Igualmente por fluido de transferencia térmica se entiende el fluido que circula del campo solar al ciclo y es devuelto al campo solar y que opcionalmente podría ser además empleado en un sistema de generación eléctrica. El bloque de saturado se basa en el calor latente de un material que cambia de fase a una temperatura similar a la del vapor saturado. La transmisión de energía térmica se realiza en un proceso isotermo permitiendo generar vapor saturado a presión constante. De esta forma se minimiza la histéresis entre las presiones de carga y de descarga. El bloque de sobrecalentado se encarga de elevar la temperatura del vapor proveniente del bloque de saturado hasta llegar a valores de temperatura lo más cercanos a la nominal. Likewise, thermal transfer fluid means the fluid that circulates from the solar field to the cycle and is returned to the solar field and which could optionally also be used in an electrical generation system. The saturation block is based on the latent heat of a phase-changing material at a temperature similar to that of saturated steam. The thermal energy transmission is carried out in an isothermal process, allowing saturated steam to be generated at constant pressure. In this way the hysteresis between loading and unloading pressures is minimized. The superheat block is responsible for raising the temperature of the steam coming from the saturation block until it reaches temperature values as close to the nominal one.
El bloque de precalentado permite, en el caso de la descarga, el intercambio térmico entre el material de almacenamiento térmico sin cambio de fase proveniente de un sobrecalentador y el fluido de transferencia térmica proveniente del ciclo de potencia. De esta forma el material de almacenamiento térmico sin cambio de fase reduce su temperatura a los valores mínimos que permite sin cambiar de fase. Este incremento en la diferencia de temperaturas en el material de almacenamiento térmico sin cambio de fase entre el tanque frío y el tanque caliente hasta valores máximos permite la utilización de una cantidad menor de dicho material aprovechando todo el rango de temperatura disponible del mismo y con ello reducir la inversión tanto en el propio material como en volumen de los tanques y cimentaciones. The preheating block allows, in the case of the discharge, the thermal exchange between the thermal storage material without phase change from a superheater and the thermal transfer fluid from the power cycle. In this way the thermal storage material without phase change reduces its temperature to the minimum values that it allows without changing phase. This increase in the temperature difference in the thermal storage material without phase change between the cold tank and the hot tank up to maximum values allows the use of a smaller amount of said material taking advantage of the entire available temperature range thereof and with it reduce investment both in the material itself and in volume of the tanks and foundations.
La presente invención propone una configuración de un sistema de almacenamiento para la tecnología de generación directa de vapor basado en un sistema de cambio de fase y un sistema de doble tanque de material de almacenamiento térmico sin cambio de fase. Esta configuración permite descargar el sistema maximizando el rendimiento del ciclo de potencia en la descarga. The present invention proposes a configuration of a storage system for direct steam generation technology based on a phase change system and a double tank system of thermal storage material without phase change. This configuration allows the system to be downloaded maximizing the performance of the discharge power cycle.
La invención consiste en el método para llevar a cabo el intercambio de calor entre materiales de almacenamiento térmico y el fluido de transferencia térmica tanto en el procedimiento de carga como de descarga, en el sistema para llevar a cabo dicho método y en una planta solar de almacenamiento térmico que comprende dicho sistema. The invention consists in the method for carrying out the heat exchange between thermal storage materials and the thermal transfer fluid both in the loading and unloading process, in the system for carrying out said method and in a solar power plant. thermal storage comprising said system.
Según lo comentado anteriormente, la configuración propuesta consta de un módulo de cambio de fase, un tanque frío de material de almacenamiento térmico sin cambio de fase (tanque frío), un tanque caliente de material de almacenamiento térmico sin cambio de fase (tanque caliente), un sobrecalentador que realiza el intercambio de calor entre el material de almacenamiento térmico sin cambio de fase y el fluido de transferencia térmica en estado vapor sobrecalentado y un precalentador que realiza un intercambio entre el material de almacenamiento térmico sin cambio de fase y el fluido de transferencia térmica en estado líquido subenfriado. En la descarga, siguiendo el circuito del fluido de transferencia térmica, ambos intercambiadores van montados en serie con el módulo de cambio de fase y en dirección de menor a mayor temperatura encontraríamos: precalentador, módulo de cambio de fase y sobrecalentador. El módulo de cambio de fase se emplea para evaporar el líquido o condensar el vapor según se encuentre el sistema en modo de descarga o carga respectivamente y puede ser diseñado para además calentar líquido subenfriado hasta condiciones de saturación en la descarga. Para implementar esta configuración será necesario incluir un sistema de tuberías que permita circular en la descarga el líquido precalentado del precalentador al módulo de cambio de fase y en la carga el líquido de transferencia térmica saturado saliente del módulo de cambio de fase directamente al campo solar, no circulándose esta corriente al precalentador. As discussed above, the proposed configuration consists of a phase change module, a cold tank of thermal storage material without phase change (cold tank), a hot tank of thermal storage material without phase change (hot tank) , a superheater that performs the heat exchange between the thermal storage material without phase change and the thermal transfer fluid in superheated steam state and a preheater that performs an exchange between the thermal storage material without phase change and the flow fluid thermal transfer in subcooled liquid state. In the discharge, following the thermal transfer fluid circuit, both exchangers are mounted in series with the phase change module and in the direction of lower to higher temperature we would find: preheater, phase change module and superheater. The phase change module is used to evaporate the liquid or condense the steam as the system is in discharge or load mode respectively and can be designed to further heat subcooled liquid to saturation conditions in the discharge. To implement this configuration, it will be necessary to include a piping system that allows the preheated liquid from the preheater to circulate in the discharge to the phase change module and in the load the saturated thermal transfer liquid leaving the phase change module directly to the solar field, not circulating this current to the preheater.
En el circuito del material de almacenamiento térmico sin cambio de fase y de menor a mayor temperatura (en el caso de la descarga) encontramos el tanque frío, el precalentador, el sobrecalentador y el tanque caliente. En el caso de la carga el circuito sería tanque frío, sobrecalentador y tanque caliente. El sistema de tuberías en la carga debe circular el material de almacenamiento térmico sin cambio de fase desde el tanque frío al tanque caliente a través del sobrecalentador mientras que en la descarga el sistema de tuberías circula el material de almacenamiento térmico sin cambio de fase del tanque caliente al tanque frío a través de sobrecalentador y precalentador. In the circuit of the thermal storage material without phase change and from lower to higher temperature (in the case of discharge) we find the cold tank, the preheater, the superheater and the hot tank. In the case of the load the circuit would be cold tank, superheater and hot tank. The piping system in the load must circulate the thermal storage material without phase change from the cold tank to the hot tank through the superheater while in the discharge the piping system circulates the thermal storage material without changing the phase of the tank heat the cold tank through superheater and preheater.
Según lo anterior, el método de almacenamiento térmico se caracteriza por que comprende los siguientes pasos: According to the above, the thermal storage method is characterized by comprising the following steps:
En la carga, en el circuito del fluido de transferencia térmica el vapor procedente de la planta solar está sobrecalentado y es enfriado en el sobrecalentador hasta su transformación en vapor saturado e introducido posteriormente en el módulo de cambio de fase donde se transforma en líquido saturado mientras que en el circuito del material de almacenamiento térmico sin cambio de fase, la totalidad del material de almacenamiento térmico sin cambio de fase que abandona el tanque frío es calentado en el sobrecalentador y almacenado en el tanque caliente. El tanque frío puede vaciarse total o parcialmente, pero siempre la totalidad del material térmico sin cambio de fase que abandona el tanque frío es almacenado en el tanque caliente. In the load, in the thermal transfer fluid circuit the steam coming from the solar plant is superheated and is cooled in the superheater until it is transformed into saturated steam and subsequently introduced into the phase change module where it is transformed into saturated liquid while that in the circuit of the thermal storage material without phase change, all the thermal storage material without phase change leaving the cold tank is heated in the superheater and stored in the hot tank. The cold tank can be emptied totally or partially, but always the entire thermal material without phase change leaving the cold tank is stored in the hot tank.
En la descarga el fluido de transferencia térmica en condiciones de líquido subenfriado es precalentado en el precalentador incrementando su temperatura y manteniéndose en condiciones de líquido subenfriado. Posteriormente es introducido en el módulo de cambio de fase donde se transforma en líquido saturado y posteriormente en vapor saturado y finalmente es sobrecalentado hasta vapor sobrecalentado en el sobrecalentador. Mientras en el circuito de material de almacenamiento térmico sin cambio de fase, la totalidad de dicho material que sale del tanque caliente, es enfriado en el sobrecalentador y a continuación en el precalentador y finalmente almacenado en el tanque frío. Igual que en la carga, el tanque caliente puede vaciarse total o parcialmente, pero siempre la totalidad del material térmico sin cambio de fase que abandona el tanque caliente es almacenado en el tanque frío. In the discharge, the thermal transfer fluid under conditions of subcooled liquid is preheated in the preheater, increasing its temperature and maintaining under conditions of subcooled liquid. It is subsequently introduced into the phase change module where it is transformed into saturated liquid and subsequently saturated steam and is finally superheated to superheated steam in the superheater. While in the material circuit of Thermal storage without phase change, all said material leaving the hot tank, is cooled in the superheater and then in the preheater and finally stored in the cold tank. As with the load, the hot tank can be emptied totally or partially, but always all the thermal material without phase change leaving the hot tank is stored in the cold tank.
Y por lo tanto, el sistema se caracteriza por que comprende el módulo con el material de cambio de fase, el circuito del fluido de transferencia térmica y el circuito del material de almacenamiento térmico sin cambio de fase estando los circuitos configurados de modo que son distintos en el caso de carga y descarga del sistema, donde, And therefore, the system is characterized in that it comprises the module with the phase change material, the thermal transfer fluid circuit and the thermal storage material circuit without phase change, the circuits being configured so that they are different in the case of loading and unloading the system, where,
En la carga On the load
- el circuito de fluido de transferencia térmica comprende el sobrecalentador en conexión con la planta solar y con el módulo de cambio de fase, y - the thermal transfer fluid circuit comprises the superheater in connection with the solar plant and with the phase change module, and
- el circuito de material de almacenamiento térmico sin cambio de fase comprende el sobrecalentador, el tanque frío y el tanque caliente, estando el tanque frío, el sobrecalentador y el tanque caliente configurados de modo que la totalidad del material de almacenamiento térmico sin cambio de fase procedente del tanque frío pasa al tanque caliente a través del sobrecalentador. - the circuit of thermal storage material without phase change comprises the superheater, the cold tank and the hot tank, the cold tank, the superheater and the hot tank being configured so that the entire thermal storage material without phase change coming from the cold tank passes to the hot tank through the superheater.
En la descarga - el circuito de fluido de transferencia térmica comprende el módulo de cambio de fase, el sobrecalentador y el precalentador, estando configurados de modo que se dispone el precalentador seguido del módulo de cambio de fase y seguido del sobrecalentador y estando configurado el precalentador para elevar la temperatura del fluido de transferencia térmica sin alcanzar condiciones de saturación y el módulo de cambio de fase para realizar tanto el calentamiento del fluido de transferencia térmica hasta las condiciones de saturación como su cambio de fase a vapor saturado, In the discharge - the thermal transfer fluid circuit comprises the phase change module, the superheater and the preheater, being configured so that the preheater is arranged followed by the phase change module and followed by the superheater and the preheater being configured to raise the temperature of the thermal transfer fluid without reaching saturation conditions and the phase change module to perform both the heating of the thermal transfer fluid to the saturation conditions and its phase change to saturated steam,
- el circuito de material de almacenamiento térmico sin cambio de fase comprende el tanque frío, el tanque caliente, el sobrecalentador y el precalentador, estando configurados de modo que se dispone el tanque caliente seguido del sobrecalentador a su vez seguido del precalentador y seguido del tanque frío y pasando la totalidad del material de almacenamiento térmico sin cambio de fase procedente del tanque caliente al tanque frío a través del sobrecalentador y el precalentador de modo que la totalidad del material de almacenamiento térmico sin cambio de fase que abandona el tanque caliente pasa al tanque frío a través del sobrecalentador y el precalentador. - the circuit of thermal storage material without phase change comprises the cold tank, the hot tank, the superheater and the preheater, being configured so that the hot tank is arranged followed by the superheater in turn followed by the preheater and followed by the tank cold and passing all of the thermal storage material without phase change from the hot tank to the cold tank through the superheater and preheater so that the entire material of Thermal storage without phase change leaving the hot tank passes to the cold tank through the superheater and preheater.
El método y la configuración de la invención permiten obtener la mínima temperatura posible en el tanque frío y la máxima temperatura posible en el tanque caliente. La energía almacenada en un sistema de almacenamiento de cambio de fase es directamente proporcional al calor latente de cambio de fase del propio material de cambio de fase por lo que es directamente proporcional a la cantidad de este material. El almacenamiento energético en el sistema de cambio de fase se produce porque el módulo de cambio de fase mantiene una temperatura de condensación-solidificación tal que permite un gradiente térmico con el fluido de transferencia térmica en condiciones de saturación liquido-vapor que asegura la transferencia de calor. En un ejemplo de realización este gradiente térmico es de al menos 2°C. The method and configuration of the invention allow obtaining the minimum possible temperature in the cold tank and the maximum possible temperature in the hot tank. The energy stored in a phase change storage system is directly proportional to the latent heat of phase change of the phase change material itself, so it is directly proportional to the amount of this material. The energy storage in the phase change system occurs because the phase change module maintains a condensation-solidification temperature such that it allows a thermal gradient with the thermal transfer fluid under conditions of liquid-vapor saturation that ensures the transfer of hot. In an exemplary embodiment this thermal gradient is at least 2 ° C.
La energía almacenada en un sistema de doble tanque de material de almacenamiento térmico sin cambio de fase se puede calcular de la forma siguiente: Energía almacenada = Cantidad de material de almacenamiento térmico sin cambio de fase * Calor específico * ΔΤ The energy stored in a double tank system of thermal storage material without phase change can be calculated as follows: Stored energy = Amount of thermal storage material without phase change * Specific heat * ΔΤ
Entonces, para almacenar la máxima energía posible con la menor cantidad de material de almacenamiento térmico sin cambio de fase debe conseguirse el máximo ΔΤ o máxima diferencia de temperaturas entre tanque frío y tanque caliente posible. Un mayor ΔΤ permite poder dimensionar los tanques de material de almacenamiento térmico sin cambio de fase de un menor tamaño para almacenar la misma cantidad de energía. Then, to store the maximum possible energy with the least amount of thermal storage material without phase change, the maximum ΔΤ or maximum temperature difference between the cold tank and the possible hot tank must be achieved. A larger ΔΤ allows the thermal storage material tanks to be sized without phase change of a smaller size to store the same amount of energy.
En el modo de carga el material de almacenamiento térmico sin cambio de fase a la mínima temperatura posible que permite su operación circula de tanque frío a tanque caliente a través del sobrecalentador. Este material de almacenamiento térmico sin cambio de fase gana el calor cedido por el fluido de transferencia térmica en condiciones de vapor sobrecalentado que circula desde el campo solar al sobrecalentador. In the loading mode the thermal storage material without phase change at the minimum possible temperature that allows its operation circulates from cold tank to hot tank through the superheater. This thermal storage material without phase change gains the heat transferred by the thermal transfer fluid under conditions of superheated steam circulating from the solar field to the superheater.
A la salida del sobrecalentador el fluido de transferencia térmica sobrecalentado adquiere calidad de vapor saturado gracias a haber cedido el calor sensible correspondiente a la parte sobrecalentada al material de almacenamiento térmico sin cambio de fase. El fluido de transferencia térmica ya en condiciones de vapor saturado pasa por el módulo de cambio de fase condensándose y cediendo todo el calor de su condensación al material de cambio de fase. Éste último gana el calor cedido por el fluido de transferencia térmica y cambia de fase. Este intercambio de calor es debido a la existencia de un gradiente térmico entre el material de cambio de fase y el fluido de transferencia térmica en condiciones de liquido-vapor saturado. At the outlet of the superheater the superheated thermal transfer fluid acquires saturated steam quality thanks to having yielded the sensitive heat corresponding to the superheated part to the thermal storage material without phase change. The thermal transfer fluid already in saturated steam conditions passes through the phase change module condensing and giving all the heat of its condensation to the phase change material. The latter gains the heat ceded by the thermal transfer fluid and It changes phase. This heat exchange is due to the existence of a thermal gradient between the phase change material and the thermal transfer fluid under saturated liquid-vapor conditions.
El fluido de transferencia térmica, en estado de líquido saturado, saliente del módulo de cambio de fase es circulado al proceso en condiciones de saturación para ser de nuevo vaporizado y sobrecalentado en el receptor del campo solar. The thermal transfer fluid, in a saturated liquid state, leaving the phase change module is circulated to the process under saturation conditions to be again vaporized and superheated in the solar field receiver.
En el proceso de descarga el circuito es distinto. El fluido de transferencia térmica en condiciones de líquido subenfriado pasa por el precalentador y aumenta su energía, saliendo del precalentador con un grado de subenfriamiento menor que a su entrada. Posteriormente se introduce en el módulo de cambio de fase, donde el fluido de transferencia térmica en estado de líquido subenfriado aumenta su energía y cambia de fase hasta salir en condiciones de vapor saturado. Este intercambio de calor es debido a la existencia de un gradiente térmico entre el material de cambio de fase y el fluido de transferencia térmica en condiciones de líquido-vapor saturado. Finalmente pasa por el sobrecalentador y aumenta su energía, saliendo en estado de vapor sobrecalentado. In the download process the circuit is different. The thermal transfer fluid under conditions of subcooled liquid passes through the preheater and increases its energy, leaving the preheater with a degree of subcooling less than at its inlet. Subsequently, it is introduced in the phase change module, where the thermal transfer fluid in the subcooled liquid state increases its energy and changes phase until it exits in saturated steam conditions. This heat exchange is due to the existence of a thermal gradient between the phase change material and the thermal transfer fluid under saturated liquid-vapor conditions. Finally it passes through the superheater and increases its energy, leaving in a state of superheated steam.
El material de almacenamiento térmico sin cambio de fase del tanque caliente pasa por el sobrecalentador cediendo parte de su calor sensible. Este mismo material de almacenamiento sin cambio de fase a su salida del sobrecalentador es introducido en el precalentador para que continúe cediendo energía al fluido de transferencia térmica en estado de líquido subenfriado, de esta forma se llega a la temperatura mínima consiguiéndose una mayor diferencia de temperaturas entre el tanque frío y caliente. Posteriormente el material de almacenamiento térmico sin cambio de fase es alojado en el tanque frío. The thermal storage material without phase change of the hot tank passes through the superheater yielding part of its sensible heat. This same storage material without change of phase at its outlet of the superheater is introduced into the preheater so that it continues to transfer energy to the thermal transfer fluid in the subcooled liquid state, in this way the minimum temperature is reached, achieving a greater temperature difference between the cold and hot tank. Subsequently the thermal storage material without phase change is housed in the cold tank.
En la descarga, el fluido de transferencia térmica en estado de líquido subenfriado proveniente del ciclo no llega a alcanzar las condiciones de saturación a la salida del precalentador, realmente este fluido gana calor elevando su temperatura pero siempre en el rango de líquido subenfriado. La temperatura que alcanza el fluido de transferencia térmica a la salida del precalentador está determinada por el calor cedido por el caudal de material de almacenamiento térmico sin cambio de fase proveniente del sobrecalentador. Dicho caudal entrega solamente parte de la potencia que requeriría el fluido de transferencia térmica en condiciones de líquido subenfriado para conseguir llegar a condiciones de saturación en el precalentador. Esto es debido a que la energía térmica requerida para pasar de líquido subenfriado a condiciones de saturación en el precalentador es mayor que la energía térmica que es capaz de transmitir el caudal de material de almacenamiento térmico sin cambio de fase, dado que este caudal es el mismo que intercambia calor en el sobrecalentador. In the discharge, the thermal transfer fluid in the state of subcooled liquid from the cycle does not reach saturation conditions at the outlet of the preheater, this fluid actually gains heat by raising its temperature but always in the range of subcooled liquid. The temperature reached by the thermal transfer fluid at the outlet of the preheater is determined by the heat transferred by the flow of thermal storage material without phase change from the superheater. Said flow delivers only part of the power that the thermal transfer fluid would require under conditions of subcooled liquid to achieve saturation conditions in the preheater. This is because the thermal energy required to pass from subcooled liquid to saturation conditions in the Preheater is greater than the thermal energy that is capable of transmitting the thermal storage material flow rate without phase change, since this flow rate is the same as exchanging heat in the superheater.
Según lo anterior, se mantiene el mismo caudal de material de almacenamiento térmico sin cambio de fase a través del sobrecalentador y precalentador, teniendo esto la ventaja de que permite aprovechar todo el rango operativo del material de almacenamiento térmico sin cambio de fase. Además esto evita la necesidad de un tanque intermedio que almacene el excedente de material de almacenamiento térmico sin cambio de fase que sería necesario en el precalentador para llevar el fluido de transferencia térmica de condiciones de líquido subenfriado a condiciones de saturación. Además, al precalentar el fluido de transferencia térmica de condiciones de líquido subenfriado en el precalentador, con la corriente de material de almacenamiento térmico sin cambio de fase proveniente del tanque caliente a través del sobrecalentador se disminuye la temperatura del material de almacenamiento térmico sin cambio de fase maximizando la diferencia de temperaturas entre tanque frío y caliente. According to the above, the same flow of thermal storage material is maintained without phase change through the superheater and preheater, this having the advantage that it allows to take advantage of the entire operating range of the thermal storage material without phase change. This also avoids the need for an intermediate tank that stores the excess thermal storage material without phase change that would be necessary in the preheater to bring the thermal transfer fluid from subcooled liquid conditions to saturation conditions. In addition, by preheating the thermal transfer fluid of subcooled liquid conditions in the preheater, with the thermal storage material stream without phase change coming from the hot tank through the superheater the temperature of the thermal storage material is decreased without changing phase maximizing the temperature difference between hot and cold tank.
Según lo anterior, los tanques de material de almacenamiento térmico sin cambio de fase ceden energía a dos procesos distintos: i) para llevar el fluido de transferencia térmica de condiciones de líquido subenfriado a líquido subenfriado con un grado menor de subenfriamiento a través del precalentador; y también ii) para llevar el fluido de transferencia térmica en condiciones de vapor saturado a condiciones de sobrecalentado a través del sobrecalentador. According to the above, the thermal storage material tanks without phase change yield energy to two different processes: i) to bring the thermal transfer fluid from subcooled to subcooled liquid conditions with a lower degree of subcooling through the preheater; and also ii) to bring the thermal transfer fluid in saturated steam conditions to superheated conditions through the superheater.
Finalmente, es también objeto de la invención la planta solar de generación de vapor que comprende un sistema de almacenamiento térmico según lo anteriormente descrito. Finally, the solar steam generation plant comprising a thermal storage system as described above is also object of the invention.
Descripción de las figuras Para completar la descripción y con el fin de proporcionar una mejor comprensión de la invención, se proporciona un conjunto de dibujos. Dichos dibujos forman una parte integral de la descripción e ilustran ejemplos de realización de la invención. Description of the figures To complete the description and in order to provide a better understanding of the invention, a set of drawings is provided. Said drawings form an integral part of the description and illustrate embodiments of the invention.
La figura 1 muestra una representación esquemática de un ejemplo de realización de la configuración de planta objeto de la invención. La figura 2 muestra la gráfica temperatura (T) - calor (Q) del proceso de carga del sistema de almacenamiento de la configuración de planta correspondiente a la figura 1. La figura 3 muestra la gráfica temperatura (T) - calor (Q) del proceso de descarga del sistema de almacenamiento de la configuración de planta correspondiente a la figura 1. Figure 1 shows a schematic representation of an exemplary embodiment of the plant configuration object of the invention. Figure 2 shows the temperature (T) - heat (Q) graph of the loading process of the storage system of the plant configuration corresponding to Figure 1. Figure 3 shows the temperature (T) - heat (Q) graph of the unloading process of the storage system of the plant configuration corresponding to figure 1.
Descripción detallada de la invención Detailed description of the invention
En la figura 1 se muestra un ejemplo de realización del objeto de la invención. En el ejemplo de realización el fluido de transferencia térmica es agua. Se muestra un campo solar (10) y un bloque de potencia (70). La figura 1 representa el bloque de potencia (70) únicamente mediante una turbina aunque comprendería los elementos propios de un elemento de potencia. El sistema está compuesto por un sistema de precalentamiento que comprende un precalentador (40) y dos tanques de sales: un tanque frío (50) y un tanque caliente (60), un sistema de evaporación constituido por un módulo (30) de cambio de fase y un sistema de sobrecalentamiento, constituido por un sobrecalentador (20). An embodiment of the object of the invention is shown in Figure 1. In the exemplary embodiment, the thermal transfer fluid is water. A solar field (10) and a power block (70) are shown. Figure 1 represents the power block (70) only by means of a turbine although it would comprise the elements of a power element. The system consists of a preheating system comprising a preheater (40) and two salt tanks: a cold tank (50) and a hot tank (60), an evaporation system consisting of a module (30) for changing the phase and an overheating system, consisting of a superheater (20).
En el proceso de carga del sistema de almacenamiento térmico, el vapor es circulado desde el campo solar (10) a la entrada del sobrecalentador (21), dirigiéndose posteriormente desde la salida del sobrecalentador (22) a la entrada del módulo (31) de cambio de fase donde cede su calor al material de cambio de fase. Desde la salida del módulo (32) de cambio de fase el agua, ya condensada, es recirculada de nuevo al campo solar (10). En el proceso de descarga, el agua proveniente del bloque de potencia (70) se dirige a la entrada del precalentador (42), en el precalentador (40) recibe calor de las sales provenientes del tanque caliente (60) a través del sobrecalentador (20). A continuación se dirige al módulo (30) de cambio de fase dónde experimenta el paso de agua líquida subenfriada a vapor saturado de calidad X=1 , introduciéndose posteriormente en el sobrecalentador (20), donde es llevado de vapor saturado a vapor sobrecalentado gracias al calor cedido por las sales provenientes del tanque caliente (60). Finalmente dicho vapor es turbinado en el bloque de potencia (70), produciendo electricidad. In the process of loading the thermal storage system, steam is circulated from the solar field (10) to the inlet of the superheater (21), subsequently directed from the outlet of the superheater (22) to the inlet of the module (31) of phase change where its heat yields to the phase change material. From the output of the phase change module (32) the water, already condensed, is recirculated back to the solar field (10). In the discharge process, the water coming from the power block (70) is directed to the preheater inlet (42), in the preheater (40) it receives heat from the salts coming from the hot tank (60) through the superheater ( twenty). Next, it goes to the phase change module (30) where it experiences the passage of subcooled liquid water to saturated steam of quality X = 1, subsequently entering the superheater (20), where it is carried from saturated steam to superheated steam thanks to the heat transferred by the salts from the hot tank (60). Finally said steam is turbinated in the power block (70), producing electricity.
El fluido de transferencia térmica sale en la carga del sobrecalentador (20) en condiciones de vapor sobrecalentado con un grado de sobrecalentamiento inferior que al de su entrada al sobrecalentador (20). The thermal transfer fluid exits the superheater charge (20) under conditions of superheated steam with a degree of superheat that is lower than that of its entrance to the superheater (20).
Las figuras 2 y 3 muestran el ciclo térmico experimentado por el vapor y las sales en el ejemplo de realización mostrado en la figura 1. La realización preferida de la presente invención se desarrolla para una planta de generación directa de vapor sobrecalentado de 530 °C a 130 bar de presión. El módulo (30) de cambio de fase propuesto es un módulo con una temperatura de cambio de fase preferentemente de 312 °C. La temperatura del agua subenfriada de retorno del bloque de potencia (70) se considera de 232 °C. Se establece la temperatura mínima de operación de las sales fundidas como 265°C. Figures 2 and 3 show the thermal cycle experienced by steam and salts in the exemplary embodiment shown in Figure 1. The preferred embodiment of the present invention is developed for a direct superheated steam generation plant of 530 ° C at 130 bar pressure. The proposed phase change module (30) is a module with a phase change temperature preferably of 312 ° C. The subcooled return water temperature of the power block (70) is considered 232 ° C. The minimum operating temperature of molten salts is set as 265 ° C.
Con las condiciones del vapor descritas y la naturaleza térmica del vapor y de las sales fundidas se obtiene la gráfica de carga de la figura 2 donde a indica circuito del agua, s indica el circuito de las sales y m el circuito del material de cambio de fase. La temperatura de saturación del vapor a 130 bar son 331 °C por lo que se representa la condensación de este vapor a la temperatura constante de los 331 °C. Al tener un material de cambio de fase que funde a los 312 °C el gradiente de temperaturas entre 331 °C y 312 °C permite que haya una transferencia térmica entre el calor del vapor condensándose y el material de cambio de fase fundiéndose. Se representa la temperatura del tanque caliente (60) como 522 °C ya que debido a la naturaleza térmica de las sales y del vapor sobrecalentado es la máxima temperatura que se puede conseguir respetando un mínimo gradiente térmico entre sales y vapor de 5 °C (representado en la gráfica como p). Así pues se asegura siempre una mínima transferencia térmica entre vapor y sales debido a este gradiente de 5 °C. El procedimiento de carga del sistema anteriormente descrito sería entonces según la figura 2: With the described steam conditions and the thermal nature of the steam and molten salts, the load graph of Figure 2 is obtained where a indicates water circuit, s indicates the salt circuit and m the phase change material circuit . The saturation temperature of the steam at 130 bar is 331 ° C, so the condensation of this steam is represented at the constant temperature of 331 ° C. By having a phase change material that melts at 312 ° C, the temperature gradient between 331 ° C and 312 ° C allows for a thermal transfer between the heat of the condensing steam and the melting phase change material. The temperature of the hot tank (60) is represented as 522 ° C since due to the thermal nature of the salts and superheated steam it is the maximum temperature that can be achieved respecting a minimum thermal gradient between salts and steam of 5 ° C ( represented in the graph as p). Thus, a minimum thermal transfer between steam and salts is always ensured due to this gradient of 5 ° C. The loading procedure of the system described above would then be according to Figure 2:
1) Entra vapor a 530 °C y 130 bar (punto 21 a de la figura 2) al sobrecalentador (20) proveniente del campo solar (10). 1) Steam enters at 530 ° C and 130 bar (point 21 a in Figure 2) into the superheater (20) from the solar field (10).
2) El vapor pasa a través del sobrecalentador (20) cediendo calor a las sales fundidas y alcanzando condiciones de saturación a la salida del mismo, temperatura de 331 °C y presión de 130 bares (punto 22a de la figura 2). 2) The steam passes through the superheater (20) giving heat to the molten salts and reaching saturation conditions at the outlet thereof, temperature of 331 ° C and pressure of 130 bar (point 22a of Figure 2).
3) Las sales fundidas ganan el calor cedido por el vapor sobrecalentado mientras pasan también a través del sobrecalentador (20) pasando del tanque frío (50) a 265 °C al tanque caliente (60) donde alcanzan los 522 °C (puntos 22s y 21 s de la figura 2). 4) El vapor proveniente del sobrecalentador (20) en condiciones de saturación 331 °C y 130 bares (punto 22a de la figura 2) se introduce al módulo (30) de cambio de fase condensándose completamente (punto 32a de la figura 2). 3) The molten salts gain the heat ceded by the superheated steam while also passing through the superheater (20) from the cold tank (50) to 265 ° C to the hot tank (60) where they reach 522 ° C (points 22s and 21 s of figure 2). 4) The steam coming from the superheater (20) under saturation conditions 331 ° C and 130 bar (point 22a of figure 2) is introduced to the phase change module (30) condensing completely (point 32a of figure 2).
5) El módulo de cambio de fase (30) gana el calor cedido por el vapor condensándose y pasa de estado sólido a estado líquido (línea entre los puntos 32m y31 m de la figura 2). 5) The phase change module (30) gains the heat ceded by the steam condensing and passes from solid to liquid state (line between points 32m and 31m in Figure 2).
6) El agua condensada (punto 32a de la figura 2) proveniente del módulo de cambio de fase (30) es retornada al campo solar (10) para ser de nuevo evaporada y sobrecalentada. Con el sistema totalmente cargado, tanque frío (50) a 265 °C, tanque caliente (60) a 522 °C y módulo (30) de cambio de fase completamente fundido a 312 °C se procede a la descarga del mismo obteniéndose vapor a 97 bar (Tsat = 308 °C) y 517 °C. El proceso se estructura según la gráfica de la figura 3 dónde de nuevo a indica circuito del agua, s indica el circuito de las sales y m el circuito del material del cambio de fase. El intercambio térmico en el precalentador (40) implica la transferencia térmica de calor desde las sales hacia el agua subenfriada: las sales reducirían su temperatura desde los 315 °C (punto 41 s de la figura 3) temperatura a la que se encuentran a la salida del sobrecalentador (20) hasta los 265 °C (punto 42s de la figura 3) que es cuando se vierten al tanque frío (50). El agua subenfriada gana temperatura desde los 232 °C (punto 42a de la figura 3) a su entrada al precalentador (40), proveniente del bloque de potencia ( ((70), hasta los 266 °C (punto 41 a de la figura 3), temperatura a la que se encuentra a su salida del precalentador (40). En todo momento existe un elevado gradiente de temperatura que permite una eficiente transferencia térmica. 6) The condensed water (point 32a of Figure 2) from the phase change module (30) is returned to the solar field (10) to be evaporated and superheated again. With the fully charged system, cold tank (50) at 265 ° C, hot tank (60) at 522 ° C and phase change module (30) completely molten at 312 ° C, it is discharged obtaining steam at 97 bar (Tsat = 308 ° C) and 517 ° C. The process is structured according to the graph in figure 3 where again indicates the water circuit, s indicates the salt circuit and m the phase change material circuit. The thermal exchange in the preheater (40) implies the thermal transfer of heat from the salts to the subcooled water: the salts would reduce their temperature from 315 ° C (point 41 s of Figure 3) temperature at which they are at superheater output (20) up to 265 ° C (point 42s in figure 3) which is when they are poured into the cold tank (50). The subcooled water gains temperature from 232 ° C (point 42a of figure 3) at its entrance to the preheater (40), coming from the power block (((70), up to 266 ° C (point 41 a of the figure 3), temperature at which it is at its outlet from the preheater (40) At all times there is a high temperature gradient that allows efficient thermal transfer.
Tal y como se puede ver el vapor en condiciones de saturación a 97 bar (tramo horizontal de la línea 30a de la figura 3) tiene una temperatura de saturación de 308 °C y el módulo de cambio de fase solidifica a los 312 °C (línea entre los puntos 31 m y 32m) por lo que existe también un gradiente mínimo de 4 °C que permite la transferencia térmica del módulo (30) de cambio de fase hacia el agua líquida/vapor primero siendo agua subenfriada calentándose desde los 266 °C hasta los 308 °C y después evaporándose completamente a 308 °C. As you can see the steam in saturation conditions at 97 bar (horizontal section of line 30a of Figure 3) has a saturation temperature of 308 ° C and the phase change module solidifies at 312 ° C ( line between points 31 m and 32m) so there is also a minimum gradient of 4 ° C that allows the thermal transfer of the phase change module (30) to the liquid water / steam first being subcooled water heating from 266 ° C up to 308 ° C and then evaporating completely at 308 ° C.
Ya a la salida del módulo (30) de cambio de fase donde toda el agua es vapor saturado a 308 °C (punto 22a de la figura 3), este mismo vapor pasa al sobrecalentador (20) donde se sobrecalienta hasta los 517 °C (punto 21 a de la figura 3) gracias al calor cedido por las sales (línea entre los puntos 21 s y 22s de la figura 3). En este intercambio y por naturaleza térmica del vapor y de las sales se mantiene también un mínimo de 5 °C de gradiente térmico entre las sales y el vapor. Este mínimo gradiente térmico se da entre el vapor sobrecalentado a su salida del sobrecalentador (20) y las sales a su entrada al mismo (20), que se refleja justamente entre los puntos 21 s y 21 a de la figura 3. Already at the exit of the phase change module (30) where all the water is saturated steam at 308 ° C (point 22a of figure 3), this same steam passes to the superheater (20) where it is superheated to 517 ° C (point 21 a of figure 3) thanks to the heat ceded by the sales (line between points 21 s and 22s of figure 3). In this exchange and by thermal nature of steam and salts, a minimum of 5 ° C of thermal gradient between the salts and steam is also maintained. This minimum thermal gradient occurs between the superheated steam at its outlet of the superheater (20) and the salts at its entrance to it (20), which is reflected precisely between points 21 s and 21 a of Figure 3.
Así pues el proceso de descarga se desarrolla en los siguientes pasos: So the download process is developed in the following steps:
1) Entra agua subenfriada a 232 °C (punto 42a de la figura 3) al precalentador (40), procedente del bloque de potencia (70). 1) Subcooled water enters 232 ° C (point 42a in Figure 3) into the preheater (40), coming from the power block (70).
2) El agua entra a través del precalentador (40) y gana el calor de las sales que circulan en sentido contrario pasando el agua de una temperatura de 232 °C a 266 °C (línea desde 42a hasta 41 a de la figura 3). 2) Water enters through the preheater (40) and gains heat from salts that circulate in the opposite direction by passing the water from a temperature of 232 ° C to 266 ° C (line from 42a to 41a of Figure 3) .
3) En el mismo equipo las sales ceden el calor al agua subenfriada, pasando las sales de una temperatura de 315 °C a 265 °C (puntos 41s y 42s de la figura 3). 3) In the same equipment the salts yield heat to the subcooled water, passing the salts at a temperature of 315 ° C to 265 ° C (points 41s and 42s of Figure 3).
4) El agua subenfriada proveniente del precalentador (40) es introducida al módulo (30) de cambio de fase ganando calor hasta los 308 °C de temperatura de saturación y posteriormente evaporándose completamente (línea entre los puntos 41 a y 22a de la figura 3). 4) The subcooled water from the preheater (40) is introduced to the phase change module (30) gaining heat up to 308 ° C of saturation temperature and subsequently evaporating completely (line between points 41 a and 22a of Figure 3) .
5) El módulo (30) de cambio de fase cede calor al agua subenfriada en una primera etapa y después al agua saturada, evaporándose completamente. El material de cambio de fase pasa de estado líquido (punto 31 m de la figura 3) a estado sólido (punto 32m de la figura 3). 5) The phase change module (30) gives heat to the subcooled water in a first stage and then to the saturated water, evaporating completely. The phase change material passes from a liquid state (point 31 m of figure 3) to a solid state (point 32m of figure 3).
6) El vapor saturado a la salida del módulo (30) de cambio de fase es introducido al sobrecalentador (20) donde gana temperatura sobrecalentándose hasta 517 °C (línea entre puntos 22a y 21 a de la figura 3) gracias al calor cedido por las sales provenientes del tanque caliente (60) las cuales pasan de 522 °C a 315 °C (línea entre puntos 21 s y 22s de la figura 3). 6) Saturated steam at the output of the phase change module (30) is introduced to the superheater (20) where it gains temperature by overheating up to 517 ° C (line between points 22a and 21a of Figure 3) thanks to the heat ceded by salts from the hot tank (60) which pass from 522 ° C to 315 ° C (line between points 21 s and 22s of Figure 3).
7) Las sales calientes del sobrecalentador (punto 22s de la figura 3) son directamente trasvasadas a la entrada del precalentador (40) (punto 41 s de la figura 3). 7) The hot salts of the superheater (point 22s of figure 3) are directly transferred to the inlet of the preheater (40) (point 41 s of figure 3).
El sistema propuesto en la invención, consigue gracias al módulo (30) de cambio de fase, los tanques (50, 60), al precalentador (40) y al sobrecalentador (20), circular en descarga el mismo caudal de sales por precalentador (40) y sobrecalentador (20), obteniéndose a la vez una diferencia de temperaturas máxima en el sistema de doble tanque (50, 60). No requiere por lo tanto la utilización de tanques intermedios que almacenen el excedente de sales que se originaría si el caudal de las mismas a través de precalentador (40) y sobrecalentador (20) fuese diferente. The system proposed in the invention, thanks to the phase change module (30), the tanks (50, 60), the preheater (40) and the superheater (20), circulates in discharge the same flow of salts per preheater (40) and superheater (20), obtaining at the same time a maximum temperature difference in the double tank system (50, 60). It does not therefore require the use of intermediate tanks that store the surplus of salts that would originate if their flow through preheater (40) and superheater (20) were different.
La puesta en marcha, en el modo de descarga se realiza de acuerdo a dos opciones posibles de estado inicial del sistema: The commissioning, in the download mode is carried out according to two possible options of initial system status:
• Primer ejemplo de realización: Se circula agua subenfriada proveniente del bloque de potencia (70), por el precalentador (40) por el que no pasan sales en un momento inicial. El agua subenfriada pasa al módulo de cambio de fase (30) donde se produce vapor saturado que pasa al sobrecalentador (20) de donde sale sobrecalentado de nuevo hacia el bloque de potencia. Las sales pueden seguir dos recorridos: • First embodiment: Subcooled water from the power block (70) is circulated through the preheater (40) through which no salts pass at an initial moment. The subcooled water passes to the phase change module (30) where saturated steam is produced which passes to the superheater (20) from which it is superheated again towards the power block. The salts can follow two routes:
1A. Las sales salen del tanque caliente (60) y se circulan al sobrecalentador (20), de éste pasan al precalentador (40) y a la salida del precalentador 1A. The salts leave the hot tank (60) and circulate to the superheater (20), from this they pass to the preheater (40) and to the outlet of the preheater
(40) son circuladas al tanque frío (50). (40) are circulated to the cold tank (50).
1 B. Las sales salen del tanque caliente (60), pasan por el sobrecalentador 1 B. The salts leave the hot tank (60), pass through the superheater
(20) y a su salida se circulan al tanque frío (50). (20) and at their exit they circulate to the cold tank (50).
• Segundo ejemplo de realización: Se introduce agua subenfriada procedente del bloque de potencia (70) al módulo de cambio de fase (30) de donde sale en condiciones de vapor saturado y se circula al sobrecalentador (20) de donde sale sobrecalentado de nuevo hacia el ciclo de potencia. El circuito de sales puede seguir también dos opciones: • Second embodiment: Subcooled water from the power block (70) is introduced to the phase change module (30) from which it exits under saturated steam conditions and circulates to the superheater (20) from which it is superheated again to The power cycle The sales circuit can also follow two options:
2A. Las sales salen del tanque caliente (60) y se circulan al sobrecalentador (20). De éste pasan al precalentador (40) y a la salida del precalentador 2A. The salts leave the hot tank (60) and circulate to the superheater (20). From this they pass to the preheater (40) and to the outlet of the preheater
(40) son circuladas al tanque frío (50). (40) are circulated to the cold tank (50).
2B. Las sales salen del tanque caliente (60), pasan por el sobrecalentador 2B. The salts leave the hot tank (60), pass through the superheater
(20) y a su salida se circulan al tanque frío (50). (20) and at their exit they circulate to the cold tank (50).
Otra alternativa de operación: durante la carga, el vapor sale del sobrecalentador en condiciones de vapor ligeramente sobrecalentado y se introduce al módulo de cambio de fase aportando calor en éste produciendo la fusión del material de cambio de fase y saliendo del mismo líquido saturado. Esto implica un aumento de la potencia del módulo de cambio de fase para permitir almacenar la fracción de energía correspondiente a la fracción de sobrecalentamiento de este vapor. El caudal de sales que se necesita para intercambiar energía en el precalentador (40) y en el sobrecalentador (20), es menor que en el caso en que el vapor llega a condiciones de saturación a la salida del sobrecalentador (20). Another alternative of operation: during loading, the steam leaves the superheater under slightly superheated steam conditions and is introduced to the phase change module providing heat in it, producing the fusion of the phase change material and leaving the same saturated liquid. This implies an increase in the power of the phase change module to allow storing the fraction of energy corresponding to the overheating fraction of this steam. The flow of salts that is needed to exchange energy in the preheater (40) and in the superheater (20), is lower than in the case where the steam reaches saturation conditions at the outlet of the superheater (20).
Esta realización introduce un grado de libertad puesto que no es condicionante el estado de saturación del líquido y vapor a la entrada o salida del módulo de cambio de fase (30) y por tanto el sistema es más versátil frente a cambios en temperatura y presión consiguiendo una mayor flexibilidad en el control de la planta. This embodiment introduces a degree of freedom since the saturation state of the liquid and vapor is not conditioning at the input or output of the phase change module (30) and therefore the system is more versatile against changes in temperature and pressure getting greater flexibility in plant control.

Claims

REIVINDICACIONES
1. - Método de almacenamiento térmico para planta solar de generación de vapor que comprende un circuito de un fluido de transferencia térmica y un circuito de un material de almacenamiento térmico sin cambio de fase, caracterizado por que comprende los siguientes pasos: en la carga, en el circuito del fluido de transferencia térmica el vapor procedente de la planta solar está sobrecalentado y es enfriado en un sobrecalentador (20) hasta su transformación en vapor saturado e introducido posteriormente en un módulo (30) de cambio de fase donde se transforma en líquido saturado mientras que en el circuito del material de almacenamiento térmico sin cambio de fase, la totalidad del material de almacenamiento térmico sin cambio de fase procedente de un tanque frío (50) es calentado en el sobrecalentador (20) y almacenado en un tanque caliente (60), y en la descarga el fluido de transferencia térmica en estado de líquido subenfriado es precalentado en un precalentador (40) incrementando su temperatura y manteniéndose en condiciones de líquido subenfriado y posteriormente es introducido en el módulo (30) de cambio de fase donde se transforma en líquido saturado y posteriormente en vapor saturado y finalmente es sobrecalentado hasta vapor sobrecalentado en el sobrecalentador (20) mientras que en el circuito de material de almacenamiento térmico sin cambio de fase, la totalidad de dicho material procedente del tanque caliente (60), es enfriado en el sobrecalentador (20) y a continuación en el precalentador (40) y finalmente almacenado en el tanque frío (50). 1. - Thermal storage method for solar steam generation plant comprising a circuit of a thermal transfer fluid and a circuit of a thermal storage material without phase change, characterized in that it comprises the following steps: in loading, In the circuit of the thermal transfer fluid the steam coming from the solar plant is superheated and is cooled in a superheater (20) until its transformation into saturated steam and subsequently introduced into a phase change module (30) where it is transformed into liquid while in the circuit of the thermal storage material without phase change, all the thermal storage material without phase change from a cold tank (50) is heated in the superheater (20) and stored in a hot tank ( 60), and in the discharge the thermal transfer fluid in the subcooled liquid state is preheated in a preheater (40) inc rementing its temperature and keeping under conditions of subcooled liquid and subsequently it is introduced in the phase change module (30) where it is transformed into saturated liquid and subsequently into saturated steam and is finally superheated until superheated steam in the superheater (20) while in the circuit of thermal storage material without phase change, all said material from the hot tank (60), is cooled in the superheater (20) and then in the preheater (40) and finally stored in the cold tank ( fifty).
2. - Método de almacenamiento térmico para planta solar de generación de vapor, según la reivindicación 1 , caracterizado por que el módulo (30) de cambio de fase mantiene una temperatura de condensación-solidificación que permite un gradiente térmico con el fluido de transferencia térmica en condiciones de saturación liquido-vapor para asegurar la transferencia de calor entre el módulo (30) de cambio de fase y el fluido de transferencia térmica. 2. - Thermal storage method for solar steam generation plant, according to claim 1, characterized in that the phase change module (30) maintains a condensation-solidification temperature that allows a thermal gradient with the thermal transfer fluid under conditions of liquid-vapor saturation to ensure heat transfer between the phase change module (30) and the thermal transfer fluid.
3.- Método de almacenamiento térmico para planta solar de generación de vapor, según la reivindicación 2, caracterizado por que el gradiente es de al menos 2 °C. 3. Thermal storage method for solar steam generation plant, according to claim 2, characterized in that the gradient is at least 2 ° C.
4.- Método de almacenamiento térmico para planta solar de generación de vapor, según la reivindicación 3, caracterizado por que el gradiente es de 4 °C. 4. Thermal storage method for solar steam generation plant, according to claim 3, characterized in that the gradient is 4 ° C.
5. - Método de almacenamiento térmico para planta solar de generación de vapor, según la reivindicación 4, caracterizado por que el módulo (30) de cambio de fase posee una temperatura de cambio de fase de 312 °C para el agua como fluido de transferencia térmica. 5. - Thermal storage method for solar steam generation plant according to claim 4, characterized in that the phase change module (30) has a phase change temperature of 312 ° C for water as transfer fluid thermal
6. - Método de almacenamiento térmico para planta solar de generación de vapor, según una cualquiera de las reivindicaciones anteriores, caracterizado por que el fluido de transferencia térmica sale en la carga del sobrecalentador (20) en condiciones de vapor sobrecalentado con un grado de sobrecalentamiento inferior que al de su entrada al sobrecalentador (20). 6. - Thermal storage method for solar steam generation plant, according to any one of the preceding claims, characterized in that the thermal transfer fluid exits the superheater load (20) under superheated steam conditions with a degree of superheating lower than that of its entrance to the superheater (20).
7. - Método de almacenamiento térmico para planta solar de generación de vapor, según una cualquiera de las reivindicaciones anteriores, caracterizado por que la puesta en marcha en el modo de descarga se realiza circulando fluido de transferencia térmica en condiciones de líquido subenfriado por el precalentador (40) que posteriormente pasa al módulo (30) de cambio de fase donde adquiere condiciones de vapor que pasa al sobrecalentador (20) mientras el material de almacenamiento térmico sin cambio de fase sale del tanque caliente (60) y se circula al sobrecalentador (20), de éste pasa al precalentador (40) y a la salida del precalentador (40) es circulado al tanque frío (50). 7. - Thermal storage method for solar steam generation plant, according to any one of the preceding claims, characterized in that the commissioning in the discharge mode is carried out by circulating thermal transfer fluid under conditions of liquid subcooled by the preheater (40) which subsequently passes to the phase change module (30) where it acquires steam conditions that passes to the superheater (20) while the thermal storage material without phase change leaves the hot tank (60) and circulates to the superheater ( 20), from this it passes to the preheater (40) and to the outlet of the preheater (40) it is circulated to the cold tank (50).
8. - Método de almacenamiento térmico para planta solar de generación de vapor, según una cualquiera de las reivindicaciones anteriores 1-6, caracterizado por que la puesta en marcha en el modo de descarga se realiza circulando el fluido de transferencia térmica en condiciones de líquido subenfriado por el precalentador (40) posteriormente pasando al módulo (30) de cambio de fase donde adquiere condiciones de vapor que pasa al sobrecalentador (20) mientras el material de almacenamiento térmico sin cambio de fase sale del tanque caliente (60), pasa por el sobrecalentador (20) y a su salida se circula al tanque frío (50). 8. - Thermal storage method for solar steam generation plant, according to any one of the preceding claims 1-6, characterized in that the commissioning in the discharge mode is carried out by circulating the thermal transfer fluid under liquid conditions subcooled by the preheater (40) subsequently passing to the phase change module (30) where it acquires steam conditions that passes to the superheater (20) while the thermal storage material without phase change leaves the hot tank (60), passes through the superheater (20) and at its exit circulates to the cold tank (50).
9. - Método de almacenamiento térmico para planta solar de generación de vapor, según una cualquiera de las reivindicaciones anteriores 1 -6, caracterizado por que en la puesta en marcha se introduce el fluido de transferencia térmica en condiciones de líquido subenfriado al módulo (30) de cambio de fase de donde sale en condiciones de vapor saturado y se circula al sobrecalentador (20) de donde sale sobrecalentado mientras, en el circuito de material de almacenamiento térmico sin cambio de fase, éste material sale del tanque caliente (60) y se circula al sobrecalentador (20), pasa al precalentador (40) y a la salida del precalentador (40) se circula al tanque frío (50). 9. - Thermal storage method for solar steam generation plant, according to any one of the preceding claims 1 -6, characterized in that the thermal transfer fluid is introduced during commissioning under conditions of subcooled liquid to the module (30 ) phase change from where it exits under saturated steam conditions and circulates to the superheater (20) from where it exits superheated while, in the circuit of thermal storage material without phase change, this material leaves the hot tank (60) and circulates to the superheater (20), passes to the preheater (40) and to the outlet of the preheater (40) is circulated to the cold tank (50 ).
10.- Método de almacenamiento térmico para planta solar de generación de vapor, según una cualquiera de las reivindicaciones anteriores 1 -6, caracterizado por que en la puesta en marcha se introduce fluido de transferencia térmica en condiciones de líquido subenfriado al módulo (30) de cambio de fase de donde sale en condiciones de vapor saturado y se circula al sobrecalentador (20) de donde sale sobrecalentado mientras en el circuito de material de almacenamiento térmico sin cambio de fase, éste material sale del tanque caliente (60), pasa por el sobrecalentador (20) y a su salida se circula al tanque frío (50). 10.- Thermal storage method for solar steam generation plant, according to any one of the preceding claims 1 -6, characterized in that the thermal transfer fluid is introduced during commissioning under conditions of subcooled liquid to the module (30) phase change from where it exits under saturated steam conditions and circulates to the superheater (20) from which it exits superheated while in the thermal storage material circuit without phase change, this material leaves the hot tank (60), passes through the superheater (20) and at its exit circulates to the cold tank (50).
1 1.- Método de almacenamiento térmico para planta solar de generación de vapor, según una cualquiera de las reivindicaciones anteriores, caracterizado por que el fluido de transferencia térmica es agua. 1 1. Thermal storage method for solar steam generation plant, according to any one of the preceding claims, characterized in that the thermal transfer fluid is water.
12.- Método de almacenamiento térmico para planta solar de generación de vapor, según una cualquiera de las reivindicaciones anteriores, caracterizado por que el material de almacenamiento térmico sin cambio de fase son sales fundidas. 12. Thermal storage method for solar steam generation plant, according to any one of the preceding claims, characterized in that the thermal storage material without phase change are molten salts.
13.- Sistema de almacenamiento térmico para planta solar de generación de vapor caracterizado por que comprende un módulo (30) con un material de cambio de fase, un circuito de un fluido de transferencia térmica y un circuito de un material de almacenamiento térmico sin cambio de fase estando los circuitos configurados de modo que son distintos en el caso de carga y descarga del sistema, donde, en la carga, el circuito de fluido de transferencia térmica comprende un sobrecalentador (20) en conexión con la planta solar y con el módulo (30) de cambio de fase, y el circuito de material de almacenamiento térmico sin cambio de fase comprende el sobrecalentador (20), un tanque frío (50) y un tanque caliente (60), estando el tanque frío (50), el sobrecalentador (20) y el tanque caliente (60) configurados de modo que la totalidad del material de almacenamiento térmico sin cambio de fase procedente del tanque frío (50) pasa al tanque caliente (60) a través del sobrecalentador (20), en la descarga, el circuito de fluido de transferencia térmica comprende el módulo (30) de cambio de fase, el sobrecalentador (20) y el precalentador (40), estando configurados de modo que se dispone el precalentador (40) seguido del módulo (30) de cambio de fase y seguido del sobrecalentador (20) y estando configurado el precalentador (40) para elevar la temperatura del fluido de transferencia térmica sin alcanzar condiciones de saturación y el modulo (30) de cambio de fase para realizar tanto el calentamiento del fluido de transferencia térmica hasta las condiciones de saturación como su cambio de fase a vapor saturado, el circuito de material de almacenamiento térmico sin cambio de fase comprende el tanque frío (50), el tanque caliente (60), el sobrecalentador (20) y el precalentador (40), estando configurados de modo que se dispone el tanque caliente (60) seguido del sobrecalentador (20) a su vez seguido del precalentador (40) y seguido del tanque frío (50) de modo que la totalidad del material de almacenamiento térmico sin cambio de fase que abandona el tanque caliente (60) pasa al tanque frío (50) a través del sobrecalentador (20) y el precalentador (40). 13.- Thermal storage system for solar steam generation plant characterized in that it comprises a module (30) with a phase change material, a circuit of a thermal transfer fluid and a circuit of a thermal storage material without change phase circuits being configured so that they are different in the case of loading and unloading the system, where, in the load, the thermal transfer fluid circuit comprises a superheater (20) in connection with the solar plant and with the module (30) phase change, and the thermal storage material circuit without phase change comprises the superheater (20), a cold tank (50) and a hot tank (60), the cold tank (50) being the superheater (20) and the hot tank (60) configured so that all thermal storage material without phase change from the cold tank (50) passes to the hot tank (60) through the superheater (20) , in the download, The thermal transfer fluid circuit comprises the phase change module (30), the superheater (20) and the preheater (40), being configured so that the preheater (40) is arranged followed by the change module (30) phase and followed by the superheater (20) and the preheater (40) being configured to raise the temperature of the thermal transfer fluid without reaching saturation conditions and the phase change module (30) to perform both the heating of the transfer fluid thermal to saturation conditions such as its phase change to saturated steam, the thermal storage material circuit without phase change comprises the cold tank (50), the hot tank (60), the superheater (20) and the preheater ( 40), being configured so that the hot tank (60) is arranged followed by the superheater (20) in turn followed by the preheater (40) and followed by the cold tank (50) so that the entire m Thermal storage unit without phase change leaving the hot tank (60) passes to the cold tank (50) through the superheater (20) and the preheater (40).
14.- Sistema de almacenamiento térmico para planta solar de generación de vapor, según la reivindicación 13, caracterizado por que el fluido de transferencia térmica sale en la carga del sobrecalentador (20) en condiciones de vapor sobrecalentado con un grado de sobrecalentamiento inferior que al de su entrada al sobrecalentador (20). 14.- Thermal storage system for solar steam generation plant, according to claim 13, characterized in that the thermal transfer fluid exits the superheater load (20) under conditions of superheated steam with a degree of superheat lower than at of its entrance to the superheater (20).
15.- Planta solar de generación de vapor, caracterizada por que comprende un sistema de almacenamiento térmico según una cualquiera de las reivindicaciones 13 ó 14. 15.- Solar steam generation plant, characterized in that it comprises a thermal storage system according to any one of claims 13 or 14.
PCT/ES2015/070645 2014-09-05 2015-09-02 Heat storage method and system for a solar steam generation plant and solar steam generation plant WO2016034754A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201431291A ES2565690B1 (en) 2014-09-05 2014-09-05 Method and thermal storage system for solar steam generation plant and solar steam generation plant
ESP201431291 2014-09-05

Publications (1)

Publication Number Publication Date
WO2016034754A1 true WO2016034754A1 (en) 2016-03-10

Family

ID=55439161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070645 WO2016034754A1 (en) 2014-09-05 2015-09-02 Heat storage method and system for a solar steam generation plant and solar steam generation plant

Country Status (2)

Country Link
ES (1) ES2565690B1 (en)
WO (1) WO2016034754A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080000231A1 (en) * 2006-06-30 2008-01-03 United Technologies Corporation High temperature molten salt receiver
CN101413719A (en) * 2007-10-17 2009-04-22 中国科学院工程热物理研究所 Tower type solar heat power generation system with double-stage thermal storage
US20120255300A1 (en) * 2009-12-22 2012-10-11 Birnbaum Juergen Solar thermal power plant and method for operating a solar thermal power plant
WO2013070396A1 (en) * 2011-11-10 2013-05-16 Abengoa Solar Inc. Methods and apparatus for thermal energy storage control optimization
ES2414310A1 (en) * 2011-08-11 2013-07-18 Centro De Investigaciones Energéticas, Medioambientales Y Tecnológicas (Ciemat) Heat-storage module based on latent heat with high heat-transfer rates

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080000231A1 (en) * 2006-06-30 2008-01-03 United Technologies Corporation High temperature molten salt receiver
CN101413719A (en) * 2007-10-17 2009-04-22 中国科学院工程热物理研究所 Tower type solar heat power generation system with double-stage thermal storage
US20120255300A1 (en) * 2009-12-22 2012-10-11 Birnbaum Juergen Solar thermal power plant and method for operating a solar thermal power plant
ES2414310A1 (en) * 2011-08-11 2013-07-18 Centro De Investigaciones Energéticas, Medioambientales Y Tecnológicas (Ciemat) Heat-storage module based on latent heat with high heat-transfer rates
WO2013070396A1 (en) * 2011-11-10 2013-05-16 Abengoa Solar Inc. Methods and apparatus for thermal energy storage control optimization

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200935, Derwent World Patents Index; AN 2009-J37041 *

Also Published As

Publication number Publication date
ES2565690A1 (en) 2016-04-06
ES2565690B1 (en) 2017-01-20

Similar Documents

Publication Publication Date Title
ES2544467T3 (en) Solar thermal power plant with indirect evaporation and procedure to operate such a solar thermal power plant
JP6696785B2 (en) Electrical energy storage and release system
ES2608490T3 (en) Solar thermal power plants
ES2555602T3 (en) Solar thermal power plant
ES2731134T3 (en) Gas and steam power plant operated in solar hybrid form
ES2696520T3 (en) Plant for the production of energy based on the Rankine organic cycle
JP2014092086A (en) Solar heat power plant, and solar heat storage and radiation apparatus
ES2567754T3 (en) Solar thermal power plant and procedure to operate a solar thermal power plant
US9347713B2 (en) Vapour only cycling of heat transfer fluid for the thermal storage of solar energy
US20130285380A1 (en) Thermal storage system and methods
BR112013007036B1 (en) Apparatus for producing superheated steam from a concentrating solar power plant and process for producing superheated steam from a concentrating solar power plant
ES2878624T3 (en) Solar thermal energy system
JP5812955B2 (en) Power generator / heater
ES2600734T3 (en) Procedure for heat exchange between molten salt and other medium in a rolled heat exchanger
WO2013087949A1 (en) Hybrid system for generating electricity using solar energy and biomass
ES2861551T3 (en) Power plant to generate electrical energy and procedure to operate a power plant
WO2012107478A1 (en) Solar thermal power plant
ES2440391B2 (en) METHOD FOR OPERATING AN ELECTRICAL POWER STATION WITH MULTIPLE THERMAL SOURCES AND EMPLOYEE DEVICE
ES2775004T3 (en) A solar thermal power plant and a method of operating a solar thermal power plant
ES2565690B1 (en) Method and thermal storage system for solar steam generation plant and solar steam generation plant
US9140467B2 (en) Solar energy system
ES2431245B2 (en) Procedure of accumulation of solar thermal energy by means of a condensable fluid, with loading and unloading at sliding pressure, and device for its implementation
ES2549605T3 (en) Combined solar plant of air and steam technology
ES2434665B2 (en) Concentrating solar thermal power plant with two fluids in the receiver and in storage
CN204344386U (en) For storing the system of the heat from insolation, the system for generating electric energy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15837946

Country of ref document: EP

Kind code of ref document: A1