WO2016033946A1 - Wcdma网络小区软切换带的识别方法、设备、系统和存储介质 - Google Patents

Wcdma网络小区软切换带的识别方法、设备、系统和存储介质 Download PDF

Info

Publication number
WO2016033946A1
WO2016033946A1 PCT/CN2015/072790 CN2015072790W WO2016033946A1 WO 2016033946 A1 WO2016033946 A1 WO 2016033946A1 CN 2015072790 W CN2015072790 W CN 2015072790W WO 2016033946 A1 WO2016033946 A1 WO 2016033946A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
module
rtt
mobile station
positioning
Prior art date
Application number
PCT/CN2015/072790
Other languages
English (en)
French (fr)
Inventor
苏梦
孙凯文
陈孝卫
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP15837440.5A priority Critical patent/EP3197200A4/en
Priority to US15/506,402 priority patent/US20180160314A1/en
Publication of WO2016033946A1 publication Critical patent/WO2016033946A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection

Definitions

  • the present invention relates to a soft handover technique in the field of mobile communication, and in particular, to a method, a device, a system and a storage medium for identifying a softband handover band of a Wideband Code Division Multiple Access (WCDMA) network cell.
  • WCDMA Wideband Code Division Multiple Access
  • WCDMA is a third-generation wireless communication technology specifically developed by the 3rd Generation Partnership Project (3GPP).
  • 3GPP 3rd Generation Partnership Project
  • the application of WCDMA technology is very extensive.
  • China Unicom's 3G network adopts WCDMA technology.
  • the coverage of a cell is limited, but the user's mobile station can be in a state of constant motion.
  • the network control system needs to initiate a "handover" process, release the connection of the mobile station to the original cell, and establish a connection with the new cell, thereby maintaining The transmission of traffic between the mobile station and the network prevents the user's communication process from being aborted.
  • WCDMA systems support multiple types of handover, including hard handover, soft handover, and softer handover.
  • the soft handover refers to channel switching between cells with the same carrier frequency of the pilot channel.
  • the user mobile station maintains a communication link with both the original base station and the new base station, and only when the mobile station establishes stable communication in the new cell, disconnects from the original base station.
  • soft handover can effectively improve handover reliability and reduce call drop caused by handover failure.
  • the mobile station maintains a communication link with a plurality of cells, which are referred to as active set cells.
  • a Radio Network Controller RNC
  • RTT Round Trip Time
  • the coverage of each cell is a very important consideration.
  • Reasonable adjustment of the coverage of the cell can reasonably control the capacity of the cell, reduce interference between users, and reduce Necessary switching, improved communication performance and device utilization, so that the network's service quality is better and the user's service experience is guaranteed.
  • the method for identifying the coverage of a cell generally has the problems of large test workload, low recognition accuracy, and poor real-time performance, and thus has poor practicability.
  • an embodiment of the present invention provides a method, a device, a system, and a storage medium for identifying a soft handover band of a WCDMA network cell.
  • An embodiment of the present invention provides a method for identifying a soft handover band of a WCDMA network cell, where the method includes:
  • the data collection server performs the positioning calculation of the mobile station according to the RTT data of each activated set cell collected by the RNC, performs grid statistics according to the positioning calculation result, and saves the statistical result;
  • the client calculates and displays the soft handover band of the cell according to the statistical result corresponding to the active set cell to be queried.
  • the method further includes: the RNC collecting, by the base station, RTT data of each active set cell corresponding to the mobile station in the soft handover state, and recording the RTT data.
  • the positioning calculation method is:
  • two arcs are drawn from two different base stations according to the RTT distance, and two intersection points are obtained; respectively, the intersection between the two intersection points and different base stations and the corresponding cell azimuth are calculated.
  • the angle between the two angles is calculated, and the sum of the two angles corresponding to the same intersection point is calculated, and the intersection point corresponding to the smaller sum of the angles is the positioning point of the mobile station.
  • the positioning calculation method is:
  • three arcs are drawn from the three different base stations according to the RTT distance, and three intersections of three pairs are obtained, and two intersections obtained by intersecting the two arcs are obtained.
  • the point is a pair; the vertical coordinate and the horizontal coordinate of the six points are respectively taken as an arithmetic mean value to obtain a center point, and then one point of the three pairs of positioning points is closer to the center point, and three points are obtained; Then, the three points are further calculated by calculating the arithmetic mean of the vertical coordinate and the horizontal coordinate to obtain the positioning result.
  • the embodiment of the invention further provides a method for identifying a soft handover band of a WCDMA network cell, the method comprising:
  • the data collection server performs the positioning calculation of the mobile station according to the RTT data of each activated set cell collected by the RNC, performs grid statistics according to the positioning calculation result, and saves the statistical result;
  • the statistics result is used by the client to calculate and display a soft handover band of the active set cell to be queried.
  • the embodiment of the present invention further provides a storage medium, where the storage medium includes a set of instructions, when executed, causing at least one processor to execute a method for identifying a soft switch band implemented by the data collection server.
  • the embodiment of the present invention further provides a WCDMA network cell soft handover band identification system, the system includes: a data collection server and a client, the data collection server includes: a positioning module and a statistics module; the client includes: Module and display module; among them,
  • the positioning module is configured to perform positioning calculation of the mobile station according to the RTT data of each activated set cell collected by the RNC;
  • the statistic module is configured to perform grid statistics according to the positioning calculation result of the positioning module, and save the statistical result;
  • the calculating module is configured to calculate a soft handover zone of the cell according to the statistical result corresponding to the active set cell to be queried;
  • the display module is configured to display a soft handover band of the cell calculated by the calculation module.
  • the system further includes: an RNC, including an acquisition module and a recording module; among them,
  • the acquiring module is configured to collect, by using a base station, RTT data of each active set cell corresponding to the mobile station in a soft handover state;
  • the recording module is configured to record the RTT data collected by the collection module.
  • the active set cell includes two cells
  • the positioning module is configured to draw two arcs according to the RTT distance from two different base stations according to the RTT distance of the mobile station to two different base stations, to obtain two intersection points; respectively calculate two intersection points and different base stations The angle between the line and the azimuth of the corresponding cell, and the sum of the two angles corresponding to the same intersection point is calculated, and the intersection point corresponding to the result of the smaller sum of the angles is the positioning point of the mobile station.
  • the active set cell includes three cells
  • the positioning module is configured to draw three arcs according to the RTT distance from three different base stations according to the RTT distance of the mobile station to three different base stations, and obtain three pairs of six intersection points, and the two arcs intersect.
  • the two intersection points are a pair; the vertical and horizontal coordinates of the six points are respectively taken as arithmetic mean, and a center point is obtained, and then one point of the three pairs of positioning points is closer to the center point, and three points are obtained.
  • the three points are further calculated by calculating the arithmetic mean of the vertical coordinate and the horizontal coordinate to obtain the positioning result.
  • the embodiment of the present invention further provides a data collection server, where the data collection server includes: a positioning module and a statistics module;
  • the positioning module is configured to perform positioning calculation of the mobile station according to the RTT data of each activated set cell collected by the RNC;
  • the statistic module is configured to perform grid statistics according to the positioning calculation result of the positioning module, and save the statistical result;
  • the statistics result is used by the client to calculate and display a soft handover band of the active set cell to be queried.
  • the data collection server performs positioning calculation of the mobile station according to the RTT data of each activated set cell collected by the RNC, and performs grid calculation according to the positioning calculation result.
  • the statistics are collected and the statistics are saved.
  • the client calculates and displays the soft handover band of the cell according to the statistics corresponding to the active set cell to be queried.
  • the embodiment of the invention can better solve the problem of soft handover band identification of the WCDMA network, and can visually see the distribution of the soft handover band between the cells, and can largely represent the coverage of the cell.
  • the method is based on real data generated by the actual operation of the existing network, has high automation degree, good real-time performance and high accuracy, and can provide great help for network planning, adjustment and optimization work, and has strong practicability.
  • FIG. 1 is a schematic flowchart of a method for identifying a soft handover zone of a WCDMA network cell according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a system connection manner according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a service processing flow of the embodiment shown in FIG. 2;
  • FIG. 4 is a schematic diagram of two-point positioning of a mobile station based on two base stations according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of three-point positioning of a mobile station based on three base stations according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a proportioned section setting of a geographical display
  • FIG. 7 is a schematic diagram of two-point positioning of a mobile station based on two base stations according to an application scenario of the present invention.
  • FIG. 8 is a schematic diagram of three-point positioning of a mobile station based on three base stations according to an application scenario of the present invention.
  • FIG. 9 is a schematic diagram of grid division according to an application scenario of the present invention.
  • FIG. 10 is a schematic diagram of a soft switching band interface display effect according to an application scenario of the present invention.
  • FIG. 11 is a schematic structural diagram of a system according to an embodiment of the present invention.
  • Existing methods for identifying cell coverage may include:
  • test use the test equipment to the actual environment of the site for a large number of sampling tests, collect the actual latitude and longitude and network measurement data, after smooth calculation to get the coverage of each cell.
  • the test workload of this method is very large, it is very difficult to carry out large-scale coverage test on the whole network; the measured data at a certain point can only reflect the situation at the time, but the wireless communication environment is always changing dynamically, for example: busy time and There may be a big difference in leisure time, and the mobile communication network itself is constantly optimizing and adjusting. Therefore, this method not only has a large workload, but also has poor real-time performance and limited practicality.
  • the data collection server performs the positioning calculation of the mobile station according to the RTT data of each activated set cell collected by the radio network controller (RNC), performs grid statistics according to the positioning calculation result, and saves the statistical result; the client Calculating and displaying the soft handover band of the cell according to the statistical result corresponding to the active set cell to be queried.
  • RNC radio network controller
  • the method of the embodiment further includes: the RNC collecting, by the base station, RTT data of each active set cell corresponding to the mobile station in the soft handover state, and recording the RTT data.
  • the soft handover band is: a geographically soft handover event occurs in a WCDMA network For the concentrated area; the RTT data includes: RTT data of each active set cell and RTT parameters of the mobile station.
  • FIG. 1 is a schematic flowchart of a method for identifying a soft handover zone of a WCDMA network cell according to an embodiment of the present invention. As shown in FIG. 1, the method includes:
  • Step 101 The data collection server performs positioning calculation of the mobile station according to the RTT data of each activated set cell collected by the RNC, and performs grid statistics according to the positioning calculation result, and saves the statistical result;
  • Step 102 The client calculates and displays a soft handover band of the cell according to the statistical result corresponding to the active set cell to be queried.
  • the step 101 may include:
  • the data collection server downloads the RTT data of each active set cell collected by the RNC and the RTT parameters of the mobile station from the RNC, and performs mobile station positioning according to the RTT data of each activated set cell and the RTT parameter of the mobile station. Calculate, and perform grid statistics according to the positioning calculation result, and save the statistical result to the database.
  • the data collection server may periodically, for example, automatically download the RTT data of each active set cell and the RTT parameters of the mobile station from the RNC every five minutes.
  • the step 102 may include:
  • the client can query the grid statistics saved in the database according to the query conditions of the active set cell to be queried by the operator, for example, the start and end time of the statistical analysis time, the network element condition to be analyzed, and the statistics to be queried.
  • Soft switching zone of the cell Wherein, one of the soft switching points may correspond to one grid.
  • the method of the embodiment further includes: before step 101:
  • the RNC collects the RTT data of each active set cell corresponding to the mobile station in the soft handover state by using the base station, and records the RTT data, including:
  • the RNC sends an instruction to the base station to perform RTT measurement on the mobile station; after receiving the instruction, the base station initiates an RTT measurement, and sends an RTT signal to the mobile station; the base station receives the return from the mobile station. After the RTT measurement data is calculated, the RTT data of each active set cell and the RTT parameters of the mobile station are obtained, and the RTT data and the RTT parameters of the mobile station are reported to the RNC for recording by the RNC.
  • the RNC may also perform RTT measurement on all mobile stations in the connected state periodically, for example, every eight seconds, and record each active set cell of the mobile station in the soft handover state. RTT data and RTT parameters of the mobile station.
  • the embodiment of the invention further provides a method for identifying a soft handover band of a WCDMA network cell, the method comprising:
  • the data collection server performs the positioning calculation of the mobile station according to the loopback time RTT data of each activated set cell collected by the radio network controller RNC, and performs grid statistics according to the positioning calculation result, and saves the statistical result; wherein, the statistical result, A soft handoff band for the client to calculate and display the active set cell to be queried.
  • the data collection server downloads the RTT data of each active set cell collected by the RNC and the RTT parameters of the mobile station from the RNC, and performs mobile station according to the RTT data of each activated set cell and the RTT parameter of the mobile station.
  • the positioning calculation is performed, and the grid statistics are performed according to the positioning calculation result, and the statistical result is saved in the database.
  • the data collection server may periodically download the RTT data of each active set cell and the RTT parameters of the mobile station from the RNC.
  • the embodiment of the present invention further provides a storage medium, where the storage medium includes a set of instructions, when executed, causing at least one processor to execute a method for identifying a soft switch band implemented by the data collection server.
  • FIG. 2 is a schematic diagram of a system connection manner according to an embodiment of the present invention.
  • a mobile station is connected to a base station 1 and a base station 2
  • a base station 1 and a base station 2 are respectively connected to the RNC.
  • the line, the RNC and the data collection server are connected by Ethernet, and the data collection server and the client are connected by Ethernet.
  • the cell corresponding to the base station 1 and the base station 2 is an active set cell.
  • Step 301 When the mobile station is in the connected state, the RNC issues an RTT measurement instruction for the mobile station to the base station 1, 2.
  • Step 302 The base station initiates an RTT measurement, and sends an RTT signal to the mobile station.
  • Step 303 The mobile station returns RTT measurement data.
  • Step 304 The base station calculates RTT data such as the RTT time corresponding to the cell according to the RTT measurement data.
  • Step 305 The base station reports the RTT data, such as the RTT time, and the RTT parameter of the mobile station to the RNC.
  • Step 306 The RNC records the RTT data of the mobile station into a file.
  • Step 307 The data collection server automatically downloads the RTT data file periodically
  • Step 308 The data collection server processes the downloaded RTT data, calculates the geographic location of the mobile station, and performs statistics according to the grid, and saves the statistical result to the database;
  • Step 309 The operator performs operation through the client, sets the query condition, queries the statistical result and calculates the soft switch band data of the desired cell, and displays the interface through the geographic information system (GIS) map.
  • GIS geographic information system
  • the positioning calculation method of the mobile station according to the embodiment of the present invention is described below.
  • two base stations are taken as an example, that is, the position of the mobile station is located at two points.
  • 4 is a schematic diagram of the two-point positioning. As shown in FIG. 4, when a mobile station has a wireless link connection with two different base stations, according to the RTT distance of the mobile station to two different base stations, two different base stations can be obtained. Draw two arcs according to the RTT distance, and get the intersection points A and B as the anchor points. Calculate the angle between the two intersections and the connection between the different base stations and the azimuth of the corresponding cell, and calculate the sum of the two angles corresponding to the same intersection. The intersection point of the smaller angle is the mobile station.
  • the positioning point wherein the azimuth angle refers to an angle that the plane in the north direction rotates clockwise to coincide with the plane of the antenna; the azimuth of the cell refers to the direction of the main lobe of the cell;
  • the intersection point calculates the angle with the azimuth of the two cells respectively, because the cell corresponding to the base station is usually a fan-shaped structure, as shown by the two sector-shaped areas in FIG. 4, the azimuth of the cell is: the angle bisector of the sector sector.
  • the angle between the two positioning points and the cell azimuth is: the angle between the connection point between the positioning point and the base station and the cell azimuth corresponding to the base station, and finally the positioning point of the mobile station is taken
  • ⁇ and ⁇ in the figure.
  • FIG. 5 is a schematic diagram of the three-point positioning. As shown in FIG. 5, when the mobile station has a wireless link connection with three different base stations, according to the RTT distance of the mobile station to three different base stations, three different The base station draws three arcs according to the RTT distance, and obtains three pairs of six intersection points, and the two intersection points obtained by the intersection of the two arcs are a pair.
  • the vertical and horizontal coordinates of the six points that are located are respectively taken as the arithmetic mean, and a center point is found, as shown by the point O in the figure, and then a point closer to the center point among the three pairs of positioning points is respectively calculated to obtain a point.
  • FIG. 6 is a schematic diagram of the proportioned section setting of the geographical display.
  • the operator can set the number of segments of the grid, the index threshold of each section, and the displayed color value as needed.
  • the segmentation indicator is that the number of soft handover points in a certain cell in a certain grid accounts for the proportion of all soft handover points in the cell. For example, it can be set to not exceed 0.1%, and the ratio is 0.1% to 2%.
  • the segments are displayed in different colors, and the ratio is displayed in different colors at 2% or more.
  • the cell IDs are 10101 and 10201 respectively.
  • the latitude and longitude of the 10101 cell antenna is (113.944375, 22.53384), and the latitude and longitude of the 10201 cell antenna is (113.938013, 22.536213).
  • the user moves along the road from point A to the west, and starts to answer a call at point A, which is a 10101 cell.
  • point A which is a 10101 cell.
  • point B a soft handoff occurs, and the cell 10201 joins the active set.
  • the RNC initiates an RTT measurement.
  • the measurement results are shown in the following table:
  • the RTT and the time difference of the transmission and reception time (RxTxTimeDiffType) in the table are the reported values specified by the protocol, and there is no unit. Calculate the distance between the mobile station and the base station using the RTT distance calculation formula. The formula is as follows:
  • the distance between the user and the 10101 cell is about 385.74 meters, and the distance between the user and the 10201 cell is about 339.36 meters.
  • the 10101 cell is the center
  • the 385.74 meters is the radius
  • the 10201 cell is For the original heart, draw an arc with a radius of 339.36 meters, calculate the intersection of the arcs, and get the intersection of B and B'. Calculate the sum of the angles between the two intersections of B and B' and the azimuth of the two cells, and the angle between B is small. Therefore, the probability of determining point B is large, so that the user positioning result is determined as Point B.
  • point B is located in the grid 1 in the figure, so according to the grid 1 statistics, for the grid, the 10101 cell and the 10201 cell respectively record the soft switching point.
  • the entire map can be divided into several grids, such as a 50 m ⁇ 50 m grid, and then the positioning results can be counted and displayed in a grid.
  • the 10301 cell with the antenna latitude and longitude 113.939998, 22.538413
  • the RNC initiates the RTT measurement.
  • the measurement results are shown in the following table:
  • the mobile station is about 507.81 meters from the 10101 cell, the distance 10201 is about 317.38 meters, and the distance 10301 is about 200.20 meters.
  • Three-point positioning is used to draw arcs for each of the three cells. The three arcs intersect at two and two, and three pairs of intersections are generated. The latitude and longitude of each intersection is calculated as follows:
  • the average value of the longitudes of the six intersections and the average of the latitudes were calculated, and the result was (113.940321, 22.536857), which is the point O in FIG.
  • the three pairs of A/A', B/B', and C/C' points are closer to the point O, and three points A, B, and C can be obtained.
  • the average value of the longitudes of the three points A, B, and C and the average value of the latitude are calculated, and the result is (113.940838, 22.536834), that is, point P in FIG.
  • the P point is located in the grid 2 in the figure, so according to the grid 2 statistics, for the grid, 10101 cells, 10201 and 10301 cells respectively record the soft switching point.
  • the operator can select the base station to be analyzed through the client software interface, and set the statistical starting and ending time period.
  • the client can query the number of soft switching points of the base station in different grids, and calculate the total number of soft switching points of different grids. Then, the total number of soft handover points of the base station is obtained.
  • the operator can select one cell, multiple cells, or multiple base stations to perform statistics to view the soft handover band distribution of different levels or different numbers of network elements.
  • the operator can intuitively understand the actual distribution of the soft handover zone in the existing network, thereby grasping the coverage of the cell, and providing reference for the planning adjustment of the network base station layout, the neighborhood relationship, and the optimization of the wireless parameters.
  • the embodiment of the present invention further provides a WCDMA network cell soft handover band identification system.
  • the system includes: a data collection server 111 and a client 112.
  • the data collection server includes: a positioning module 1111 and statistics.
  • the module 1112; the client includes: a calculation module 1121 and a display module 1122; wherein
  • the positioning module 1111 is configured to perform positioning calculation of the mobile station according to the loopback time RTT data of each activated set cell collected by the radio network controller RNC;
  • the statistic module 1112 is configured to perform grid statistics according to the positioning calculation result of the positioning module 1111, and save the statistical result;
  • the calculating module 1121 is configured to calculate a soft handover zone of the cell according to the statistical result corresponding to the active set cell to be queried;
  • the display module 1122 is configured to display a soft handover band of the cell calculated by the calculation module 1121.
  • the positioning module 1111 and the statistics module 1112 may be configured by a central processing unit (CPU), a digital signal processor (DSP), or a programmable logic array (Field- in the data collection server 111). Programmable Gate Array, FPGA) implementation;
  • the computing module 1121 and the display module 1122 can be implemented by a CPU, DSP, or FPGA in the client 112.
  • the system further includes: an RNC 113, including an acquisition module 1131 and a recording module 1132;
  • the acquiring module 1131 is configured to collect, by using a base station, RTT data of each active set cell corresponding to the mobile station in a soft handover state;
  • the recording module 1132 is configured to record the RTT data collected by the collection module.
  • the acquisition module 1131 and the recording module 1132 can be implemented by a CPU, a DSP, or an FPGA in the RNC 113.
  • the active set cell when the active set cell includes two cells,
  • the positioning module 1111 is configured to draw two arcs according to the RTT distance from two different base stations according to the RTT distance of the mobile station to two different base stations, to obtain two intersection points; calculate two intersection points and different base stations respectively.
  • the angle between the interconnect line and the azimuth of the corresponding cell, and the sum of the two angles corresponding to the same intersection point is calculated, and the intersection point corresponding to the result of the smaller sum of the angles is the anchor point of the mobile station.
  • the active set cell when the active set cell includes three cells,
  • the positioning module 1111 is configured to draw three arcs according to the RTT distance from three different base stations according to the RTT distance of the mobile station to three different base stations, and obtain three pairs of six intersection points, and the two arcs intersect.
  • the two intersection points obtained are a pair; the vertical and horizontal coordinates of the six points are respectively taken as arithmetic mean, and a center point is obtained, and then a point closer to the center point among the three pairs of positioning points is respectively calculated.
  • Three points; then the three points are further calculated by the arithmetic mean of the vertical coordinate and the horizontal coordinate to obtain the positioning result.
  • the embodiment of the present invention further provides a data collection server.
  • the data collection server includes: a positioning module 1111 and a statistics module 1112;
  • the positioning module 1111 is configured to perform positioning calculation of the mobile station according to the loopback time RTT data of each activated set cell collected by the radio network controller RNC;
  • the statistic module 1112 is configured to perform grid statistics according to the positioning calculation result of the positioning module 1111, and save the statistical result;
  • the statistics result is used by the client to calculate and display a soft handover band of the active set cell to be queried.
  • the embodiment of the invention can better solve the problem of soft handover band identification of the WCDMA network, and can visually see the distribution of the soft handover band between the cells, and can largely represent the coverage of the cell.
  • the method is based on real data generated by the actual operation of the existing network, has high automation degree, good real-time performance and high accuracy, and can provide great help for network planning, adjustment and optimization work, and has strong practicability.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the device is implemented in a flow chart A function specified in a block or blocks of a process or multiple processes and/or block diagrams.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种宽带码分多址(WCDMA)网络小区软切换带的识别方法,该方法包括:数据采集服务器依据无线网络控制器RNC采集的各激活集小区的环回时间RTT数据进行移动台的定位计算,依据定位计算结果进行栅格统计,并保存统计结果;客户端依据待查询的激活集小区对应的所述统计结果计算并显示所述小区的软切换带。本发明还同时公开了一种与所述方法对应的系统、数据采集服务器和存储介质。

Description

WCDMA网络小区软切换带的识别方法、设备、系统和存储介质 技术领域
本发明涉及移动通信领域中的软切换技术,尤其涉及一种宽带码分多址(Wideband Code Division Multiple Access,WCDMA)网络小区软切换带的识别方法、设备、系统和存储介质。
背景技术
WCDMA是一种由第三代合作伙伴计划|(3GPP)具体制定的第三代无线通信技术。WCDMA技术的应用非常广泛,我国的联通3G网络即采用WCDMA技术。
在蜂窝移动通信网络中,小区的覆盖范围是有限的,但用户的移动台可以处于不断运动的状态。当一个处于连接状态的移动台从一个蜂窝小区移动到另一个蜂窝小区时,网络控制系统需要启动“切换”过程,将移动台与原小区的连接释放,并与新的小区建立连接,从而保持移动台与网络之间的业务传输,避免用户的通信过程被异常中断。
WCDMA系统支持多种类型的切换,主要包括硬切换、软切换和更软切换。其中,所述软切换是指在导频信道的载波频率相同小区之间的信道切换。在切换过程中,用户移动台与原基站和新基站都保持通信链路,只有当移动台在新的小区建立稳定通信后,才断开与原基站的连接。与硬切换相比,软切换可以有效提高切换可靠性,减少切换失败引起的掉话。软切换状态下,移动台与多个小区保持通信链路,这些小区被称为激活集小区。根据3GPP协议规定,无线网络控制器(Radio Network Controller,简称RNC)可以按激活集小区对基站与移动台之间的无线信号传播的环回时间(Round Trip Time,简称RTT)进行测量。
在蜂窝移动通信网络规划和日常优化工作中,各个小区的覆盖范围是一个非常重要的考虑因素,合理地调整小区的覆盖范围,可以对小区的容量进行合理控制,减少用户间的干扰、减少不必要的切换、提高通信性能和设备利用率,从而使网络的服务质量更好,保证用户的业务体验。
现有技术中,对小区覆盖范围的识别方法通常存在着测试工作量大、识别准确性低、实时性较差的问题,因此实用性较差。
发明内容
为解决现有存在的技术问题,本发明实施例提供一种WCDMA网络小区软切换带的识别方法、设备、系统和存储介质。
本发明实施例提供了一种WCDMA网络小区软切换带的识别方法,该方法包括:
数据采集服务器依据RNC采集的各激活集小区的RTT数据进行移动台的定位计算,依据定位计算结果进行栅格统计,并保存统计结果;
客户端依据待查询的激活集小区对应的所述统计结果计算并显示所述小区的软切换带。
在一个实施例中,该方法还包括:RNC通过基站采集处于软切换状态的移动台对应的各激活集小区的RTT数据,并记录所述RTT数据。
其中,所述激活集小区包括两个小区时,所述定位计算方法为:
根据所述移动台到两个不同基站的RTT距离,从两个不同基站分别按RTT距离画两个圆弧,得到两个交点;分别计算两个交点与不同基站间连线与对应小区方位角之间的夹角,并计算同一交点对应的两个夹角之和,取夹角之和较小的结果对应的交点为移动台的定位点。
其中,所述激活集小区包括三个小区时,所述定位计算方法为:
根据所述移动台到三个不同基站的RTT距离,从三个不同基站分别按RTT距离画三个圆弧,得到三对共六个交点,两个圆弧相交得到的两个交 点为一对;对所述六个点的垂直坐标和水平坐标分别取算术平均值,得到一个中心点,再分别计算三对定位点中距离中心点较近的一个点,得到三个点;然后将这三个点再进行垂直坐标和水平坐标取算术平均的计算,得到定位结果。
本发明实施例还提供了一种WCDMA网络小区软切换带的识别方法,该方法包括:
数据采集服务器依据RNC采集的各激活集小区的RTT数据进行移动台的定位计算,依据定位计算结果进行栅格统计,并保存统计结果;其中,
所述统计结果,用于客户端计算并显示待查询的激活集小区的软切换带。
本发明实施例还提供了一种存储介质,所述存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行所述数据采集服务器实现的软切换带的识别方法。
本发明实施例还提供了一种WCDMA网络小区软切换带的识别系统,该系统包括:数据采集服务器和客户端,所述数据采集服务器包括:定位模块和统计模块;所述客户端包括:计算模块和显示模块;其中,
所述定位模块,配置为依据RNC采集的各激活集小区的RTT数据进行移动台的定位计算;
所述统计模块,配置为根据所述定位模块的定位计算结果进行栅格统计,并保存统计结果;
所述计算模块,配置为依据待查询的激活集小区对应的所述统计结果计算小区的软切换带;
所述显示模块,配置为显示所述计算模块计算所得的所述小区的软切换带。
在一个实施例中,该系统还包括:RNC,包括采集模块和记录模块; 其中,
所述采集模块,配置为通过基站采集处于软切换状态的移动台对应的各激活集小区的RTT数据;
所述记录模块,配置为记录所述采集模块采集所得的所述RTT数据。
其中,所述激活集小区包括两个小区时,
所述定位模块,配置为根据所述移动台到两个不同基站的RTT距离,从两个不同基站分别按RTT距离画两个圆弧,得到两个交点;分别计算两个交点与不同基站间连线与对应小区方位角之间的夹角,并计算同一交点对应的两个夹角之和,取夹角之和较小的结果对应的交点为移动台的定位点。
其中,所述激活集小区包括三个小区时,
所述定位模块,配置为根据所述移动台到三个不同基站的RTT距离,从三个不同基站分别按RTT距离画三个圆弧,得到三对共六个交点,两个圆弧相交得到的两个交点为一对;对所述六个点的垂直坐标和水平坐标分别取算术平均值,得到一个中心点,再分别计算三对定位点中距离中心点较近的一个点,得到三个点;然后将这三个点再进行垂直坐标和水平坐标取算术平均的计算,得到定位结果。
本发明实施例还提供了一种数据采集服务器,所述数据采集服务器包括:定位模块和统计模块;其中,
所述定位模块,配置为依据RNC采集的各激活集小区的RTT数据进行移动台的定位计算;
所述统计模块,配置为根据所述定位模块的定位计算结果进行栅格统计,并保存统计结果;其中,
所述统计结果,用于客户端计算并显示待查询的激活集小区的软切换带。
本发明实施例提供的WCDMA网络小区软切换带的识别方法、设备、系统和存储介质,数据采集服务器依据RNC采集的各激活集小区的RTT数据进行移动台的定位计算,依据定位计算结果进行栅格统计,并保存统计结果;客户端依据待查询的激活集小区对应的所述统计结果计算并显示该小区的软切换带。本发明的实施例可以较好地解决WCDMA网络的软切换带识别问题,可以直观看到各小区间的软切换带分布情况,在很大程度上可以表征小区的覆盖范围。本方法基于现网实际运营产生的真实数据,自动化程度高,实时性好,准确度高,可以对网络的规划、调整和优化工作提供很大的帮助,实用性强。
附图说明
在附图(其不一定是按比例绘制的)中,相似的附图标记可在不同的视图中描述相似的部件。具有不同字母后缀的相似附图标记可表示相似部件的不同示例。附图以示例而非限制的方式大体示出了本文中所讨论的各个实施例。
图1为本发明实施例所述WCDMA网络小区软切换带的识别方法实现流程示意图;
图2为本发明一实施例所述系统连接方式示意图;
图3为图2所述实施例的业务处理流程示意图;
图4为本发明实施例所述基于两个基站的移动台两点定位示意图;
图5为本发明实施例所述基于三个基站的移动台三点定位示意图;
图6为地理化显示的占比区段设置示意图;
图7为本发明一应用场景的基于两个基站的移动台两点定位示意图;
图8为本发明一应用场景的基于三个基站的移动台三点定位示意图;
图9为本发明一应用场景的栅格划分示意图;
图10为本发明一应用场景的软切换带界面显示效果示意图;
图11为本发明实施例所述系统的结构示意图。
具体实施方式
现有对小区覆盖范围的识别方法可包括:
一、网络仿真计算,根据网络基站的地理位置、小区朝向以及地理信息等,按一定的传播模型进行仿真计算。这种理论计算方法很难完全准确地反映实际情况,因此一般只适用于建网前的初期网络规划中;
二、几何计算,根据相邻基站的位置关系进行估算,一般采用“泰森多边形”法或其变形实现小区覆盖区域在几何意义上的划分。这种方法仅仅考虑基站位置,未考虑复杂的传播环境因素,也没有考虑基站的站型、发射功率、方位角等因素,因此准确性较低,也只能用于示意,实用性较差;
三、路测或定点测试,使用测试设备到现场实际环境进行大量采样测试,收集现场实际的经纬度和网络测量数据,经过平滑计算后得到各小区的覆盖范围。但是,这种方法的测试工作量非常大,进行全网大范围覆盖测试非常困难;而某个点的实测数据只能反映当时的情况,可是无线通信环境始终在动态变化,例如:忙时和闲时可能就有较大差别,且移动通信网络本身也在不断优化调整,因此这种方法不仅工作量大,而且实时性差,实用性比较有限。
本发明的实施例中,数据采集服务器依据无线网络控制器(RNC)采集的各激活集小区的RTT数据进行移动台的定位计算,依据定位计算结果进行栅格统计,并保存统计结果;客户端依据待查询的激活集小区对应的所述统计结果计算并显示该小区的软切换带。
在一个实施例中,该实施例方法还包括:所述RNC通过基站采集处于软切换状态的移动台对应的各激活集小区的RTT数据,并记录所述RTT数据。
其中,所述软切换带为:WCDMA网络中在地理上软切换事件发生相 对集中的区域;所述RTT数据包括:各激活集小区的RTT数据以及所述移动台的RTT参数。
下面结合附图及具体实施例对本发明作进一步详细说明。
图1为本发明实施例所述WCDMA网络小区软切换带的识别方法实现流程示意图,如图1所示,该方法包括:
步骤101:数据采集服务器依据RNC采集的各激活集小区的RTT数据进行移动台的定位计算,并依据定位计算结果进行栅格统计,并保存统计结果;
步骤102:客户端依据待查询的激活集小区对应的所述统计结果计算并显示该小区的软切换带。
本发明的实施例中,所述步骤101可包括:
数据采集服务器从RNC下载由RNC采集的各激活集小区的RTT数据以及所述移动台的RTT参数,并依据所述各激活集小区的RTT数据以及所述移动台的RTT参数进行移动台的定位计算,并依据所述定位计算结果进行栅格统计,将统计结果保存到数据库中。
这里,所述数据采集服务器可定期,例如:每间隔五分钟一次自动从所述RNC下载各激活集小区的RTT数据以及所述移动台的RTT参数。
本发明的实施例中,所述步骤102可包括:
客户端可依据操作员设置的对应待查询的激活集小区的查询条件,例如:统计分析时间的起止时间、需要分析的网元条件等,查询数据库中保存的栅格统计结果,统计待查询的激活集小区的软切换点数量,并计算栅格中的软切换点与小区所有软切换点的数量占比;根据已设置的占比与区域显示颜色的对应关系,在地图上按栅格显示小区的软切换带。其中,一个所述软切换点可对应一个栅格。
在一个实施例中,该实施例方法在步骤101之前还包括:
RNC通过基站采集处于软切换状态的移动台对应的各激活集小区的RTT数据,并记录所述RTT数据,具体包括:
当移动台处于软切换状态时,RNC向基站发送对应该移动台进行RTT测量的指令;基站收到所述指令后发起RTT测量,向所述移动台发送RTT信号;基站收到移动台返回的RTT测量数据后进行计算,得到各激活集小区的RTT数据以及所述移动台的RTT参数,并将所述RTT数据以及移动台的RTT参数上报给RNC,由RNC进行记录。
当然,在本发明的一个实施例中,RNC也可定期,例如:每间隔八秒钟一次对所有处于连接状态的移动台进行RTT测量,并记录处于软切换状态的移动台的各激活集小区的RTT数据以及所述移动台的RTT参数。
本发明实施例还提供了一种WCDMA网络小区软切换带的识别方法,该方法包括:
数据采集服务器依据无线网络控制器RNC采集的各激活集小区的环回时间RTT数据进行移动台的定位计算,并依据定位计算结果进行栅格统计,并保存统计结果;其中,所述统计结果,用于客户端计算并显示待查询的激活集小区的软切换带。
例如,数据采集服务器从RNC下载由RNC采集的各激活集小区的RTT数据以及所述移动台的RTT参数,并依据所述各激活集小区的RTT数据以及所述移动台的RTT参数进行移动台的定位计算,并依据所述定位计算结果进行栅格统计,将统计结果保存到数据库中。
这里,所述数据采集服务器可定期自动从所述RNC下载各激活集小区的RTT数据以及所述移动台的RTT参数。
本发明实施例还提供了一种存储介质,所述存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行所述数据采集服务器实现的软切换带的识别方法。
下面结合具体实施例对本发明进行详细描述。
图2为本发明一实施例所述系统连接方式示意图,如图2所示,移动台与基站1和基站2之间为无线链路连接,基站1、基站2分别与RNC之间为电信传输线路,RNC与数据采集服务器之间为以太网连接,数据采集服务器与客户端之间为以太网连接。其中,所述基站1和基站2对应的小区为激活集小区。
下面结合图2的应用场景对本发明实施例的业务处理流程进行描述,如图3所示,包括如下步骤:
步骤301:当移动台处于连接状态时,RNC对基站1、2下达针对该移动台的RTT测量指令;
步骤302:基站发起RTT测量,向移动台发送RTT信号;
步骤303:移动台返回RTT测量数据;
步骤304:基站根据RTT测量数据计算小区对应的RTT时间等RTT数据;
步骤305:基站将所述RTT时间等RTT数据以及移动台的RTT参数上报给RNC;
步骤306:RNC将所述移动台的RTT数据记录到文件中;
步骤307:数据采集服务器定期自动下载所述RTT数据文件;
步骤308:数据采集服务器对下载的RTT数据进行处理,计算移动台的地理位置,并按栅格进行统计,将统计结果保存到数据库中;
步骤309:操作员通过客户端进行操作,设定查询条件后,查询统计结果并计算后得到所需小区的软切换带数据,通过地理信息系统(GIS)地图进行界面显示。
下面对本发明实施例所述移动台的定位计算方法进行描述。
实施例1
本实施例以两个基站为例,即两点定位移动台的位置。图4是所述两点定位示意图,如图4所示,当移动台与两个不同基站都有无线链路连接时,根据移动台到两个不同基站的RTT距离,可以从两个不同基站分别按RTT距离画两个圆弧,得到交点A、B作为定位点。分别计算两个交点与不同基站间连线与对应小区方位角之间的夹角,并计算同一交点对应的两个夹角之和,取夹角之和较小的结果对应的交点为移动台的定位点,其中,所述方位角是指正北方向的平面顺时针旋转到和天线所在平面重合所经历的角度;所述的小区方位角是指小区的主瓣方向;具体的:对两个相交点分别计算与两个小区方位角的夹角,因基站对应的小区通常为扇形结构,如图4中两个扇形区域所示,所述小区方位角为:小区扇形区域的角平分线XX’和YY’,那么,所述两个定位点与小区方位角的夹角为:定位点与基站间的连线与基站对应的小区方位角之间的夹角,最终移动台的定位点取所述两个定位点A、B中与小区方位角之间的夹角之和较小的结果所对应的定位点,该实施例中,如图4所示,图中的∠α和∠β之和较小,相应的,移动台的定位点取图4中的A点。
实施例2
本实施例以三个基站为例,即三点定位移动台的位置。图5是所述三点定位示意图,如图5所示,当移动台与三个不同基站都有无线链路连接时,根据所述移动台到三个不同基站的RTT距离,从三个不同基站分别按RTT距离画三个圆弧,得到三对共六个交点,两个圆弧相交得到的两个交点为一对。对定位出的六个点的垂直坐标和水平坐标分别取算术平均值,找出一个中心点,如图中O点,再分别计算三对定位点中距离中心点较近的一个点,得到点C、点D和点E三个点;然后将这三个点再进行垂直坐标和水平坐标取算术平均,得到定位结果,即图中的点F。需要说明的是,在理论上,如果RTT计算距离与实际距离相比绝对精确,三点定位的三个 圆弧可以相交为一点;但实际上测量值总会存在一定误差,RTT计算距离不可能绝对精确,因此采用上述方式进行估算。
关于上文提到的占比与区域显示颜色的对应关系,这里结合附图进行简单介绍。图6为地理化显示的占比区段设置示意图,如图6所示,操作员可根据需要自行设置栅格的区段数、各区段的指标门限值以及显示的颜色值。分段的指标为某小区在某个栅格中的软切换点数占该小区所有软切换点数的占比,例如:可设置为占比0.1%以下不显示,占比0.1%至2%分4段以不同颜色显示,占比在2%以上以不同颜色显示。
下面结合一具体应用场景对本发明实施例的方法进行详细描述。
以一个WCDMA用户的语音通话业务为例,如图7所示,有两个相邻小区,小区ID分别为10101和10201。10101小区天线的经纬度为(113.944375,22.53384),10201小区天线的经纬度为(113.938013,22.536213)。
用户从A点向西沿道路移动,在A点处开始接听一个电话,服务小区为10101小区。当用户移动到B点时发生软切换,小区10201加入激活集中。此时RNC发起RTT测量,测量结果如下表所示:
小区ID RTT RxTxTimeDiffType
10101 2494 1022
10201 4171 1128
其中,表中所述RTT和收发时间差类型(RxTxTimeDiffType)为协议规定的上报值,没有单位。使用RTT距离计算公式计算移动台与基站之间的距离,公式如下:
距离=(RTT÷16+876-RxTxTimeDiffType)×78.125÷2
经计算可得,用户与10101小区之间的距离约为385.74米,与10201小区之间的距离约为339.36米。
如图7所示,分别以10101小区为圆心,385.74米为半径、10201小区 为原心,339.36米为半径画圆弧,计算圆弧的交点,得到B和B’两个相交点。对B和B’两个相交点分别计算与两个小区方位角之间的夹角之和,B的夹角和较小,因此判决B点的可能性较大,从而将用户定位结果确定为B点。
根据图9中的栅格划分,B点位于图中栅格1内,因此按栅格1统计,针对该栅格,10101小区和10201小区分别记1次软切换点。这里,可将整个地图划分为若干栅格,例如50米×50米的栅格,然后可以将定位结果按栅格进行统计和显示。
如图8所示,如用户在路口拐弯向北移动,经过一段距离后,天线经纬度为(113.939998,22.538413)的10301小区加入激活集中,此时RNC发起RTT测量,测量结果如下表所示:
小区ID RTT RxTxTimeDiffType
10101 2544 1022
10201 4162 1128
10301 4194 1133
根据RTT距离计算公式,可计算出移动台距离10101小区约507.81米,距离10201小区约317.38米,距离10301小区约200.20米。采用三点定位,针对三个小区分别绘制圆弧。三条圆弧两两相交,产生三对交点,计算各交点的经纬度结果如下:
交点 经度 纬度
A 113.941006 22.536877
A’ 113.938174 22.539097
B 113.940952 22.537085
B’ 113.939450 22.533696
C 113.940555 22.536689
C’ 113.941789 22.537700
计算6个交点经度的平均值和纬度的平均值,结果为(113.940321,22.536857),即图8中O点。A/A’、B/B’、C/C’三对交点各取一个距离O点更近的点,可以得到A、B、C三个点。计算A、B、C三个点经度的平均值和纬度的平均值,结果为(113.940838,22.536834),即图8中P点。
根据图9中的栅格划分,P点位于图中栅格2内,因此按栅格2统计,针对该栅格,10101小区、10201和10301小区分别记1次软切换点。
类似上述过程,对所有用户移动台的所有RTT数据进行定位计算和按栅格统计后,可以得到各个小区在不同栅格中的软切换点个数统计值,如下表所示:
Figure PCTCN2015072790-appb-000001
将上述“小区+栅格”粒度的软切换次数统计数据导入数据库中,并按小时进行存储。
之后,操作员可通过客户端软件界面选择需要分析的基站,并设置统计起止时间段,可通过客户端查询得到该基站在不同栅格的软切换点数,计算不同栅格的软切换点数合计值,则得到该基站的总软切换点数。
以不同栅格的软切换点数除以总软切换点数,可以计算出各栅格的软切换点数占比(百分比);根据各栅格的软切换点数占比,按显示区段设置的颜色,可以在电子地图上对栅格进行渲染,绘制出该基站的软切换带,如图10所示。
类似地,操作员可以选择一个小区、多个小区或多个基站进行统计,查看不同级别或不同数量网元的软切换带分布情况。
基于上述过程,操作员可以直观了解到现网中的软切换带实际分布情况,从而掌握小区的覆盖范围,为网络基站布局的规划调整和邻区关系、无线参数优化等提供参考。
本发明实施例还提供了一种WCDMA网络小区软切换带的识别系统,如图11所示,该系统包括:数据采集服务器111和客户端112,所述数据采集服务器包括:定位模块1111和统计模块1112;所述客户端包括:计算模块1121和显示模块1122;其中,
所述定位模块1111,配置为依据无线网络控制器RNC采集的各激活集小区的环回时间RTT数据进行移动台的定位计算;
所述统计模块1112,配置为根据所述定位模块1111的定位计算结果进行栅格统计,并保存统计结果;
所述计算模块1121,配置为依据待查询的激活集小区对应的所述统计结果计算小区的软切换带;
所述显示模块1122,配置为显示所述计算模块1121计算所得的所述小区的软切换带。
其中,所述定位模块1111和统计模块1112可由所述数据采集服务器111中的中央处理器(Central Processing Unit,CPU)、数字信号处理器(Digital Signal Processor,DSP)或可编程逻辑阵列(Field-Programmable Gate Array,FPGA)实现;
所述计算模块1121和显示模块1122可由所述客户端112中的CPU、DSP或FPGA实现。
在一个实施例中,本发明的实施例中,该系统还包括:RNC 113,包括采集模块1131和记录模块1132;其中,
所述采集模块1131,配置为通过基站采集处于软切换状态的移动台对应的各激活集小区的RTT数据;
所述记录模块1132,配置为记录所述采集模块采集所得的所述RTT数据。
其中,所述采集模块1131和记录模块1132可由所述RNC 113中的CPU、DSP或FPGA实现。
在一个实施例中,本发明的实施例中,所述激活集小区包括两个小区时,
所述定位模块1111,配置为根据所述移动台到两个不同基站的RTT距离,从两个不同基站分别按RTT距离画两个圆弧,得到两个交点;分别计算两个交点与不同基站间连线与对应小区方位角之间的夹角,并计算同一交点对应的两个夹角之和,取夹角之和较小的结果对应的交点为移动台的定位点。
在一个实施例中,本发明的实施例中,所述激活集小区包括三个小区时,
所述定位模块1111,配置为根据所述移动台到三个不同基站的RTT距离,从三个不同基站分别按RTT距离画三个圆弧,得到三对共六个交点,两个圆弧相交得到的两个交点为一对;对所述六个点的垂直坐标和水平坐标分别取算术平均值,得到一个中心点,再分别计算三对定位点中距离中心点较近的一个点,得到三个点;然后将这三个点再进行垂直坐标和水平坐标取算术平均的计算,得到定位结果。
本发明实施例还提供了一种数据采集服务器,如图11所示,所述数据采集服务器包括:定位模块1111和统计模块1112;其中,
所述定位模块1111,配置为依据无线网络控制器RNC采集的各激活集小区的环回时间RTT数据进行移动台的定位计算;
所述统计模块1112,配置为根据所述定位模块1111的定位计算结果进行栅格统计,并保存统计结果;其中,
所述统计结果,用于客户端计算并显示待查询的激活集小区的软切换带。
本发明的实施例可以较好地解决WCDMA网络的软切换带识别问题,可以直观看到各小区间的软切换带分布情况,在很大程度上可以表征小区的覆盖范围。本方法基于现网实际运营产生的真实数据,自动化程度高,实时性好,准确度高,可以对网络的规划、调整和优化工作提供很大的帮助,实用性强。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个 流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。

Claims (11)

  1. 一种宽带码分多址WCDMA网络小区软切换带的识别方法,该方法包括:
    数据采集服务器依据无线网络控制器RNC采集的各激活集小区的环回时间RTT数据进行移动台的定位计算,依据定位计算结果进行栅格统计,并保存统计结果;
    客户端依据待查询的激活集小区对应的所述统计结果计算并显示所述小区的软切换带。
  2. 根据权利要求1所述的方法,其中,该方法还包括:
    RNC通过基站采集处于软切换状态的移动台对应的各激活集小区的RTT数据,并记录所述RTT数据。
  3. 根据权利要求1或2所述的方法,其中,所述激活集小区包括两个小区时,所述定位计算方法为:
    根据所述移动台到两个不同基站的RTT距离,从两个不同基站分别按RTT距离画两个圆弧,得到两个交点;
    分别计算两个交点与不同基站间连线与对应小区方位角之间的夹角,并计算同一交点对应的两个夹角之和,取夹角之和较小的结果对应的交点为移动台的定位点。
  4. 根据权利要求1或2所述的方法,其中,所述激活集小区包括三个小区时,所述定位计算方法为:
    根据所述移动台到三个不同基站的RTT距离,从三个不同基站分别按RTT距离画三个圆弧,得到三对共六个交点,两个圆弧相交得到的两个交点为一对;
    对所述六个点的垂直坐标和水平坐标分别取算术平均值,得到一个中心点,再分别计算三对定位点中距离中心点较近的一个点,得到三个点; 然后将这三个点再进行垂直坐标和水平坐标取算术平均的计算,得到定位结果。
  5. 一种宽带码分多址WCDMA网络小区软切换带的识别方法,其中,该方法包括:
    数据采集服务器依据无线网络控制器RNC采集的各激活集小区的环回时间RTT数据进行移动台的定位计算,依据定位计算结果进行栅格统计,并保存统计结果;其中,
    所述统计结果,用于客户端计算并显示待查询的激活集小区的软切换带。
  6. 一种宽带码分多址WCDMA网络小区软切换带的识别系统,该系统包括:数据采集服务器和客户端,所述数据采集服务器包括:定位模块和统计模块;所述客户端包括:计算模块和显示模块;其中,
    所述定位模块,配置为依据无线网络控制器RNC采集的各激活集小区的环回时间RTT数据进行移动台的定位计算;
    所述统计模块,配置为根据所述定位模块的定位计算结果进行栅格统计,并保存统计结果;
    所述计算模块,配置为依据待查询的激活集小区对应的所述统计结果计算小区的软切换带;
    所述显示模块,配置为显示所述计算模块计算所得的所述小区的软切换带。
  7. 根据权利要求6所述的系统,其中,该系统还包括:RNC,包括采集模块和记录模块;其中,
    所述采集模块,配置为通过基站采集处于软切换状态的移动台对应的各激活集小区的RTT数据;
    所述记录模块,配置为记录所述采集模块采集所得的所述RTT数据。
  8. 根据权利要求6或7所述的系统,其中,所述激活集小区包括两个小区时,
    所述定位模块,配置为根据所述移动台到两个不同基站的RTT距离,从两个不同基站分别按RTT距离画两个圆弧,得到两个交点;
    分别计算两个交点与不同基站间连线与对应小区方位角之间的夹角,并计算同一交点对应的两个夹角之和,取夹角之和较小的结果对应的交点为移动台的定位点。
  9. 根据权利要求6或7所述的系统,其中,所述激活集小区包括三个小区时,
    所述定位模块,配置为根据所述移动台到三个不同基站的RTT距离,从三个不同基站分别按RTT距离画三个圆弧,得到三对共六个交点,两个圆弧相交得到的两个交点为一对;
    对所述六个点的垂直坐标和水平坐标分别取算术平均值,得到一个中心点,再分别计算三对定位点中距离中心点较近的一个点,得到三个点;然后将这三个点再进行垂直坐标和水平坐标取算术平均的计算,得到定位结果。
  10. 一种数据采集服务器,所述数据采集服务器包括:定位模块和统计模块;其中,
    所述定位模块,配置为依据无线网络控制器RNC采集的各激活集小区的环回时间RTT数据进行移动台的定位计算;
    所述统计模块,配置为根据所述定位模块的定位计算结果进行栅格统计,并保存统计结果;其中,
    所述统计结果,用于客户端计算并显示待查询的激活集小区的软切换带。
  11. 一种存储介质,所述存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行权利要求5所述的方法。
PCT/CN2015/072790 2014-09-02 2015-02-11 Wcdma网络小区软切换带的识别方法、设备、系统和存储介质 WO2016033946A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15837440.5A EP3197200A4 (en) 2014-09-02 2015-02-11 Identification method, device and system of wcdma network cell soft handover band and storage medium
US15/506,402 US20180160314A1 (en) 2014-09-02 2015-02-11 Identification method, device and system for wcdma network cell soft switching band and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410444489.1A CN105451263B (zh) 2014-09-02 2014-09-02 一种wcdma网络小区软切换带的识别方法、设备和系统
CN201410444489.1 2014-09-02

Publications (1)

Publication Number Publication Date
WO2016033946A1 true WO2016033946A1 (zh) 2016-03-10

Family

ID=55439077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072790 WO2016033946A1 (zh) 2014-09-02 2015-02-11 Wcdma网络小区软切换带的识别方法、设备、系统和存储介质

Country Status (4)

Country Link
US (1) US20180160314A1 (zh)
EP (1) EP3197200A4 (zh)
CN (1) CN105451263B (zh)
WO (1) WO2016033946A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108243434B (zh) * 2016-12-23 2021-09-21 中国移动通信集团广东有限公司 掉话位置的定位方法及装置
US11362921B2 (en) * 2017-12-19 2022-06-14 Qualcomm Incorporated Systems and methods for multiple round trip time (RTT) estimation in wireless networks
CN113498068B (zh) * 2020-03-19 2022-08-05 株洲中车时代电气股份有限公司 一种高速铁路的归属小区的确定方法、装置、设备及介质
US12004013B2 (en) 2021-05-18 2024-06-04 Microsoft Technology Licensing, Llc Techniques for adaptively allocating resources in a cloud-computing environment
US11956672B2 (en) * 2021-05-18 2024-04-09 Microsoft Technology Licensing, Llc Techniques for adaptively determining cell boundary in wireless communications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1489313A (zh) * 2002-10-11 2004-04-14 深圳市中兴通讯股份有限公司 一种对软切换状态下用户设备进行定位的方法
CN1536850A (zh) * 2003-04-09 2004-10-13 深圳市中兴通讯股份有限公司南京分公 一种基于小区标识和环回时间的移动定位方法
CN1856161A (zh) * 2005-04-28 2006-11-01 华为技术有限公司 一种对用户设备进行定位的方法
CN103916868A (zh) * 2012-12-31 2014-07-09 中国移动通信集团浙江有限公司 位置区优化方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0000528D0 (en) * 2000-01-11 2000-03-01 Nokia Networks Oy Location of a station in a telecommunications system
US6681099B1 (en) * 2000-05-15 2004-01-20 Nokia Networks Oy Method to calculate true round trip propagation delay and user equipment location in WCDMA/UTRAN
GB0410609D0 (en) * 2004-05-12 2004-06-16 Nokia Corp Locating mobile terminals
KR101161983B1 (ko) * 2010-10-05 2012-07-04 주식회사 엘지유플러스 이동통신 단말기의 위치 정보를 산출하는 위치 관리 서버 및 그 산출 방법
PL2702815T3 (pl) * 2011-04-27 2015-12-31 Ericsson Telefon Ab L M Pozycjonowanie w systemach komunikacji bezprzewodowej

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1489313A (zh) * 2002-10-11 2004-04-14 深圳市中兴通讯股份有限公司 一种对软切换状态下用户设备进行定位的方法
CN1536850A (zh) * 2003-04-09 2004-10-13 深圳市中兴通讯股份有限公司南京分公 一种基于小区标识和环回时间的移动定位方法
CN1856161A (zh) * 2005-04-28 2006-11-01 华为技术有限公司 一种对用户设备进行定位的方法
CN103916868A (zh) * 2012-12-31 2014-07-09 中国移动通信集团浙江有限公司 位置区优化方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3197200A4 *

Also Published As

Publication number Publication date
US20180160314A1 (en) 2018-06-07
EP3197200A4 (en) 2017-11-15
CN105451263A (zh) 2016-03-30
EP3197200A1 (en) 2017-07-26
CN105451263B (zh) 2019-12-24

Similar Documents

Publication Publication Date Title
US10153955B2 (en) Network selection using current and historical measurements
WO2016033946A1 (zh) Wcdma网络小区软切换带的识别方法、设备、系统和存储介质
CA2660910C (en) Embedded wireless location validation benchmarking systems and methods
CN105611568B (zh) 一种基于mro测量报告对lte终端位置进行准确定位的方法
CN102111871B (zh) 基于小区标识定位技术的终端定位方法及装置
US9591455B2 (en) Methods and apparatus to determine a base station location
CN103096464B (zh) 单基站用户终端定位方法及系统
EP2952047B1 (en) Method for localizing wireless devices
WO2014071761A1 (zh) 人流量的统计方法及装置
CN103929719B (zh) 定位信息的优化方法和优化装置
US20190200318A1 (en) Supporting an update of stored information
WO2013091580A1 (zh) 利用无线信号来定位的方法和定位服务器
CN104320795A (zh) 一种多维度的无线网络健康度评估方法
CN105516925A (zh) 基于地理围栏的人员管理方法
CN107197518B (zh) 一种确定终端位置的方法及装置
CN102006621A (zh) 定位测量及位置信息获得方法、系统和设备
CN107318114B (zh) 一种邻区规划的方法及装置
CN103929751A (zh) 一种确定不同网络中覆盖共同区域的小区对的方法及装置
CN110493720A (zh) 终端的定位方法、装置及存储介质
CN108416514B (zh) 基于地理信息系统的邻区规划方法及装置
CN110727752B (zh) 位置指纹库处理方法、设备及计算机可读存储介质
CN106922017A (zh) 定位方法以及终端
WO2013174013A1 (zh) 一种确定站址的方法、服务器及系统
CN109391946A (zh) 一种基站簇规划的方法及装置
CN114980138B (zh) 一种5g无线基站的规划方法、系统及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837440

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15506402

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015837440

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015837440

Country of ref document: EP