WO2016034025A1 - 垂直极化全向天线 - Google Patents

垂直极化全向天线 Download PDF

Info

Publication number
WO2016034025A1
WO2016034025A1 PCT/CN2015/085472 CN2015085472W WO2016034025A1 WO 2016034025 A1 WO2016034025 A1 WO 2016034025A1 CN 2015085472 W CN2015085472 W CN 2015085472W WO 2016034025 A1 WO2016034025 A1 WO 2016034025A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
portions
monopole
omnidirectional antenna
vertically polarized
Prior art date
Application number
PCT/CN2015/085472
Other languages
English (en)
French (fr)
Inventor
漆一宏
于伟
Original Assignee
江苏省东方世纪网络信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏省东方世纪网络信息有限公司 filed Critical 江苏省东方世纪网络信息有限公司
Publication of WO2016034025A1 publication Critical patent/WO2016034025A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith

Definitions

  • the invention relates to a vertically polarized omnidirectional antenna.
  • Existing vertically polarized omnidirectional antennas are both disk cone antennas and biconical antennas.
  • the existing vertically polarized omnidirectional antennas have the defects of poor roundness, high processing difficulty, high cost, and inability to operate in a wide frequency band.
  • an object of the present invention is to provide a vertically polarized omnidirectional antenna having the advantages of small size, simple structure, easy processing, low cost, good roundness, good cross polarization index, and wide operating band.
  • a vertically polarized omnidirectional antenna includes: a chassis; a monopole, the monopole including a first central portion and a plurality of first radiating portions, and an inner end of each of the first radiating portions The first central portion is connected and each of the first radiating portions extends away from the first central portion, the monopole is disposed above the chassis; a coaxial cable, the coaxial The cable includes an outer conductor and an inner conductor, the outer conductor being coupled to the chassis, the inner conductor passing through the chassis and connected to the first central portion of the monopole; and a shorting patch,
  • the short-circuit patch includes a second central portion, a plurality of second radiating portions, and a plurality of connecting portions, and an inner end of each of the second radiating portions is connected to the second central portion and each of the second radiating portions Extending in a direction away from the second central portion, a plurality of the connecting portions are connected to the plurality of the second radiating portions in a one-
  • a vertically polarized omnidirectional antenna according to an embodiment of the present invention can make the vertical polarization by providing a coupling short-circuit patch of a monopole and an intersecting structure having an intersecting structure and feeding a monopole above the chassis Omnidirectional antennas can operate at high frequencies. That is, a vertically polarized omnidirectional antenna according to an embodiment of the present invention can operate in a low frequency band and a high frequency band. Moreover, by electromagnetic coupling, the low frequency band of the vertically polarized omnidirectional antenna is excited by a short-circuit patch located above the monopole, so that the working bandwidth of the vertically-polarized omnidirectional antenna can be expanded to achieve good performance. Out of roundness and cross polarization requirements.
  • the vertically polarized omnidirectional antenna according to the embodiment of the present invention does not adopt a tapered structure, thereby having the advantages of simple structure, easy processing, low cost, and the like.
  • the short-circuit point of the vertically-polarized omnidirectional antenna can be moved up, thereby effectively reducing the size of the chassis and reducing The vertical The volume of a polarized omnidirectional antenna.
  • the vertically polarized omnidirectional antenna according to the embodiment of the present invention has the advantages of small size, simple structure, easy processing, low cost, good roundness, good cross polarization index, and wide operating band.
  • the vertically polarized omnidirectional antenna according to the above embodiment of the present invention may further have the following additional technical features:
  • the angles between the adjacent two first radiation portions are equal to each other, and the angles between the adjacent two second radiation portions are equal to each other.
  • the plurality of the first radiation portions and the plurality of the second radiation portions are opposed to each other in the up and down direction. Therefore, the structure of the vertically polarized omnidirectional antenna can be made more reasonable.
  • the first radiation portion is four and the second radiation portion is four.
  • the structure of the vertically polarized omnidirectional antenna can be made more reasonable.
  • each of the first radiation portion, the second radiation portion, and the connecting portion is in a flat shape. Therefore, the manufacturing difficulty of the vertically polarized omnidirectional antenna can be further reduced.
  • a plurality of said connecting portions are arranged around said monopole, each of said connecting portions being spaced apart from said monopole.
  • the vertically polarized omnidirectional antenna further includes a top loading member disposed on an upper surface of the plurality of the second radiation portions.
  • the vertically polarized omnidirectional antenna further includes an inductance member connected to each of the first radiation portion and the second radiation portion opposite to each other in the up and down direction .
  • the inductance of the inductance component is greater than or equal to 1 ⁇ H.
  • the upper end of the inductor is connected to the lower end of the second central portion, and the lower end of the inductor is connected to the upper end of the first central portion.
  • FIG. 1 is a schematic structural view of a vertically polarized omnidirectional antenna according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a vertically polarized omnidirectional antenna according to another embodiment of the present invention.
  • FIG. 3 is a block diagram showing the structure of a vertically polarized omnidirectional antenna according to still another embodiment of the present invention.
  • a vertically polarized omnidirectional antenna 10 in accordance with an embodiment of the present invention will now be described with reference to Figs.
  • a vertically polarized omnidirectional antenna 10 includes a chassis 101, a monopole 102, a coaxial cable (not shown), and a shorting patch 104.
  • the monopole 102 includes a first central portion 1021 and a plurality of first radiating portions 1022, the inner ends of each of the first radiating portions 1022 are connected to the first central portion 1021, and each of the first radiating portions 1022 is away from the first center
  • the direction of the portion 1021 extends (ie, the monopole 102 has an intersecting structure), and the monopole 102 is disposed above the chassis 101.
  • the coaxial cable includes an outer conductor connected to the chassis 101, the inner conductor passing through the chassis 101, and the inner conductor being connected to the first central portion 1021 of the monopole 102.
  • the short-circuit patch 104 includes a second central portion 1041, a plurality of second radiating portions 1042, and a plurality of connecting portions 1043.
  • the inner end of each of the second radiating portions 1042 is connected to the second central portion 1041, and each of the second radiating portions 1042 extends away from the second central portion 1041 (i.e., the short-circuit patch 104 has an intersecting structure).
  • the plurality of connecting portions 1043 are connected to the plurality of second radiating portions 1042 in a one-to-one correspondence, and each connecting portion 1043 is connected to the chassis 101.
  • the shorting patch 104 is disposed above the monopole 102, and the shorting patch 104 is spaced apart from the monopole 102. That is, the number of the connecting portions 1043 is equal to the number of the second radiating portions 1042, and one connecting portion 1043 is connected to one second radiating portion 1042.
  • the vertically polarized omnidirectional antenna 10 can provide a vertical pole by coupling a monopole 102 having an intersecting structure and a coupling short-circuit patch 104 of an intersecting structure and feeding a monopole 102 above the chassis 101.
  • the omnidirectional antenna 10 is capable of operating at a high frequency band. That is, the vertically polarized omnidirectional antenna 10 according to an embodiment of the present invention can operate in a low frequency band and a high frequency band.
  • the short-frequency patch 104 above the monopole 102 excites the low frequency band of the vertically-polarized omnidirectional antenna 10, thereby expanding the working bandwidth of the vertically-polarized omnidirectional antenna 10, achieving good non-circle. Degree and cross-polarization indicator requirements.
  • the vertically polarized omnidirectional antenna 10 does not adopt a tapered structure, thereby having the advantages of simple structure, easy processing, low cost, and the like.
  • the short-circuit patch 104 above the monopole 102, the short-circuit point of the vertically-polarized omnidirectional antenna 10 can be moved up, thereby effectively reducing the size of the chassis 101 and reducing the vertical polarization.
  • the vertically polarized omnidirectional antenna 10 has the advantages of small size, simple structure, easy processing, low cost, good roundness, good cross polarization index, and wide operating band.
  • a vertically polarized omnidirectional antenna 10 includes a chassis 101, a coaxial cable, a monopole 102, a shorting patch 104, a top loading member 105, and an inductor 106.
  • the vertically-polarized omnidirectional antenna 10 according to an embodiment of the present invention can be applied to an indoor distribution system of mobile communication.
  • the chassis 101 may be a metal chassis, that is, the chassis 101 may be made of metal. As shown in FIGS. 1-3, the chassis 101 may be in the form of a flat plate, and the chassis 101 may have a curved surface.
  • the chassis 101 can be a circle, a regular polygon, or an irregular polygon.
  • the monopole 102 includes a first central portion 1021 and a plurality of first radiating portions 1022, the inner ends of each of the first radiating portions 1022 are connected to the first central portion 1021, and each of the first radiating portions 1022 is away from the first center
  • the direction of the portion 1021 extends (ie, the monopole 102 has an intersecting structure), and the monopole 102 is disposed above the chassis 101. That is, the first center portion 1021 may be a common portion of the plurality of first radiation portions 1022.
  • the monopole 102 does not employ a tapered structure, but a structure in which a plurality of second radiating portions 1042 intersect, so that a pattern of omnidirectional radiation can be formed.
  • the first radiation portion 1022 may have a flat shape, and the first radiation portion 1022 may have a curved surface.
  • the first radiation portion 1022 may be a regular polygon or an irregular polygon.
  • Both the first central portion 1021 and the first radiating portion 1022 may be metal members, that is, both the first central portion 1021 and the first radiating portion 1022 may be made of metal.
  • the angles between adjacent two first radiating portions 1022 are equal to each other.
  • the angle between the adjacent two first radiation portions 1022 may be a first predetermined value. That is, the plurality of first radiation portions 1022 may be disposed at equal intervals along the circumferential direction of the first central portion 1021.
  • the first radiation portions 1022 are four, that is, the angle between the adjacent two first radiation portions 1022 may be ninety degrees. Thereby, the structure of the monopole 102 can be made more reasonable, and the structure of the vertically polarized omnidirectional antenna 10 can be made more reasonable.
  • the short-circuit patch 104 includes a second central portion 1041, a plurality of second radiating portions 1042, and a plurality of connecting portions 1043.
  • the inner end of each of the second radiating portions 1042 is connected to the second central portion 1041, and each of the second radiating portions 1042 extends away from the second central portion 1041 (i.e., the short-circuit patch 104 has an intersecting structure). That is, the second center portion 1041 may be a co-joining portion of the plurality of second radiation portions 1042.
  • the shorting patch 104 is a coupling structure of the vertically polarized omnidirectional antenna 10. That is, the shorting patch 104 is coupled to the monopole 102 so that the bandwidth of the vertically polarized omnidirectional antenna 10 can be expanded.
  • the second radiation portion 1042 may have a flat shape, and the second radiation portion 1042 may have a curved surface.
  • the second radiation portion 1042 may be a regular polygon or an irregular polygon.
  • the second central portion 1041, the second radiating portion 1042, and the connecting portion 1043 may each be a metal member, that is, the second central portion 1041, the second radiating portion 1042, and the connecting portion 1043 may be made of metal.
  • the angles between adjacent two second radiating portions 1042 are equal to each other.
  • the angle between the adjacent two second radiating portions 1042 may be a second predetermined value.
  • more The second radiation portions 1042 may be disposed at equal intervals along the circumferential direction of the second central portion 1041.
  • the second radiation portions 1042 are four, that is, the angle between the adjacent two second radiation portions 1042 may be ninety degrees. Thereby, the structure of the monopole 102 can be made more reasonable, and the structure of the vertically polarized omnidirectional antenna 10 can be made more reasonable.
  • the second central portion 1041 and the plurality of second radiating portions 1042 may be disposed above the monopole 102, and the second central portion 1041 and the plurality of second radiating portions 1042 are spaced apart from the monopole 102 in the up and down direction.
  • the up and down direction is as indicated by an arrow A in FIG. 1 to FIG. 3, and the inner and outer directions are as indicated by an arrow B in FIGS.
  • the plurality of first radiation portions 1022 and the plurality of second radiation portions 1042 may face each other in the up and down direction. That is, the first radiation portion 1022 and the second radiation portion 1042 that is opposed to the first radiation portion 1022 in the up and down direction may be located on the same vertical plane. Thereby, the structure of the vertically polarized omnidirectional antenna 10 can be made more reasonable.
  • a plurality of connecting portions 1043 are connected to the plurality of second radiating portions 1042 in a one-to-one correspondence, and each connecting portion 1043 is connected to the chassis 101. That is, the number of the connecting portions 1043 may be equal to the number of the second radiating portions 1042, and one connecting portion 1043 may be connected to one second radiating portion 1042.
  • the upper end of the connecting portion 1043 may be connected to the second radiating portion 1042, and the lower end of the connecting portion 1043 may be connected to the upper surface of the chassis 101.
  • the connecting portion 1043 may be a metal member, that is, the connecting portion 1043 may be made of metal.
  • the connecting portion 1043 can be an elongated metal plate.
  • each of the first radiation portion 1022, the second radiation portion 1042, and the connection portion 1043 may be flat. Thereby, the manufacturing difficulty of the vertically polarized omnidirectional antenna 10 can be further reduced.
  • a plurality of connecting portions 1043 may be disposed around the monopoles 102, each of which is spaced apart from the monopole 102. That is, the monopole 102 may be located inside the plurality of connecting portions 1043, and the connecting portion 1043 and the monopole 102 may be spaced apart in the inner and outer directions. Thereby, the structure of the vertically polarized omnidirectional antenna 10 can be made more reasonable.
  • the coaxial cable includes an outer conductor connected to the chassis 101, the inner conductor passing through the chassis 101, and the inner conductor being connected to the first central portion 1021 of the monopole 102.
  • the inner conductor may be connected to the lower end of the first central portion 1021 of the monopole 102.
  • the top loading member 105 is provided on the upper surface of the plurality of second radiation portions 1042. That is, the top loading member 105 is located above the short-circuit patch 104, and a portion of the upper surface of each of the second radiation portions 1042 is in contact with the lower surface of the top loading member 105.
  • the top loading member 105 By providing the top loading member 105 on the short-circuit patch 104, not only can the cross section of the vertically polarized omnidirectional antenna 10 be effectively reduced, the volume of the vertically polarized omnidirectional antenna 10 can be reduced, and the vertically polarized omnidirectional antenna 10 can be improved. Impedance bandwidth.
  • the top loading member 105 can be a metal piece, that is, the top loading member 105 can be made of metal. As shown in Figures 2 and 3, the top loading member 105 can be flat. The top loader 105 can also have a curved surface. The top loader 105 can be a circle, a regular polygon, or an irregular polygon.
  • the top loading member 105 may be provided with a through hole 1051 penetrating the top loading member 105 in the up and down direction.
  • the through hole 1051 may be a circular hole.
  • the vertically polarized omnidirectional antenna 10 may further include an inductance member 106 in which the first radiation portion 1022 and the second radiation portion 1042 are opposed in the up and down direction. Each one is connected. That is, the inductor 106 is connected to a first radiating portion 1022, and the inductor 106 is connected to a second radiating portion 1042, the first radiating portion 1022 connected to the inductor 106 and the second emitting unit connected to the inductor 106.
  • the portion 1042 faces in the up and down direction. Thereby, the structure of the vertically polarized omnidirectional antenna 10 can be made more reasonable.
  • the inductance of the inductive component 106 is greater than or equal to 1 [mu]H.
  • connection may be a direct connection, a coupling connection or other connection manner.
  • the various components of the vertically polarized omnidirectional antenna 10 can be connected by suitable connections.
  • the size of the coupling area can be determined and adjusted according to the performance requirements of the vertically polarized omnidirectional antenna 10, in order to enable the vertically polarized omnidirectional antenna 10 to have a sufficiently large capacitance (coupling capacitance) at the required frequency.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. Or in one piece; it may be a mechanical connection, or it may be an electrical connection or a communication with each other; it may be directly connected or indirectly connected through an intermediate medium, and may be an internal connection of two elements or an interaction relationship between two elements. Unless otherwise expressly defined. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first A feature “above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

一种垂直极化全向天线(10)包括:底盘(101);单极子(102),单极子(102)包括第一中心部(1021)和多个第一放射部(1022),每个第一放射部(1022)的内端与第一中心部(1021)相连且每个第一放射部(1022)向远离第一中心部(1021)的方向延伸,单极子(102)设在底盘(101)的上方;同轴线缆;和短路贴片(104),短路贴片(104)包括第二中心部(1041)、多个第二放射部(1042)和多个连接部(1043),每个第二放射部(1042)的内端与第二中心部(1041)相连且每个第二放射部(1042)向远离第二中心部(1041)的方向延伸,多个连接部(1043)一一对应地与多个第二放射部(1042)相连,每个连接部(1043)与底盘(101)相连,其中短路贴片(104)设在单极子(102)的上方且与单极子(102)间隔开。所述天线具有体积小、结构简单、易于加工、成本低、不圆度良好、交叉极化指标良好、工作频带很宽等优点。

Description

垂直极化全向天线 技术领域
本发明涉及一种垂直极化全向天线。
背景技术
现有的垂直极化全向天线都是盘锥天线和双锥天线。现有的垂直极化全向天线存在不圆度差、加工难度大、成本高、无法在很宽的频段内工作的缺陷。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出一种具有体积小、结构简单、易于加工、成本低、不圆度良好、交叉极化指标良好、工作频带很宽等优点的垂直极化全向天线。
根据本发明实施例的垂直极化全向天线包括:底盘;单极子,所述单极子包括第一中心部和多个第一放射部,每个所述第一放射部的内端与所述第一中心部相连且每个所述第一放射部向远离所述第一中心部的方向延伸,所述单极子设在所述底盘的上方;同轴线缆,所述同轴线缆包括外导体和内导体,所述外导体与所述底盘相连,所述内导体穿过所述底盘且与所述单极子的所述第一中心部相连;和短路贴片,所述短路贴片包括第二中心部、多个第二放射部和多个连接部,每个所述第二放射部的内端与所述第二中心部相连且每个所述第二放射部向远离所述第二中心部的方向延伸,多个所述连接部一一对应地与多个所述第二放射部相连,每个所述连接部与所述底盘相连,其中所述短路贴片设在所述单极子的上方且与所述单极子间隔开。
根据本发明实施例的垂直极化全向天线通过设置具有相交结构的单极子和相交结构的耦合短路贴片且对所述底盘上方的单极子馈电,从而可以使所述垂直极化全向天线能够在高频段工作。也就是说,根据本发明实施例的垂直极化全向天线可以在低频段和高频段工作。而且,通过电磁耦合,由位于所述单极子的上方的短路贴片激励所述垂直极化全向天线的低频段,从而可以拓展所述垂直极化全向天线的工作带宽,达到良好的不圆度和交叉极化指标要求。
根据本发明实施例的垂直极化全向天线不采用锥形结构,从而具有结构简单、易于加工、成本低等优点。同时,通过将所述短路贴片设置在所述单极子的上方,从而可以使所述垂直极化全向天线的短路点上移,由此可以有效地减小所述底盘的大小,缩小所述垂直 极化全向天线的体积。
因此,根据本发明实施例的垂直极化全向天线具有体积小、结构简单、易于加工、成本低、不圆度良好、交叉极化指标良好、工作频带很宽等优点。
另外,根据本发明上述实施例的垂直极化全向天线还可以具有如下附加的技术特征:
根据本发明的一个实施例,相邻两个所述第一放射部之间的夹角彼此相等,相邻两个所述第二放射部之间的夹角彼此相等。由此可以使所述垂直极化全向天线向各个方向的辐射基本一样,更好地满足全向天线的辐射不圆度要求,使所述垂直极化全向天线具有更好的全向辐射性能。
根据本发明的一个实施例,多个所述第一放射部与多个所述第二放射部在上下方向上一一相对。由此可以使所述垂直极化全向天线的结构更加合理。
根据本发明的一个实施例,所述第一放射部为四个,所述第二放射部为四个。由此可以使所述垂直极化全向天线的结构更加合理。
根据本发明的一个实施例,所述第一放射部、所述第二放射部和所述连接部中的每一个均为平板状。由此可以进一步降低所述垂直极化全向天线的制造难度。
根据本发明的一个实施例,多个所述连接部绕所述单极子设置,每个所述连接部均与所述单极子间隔开。由此可以使所述垂直极化全向天线的结构更加合理。
根据本发明的一个实施例,所述垂直极化全向天线进一步包括顶部加载件,所述顶部加载件设在多个所述第二放射部的上表面上。通过在所述短路贴片上设置所述顶部加载件,从而不仅可以有效地降低所述垂直极化全向天线的剖面,缩小所述垂直极化全向天线的体积,而且可以提高所述垂直极化全向天线的阻抗带宽。
根据本发明的一个实施例,所述垂直极化全向天线进一步包括电感件,所述电感件与在上下方向上相对的所述第一放射部和所述第二放射部中的每一个相连。由此可以使所述垂直极化全向天线的结构更加合理。
根据本发明的一个实施例,所述电感件的电感量大于等于1μH。
根据本发明的一个实施例,所述电感件的上端与所述第二中心部的下端相连,所述电感件的下端与所述第一中心部的上端相连。
附图说明
图1是根据本发明的一个实施例的垂直极化全向天线的结构示意图;
图2是根据本发明的另一个实施例的垂直极化全向天线的结构示意图;
图3是根据本发明的再一个实施例的垂直极化全向天线的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考图1-图3描述根据本发明实施例的垂直极化全向天线10。如图1-图3所示,根据本发明实施例的垂直极化全向天线10包括底盘101、单极子102、同轴线缆(图中未示出)和短路贴片104。
单极子102包括第一中心部1021和多个第一放射部1022,每个第一放射部1022的内端与第一中心部1021相连,且每个第一放射部1022向远离第一中心部1021的方向延伸(即单极子102具有相交结构),单极子102设在底盘101的上方。同轴线缆包括外导体和内导体,所述外导体与底盘101相连,所述内导体穿过底盘101且所述内导体与单极子102的第一中心部1021相连。
短路贴片104包括第二中心部1041、多个第二放射部1042和多个连接部1043。每个第二放射部1042的内端与第二中心部1041相连,且每个第二放射部1042向远离第二中心部1041的方向延伸(即短路贴片104具有相交结构)。多个连接部1043一一对应地与多个第二放射部1042相连,每个连接部1043与底盘101相连。其中,短路贴片104设在单极子102的上方,且短路贴片104与单极子102间隔开。也就是说,连接部1043的数量等于第二放射部1042的数量,且一个连接部1043与一个第二放射部1042相连。
根据本发明实施例的垂直极化全向天线10通过设置具有相交结构的单极子102和相交结构的耦合短路贴片104且对底盘101上方的单极子102馈电,从而可以使垂直极化全向天线10能够在高频段工作。也就是说,根据本发明实施例的垂直极化全向天线10可以在低频段和高频段工作。而且,通过电磁耦合,由位于单极子102的上方的短路贴片104激励垂直极化全向天线10的低频段,从而可以拓展垂直极化全向天线10的工作带宽,达到良好的不圆度和交叉极化指标要求。
根据本发明实施例的垂直极化全向天线10不采用锥形结构,从而具有结构简单、易于加工、成本低等优点。同时,通过将短路贴片104设置在单极子102的上方,从而可以使垂直极化全向天线10的短路点上移,由此可以有效地减小底盘101的大小,缩小垂直极化全向天线10的体积。
因此,根据本发明实施例的垂直极化全向天线10具有体积小、结构简单、易于加工、成本低、不圆度良好、交叉极化指标良好、工作频带很宽等优点。
如图1-图3所示,根据本发明实施例的垂直极化全向天线10包括底盘101、同轴线缆、单极子102、短路贴片104、顶部加载件105和电感件106。具体地,根据本发明实施例的垂直极化全向天线10可以应用于移动通信的室内分布系统中。
底盘101可以是金属底盘,即底盘101可以由金属制成。如图1-图3所示,底盘101可以是平板状,底盘101也可以具有曲面。底盘101可以是圆形、规则的多边形或不规则的多边形。
单极子102包括第一中心部1021和多个第一放射部1022,每个第一放射部1022的内端与第一中心部1021相连,且每个第一放射部1022向远离第一中心部1021的方向延伸(即单极子102具有相交结构),单极子102设在底盘101的上方。也就是说,第一中心部1021可以是多个第一放射部1022的共连部分。
单极子102没有采用锥形结构,而是采用多个第二放射部1042相交的结构,从而可以形成全向辐射的方向图。
第一放射部1022可以是平板状,第一放射部1022也可以具有曲面。第一放射部1022可以是规则的多边形或者不规则的多边形。第一中心部1021和第一放射部1022都可以是金属件,即第一中心部1021和第一放射部1022都可以由金属制成。
如图1-图3所示,在本发明的一些实施例中,相邻两个第一放射部1022之间的夹角彼此相等。换言之,相邻两个第一放射部1022之间的夹角可以是第一预定值。也就是说,多个第一放射部1022可以沿第一中心部1021的周向等间距地设置。由此可以使垂直极化全向天线10向各个方向的辐射基本一样,更好地满足全向天线的辐射不圆度要求,使垂直极化全向天线10具有更好的全向辐射性能。
具体地,如图1-图3所示,第一放射部1022为四个,即相邻两个第一放射部1022之间的夹角可以是九十度。由此可以使单极子102的结构更加合理,进而可以使垂直极化全向天线10的结构更加合理。
短路贴片104包括第二中心部1041、多个第二放射部1042和多个连接部1043。每个第二放射部1042的内端与第二中心部1041相连,且每个第二放射部1042向远离第二中心部1041的方向延伸(即短路贴片104具有相交结构)。也就是说,第二中心部1041可以是多个第二放射部1042的共连部分。
短路贴片104为垂直极化全向天线10的耦合结构。也就是说,短路贴片104与单极子102耦合,从而可以拓展垂直极化全向天线10的频带宽度。
第二放射部1042可以是平板状,第二放射部1042也可以具有曲面。第二放射部1042可以是规则的多边形或者不规则的多边形。第二中心部1041、第二放射部1042和连接部1043都可以是金属件,即第二中心部1041、第二放射部1042和连接部1043都可以由金属制成。
如图1-图3所示,在本发明的一个实施例中,相邻两个第二放射部1042之间的夹角彼此相等。换言之,相邻两个第二放射部1042之间的夹角可以是第二预定值。也就是说,多 个第二放射部1042可以沿第二中心部1041的周向等间距地设置。由此可以使垂直极化全向天线10向各个方向的辐射基本一样,更好地满足全向天线的辐射不圆度要求,使垂直极化全向天线10具有更好的全向辐射性能。
具体地,如图1-图3所示,第二放射部1042为四个,即相邻两个第二放射部1042之间的夹角可以是九十度。由此可以使单极子102的结构更加合理,进而可以使垂直极化全向天线10的结构更加合理。
第二中心部1041和多个第二放射部1042都可以设在单极子102的上方,且第二中心部1041和多个第二放射部1042在上下方向上与单极子102间隔开。其中,上下方向如图1-图3中的箭头A所示,内外方向如图1-图3中的箭头B所示。
多个第一放射部1022与多个第二放射部1042在上下方向上可以一一相对。也就是说,第一放射部1022和与该第一放射部1022在上下方向上相对的第二放射部1042可以位于同一竖直面上。由此可以使垂直极化全向天线10的结构更加合理。
如图1-图3所示,多个连接部1043一一对应地与多个第二放射部1042相连,每个连接部1043与底盘101相连。也就是说,连接部1043的数量可以等于第二放射部1042的数量,且一个连接部1043可以与一个第二放射部1042相连。
具体而言,连接部1043的上端可以与第二放射部1042相连,连接部1043的下端可以与底盘101的上表面相连。
连接部1043可以是金属件,即连接部1043可以由金属制成。有利地,连接部1043可以是长条形的金属板。进一步有利地,第一放射部1022、第二放射部1042和连接部1043中的每一个都可以是平板状。由此可以进一步降低垂直极化全向天线10的制造难度。
如图1-图3所示,在本发明的一个具体示例中,多个连接部1043可以绕单极子102设置,每个连接部1043均与单极子102间隔开。也就是说,单极子102可以位于多个连接部1043的内侧,连接部1043与单极子102可以在内外方向上间隔开。由此可以使垂直极化全向天线10的结构更加合理。
同轴线缆包括外导体和内导体,所述外导体与底盘101相连,所述内导体穿过底盘101且所述内导体与单极子102的第一中心部1021相连。具体而言,所述内导体可以与单极子102的第一中心部1021的下端相连。
如图2和图3所示,在本发明的一些示例中,顶部加载件105设在多个第二放射部1042的上表面上。也就是说,顶部加载件105位于短路贴片104的上方,每个第二放射部1042的上表面的一部分与顶部加载件105的下表面接触。通过在短路贴片104上设置顶部加载件105,从而不仅可以有效地降低垂直极化全向天线10的剖面,缩小垂直极化全向天线10的体积,而且可以提高垂直极化全向天线10的阻抗带宽。
顶部加载件105可以是金属件,即顶部加载件105可以由金属制成。如图2和图3所示,顶部加载件105可以是平板状。顶部加载件105也可以具有曲面。顶部加载件105可以是圆形、规则的多边形或不规则的多边形。
有利地,顶部加载件105上可以设有沿上下方向贯通顶部加载件105的通孔1051。例如,通孔1051可以是圆孔。
如图3所示,在本发明的一个示例中,垂直极化全向天线10可以进一步包括电感件106,电感件106与在上下方向上相对的第一放射部1022和第二放射部1042中的每一个相连。也就是说,电感件106与一个第一放射部1022相连,且电感件106与一个第二放射部1042相连,与电感件106相连的第一放射部1022和与电感件106相连的第二放射部1042在上下方向上相对。由此可以使垂直极化全向天线10的结构更加合理。
有利地,电感件106的电感量大于等于1μH。
需要说明的是,本发明所述的“连接”可以是直接连接,也可以是耦合连接或其他连接方式。垂直极化全向天线10的各个部件可以采用适当的连接方式进行连接。同时,耦合面积的大小可根据垂直极化全向天线10的性能要求进行确定和调整,目的是为了使垂直极化全向天线10能够在要求频率下具有足够大的电容量(耦合电容)。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第 一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种垂直极化全向天线,其特征在于,包括:
    底盘;
    单极子,所述单极子包括第一中心部和多个第一放射部,每个所述第一放射部的内端与所述第一中心部相连且每个所述第一放射部向远离所述第一中心部的方向延伸,所述单极子设在所述底盘的上方;
    同轴线缆,所述同轴线缆包括外导体和内导体,所述外导体与所述底盘相连,所述内导体穿过所述底盘且与所述单极子的所述第一中心部相连;和
    短路贴片,所述短路贴片包括第二中心部、多个第二放射部和多个连接部,每个所述第二放射部的内端与所述第二中心部相连且每个所述第二放射部向远离所述第二中心部的方向延伸,多个所述连接部一一对应地与多个所述第二放射部相连,每个所述连接部与所述底盘相连,其中所述短路贴片设在所述单极子的上方且与所述单极子间隔开。
  2. 根据权利要求1所述的垂直极化全向天线,其特征在于,相邻两个所述第一放射部之间的夹角彼此相等,相邻两个所述第二放射部之间的夹角彼此相等。
  3. 根据权利要求2所述的垂直极化全向天线,其特征在于,多个所述第一放射部与多个所述第二放射部在上下方向上一一相对。
  4. 根据权利要求2或3所述的垂直极化全向天线,其特征在于,所述第一放射部为四个,所述第二放射部为四个。
  5. 根据权利要求1所述的垂直极化全向天线,其特征在于,所述第一放射部、所述第二放射部和所述连接部中的每一个均为平板状。
  6. 根据权利要求1-5中任一项所述的垂直极化全向天线,其特征在于,多个所述连接部绕所述单极子设置,每个所述连接部均与所述单极子间隔开。
  7. 根据权利要求1-6中任一项所述的垂直极化全向天线,其特征在于,进一步包括顶部加载件,所述顶部加载件设在多个所述第二放射部的上表面上。
  8. 根据权利要求1-7中任一项所述的垂直极化全向天线,其特征在于,进一步包括电感件,所述电感件与在上下方向上相对的所述第一放射部和所述第二放射部中的每一个相连。
  9. 根据权利要求8所述的垂直极化全向天线,其特征在于,所述电感件的电感量大于等于1μH。
  10. 根据权利要求8或9所述的垂直极化全向天线,其特征在于,所述电感件的上端与所述第二中心部的下端相连,所述电感件的下端与所述第一中心部的上端相连。
PCT/CN2015/085472 2014-09-05 2015-07-29 垂直极化全向天线 WO2016034025A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410451729.0A CN104300208B (zh) 2014-09-05 2014-09-05 垂直极化全向天线
CN201410451729.0 2014-09-05

Publications (1)

Publication Number Publication Date
WO2016034025A1 true WO2016034025A1 (zh) 2016-03-10

Family

ID=52319848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085472 WO2016034025A1 (zh) 2014-09-05 2015-07-29 垂直极化全向天线

Country Status (2)

Country Link
CN (1) CN104300208B (zh)
WO (1) WO2016034025A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110011037A (zh) * 2019-04-12 2019-07-12 深圳市安拓浦科技有限公司 一种垂直极化全向天线及其双极化全向天线
CN114336033A (zh) * 2022-01-24 2022-04-12 南通大学 一种超宽带叶片状垂直极化全向天线

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104300208B (zh) * 2014-09-05 2017-09-29 江苏省东方世纪网络信息有限公司 垂直极化全向天线
CN106129598A (zh) * 2016-08-12 2016-11-16 广东盛路通信科技股份有限公司 一种单极化全向吸顶天线
CN109411903A (zh) * 2017-08-18 2019-03-01 中国移动通信集团设计院有限公司 室内mimo通信系统的高性能宽带双极化全向天线
CN112086738A (zh) * 2019-06-14 2020-12-15 中国移动通信集团设计院有限公司 一种全向室分mimo天线

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329954B1 (en) * 2000-04-14 2001-12-11 Receptec L.L.C. Dual-antenna system for single-frequency band
JP2007104520A (ja) * 2005-10-07 2007-04-19 Mitsubishi Electric Corp アンテナ及び携帯通信装置
US20090189815A1 (en) * 2008-01-30 2009-07-30 Kabushiki Kaisha Toshiba Antenna device and radio apparatus operable in multiple frequency bands
CN103414011A (zh) * 2013-08-05 2013-11-27 珠海德百祺科技有限公司 天线
CN103811861A (zh) * 2014-01-21 2014-05-21 盛宇百祺(南京)通信技术有限公司 水平极化全向天线
CN203760643U (zh) * 2014-01-20 2014-08-06 深圳市维力谷无线技术有限公司 一种手机内置式寄生天线及内置寄生天线的手机装置
CN104300208A (zh) * 2014-09-05 2015-01-21 江苏省东方世纪网络信息有限公司 垂直极化全向天线

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103296388B (zh) * 2013-06-03 2015-09-09 西安电子科技大学 一种小型超宽带全向天线

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329954B1 (en) * 2000-04-14 2001-12-11 Receptec L.L.C. Dual-antenna system for single-frequency band
JP2007104520A (ja) * 2005-10-07 2007-04-19 Mitsubishi Electric Corp アンテナ及び携帯通信装置
US20090189815A1 (en) * 2008-01-30 2009-07-30 Kabushiki Kaisha Toshiba Antenna device and radio apparatus operable in multiple frequency bands
CN103414011A (zh) * 2013-08-05 2013-11-27 珠海德百祺科技有限公司 天线
CN203760643U (zh) * 2014-01-20 2014-08-06 深圳市维力谷无线技术有限公司 一种手机内置式寄生天线及内置寄生天线的手机装置
CN103811861A (zh) * 2014-01-21 2014-05-21 盛宇百祺(南京)通信技术有限公司 水平极化全向天线
CN104300208A (zh) * 2014-09-05 2015-01-21 江苏省东方世纪网络信息有限公司 垂直极化全向天线

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110011037A (zh) * 2019-04-12 2019-07-12 深圳市安拓浦科技有限公司 一种垂直极化全向天线及其双极化全向天线
CN110011037B (zh) * 2019-04-12 2024-01-30 深圳市安拓浦科技有限公司 一种垂直极化全向天线及其双极化全向天线
CN114336033A (zh) * 2022-01-24 2022-04-12 南通大学 一种超宽带叶片状垂直极化全向天线

Also Published As

Publication number Publication date
CN104300208A (zh) 2015-01-21
CN104300208B (zh) 2017-09-29

Similar Documents

Publication Publication Date Title
WO2016034025A1 (zh) 垂直极化全向天线
CN103811861B (zh) 水平极化全向天线
CN103811857B (zh) 垂直极化全向天线和具有其的4g双极化全向吸顶天线
US11316263B2 (en) Radiation apparatus
CN203386887U (zh) 天线振子及具有该天线振子的天线
CN104300209B (zh) 垂直极化吸顶全向天线
CN104037487B (zh) 全向吸顶天线
US7453414B2 (en) Broadband omnidirectional loop antenna and associated methods
CN204216207U (zh) 天线
CN103094666B (zh) 基于圆极化喇叭的毫米波全向圆极化天线
WO2014000614A1 (zh) 电磁耦极子天线
CN203850423U (zh) 一种宽频双极化振子
CN108808232A (zh) 一种双辐射方向的双频双极化贴片天线
CN103956564A (zh) 一种宽带双极化辐射单元及天线
CN203826542U (zh) 一种宽带双极化辐射单元及天线
CN108292794A (zh) 一种通信设备
TWI566474B (zh) 多頻天線
CN209948060U (zh) 一种5g双极化吸顶天线
CN208423163U (zh) 一种双辐射方向的双频双极化贴片天线
WO2017041362A1 (zh) 双频天线
CN105356045A (zh) 宽频带高低仰角增益北斗一代卫星导航收发天线
CN103943948B (zh) 用于入耳式无线耳机的可折叠pcb板螺旋天线
WO2017101215A1 (zh) 全向吸顶天线
CN106329156A (zh) 一种新型双频双极化全向天线
CN106252893A (zh) 一种微带天线单元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15838722

Country of ref document: EP

Kind code of ref document: A1