WO2016033803A1 - 显示面板、显示装置和子像素的渲染方法 - Google Patents

显示面板、显示装置和子像素的渲染方法 Download PDF

Info

Publication number
WO2016033803A1
WO2016033803A1 PCT/CN2014/086036 CN2014086036W WO2016033803A1 WO 2016033803 A1 WO2016033803 A1 WO 2016033803A1 CN 2014086036 W CN2014086036 W CN 2014086036W WO 2016033803 A1 WO2016033803 A1 WO 2016033803A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
pixels
display panel
color
Prior art date
Application number
PCT/CN2014/086036
Other languages
English (en)
French (fr)
Inventor
陶霖密
Original Assignee
陶霖密
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陶霖密 filed Critical 陶霖密
Priority to CN201480081495.3A priority Critical patent/CN106852179B/zh
Priority to PCT/CN2014/086036 priority patent/WO2016033803A1/zh
Priority to US15/508,342 priority patent/US10395579B2/en
Publication of WO2016033803A1 publication Critical patent/WO2016033803A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0443Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • G09G2330/023Power management, e.g. power saving using energy recovery or conservation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0457Improvement of perceived resolution by subpixel rendering
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data

Definitions

  • the present invention relates to a display panel and a display device, which can be used as a color display panel and display device for various devices such as various mobile phones, tablet computers, notebook computers, displays, televisions, and the like, and also relates to a rendering method of sub-pixels of the display device.
  • a color display contains multiple pixels, such as 640x480, 1024x768, 1920x1080 pixels, and so on.
  • Each pixel includes two or three or more sub-pixels of different colors. It is more common that each pixel has three sub-pixels, that is, a red sub-pixel, a green sub-pixel, and a blue sub-pixel. The three sub-pixels are arranged in parallel to form one pixel.
  • each pixel is generally square, and therefore, the sub-pixel is rectangular with an aspect ratio of 3:1, as shown in FIG.
  • a plurality of pixels are repeatedly arranged to form a color display as shown in FIG. 2.
  • some of these pixels are self-illuminating, such as LED color display, Active Matrix/Organic Light Emitting Diode (AMOLED) color display, etc. Some of them do not emit light but back light.
  • the light source is uniformly provided, such as a passive organic OLED (PMOLED) color display, an LCD color display, and the like.
  • PPI pixels per inch
  • An important direction in the development of color displays today is to increase the pixel density of color displays.
  • High-resolution mobile phone screens, computer screens, and the booming 4K TVs are placing increasing demands on the pixel density of color displays.
  • Apple Computer The Retina color display achieves a high-resolution color display by reducing the size of each pixel, and has been used in Apple phones, tablets, laptops, and the like. This method of directly increasing the pixel density brings two insurmountable problems. First, the manufacturing process is complicated, the yield is low, and the high-resolution color display is expensive.
  • the increase in pixel density means that each The pixel area is reduced, and the sub-pixels are black-spaced. Therefore, the reduction in the area of the sub-pixels causes the area ratio of the intervals between the sub-pixels to increase, so that the utilization of the light source is lowered, and the power consumption of the color display panel to achieve the same brightness is significantly increased. This is a fatal weakness for mobile devices such as mobile phones, tablets and laptops.
  • the RGBW color display has four color (red, green, blue, white) sub-pixels, but each pixel has only two sub-pixels, namely blue-white, or red-green, see Figure 3.
  • the RGBG color display there are ordinary three-color sub-pixels, but each pixel has only two sub-pixels, namely green-blue, or green-red, see Figure 4.
  • These color displays increase the pixel density of the color display without reducing the size of each sub-pixel.
  • Apple's Retina color display it has the advantages of low power consumption and low cost.
  • the RGBW color display has been used in the following devices:
  • the RGBG color display is a very successful color display from Samsung and has been widely used in a variety of mobile phones, as follows:
  • variable structure sub-pixel color display screen can achieve higher pixel density and better display effect by changing the structure of the sub-pixels, such as Samsung's S-Strip.
  • the color display screen as shown in FIG. 5, has a blue sub-pixel as a long strip, and the red-green sub-pixel is a small four-square, which is arranged in a cross to form one pixel.
  • the current main method of increasing pixel density is to reduce the number of sub-pixels within a single pixel.
  • This method reduces the proportion of black pixel spacers while increasing the pixel density, improves the utilization of the light source, and reduces the energy consumption of the same brightness.
  • this method reduces the quality of the image compared to the conventional three-primary sub-pixel method, so that the displayed image has a certain degree of color cast.
  • the present invention has been made in view of the above circumstances of the prior art.
  • a display panel is mainly composed of pixel group repeats, the pixel group is composed of a predetermined number of pixels arranged in one row, and each pixel is composed of sub-pixels of at least two different primary colors arranged in different order.
  • the color of the adjacent sub-pixels between adjacent pixels in the pixel group or between adjacent pixel pairs is the same, and the color of the first sub-pixel and the last sub-pixel in the pixel group are the same.
  • the saturation of the displayed color can be increased, and the displayed color is more vivid and the layer is more abundant.
  • a pair consisting of adjacent pairs of identical color sub-pixels of adjacent pixels in the pixel group and adjacent pairs of same-color sub-pixels of adjacent pixels between the pixel groups are included
  • One or more pairs are merged into a strong sub-pixel, and there is no black space in the merged strong sub-pixel, and the brightness is greater than the brightness of any of the merged original same-color sub-pixels.
  • the configuration of the strong sub-pixels improves the utilization of the light source, reduces the power consumption of the color display, and at the same time takes into account the high pixel density.
  • a display device which may include: a display panel mainly composed of a pixel group repeat, the pixel group being composed of a predetermined number of pixels arranged in one row, each pixel being sub-pixels of different primary colors according to Arranging in different order, at least two primary colors, and the color of adjacent sub-pixels between adjacent pixels or adjacent pixel pairs in the pixel group, and the first sub-pixel and finally in the pixel group One sub-pixel has the same color; and a driving circuit for transmitting a signal to each sub-pixel of the display panel.
  • a display device which may include: a display panel composed of a plurality of pixel arrays, each pixel being composed of sub-pixels of different colors arranged in one row, wherein adjacent pixels in the same row The color of adjacent sub-pixels between or between adjacent pairs of pixels is the same; and a driving circuit for transmitting a signal to each sub-pixel of the display panel.
  • a method for rendering a sub-pixel of a display device includes a display panel composed of a plurality of pixel arrays, each pixel being composed of sub-pixels of different colors arranged in a row.
  • the rendering method of the sub-pixel includes: receiving input image data of a first format for rendering the display device in the output display format; performing a sub-pixel rendering operation based on the input image data to generate the display panel a luminance value of each sub-pixel; transmitting a signal to each sub-pixel of the display panel, wherein rendering the strong sub-pixel comprises: obtaining a color value of each of the associated two pixels of the input image data and the hadron The color value corresponding to the color of the pixel; the result of adding the two corresponding color values is the color value of
  • the sub-pixel rendering method enables the display device to maintain good color reproduction capability and low power consumption while achieving high pixel density.
  • FIG. 1 shows a schematic diagram of a square pixel composed of RGB sub-pixels.
  • FIG. 2 shows a schematic diagram of a conventional plurality of pixels repeatedly arranged to form a color display screen.
  • Figure 3 shows a schematic diagram of a traditional Pentic RGBW color display made by Samsung.
  • Figure 4 shows a schematic diagram of a traditional Pentic RGBG color display made by Samsung.
  • Figure 5 shows a schematic diagram of a conventional S-Strip color display made by Samsung.
  • FIG. 6 shows a schematic diagram of a related art of a color display screen of Samsung Corporation.
  • Figures 7(a) and (b) illustrate two exemplary arrangements of sub-pixels of RGB three primary color pixel groups in accordance with one embodiment of the present invention.
  • FIG. 8(a), (b), (c), and (d) are schematic diagrams showing a part of a display screen in which sub-pixels, a pixel group, and a line are arranged in the same color, and a part of a display screen in which the lines are arranged in different colors.
  • 9(a), (b), and (c) are diagrams showing a case where one strong sub-pixel is contained in every nine sub-pixels (or each Dow ternary pixel).
  • Figures 11(a) and (b) show the existence of the Dow ternary pixel group and the Dow octet group in the average sense.
  • (a) shows a schematic diagram of a case where the Dow ternary pixel group contains three strong sub-pixels per nine sub-pixels in the average sense.
  • (b) shows a schematic diagram of a case where the Dow eight-element pixel group contains four strong sub-pixels per sixteen sub-pixels in the average sense.
  • Figures 13 (a), (b) illustrate a portion of an exemplary color display screen containing two strong sub-pixels within each Dow ternary pixel in accordance with an embodiment of the present invention.
  • FIG. 15 shows a configuration block diagram of a display device 100 according to an embodiment of the present invention.
  • Figures 16(a)-(d) show schematic diagrams of conventional displays from image data to panel display.
  • 17(a)-(d) are schematic diagrams showing a Dow ternary pixel display (TTPD) from image data to panel display in accordance with an embodiment of the present invention.
  • TTPD Dow ternary pixel display
  • pixel also known as pixel, is the basic unit of image display, translated from English "pixel", pix is a common shorthand for English word picture, plus the English word "element” element, it gets pixel, so "pixel” means The meaning of "image elements”.
  • Each pixel can have its own color value, so there is a corresponding "sub-pixel” concept, for example, the pixel can be displayed in three primary colors, and thus divided into three sub-pixels of red, green and blue (RGB color gamut), or blue, Magenta, yellow, and black seed pixels (CMYK color gamut, common in the printing industry and printers), or red, green, blue, and white seed pixels (RGBW color gamut), or more primary colors.
  • RGB color gamut red, green and blue
  • CMYK color gamut common in the printing industry and printers
  • RGBW color gamut red, green, blue, and white seed pixels
  • primary color refers to each color in a group of repeated sub-pixels, for example, red (R), green (G), and blue (B) in an RGB sub-pixel are referred to as The three primary colors, red (R), green (G), blue (B), and white (W) in the RGBW sub-pixel are also primary colors.
  • between adjacent pairs of pixels refers to the order in which pixels are arranged in a group of pixels.
  • a pair of pixels is sequentially composed of two pixels, and there are no overlapping pixels between the respective pairs of pixels, which will be described between such adjacent pairs of pixels.
  • the first pixel is in order from left to right.
  • the sub-pixel P1 P2 is included, the second pixel includes the sub-pixel P3 P4, the third pixel includes the sub-pixel P4 P1, and the fourth pixel includes the sub-pixel P2 P3, and the analogy until the eighth pixel includes the sub-pixel P4 P1.
  • the first and second pixels, the third and fourth pixels, the fifth and sixth pixels, and the seventh and eighth pixels sequentially form a pair of pixels.
  • Each pixel pair contains four primary color sub-pixels of P1, P2, P3, and P4.
  • the first pixel pair is composed of the first and second pixels
  • the second pixel pair is composed of the third and fourth pixels
  • the third pixel pair is composed of the fifth and sixth pixels
  • the fourth pixel pair is composed of the seventh and eighth pixels.
  • the pixel composition there is no pixel pair composed of the second pixel and the third pixel, a pixel pair composed of the fourth pixel and the fifth pixel, and the like.
  • sub-pixel type is RGB sub-pixels
  • the present invention is not limited thereto, and the types and numbers of sub-pixels (primary colors) may be different.
  • the present disclosure provides a display panel composed of a pixel group repeat, the pixel group being composed of a predetermined number of pixels disposed in one row, each pixel being composed of sub-pixels of at least two different primary colors arranged in a different order, and wherein the pixel group is
  • the adjacent sub-pixels or adjacent pixel pairs between adjacent pixels have the same color, and the first sub-pixel and the last sub-pixel in the pixel group have the same color.
  • the adjacent homochromatic sub-pixels increase the saturation of the displayed color, so that the color display screen proposed by the invention has higher color saturation than the existing color display screen, and the displayed color is more vivid and richer in level. .
  • the display screen is mainly composed of pixel group repetitions, and the pixel group is composed of three pixels arranged in one line.
  • Each pixel consists of three sub-pixels of three colors: red, green, and blue.
  • the adjacent sub-pixels between adjacent pixels in the pixel group have the same color, and the first sub-pixel and the last sub-pixel in the pixel group have the same color.
  • one exemplary arrangement of all sub-pixels of three pixels in a pixel group is: red sub-pixel, green sub-pixel, blue sub-pixel, blue sub-pixel, red sub-pixel, green sub-pixel, green sub-pixel , blue sub-pixel, red sub-pixel, as shown in Figure 7 (a).
  • Another exemplary arrangement of all sub-pixels of three pixels in a pixel group is: red sub-pixel, blue pixel, green sub-pixel, green sub-pixel, red sub-pixel, blue sub-pixel, blue sub-pixel, The green sub-pixel and the red sub-pixel are as shown in Fig. 7(b).
  • the pixel group is in red.
  • the pixel starts and ends with a red sub-pixel, but this is only an example, in fact, the start sub-pixel and the end sub-pixel in the pixel group may be sub-pixels of other colors.
  • the display screen according to an embodiment of the present invention may be summarized as: three primary color sub-pixels constitute a pixel, three different pixels are arranged in a row to form a pixel group, and the pixel group repeatedly forms a display screen.
  • the first primary color, the second primary color, and the third primary color sub-pixel are respectively represented by P1, P2, and P3, and all the sub-pixels of the three pixels in the pixel group are arranged in one line in the following manner:
  • P1, P2, and P3 are one of three primary colors, respectively, and are different from each other. It should be noted that although P1 is red in the following, P2 is green, and P3 is blue as an example, P1 may be green or blue, and any of P2 and P3 may be other colors. . Preferably, all sub-pixels in one pixel group include sub-pixels of all primary colors, and the number of primary color sub-pixels is equal within the same pixel group, which can avoid image color cast of the display and ensure display quality.
  • the ternary pixel group formed by arranging three adjacent pixels by nine sub-pixels is simple, and the ternary pixel group can be called a Dow ternary pixel (Tao's Triple). Pixels, TTP). Then, a plurality of TTPs are repeatedly arranged to form a color display, which can be called a Tao's Triple Pixel Display (TTPD), as shown in FIG.
  • TTPD Tao's Triple Pixel Display
  • the display screen according to another embodiment of the present invention may be summarized as: four primary color sub-pixels constitute a pixel pair, and four pairs of eight pixels are arranged in a row to form a pixel group, and the pixel group repeatedly forms a display screen.
  • P1, P2, P3, and P4 represent the first primary color, the second primary color, the third primary color, and the fourth primary color sub-pixel, respectively, and all the sub-pixels of the four pairs of eight pixels in the pixel group are arranged in one line in the following manner:
  • P1, P2, P3, and P4 are respectively one of the four primary colors, and are different from each other.
  • the first pixel in the pixel group includes the sub-pixel P1 P2, the second pixel includes the sub-pixel P3 P4, the third pixel includes the sub-pixel P4 P1, and the fourth pixel includes the sub-pixel P2 P3 until the eighth pixel includes the sub-pixel P4 P1.
  • the first and second pixels, the third and fourth pixels, the fifth and sixth pixels, and the seventh and eighth pixels form a pair of pixels in sequence, that is, the first pair of pixels in the example is P1 P2 P3 P4 ,
  • the second pixel pair is P4 P1 P2 P3, the third pixel pair is P3 P4 P1 P2, and the fourth pixel pair is P2 P3 P4P1.
  • Each pixel pair contains four primary color sub-pixels of P1, P2, P3, and P4, that is, adjacent sub-pixels of four primary colors form one pixel pair.
  • the text generally represents red, green, blue, and white as four primary colors, in practice, the four primary colors may be other colors.
  • all sub-pixels in one pixel group include sub-pixels of all primary colors, and the number of primary color sub-pixels is equal within the pixel group, which can avoid image color cast of the display and ensure display quality.
  • the eight-element pixel group formed by four pairs of adjacent pixel pairs is arranged in eight pixels, and the octal pixel group can be called Dow eight-element pixel (Tao's).
  • Octagonal Pixels, TOP can be called a Tao's Octagonal Pixel Display (TOPD).
  • TOPD Tao's Octagonal Pixel Display
  • a conventional color display screen is arranged by pixels, and the Dow eight-element display (TOPD) of the embodiment of the present invention is repeatedly arranged by Dow's eight-element (TOP), which is characterized by all phases.
  • the color of adjacent sub-pixels is the same between adjacent pairs of pixels.
  • P1, P2, and P3 respectively represent the first primary color, the second primary color, and the third primary color sub-pixel.
  • P1, P2, and P3 are required to be one of the three primary colors and different from each other, and P1 is not required.
  • P2 and P3 are fixed primary colors.
  • a pixel group can be constructed in one of the following two ways.
  • the pixel group is composed of five pixels, each pixel is formed by three primary color sub-pixels, and the sub-pixels of five pixels in the pixel group are arranged in one line in the following manner:
  • the second method the pixel group is composed of six pixels, each pixel is formed by three primary color sub-pixel arrays, and the sub-pixels of six pixels in the pixel group are arranged in one row in the following manner:
  • the three-primary color three-, five-, six-element pixel group and the four primary color eight-element pixel group are described as an example. However, this is only an example, the display can have more primitive colors or more pixels in the pixel group.
  • the color display screen according to the embodiment of the present invention is configured as long as the following conditions are met: the display screen is composed of pixel group repetitions, and the pixel group is composed of a predetermined number of pixels arranged in one row, and each pixel is composed of sub-pixels of different primary colors.
  • each pixel is generally square.
  • the pixel group is composed of N pixels, and the aspect ratio of the pixel group is set to N: 1, such that each pixel is square on average, where N is an integer greater than or equal to 3.
  • the pixel groups are repeatedly arranged to obtain a display screen.
  • the large display panel is cut to obtain a display screen of a desired size.
  • display and “display panel” have the same meaning and are used interchangeably.
  • the display screen or display panel is described as "mainly" composed of pixel group repeats, because, as is well known to those skilled in the art, due to the size and/or production factors or limitations of the display panel This can result in incomplete pixel groups at one or more edges of the display panel.
  • the pixel group is repeatedly arranged to form a color display screen, and there are various methods for repeating the arrangement, which may include an inter-line color arrangement and an inter-line color arrangement.
  • the inter-line color arrangement means that the color of the sub-pixels at the corresponding positions between the lines is the same.
  • the inter-line color arrangement means that the colors of the sub-pixels at corresponding positions between the lines are different.
  • a common feature is that two adjacent sub-pixels between two adjacent pixels in the same row have the same color.
  • the adjacent homochromatic sub-pixels increase the saturation of the displayed color, so that the color display screen proposed by the invention has higher color saturation than the existing color display screen, and the displayed color is more vivid and richer in level. .
  • 8(a), (b), (c), and (d) are schematic diagrams showing a part of a display screen in which sub-pixels, a pixel group, and a line are arranged in the same color, and a part of a display screen in which different colors are arranged between lines, respectively.
  • 8(a) shows red, green, and blue sub-pixels
  • FIG. 8(b) shows a pixel group whose sub-pixels are arranged in red, green, blue, blue, red, green, green, blue, and red.
  • Figure 8(c) shows a portion of the display screen arranged in the same color between lines; the colors of the corresponding pixels between different lines are the same as shown in the figure, and the sub-pixel colors in each column are the same, as in the first A column of neutron pixels is red, the sub-pixels in the second column are all green, and so on;
  • Figure 8(d) shows a schematic view of a portion of the display screen with different colors arranged between lines, as shown in the different rows.
  • the colors of the corresponding pixels are different, and the sub-pixel colors in each column are not all the same.
  • the four sub-pixel colors in the first column are red, red, blue, and green, and the sub-pixel colors in the second column. It is green, red, red, blue, and so on.
  • a pair of adjacent same-color sub-pixels of adjacent pixels in a pixel group and One or more pairs of adjacent pairs of adjacent color sub-pixels of adjacent pixels between pixel groups are merged to form a strong sub-pixel, and there is no black interval in the merged strong sub-pixel, and the brightness is greater than The brightness of either of the merged original homochromatic sub-pixels.
  • Such a strong sub-pixel configuration reduces the black spacing in the display, improves the utilization of the light source, and reduces the power consumption of the color display.
  • two adjacent sub-pixels of the same color among the nine sub-pixels in the Dow ternary pixel can be selectively combined into one strong sub-pixel.
  • the adjacent two blue sub-pixels in the Dow ternary pixel are combined into one blue strong sub-pixel, as shown in FIG. 9(a).
  • the adjacent two green sub-pixels in the Dow ternary pixel are combined into one green strong sub-pixel, as shown in FIG. 9(b).
  • the adjacent homochromatic sub-pixels of adjacent pixels between the pixel groups are combined into one strong sub-pixel, for example, a Dow ternary pixel shown in FIG. 7(a) and the adjacent Dow three.
  • the adjacent red sub-pixels between the meta-pixels are combined into one red strong sub-pixel as shown in FIG. 9(c).
  • one strong sub-pixel is contained in every nine sub-pixels (or each Dow ternary pixel).
  • the color of the strong sub-pixels in Dow ternary pixels there are three different Dow ternary pixels, namely the Dow ternary pixel TTP-R containing a red strong sub-pixel and the pottery containing a green strong sub-pixel.
  • a color display can contain one or more Dow ternary pixels with strong sub-pixels of different colors. It should be noted that, in FIGS. 9(a), (b), (c) and subsequent drawings, the strong sub-pixels are displayed as sub-pixels having a width wider than the other sub-pixels.
  • a Dow ternary pixel contains a strong sub-pixel.
  • a Dow ternary pixel can contain two strong sub-pixels, or two strong sub-pixels in every nine sub-pixels.
  • the color of the strong sub-pixels in Dow ternary pixels there are three different Dow ternary pixels, namely the Dow ternary pixel TTP-RG with one red strong sub-pixel and one green strong sub-pixel ( Figure 10 (a)), a Dow ternary pixel TTP-GB containing a green strong sub-pixel and a blue strong sub-pixel (Fig. 10(b)), a pottery containing a blue strong sub-pixel and a red strong sub-pixel The ternary pixel TTP-BR (Fig. 10(c)).
  • a color display can contain one or more Dow ternary pixels with strong sub-pixels of different colors.
  • one Dow pixel in a mean sense, can contain three strong sub-pixels, or in the average sense, every three sub-pixels contain three strong sub-pixels.
  • a Dow ternary pixel contains three strong sub-pixels (TTP-3, TTP-RGB). As shown in Figure 11(a), there is only one Dow ternary pixel TTP-RGB in a color display.
  • a Dow octal pixel in an example, can contain four strong sub-pixels, or average meaning. There are four strong sub-pixels in every sixteen sub-pixels.
  • a Dow eight-element pixel contains four strong sub-pixels (TOP-4, TOP-RGBW). As shown in Figure 11(b), there is only one Dow eight-pixel TOP-RGBW in a color display.
  • FIG. 12(a), (b), (c) illustrate a portion of an exemplary color display having a strong sub-pixel within each Dow ternary pixel in accordance with an embodiment of the present invention, wherein FIG. 12(a) (b) is arranged in the same color between lines, and Fig. 12(c) is an arrangement of different colors between lines. More specifically, there is only one Dow ternary pixel TTP-B in the display screen in FIG. 12(a), that is, each Dow ternary pixel contains only blue strong sub-pixels; the display in FIG.
  • Figure 13(a) is between rows The same color arrangement, Figure 13 (b) is a heterochromatic arrangement between lines.
  • 14(a), (b) illustrate a portion of an exemplary color display having three strong sub-pixels within each Dow ternary pixel in accordance with an embodiment of the present invention, wherein Figure 14(a) is between rows The same color arrangement, Figure 14 (b) is a heterochromatic arrangement between lines.
  • the color display feature of the above embodiment of the present invention is that two adjacent sub-pixels between two adjacent pixels in the same row have the same color, wherein several adjacent homochromatic sub-pixels are merged into a strong sub-pixel, in the hadron The black interval is eliminated in the pixel.
  • the adjacent homochromatic sub-pixels or strong sub-pixels increase the saturation of the displayed color, so that the color display screen of the embodiment of the invention has higher color saturation than the existing color display screen, and the displayed color is more vivid.
  • the level is more abundant; and the strong sub-pixels improve the utilization of the light source and reduce the power consumption of the color display.
  • the luminous intensity of the strong sub-pixel may be greater than any one of the original two adjacent sub-pixels (the strong sub-pixel is obtained by combining the two sub-pixels), for example, two sub-pixels adjacent to each other (by the two sub-pixels) The sum of the luminous intensities of the strong sub-pixels is obtained by combining.
  • strong sub-pixels such as:
  • a strong sub-pixel can be realized by increasing the light-emitting intensity of the light-emitting unit corresponding to the strong sub-pixel.
  • the area of the strong sub-pixel can be the same as that of the ordinary sub-pixel, but the luminous intensity can be the sum of two ordinary sub-pixels of the same color. Accordingly, since the average width of the sub-pixels is reduced, the height of the Dow ternary pixels also needs to be adjusted so that the Dow ternary pixels have an aspect ratio of 3:1, that is, each pixel is square on average.
  • a strong sub-pixel can be realized by increasing the area of the light-emitting unit corresponding to the strong sub-pixel.
  • the area of the strong sub-pixel is larger than the area of the ordinary sub-pixel, and the luminous intensity is also greater than the luminous intensity of any of the two adjacent ordinary sub-pixels of the same color, for example, two adjacent colors of the original adjacent color.
  • the sum of ordinary sub-pixels since the black interval between two adjacent homochromatic sub-pixels is removed, the luminous efficiency of the strong sub-pixel is improved, and the area is generally smaller than the sum of the two sub-pixels. Therefore, since the average width of the sub-pixels is reduced, the height of the Dow ternary pixels also needs to be adjusted so that the Dow ternary pixels have an aspect ratio of 3:1, that is, each pixel is square on average.
  • the aspect ratio of the pixel group is N: 1, such that each pixel is square on average, where N is an integer greater than or equal to 3.
  • a display screen in which adjacent sub-pixels of the same color are not merged and a display screen in which adjacent sub-pixels of the same color are selectively combined are shown, but these are merely examples.
  • a pixel group in which adjacent sub-pixels of the same color are not merged ie, a pixel group not including strong sub-pixels
  • a pixel group in which adjacent sub-pixels of the same color are combined may be included (ie, The number of pixels and the manner in which adjacent sub-pixels of the same color are combined may also be selected as needed.
  • the display panel may be a liquid crystal display panel, an emissive electroluminescent display panel, a plasma display panel, a field emission display panel, an electrophoretic display panel, a flash display panel, an incandescent display panel, an LED display panel, and an organic light emitting diode. Display panel, etc.
  • primary colors or primary colors can be designed as needed.
  • four primary colors of red, green, blue, and white can be selected, and other primary colors can also be included.
  • other primary colors can also be included. For example, cyan, magenta, etc.
  • Figure 15 is a block diagram showing the configuration of a display device 100 according to an embodiment of the present invention.
  • the configuration block diagram shows only components closely related to the embodiment of the present invention.
  • the configuration is not limiting and is not exhaustive. Other components may also be included.
  • the display device 100 may include an input image receiving section 110, a sub-pixel rendering section 120, a driving section 130, and a display panel 140.
  • the input image receiving section 110 is configured to receive input image data of a first format for rendering the display device in the output display format.
  • the format of the input image data may be a conventional three-color "full pixel" RGB format, or other sRGB, YCbCr, RGBW format, etc., output.
  • the display format is determined by the layout of the subpixels in the display.
  • the input image receiving section 110 may include a function of performing gamut mapping on the input image data, for example, if the input data is in the RGB format, on the RGBW display panel To render, you need to perform a gamut mapping operation to take advantage of the W primary colors on the panel.
  • gamut mapping functionality may also be implemented by other components independent of the mapping data receiving component 110 or specialized gamut mapping components.
  • Sub-pixel rendering component 120 is operative to perform a sub-pixel rendering operation based on input image data, including input image data, such as through gamut mapping processing, to generate luminance values for each sub-pixel on the display panel. Based on such a brightness value, the driving part 130 transmits a signal to each sub-pixel of the display panel, thereby realizing that the input image data of the first format is displayed on the display panel in a manner that is pleasing to the viewer. That is, a sub-pixel rendering operation provides a luminance value for each sub-pixel on the display panel.
  • the display panel 140 may be the display panel of the embodiment of the invention described above, which is mainly composed of pixel group repetitions, the pixel group is composed of a predetermined number of pixels arranged in one row, and each pixel is different by sub-pixels of at least two different primary colors.
  • the components are sequentially arranged, and the colors of adjacent sub-pixels between adjacent pixels in the pixel group are the same, and the colors of the first sub-pixel and the last sub-pixel in the pixel group are the same.
  • FIG. 16(a)-(d) are diagrams showing a schematic diagram of a conventional display from image data to panel display, wherein FIG. 16(a) shows partial input image data of one color image having a plurality of pixels; Wherein Pij represents partial input image data of pixels of the i-th row and column, i and j are integers greater than or equal to 0; and FIG. 16(b) specifically shows six pixels P0-P5 in the image shown in FIG. 16(a) The color values are (R0G0, B0), ..., (R5G5, B5); Fig. 16(c) shows the conventional RGB display directly displaying the image according to the numerical value of Fig. 16(b), that is, the sub-pixel of the display.
  • FIG. 16(d) shows that the conventional RGBG display only displays the image according to the partial value in FIG. 16(b), for example, for the input image.
  • the second column of pixel data of the input image which corresponds to the third column and the fourth column B1 of the display panel in FIG. 16(d)
  • G1 column sub-pixels thereby discarding the R1 color value in the corresponding input pixel data; and so on.
  • FIG. 17(a)-(d) are schematic diagrams showing a Dow ternary pixel display (TTPD) from image data to panel display according to an embodiment of the present invention, wherein FIG. 17(a) shows a plurality of Partial input image data of a color image of a pixel; wherein Pij represents partial input image data of pixels of the i-th row and column, i and j are integers greater than or equal to 0; and FIG. 17(b) specifically shows FIG. 17 (a)
  • the color values of the six pixels P0-P5 in the image shown are (R0, G0, B0), ..., (R5, G5, B5); their color values are (R0, G0, B0), ..., (R5, G5, B5); Fig.
  • 17(c) shows the sum of color values (e.g., brightness) of two sub-pixels from adjacent, identical colors according to the arrangement of sub-pixels in Fig. 14(a)
  • Calculating the color value (for example, brightness) of the strong sub-pixel specifically, the red luminance value of the first pixel P0 in the input image data and the red luminance value of the pixel before the P0 (referred to as P.)
  • P. the red luminance value of the first pixel P0 in the input image data and the red luminance value of the pixel before the P0
  • P. red luminance value of the pixel before the P0
  • Adding R.) to obtain the luminance value of the red strong sub-pixel of the first column on the display panel, and then directly using the green luminance value G0 of the first pixel P0 in the input image data as the second column of the display panel Green
  • the luminance value of the strong sub-pixel then the red luminance value R1 of the second pixel P1 is used as the luminance value of the red sub-pixel of the fourth column of the display panel, and the green luminance value G1 and the third of the second pixel P1 are used.
  • the green luminance value G2 of the pixel P2 is added as the luminance value of the green sub-pixel of the fifth column of the display panel, and the blue luminance value B2 of the third pixel P2 is used as the luminance of the blue sub-pixel of the fifth column of the display panel.
  • FIG. 17(d) shows The calculated value of Figure 17(c) is sent to the Dow ternary pixel display (TTPD) for display.
  • TTPD Dow ternary pixel display
  • FIG. 18(a)-(d) are schematic diagrams showing a Dow eight-element display (TOPD) from image data to panel display according to an embodiment of the present invention, wherein FIG. 18(a) shows a plurality of Partial input image data of a color image of a pixel; wherein Pij represents partial input image data of pixels of the i-th row and column, i and j are integers greater than or equal to 0; FIG. 18(b) specifically shows FIG. 18(a)
  • the color values of the six pixels P0-P5 in the image shown are (R0, G0, B0), ..., (R5, G5, B5); their color values are (R0, G0, B0), ..., (R5, G5, B5); Fig.
  • FIG. 18(c) shows the sub-pixel according to Fig. 11(b) Arranging, calculating the color value (for example, brightness) of the strong sub-pixel from the sum of the adjacent color values of the two sub-pixels (for example, brightness), specifically, the first pixel P0 in the input image data
  • the red luminance value R0 and the red luminance value (referred to as R.) of the pixel before P0 (referred to as P.) are added to obtain the luminance value of the red strong subpixel of the first column on the display panel, and then,
  • the green luminance value G0 of the first pixel P0 in the input image data is directly used as the luminance value of the green sub-pixel of the second column of the display panel.
  • the blue luminance value B1 of the second pixel P1 in the input image data is used as the luminance value of the blue sub-pixel of the third column of the display panel, and the white luminance value of the second pixel P1 in the input image data is used.
  • the white luminance value W2 of W1 and the third pixel P2 are added to obtain the luminance value of the white strong sub-pixel of the fourth column of the display panel.
  • the red luminance value R2 of the third pixel P2 is used as the luminance value of the red sub-pixel of the fifth column of the display panel, and the green luminance value G3 of the fourth pixel P3 is used as the green sub-pixel of the sixth column of the display panel.
  • the brightness value is added by the blue brightness value B3 of the fourth pixel P3 and the blue brightness value B4 of the fifth pixel P4 to the brightness value of the blue sub-pixel of the seventh column of the display panel, etc.; 18(d) shows the value calculated by sending the calculated value of Fig. 18(c) to the Dow's eight-pixel display (TOPD).
  • TOPD Dow's eight-pixel display
  • the Dow ternary pixel display screen and the Dow octal pixel display screen are taken as an example to illustrate a method for rendering sub-pixels according to the input image data according to the arrangement manner of the sub-pixels in the display screen.
  • the combination of the display screen and the rendering method of this embodiment makes the display device have the advantages of high pixel density, low power consumption, and strong color reproduction capability.
  • a display device which may include: a display panel composed of a plurality of pixel arrays, each pixel being composed of at least two sub-pixels of different colors arranged in a row, wherein the same row The adjacent sub-pixels between adjacent pixels or between adjacent pairs of pixels have the same color; and a driving circuit for transmitting signals to each sub-pixel of the display panel.
  • the same-color adjacent sub-pixels of adjacent pixels in the same row in the display device of the above embodiment are selectively combined into one strong sub-pixel, and the strong sub-pixel has no black interval inside, and the brightness thereof is greater than The brightness of any of the original homochromatic sub-pixels being merged.
  • a method for rendering a sub-pixel of a display device comprising: a display panel, consisting of a plurality of pixel arrangements, each pixel being composed of sub-pixels of different colors arranged in a row , wherein adjacent sub-pixels between adjacent pixels in the same row or between adjacent pairs of pixels have the same color, wherein adjacent pixels of the same color of adjacent pixels in the same row Selectively merged into one strong sub-pixel, the black sub-pixel does not have a black interval, and its brightness is greater than the brightness of any of the merged original homochromatic sub-pixels, and the arrangement of the sub-pixels in the display panel defines the output. Display format.
  • the rendering method of the sub-pixel includes: receiving input image data of a first format for rendering the display device in the output display format; performing a sub-pixel rendering operation based on the input image data to generate each sub-pixel on the display panel a brightness value; transmitting a signal to each of the sub-pixels of the display panel, wherein rendering the strong sub-pixel comprises: obtaining a color value of each of the associated two pixels of the input image data corresponding to the color of the strong sub-pixel The color value; the result of adding the two corresponding color values as the color value of the strong sub-pixel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板、显示装置和子像素的渲染方法。显示面板由像素组重复组成,像素组由设置在一行的预定数目个像素组成,各个像素由至少二种不同原色的子像素按照不同顺序排列组成,其中像素组中相邻的像素之间或相邻的像素对之间相邻的子像素的颜色相同。相邻的同色子像素增加了所显示颜色的饱和度,使得彩色显示屏具有更高的颜色饱和度,显示的颜色更鲜艳,层次更丰富。对于像素组中相邻像素的相邻的同色子像素组成的对以及像素组之间的相邻像素的相邻的同色子像素组成的对,可以将其中的一对或多对合并成为强子像素,强子像素中不存在黑色间隔,且其亮度大于被合并的原同色子像素的任一个的亮度。该强子像素的配置提高了光源利用率,降低了功耗,兼顾了高像素密度。

Description

显示面板、显示装置和子像素的渲染方法 技术领域
本发明涉及显示面板和显示装置,可以用作各种手机、平板电脑、笔记本电脑、显示器、电视机等各种设备的彩色显示面板和显示装置,还涉及显示装置的子像素的渲染方法。
背景技术
当前广泛使用的各种彩色显示屏,如阴极射线管(Cathode Ray Tube,CRT)显示屏,发光二极管(light-emitting diode,LED)显示屏、有机发光二极管(Organic Light Emitting Diode,OLED)显示屏、液晶显示屏(liquid crystal display,LCD)等,都是由像素排列而成的。一个彩色显示屏包含有多个像素,如640x480,1024x768,1920x1080个像素等。每个像素包括两个或三个或更多个不同颜色的子像素。其中比较常见的是每个像素有三个子像素,即红色子像素、绿色子像素、蓝色子像素。三个子像素平行排列,形成一个像素。
为了防止显示的图像变形,每个像素一般都是正方形的,因此,子像素是长方形的,其宽高比为3:1,如图1所示。多个像素重复排列形成彩色显示屏如图2。当然,这些像素有些是自发光的,如LED彩色显示屏、主动矩阵有机发光二极体面板(Active Matrix/Organic Light Emitting Diode,AMOLED)彩色显示屏等,有些自身并不发光而是靠背光来统一提供光源,如被动式有机电激发光二极管(Passive matrix OLED,PMOLED)彩色显示屏、LCD彩色显示屏等。
彩色显示屏的一个重要指标是每英寸像素数(PPI),即彩色显示屏的像素密度。当前彩色显示屏发展的一个重要方向,就是提高彩色显示屏的像素密度。高分辨率的手机屏幕、电脑屏幕,以及正在火热发展中的4K电视等,都对彩色显示屏的像素密度提出了越来越高的要求。如苹果电脑公司生产的 Retina彩色显示屏通过降低每个像素的尺寸来获得高分辨率的彩色显示屏,已经用于苹果手机、平板电脑、笔记本电脑等。这种直接增加像素密度的方法,带来了两个难以克服的问题,一是制造工艺复杂,成品率低,从而导致高分辨率的彩色显示屏价格高;二是像素密度的提高意味着每个像素面积的缩小,而子像素之间是有黑色间隔的。因此,子像素面积的降低使得子像素之间的间隔所占的面积比增加,从而使得光源的利用率降低,为达到同样亮度的彩色显示屏的能耗显著增加。这对于手机、平板电脑、笔记本电脑等移动设备来说,是一个致命的弱点。
为了在提高像素密度的同时,降低彩色显示屏的生产成本和使用过程中的能耗,三星公司提出了多种新的彩色显示屏设计和制造方法。该公司在Pentile RGBW彩色显示屏及Pentile RGBG彩色显示屏中,通过降低每个像素中子像素的数量,来提高像素密度。其中RGBW彩色显示屏具有四色(红、绿、蓝、白)子像素,但每个像素都只有两个子像素,即蓝-白,或红-绿,参见图3。而在RGBG彩色显示屏中,具有普通的三色子像素,但每个像素都只有两个子像素,即绿-蓝,或绿-红,参见图4。这些彩色显示屏在不降低每个子像素的尺寸的前提下,提高了彩色显示屏的像素密度。相比于苹果公司的Retina彩色显示屏而言,具有低功耗、低成本的优点。其中RGBW彩色显示屏已用于如下设备中:
·Motorola MC65
·Motorola ES55
·Motorola ES400
·Motorola Atrix4G
·Samsung Galaxy Note10.1 2014version
·Lenovo Yoga2Pro
·HP ENVY TouchSmart14-k022tx Sleekbook
RGBG彩色显示屏是三星非常成功的一个彩色显示屏,已广泛地用于多种手机中,如下:
·BlackBerry Q10
·Nexus One
·HTC Desire(AMOLED variants only)
·Samsung S8000
·Samsung Galaxy S
·Samsung Galaxy S Plus
·Samsung Galaxy S III
·Samsung Galaxy S III Mini
·Samsung Galaxy S4
·Samsung Galaxy Note
·Samsung Wave S8500
·Samsung Ativ S
·Samsung NX10
·Nexus S(Super AMOLED variants only)
·Galaxy Nexus
·Dell Venue Pro
·Nokia N9
·Nokia Lumia800
·Nokia Lumia925
·Nokia Lumia928
·Nokia Lumia1020
·HTC One S
·Pantech Burst
·Huawei Ascend P1
·Alcatel One Touch Star6010D
·Motorola RAZR i
除了上述通过降低子像素数量来提高像素密度的方法以外,变结构子像素彩色显示屏则通过改变子像素的结构,来获得更高的像素密度和更好的显示效果,如三星的S-Strip彩色显示屏,如图5所示,蓝色子像素为一长条,而红绿色子像素为小四方块,交叉排列形成一个像素。三星彩色显示屏技术相关专利如图6所示,其中2010年的手机Galary S和2012年的手机Galary S3采用了PenTile RGBG彩色显示屏(由RG像素和BG像素),2011年的手机Galary S2采用了Stripe彩色显示屏(RGB像素),2012年的手机Galary Note2采用了S-Stripe彩色显示屏(RGB像素)。
综上可见,目前提高像素密度的主要方法是降低单个像素内子像素数量。这种方法在提高像素密度的同时,降低了黑色的像素间隔区的比例,提高了光源的利用率,降低了同等亮度的能耗。但是这种方法相比于传统的三原色子像素方法,降低了图像的质量,使得显示的图像有一定程度的偏色。
发明内容
鉴于现有技术的上述情况,做出了本发明。
根据本发明的一个方面,提供了一种显示面板,主要由像素组重复组成,像素组由设置在一行的预定数目个像素组成,各个像素由至少二种不同原色的子像素按照不同顺序排列组成,其中像素组中相邻的像素之间或相邻的像素对之间相邻的子像素的颜色相同,以及像素组中第一个子像素和最后一个子像素的颜色相同。
本发明实施例的显示面板,通过使得相邻像素的相邻子像素的颜色相同,能够增加所显示颜色的饱和度,显示的颜色更加鲜艳,层次更加丰富。
在一个示例中,针对上述显示面板,对于像素组中相邻像素的相邻的同色子像素组成的对以及像素组之间的相邻像素的相邻的同色子像素组成的对,将其中的一对或多对合并成为强子像素,该合并得到的强子像素中不存在黑色间隔,且其亮度大于被合并的原同色子像素的任一个的亮度。该强子像素的配置提高了光源的利用率,降低了彩色显示器的功耗,同时兼顾了高的像素密度。
根据本发明的再一个方面,提供了一种显示装置,可以包括:显示面板,主要由像素组重复组成,像素组由设置在一行的预定数目个像素组成,各个像素由不同原色的子像素按照不同顺序排列组成,其中至少有二种原色,以及其中像素组中相邻的像素之间或相邻的像素对之间相邻的子像素的颜色相同,以及像素组中第一个子像素和最后一个子像素的颜色相同;以及驱动电路,用于向显示面板的每一个子像素发送信号。
根据本发明的另一方面,提供了一种显示装置,可以包括:显示面板,由若干个像素排列组成,每个像素由不同颜色的子像素排列在一行中组成,其中同一行内的相邻像素之间或相邻的像素对之间的相邻子像素的颜色相同;以及驱动电路,用于向显示面板的每一个子像素发送信号。
根据本发明的另一方面,提供了一种显示装置的子像素的渲染方法,该显示装置包括:显示面板,由若干个像素排列组成,每个像素由不同颜色的子像素排列在一行中组成,其中同一行内的相邻像素之间或相邻的像素对之间的相邻子像素的颜色相同,其中同一行内的相邻像素的同色相邻子像素被 选择性地或全部合并为一个强子像素,该强子像素内部不存在黑色间隔,且其亮度大于被合并的原同色子像素的任一个的亮度,显示面板中的子像素的排列方式定义了输出显示格式;该子像素的渲染方法包括:接收第一格式的输入图像数据,以供以所述输出显示格式使得显示装置渲染;基于输入图像数据执行子像素渲染操作,以产生所述显示面板上每个子像素的亮度值;向显示面板的每一个子像素发送信号,其中对强子像素进行渲染包括:获得输入图像数据的相关联的两个像素的每个的颜色数值中与该强子像素的颜色对应的颜色数值;将该两个对应的颜色数值相加结果作为该强子像素的颜色数值。
该根据本发明实施例的子像素渲染方法,使得显示装置在获得高像素密度的同时,保持很好的色彩还原能力和较低的能耗。
附图说明
从下面结合附图对本发明实施例的详细描述中,本发明的这些和/或其它方面和优点将变得更加清楚并更容易理解,其中:
图1示出了由RGB子像素组成的正方形像素的示意图。
图2示出了传统的多个像素重复排列形成彩色显示屏示意图。
图3示出了传统的三星公司制造的Pentile RGBW彩色显示屏示意图。
图4示出了传统的三星公司制造的Pentile RGBG彩色显示屏示意图。
图5示出了传统的三星公司制造的S-Strip彩色显示屏示意图。
图6示出了三星公司的彩色显示屏相关技术示意图。
图7(a)和(b)示出了根据本发明一个实施例的RGB三原色像素组的子像素的二种示例性排列方式。
图8(a)、(b)、(c)、(d)分别示出了子像素、像素组、行间同色排列的显示屏的一部分、行间异色排列的显示屏的一部分的示意图。
图9(a)、(b)、(c)示出了每九个子像素(或者说每一个陶氏三元像素)内含有一个强子像素的情况示意图。
图10(a)、(b)、(c)示出了每九个子像素(或者说每一个陶氏三元像素)内含有两个强子像素的情况示意图。
图11(a)、(b)示出了平均意义上陶氏三元像素组和陶氏八元像素组的存在形式。其中(a)示出了陶氏三元像素组平均意义上每九个子像素内含有三个强子像素的情况示意图。其中(b)示出了陶氏八元像素组平均意义上每十六个子像素内含有四个强子像素的情况示意图。
图12(a)、(b)、(c)示出了根据本发明实施例的每个陶氏三元像素内含有一个强子像素的示例性彩色显示屏的一部分。
图13(a)、(b)示出了根据本发明实施例的每个陶氏三元像素内含有两个强子像素的示例性彩色显示屏的一部分。
图14(a)、(b)示出了根据本发明实施例的每个陶氏三元像素内含有三个强子像素的示例性彩色显示屏的一部分。
图15示出了根据本发明实施例的显示装置100的配置框图。
图16(a)-(d)示出了传统的显示器的从图像数据到面板显示的原理图。
图17(a)-(d)示出了根据本发明实施例的陶氏三元像素显示屏(TTPD)从图像数据到面板显示的原理图。
具体实施方式
为了使本领域技术人员更好地理解本发明,下面结合附图和具体实施方式对本发明作进一步详细说明。
首先,说明本文中一些术语的含义。
术语“像素”,又称画素,为图像显示的基本单位,译自英文“pixel”,pix是英语单词picture的常用简写,加上英语单词“元素”element,就得到pixel,故“像素”表示“图像元素”之意。每个像素可有各自的颜色值,因而有了对应的“子像素”概念,例如像素可采三原色显示,因而又分成红、绿、蓝三种子像素(RGB色域),或者可采用青、品红、黄和黑四种子像素(CMYK色域,印刷行业以及打印机中常见),或者还可采用红、绿、蓝、白四种子像素(RGBW色域),或者采用更多的原色表示。
术语“原色”(也称为“基色”)表示重复的子像素群组中的每一种颜色,例如RGB子像素中的红色(R)、绿色(G)、蓝色(B)被称为三原色,RGBW子像素中的红色(R)、绿色(G)、蓝色(B)、白色(W)也是原色。
本文中术语“相邻的像素对之间”,是指在像素组中按照像素排列的顺序, 顺次由两个像素组成像素对,各个像素对之间不存在重复的像素,将描述在这样相邻的像素对之间的情况。例如,在如后文将描述的例子中,四原色八元像素组“P1 P2 P3 P4 P4 P1 P2 P3 P3 P4 P1 P2 P2 P3 P4 P1”中,按照从左至右的顺序,第一个像素包含子像素P1 P2,第二像素包含子像素P3 P4,第三个像素包含子像素P4 P1,第四个像素包含子像素P2 P3,类推直至第八个像素包含子像素P4 P1。其中第一、第二像素,第三、第四像素,第五、第六像素,第七、第八像素顺次两两组成像素对。每个像素对内包含P1、P2、P3、P4四个原色子像素。这里第一像素对由第一、第二像素组成,第二像素对由第三、第四像素组成,第三像素对由第五、第六像素组成,第四像素对由第七、第八像素组成;而并不存在由第二像素和第三像素组成的像素对、由第四像素和第第五像素组成的像素对,等等。
后续示例中,将主要以子像素种类为RGB子像素的情况为例进行描述,不过本发明并不局限于此,子像素(原色)的种类和数目可以不同。
本公开提供了一种显示面板,由像素组重复组成,像素组由设置在一行的预定数目个像素组成,各个像素由至少二种不同原色的子像素按照不同顺序排列组成,以及其中像素组中相邻的像素之间相邻的子像素或相邻的像素对之间的颜色相同,以及像素组中第一个子像素和最后一个子像素的颜色相同。所述的相邻的同色子像素增加了所显示颜色的饱和度,使得本发明提出的彩色显示屏比现有的彩色显示屏具有更高的颜色饱和度,显示的颜色更加鲜艳,层次更加丰富。
例如,显示屏主要由像素组重复组成,像素组由设置在一行的三个像素组成。每个像素由红、绿、蓝三种颜色的三个子像素所组成。像素组中相邻的像素之间相邻的子像素的颜色相同,以及像素组中第一个子像素和最后一个子像素的颜色相同。例如,像素组中三个像素的所有子像素的一种示例性排列方式为:红色子像素、绿色子像素、蓝色子像素,蓝色子像素、红色子像素、绿色子像素,绿色子像素、蓝色子像素、红色子像素,如图7(a)所示。像素组中三个像素的所有子像素的另一种示例性排列方式为:红色子像素、蓝色像素、绿色子像素、绿色子像素、红色子像素、蓝色子像素、蓝色子像素,绿色子像素、红色子像素,如图7(b)所示。
需要说明的是,前述图7(a)和图7(b)中所示的示例中,像素组以红色子 像素开始以及以红色子像素结束,不过这仅为示例,实际上像素组中的开始子像素和结尾子像素可以为其它颜色的子像素。
实际上,根据本发明的一个实施例的显示屏可以概括为:三原色子像素组成像素,三个不同像素排在一行中组成像素组,像素组重复形成显示屏。换言之,假设以P1、P2、P3分别表示第一原色、第二原色、第三原色子像素,像素组中三个像素的所有子像素以下列方式排列在一行中:
P1 P2 P3 P3 P1 P2 P2 P3 P1
注意,这里的P1、P2、P3分别为三个原色中的一种,且彼此不同。需要说明的是,虽然后文中通常以P1为红色,P2为绿色和P3为蓝色为例加以说明,但实际上P1可以为绿色或蓝色,相应地P2和P3任一个也可以为其它颜色。优选地,一个像素组中的所有子像素包括了所有原色的子像素,且各原色子像素的数量在同一个像素组内相等,这可以避免显示的图像偏色,保证显示质量。
在本发明上述实施例中,由九个子像素排列形成三个相邻的像素所构成的三元像素组,为称呼简便,可以将此种三元像素组称为陶氏三元像素(Tao’s Triple Pixels,TTP)。再由多个TTP重复排列,形成彩色显示屏,可称之为陶氏三元像素显示屏(Tao’s Triple Pixel Display,TTPD),如图8所示。可见,传统的彩色显示屏由像素排列而成,而本发明实施例的陶氏三元像素显示屏(TTPD)是由陶氏三元像素(TTP)重复排列而成,该显示屏的特点是所有相邻像素之间,相邻子像素的颜色相同。
实际上,根据本发明的另一个实施例的显示屏可以概括为:四原色子像素组成像素对,四对八个像素排在一行中组成像素组,像素组重复形成显示屏。换言之,假设以P1、P2、P3、P4分别表示第一原色、第二原色、第三原色、第四原色子像素,像素组中四对八个像素的所有子像素以下列方式排列在一行中:
P1 P2 P3 P4 P4 P1 P2 P3 P3 P4 P1 P2 P2 P3 P4 P1
注意,这里的P1、P2、P3、P4分别为四个原色中的一种,且彼此不同。像素组中第一个像素包含子像素P1 P2,第二像素包含子像素P3 P4,第三个像素包含子像素P4 P1,第四个像素包含子像素P2 P3,直至第八个像素包含子像素P4 P1。其中第一、第二像素,第三、第四像素,第五、第六像素,第七、第八像素顺次两两组成像素对,也即该示例中第一像素对为P1 P2 P3 P4, 第二像素对为P4 P1 P2 P3,第三像素对为P3 P4 P1 P2,第四像素对为P2 P3 P4P1。每个像素对内包含P1、P2、P3、P4四个原色子像素,即每四个原色的相邻子像素组成一个像素对。需要说明的是,虽然文中通常红色、绿色、蓝色、白色为例表示四原色,但实际上四原色也可以为其它颜色。优选地,一个像素组中的所有子像素包括了所有原色的子像素,且各原色子像素的数量在像素组内相等,这可以避免显示的图像偏色,保证显示质量。
在本发明上述实施例中,由八个像素排列形成四对相邻的像素对所构成的八元像素组,为称呼简便,可以将此种八元像素组称为陶氏八元像素(Tao’s Octagonal Pixels,TOP)。再由多个TOP重复排列,形成彩色显示屏,可称之为陶氏八元像素显示屏(Tao’s Octagonal Pixel Display,TOPD)。传统的彩色显示屏由像素排列而成,而本发明实施例的陶氏八元像素显示屏(TOPD)是由陶氏八元像素(TOP)重复排列而成,该显示屏的特点是所有相邻像素对之间,相邻子像素的颜色相同。
上面分别以三原色的三元像素组,四原色的八元像素组为例进行了说明。不过,这仅为示例,实际上像素组可以由更多个像素组成。
例如,同样,以P1、P2、P3分别表示第一原色、第二原色、第三原色子像素,这里只需要P1、P2、P3为三种原色之一且彼此不同即可,并不需要P1、P2、P3为固定的原色。例如,可以按照下列二种方式中的一种来构成像素组。
例如,第一种方式:像素组由五个像素组成,每个像素由三原色子像素排列形成,像素组中五个像素的子像素以下列方式排列在一行中:
P1 P2 P3 P3 P1 P2 P2 P3 P1 P1 P3 P2 P2 P3 P1
再例如,第二种方式:像素组由六个像素组成,,每个像素由三原色子像素排列形成,像素组中六个像素的子像素以下列方式排列在一行中:
P1 P2 P3 P3 P1 P2 P2 P3 P1 P1 P3 P2 P2 P1 P3 P3 P2 P1
需要说明的是,前面以三原色的三、五、六元像素组,四原色的八元像素组为例进行了说明。不过这仅为示例,显示屏可以有更多种原色或像素组内有更多个像素。实际上,根据本发明实施例的彩色显示屏的构成只要满足如下条件即可:显示屏由像素组重复组成,像素组由设置在一行的预定数目个像素组成,各个像素由不同原色的子像素按照不同顺序排列组成,其中至 少有二种原色,以及其中像素组中相邻的像素之间(例如,三原色的情况)或相邻的像素对之间(例如,四原色的情况)相邻的子像素的颜色相同,以及像素组中第一个子像素和最后一个子像素的颜色相同。
一般地,为了防止显示的图像变形,每个像素一般都是正方形的。在一个示例中,设像素组由N个像素组成,设置像素组的宽高比为N:1,从而使得每个像素平均是正方形,其中N为大于等于3的整数。
得到像素组后,像素组重复排列得到显示屏。在实际制造显示屏中,通常制造好很大的显示板后,对该大的显示板进行切割,得到需要大小的显示屏。在本文中,“显示屏”和“显示面板”具有相同涵义,可互换使用。
需要说明的是,在本文中,将显示屏或显示面板描述为“主要”由像素组重复组成,这是因为,如本领域技术人员公知的,由于显示面板的尺寸和/或生产因素或限制会导致显示面板的一个或多个边缘处的像素组不完整。
像素组重复排列可以形成彩色显示屏,重复排列的方法有多种,可以包括行间同色排列和行间异色排列,行间同色排列是指各行之间的相应位置的子像素的颜色是相同的,行间异色排列是指各行之间的相应位置的子像素的颜色存在不同。对于根据本发明实施例的彩色显示屏,无论是行间同色还是行间异色排列,其共同特征是同一行内任意两个相邻的像素之间相邻的两个子像素的颜色相同。所述的相邻的同色子像素增加了所显示颜色的饱和度,使得本发明提出的彩色显示屏比现有的彩色显示屏具有更高的颜色饱和度,显示的颜色更加鲜艳,层次更加丰富。
图8(a)、(b)、(c)、(d)分别示出了子像素、像素组、行间同色排列的显示屏的一部分、行间异色排列的显示屏的一部分的示意图,其中图8(a)示出了红、绿、蓝子像素;图8(b)示出了像素组,其子像素排列为红、绿、蓝、蓝、红、绿、绿、蓝、红;图8(c)示出了行间同色排列的显示屏的一部分;如图所示不同行间的对应像素之间颜色是相同的,表现为每列中的子像素颜色都相同,如第一列中子像素都是红色,第二列中子像素都是绿色,等等;图8(d)示出了行间异色排列的显示屏的一部分的示意图,如图所示不同行间的对应像素之间颜色存在不同,表现为每列中的子像素颜色不都是相同的,例如第一列中的四个子像素颜色为红、红、蓝、绿,第二列中子像素颜色为绿、红、红、蓝,等等。
在一个示例中,将像素组中相邻像素的相邻的同色子像素组成的对以及 像素组之间的相邻像素的相邻的同色子像素组成的对中的一对或多对合并而成为强子像素,该合并得到的强子像素中不存在黑色间隔,且其亮度大于被合并的原同色子像素的任一个的亮度。这样的强子像素配置减少了显示屏中的黑色间隔,提高了光源的利用率,降低了彩色显示器的功耗。
例如,对于前文所述的陶氏三元像素,可以将陶氏三元像素内九个子像素中相邻的两个颜色相同的子像素选择性地合并成一个强子像素。例如,将陶氏三元像素内的相邻的两个蓝色子像素合并为一个蓝色强子像素,如图9(a)所示。再例如,将陶氏三元像素内的相邻的两个绿色子像素合并为一个绿色强子像素,如图9(b)所示。再例如,将像素组之间的相邻像素的相邻的同色子像素合并为一个强子像素,例如将图7(a)中所示的一个陶氏三元像素与相邻的陶氏三元像素之间的相邻红色子像素合并为一个红色强子像素,如图9(c)所示。在图9(a)、(b)、(c)所示示例中,每九个子像素(或者说每一个陶氏三元像素)内含有一个强子像素。根据陶氏三元像素内强子像素的颜色不同,共有三种不同的陶氏三元像素,即含有一个红色强子像素的陶氏三元像素TTP-R、含有一个绿色强子像素的陶氏三元像素TTP-G、含有一个蓝色强子像素的陶氏三元像素TTP-B。一个彩色显示屏内,可以含有一种或多种具有不同颜色强子像素的陶氏三元像素。需要说明的是,图9(a)、(b)、(c)中以及后续附图,将强子像素显示为宽度比其他子像素宽的子像素。
在前述示例中,一个陶氏三元像素内含有一个强子像素。不过,这仅为示例,一个陶氏三元像素内可以包含两个强子像素,或者说每九个子像素内含有两个强子像素。根据陶氏三元像素内强子像素的颜色不同,共有三种不同的陶氏三元像素,即含有一个红色强子像素和一个绿色强子像素的陶氏三元像素TTP-RG(图10(a))、含有一个绿色强子像素和一个蓝色强子像素的陶氏三元像素TTP-GB(图10(b))、含有一个蓝色强子像素和一个红色强子像素的陶氏三元像素TTP-BR(图10(c))。一个彩色显示屏内,可以含有一种或多种具有不同颜色强子像素的陶氏三元像素。
在一个示例中,在平均意义上,一个陶氏三元像素内可以包含三个强子像素,或者说平均意义上每九个子像素内含有三个强子像素。一个陶氏三元像素内含有三个强子像素(TTP-3,TTP-RGB)。如图11(a)所示,一个彩色显示屏内,只有一种陶氏三元像素TTP-RGB。同样地,在一个示例中,在平均意义上,一个陶氏八元像素内可以包含四个强子像素,或者说平均意义 上每十六个子像素内含有四个强子像素。一个陶氏八元像素内含有四个强子像素(TOP-4,TOP-RGBW)。如图11(b)所示,一个彩色显示屏内,只有一种陶氏八元像素TOP-RGBW。
图12(a)、(b)、(c)示出了根据本发明实施例的每个陶氏三元像素内含有一个强子像素的示例性彩色显示屏的一部分,其中图12(a)、(b)为行间同色排列,图12(c)为行间异色排列。更具体地,图12(a)中的显示屏中只有一种陶氏三元像素TTP-B,即每个陶氏三元像素仅含有蓝色强子像素;图12(b)中的显示屏中有二种陶氏三元像素TTP-B和TTP-G,即含有一个蓝色强子像素的陶氏三元像素和含有一个绿色强子像素的陶氏三元像素;图12(c)中的显示屏中有二种陶氏三元像素TTP-B和TTP-G,即含有一个蓝色强子像素的陶氏三元像素和含有一个绿色强子像素的陶氏三元像素。图13(a)、(b)示出了根据本发明实施例的每个陶氏三元像素内含有两个强子像素的示例性彩色显示屏的一部分,其中图13(a)为行间同色排列,图13(b)为行间异色排列。图14(a)、(b)示出了根据本发明实施例的每个陶氏三元像素内含有三个强子像素的示例性彩色显示屏的一部分,其中图14(a)为行间同色排列,图14(b)为行间异色排列。
本发明上述实施例的彩色显示器特征是同一行内任意两个相邻的像素之间相邻的两个子像素的颜色相同,其中若干相邻的同色子像素被合并为强子子像素,在强子像素中消除了黑色间隔。所述相邻同色子像素或强子像素增加了所显示颜色的饱和度,使得本发明实施例的彩色显示屏比现有的彩色显示屏具有更高的颜色饱和度,显示的颜色更加鲜艳,层次更加丰富;而且所述强子像素提高了光源的利用率,降低了彩色显示器的功耗。
强子像素的发光强度可以大于原相邻的两个子像素(由该两个子像素合并得到该强子像素)的发光强度的任一个,例如为原相邻的两个子像素(由该两个子像素合并得到该强子像素)的发光强度之和。产生强子像素的方法可以有多种,例如:
·在AMOLED、LED等主动发光彩色显示屏中,可以通过增加强子像素所对应的发光单元的发光强度,来实现强子像素。例如,强子像素的面积可以和普通子像素一样,但其发光强度可以为原相邻的两个同色普通子像素之和。相应地,由于子像素的平均宽度缩小了,陶氏三元像素的高度也需要作调整,使得陶氏三元像素的宽高比为3:1,即每个像素平均是正方形。
·在PMOLED、LCD等被动发光彩色显示屏中,可以通过增加强子像素所对应的发光单元的面积,来实现强子像素。在这种情况下,强子像素的面积比普通子像素的面积大,其发光强度也大于原相邻的两个同色普通子像素的任一个的发光强度,例如为原相邻的两个同色普通子像素之和。一般情况下,由于去除了两个相邻同色子像素之间的黑色间隔,强子像素的发光效率提高,其面积一般小于两个子像素之和。因此,由于子像素的平均宽度有所缩小,陶氏三元像素的高度也需要作调整,使得陶氏三元像素的宽高比为3:1,即每个像素平均是正方形。
更一般的情况是,在像素组由N个像素组成的情况,其中像素组的宽高比为N:1,从而使得每个像素平均是正方形,其中N为大于等于3的整数。
需要说明的是,前面的示例性显示屏中,示出了相邻同色的子像素未被合并的显示屏和相邻同色的子像素选择性地被合并的显示屏,不过这些仅为示例,例如在一个显示屏中,可以既包括相邻同色的子像素未被合并的像素组(即,不包含强子像素的像素组)也包括相邻同色的子像素被合并的像素组(即,包含强子像素的像素组),另外相邻同色的子像素被合并的数目和方式也可以根据需要进行选择。
作为示例,显示面板可以是液晶显示面板、发射式电致发光显示面板、等离子显示面板、场致发射显示面板、电泳显示面板、闪光显示面板、白炽显示面板、发光二极管显示面板、以及有机发光二极管显示面板等。
此外,原色或基色的数目和种类可以根据需要进行设计,例如除了红色、绿色、蓝色的三原色外,还可以选择红色、绿色、蓝色、白色的四原色,以及还可以包括其他的原色,例如青色、洋红色等等。
图15示出了根据本发明实施例的显示装置100的配置框图,该配置框图仅示出了与本发明实施例密切相关的部件,该配置并非限制性的,也非穷尽性的,而是还可以包括其他部件。
如图15所示,显示装置100可以包括输入图像接收部件110、子像素渲染部件120、驱动部件130和显示面板140。
输入图像接收部件110用于接收第一格式的输入图像数据,以供以所述输出显示格式使得显示装置渲染。输入图像数据的格式可以为常规的三色“全像素”RGB格式,也可以为其它的sRGB、YCbCr、RGBW格式等等,输出 显示格式由显示屏中子像素的布局决定。在输入图像数据的颜色空间与输出的颜色空间不同的情况下,输入图像接收部件110可以包括对输入图像数据进行色域映射的功能,例如,如果输入数据为RGB格式,要在RGBW显示面板上进行渲染,则需要进行色域映射操作,以便利用面板上的W原色。当然,取代将这样的色域映射功能并入输入数据接收部件110,这样的色域映射功能也可以由独立于映射数据接收部件110的其它部件或者专门的色域映射部件来实现。
子像素渲染部件120用于基于输入图像数据(包括经过例如色域映射处理的输入图像数据)执行子像素渲染操作,以产生所述显示面板上每个子像素的亮度值。基于这样的亮度值,驱动部件130向显示面板的每一个子像素发送信号,从而实现第一格式的输入图像数据以令观察者愉悦的方式显示在显示面板上。即,子像素渲染(rendering)操作为显示面板上的每个子像素提供亮度值。
显示面板140可以为上面描述的本发明实施例的显示面板,其主要由像素组重复组成,像素组由设置在一行的预定数目个像素组成,各个像素由至少二种不同原色的子像素按照不同顺序排列组成,以及其中像素组中相邻的像素之间相邻的子像素的颜色相同,以及像素组中第一个子像素和最后一个子像素的颜色相同。
下面描述根据本发明实施例的子像素亮度的确定方法示例。
作为对比,首先描述传统的显示器的子像素亮度的确定方法。
图16(a)-(d)示出了传统的显示器的从图像数据到面板显示的原理图,其中图16(a)示出了具有多个像素的一幅彩色图像的部分输入图像数据;其中Pij表示第i行第列的像素的部分输入图像数据,i和j为大于等于0的整数;图16(b)具体示出图16(a)所示图像中的6个像素P0-P5的颜色值,分别为(R0G0,B0),…,(R5G5,B5);图16(c)示出了传统RGB显示器直接根据图16(b)的数值显示图像,即显示器上一个像素的子像素的颜色值直接对应于图像上的对应像素中的子像素的颜色值;图16(d)示出了传统RGBG显示器只根据图16(b)中的部分数值显示图像,例如对于输入图像的第一列像素数据,其对应于图16(d)中的显示面板的左起的第一列和第二列的R0和G0列子 像素,从而丢弃了对应输入像素数据中的B0颜色值;对于输入图像的第二列像素数据,其对应于图16(d)中的显示面板的左起的第三列和第四列的B1和G1列子像素,从而丢弃了对应输入像素数据中的R1颜色值;如此等等。
图17(a)-(d)示出了根据本发明实施例的陶氏三元像素显示屏(TTPD)从图像数据到面板显示的原理图,其中图17(a)示出了具有多个像素的一幅彩色图像的部分输入图像数据;其中Pij表示第i行第列的像素的部分输入图像数据,i和j为大于等于0的整数;图17(b)具体示出图17(a)所示图像中的6个像素P0-P5的颜色值,分别为(R0,G0,B0),…,(R5,G5,B5);其颜色值为(R0,G0,B0),…,(R5,G5,B5);图17(c)示出了根据图14(a)中子像素的排列方式,从相邻的、颜色相同的、两个子像素的颜色数值(例如亮度)之和计算强子像素的颜色值(例如亮度),具体地,由输入图像数据中的第一个像素P0的红色亮度值R0和P0之前的像素(称之为P.)的红色亮度值(称之为R.)相加来得到显示面板上的第一列的红色强子像素的亮度值,然后,直接用输入图像数据中的第一个像素P0的绿色亮度值G0作为显示面板的第二列的绿色子像素的亮度值,接着,用输入图像数据中的第一个像素P0的蓝色亮度值B0和第二个像素P1的蓝色亮度值B1相加来得到显示面板的第三列的蓝色强子像素的亮度值,接下来用第二个像素P1的红色亮度值R1作为显示面板的第四列的红色子像素的亮度值,用第二个像素P1的绿色亮度值G1和第三个像素P2的绿色亮度值G2相加为显示面板的第五列的绿色子像素的亮度值,用第三个像素P2的蓝色亮度值B2作为显示面板的第五列的蓝色子像素的亮度值,用第三个像素P2的红色亮度值R2和第四个像素P3的红色亮度值R3相加作为第六列的红色子像素的亮度值,等等;图17(d)示出了将图17(c)计算后的值发送到陶氏三元像素显示屏(TTPD)上显示。
图18(a)-(d)示出了根据本发明实施例的陶氏八元像素显示屏(TOPD)从图像数据到面板显示的原理图,其中图18(a)示出了具有多个像素的一幅彩色图像的部分输入图像数据;其中Pij表示第i行第列的像素的部分输入图像数据,i和j为大于等于0的整数;图18(b)具体示出图18(a)所示图像中的6个像素P0-P5的颜色值,分别为(R0,G0,B0),…,(R5,G5,B5);其颜色值为(R0,G0,B0),…,(R5,G5,B5);图18(c)示出了根据图11(b)中子像素的 排列方式,从相邻的、颜色相同的、两个子像素的颜色数值(例如亮度)之和计算强子像素的颜色值(例如亮度),具体地,由输入图像数据中的第一个像素P0的红色亮度值R0和P0之前的像素(称之为P.)的红色亮度值(称之为R.)相加来得到显示面板上的第一列的红色强子像素的亮度值,然后,直接用输入图像数据中的第一个像素P0的绿色亮度值G0作为显示面板的第二列的绿色子像素的亮度值。接着,用输入图像数据中的第二个像素P1的蓝色亮度值B1作为显示面板的第三列的蓝色子像素的亮度值,用输入图像数据中的第二个像素P1的白色亮度值W1和第三个像素P2的白色亮度值W2相加来得到显示面板的第四列的白色强子像素的亮度值。接下来用第三个像素P2的红色亮度值R2作为显示面板的第五列的红色子像素的亮度值,用第四个像素P3的绿色亮度值G3作为显示面板的第六列的绿色子像素的亮度值,用第四个像素P3的蓝色亮度值B3和第五个像素P4的蓝色亮度值B4相加为显示面板的第七列的蓝色子像素的亮度值,等等;图18(d)示出了将图18(c)计算后的值发送到陶氏八元像素显示屏(TOPD)上显示。
上面以陶氏三元像素显示屏和陶氏八元像素显示屏为例,说明了本发明实施例的基于输入图像数据、根据显示屏中子像素的排列方式来渲染子像素的方法。该实施例的显示屏和渲染方法的结合使得显示装置具有高像素密度、低能耗、强颜色还原能力的优势。
根据本发明再一实施例,提供了一种显示装置,可以包括:显示面板,由若干个像素排列组成,每个像素由至少二种不同颜色的子像素排列在一行中组成,其中同一行内的相邻像素之间或相邻的像素对之间的相邻子像素的颜色相同;以及驱动电路,用于向显示面板的每一个子像素发送信号。
在一个示例中,上述实施例的显示装置中的同一行内的相邻像素的同色相邻子像素被选择性地合并为一个强子像素,该强子像素内部不存在黑色间隔,且其亮度大于被合并的原同色子像素的任一个的亮度。
根据本发明的一个实施例,提供了一种显示装置的子像素的渲染方法,该显示装置包括:显示面板,由若干个像素排列组成,每个像素由不同颜色的子像素排列在一行中组成,其中同一行内的相邻像素之间或相邻的像素对之间的相邻子像素的颜色相同,其中同一行内的相邻像素的同色相邻子像素 被选择性地合并为一个强子像素,该强子像素内部不存在黑色间隔,且其亮度大于被合并的原同色子像素的任一个的亮度,显示面板中的子像素的排列方式定义了输出显示格式。该子像素的渲染方法包括:接收第一格式的输入图像数据,以供以所述输出显示格式使得显示装置渲染;基于输入图像数据执行子像素渲染操作,以产生所述显示面板上每个子像素的亮度值;向显示面板的每一个子像素发送信号,其中对强子像素进行渲染包括:获得输入图像数据的相关联的两个像素的每个的颜色数值中与该强子像素的颜色对应的颜色数值;将该两个对应的颜色数值相加结果作为该强子像素的颜色数值。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说各种组合、次组合、修改和变更都是显而易见的。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (24)

  1. 一种显示面板,主要由像素组重复组成,像素组由设置在一行的预定数目个像素组成,各个像素由至少二种不同原色的子像素按照不同顺序排列组成,其中像素组中相邻的像素之间或相邻的像素对之间相邻的子像素的颜色相同,以及像素组中第一个子像素和最后一个子像素的颜色相同。
  2. 根据权利要求1的显示面板,每个像素组中的子像素包括了所有原色的子像素,且各原色子像素在像素组中所占的比例相同。
  3. 根据权利要求1的显示面板,对于像素组中相邻像素的相邻的同色子像素组成的对以及像素组之间的相邻像素的相邻的同色子像素组成的对,将其中的一对或多对合并成为强子像素,该合并得到的强子像素中不存在黑色间隔,且其亮度大于被合并的原同色子像素的任一个的亮度。
  4. 根据权利要求3的显示面板,其中合并得到的强子像素的发光强度为被合并的同色子像素对的发光强度之和。
  5. 根据权利要求3或4的显示面板,像素组中的强子像素的颜色为一种或更多种。
  6. 根据权利要求3或4的显示面板,其中,
    在显示面板为主动发光显示面板的情况下,强子像素的面积和其它子像素的面积相同;以及
    在显示面板为被动发光显示面板的情况下,合并得到的强子像素的面积大于其它子像素的面积。
  7. 根据权利要求6的显示面板,在显示面板为被动发光显示面板的情况下,合并得到的强子像素的面积基本上为被合并的同色子像素对的面积之和。
  8. 根据权利要求1-4任一项的显示面板,像素组由N个像素组成,其中像素组的宽高比为N:1,从而使得每个像素平均是正方形,其中N为大于等于3的整数。
  9. 根据权利要求1-4任一项的显示面板,像素组重复排列的方式包括行间同色排列和行间异色排列,行间同色排列是指各行之间的相应位置的子像素的颜色是相同的,行间异色排列是指各行之间的相应位置的子像素的颜色 存在不同。
  10. 根据权利要求1的显示面板,其中
    像素组由三个像素组成,每个像素由三个不同原色的子像素排列组成,
    像素组中三个像素的子像素以下列方式排列在一行中:
    P1 P2 P3 P3 P1 P2 P2 P3 P1
    其中P1、P2、P3分别表示第一原色、第二原色、第三原色子像素。
  11. 根据权利要求1的显示面板,每个像素由三个不同原色的子像素排列组成,按照下列二种方式中的一种来构成像素组,
    第一种方式:
    像素组由五个像素组成,像素组中五个像素的子像素以下列方式排列在一行中:
    P1 P2 P3 P3 P1 P2 P2 P3 P1 P1 P3 P2 P2 P3 P1
    第二种方式:
    像素组由六个像素组成,像素组中六个像素的子像素以下列方式排列在一行中:
    P1 P2 P3 P3 P1 P2 P2 P3 P1 P1 P3 P2 P2 P1 P3 P3 P2 P1
    其中P1、P2、P3分别表示第一原色、第二原色、第三原色子像素。
  12. 根据权利要求10或11的显示面板,其中所述第一原色、第二原色、第三原色分别为红色、绿色和蓝色之一。
  13. 根据权利要求1的显示面板,该像素组中的子像素包含四种不同的原色,每个像素包含两个子像素,且按照排列顺序依次由每四个不同原色的相邻子像素组成一个像素对,其中相邻的像素对之间的相邻的子像素的颜色相同。
  14. 根据权利要求13的显示面板,其中
    像素组由八个像素组成,每个像素包含两个子像素,
    像素组中八个像素的子像素以下列方式排列在一行中:
    P1 P2 P3 P4 P4 P1 P2 P3 P3 P4 P1 P2 P2 P3 P4 P1
    其中第一个像素包含子像素P1 P2,第二像素包含子像素P3 P4,第三个像素包含子像素P4 P1,第四个像素包含子像素P2 P3,类推直至第八个像素 包含子像素P4 P1。
    其中第一、第二像素,第三、第四像素,第五、第六像素,第七、第八像素顺次两两组成像素对。每个像素对内包含P1、P2、P3、P4四个原色子像素。
    其中P1、P2、P3、P4分别表示第一原色、第二原色、第三原色、第四原色子像素。
  15. 根据权利要求13或14的显示面板,其中所述第一原色、第二原色、第三原色、第四原色分别为红色、绿色、蓝色和白色之一。
  16. 根据权利要求1到4任一项的显示面板,所述显示面板是液晶显示面板、发射式电致发光显示面板、等离子显示面板、场致发射显示面板、电泳显示面板、闪光显示面板、白炽显示面板、发光二极管显示面板、以及有机发光二极管显示面板中的一种。
  17. 一种显示装置,包括:
    显示面板,主要由像素组重复组成,像素组由设置在一行的预定数目个像素组成,各个像素由至少二种不同原色的子像素按照不同顺序排列组成,以及其中像素组中相邻的像素之间或相邻的像素对之间相邻的子像素的颜色相同,以及像素组中第一个子像素和最后一个子像素的颜色相同;以及
    驱动电路,用于向显示面板的每一个子像素发送信号。
  18. 根据权利要求17的显示装置,其中像素组中的子像素的排列方式定义了输出显示格式,该显示装置还包括:
    输入图像接收部件,用于接收第一格式的输入图像数据,以供以所述输出显示格式使得显示装置渲染;以及
    子像素渲染部件,用于基于输入图像数据执行子像素渲染操作,以产生所述显示面板上每个子像素的亮度值。
  19. 根据权利要求18的显示装置,其中所述输入图像数据为每个像素的RGB颜色值的格式,其中该显示面板的像素组由三个像素组成,每个像素由三个不同原色的子像素排列组成,像素组中三个像素的子像素以下列方式排列在一行中:
    P1 P2 P3 P3 P1 P2 P2 P3 P1
    其中P1、P2、P3分别表示红色R、绿色G、蓝色B中的一种且彼此不同色,其中该像素组中的第一像素的P1子像素与其之前紧邻的像素组中的第三像素的相邻P1子像素、该像素组中第一像素和第二像素的相邻的两个P3子像素、第二像素和第三像素的相邻的两个P2子像素以及第三像素的P1子像素与下一个像素组中的第一像素的相邻P1子像素中的至少一个被合并为强子像素,
    对于强子像素,该子像素渲染部件基于与该强子像素相关联的两个像素的RGB颜色值中的相应颜色的亮度值,而计算得到该强子像素的亮度值。
  20. 根据权利要求19的显示装置,计算与该强子像素相关联的两个像素的RGB颜色值中的相应颜色的亮度值的和,作为所述强子像素的亮度值。
  21. 根据权利要求17到20任一项的显示装置,所述显示面板是液晶显示面板、发射式电致发光显示面板、等离子显示面板、场致发射显示面板、电泳显示面板、闪光显示面板、白炽显示面板、发光二极管显示面板、以及有机发光二极管显示面板中的一种。
  22. 一种显示装置,包括:
    显示面板,由若干个像素排列组成,每个像素由不同颜色的子像素排列在一行中组成,其中同一行内的相邻像素之间或相邻的像素对之间的相邻子像素的颜色相同;以及
    驱动电路,用于向显示面板的每一个子像素发送信号。
  23. 根据权利要求22的显示装置,其中选择性地将同一行内的相邻像素的同色相邻子像素合并为一个强子像素,该强子像素内部不存在黑色间隔,且其亮度大于被合并的原同色子像素的任一个的亮度。
  24. 一种显示装置的子像素的渲染方法,
    该显示装置包括:显示面板,由若干个像素排列组成,每个像素由不同颜色的子像素排列在一行中组成,其中同一行内的相邻像素之间或相邻的像素对之间的相邻子像素的颜色相同,其中同一行内的相邻像素的同色相邻子像素被选择性地合并为一个强子像素,该强子像素内部不存在黑色间隔,且其亮度大于被合并的原同色子像素的任一个的亮度显示面板中的子像素的排列方式定义了输出显示格式;
    该子像素的渲染方法包括:
    接收第一格式的输入图像数据,以供以所述输出显示格式使得显示装置渲染;
    基于输入图像数据执行子像素渲染操作,以产生所述显示面板上每个子像素的亮度值;
    向显示面板的每一个子像素发送信号,
    其中对强子像素进行渲染包括:获得输入图像数据的相关联的两个像素的每个的颜色数值中与该强子像素的颜色对应的颜色数值;将该两个对应的颜色数值相加结果作为该强子像素的颜色数值。
PCT/CN2014/086036 2014-09-05 2014-09-05 显示面板、显示装置和子像素的渲染方法 WO2016033803A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480081495.3A CN106852179B (zh) 2014-09-05 2014-09-05 显示面板、显示装置和子像素的渲染方法
PCT/CN2014/086036 WO2016033803A1 (zh) 2014-09-05 2014-09-05 显示面板、显示装置和子像素的渲染方法
US15/508,342 US10395579B2 (en) 2014-09-05 2014-09-05 Display panel, display apparatus and sub-pixel rendering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/086036 WO2016033803A1 (zh) 2014-09-05 2014-09-05 显示面板、显示装置和子像素的渲染方法

Publications (1)

Publication Number Publication Date
WO2016033803A1 true WO2016033803A1 (zh) 2016-03-10

Family

ID=55439046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086036 WO2016033803A1 (zh) 2014-09-05 2014-09-05 显示面板、显示装置和子像素的渲染方法

Country Status (3)

Country Link
US (1) US10395579B2 (zh)
CN (1) CN106852179B (zh)
WO (1) WO2016033803A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109752880A (zh) * 2017-04-20 2019-05-14 立景光电股份有限公司 具有小像素以及梯状图案的子像素的液晶显示面板
CN111971735A (zh) * 2018-03-22 2020-11-20 陶霖密 显示面板、显示装置和子像素的渲染方法
CN112216217A (zh) * 2020-10-15 2021-01-12 厦门天马微电子有限公司 显示面板和显示装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105161059B (zh) * 2015-06-30 2018-09-07 京东方科技集团股份有限公司 显示驱动方法、显示面板及其制作方法、显示装置
KR20180038793A (ko) * 2016-10-07 2018-04-17 삼성전자주식회사 영상 데이터 처리 방법 및 장치
US10366674B1 (en) * 2016-12-27 2019-07-30 Facebook Technologies, Llc Display calibration in electronic displays
CN111710279B (zh) * 2020-06-30 2023-07-04 京东方科技集团股份有限公司 图像渲染方法及装置、显示设备、存储介质及电子设备
CN114067696B (zh) * 2021-11-04 2023-02-28 信利(惠州)智能显示有限公司 显示面板和显示设备
US20240096266A1 (en) * 2022-09-21 2024-03-21 Samsung Display Co., Ltd. Data driver, display device having data driver, and electronic device having data driver

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1184365A (ja) * 1997-09-02 1999-03-26 Seiko Epson Corp 液晶装置及び電子機器
CN1588197A (zh) * 2004-07-16 2005-03-02 胜华科技股份有限公司 具增亮结构的彩色滤色装置
CN1738501A (zh) * 2004-08-20 2006-02-22 财团法人工业技术研究院 一种全彩有机电致发光显示面板
CN101344670A (zh) * 2007-07-11 2009-01-14 株式会社日立显示器 液晶显示装置
CN101359120A (zh) * 2007-07-31 2009-02-04 株式会社日立显示器 液晶显示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6573961B2 (en) * 1994-06-27 2003-06-03 Reveo, Inc. High-brightness color liquid crystal display panel employing light recycling therein
JP2009300748A (ja) * 2008-06-13 2009-12-24 Hitachi Displays Ltd 表示装置および液晶表示装置
JP5698251B2 (ja) * 2009-11-03 2015-04-08 コーニンクレッカ フィリップス エヌ ヴェ オートステレオスコピックディスプレイ装置
US9019184B2 (en) * 2010-01-08 2015-04-28 Sharp Kabushiki Kaisha Liquid crystal display device including specific subpixel arrangement
US9093017B2 (en) * 2010-10-18 2015-07-28 Vp Assets Limited Image device with pixel dots with multi-primary colors
US8803767B2 (en) * 2010-10-18 2014-08-12 Vp Assets Limited Image device with pixels arranged for white balance
JP2012242497A (ja) * 2011-05-17 2012-12-10 Japan Display East Co Ltd 液晶表示装置
JP2015069119A (ja) * 2013-09-30 2015-04-13 パナソニック液晶ディスプレイ株式会社 表示装置
TWI538194B (zh) * 2014-05-05 2016-06-11 友達光電股份有限公司 顯示裝置
US9799257B2 (en) * 2014-06-02 2017-10-24 Samsung Display Co., Ltd. Hierarchical prediction for pixel parameter compression

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1184365A (ja) * 1997-09-02 1999-03-26 Seiko Epson Corp 液晶装置及び電子機器
CN1588197A (zh) * 2004-07-16 2005-03-02 胜华科技股份有限公司 具增亮结构的彩色滤色装置
CN1738501A (zh) * 2004-08-20 2006-02-22 财团法人工业技术研究院 一种全彩有机电致发光显示面板
CN101344670A (zh) * 2007-07-11 2009-01-14 株式会社日立显示器 液晶显示装置
CN101359120A (zh) * 2007-07-31 2009-02-04 株式会社日立显示器 液晶显示装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109752880A (zh) * 2017-04-20 2019-05-14 立景光电股份有限公司 具有小像素以及梯状图案的子像素的液晶显示面板
US10303011B2 (en) 2017-04-20 2019-05-28 Himax Display, Inc. LCD panel with small pixels and sub-pixels having ladder pattern
TWI681240B (zh) * 2017-04-20 2020-01-01 立景光電股份有限公司 具有小像素以及梯狀圖案之子像素的液晶顯示面板
CN109752880B (zh) * 2017-04-20 2021-11-02 立景光电股份有限公司 具有小像素以及梯状图案的子像素的液晶显示面板
CN111971735A (zh) * 2018-03-22 2020-11-20 陶霖密 显示面板、显示装置和子像素的渲染方法
CN112216217A (zh) * 2020-10-15 2021-01-12 厦门天马微电子有限公司 显示面板和显示装置
CN112216217B (zh) * 2020-10-15 2022-10-04 厦门天马微电子有限公司 显示面板和显示装置

Also Published As

Publication number Publication date
US10395579B2 (en) 2019-08-27
CN106852179B (zh) 2020-10-02
US20180047324A1 (en) 2018-02-15
CN106852179A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
WO2016033803A1 (zh) 显示面板、显示装置和子像素的渲染方法
US20160027362A1 (en) Pixel array and driving method thereof, display panel and display device
JP2021524048A (ja) 表示パネル及び表示装置
US8717255B2 (en) Image device with pixel dots with multi-primary colors
US9589493B2 (en) Organic electroluminescent display device, driving method thereof and display device
KR101970088B1 (ko) 디스플레이 스크린 및 이의 구동 방법
US20160041434A1 (en) Pixel structure and pixel compensation method thereof
CN103345887B (zh) 像素阵列及具有该像素阵列的显示器
US20160247433A1 (en) Display panel, display method and display device
US9959820B2 (en) Array substrate, display device and image display method
EP3360163A1 (en) Pixel structure, fabrication method thereof, display panel, and display apparatus
JP2020519965A (ja) 画素構造及びoled表示パネル
EP4195655A1 (en) Video processing method, video processing device, and display device
WO2012171501A1 (zh) 一种彩色显示屏
CN108198520B (zh) 基于三色条形led芯片的虚拟led显示模组及2倍频显示方法
CN104347664B (zh) 有机发光二极管显示面板
CN112116881A (zh) 三基色全彩led显示屏的共享像素排列结构及共享方法
CN105096801A (zh) 显示单元、显示面板及其驱动方法和显示装置
WO2021127800A1 (zh) 一种改善边缘色偏的显示装置及电视机
CN108230927A (zh) 基于三色条形led芯片的虚拟led显示模组及3倍频显示方法
US10529268B2 (en) Pixel array, display device and display method thereof
WO2017113623A1 (zh) 显示面板、显示装置和像素排列方法
WO2019178811A1 (zh) 显示面板、显示装置和子像素的渲染方法
WO2018120021A1 (zh) 显示面板、显示装置和像素渲染方法
CN108269535B (zh) 显示方法及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901321

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14901321

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15508342

Country of ref document: US