WO2016034057A1 - 天线功能扩展装置、设备和对天线进行功能扩展的方法 - Google Patents

天线功能扩展装置、设备和对天线进行功能扩展的方法 Download PDF

Info

Publication number
WO2016034057A1
WO2016034057A1 PCT/CN2015/088048 CN2015088048W WO2016034057A1 WO 2016034057 A1 WO2016034057 A1 WO 2016034057A1 CN 2015088048 W CN2015088048 W CN 2015088048W WO 2016034057 A1 WO2016034057 A1 WO 2016034057A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
unit
transceiver
peripheral connection
identification information
Prior art date
Application number
PCT/CN2015/088048
Other languages
English (en)
French (fr)
Inventor
肖伟宏
沈俭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15837986.7A priority Critical patent/EP3190718B1/en
Priority to KR1020177008244A priority patent/KR102014866B1/ko
Priority to JP2017512332A priority patent/JP6561118B2/ja
Publication of WO2016034057A1 publication Critical patent/WO2016034057A1/zh
Priority to US15/448,052 priority patent/US10028334B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/08Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code using markings of different kinds or more than one marking of the same kind in the same record carrier, e.g. one marking being sensed by optical and the other by magnetic means
    • G06K19/10Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code using markings of different kinds or more than one marking of the same kind in the same record carrier, e.g. one marking being sensed by optical and the other by magnetic means at least one kind of marking being used for authentication, e.g. of credit or identity cards
    • G06K19/14Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code using markings of different kinds or more than one marking of the same kind in the same record carrier, e.g. one marking being sensed by optical and the other by magnetic means at least one kind of marking being used for authentication, e.g. of credit or identity cards the marking being sensed by radiation
    • G06K19/145Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code using markings of different kinds or more than one marking of the same kind in the same record carrier, e.g. one marking being sensed by optical and the other by magnetic means at least one kind of marking being used for authentication, e.g. of credit or identity cards the marking being sensed by radiation at least one of the further markings being adapted for galvanic or wireless sensing, e.g. an RFID tag with both a wireless and an optical interface or memory, or a contact type smart card with ISO 7816 contacts and an optical interface or memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10366Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/77Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for interrogation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an antenna function extending apparatus, a device, and a method for expanding an antenna.
  • the RAE (Remote Antenna Extension) function is a new function based on the AISG (Antenna Interface Standards Group) standard for information management of smart antennas.
  • information management includes weight management and engineering survey parameter management.
  • the base station can request specific weight data and the working parameters of the smart antenna through the standard AISG interface to the RAE-enabled device. Then, the base station can shape the beam of the smart antenna according to the weight data, thereby implementing multi-dimensional adjustment of the vertical width, the horizontal width, the vertical pointing, and the horizontal pointing of the antenna beam.
  • the base station may also present the survey parameters including the geographic location, height, mechanical tilt, mechanical azimuth, etc. of the smart antenna to the user. Since the smart antenna already in the network does not have the RAE function before the RAE function is introduced, there is a need for a method for expanding the function of the smart antenna.
  • the smart antenna function when the smart antenna function is expanded, two methods are usually adopted.
  • the smart antenna that is already on the network and does not have the RAE function is replaced or modified.
  • an external RAE module based on the AISG standard is added, and the external RAE module is used to expand the function of the smart antenna that does not have the RAE function on the network.
  • the external RAE module acquires the right of the smart antenna For value data, you need to manually configure the information about the smart antenna, such as the antenna model information. Then, the external RAE module obtains the weight data of the smart antenna according to the manually configured related information.
  • an embodiment of the present invention provides an antenna function expansion device and a method for expanding an antenna.
  • the technical solution is as follows:
  • an antenna function expansion apparatus includes a control unit, a storage unit, an antenna identification unit, a modem unit, a power unit, a peripheral connection unit, and an RF (Radio Frequency) channel. a transceiver unit and a second transceiver unit;
  • the control unit is respectively connected to the storage unit, the antenna identification unit, the peripheral connection unit, and the modulation and demodulation unit;
  • the first transceiver unit is connected to the antenna identification unit;
  • the second transceiver unit is respectively connected to the modem unit, the power unit, and the peripheral connection unit;
  • the first transceiver unit and the second transceiver unit are respectively located at two ends of the RF channel.
  • the first transceiver unit is connected to the calibration port of the antenna; the second transceiver unit is connected to the RRU (Remote Radio Unit) of the base station by using the RF cable. )connection;
  • the antenna identification unit is configured to acquire, by using the first transceiver unit, feature identification information of the antenna from an RFID (Radio Frequency Identification) tag of the antenna;
  • RFID Radio Frequency Identification
  • the power supply unit is configured to receive, by using the second transceiver unit, a DC power supply signal provided by the RRU.
  • the peripheral connection unit is connected to the barcode scanner
  • the peripheral connection unit is configured to transmit the scan result to the control unit after receiving the scan result of the barcode scanner, where the scan result includes feature identification information of the antenna;
  • the control unit is configured to select, in the weight database stored by the storage unit, weight data that matches the scan result.
  • the peripheral connection unit is connected to a PCU (Portable Control Unit);
  • the peripheral connection unit is configured to: after receiving the input result of the PCU, transmit the input result to the control unit, where the input result includes feature identification information of the antenna;
  • the control unit is configured to select, in the weight database stored by the storage unit, weight data that matches the scan result.
  • the peripheral connection unit is connected to an ASD (Alignment Sensor Device);
  • the peripheral connection unit is configured to receive a surveying parameter of the antenna sent by the ASD, and transmit the surveying parameter to the control unit.
  • the peripheral connection unit is connected to another ALD (Antenna Line Device) of the non-antenna attitude measuring device;
  • the peripheral unit is configured to forward an antenna interface standard organization AISG message between the base station and the ALD.
  • the first transceiver unit includes a first BT (BlueTooth) unit
  • the second transceiver unit includes a second BT unit
  • the first BT unit is connected to the antenna identification unit
  • the second BT unit is respectively connected to the modem unit, the power unit, and the peripheral connection unit.
  • a method for functionally expanding an antenna is provided, the method being applied to an antenna function expansion device, where the antenna function expansion device includes a control unit, a storage unit, an antenna identification unit, a modem unit, and a power unit
  • the antenna function expansion device includes a control unit, a storage unit, an antenna identification unit, a modem unit, and a power unit
  • the peripheral connection unit, the RF channel, the first transceiver unit, and the second transceiver unit, the method includes:
  • the antenna identification unit After detecting that the power supply unit is in a power-on state, triggering the antenna identification unit to read an RFID tag of the antenna through the first transceiver unit to obtain feature identification information of the antenna;
  • the method further includes:
  • the barcode scanner is connected to the peripheral connection unit, and the barcode scanner is configured to scan a barcode of the antenna.
  • the method further includes:
  • the PCU is connected to the peripheral connection unit, and the PCU is configured to receive information of the input antenna.
  • the method further includes:
  • the peripheral connection unit and the second transceiver unit After receiving the modulated converted AISG signal sent by the modem unit, The peripheral connection unit and the second transceiver unit transmit the survey parameters to the base station.
  • an antenna function expansion device in a third aspect, includes:
  • the device includes a controller, a memory, an antenna identifier, a modem, a power source, an antenna interface standard organization AISG interface, an RF channel, a first transceiver, and a second transceiver;
  • the controller is respectively connected to the memory, the antenna identifier, the AISG interface, and the modulation and demodulation;
  • the first transceiver is connected to the antenna identifier
  • the second transceiver is respectively connected to the modem, the power source, and the AISG interface;
  • the first transceiver and the second transceiver are respectively located at two ends of the RF channel.
  • the feature identification information of the antenna can be obtained, and the weight data of the antenna is obtained according to the feature identification information, thereby expanding the function of weight management of the antenna, and
  • the working parameters of the antenna can be obtained, and the measurement function of the industrial parameter is expanded.
  • the expansion cost is low, the engineering difficulty is small, the function expansion efficiency is high, and the base station is convenient for the base station to manage the antenna according to the weight data and the engineering survey parameters.
  • FIG. 1 is a schematic structural diagram of an antenna function expansion apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of an antenna function expansion device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an antenna function expansion system according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an antenna function expansion system according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an antenna function expansion system according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an antenna function expansion system according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an antenna function expansion device according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for expanding an antenna according to an embodiment of the present invention.
  • FIG. 1 is an antenna function expansion apparatus according to an embodiment of the present invention. Taking the antenna identification unit as an RFID unit as an example, referring to FIG. 1, the device includes:
  • Control unit 101 storage unit 102, antenna identification unit 103, modem unit 104, power supply unit 105, peripheral connection unit 106, RF channel 107, first transceiver unit 108, and second transceiver unit 109.
  • the control unit 101 is connected to the storage unit 102, the antenna identification unit 103, the peripheral connection unit 106, and the modem unit 104; the first transceiver unit 108 is connected to the antenna identification unit 103; and the second transceiver unit 109 is respectively coupled to the modulation solution.
  • the tuning unit 104, the power supply unit 105 and the peripheral connection unit 106 are connected; the first transceiver unit 108 and the second transceiver unit 109 are respectively located at two ends of the RF channel 107.
  • the control unit 101 is a control core of the antenna function expansion device, and is usually an MCU (Micro Control Unit) for selecting the characteristics of the antenna in the weight database stored in the storage unit 102. Identify the weight data that the information matches.
  • the storage unit 102 has a large storage capacity for storing a weight database of the antenna and other antenna information.
  • the storage capacity of the storage unit 102 may be 8G or 16G, etc., which is not specifically limited in the embodiment of the present invention.
  • the weight database of the antenna includes the correspondence between the feature identification information of the antenna and the antenna weight.
  • the antenna weights are a quantified representation of the particular excitation signal applied by each port of the antenna.
  • the purpose of applying a specific excitation to the antenna port is to obtain a pattern with a specific coverage effect.
  • Antenna weights can be expressed in amplitude/phase mode.
  • the amplitude is generally expressed as a normalized voltage value
  • the feature identification information of the antenna may refer to the model information of the antenna.
  • the type of the feature identification information is not specifically limited in the embodiment of the present invention.
  • the other antenna information includes the direction information of the antenna, etc., and the types of other antenna information are also not specifically limited in the embodiment of the present invention.
  • the antenna identification unit 103 is configured to read an RFID tag of the smart antenna to obtain antenna feature identification information in the form of antenna model information.
  • the modem unit 104 is configured to convert the AISG signal sent by the base station between two forms of OOK and RS485.
  • the power unit 105 is configured to receive a DC power supply signal provided by the base station, and supply power to the antenna function expansion device.
  • the peripheral connection unit 106 is based on the AISG standard and is used to connect peripheral devices such as ASD, other ALDs other than ASD, barcode scanners, or PCUs. among them.
  • ASD can obtain the survey parameters of the smart antenna.
  • Engineering parameters include, but are not limited to, geographic location parameters of the antenna (including longitude and latitude parameters), altitude parameters, mechanical dip, mechanical azimuth, and the like.
  • the barcode scanner can scan the barcode of the smart antenna to know the model information of the smart antenna.
  • the PCU is a near-end configuration tool that receives and stores information about the antenna, such as the model number of the antenna.
  • the RF channel 107 connects the first transceiver unit 108 and the second transceiver unit 109.
  • the first transceiver unit 108 is connected to the antenna, and the antenna identification unit 103 acquires the feature identification information of the antenna through the first transceiver unit 108.
  • the second transceiver unit 109 is connected to the RRU of the base station through an RF cable.
  • the first transceiver unit 108 has a built-in first BT unit for separating the RFID signals.
  • the second transceiver unit 109 has a second BT unit built therein for separating the DC power supply signal and the AISG signal from the RF cable.
  • the device provided by the embodiment of the present invention can obtain the feature identification information of the antenna after the introduction of the RFID unit and the peripheral connection unit, and further obtain the weight data of the antenna according to the feature identification information, thereby extending the right to the antenna.
  • the function of value management, and the engineering survey parameters of the antenna can also be obtained, and the measurement function of the industrial parameter is expanded. Not only the expansion cost is low, the engineering difficulty is small, the function expansion efficiency is high, and the base station is convenient for the base station to manage the antenna according to the weight data and the engineering survey parameters.
  • the antenna function expansion device corresponds to the antenna function expansion device of FIG. Taking the antenna identifier as an example of an RFID card reader, the device includes a controller, a memory, an RFID card reader, Modem, power supply, antenna interface standard organization AISG interface, RF channel, first transceiver, second transceiver;
  • the first transceiver includes an ANT (Antenna) port connected to the calibration port of the antenna and a BT module.
  • the second transceiver includes a BTS (Base Transceiver Station) port and a BT module connected to the RF cable from the RRU.
  • the controller is a chip-scale microcomputer that itself includes a small-capacity memory. After the RRU of the base station provides a DC power supply signal to the power supply of the antenna function expansion device through the RF cable, the antenna function expansion device starts up and performs hardware and software initialization. Two BT modules are connected to the RF channel to enable communication between the two BT modules.
  • the controller triggers the RFID card reader to perform the card reading operation, and acquires the antenna feature identification information such as the antenna model information from the RFID tag on the antenna through the ANT port, and stores it in the storage medium of the controller itself. If the RFID card reader does not read the feature identification information of the antenna, the feature identification information of the antenna can be obtained through a barcode scanner or a peripheral device such as a PCU connected to the AISG interface, and stored in the storage medium of the controller itself. Thereafter, the controller performs traversal lookup in the weight stored database stored in the memory according to the antenna feature identification information stored in the internal storage medium, and obtains weight data corresponding to the antenna feature identification information. Then, the weight data is sent to the base station through the AISG interface and the BTS port, so that the base station shapes the antenna beam according to the weight data.
  • the antenna feature identification information such as the antenna model information from the RFID tag on the antenna through the ANT port
  • the device provided by the embodiment of the present invention can obtain the feature identification information of the antenna after the introduction of the RFID card reader and the AISG interface, and further obtain the weight data of the antenna according to the feature identification information, thereby extending the right to the antenna.
  • the function of value management, and the engineering survey parameters of the antenna can also be obtained, and the measurement function of the industrial parameter is expanded. Not only the expansion cost is low, the engineering difficulty is small, the function expansion efficiency is high, and the base station is convenient for the base station to manage the antenna according to the weight data and the engineering survey parameters.
  • the ANT port of the antenna function expansion device is connected to the calibration port of the antenna, that is, the antenna function expansion device is installed on the calibration port of the antenna.
  • the BTS port of the antenna function expansion device is connected to the RRU of the base station through an RF cable. Due to smart days
  • the standard board is included in the line, that is, the antenna is provided with an RFID tag, so the feature identification information of the antenna can be directly obtained through the RFID card reader.
  • the antenna function expansion device After the RRU of the base station provides a DC power supply signal to the power supply of the antenna function expansion device through the RF cable, the antenna function expansion device starts up and performs hardware and software initialization.
  • the controller triggers the RFID card reader to perform the card reading operation, and acquires the antenna feature identification information such as the antenna model information from the RFID tag on the antenna through the ANT port, and stores it in the storage medium of the controller itself. Thereafter, the controller performs traversal lookup in the weight stored database stored in the memory according to the antenna feature identification information stored in the internal storage medium, and obtains weight data corresponding to the antenna feature identification information. Then, the weight data is sent to the base station through the AISG interface and the BTS port, so that the base station shapes the antenna beam according to the weight data.
  • the antenna function expansion device can be connected to the ASD through the AISG interface for obtaining the survey parameters of the smart antenna.
  • the ASD can be used as a slave device of the antenna function expansion device, and the antenna function expansion device directly manages the ASD, and acquires the working parameters of the antenna from the ASD without presenting it to the base station. It is also possible to present the mapping parameters of the antenna to the base station together with the weight data of the antenna, which is not specifically limited in the embodiment of the present invention.
  • the ASD can also be used as a stand-alone ALD device to perform AISG communication transparent transmission in a cascade manner, that is, AISG messages are forwarded between the ASD and the base station, and the ASD is managed by the base station.
  • the device provided by the embodiment of the present invention can obtain the feature identification information of the antenna after the introduction of the RFID card reader and the AISG interface, and further obtain the weight data of the antenna according to the feature identification information, thereby extending the right to the antenna.
  • the function of value management, and the engineering survey parameters of the antenna can also be obtained, and the measurement function of the industrial parameter is expanded. Not only the expansion cost is low, the engineering difficulty is small, the function expansion efficiency is high, and the base station is convenient for the base station to manage the antenna according to the weight data and the engineering survey parameters.
  • the ANT port of the antenna function expansion device is connected to the calibration port of the antenna, that is, the antenna function expansion device is installed on the calibration port of the antenna.
  • the BTS port of the antenna function expansion device is connected to the RRU of the base station through an RF cable. Due to smart days
  • the standard board is not included in the line, that is, the RFID tag is not provided on the antenna, so the feature identification information of the antenna cannot be directly obtained through the RFID card reader, so the bar code scanner is connected through the AISG interface.
  • the barcode scanner can scan the barcode of the smart antenna. Before the smart antenna is shipped from the factory, the manufacturer sets a barcode for the smart antenna, and through the barcode, the basic information of the antenna such as the antenna model information can be obtained.
  • the antenna function expansion device starts up and performs hardware and software initialization.
  • the controller triggers the RFID card reader to perform the card reading operation. Since the antenna does not include the RFID tag, the RFID card reader does not read any information. Therefore, the bar code of the antenna is scanned by the barcode scanner to obtain a scan result, and the scan result includes at least the model information of the antenna.
  • the controller extracts the model information of the antenna from the scan result, and stores the model information of the antenna in the storage medium of the controller itself.
  • the controller performs traversal search in the weight database stored in the memory according to the antenna model information stored in the internal storage medium, and obtains weight data corresponding to the model information of the antenna. Then, the weight data is sent to the base station through the AISG interface and the BTS port, so that the base station shapes the antenna beam according to the weight data.
  • the antenna function expansion device can be connected to the ASD through the AISG interface for obtaining the survey parameters of the smart antenna.
  • the ASD can be used as a slave device of the antenna function expansion device, and the antenna function expansion device directly manages the ASD, and acquires the working parameters of the antenna from the ASD without presenting it to the base station. It is also possible to present the mapping parameters of the antenna to the base station together with the weight data of the antenna, which is not specifically limited in the embodiment of the present invention.
  • the ASD can also be used as a stand-alone ALD device to perform AISG communication transparent transmission in a cascade manner, that is, AISG messages are forwarded between the ASD and the base station, and the ASD is managed by the base station.
  • the device provided by the embodiment of the present invention can obtain the feature identification information of the antenna after the introduction of the RFID card reader and the AISG interface, and further obtain the weight data of the antenna according to the feature identification information, thereby extending the right to the antenna.
  • the function of value management, and the engineering survey parameters of the antenna can also be obtained, and the measurement function of the industrial parameter is expanded. Not only the expansion cost is low, the engineering is less difficult, the function expansion efficiency is high, and
  • the base station manages the antenna according to the weight data and the survey parameters.
  • the ANT port of the antenna function expansion device is connected to the calibration port of the antenna, that is, the antenna function expansion device is installed on the calibration port of the antenna.
  • the BTS port of the antenna function expansion device is connected to the RRU of the base station through an RF cable. Since the smart antenna does not include the standard board, that is, the RFID tag is not disposed on the antenna, the feature identification information of the antenna cannot be directly obtained by the RFID card reader, and thus the PCU is connected through the AISG interface.
  • the PCU is a near-end configuration tool. Support users to directly input information about smart antennas.
  • the related information includes, but is not limited to, model information of the antenna or a pattern file of the antenna, and the like.
  • the antenna function expansion device starts up and performs hardware and software initialization.
  • the controller triggers the RFID card reader to perform the card reading operation. Since the antenna does not include the RFID tag, the RFID card reader does not read any information. Therefore, the model information of the antenna is obtained through the PCU.
  • the controller After receiving the model information of the antenna through the AISG interface, the controller stores the model information of the antenna in the storage medium of the controller itself. Then, the controller performs traversal search in the weight database stored in the memory according to the antenna model information stored in the internal storage medium, and obtains weight data corresponding to the model information of the antenna. Then, the weight data is sent to the base station through the AISG interface and the BTS port, so that the base station shapes the antenna beam according to the weight data.
  • the antenna function expansion device can be connected to the ASD through the AISG interface for obtaining the survey parameters of the smart antenna.
  • the ASD can be used as a slave device of the antenna function expansion device, and the antenna function expansion device directly manages the ASD, and acquires the working parameters of the antenna from the ASD without presenting it to the base station. It is also possible to present the mapping parameters of the antenna to the base station together with the weight data of the antenna, which is not specifically limited in the embodiment of the present invention.
  • the ASD can also be used as a stand-alone ALD device to perform AISG communication transparent transmission in a cascade manner, that is, AISG messages are forwarded between the ASD and the base station, and the ASD is managed by the base station.
  • the device provided by the embodiment of the present invention can be introduced after the RFID card reader and the AISG interface are introduced.
  • the feature identification information of the antenna is obtained, and the weight data of the antenna is obtained according to the feature identification information. Therefore, the function of weight management of the antenna is expanded, and the engineering survey parameters of the antenna are also obtained, and the measurement function of the work parameter is expanded. Not only the expansion cost is low, the engineering difficulty is small, the function expansion efficiency is high, and the base station is convenient for the base station to manage the antenna according to the weight data and the engineering survey parameters.
  • the ANT port of the antenna function expansion device is connected to the calibration port of the antenna, that is, the antenna function expansion device is installed on the calibration port of the antenna.
  • the BTS port of the antenna function expansion device is connected to the RRU of the base station through an RF cable. Since the smart antenna includes a standard board, that is, an RFID tag is disposed on the antenna, the feature identification information of the antenna can be directly obtained through the RFID card reader.
  • the antenna function expansion device After the RRU of the base station provides a DC power supply signal to the power supply of the antenna function expansion device through the RF cable, the antenna function expansion device starts up and performs hardware and software initialization.
  • the controller triggers the RFID card reader to perform the card reading operation, and acquires the antenna feature identification information such as the antenna model information from the RFID tag on the antenna through the ANT port, and stores it in the storage medium of the controller itself. Thereafter, the controller performs traversal lookup in the weight stored database stored in the memory according to the antenna feature identification information stored in the internal storage medium, and obtains weight data corresponding to the antenna feature identification information. Then, the weight data is sent to the base station through the AISG interface and the BTS port, so that the base station shapes the antenna beam according to the weight data.
  • the antenna function expansion device can connect to other ALDs other than ASD through the AISG interface.
  • the antenna function extension device can perform AISG communication transparent transmission in a cascade manner, that is, AISG message is forwarded between the ALD and the base station, and the ALD is managed by the base station.
  • the device provided by the embodiment of the present invention can obtain the feature identification information of the antenna after the introduction of the RFID card reader and the AISG interface, and further obtain the weight data of the antenna according to the feature identification information, thereby extending the right to the antenna.
  • the function of value management, and the engineering survey parameters of the antenna can also be obtained, and the measurement function of the industrial parameter is expanded. Not only the expansion cost is low, the engineering difficulty is small, the function expansion efficiency is high, and the base station is convenient for the base station to manage the antenna according to the weight data and the engineering survey parameters.
  • the antenna function expansion device corresponds to the antenna function expansion device of Fig. 1.
  • the device includes a controller, a memory, a wire detecting circuit, a modem, a power source, an antenna interface standard organization AISG interface, an RF channel, a first transceiver, and a second transceiver.
  • the first transceiver includes an ANT port and a BT module connected to the calibration port of the antenna.
  • the second transceiver includes a BTS port and a BT module connected to the RF cable from the RRU.
  • the controller is a chip-scale microcomputer that itself includes a small-capacity memory. After the RRU of the base station provides a DC power supply signal to the power supply of the antenna function expansion device through the RF cable, the antenna function expansion device starts up and performs hardware and software initialization. After the software and hardware of the antenna function expansion device are initialized, the controller also distributes the DC power supply signal provided by the RRU of the base station through the RF cable to the current detection circuit to supply power to the current detection circuit. Two BT modules are connected to the RF channel to enable communication between the two BT modules.
  • the controller triggers the current detecting circuit to perform a current detecting operation through the ANT port connected to the antenna, and calculates a resistance value of the internal identification resistance R of the antenna according to the detected current value, and stores the resistance value in the controller itself. In the storage medium. Thereafter, the controller performs traversal search in the correspondence table between the resistance value stored in the memory and the antenna model according to the resistance value stored in the internal storage medium, and obtains antenna feature identification information corresponding to the resistance value.
  • the antenna feature identification information may be the model information of the antenna, which is not specifically limited in this embodiment of the present invention.
  • the controller performs traversal lookup in the weight stored database stored in the memory according to the antenna feature identification information stored in the internal storage medium, and obtains the weight data corresponding to the antenna feature identification information, and passes through the AISG interface and the BTS port.
  • the weight data is sent to the base station, so that the base station shapes the antenna beam according to the weight data.
  • the memory of the antenna function expansion device not only stores the weight database, but also stores a correspondence table between the resistance value and the antenna feature identification information, thereby facilitating determining the shape according to the resistance value of the antenna.
  • Antenna feature identification information such as antenna model information.
  • the antenna function expansion device also has different changes depending on the inside of the antenna. For example, when the antenna includes an RFID tag inside, the antenna function expansion device does not need to be connected to any peripheral device (for example, a barcode scanner or a PCU), and acquires antenna feature identification information such as antenna model information through a built-in RFID card reader. At this point, only the weight database is included in the memory.
  • the antenna function expansion device also does not need to connect any peripheral device, and the antenna feature identification information is indirectly acquired through the built-in current detecting circuit.
  • the memory includes not only the weight database but also a correspondence table between the resistance value and the antenna feature identification information.
  • the antenna does not include an RFID tag or an identification resistor inside, the antenna feature identification information can also be obtained through a barcode scanner or PCU connected to the AISG interface.
  • the device provided by the embodiment of the present invention can obtain the feature identification information of the antenna after the antenna identifier and the AISG interface are introduced, and then obtain the weight data of the antenna according to the feature identification information, so the weight of the antenna is extended.
  • the functions of the management, and the engineering survey parameters of the antenna are also obtained, and the measurement function of the industrial parameters is expanded. Not only the expansion cost is low, the engineering difficulty is small, the function expansion efficiency is high, and the base station is convenient for the base station to manage the antenna according to the weight data and the engineering survey parameters.
  • FIG. 8 is a schematic diagram of a method for expanding an antenna according to an embodiment of the present invention.
  • the method is applied to an antenna function expansion device, where the antenna function expansion device includes a control unit, a storage unit, an antenna identification unit, a modem unit, and a power unit. , peripheral connection unit, RF channel, first transceiver unit, and second transceiver unit.
  • a method provided by an embodiment of the present invention includes:
  • the trigger antenna identification unit After detecting that the power unit is in a power-on state, the trigger antenna identification unit reads the RFID tag of the antenna through the first transceiver unit to obtain feature identification information of the antenna.
  • the feature identification information of the antenna may be the type information of the antenna.
  • the type of the feature identification information is not specifically limited in the embodiment of the present invention.
  • the antenna identification unit can be either an RFID unit or a current detection unit.
  • the type of the antenna identification unit is not specifically limited in the embodiment of the present invention. It can be determined according to the internal structure of the antenna.
  • the antenna identification unit may be an RFID unit; when the antenna includes an identification resistor, the antenna identification unit may be a current detecting unit.
  • the weight database includes weight data corresponding to various types of antennas.
  • the antenna weights are a quantified representation of the particular excitation signal applied by each port of the antenna.
  • the purpose of applying a specific excitation to the antenna port is to obtain a pattern with a specific coverage effect.
  • Antenna weights can be expressed in amplitude/phase mode.
  • the amplitude is typically expressed as a normalized voltage value
  • the modem unit is configured to convert the AISG signal sent by the RRU of the base station between the two forms of OOK and RS485.
  • the base station after transmitting the weight data to the base station through the peripheral connection unit and the second transceiver unit, the base station can shape the antenna beam according to the weight data.
  • the method further includes:
  • the scan result sent by the barcode scanner is received by the peripheral connection unit; the feature identification information of the antenna is extracted from the scan result; wherein the barcode scanner is connected to the peripheral connection unit
  • the barcode scanner is used to scan the barcode of the antenna.
  • the RFID tag since the RFID tag is not provided on the smart antenna, the RFID tag of the antenna is not read. Therefore, the barcode of the antenna can be scanned by the barcode scanner connected to the peripheral connection unit, thereby obtaining the antenna feature identification information of the antenna type information.
  • the method further includes:
  • the antenna identification unit does not read the RFID tag of the antenna
  • the input result of the portable main control unit PCU is received through the peripheral connection unit; the feature identification information of the antenna is extracted from the input result; wherein the PCU is connected to the peripheral connection unit, The PCU is used to receive information of the input antenna.
  • the PUC is a near-end configuration tool that stores feature identification information of the antenna.
  • the method further includes:
  • the working parameters may include the geographic location parameter, the height parameter, the mechanical inclination parameter, the mechanical azimuth parameter, and the like of the antenna, which are not specifically limited in this embodiment of the present invention.
  • the method provided by the embodiment of the present invention can obtain the feature identification information of the antenna after the antenna identification unit and the peripheral connection unit are introduced, and then obtain the weight data of the antenna according to the feature identification information, thereby expanding the antenna.
  • the function of weight management, and the engineering parameters of the antenna can also be obtained, and the measurement function of the industrial parameter is expanded. Not only the expansion cost is low, the engineering difficulty is small, the function expansion efficiency is high, and the base station is convenient for the base station to manage the antenna according to the weight data and the engineering survey parameters.
  • the antenna function expansion device provided by the foregoing embodiment expands the function of the antenna, only the division of each functional module described above is used as an example. In actual applications, the foregoing functions may be assigned different functions according to requirements. The module is completed, dividing the internal structure of the device into different functional modules to perform all or part of the functions described above.
  • the antenna function expansion device provided by the foregoing embodiment is the same as the method embodiment for performing the function expansion on the antenna. For the specific implementation process, refer to the method embodiment, and details are not described herein again.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)
  • Transceivers (AREA)

Abstract

本发明公开了一种天线功能扩展装置、设备和对天线进行功能扩展的方法,属于通信技术领域。装置包括控制单元、存储单元、天线识别单元、调制解调单元、电源单元、外设连接单元、射频RF通道、第一收发单元、第二收发单元;控制单元分别与存储单元、天线识别单元、外设连接单元及调制解调单元连接;第一收发单元与天线识别单元连接;第二收发单元分别与调制解调单元、电源单元及外设连接单元连接。本发明在引入了天线识别单元和外设连接单元等后,可获取到天线的特征识别信息,进而根据该特征识别信息得到天线的权值数据,扩展了对天线进行权值管理的功能。不但扩展成本较低且工程难度较小,而且便于基站根据权值数据和工勘参数对天线进行管理。

Description

天线功能扩展装置、设备和对天线进行功能扩展的方法
本申请要求于2014年09月03日提交中国专利局、申请号为201410446084.1、发明名称为“天线功能扩展装置、设备和对天线进行功能扩展的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,特别涉及一种天线功能扩展装置、设备和对天线进行功能扩展的方法。
背景技术
RAE(Remote Antenna Extension,远程天线扩展)功能作为一种基于AISG(Antenna Interface Standards Group,天线接口标准组织)标准的新功能,用来对智能天线进行信息化管理。其中,信息化管理包括权值管理和工勘参数管理。在对智能天线进行信息化管理时,基站可以通过标准的AISG接口向具备RAE功能的设备索取特定的权值数据和智能天线的工勘参数。之后,基站可以根据该权值数据对智能天线的波束进行赋形,从而实现对天线波束的垂直宽度、水平宽度、垂直指向和水平指向进行多维调整。此外,基站还可将包括智能天线的地理位置、高度、机械倾角、机械方位角等的工勘参数呈现给用户。由于在推出RAE功能之前,已经在网的智能天线不具备RAE功能,因此亟需一种对智能天线进行功能扩展的方法。
现有技术在进行智能天线功能扩展时,通常采取两种方式。第一种方式,对已经在网且不具备RAE功能的智能天线进行更换或改造。第二种方式,增加一个基于AISG标准的外置RAE模块,利用该外置RAE模块对在网且不具备RAE功能的智能天线进行功能扩展。该外置RAE模块在获取智能天线的权 值数据时,需要人工手动配置智能天线的相关信息,比如天线型号信息等。进而该外置RAE模块根据人工配置的相关信息获取智能天线的权值数据。
在实现本发明的过程中,发明人发现现有技术至少存在以下问题:
针对第一种方式,对已经在网的智能天线进行更换或改造时,成本很高且工程难度较大,功能扩展效率极低;针对第二种方式,由于需人工手动配置智能天线的相关信息,所以也存在功能扩展效率较低的缺陷。
发明内容
为了解决现有技术的问题,本发明实施例提供了一种天线功能扩展设备和对天线进行功能扩展的方法。所述技术方案如下:
第一方面,提供了一种天线功能扩展装置,所述装置包括控制单元、存储单元、天线识别单元、调制解调单元、电源单元、外设连接单元、RF(Radio Frequency,射频)通道、第一收发单元、第二收发单元;
所述控制单元分别与所述存储单元、所述天线识别单元、所述外设连接单元及所述调制解调单元连接;
所述第一收发单元与所述天线识别单元连接;
所述第二收发单元分别与所述调制解调单元、所述电源单元及所述外设连接单元连接;
所述第一收发单元及第二收发单元分别位于所述RF通道的两端。
在第一方面的第一种可能的实现方式中,所述第一收发单元与天线的校准口连接;所述第二收发单元通过RF线缆与基站的RRU(Remote Radio Unit,射频拉远单元)连接;
所述天线识别单元,用于通过所述第一收发单元从所述天线的RFID(Radio Frequency Identification,射频识别)标签中获取所述天线的特征识别信息;
所述电源单元,用于通过所述第二收发单元接收所述RRU提供的直流供电信号。
结合第一方面,在第一方面的第二种可能的实现方式中,所述外设连接单元与条码扫描器连接;
所述外设连接单元,用于在接收到所述条码扫描器的扫描结果后,将所述扫描结果传输至所述控制单元,所述扫描结果中包括天线的特征识别信息;
所述控制单元,用于在所述存储单元存储的权值数据库中,选取与所述扫描结果相匹配的权值数据。
结合第一方面,在第一方面的第三种可能的实现方式中,所述外设连接单元与PCU(Portable Control Unit,便携式主控单元)连接;
所述外设连接单元,用于在接收到所述PCU的输入结果后,将所述输入结果传输至所述控制单元,所述输入结果中包括天线的特征识别信息;
所述控制单元,用于在所述存储单元存储的权值数据库中,选取与所述扫描结果相匹配的权值数据。
结合第一方面,在第一方面的第四种可能的实现方式中,所述外设连接单元与ASD(Alignment Sensor Device,天线姿态测量设备)连接;
所述外设连接单元,用于接收所述ASD发送的天线的工勘参数,将所述工勘参数传输至所述控制单元。
结合第一方面,在第一方面的第五种可能的实现方式中,所述外设连接单元与非天线姿态测量装置的其他ALD(Antenna Line Device,天线设备)连接;
所述外设单元,用于转发基站和所述ALD之间的天线接口标准组织AISG消息。
结合第一方面,在第一方面的第六种可能的实现方式中,所述第一收发单元包括第一BT(BlueTooth,蓝牙)单元,所述第二收发单元包括第二BT单元;
所述第一BT单元与所述天线识别单元连接;
所述第二BT单元分别与所述调制解调单元、所述电源单元及所述外设连接单元连接。
第二方面,提供了一种对天线进行功能扩展的方法,所述方法应用于天线功能扩展设备,所述天线功能扩展设备包括控制单元、存储单元、天线识别单元、调制解调单元、电源单元、外设连接单元、RF通道、第一收发单元、第二收发单元,所述方法包括:
当检测到所述电源单元处于上电状态后,触发所述天线识别单元通过所述第一收发单元读取天线的RFID标签,得到所述天线的特征识别信息;
将所述特征识别信息进行存储,并在所述存储单元存储的权值数据库中,选取与所述特征识别信息相匹配的权值数据;
当接收到所述调制解调单元发送的经过调制转换后的AISG信号后,通过所述外设连接单元和所述第二收发单元,将所述权值数据发送至所述基站。
结合第二方面,在第二方面的第一种可能的实现方式中,所述方法还包括:
当所述天线识别单元未读取到所述天线的RFID标签时,通过所述外设连接单元接收条码扫描器发送的扫描结果;
从所述扫描结果中提取所述天线的特征识别信息;
其中,所述条码扫描器与所述外设连接单元连接,所述条码扫描器用于对所述天线的条码进行扫描。
结合第二方面,在第二方面的第二种可能的实现方式中,所述方法还包括:
当所述天线识别单元未读取到所述天线的RFID标签时,通过所述外设连接单元接收便携式主控单元PCU的输入结果;
从所述输入结果中提取所述天线的特征识别信息;
其中,所述PCU与所述外设连接单元连接,所述PCU用于接收输入的所述天线的信息。
结合第二方面,在第二方面的第三种可能的实现方式中,所述当检测到所述电源单元处于上电状态后,所述方法还包括:
通过所述外设连接单元获取所述天线的ASD中的工勘参数;
当接收到所述调制解调单元发送的经过调制转换后的AISG信号后,通过 所述外设连接单元和所述第二收发单元,将所述工勘参数发送至所述基站。
第三方面,提供了一种天线功能扩展设备,所述装置包括:
所述设备包括控制器、存储器、天线识别器、调制解调器、电源、天线接口标准组织AISG接口、RF通道、第一收发器、第二收发器;
所述控制器分别与所述存储器、所述天线识别器、所述AISG接口及所述调制解调其连接;
所述第一收发器与所述天线识别器连接;
所述第二收发其分别与所述调制解调器、所述电源及所述AISG接口连接;
所述第一收发器及第二收发器分别位于所述RF通道的两端。
本发明实施例提供的技术方案带来的有益效果是:
在引入了天线识别单元和外设连接单元等后,可获取到天线的特征识别信息,进而根据该特征识别信息得到天线的权值数据,所以扩展了对天线进行权值管理的功能,且还可得到天线的工勘参数,扩展了工参测量功能。不但扩展成本较低且工程难度较小,功能扩展效率高,而且便于基站根据权值数据和工勘参数对天线进行管理。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种天线功能扩展装置的结构示意图;
图2是本发明实施例提供的一种天线功能扩展设备的结构示意图;
图3是本发明实施例提供的一种天线功能扩展系统的结构示意图;
图4是本发明实施例提供的一种天线功能扩展系统的结构示意图;
图5是本发明实施例提供的一种天线功能扩展系统的结构示意图;
图6是本发明实施例提供的一种天线功能扩展系统的结构示意图;
图7是本发明实施例提供的一种天线功能扩展设备的结构示意图;
图8是本发明实施例提供的一种对天线进行功能扩展的方法流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
图1是本发明实施例提供的一种天线功能扩展装置。以天线识别单元为RFID单元为例,参见图1,该装置包括:
控制单元101、存储单元102、天线识别单元103、调制解调单元104、电源单元105、外设连接单元106、RF通道107、第一收发单元108、第二收发单元109。
其中,控制单元101分别与存储单元102、天线识别单元103、外设连接单元106及调制解调单元104连接;第一收发单元108与天线识别单元103连接;第二收发单元109分别与调制解调单元104、电源单元105及外设连接单元106连接;第一收发单元108及第二收发单元109分别位于RF通道107的两端。
在本发明实施例中,控制单元101为天线功能扩展装置的控制核心,通常为MCU(Micro Control Unit,微控制单元),用于在存储单元102存储的权值数据库中,选取与天线的特征识别信息相匹配的权值数据。存储单元102的存储容量较大,用于存储天线的权值数据库及其他天线信息。其中,存储单元102的存储容量可为8G或16G等等,本发明实施例对此不作具体限定。天线的权值数据库中包括天线的特征识别信息与天线权值的对应关系。天线权值指代天线各端口所施加的特定激励信号的量化表示。而天线端口施加特定激励的目的是为了得到具有特定覆盖效果的方向图。天线权值可以表示为幅度/相位方式。幅度一般用归一化的电压值|Ui|或电流值|Ii|表示(也可以用归一化的功率表 示),相位用角度表示。天线的特征识别信息可指代天线的型号信息,本发明实施例对特征识别信息的类型不进行具体限定。其他天线信息包括天线的方向图信息等等,本发明实施例对其他天线信息的类型同样不作具体限定。
其中,天线识别单元103,用于读取智能天线的RFID标签,得到形如天线型号信息的天线特征识别信息。调制解调单元104,用于将基站发送的AISG信号在OOK和RS485两种形态之间进行转换。电源单元105,用于接收基站提供的直流供电信号,为天线功能扩展装置供电。
其中,外设连接单元106基于AISG标准,用于连接ASD、除ASD之外的其他ALD、条码扫描器或PCU等外设设备。其中。ASD可获取智能天线的工勘参数。工勘参数包括但不限于天线的地理位置参数(包括经度参数和纬度参数)、高度参数、机械倾角、机械方位角等等。条码扫描器可对智能天线的条码进行扫描,从而获知智能天线的型号信息。PCU为近端配置工具,可接收并存储天线的相关信息,比如天线的型号信息。RF通道107连接第一收发单元108和第二收发单元109。其中,第一收发单元108与天线相连接,天线识别单元103通过第一收发单元108获取天线的特征识别信息。第二收发单元109通过RF线缆与基站的RRU相连接。第一收发单元108内置有第一BT单元,用于分离RFID信号。第二收发单元109内置有第二BT单元,用于从RF线缆中分离出直流供电信号和AISG信号。
本发明实施例提供的装置,在引入了RFID单元和外设连接单元等后,可获取到天线的特征识别信息,进而根据该特征识别信息得到天线的权值数据,所以扩展了对天线进行权值管理的功能,且还可得到天线的工勘参数,扩展了工参测量功能。不但扩展成本较低且工程难度较小,功能扩展效率高,而且便于基站根据权值数据和工勘参数对天线进行管理。
参见图2,其中天线功能扩展设备对应于图1中的天线功能扩展装置。以天线识别器为RFID读卡器为例,则该设备包括控制器、存储器、RFID读卡器、 调制解调器、电源、天线接口标准组织AISG接口、RF通道、第一收发器、第二收发器;
其中,第一收发器包括一个与天线的校准口连接的ANT(Antenna,天线)端口和一个BT模块。第二收发器包括一个与来自于RRU的RF线缆连接的BTS(Base Transceiver Station,基站收发信台)端口和一个BT模块。控制器为一个芯片级的微型计算机,其自身包括有一个容量较小的存储器。在基站的RRU通过RF线缆向天线功能扩展设备的电源提供直流供电信号后,天线功能扩展设备启动并进行软硬件初始化。RF通道连接了两个BT模块,使两个BT模块之间可进行通信传输。
在初始化完毕后,控制器触发RFID读卡器进行读卡操作,通过ANT端口从天线上的RFID标签获取形如天线型号信息的天线特征识别信息,并存储于控制器自身的存储介质中。如果RFID读卡器读取不到天线的特征识别信息,则可通过与AISG接口连接的条码扫描器或PCU等外设设备获取天线的特征识别信息,并存储于控制器自身的存储介质中。之后,控制器根据内部存储介质存储的天线特征识别信息,在存储器存储的权值数据库中进行遍历查找,得到与该天线特征识别信息对应的权值数据。之后,通过AISG接口和BTS端口将该权值数据发送至基站,使基站根据该权值数据对天线波束进行赋形。
本发明实施例提供的设备,在引入了RFID读卡器和AISG接口等后,可获取到天线的特征识别信息,进而根据该特征识别信息得到天线的权值数据,所以扩展了对天线进行权值管理的功能,且还可得到天线的工勘参数,扩展了工参测量功能。不但扩展成本较低且工程难度较小,功能扩展效率高,而且便于基站根据权值数据和工勘参数对天线进行管理。
参见图3,以天线识别器为RFID读卡器为例,天线功能扩展设备的ANT端口与天线的校准口相连接,也即,天线功能扩展设备安装在天线的校准口上。天线功能扩展设备的BTS端口通过RF线缆与基站的RRU连接。由于智能天 线中包括了标准板,也即天线上设置有RFID标签,所以通过RFID读卡器可直接获取到天线的特征识别信息。
在基站的RRU通过RF线缆向天线功能扩展设备的电源提供直流供电信号后,天线功能扩展设备启动并进行软硬件初始化。在初始化完毕后,控制器触发RFID读卡器进行读卡操作,通过ANT端口从天线上的RFID标签获取形如天线型号信息的天线特征识别信息,并存储于控制器自身的存储介质中。之后,控制器根据内部存储介质存储的天线特征识别信息,在存储器存储的权值数据库中进行遍历查找,得到与该天线特征识别信息对应的权值数据。之后,通过AISG接口和BTS端口将该权值数据发送至基站,使基站根据该权值数据对天线波束进行赋形。
此外,天线功能扩展设备通过AISG接口可连接ASD,用于获取智能天线的工勘参数。在本发明实施例中,可以将ASD作为天线功能扩展设备的一个从属设备,由天线功能扩展设备直接对ASD进行管理,并从ASD获取天线的工勘参数,而不将其呈现给基站。还可以将天线的工勘参数与天线的权值数据一起呈现给基站,本发明实施例对此不作具体限定。此外,也可以把ASD当做一个独立的ALD设备,以级联的方式对其进行AISG通信透传,即在ASD和基站之间进行AISG消息的转发,由基站对ASD进行管理。
本发明实施例提供的设备,在引入了RFID读卡器和AISG接口等后,可获取到天线的特征识别信息,进而根据该特征识别信息得到天线的权值数据,所以扩展了对天线进行权值管理的功能,且还可得到天线的工勘参数,扩展了工参测量功能。不但扩展成本较低且工程难度较小,功能扩展效率高,而且便于基站根据权值数据和工勘参数对天线进行管理。
参见图4,以天线识别器为RFID读卡器为例,天线功能扩展设备的ANT端口与天线的校准口相连接,也即,天线功能扩展设备安装在天线的校准口上。天线功能扩展设备的BTS端口通过RF线缆与基站的RRU连接。由于智能天 线中未包括标准板,也即天线上未设置有RFID标签,所以通过RFID读卡器不可直接获取到天线的特征识别信息,因此通过AISG接口连接了条码扫描器。
其中,条码扫描器可扫描智能天线的条码。而智能天线在出厂之前厂家为智能天线均设置了条码,通过该条码可获取到形如天线型号信息等天线基本信息。
在本发明实施例中,在基站的RRU通过RF线缆向天线功能扩展设备的电源提供直流供电信号后,天线功能扩展设备启动并进行软硬件初始化。在初始化完毕后,控制器触发RFID读卡器进行读卡操作,由于天线未包括RFID标签,所以RFID读卡器读取不到任何信息。因此通过条码扫描器扫描天线的条码,得到扫描结果,该扫描结果中至少包括天线的型号信息。控制器在通过AISG接口接收到扫描结果后,从扫描结果中提取天线的型号信息,并将天线的型号信息存储于控制器自身的存储介质中。之后,控制器根据内部存储介质存储的天线型号信息,在存储器存储的权值数据库中进行遍历查找,得到与该天线的型号信息对应的权值数据。之后,通过AISG接口和BTS端口将该权值数据发送至基站,使基站根据该权值数据对天线波束进行赋形。
此外,天线功能扩展设备通过AISG接口可连接ASD,用于获取智能天线的工勘参数。在本发明实施例中,可以将ASD作为天线功能扩展设备的一个从属设备,由天线功能扩展设备直接对ASD进行管理,并从ASD获取天线的工勘参数,而不将其呈现给基站。还可以将天线的工勘参数与天线的权值数据一起呈现给基站,本发明实施例对此不作具体限定。此外,也可以把ASD当做一个独立的ALD设备,以级联的方式对其进行AISG通信透传,即在ASD和基站之间进行AISG消息的转发,由基站对ASD进行管理。
本发明实施例提供的设备,在引入了RFID读卡器和AISG接口等后,可获取到天线的特征识别信息,进而根据该特征识别信息得到天线的权值数据,所以扩展了对天线进行权值管理的功能,且还可得到天线的工勘参数,扩展了工参测量功能。不但扩展成本较低且工程难度较小,功能扩展效率高,而且便 于基站根据权值数据和工勘参数对天线进行管理。
参见图5,以天线识别器为RFID读卡器为例,天线功能扩展设备的ANT端口与天线的校准口相连接,也即,天线功能扩展设备安装在天线的校准口上。天线功能扩展设备的BTS端口通过RF线缆与基站的RRU连接。由于智能天线中未包括标准板,也即天线上未设置有RFID标签,所以通过RFID读卡器不可直接获取到天线的特征识别信息,因此通过AISG接口连接了PCU。
其中,其中PCU为近端配置工具。支持用户直接输入智能天线的相关信息。该相关信息包括但不限于天线的型号信息或天线的方向图文件等等。
在本发明实施例中,在基站的RRU通过RF线缆向天线功能扩展设备的电源提供直流供电信号后,天线功能扩展设备启动并进行软硬件初始化。在初始化完毕后,控制器触发RFID读卡器进行读卡操作,由于天线未包括RFID标签,所以RFID读卡器读取不到任何信息。因此通过PCU来获取天线的型号信息。控制器在通过AISG接口接收到天线的型号信息后,将天线的型号信息存储于控制器自身的存储介质中。之后,控制器根据内部存储介质存储的天线型号信息,在存储器存储的权值数据库中进行遍历查找,得到与该天线的型号信息对应的权值数据。之后,通过AISG接口和BTS端口将该权值数据发送至基站,使基站根据该权值数据对天线波束进行赋形。
此外,天线功能扩展设备通过AISG接口可连接ASD,用于获取智能天线的工勘参数。在本发明实施例中,可以将ASD作为天线功能扩展设备的一个从属设备,由天线功能扩展设备直接对ASD进行管理,并从ASD获取天线的工勘参数,而不将其呈现给基站。还可以将天线的工勘参数与天线的权值数据一起呈现给基站,本发明实施例对此不作具体限定。此外,也可以把ASD当做一个独立的ALD设备,以级联的方式对其进行AISG通信透传,即在ASD和基站之间进行AISG消息的转发,由基站对ASD进行管理。
本发明实施例提供的设备,在引入了RFID读卡器和AISG接口等后,可 获取到天线的特征识别信息,进而根据该特征识别信息得到天线的权值数据,所以扩展了对天线进行权值管理的功能,且还可得到天线的工勘参数,扩展了工参测量功能。不但扩展成本较低且工程难度较小,功能扩展效率高,而且便于基站根据权值数据和工勘参数对天线进行管理。
参见图6,以天线识别器为RFID读卡器为例,天线功能扩展设备的ANT端口与天线的校准口相连接,也即,天线功能扩展设备安装在天线的校准口上。天线功能扩展设备的BTS端口通过RF线缆与基站的RRU连接。由于智能天线中包括了标准板,也即天线上设置有RFID标签,所以通过RFID读卡器可直接获取到天线的特征识别信息。
在基站的RRU通过RF线缆向天线功能扩展设备的电源提供直流供电信号后,天线功能扩展设备启动并进行软硬件初始化。在初始化完毕后,控制器触发RFID读卡器进行读卡操作,通过ANT端口从天线上的RFID标签获取形如天线型号信息的天线特征识别信息,并存储于控制器自身的存储介质中。之后,控制器根据内部存储介质存储的天线特征识别信息,在存储器存储的权值数据库中进行遍历查找,得到与该天线特征识别信息对应的权值数据。之后,通过AISG接口和BTS端口将该权值数据发送至基站,使基站根据该权值数据对天线波束进行赋形。
此外,天线功能扩展设备通过AISG接口可连接除ASD之外的其他ALD。天线功能扩展设备可以级联的方式对其进行AISG通信透传,即在ALD和基站之间进行AISG消息的转发,由基站对ALD进行管理。
本发明实施例提供的设备,在引入了RFID读卡器和AISG接口等后,可获取到天线的特征识别信息,进而根据该特征识别信息得到天线的权值数据,所以扩展了对天线进行权值管理的功能,且还可得到天线的工勘参数,扩展了工参测量功能。不但扩展成本较低且工程难度较小,功能扩展效率高,而且便于基站根据权值数据和工勘参数对天线进行管理。
参见图7,其中天线功能扩展设备对应于图1中的天线功能扩展装置。以天线识别器为电流检测电路为例,则该设备包括控制器、存储器、电线检测电路、调制解调器、电源、天线接口标准组织AISG接口、RF通道、第一收发器、第二收发器。
其中,第一收发器包括一个与天线的校准口连接的ANT端口和一个BT模块。第二收发器包括一个与来自于RRU的RF线缆连接的BTS端口和一个BT模块。控制器为一个芯片级的微型计算机,其自身包括有一个容量较小的存储器。在基站的RRU通过RF线缆向天线功能扩展设备的电源提供直流供电信号后,天线功能扩展设备启动并进行软硬件初始化。在天线功能扩展设备的软硬件初始化完毕后,控制器将基站的RRU通过RF线缆提供的直流供电信号同样分配给电流检测电路,以为电流检测电路供电。RF通道连接了两个BT模块,使两个BT模块之间可进行通信传输。
在初始化完毕后,控制器触发电流检测电路通过与天线连接的ANT端口进行电流检测操作,并根据检测到的电流值计算天线内部识别电阻R的电阻值,将该电阻值存储于控制器自身的存储介质中。之后,控制器根据内部存储介质存储的电阻值,在存储器存储的电阻值与天线型号的对应关系表中进行遍历查找,得到与该电阻值对应的天线特征识别信息。该天线特征识别信息可为天线的型号信息,本发明实施例对此不作具体限定。
接下来,控制器根据内部存储介质存储的天线特征识别信息,在存储器存储的权值数据库中进行遍历查找,便可得到与该天线特征识别信息对应的权值数据,并通过AISG接口和BTS端口将该权值数据发送至基站,使基站根据该权值数据对天线波束进行赋形。
需要说明的是,在本发明实施例中,天线功能扩展设备的存储器中不但存储了权值数据库,还存储了电阻值与天线特征识别信息的对应关系表,从而便于根据天线的电阻值确定形如天线型号信息的天线特征识别信息。在本发明实 施例中,基于天线内部的不同,天线功能扩展设备也存在不同的变化。比如,当天线内部包括RFID标签时,天线功能扩展设备无需连接任何外设设备(比如,条码扫描器或PCU),通过内置的RFID读卡器获取到形如天线型号信息的天线特征识别信息。此时,存储器中仅包括权值数据库。当天线内部包括识别电阻而不包括RFID标签时,天线功能扩展设备同样无需连接任何外设设备,通过内置的电流检测电路间接获取到天线特征识别信息。此时,存储器中不但包括权值数据库,还包括电阻值与天线特征识别信息的对应关系表。当天线内部既不包括RFID标签也不包括识别电阻时,还可通过与AISG接口连接的条码扫描器或PCU来获取到天线特征识别信息。
本发明实施例提供的设备,在引入了天线识别器和AISG接口等后,可获取到天线的特征识别信息,进而根据该特征识别信息得到天线的权值数据,所以扩展了对天线进行权值管理的功能,且还可得到天线的工勘参数,扩展了工参测量功能。不但扩展成本较低且工程难度较小,功能扩展效率高,而且便于基站根据权值数据和工勘参数对天线进行管理。
图8是本发明实施例提供的一种对天线进行功能扩展的方法,该方法应用于天线功能扩展设备,天线功能扩展设备包括控制单元、存储单元、天线识别单元、调制解调单元、电源单元、外设连接单元、RF通道、第一收发单元、第二收发单元。参见图8,本发明实施例提供的方法,包括:
801、当检测到电源单元处于上电状态后,触发天线识别单元通过第一收发单元读取天线的RFID标签,得到天线的特征识别信息。
其中,天线的特征识别信息可为天线的型号信息,本发明实施例对特征识别信息的类型不进行具体限定。天线识别单元既可为RFID单元,也可为电流检测单元,本发明实施例对天线识别单元的类型不进行具体限定。可根据天线的内部结构而定。当天线内部包括RFID标签时,天线识别单元可为RFID单元;当天线内部包括识别电阻时,天线识别单元可为电流检测单元。
802、将特征识别信息进行存储,并在存储单元存储的权值数据库中,选取与特征识别信息相匹配的权值数据。
其中,权值数据库中包括了各种型号天线对应的权值数据。天线权值指代天线各端口所施加的特定激励信号的量化表示。而天线端口施加特定激励的目的是为了得到具有特定覆盖效果的方向图。天线权值可以表示为幅度/相位方式。幅度一般用归一化的电压值|Ui|或电流值|Ii|表示(也可以用归一化的功率表示),相位用角度表示。
803、当接收到调制解调单元发送的经过调制转换后的AISG信号后,通过外设连接单元和第二收发单元,将权值数据发送至基站。
其中,调制解调单元用于将基站的RRU发送过来的AISG信号在OOK和RS485两种形态之间转换。
在本发明实施例中,在通过外设连接单元和第二收发单元将权值数据发送至基站后,基站便可根据该权值数据对天线波束进行赋形。
可选地,该方法还包括:
当天线识别单元未读取到天线的RFID标签时,通过外设连接单元接收条码扫描器发送的扫描结果;从扫描结果中提取天线的特征识别信息;其中,条码扫描器与外设连接单元连接,条码扫描器用于对天线的条码进行扫描。
针对该种情况,由于智能天线上未设置RFID标签,所以读取不到天线的RFID标签。因此,可通过与外设连接单元连接的条码扫描器扫描天线的条码,进而获取到形如天线型号信息的天线特征识别信息。
可选地,该方法还包括:
当天线识别单元未读取到天线的RFID标签时,通过外设连接单元接收便携式主控单元PCU的输入结果;从输入结果中提取天线的特征识别信息;其中,PCU与外设连接单元连接,PCU用于接收输入的天线的信息。
针对该种情况,由于智能天线上未设置RFID标签,所以读取不到天线的RFID标签。因此,可通过与外设连接单元连接的PCU获取到形如天线型号信 息的天线特征识别信息。其中,PUC为近端配置工具,存储有天线的特征识别信息。
可选地,当检测到电源单元处于上电状态后,该方法还包括:
通过外设连接单元获取天线的ASD中的工勘参数;当接收到调制解调单元发送的经过调制转换后的AISG信号后,通过外设连接单元和第二收发单元,将工勘参数发送至基站。
其中,工勘参数可包括天线的地理位置参数、高度参数、机械倾角参数、机械方位角参数等,本发明实施例对此不进行具体限定。
本发明实施例提供的方法,在引入了天线识别单元和外设连接单元等后,可获取到天线的特征识别信息,进而根据该特征识别信息得到天线的权值数据,所以扩展了对天线进行权值管理的功能,且还可得到天线的工勘参数,扩展了工参测量功能。不但扩展成本较低且工程难度较小,功能扩展效率高,而且便于基站根据权值数据和工勘参数对天线进行管理。
需要说明的是:上述实施例提供的天线功能扩展装置在对天线进行功能扩展时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的天线功能扩展装置与对天线进行功能扩展的方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的 保护范围之内。

Claims (12)

  1. 一种天线功能扩展装置,其特征在于,所述装置包括控制单元、存储单元、天线识别单元、调制解调单元、电源单元、外设连接单元、射频RF通道、第一收发单元、第二收发单元;
    所述控制单元分别与所述存储单元、所述天线识别单元、所述外设连接单元及所述调制解调单元连接;
    所述第一收发单元与所述天线识别单元连接;
    所述第二收发单元分别与所述调制解调单元、所述电源单元及所述外设连接单元连接;
    所述第一收发单元及第二收发单元分别位于所述RF通道的两端。
  2. 根据权利要求1所述的装置,其特征在于,所述第一收发单元与天线的校准口连接;所述第二收发单元通过RF线缆与基站的射频拉远单元RRU连接;
    所述天线识别单元,用于通过所述第一收发单元从所述天线的RFID标签中获取所述天线的特征识别信息;
    所述电源单元,用于通过所述第二收发单元接收所述RRU提供的直流供电信号。
  3. 根据权利要求1所述的装置,其特征在于,所述外设连接单元与条码扫描器连接;
    所述外设连接单元,用于在接收到所述条码扫描器的扫描结果后,将所述扫描结果传输至所述控制单元,所述扫描结果中包括天线的特征识别信息;
    所述控制单元,用于在所述存储单元存储的权值数据库中,选取与所述扫描结果相匹配的权值数据。
  4. 根据权利要求1所述的装置,其特征在于,所述外设连接单元与便携式 主控单元PCU连接;
    所述外设连接单元,用于在接收到所述PCU的输入结果后,将所述输入结果传输至所述控制单元,所述输入结果中包括天线的特征识别信息;
    所述控制单元,用于在所述存储单元存储的权值数据库中,选取与所述扫描结果相匹配的权值数据。
  5. 根据权利要求1所述的装置,其特征在于,所述外设连接单元与天线姿态测量设备ASD连接;
    所述外设连接单元,用于接收所述ASD发送的天线的工勘参数,将所述工勘参数传输至所述控制单元。
  6. 根据权利要求1所述的装置,其特征在于,所述外设连接单元与非天线姿态测量装置的其他天线设备ALD连接;
    所述外设单元,用于转发基站和所述ALD之间的天线接口标准组织AISG消息。
  7. 根据权利要求1所述的装置,其特征在于,所述第一收发单元包括第一蓝牙BT单元,所述第二收发单元包括第二BT单元;
    所述第一BT单元与所述天线识别单元连接;
    所述第二BT单元分别与所述调制解调单元、所述电源单元及所述外设连接单元连接。
  8. 一种对天线进行功能扩展的方法,其特征在于,所述方法应用于天线功能扩展设备,所述天线功能扩展设备包括控制单元、存储单元、天线识别单元、调制解调单元、电源单元、外设连接单元、射频RF通道、第一收发单元、第二收发单元,所述方法包括:
    当检测到所述电源单元处于上电状态后,触发所述天线识别单元通过所述 第一收发单元读取天线的RFID标签,得到所述天线的特征识别信息;
    将所述特征识别信息进行存储,并在所述存储单元存储的权值数据库中,选取与所述特征识别信息相匹配的权值数据;
    当接收到所述调制解调单元发送的经过调制转换后的AISG信号后,通过所述外设连接单元和所述第二收发单元,将所述权值数据发送至所述基站。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    当所述天线识别单元未读取到所述天线的RFID标签时,通过所述外设连接单元接收条码扫描器发送的扫描结果;
    从所述扫描结果中提取所述天线的特征识别信息;
    其中,所述条码扫描器与所述外设连接单元连接,所述条码扫描器用于对所述天线的条码进行扫描。
  10. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    当所述天线识别单元未读取到所述天线的RFID标签时,通过所述外设连接单元接收便携式主控单元PCU的输入结果;
    从所述输入结果中提取所述天线的特征识别信息;
    其中,所述PCU与所述外设连接单元连接,所述PCU用于接收输入的所述天线的信息。
  11. 根据权利要求8所述的方法,其特征在于,所述当检测到所述电源单元处于上电状态后,所述方法还包括:
    通过所述外设连接单元获取所述天线的天线姿态测量设备ASD中的工勘参数;
    当接收到所述调制解调单元发送的经过调制转换后的AISG信号后,通过所述外设连接单元和所述第二收发单元,将所述工勘参数发送至所述基站。
  12. 一种天线功能扩展设备,其特征在于,所述设备包括控制器、存储器、天线识别器、调制解调器、电源、天线接口标准组织AISG接口、射频RF通道、第一收发器、第二收发器;
    所述控制器分别与所述存储器、所述天线识别器、所述AISG接口及所述调制解调其连接;
    所述第一收发器与所述天线识别器连接;
    所述第二收发其分别与所述调制解调器、所述电源及所述AISG接口连接;
    所述第一收发器及第二收发器分别位于所述RF通道的两端。
PCT/CN2015/088048 2014-09-03 2015-08-25 天线功能扩展装置、设备和对天线进行功能扩展的方法 WO2016034057A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15837986.7A EP3190718B1 (en) 2014-09-03 2015-08-25 Antenna function extension apparatus and method for function extension of antenna
KR1020177008244A KR102014866B1 (ko) 2014-09-03 2015-08-25 안테나 기능 확장 장치, 장치 및 방법
JP2017512332A JP6561118B2 (ja) 2014-09-03 2015-08-25 アンテナ機能拡張装置、デバイス、及び方法
US15/448,052 US10028334B2 (en) 2014-09-03 2017-03-02 Antenna function extension apparatus, device, and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410446084.1A CN104243005B (zh) 2014-09-03 2014-09-03 天线功能扩展装置、设备和对天线进行功能扩展的方法
CN201410446084.1 2014-09-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/448,052 Continuation US10028334B2 (en) 2014-09-03 2017-03-02 Antenna function extension apparatus, device, and method

Publications (1)

Publication Number Publication Date
WO2016034057A1 true WO2016034057A1 (zh) 2016-03-10

Family

ID=52230452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088048 WO2016034057A1 (zh) 2014-09-03 2015-08-25 天线功能扩展装置、设备和对天线进行功能扩展的方法

Country Status (6)

Country Link
US (1) US10028334B2 (zh)
EP (1) EP3190718B1 (zh)
JP (1) JP6561118B2 (zh)
KR (1) KR102014866B1 (zh)
CN (1) CN104243005B (zh)
WO (1) WO2016034057A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104243005B (zh) 2014-09-03 2017-12-29 华为技术有限公司 天线功能扩展装置、设备和对天线进行功能扩展的方法
CN108112021B (zh) * 2016-11-24 2021-01-22 大唐移动通信设备有限公司 一种射频通道检测数据的回传方法及设备
BR112019013370B1 (pt) * 2016-12-29 2022-11-22 Huawei Technologies Co., Ltd Antena e dispositivo de rede
DE102018103908B3 (de) * 2018-02-21 2019-05-09 Kathrein Se Heterogene Mobilfunkanordnung zur Versorgung zumindest einer Mobilfunkzelle mit Mobilfunkdienstleistungen
US11113483B2 (en) * 2019-12-16 2021-09-07 Cymmetrik Enterprise Co., Ltd. Radio frequency identification (RFID) system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201549582U (zh) * 2009-12-21 2010-08-11 南京恩瑞特实业有限公司 可扩展模块化智能天线
US20100290553A1 (en) * 2009-05-14 2010-11-18 Futurewei Technologies, Inc. Probability Based MIMO Mode Selection and Switching System and Method for Wireless Systems
CN101946420A (zh) * 2008-02-15 2011-01-12 高通股份有限公司 使用具有不同极化的多个天线的方法和装置
CN103891179A (zh) * 2011-09-15 2014-06-25 安德鲁无线系统有限公司 用于远程通信系统的配置子系统
CN104243005A (zh) * 2014-09-03 2014-12-24 深圳市华为安捷信电气有限公司 天线功能扩展装置、设备和对天线进行功能扩展的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4239033B2 (ja) * 2004-06-15 2009-03-18 ブラザー工業株式会社 無線タグ通信システムの質問器
WO2007139063A1 (ja) * 2006-05-29 2007-12-06 Kyocera Corporation 基地局装置、基地局装置の制御方法、受信装置、適応アルゴリズム制御方法、無線通信装置および無線通信方法
GB0700801D0 (en) * 2007-01-16 2007-02-21 Nortel Networks Ltd Shared radio backhaul system
KR100840008B1 (ko) * 2007-05-16 2008-06-20 제일기술(주) 유비쿼터스 센서 네트워크 기반의 식품위생 자동관리시스템 및 그 방법
CN101408947B (zh) * 2007-10-09 2011-09-21 西门子公司 一种无线射频识别读写器及天线切换实现方法
US8514145B2 (en) * 2009-06-15 2013-08-20 Hendrikus A. Le Sage Antenna identification module
US8774717B2 (en) * 2009-10-15 2014-07-08 Andrew Llc Portable AISG controller with smartphone interface and system
FR2953314B1 (fr) * 2009-12-01 2012-10-26 Schneider Electric Ind Sas Prolongateur d'antenne rfid auto-parametrable
US8744502B2 (en) * 2011-08-12 2014-06-03 Qualcomm Incorporated Antenna to transceiver mapping of a multimode wireless device
CN104641509B (zh) * 2012-09-14 2016-12-14 株式会社Kmw 移动通信基站的天线和用于控制其的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101946420A (zh) * 2008-02-15 2011-01-12 高通股份有限公司 使用具有不同极化的多个天线的方法和装置
US20100290553A1 (en) * 2009-05-14 2010-11-18 Futurewei Technologies, Inc. Probability Based MIMO Mode Selection and Switching System and Method for Wireless Systems
CN201549582U (zh) * 2009-12-21 2010-08-11 南京恩瑞特实业有限公司 可扩展模块化智能天线
CN103891179A (zh) * 2011-09-15 2014-06-25 安德鲁无线系统有限公司 用于远程通信系统的配置子系统
CN104243005A (zh) * 2014-09-03 2014-12-24 深圳市华为安捷信电气有限公司 天线功能扩展装置、设备和对天线进行功能扩展的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3190718A4 *

Also Published As

Publication number Publication date
EP3190718A1 (en) 2017-07-12
CN104243005A (zh) 2014-12-24
EP3190718B1 (en) 2020-02-19
JP6561118B2 (ja) 2019-08-14
CN104243005B (zh) 2017-12-29
KR102014866B1 (ko) 2019-08-27
US20170181222A1 (en) 2017-06-22
JP2017536714A (ja) 2017-12-07
EP3190718A4 (en) 2017-09-13
KR20170046738A (ko) 2017-05-02
US10028334B2 (en) 2018-07-17

Similar Documents

Publication Publication Date Title
WO2016034057A1 (zh) 天线功能扩展装置、设备和对天线进行功能扩展的方法
US8258953B2 (en) Displaying radio frequency identification (RFID) read range of an RFID reader based on feedback from fixed RFID beacon tags
US20120092134A1 (en) Determining item location within a space based on feedback from radio frequency identification (rfid) readers and tags
US9826365B2 (en) Method for deciding location of target device and electronic device thereof
EP3293989B1 (en) Methods for provisioning a wireless beacon
US20170061175A1 (en) System and Method for Finding and Locating Items
JP5402969B2 (ja) 携帯端末及びプログラム
US10235874B2 (en) Remote control system, remote control method and gateway
US20080297319A1 (en) Article management system
CN105989319B (zh) 一种射频识别rfid标签的数据应用方法及系统
US20180150666A1 (en) Temperature Data Processing Method and System
CN106131767A (zh) 一种结合WiFi和蓝牙的手机定位方法
US9904818B2 (en) RFID system with location capability
EP2874465A1 (en) Method and system for remote equipment data installation
CN104349274A (zh) 一种信息处理方法及装置
US11343644B2 (en) Neighbor awareness method, beacon device, and mobile terminal
US9693431B1 (en) Near field communication devices, methods and systems
CN105472643A (zh) 用于感知天线参数的方法、天线设备和系统
JP6288166B2 (ja) 携帯端末及びプログラム
CN104268492A (zh) 一种实现室内精确定位的方法
KR101685785B1 (ko) 댁내 가전기기의 위치를 결정하는 방법
JP5737362B2 (ja) 携帯端末及びプログラム
JP6115053B2 (ja) 位置情報管理サーバ、位置情報管理方法及び位置情報管理システム
KR102412257B1 (ko) 실내 공간에서 비접촉 통신을 이용한 위치 인식 방법 및 장치
JP2015165411A (ja) 携帯端末及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837986

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017512332

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015837986

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015837986

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177008244

Country of ref document: KR

Kind code of ref document: A