WO2016032223A1 - Surface-coated positive electrode active material, method for preparing same, and lithium secondary battery comprising same - Google Patents

Surface-coated positive electrode active material, method for preparing same, and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2016032223A1
WO2016032223A1 PCT/KR2015/008915 KR2015008915W WO2016032223A1 WO 2016032223 A1 WO2016032223 A1 WO 2016032223A1 KR 2015008915 W KR2015008915 W KR 2015008915W WO 2016032223 A1 WO2016032223 A1 WO 2016032223A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
electrode active
carbon black
coated
Prior art date
Application number
PCT/KR2015/008915
Other languages
French (fr)
Korean (ko)
Inventor
장욱
이상영
조승범
안준성
박장훈
김주명
Original Assignee
주식회사 엘지화학
국립대학법인 울산과학기술대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150117752A external-priority patent/KR101714892B1/en
Application filed by 주식회사 엘지화학, 국립대학법인 울산과학기술대학교 산학협력단 filed Critical 주식회사 엘지화학
Priority to US15/039,266 priority Critical patent/US10476082B2/en
Priority to EP15835187.4A priority patent/EP3188290B1/en
Priority to CN201580030667.9A priority patent/CN106663799B/en
Publication of WO2016032223A1 publication Critical patent/WO2016032223A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a surface-coated positive electrode active material, a method of manufacturing the same, and a lithium secondary battery including the same. More specifically, the present invention relates to a cathode active material surface-coated with a nano-film including polyimide (PI) and carbon black, a method of manufacturing the same, and a lithium secondary battery including the same.
  • PI polyimide
  • Lithium secondary batteries have been widely used as power sources for portable devices since they emerged in 1991 as small, light and large capacity batteries. Recently, with the rapid development of electronics, telecommunications, and computer industry, camcorders, mobile phones, notebook PCs, etc. have emerged, and they are developing remarkably, and the demand for lithium secondary battery as a power source to drive these portable electronic information communication devices increases day by day. Doing.
  • Lithium secondary batteries have a problem in that their lifespan drops rapidly as they are repeatedly charged and discharged.
  • the surfaces of these cathode active materials are Al 2 O 3 , ZrO 2 , and AlPO 4. It is generally known that oxides such as these can be coated on the surface of the positive electrode active material. It is also established that the coating layer improves the safety characteristics of the positive electrode active material.
  • the oxide coating layer is finely dispersed in the form of nano-sized particles rather than entirely covering the surface of the positive electrode active material.
  • the surface modification effect of the positive electrode active material by the oxide coating layer was limited to be limited.
  • the oxide coating layer is a kind of ion insulating layer that is difficult to move lithium ions, and may cause a decrease in ion conductivity.
  • the present inventors are studying a positive electrode active material which is excellent in safety and can exhibit excellent life characteristics even under high voltage conditions, the present inventors include polyimide and carbon black having a specific iodine number and oil absorption number on the surface of the positive electrode active material.
  • the surface-coated positive electrode active material prepared by forming a nano-film can effectively suppress side reactions between the positive electrode active material and the electrolyte due to the nano-film, thereby providing excellent safety and excellent life characteristics and conductivity even under high voltage conditions.
  • the present invention was completed by confirming.
  • Patent Document 1 KR2009-0018981 A
  • the present invention has been made to solve the above problems, an object of the present invention by coating the entire surface of the positive electrode active material with a nano-film capable of lithium ion migration, it effectively suppresses side reactions between the positive electrode active material and the electrolyte solution and excellent safety. At the same time, to provide a surface-coated positive electrode active material having excellent lifespan characteristics under high temperature and high voltage conditions as well as excellent conductivity.
  • Another object of the present invention to provide a method for producing the surface-coated positive electrode active material.
  • Still another object of the present invention is to provide a positive electrode including the surface-coated positive electrode active material.
  • another object of the present invention is to provide a lithium secondary battery including a separator interposed between the positive electrode, the negative electrode and the positive electrode and the negative electrode.
  • the present invention is a positive electrode active material; And a nano coating including polyimide (PI) and carbon black coated on the surface of the positive electrode active material, wherein the nano coating includes the polyimide and carbon black in a weight ratio of 0.5 to 5 by weight.
  • a coated cathode active material is provided.
  • the present invention comprises the steps of preparing a mixed solution in which carbon black is mixed and dispersed in an organic solvent in which a polyamic acid is diluted; Dispersing a positive electrode active material in the mixed solution to form a film including polyamic acid and carbon black on the surface of the positive electrode active material; And imidizing the positive electrode active material having the coating formed thereon, wherein the carbon black is used in an amount of 0.05 wt% to 5 wt% based on 100 wt% of the positive electrode active material. It provides a method of manufacturing.
  • the present invention provides a positive electrode including the surface-coated positive electrode active material.
  • the present invention provides a lithium secondary battery including the positive electrode, the negative electrode, and a separator interposed between the positive electrode and the negative electrode.
  • the positive electrode active material according to the present invention has a polyimide and carbon black, especially an iodine number of 200 mg / g to 400 mg / g, and an oil absorption number of 0.1 cc / g to 0.2 cc / g. Since the surface is coated with a nano-film including phosphorous carbon black, direct contact between the positive electrode active material and the electrolyte may be prevented, thereby preventing side reactions between the positive electrode active material and the electrolyte.
  • the life characteristics of the lithium secondary battery using the positive electrode including the positive electrode active material surface-coated with the nano-film according to the present invention can be significantly improved, in particular, the life characteristics and conductivity at high temperature and high voltage conditions can be improved.
  • Example 1 is an electron microscope (FE-SEM) photograph of the surface of a cathode active material surface-coated with a nano-film including polyimide and carbon black prepared in Example 1 of the present invention.
  • FIG. 2 is an electron microscope (FE-SEM) photograph of the surface of the uncoated positive electrode active material prepared in Comparative Example 1.
  • FIG. 2 is an electron microscope (FE-SEM) photograph of the surface of the uncoated positive electrode active material prepared in Comparative Example 1.
  • the present invention provides a surface-coated positive electrode active material having excellent safety and excellent life characteristics and conductivity at high temperature and high voltage conditions.
  • the surface-coated positive electrode active material according to an embodiment of the present invention is a positive electrode active material; And a nano coating comprising polyimide (PI) and carbon black coated on the surface of the positive electrode active material, wherein the nano coating includes the polyimide and carbon black in a weight ratio of 0.5 to 5 by weight.
  • PI polyimide
  • the nano-film according to the present invention is a lithium ion transfer is not an ion insulating layer, such as inorganic oxide surface coating layer generally known in the art, the nano-film as described above may include polyimide (PI) and carbon black Can be.
  • the nano-film may include a lithium ion migration by including polyimide (PI), and the electronic conductivity may be improved by including carbon black.
  • the nanofilm may surround the entire surface of the positive electrode active material, and the nanofilm surrounding the surface of the positive electrode active material may prevent direct contact between the positive electrode active material and the electrolyte, thereby causing side reactions between the positive electrode active material and the electrolyte. It can be suppressed. As a result, it is possible to improve the safety and lifespan characteristics of the lithium secondary battery using the positive electrode including the positive electrode active material coated with the nano-film, and in particular, not only general voltage conditions, but also high temperature and high voltage conditions The conductivity may be excellent.
  • the polyimide included in the nano-film may serve as a protective film to prevent the positive electrode active material from directly contacting the electrolyte.
  • the polyimide is a generic term for a polymer having an acid imide structure, and can be obtained by synthesizing using an aromatic anhydride and an aromatic diamine.
  • the polyimide can be obtained by imidization reaction using a polyamic acid as described below.
  • the carbon black included in the nano-film is very excellent in electrical conductivity and lithium ion conductivity may serve to provide a path (path) to react with lithium ions in the electrode, the nano-film is coated on the surface During the charge and discharge cycle of the lithium secondary battery including the positive electrode active material, the current and voltage distribution in the electrode may be maintained uniformly, thereby greatly improving the life characteristics.
  • the carbon black according to the present invention may have a value in which the iodine value and the oil absorption number are selected within a specific numerical range.
  • iodine number used in the present invention refers to the amount of halogen absorbed in the case of reacting halogen or fat to fatty acids or fatty acids using a reaction in which halogen is added to a double bond to 100 g of a sample.
  • the amount of iodine to be absorbed is expressed in g, which is used as a numerical value representing the number of double bonds of unsaturated fatty acids in the sample. The higher the iodine number, the higher the number of double bonds.
  • the iodine number may be a value measured based on ASTM D-1510 of 200 mg / g to 400 mg / g, the iodine number of the carbon black If it is less than 200 mg / g it may be difficult to sufficiently disperse the carbon black in the nano-film, if it exceeds 400 mg / g may cause a problem that the conductivity is lowered.
  • the number of unsaturated bonds (double bonds) present in the carbon black may be appropriate.
  • the bonding force between the carbon black particles, the bonding strength with the solvent when dispersing in the solvent, and other mixtures The bonding strength of the resin can be controlled appropriately, and the carbon black can be uniformly dispersed when the carbon black is dispersed in the solvent, and the agglomeration can be appropriately performed to ensure the conductive network.
  • OAN Olet Absorption number
  • oil absorption number may be a value measured based on ASTM D-2414 is 100 cc / 100 g to 200 cc / 100 g.
  • the secondary structure formed by agglomeration of the primary particles of carbon black partially has an appropriate shape, and the shape of the secondary structure is appropriate.
  • the carbon black can be smoothly dispersed in a solvent and can secure various routes in securing a conductive network.
  • the carbon black according to the present invention has the iodine value and the oil absorption number, dispersibility in a solvent can be better than that of carbon black generally used, and the shape of the secondary structure is excellent to secure a conductive network. Can be fairly easy.
  • the positive electrode active material according to the present invention is a nano-coating formed on the surface, and when the carbon black is uniformly distributed with the polyimide on the nano-coating, it has better dispersibility and proper 2 It is required to have a car structure. Therefore, it may be difficult to uniformly disperse the carbon black on the nanofilm by the numerical values of the iodine value and the oil absorption number of the carbon black generally used in preparing the electrode slurry.
  • the iodine in the case of the carbon black having the iodine value and the oil absorption number value, the iodine can be distributed fairly uniformly due to its excellent dispersibility when it is distributed on the nanofilm, and because of the uniform and excellent secondary structure As a result, the challenge network can be secured.
  • the carbon black may be a mixture of primary particles, secondary particles or primary particles and secondary particles, when the carbon black is the primary particles, the average particle diameter of the carbon black is 10 nm to 100 When the carbon black is secondary particles, the average particle diameter of the carbon black may be less than 1000 nm. In addition, when the carbon black is secondary particles, the secondary particles may be pulverized to have an average particle diameter similar to that of the primary particles.
  • the surface of the carbon black is hydrophobized.
  • the surface hydrophobization treatment is not particularly limited and may be carried out by methods commonly known in the art, for example, carbon black is heat-treated in an air or nitrogen atmosphere at a temperature in the range of 450 to 550 ° C. and acid solution or alkali. It may be carried out by dispersing in a perfluorinated compound after supporting the solution by pretreatment.
  • the nano-film according to the present invention may include the polyimide and carbon black in a ratio of 1: 0.5 to 5 by weight. If the weight ratio of the polyimide and the carbon black is less than 1: 0.5, it may be difficult to obtain sufficient electrical conductivity. If the weight ratio is greater than 1: 5, the carbon black may be detached from the nano-film.
  • the carbon black may be included in an amount of 0.05 wt% to 5 wt% with respect to 100 wt% of the total surface coated positive active material, and preferably 0.2 wt% to 2 wt%.
  • the nanofilm thickness may be 1 nm to 200 nm, preferably 5 nm to 50 nm.
  • the thickness of the nanofilm is less than 1 nm, the side reaction effect of the positive electrode active material and the electrolyte due to the nanofilm and the synergistic effect of the electrical conductivity may be insignificant.
  • the thickness of the nano-film exceeds 200 nm, the thickness of the nano-film is excessively increased, the mobility of the lithium ions is hindered, the resistance may increase.
  • the cathode active material according to the present invention may be applied to a general voltage and a high voltage, and may be used without particular limitation as long as it is a compound capable of reversibly inserting / desorbing lithium.
  • the positive electrode active material according to an embodiment of the present invention is a spinel lithium transition metal oxide having a hexagonal layered rock salt structure, olivine structure, cubic structure having a high capacity characteristics, in addition to V 2 O 5 , TiS, MoS It may include any one selected from the group consisting of two or more of these complex oxides.
  • the cathode active material may include any one selected from the group consisting of oxides of Formulas 1 to 3, and V 2 O 5 , TiS, and MoS, or a mixture of two or more thereof:
  • X b (M Al, Mg, Ni, Co, Mn, Ti, Ga, Cu, V, Nb, Zr, Ce, In, Zn and Y
  • the present invention provides a method for producing the surface-coated positive electrode active material.
  • Method for producing a surface-coated positive electrode active material comprises the steps of preparing a mixed solution in which carbon black is mixed and dispersed in an organic solvent in which polyamic acid is diluted (step 1); Dispersing a cathode active material in the mixed solution to form a film including polyamic acid and carbon black on the surface of the cathode active material (step 2); And imidating the positive electrode active material on which the coating is formed (step 3), wherein the carbon black is used in an amount of 0.05 wt% to 5 wt% based on 100 wt% of the positive electrode active material.
  • Step 1 is a step for preparing a mixed solution in which the material forming the nano-film is uniformly dispersed, and may be performed by adding and mixing carbon black to the organic solvent in which the polyamic acid is diluted.
  • the dispersing agent may be further included.
  • the dispersant is not particularly limited as long as it is mixed with the organic solvent in which the carbon black and the polyamic acid are diluted, and may serve to help the carbon black to be uniformly dispersed in the organic solvent.
  • Block polymers such as styrene-butadiene-styrene block polymer or styrene-butadiene-ethylene-styrene block polymer may be applied as a dispersant.
  • step 1 Mixing and dispersing the organic solvent in which carbon black and the polyamic acid are diluted in step 1 may be performed using a mixer that can be driven at a rotational speed of 10,000 rpm or more at normal temperature (about 15 to 30 ° C.).
  • the temperature range and the rotational speed range may be a condition in which the fibrous carbon material may be smoothly dispersed in the organic solvent in which the polyamic acid is diluted. If the temperature is excessively high, the polyimide reaction converts the polyamic acid to polyimide. There is a risk of this happening early.
  • a nano film in which carbon black and polyimide are uniformly dispersed in the positive electrode active material may be formed, thereby facilitating a conductive network. It can be ensured, and the side reaction can be effectively prevented by playing an excellent role in preventing contact with the electrolyte.
  • the polyamic acid according to the present invention is a precursor material for forming the polyimide included in the above-described nanofilm, and may include a four-component polyamic acid.
  • the four-component polyamic acid may be a polyamic acid including pyromellitic dianhydride, biphenyl dianhydride, phenylenediamine, and oxydianiline. Can be.
  • the polyamic acid is not particularly limited and may be prepared and used by a method commonly known in the art, or may be used by purchasing a commercially available material.
  • the polyamic acid may be used as an aromatic anhydride.
  • Aromatic diamines can be obtained by reacting in polar aromatic solvents. At this time, the aromatic anhydride and the aromatic diamine can be reacted with the same equivalent weight.
  • the aromatic anhydride is not particularly limited, for example, phthalic anhydride, pyromellitic dihydride, 3,3'4,4'-biphenyltetracarboxylic dianhydride, 4'4-oxy Diphthalic anhydride, 3,3'4,4'-benzophenonetetracarboxylic dianhydride, trimellitic ethylene glycol, 4,4 '-(4'4-isopropylbiphenoxy) biphthalic It may be any one selected from the group consisting of an anhydride and a trimellitic anhydride, or a mixture of two or more thereof.
  • aromatic diamine is not particularly limited, for example, 4,4'-oxydianiline, p-phenyl diamine, 2,2-bis (4- (4-aminophenoxy ) -Phenyl) propane, p-methylenedianiline, propyltetramethyldisiloxane, polyaromatic amine, 4,4'-diaminodiphenyl sulfone, 2,2'-bis (trifluoromethyl) -4,4 It may be any one selected from the group consisting of '-diaminobiphenyl and 3,5-diamino-1,2,4-triazole, or a mixture of two or more thereof.
  • the polyamic acid may be used in an amount of 0.1 wt% to 1 wt% based on 100 wt% of the organic solvent.
  • the organic solvent is not particularly limited as long as it is a solvent capable of dissolving the polyamic acid, but is selected from the group consisting of cyclohexane, carbon tetrachloride, chloroform, methylene chloride, dimethylformamide, dimethylacetamide and N-methylpyrrolidone. It may be any one or a mixture of two or more thereof.
  • the carbon black according to the present invention may be used in the amount of 0.05% to 5% by weight with respect to 100% by weight of the positive electrode active material, preferably 0.2% to 2% by weight.
  • the positive electrode active material in order to form a film on the surface of the positive electrode active material, the positive electrode active material is dispersed in the mixed solution prepared in step 1 to form a film containing polyamic acid and carbon black on the surface of the positive electrode active material, the mixing
  • the positive electrode active material may be added to the solution, uniformly dispersed, and heated and concentrated to remove the solvent.
  • Dispersion of the positive electrode active material is not particularly limited, but for example, the positive electrode active material may be added to the mixed solution, followed by stirring for 1 hour or more using a high speed stirrer.
  • Step 3 is a step of imidizing the cathode active material including the film prepared in step 2 to produce a cathode active material having a nano-film formed on the surface.
  • the positive electrode active material including the film obtained in step 2 is heated to a rate of 3 ° C./minute at intervals of 50 ° C. to 100 ° C. to about 300 ° C. to 400 ° C., and 10 minutes to 300 ° C. in a range of 300 ° C. to 400 ° C. By holding for 120 minutes.
  • the temperature is raised at intervals of 50 to 100 ° C., for example, it may be maintained for 10 minutes to 120 minutes, and then heated again.
  • the positive electrode active material including the coating is heated at a rate of 3 ° C./minute at 60 ° C., 120 ° C., 200 ° C., 300 ° C., and 400 ° C., respectively, at 60 ° C. for 30 minutes, at 120 ° C. for 30 minutes,
  • the imidation reaction may be advanced by maintaining at 200 ° C. for 60 minutes, at 300 ° C. for 60 minutes, and at 400 ° C. for 10 minutes.
  • the present invention provides a positive electrode including the surface-coated positive electrode active material.
  • the positive electrode can be prepared by conventional methods known in the art. For example, a solvent, a binder, a conductive agent, a filler, and a dispersant may be mixed and stirred in the surface-coated positive electrode active material to prepare a positive electrode active material slurry, which is then coated (coated) on a positive electrode current collector, compressed, and then dried to obtain a positive electrode. Can be prepared.
  • the positive electrode current collector may be generally used having a thickness of 3 ⁇ m to 500 ⁇ m, any of the positive electrode active material slurry is a metal that can easily adhere as long as it has a high conductivity without causing chemical changes in the battery. Can also be used.
  • Non-limiting examples of the positive electrode current collector include copper, stainless steel, aluminum, nickel, titanium, calcined carbon or a surface treated with carbon, nickel, titanium, or silver on the surface of aluminum or stainless steel, and an aluminum-cadmium alloy. Can be used.
  • fine concavo-convex is formed on the surface, or may be used in various forms such as film, sheet, foil, net, porous body, foam, nonwoven fabric.
  • the solvent for forming the positive electrode includes an organic solvent such as NMP (N-methyl pyrrolidone), DMF (dimethyl formamide), acetone, dimethyl acetamide or water, and these solvents alone or in combination of two or more. Can be mixed and used. The amount of the solvent used is sufficient to dissolve and disperse the positive electrode active material, the binder, and the conductive agent in consideration of the coating thickness of the slurry and the production yield.
  • NMP N-methyl pyrrolidone
  • DMF dimethyl formamide
  • acetone dimethyl acetamide or water
  • the binder is a component that assists the bonding between the positive electrode active material and the conductive agent and the positive electrode current collector, for example, polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene Fluoride (polyvinylidenefluoride), polyacrylonitrile, polymethylmethacrylate, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, Tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluorine rubber, poly acrylic acid and hydrogens thereof , Polymers substituted with Na or Ca, or Various kinds of binder polymers such as various copolymers can be used.
  • PVDF-co-HFP poly
  • the conductive agent is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Examples of the conductive agent include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, farnes black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Conductive tubes such as carbon nanotubes; Metal powders such as fluorocarbon, aluminum and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the filler is a component that suppresses the expansion of the positive electrode and can be used or not as necessary, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • an olefin polymer such as polyethylene or polypropylene may be used. ; It may be a fibrous material such as glass fiber, carbon fiber.
  • the dispersant may be an aqueous dispersant or an organic dispersant such as N-methyl-2-pyrrolidone.
  • the coating may be performed by a method commonly known in the art, but for example, the positive electrode active material slurry may be distributed on the upper surface of the positive electrode current collector and then uniformly dispersed using a doctor blade or the like. Can be.
  • the method may be performed by a die casting method, a comma coating method, a screen printing method, or the like.
  • the drying is not particularly limited, but may be performed within one day in a vacuum oven at 50 to 200 °C.
  • the present invention provides a lithium secondary battery including the positive electrode, the negative electrode, and a separator interposed between the positive electrode and the negative electrode.
  • the lithium secondary battery according to an embodiment of the present invention comprises a separator and an electrolyte interposed between the positive electrode and the negative electrode, the positive electrode and the negative electrode including a positive electrode active material coated on the surface of the nano-film including polyimide and carbon black It is characterized by including.
  • the lithium secondary battery according to an embodiment of the present invention may exhibit excellent life characteristics in both the normal voltage and the high voltage region, and may be particularly excellent in the high temperature and high voltage region.
  • the charging voltage of the lithium secondary battery is characterized in that the 4.2V to 5.0V.
  • general voltage refers to the case where the charging voltage of the lithium secondary battery is in the range of 3.0V to less than 4.2V
  • high voltage is the region of the charge voltage is 4.2V to 5.0V range It may mean a case
  • high temperature may mean a range of 45 to 65 °C.
  • the negative electrode is not particularly limited, but may be prepared by applying a negative electrode active material slurry on the upper surface of one side of the negative electrode current collector and then drying the negative electrode active material slurry, in addition to the negative electrode active material, such as a binder, a conductive agent, a filler, and a dispersant as necessary. It may include an additive.
  • a carbon material lithium metal, silicon, tin, or the like, in which lithium ions may be occluded and released, may be used.
  • a carbon material may be used, and as the carbon material, both low crystalline carbon and high crystalline carbon may be used.
  • Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is natural graphite, Kish graphite, pyrolytic carbon, liquid crystal pitch carbon fiber.
  • High temperature calcined carbon such as (mesophase pitch based carbon fiber), meso-carbon microbeads, Mesophase pitches and petroleum or coal tar pitch derived cokes.
  • the negative electrode current collector may be the same as or included with the aforementioned positive electrode current collector, and additives such as binders, conductive agents, fillers, and dispersants used in the negative electrode may be the same as those used in the aforementioned positive electrode manufacture. It may be included.
  • the separator may be an insulating thin film having high ion permeability and mechanical strength, and may generally have a pore diameter of 0.01 ⁇ m to 10 ⁇ m and a thickness of 5 ⁇ m to 300 ⁇ m.
  • Such separators include porous polymer films made of polyolefin-based polymers such as ethylene homopolymers, propylene homopolymers, ethylene / butene copolymers, ethylene / hexene copolymers and ethylene / methacrylate copolymers. These may be used alone or in combination thereof, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of high melting glass fibers, polyethylene terephthalate fibers, or the like may be used, but is not limited thereto.
  • the electrolyte used in the present invention may include a lithium salt commonly used in the electrolyte, and is not particularly limited.
  • the lithium salt of the anion is F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 - , (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -, SCN - one selected from the group consisting of - and (CF 3 CF 2 SO 2) 2 N It may be abnormal.
  • Examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery. no.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be cylindrical, square, pouch type, or coin type using a can.
  • the lithium secondary battery according to the present invention may not only be used in a battery cell used as a power source for a small device, but also preferably used as a unit battery in a medium-large battery module including a plurality of battery cells.
  • Preferred examples of the medium-to-large device include, but are not limited to, electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and electric power storage systems.
  • the positive electrode active material coated on the surface of the film containing polyamic acid and carbon black was prepared by increasing the temperature to the boiling point of the solvent while evaporating the solvent while evaporating the solvent.
  • the cathode active material coated on the surface of the film containing the polyamic acid and carbon black prepared above was heated to 60 ° C., 120 ° C., 200 ° C., 300 ° C., and 400 ° C. at a rate of 3 ° C./min, respectively, at 60 ° C. for 30 minutes. , 30 minutes at 120 ° C, 60 minutes at 200 ° C, 60 minutes at 300 ° C, and 10 minutes at 400 ° C to proceed with the imidization reaction.
  • LiNi 0 coated on the surface of the nano-film including the polyimide and carbon black as the imidization reaction is completed . 6 Mn 0 . 2 Co 0 .
  • a 2 0 2 positive electrode active material was prepared. At this time, the polyimide and carbon black in the prepared nano-film showed a weight ratio of 1: 0.5.
  • Polyimide and carbon black were included in the same manner as in Preparation Example 1, except that the amount of polyamic acid and carbon black added so that the polyimide and carbon black had a weight ratio of 1:15 in the finally prepared nanofilm. LiNi 0 coated on the surface . 6 Mn 0 . 2 Co 0 . A 2 0 2 positive electrode active material was prepared.
  • LiNi 0 prepared in Preparation Example 1 . 6 Mn 0 . 2 Co 0 . 2 O 2 positive electrode active material, carbon black as a conductive agent, polyvinylidene fluoride (PVdF) as a binder is mixed in a weight ratio of 95: 3: 2, and N-methyl-2-pyrrolidone (NMP) solvent It was added to to prepare a positive electrode active material slurry.
  • the positive electrode active material slurry is applied to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of about 20 ⁇ m, and dried at 130 ° C. for 2 hours to prepare a positive electrode, followed by roll press to prepare a positive electrode. It was.
  • Al aluminum
  • Lithium metal foil was used as the negative electrode.
  • LiPF 6 non-aqueous electrolyte was prepared by adding LiPF 6 to a non-aqueous electrolyte solvent prepared by mixing ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 1: 2 as an electrolyte.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the cathode active material prepared in Preparation Example 2 was used instead of the cathode active material prepared in Preparation Example 1.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the cathode active material prepared in Preparation Example 3 was used instead of the cathode active material prepared in Preparation Example 1.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the cathode active material prepared in Preparation Example 4 was used instead of the cathode active material prepared in Preparation Example 1.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the cathode active material prepared in Preparation Example 5 was used instead of the cathode active material prepared in Preparation Example 1.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the cathode active material prepared in Comparative Preparation Example 1 was used instead of the cathode active material prepared in Preparation Example 1.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the cathode active material prepared in Comparative Preparation Example 2 was used instead of the cathode active material prepared in Preparation Example 1.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the cathode active material prepared in Comparative Preparation Example 3 was used instead of the cathode active material prepared in Preparation Example 1.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the cathode active material prepared in Comparative Preparation Example 4 was used instead of the cathode active material prepared in Preparation Example 1.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the cathode active material prepared in Comparative Preparation Example 5 was used instead of the cathode active material prepared in Preparation Example 1.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the cathode active material prepared in Comparative Preparation Example 6 was used instead of the cathode active material prepared in Preparation Example 1.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the cathode active material prepared in Comparative Preparation Example 7 was used instead of the cathode active material prepared in Preparation Example 1.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the cathode active material prepared in Comparative Preparation Example 8 was used instead of the cathode active material prepared in Preparation Example 1.
  • Figure 1 is LiNi 0 coated on the surface of the nano-film including the polyimide and carbon black prepared in Example 1 of the present invention . 6 Mn 0 . 2 Co 0 .
  • the coated LiNi 0 . 6 Mn 0 . 2 Co 0 As a result of observing the surface of the 2 O 2 particles, the coated LiNi 0 . 6 Mn 0 . 2 Co 0 . It can be seen that a nanofilm having a thickness of several nanometers in which polyimide and carbon black are well dispersed is formed on the surface of the 2 O 2 particles.
  • FIG. 2 is LiNi 0 of Comparative Preparation Example 1 . 6 Mn 0 . 2 Co 0 . Pure LiNi 0 with 2 O 2 particles and uncoated on the surface . 6 Mn 0 . 2 Co 0 . 2 O 2 particles, FIG. 3 shows LiNi 0. Surface coated with polyimide prepared in Comparative Preparation Example 2 . 6 Mn 0 . 2 Co 0 . As 2 O 2 particles, no carbon black was observed.
  • the lithium secondary batteries of Examples 1 to 5 were similar in the initial charge and discharge capacity compared to the lithium secondary batteries of Comparative Examples 1 to 8, but the rate-rate characteristics (C-rate) and 50 It can be seen that the capacity retention rate is remarkably excellent.
  • the positive electrode active material according to the present invention is compared with the lithium secondary batteries of Comparative Examples 3 to 8, which are coated with polyimide and carbon black, but which are not carbon black according to the present invention or include a positive electrode active material which is out of the mixing ratio. It was confirmed that the lithium secondary batteries of Examples 1 to 5, including the rate-rate characteristics and the 50th capacity retention rate were excellent, in particular, the 50th capacity retention rate was significantly increased.

Abstract

The present invention relates to a surface-coated positive electrode active material, a method for preparing the same, and a lithium secondary battery comprising the same. More specifically, the present invention relates to a positive electrode active material which is surface-coated with a nanofilm containing polyimide (PI) and carbon black, to a method for preparing the same, and to a lithium secondary battery comprising the same. The positive electrode active material which is surface-coated with the nanofilm can prevent a direct contact between a positive electrode active material and an electrolyte, and thus can suppress a side reaction between the positive electrode active material and the electrolyte, can significantly improve lifespan characteristics of a lithium secondary battery using a positive electrode containing the positive electrode active material, and especially can improve lifespan characteristics and conductivity in high-temperature and high-voltage conditions.

Description

표면 코팅된 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지Surface-coated positive electrode active material, preparation method thereof, and lithium secondary battery comprising same
관련출원과의 상호인용Citation with Related Applications
본 출원은 2014년 08월 26일자 한국 특허 출원 제10-2014-0111504호 및 2015년 08월 21일자 한국 특허 출원 제10-2015-0117752호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2014-0111504 dated August 26, 2014 and Korean Patent Application No. 10-2015-0117752 dated August 21, 2015. All content disclosed in the literature is included as part of this specification.
기술분야Technical Field
본 발명은 표면 코팅된 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지에 관한 것이다. 보다 구체적으로, 폴리이미드(PI) 및 카본블랙를 포함하는 나노피막으로 표면 코팅된 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지에 관한 것이다.The present invention relates to a surface-coated positive electrode active material, a method of manufacturing the same, and a lithium secondary battery including the same. More specifically, the present invention relates to a cathode active material surface-coated with a nano-film including polyimide (PI) and carbon black, a method of manufacturing the same, and a lithium secondary battery including the same.
리튬 이차전지는 소형, 경량, 대용량 전지로서 1991년에 등장한 이래, 휴대기기의 전원으로서 널리 사용되었다. 최근 들어 전자, 통신, 컴퓨터 산업의 급속한 발전에 따라 캠코더, 휴대폰, 노트북 PC 등이 출현하여 눈부신 발전을 거듭하고 있으며, 이들 휴대용 전자정보통신기기들을 구동할 동력원으로서 리튬 이차전지에 대한 수요가 나날이 증가하고 있다.Lithium secondary batteries have been widely used as power sources for portable devices since they emerged in 1991 as small, light and large capacity batteries. Recently, with the rapid development of electronics, telecommunications, and computer industry, camcorders, mobile phones, notebook PCs, etc. have emerged, and they are developing remarkably, and the demand for lithium secondary battery as a power source to drive these portable electronic information communication devices increases day by day. Doing.
리튬 이차전지는 충방전을 거듭함에 따라서 수명이 급속하게 떨어지는 문제점이 있다. Lithium secondary batteries have a problem in that their lifespan drops rapidly as they are repeatedly charged and discharged.
이러한 수명 특성 저하는 양극과 전해액과의 부반응에 기인하며, 이러한 현상은 고전압 및 고온의 상태에서 더욱 심각해질 수 있다.This degradation of life characteristics is due to the side reaction between the positive electrode and the electrolyte, and this phenomenon may become more severe at high voltage and high temperature.
따라서, 고전압용 이차전지의 개발이 필요하며, 이를 위해서는 양극 활물질과 전해액과의 부반응 또는 전극 계면 반응을 제어하는 기술이 매우 중요하다.Therefore, it is necessary to develop a secondary battery for high voltage, and for this purpose, a technology for controlling side reactions or electrode interface reactions between the positive electrode active material and the electrolyte is very important.
이러한 문제점을 해결하기 위해 양극 활물질의 표면에 Mg, Al, Co, K, Na, 또는 Ca 등을 포함하는 금속산화물을 코팅하는 기술이 개발되었다. In order to solve this problem, a technology for coating a metal oxide including Mg, Al, Co, K, Na, or Ca on the surface of the positive electrode active material has been developed.
특히, 이들 양극 활물질 표면을 Al2O3, ZrO2, 및 AlPO4 등의 산화물을 양극 활물질 표면에 코팅시킬 수 있다는 것은 일반적으로 알려져 있다. 상기 코팅층이 양극 활물질의 안전성 특성을 향상시킨다는 것 역시 정설이다. In particular, the surfaces of these cathode active materials are Al 2 O 3 , ZrO 2 , and AlPO 4. It is generally known that oxides such as these can be coated on the surface of the positive electrode active material. It is also established that the coating layer improves the safety characteristics of the positive electrode active material.
그러나, 상기 산화물 코팅층을 이용한 표면 코팅의 경우, 상기 산화물 코팅층이 양극 활물질 표면을 전체적으로 덮고 있기 보다는 나노 크기의 입자 형태로 잘게 분산되어 있는 형태를 취하고 있다.However, in the case of the surface coating using the oxide coating layer, the oxide coating layer is finely dispersed in the form of nano-sized particles rather than entirely covering the surface of the positive electrode active material.
이로 인해, 산화물 코팅층에 의한 양극 활물질의 표면 개질 효과가 제한적일 수 밖에 없는 한계를 보였다. 또한, 상기 산화물 코팅층은 리튬 이온 이동이 어려운 일종의 이온 절연층으로서, 이온 전도도의 저하를 초래할 수 있다.For this reason, the surface modification effect of the positive electrode active material by the oxide coating layer was limited to be limited. In addition, the oxide coating layer is a kind of ion insulating layer that is difficult to move lithium ions, and may cause a decrease in ion conductivity.
상기와 같은 배경 하에, 본 발명자들은 안전성이 우수하면서 고전압 조건에서도 우수한 수명 특성을 나타낼 수 있는 양극 활물질을 연구하던 중, 양극 활물질 표면에 폴리이미드 및 특정 요오드가 및 오일 흡수 수를 갖는 카본블랙을 포함하는 나노피막을 형성시켜 제조한 표면 코팅된 양극 활물질이 상기 나노피막으로 인하여 양극 활물질과 전해액과의 부반응을 효과적으로 억제될 수 있어 안전성이 우수함과 동시에 고전압 조건에서도 우수한 수명 특성 및 도전성을 나타낼 수 있음을 확인함으로써 본 발명을 완성하였다.Under the above background, while the present inventors are studying a positive electrode active material which is excellent in safety and can exhibit excellent life characteristics even under high voltage conditions, the present inventors include polyimide and carbon black having a specific iodine number and oil absorption number on the surface of the positive electrode active material. The surface-coated positive electrode active material prepared by forming a nano-film can effectively suppress side reactions between the positive electrode active material and the electrolyte due to the nano-film, thereby providing excellent safety and excellent life characteristics and conductivity even under high voltage conditions. The present invention was completed by confirming.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 1) KR2009-0018981 A (Patent Document 1) KR2009-0018981 A
본 발명은 상기와 같은 문제들을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 리튬 이온 이동이 가능한 나노피막으로 양극 활물질 표면 전체를 코팅함으로써, 양극 활물질과 전해액과의 부반응을 효과적으로 억제하여 안전성이 우수함과 동시에 일반전압뿐만 아니라, 고온 및 고전압 조건에서도 우수한 수명 특성을 가지며, 도전성이 우수한 표면 코팅된 양극 활물질을 제공하는 것이다.The present invention has been made to solve the above problems, an object of the present invention by coating the entire surface of the positive electrode active material with a nano-film capable of lithium ion migration, it effectively suppresses side reactions between the positive electrode active material and the electrolyte solution and excellent safety. At the same time, to provide a surface-coated positive electrode active material having excellent lifespan characteristics under high temperature and high voltage conditions as well as excellent conductivity.
본 발명의 다른 목적은 상기의 표면 코팅된 양극 활물질의 제조방법을 제공하는 것이다. Another object of the present invention to provide a method for producing the surface-coated positive electrode active material.
본 발명의 또 다른 목적은 상기의 표면 코팅된 양극 활물질을 포함하는 양극을 제공하는 것이다. Still another object of the present invention is to provide a positive electrode including the surface-coated positive electrode active material.
아울러, 본 발명의 또 다른 목적은 상기의 양극, 음극 및 상기 양극과 음극 사이에 개재된 분리막을 포함하는 리튬 이차전지를 제공하는 것이다.In addition, another object of the present invention is to provide a lithium secondary battery including a separator interposed between the positive electrode, the negative electrode and the positive electrode and the negative electrode.
상기의 과제를 해결하기 위하여, 본 발명은 양극 활물질; 및 상기 양극 활물질 표면에 코팅된 폴리이미드(PI) 및 카본블랙을 포함하는 나노피막을 포함하고, 상기 나노피막은 상기 폴리이미드와 카본블랙을 1: 0.5 내지 5 중량비로 포함하는 것을 특징으로 하는 표면 코팅된 양극 활물질을 제공한다.In order to solve the above problems, the present invention is a positive electrode active material; And a nano coating including polyimide (PI) and carbon black coated on the surface of the positive electrode active material, wherein the nano coating includes the polyimide and carbon black in a weight ratio of 0.5 to 5 by weight. Provided is a coated cathode active material.
또한, 본 발명은 폴리아믹산이 희석된 유기 용매에 카본블랙을 혼합 분산시킨 혼합 용액을 제조하는 단계; 상기 혼합 용액에 양극 활물질을 분산시켜 양극 활물질 표면에 폴리아믹산 및 카본블랙을 포함하는 피막을 형성하는 단계; 및 상기 피막이 형성된 양극 활물질을 이미드화 반응시키는 단계를 포함하고, 상기 카본블랙을 양극 활물질 100 중량%를 기준으로 0.05 중량% 내지 5 중량%의 양으로 사용하는 것을 특징으로 하는 상기 표면 코팅된 양극 활물질의 제조방법을 제공한다.In addition, the present invention comprises the steps of preparing a mixed solution in which carbon black is mixed and dispersed in an organic solvent in which a polyamic acid is diluted; Dispersing a positive electrode active material in the mixed solution to form a film including polyamic acid and carbon black on the surface of the positive electrode active material; And imidizing the positive electrode active material having the coating formed thereon, wherein the carbon black is used in an amount of 0.05 wt% to 5 wt% based on 100 wt% of the positive electrode active material. It provides a method of manufacturing.
아울러, 본 발명은 상기의 표면 코팅된 양극 활물질을 포함하는 양극을 제공한다.In addition, the present invention provides a positive electrode including the surface-coated positive electrode active material.
더 나아가, 본 발명은 상기의 양극, 음극 및 상기 양극과 음극 사이에 개재된 분리막을 포함하는 리튬 이차전지를 제공한다.Furthermore, the present invention provides a lithium secondary battery including the positive electrode, the negative electrode, and a separator interposed between the positive electrode and the negative electrode.
본 발명에 따른 양극 활물질은 폴리이미드와 카본블랙, 특히 요오드가(iodine number)가 200 mg/g 내지 400 mg/g이고, 오일 흡수 수(oil absorption number)가 0.1 cc/g 내지 0.2 cc/g인 카본블랙을 포함하는 나노피막으로 표면이 코팅됨으로써 상기 양극 활물질과 전해액과의 직접적인 접촉을 방지할 수 있어 양극 활물질과 전해액과의 부반응을 억제시킬 수 있다.The positive electrode active material according to the present invention has a polyimide and carbon black, especially an iodine number of 200 mg / g to 400 mg / g, and an oil absorption number of 0.1 cc / g to 0.2 cc / g. Since the surface is coated with a nano-film including phosphorous carbon black, direct contact between the positive electrode active material and the electrolyte may be prevented, thereby preventing side reactions between the positive electrode active material and the electrolyte.
이에, 본 발명에 따른 나노피막으로 표면 코팅된 양극 활물질을 포함하는 양극을 이용한 리튬 이차전지의 수명 특성이 현저히 개선될 수 있으며, 특히 고온 및 고전압 조건에서의 수명 특성 및 도전성이 향상될 수 있다.Thus, the life characteristics of the lithium secondary battery using the positive electrode including the positive electrode active material surface-coated with the nano-film according to the present invention can be significantly improved, in particular, the life characteristics and conductivity at high temperature and high voltage conditions can be improved.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.The following drawings, which are attached to this specification, illustrate preferred embodiments of the present invention, and together with the contents of the present invention serve to further understand the technical spirit of the present invention, the present invention is limited to the matters described in such drawings. It should not be construed as limited.
도 1은 본 발명의 실시예 1에서 제조된 폴리이미드와 카본블랙을 포함하는 나노피막으로 표면 코팅된 양극 활물질의 표면에 대한 전자현미경(FE-SEM) 사진 결과이다.1 is an electron microscope (FE-SEM) photograph of the surface of a cathode active material surface-coated with a nano-film including polyimide and carbon black prepared in Example 1 of the present invention.
도 2는 비교예 1에서 제조된 표면 코팅되지 않은 양극 활물질의 표면에 대한 전자현미경(FE-SEM) 사진 결과이다.FIG. 2 is an electron microscope (FE-SEM) photograph of the surface of the uncoated positive electrode active material prepared in Comparative Example 1. FIG.
도 3은 비교예 2에서 제조된 폴리이미드로 표면 코팅된 양극 활물질의 표면에 대한 전자현미경(FE-SEM) 사진 결과이다.3 is an electron microscope (FE-SEM) photograph of the surface of the positive electrode active material surface-coated with the polyimide prepared in Comparative Example 2.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail to aid in understanding the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
본 발명은 안전성이 우수하며, 고온 및 고전압 조건에서의 수명 특성 및 도전성이 우수한 표면 코팅된 양극 활물질을 제공한다. The present invention provides a surface-coated positive electrode active material having excellent safety and excellent life characteristics and conductivity at high temperature and high voltage conditions.
본 발명의 일 실시예에 따른 상기 표면 코팅된 양극 활물질은 양극 활물질; 및 상기 양극 활물질 표면에 코팅된 폴리이미드(PI) 및 카본블랙을 포함하는 나노피막을 포함하고, 상기 나노피막은 상기 폴리이미드와 카본블랙을 1: 0.5 내지 5 중량비로 포함하는 것을 특징으로 한다.The surface-coated positive electrode active material according to an embodiment of the present invention is a positive electrode active material; And a nano coating comprising polyimide (PI) and carbon black coated on the surface of the positive electrode active material, wherein the nano coating includes the polyimide and carbon black in a weight ratio of 0.5 to 5 by weight.
본 발명에 따른 상기 나노피막은 종래에 일반적으로 알려진 무기 산화물 표면 코팅층과 같은 이온 절연층이 아닌 리튬 이온 이동이 가능한 것으로, 상기 나노피막은 전술한 바와 같이 폴리이미드(PI) 및 카본블랙을 포함할 수 있다. 상기 나노피막은 폴리이미드(PI)를 포함함으로써 리튬 이온 이동이 용이할 수 있으며, 카본블랙을 포함함으로써 전자전도성이 향상될 수 있다. The nano-film according to the present invention is a lithium ion transfer is not an ion insulating layer, such as inorganic oxide surface coating layer generally known in the art, the nano-film as described above may include polyimide (PI) and carbon black Can be. The nano-film may include a lithium ion migration by including polyimide (PI), and the electronic conductivity may be improved by including carbon black.
또한, 상기 나노피막은 양극 활물질 표면 전체를 둘러싸고 있는 것일 수 있으며, 상기 양극 활물질 표면을 둘러싸고 있는 나노피막에 의하여 양극 활물질과 전해질이 직접적으로 접촉하는 것을 방지할 수 있어 상기 양극 활물질과 전해질 간에 부반응을 억제할 수 있다. 이에, 결과적으로 상기 나노피막으로 표면이 코팅된 양극 활물질을 포함하는 양극을 이용한 리튬 이차전지의 안전성을 높이고 수명 특성을 향상시킬 수 있으며, 특히 일반전압 조건뿐 아니라, 고온 및 고전압 조건에서도 수명 특성 및 도전성이 우수할 수 있다. In addition, the nanofilm may surround the entire surface of the positive electrode active material, and the nanofilm surrounding the surface of the positive electrode active material may prevent direct contact between the positive electrode active material and the electrolyte, thereby causing side reactions between the positive electrode active material and the electrolyte. It can be suppressed. As a result, it is possible to improve the safety and lifespan characteristics of the lithium secondary battery using the positive electrode including the positive electrode active material coated with the nano-film, and in particular, not only general voltage conditions, but also high temperature and high voltage conditions The conductivity may be excellent.
구체적으로, 상기 나노피막에 포함되는 폴리이미드는 양극 활물질이 전해액과 직접 접촉하는 것을 방지하는 보호막 역할을 할 수 있다.Specifically, the polyimide included in the nano-film may serve as a protective film to prevent the positive electrode active material from directly contacting the electrolyte.
상기 폴리이미드(polyimide)는 산 이미드 구조를 갖는 중합체를 총칭하는 것으로, 방향족 무수물과 방향족 디아민을 이용하여 합성함으로써 얻을 수 있다. 본 발명에서 상기 폴리이미드는 후술하는 바와 같이 폴리아믹산을 이용하여 이미드화 반응시킴으로써 수득할 수 있다. The polyimide is a generic term for a polymer having an acid imide structure, and can be obtained by synthesizing using an aromatic anhydride and an aromatic diamine. In the present invention, the polyimide can be obtained by imidization reaction using a polyamic acid as described below.
또한, 상기 나노피막에 포함되는 카본블랙은 전기 전도도 및 리튬 이온 전도성이 매우 우수하여 전극 내의 리튬 이온과 반응할 수 있는 경로(path)를 제공하는 역할을 할 수 있으며, 이에 나노피막이 표면에 코팅된 양극 활물질을 포함하는 리튬 이차전지의 충방전 사이클 동안 전극 내의 전류 및 전압 분포를 균일하게 유지시켜 수명 특성을 크게 향상시킬 수 있다.In addition, the carbon black included in the nano-film is very excellent in electrical conductivity and lithium ion conductivity may serve to provide a path (path) to react with lithium ions in the electrode, the nano-film is coated on the surface During the charge and discharge cycle of the lithium secondary battery including the positive electrode active material, the current and voltage distribution in the electrode may be maintained uniformly, thereby greatly improving the life characteristics.
본 발명에 따른 상기 카본블랙은 요오드가와 오일 흡수 수가 특정 수치 범위 내에서 선택되는 값을 가지는 것이 사용될 수 있다.The carbon black according to the present invention may have a value in which the iodine value and the oil absorption number are selected within a specific numerical range.
본 발명에서 사용되는 상기 용어 "요오드가(Iodine Number)"는 이중 결합에 할로겐이 부가하는 반응을 이용하여 유지 또는 지방산에 할로겐을 작용시킨 경우 흡수되는 할로겐의 양을 요오드로 환산하여 시료 100 g에 흡수되는 요오드의 양을 g으로 표시한 것으로, 시료 중의 불포화 지방산의 이중 결합 수를 나타내는 수치로 사용되며 요오드가의 수치가 높을수록 이중 결합 수가 많음을 나타낸다.The term "iodine number" used in the present invention refers to the amount of halogen absorbed in the case of reacting halogen or fat to fatty acids or fatty acids using a reaction in which halogen is added to a double bond to 100 g of a sample. The amount of iodine to be absorbed is expressed in g, which is used as a numerical value representing the number of double bonds of unsaturated fatty acids in the sample. The higher the iodine number, the higher the number of double bonds.
본 발명에서 사용되는 카본블랙의 경우, 상기 요오드가(iodine number)는 ASTM D-1510에 의거하여 측정된 값이 200 mg/g 내지 400 mg/g인 것일 수 있으며, 상기 카본블랙의 요오드가가 200 mg/g 미만일 경우에는 나노피막에 카본블랙이 충분히 분산되기 어려울 수 있으며, 400 mg/g을 초과할 경우에는 도전성이 저하되는 문제가 발생할 수 있다.In the case of the carbon black used in the present invention, the iodine number may be a value measured based on ASTM D-1510 of 200 mg / g to 400 mg / g, the iodine number of the carbon black If it is less than 200 mg / g it may be difficult to sufficiently disperse the carbon black in the nano-film, if it exceeds 400 mg / g may cause a problem that the conductivity is lowered.
즉, 요오드가가 상기의 범위일 경우에는 카본블랙 내에 존재하는 불포화 결합(이중 결합)의 수가 적절할 수 있으며, 구체적으로는 카본블랙 입자간 결합력, 용매에의 분산시 용매와의 결합력, 다른 혼합물과의 결합력 등이 적절히 제어되어, 용매 중에 카본블랙을 분산시켰을 때 균일하게 분산될 수 있고, 도전성 네트워크가 확보될 수 있도록 적절하게 응집도 이루어질 수 있는 것이다.That is, when the iodine number is in the above range, the number of unsaturated bonds (double bonds) present in the carbon black may be appropriate. Specifically, the bonding force between the carbon black particles, the bonding strength with the solvent when dispersing in the solvent, and other mixtures The bonding strength of the resin can be controlled appropriately, and the carbon black can be uniformly dispersed when the carbon black is dispersed in the solvent, and the agglomeration can be appropriately performed to ensure the conductive network.
본 발명에서 사용되는 상기 용어 "오일 흡수 수(Oil Absorption number, OAN)"는 액체(오일)를 흡수하는 특성에 대한 측정치로 시료의 구조적 특징, 특히 분산성의 정도를 나타낼 수 있는 수치로 사용될 수 있다.The term "Oil Absorption number (OAN)" used in the present invention is a measure of the property of absorbing liquid (oil) can be used as a numerical value that can indicate the structural characteristics of the sample, in particular the degree of dispersibility. .
본 발명에서 사용되는 카본블랙의 경우, 상기 오일 흡수 수(oil absorption number)는 ASTM D-2414에 의거하여 측정된 값이 100 cc/100 g 내지 200 cc/100 g인 것일 수 있다. In the case of the carbon black used in the present invention, the oil absorption number (oil absorption number) may be a value measured based on ASTM D-2414 is 100 cc / 100 g to 200 cc / 100 g.
이와 같이, 오일 흡수 수가 상기의 범위일 경우에는 카본블랙의 1차 입자들이 서로 일부 응집되어 형성된 2차 구조의 형태가 적절한 형태를 띄고 있음을 의미할 수 있으며, 이러한 2차 구조의 형태가 적절하다는 것은 카본블랙이 용매 내에서 분산이 원활하게 이루어질 수 있다는 것과 도전성 네트워크 확보시 다양한 루트를 확보할 수 있다는 것을 의미할 수 있다.As such, when the number of oil absorption is in the above range, it may mean that the secondary structure formed by agglomeration of the primary particles of carbon black partially has an appropriate shape, and the shape of the secondary structure is appropriate. This may mean that the carbon black can be smoothly dispersed in a solvent and can secure various routes in securing a conductive network.
본 발명에 따른 카본블랙이 상기의 요오드가 및 오일 흡수 수를 가짐으로써, 일반적으로 사용되는 카본블랙에 비해 용매에의 분산성이 보다 우수할 수 있고, 2차 구조의 형태가 우수하여 도전 네트워크 확보에 상당히 용이할 수 있다.Since the carbon black according to the present invention has the iodine value and the oil absorption number, dispersibility in a solvent can be better than that of carbon black generally used, and the shape of the secondary structure is excellent to secure a conductive network. Can be fairly easy.
본 발명에 따른 양극 활물질은 표면에 나노피막을 형성한 것으로서, 이 나노피막상에 카본블랙을 폴리이미드와 함께 균일하게 분포시키는 경우, 전극 슬러리에 혼합하여 사용하는 경우에 비하여 더 우수한 분산성과 적절한 2차 구조를 갖는 것이 요구된다. 따라서, 일반적으로 전극 슬러리 제조시 사용되는 카본블랙이 갖고 있는 요오드가 및 오일 흡수 수의 수치로는 나노피막상에 카본블랙을 균일하게 분산시키기 어려울 수 있다.The positive electrode active material according to the present invention is a nano-coating formed on the surface, and when the carbon black is uniformly distributed with the polyimide on the nano-coating, it has better dispersibility and proper 2 It is required to have a car structure. Therefore, it may be difficult to uniformly disperse the carbon black on the nanofilm by the numerical values of the iodine value and the oil absorption number of the carbon black generally used in preparing the electrode slurry.
그러나, 전술한 바와 같이, 상기 요오드가 및 오일 흡수 수 값을 갖는 카본블랙의 경우에는 나노피막상에 분포시킬 때에 우수한 분산성으로 인해 상당히 균일하게 분포될 수 있고, 균일하면서도 우수한 2차 구조로 인하여, 도전 네트워크 확보가 원활할 수 있다.However, as described above, in the case of the carbon black having the iodine value and the oil absorption number value, the iodine can be distributed fairly uniformly due to its excellent dispersibility when it is distributed on the nanofilm, and because of the uniform and excellent secondary structure As a result, the challenge network can be secured.
또한, 상기 카본블랙은 1차 입자, 2차 입자 또는 1차 입자와 2차 입자가 혼합되어 있는 것일 수 있으며, 상기 카본블랙이 1차 입자일 경우에는 상기 카본블랙의 평균입경은 10 nm 내지 100 nm일 수 있고, 상기 카본블랙이 2차 입자일 경우에는 상기 카본블랙의 평균입경이 1000 nm 미만일 수 있다. 또한, 상기 카본블랙이 2차 입자일 경우에는 상기 2차 입자를 1차 입자와 유사한 정도의 평균입경을 갖도록 분쇄하여 사용할 수 있다. In addition, the carbon black may be a mixture of primary particles, secondary particles or primary particles and secondary particles, when the carbon black is the primary particles, the average particle diameter of the carbon black is 10 nm to 100 When the carbon black is secondary particles, the average particle diameter of the carbon black may be less than 1000 nm. In addition, when the carbon black is secondary particles, the secondary particles may be pulverized to have an average particle diameter similar to that of the primary particles.
또한, 상기 카본블랙은 표면이 소수화처리된 것이 바람직할 수 있다. 이때, 상기 표면 소수화처리는 특별히 제한되지 않고 당업계에 통상적으로 공지된 방법에 의하여 수행할 수 있으나, 예컨대 카본블랙을 공기분위기 또는 질소분위기 하에서 450 내지 550℃의 온도범위에서 열처리하고 산 용액 또는 알칼리 용액에 담지시켜 전처리한 후 과불소화합물에 분산시킴으로써 수행할 수 있다. In addition, it may be preferable that the surface of the carbon black is hydrophobized. At this time, the surface hydrophobization treatment is not particularly limited and may be carried out by methods commonly known in the art, for example, carbon black is heat-treated in an air or nitrogen atmosphere at a temperature in the range of 450 to 550 ° C. and acid solution or alkali. It may be carried out by dispersing in a perfluorinated compound after supporting the solution by pretreatment.
본 발명에 따른 상기 나노피막은 전술한 바와 같이 상기 폴리이미드와 카본블랙을 1:0.5 내지 5 중량비로 포함할 수 있다. 상기 폴리이미드와 카본블랙의 중량비율이 1:0.5 미만인 경우, 충분한 전기 전도도를 얻기 어려울 수 있으며, 1:5을 초과하는 경우, 카본블랙이 나노피막으로부터 탈리되는 문제가 있을 수 있다. As described above, the nano-film according to the present invention may include the polyimide and carbon black in a ratio of 1: 0.5 to 5 by weight. If the weight ratio of the polyimide and the carbon black is less than 1: 0.5, it may be difficult to obtain sufficient electrical conductivity. If the weight ratio is greater than 1: 5, the carbon black may be detached from the nano-film.
또한, 상기 카본블랙은 표면 코팅된 양극 활물질 전체 100 중량%에 대해 0.05 중량% 내지 5 중량%의 함량으로 포함될 수 있으며, 바람직하게는 0.2 중량% 내지 2 중량%일 수 있다.In addition, the carbon black may be included in an amount of 0.05 wt% to 5 wt% with respect to 100 wt% of the total surface coated positive active material, and preferably 0.2 wt% to 2 wt%.
상기 나노피막의 두께는 1 nm 내지 200 nm, 바람직하게는 5 nm 내지 50 nm 일 수 있다. 상기 나노피막의 두께가 1 nm 미만인 경우 상기 나노피막으로 인한 양극 활물질과 전해액과의 부반응 효과 및 전기 전도도의 상승 효과가 미미할 수 있다. 또한, 상기 나노피막의 두께가 200 nm를 초과하는 경우 나노피막의 두께가 지나치게 증가하여 리튬 이온의 이동성이 장애가 되어 저항이 증가할 수 있다.The nanofilm thickness may be 1 nm to 200 nm, preferably 5 nm to 50 nm. When the thickness of the nanofilm is less than 1 nm, the side reaction effect of the positive electrode active material and the electrolyte due to the nanofilm and the synergistic effect of the electrical conductivity may be insignificant. In addition, when the thickness of the nano-film exceeds 200 nm, the thickness of the nano-film is excessively increased, the mobility of the lithium ions is hindered, the resistance may increase.
본 발명에 따른 상기 양극 활물질은 일반전압 및 고전압에 적용할 수 있고, 리튬을 가역적으로 삽입/탈리할 수 있는 화합물이면 특별히 제한되지 않고 사용될 수 있다.The cathode active material according to the present invention may be applied to a general voltage and a high voltage, and may be used without particular limitation as long as it is a compound capable of reversibly inserting / desorbing lithium.
구체적으로, 본 발명의 일 실시예에 따른 상기 양극 활물질은 고용량 특성을 갖는 육방정계 층상 암염 구조, 올리빈 구조, 큐빅구조를 갖는 스피넬의 리튬 전이금속 산화물, 그 외에 V2O5, TiS, MoS로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 복합 산화물을 포함할 수 있다. Specifically, the positive electrode active material according to an embodiment of the present invention is a spinel lithium transition metal oxide having a hexagonal layered rock salt structure, olivine structure, cubic structure having a high capacity characteristics, in addition to V 2 O 5 , TiS, MoS It may include any one selected from the group consisting of two or more of these complex oxides.
더욱 구체적으로, 상기 양극 활물질은 하기 화학식 1 내지 화학식 3의 산화물, 및 V2O5, TiS, MoS로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다:More specifically, the cathode active material may include any one selected from the group consisting of oxides of Formulas 1 to 3, and V 2 O 5 , TiS, and MoS, or a mixture of two or more thereof:
<화학식 1><Formula 1>
Li1 + x[NiaCobMnc]O2 (-0.5 ≤ x ≤ 0.6, 0 ≤ a, b, c ≤ 1, x+a+b+c=1임);Li 1 + x [Ni a Co b Mn c ] O 2 (−0.5 ≦ x ≦ 0.6, 0 ≦ a, b, c ≦ 1, x + a + b + c = 1);
<화학식 2><Formula 2>
LiMn2 - xMxO4 (M=Ni, Co, Fe, P, S, Zr, Ti 및 Al로 이루어진 군에서 선택되는 하나 이상의 원소, 0 ≤ x ≤ 2);LiMn 2 - x M x O 4 (M = Ni, Co, Fe, P, S, Zr, Ti and Al, at least one element selected from the group consisting of 0 ≦ x ≦ 2);
<화학식 3><Formula 3>
Li1 + aFe1 - xMx(PO4-b) Xb (M=Al, Mg, Ni, Co, Mn, Ti, Ga, Cu, V, Nb, Zr, Ce, In, Zn 및 Y 로 이루어진 군에서 선택되는 하나 이상의 원소이고, X는 F, S 및 N로 이루어진 군에서 선택되는 하나 이상의 원소이며, -0.5 ≤ a ≤ +0.5, 0 ≤ x ≤ 0.5, 0 ≤ b ≤ 0.1임)Li 1 + a Fe 1 - x M x (PO 4-b ) X b (M = Al, Mg, Ni, Co, Mn, Ti, Ga, Cu, V, Nb, Zr, Ce, In, Zn and Y At least one element selected from the group consisting of X, at least one element selected from the group consisting of F, S, and N, wherein -0.5 ≤ a ≤ +0.5, 0 ≤ x ≤ 0.5, and 0 ≤ b ≤ 0.1)
더욱 구체적으로, 상기 양극 활물질은 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li[NiaCobMnc]O2 (0 < a, b, c ≤ 1, a+b+c=1이고) 및 LiFePO4로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다.More specifically, the positive electrode active material is LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , Li [Ni a Co b Mn c ] O 2 (0 <a, b, c ≤ 1, a + b + c = 1) and LiFePO 4 and any one or a mixture of two or more thereof selected from the group consisting of.
또한, 본 발명은 상기의 표면 코팅된 양극 활물질의 제조방법을 제공한다.In addition, the present invention provides a method for producing the surface-coated positive electrode active material.
본 발명의 일 실시예에 따른 상기 표면 코팅된 양극 활물질의 제조방법은 폴리아믹산이 희석된 유기 용매에 카본블랙을 혼합 분산시킨 혼합 용액을 제조하는 단계(단계 1); 상기 혼합 용액에 양극 활물질을 분산시켜 양극 활물질 표면에 폴리아믹산 및 카본블랙을 포함하는 피막을 형성하는 단계(단계 2); 및 상기 피막이 형성된 양극 활물질을 이미드화 반응시키는 단계(단계 3)를 포함하고, 상기 카본블랙을 양극 활물질 100 중량%를 기준으로 0.05 중량% 내지 5 중량%의 양으로 사용하는 것을 특징으로 한다.Method for producing a surface-coated positive electrode active material according to an embodiment of the present invention comprises the steps of preparing a mixed solution in which carbon black is mixed and dispersed in an organic solvent in which polyamic acid is diluted (step 1); Dispersing a cathode active material in the mixed solution to form a film including polyamic acid and carbon black on the surface of the cathode active material (step 2); And imidating the positive electrode active material on which the coating is formed (step 3), wherein the carbon black is used in an amount of 0.05 wt% to 5 wt% based on 100 wt% of the positive electrode active material.
상기 단계 1은, 나노피막을 형성하는 물질을 균일하게 분산시킨 혼합 용액을 제조하기 위한 단계로 폴리아믹산이 희석된 유기 용매에 카본블랙을 첨가하고 혼합하여 분산시켜 수행할 수 있다. Step 1 is a step for preparing a mixed solution in which the material forming the nano-film is uniformly dispersed, and may be performed by adding and mixing carbon black to the organic solvent in which the polyamic acid is diluted.
상기 단계 1에서 카본블랙과 폴리아믹산이 희석된 유기 용매의 혼합 분산시, 분산제를 더 포함하여 분산이 수행될 수 있다. 상기 분산제는 상기 카본블랙과 폴리아믹산이 희석된 유기 용매에 혼합되어, 유기 용매 내에서 카본블랙이 전체적으로 균일하게 분산될 수 있도록 도와주는 역할을 할 수 있는 화합물이라면 특별히 제한되지 않으며, 예를 들면, 스티렌-부타디엔-스티렌 블록 폴리머(SBS block polymer) 또는 스티렌-부타디엔-에틸렌-스티렌 블록 폴리머(SBES block polymer) 등의 블록 폴리머가 분산제로서 적용될 수 있다.At the time of mixing and dispersing the organic solvent in which carbon black and the polyamic acid are diluted in step 1, the dispersing agent may be further included. The dispersant is not particularly limited as long as it is mixed with the organic solvent in which the carbon black and the polyamic acid are diluted, and may serve to help the carbon black to be uniformly dispersed in the organic solvent. Block polymers such as styrene-butadiene-styrene block polymer or styrene-butadiene-ethylene-styrene block polymer may be applied as a dispersant.
상기 단계 1에서 카본블랙과 폴리아믹산이 희석된 유기 용매의 혼합 분산은, 보통 상온(약 15 내지 30℃)에서 회전속도 10,000 rpm 이상으로 구동 가능한 믹서를 이용하여 수행될 수 있다. 상기 온도 범위와 회전속도 범위는 폴리아믹산이 희석된 유기용매 내에서 섬유형 탄소재가 원활하게 분산될 수 있는 조건일 수 있으며, 온도가 과도하게 높을 경우 폴리아믹산이 폴리이미드로 전환되는 폴리이미드화 반응이 조기에 진행될 우려가 있다.Mixing and dispersing the organic solvent in which carbon black and the polyamic acid are diluted in step 1 may be performed using a mixer that can be driven at a rotational speed of 10,000 rpm or more at normal temperature (about 15 to 30 ° C.). The temperature range and the rotational speed range may be a condition in which the fibrous carbon material may be smoothly dispersed in the organic solvent in which the polyamic acid is diluted. If the temperature is excessively high, the polyimide reaction converts the polyamic acid to polyimide. There is a risk of this happening early.
한편, 양극 활물질에 카본블랙이 먼저 코팅되거나, 폴리이미드가 먼저 코팅되는 경우와 같이 각각이 별개로 코팅되는 경우에는, 카본블랙을 코팅함으로써 도전성 네트워크를 확보할 수 있고, 폴리이미드를 코팅함으로써 전해액과의 접촉을 방지할 수 있으나, 카본블랙이 내부에 코팅될 경우에는 도전성 네트워크 확보가 잘 되지 않을 수 있고, 폴리이미드가 내부에 코팅될 경우에는 도전성 나노입자가 전해액과 접촉하는 것을 방지할 수 없는 등, 카본블랙 및 폴리이미드의 역할이 서로 충돌하는 경우가 발생할 우려가 있다. On the other hand, when carbon black is coated on the positive electrode active material first, or when each is coated separately, such as when polyimide is coated first, a conductive network can be secured by coating carbon black, and by coating polyimide, However, when carbon black is coated inside, the conductive network may not be secured well. When polyimide is coated inside, the conductive nanoparticles may not be prevented from contacting the electrolyte. There exists a possibility that the role of carbon black and a polyimide may collide with each other.
그러나, 본 발명의 일 실시예에 따른 양극 활물질의 제조방법에 따르면, 상기 단계 1을 수행함으로써, 양극 활물질에 카본블랙과 폴리이미드가 균일하게 분산된 나노피막이 형성될 수 있고, 이에 도전성 네트워크를 용이하게 확보할 수 있으며, 전해액과의 접촉 방지에 우수한 역할을 하여 부반응이 효율적으로 방지될 수 있다.However, according to the method of manufacturing a positive electrode active material according to an embodiment of the present invention, by performing step 1, a nano film in which carbon black and polyimide are uniformly dispersed in the positive electrode active material may be formed, thereby facilitating a conductive network. It can be ensured, and the side reaction can be effectively prevented by playing an excellent role in preventing contact with the electrolyte.
본 발명에 따른 상기 폴리아믹산은 전술한 나노피막에 포함되는 폴리이미드를 형성시키기 위한 전구체 물질로, 4 성분계 폴리아믹산을 포함할 수 있다. The polyamic acid according to the present invention is a precursor material for forming the polyimide included in the above-described nanofilm, and may include a four-component polyamic acid.
상기 4성분계 폴리아믹산은 피로멜리틱 디언하이드리드(pyromellitic dianhydride), 바이페닐 디언하이드리드(biphenyl dianhydride), 페닐렌다이아민(phenylenediamine) 및 옥시다이아닐린(oxydianiline)을 포함하는 폴리아믹산인 것이 바람직할 수 있다. The four-component polyamic acid may be a polyamic acid including pyromellitic dianhydride, biphenyl dianhydride, phenylenediamine, and oxydianiline. Can be.
또한, 상기 폴리아믹산은 특별히 제한되지 않고 당업계에 통상적으로 공지된 방법에 의하여 제조하여 사용하거나 시판되고 있는 물질을 구입하여 사용할 수 있으며, 상기 폴리아믹산을 제조하여 사용할 경우 상기 폴리아믹산은 방향족 무수물과 방향족 디아민을 극성 방향족 용매 내에서 반응시켜 수득할 수 있다. 이때, 상기 방향족 무수물과 방향족 디아민은 동일 당량으로 반응시킬 수 있다.In addition, the polyamic acid is not particularly limited and may be prepared and used by a method commonly known in the art, or may be used by purchasing a commercially available material. When the polyamic acid is prepared and used, the polyamic acid may be used as an aromatic anhydride. Aromatic diamines can be obtained by reacting in polar aromatic solvents. At this time, the aromatic anhydride and the aromatic diamine can be reacted with the same equivalent weight.
구체적으로, 상기 방향족 무수물은 특별히 제한되는 것은 아니나, 예컨대 프탈릭 언하이드라이드, 피로멜리틱 디언하이드리드, 3,3'4,4'-바이페닐테트라카복실릭 디언하이드라이드, 4'4-옥시디프탈릭 언하이드라이드, 3,3'4,4'-벤조페논테트라카르복실릭 디언하이드라이드, 트리멜리틱 에틸렌 글리콜, 4,4'-(4'4-이소프로필바이페녹시)바이프탈릭 언하이드라이드 및 트리멜리틱 언하이드라이드로 이루어진 군으로부터 선택된 어느 하나, 또는 이들 중 2종 이상의 혼합물일 수 있다.Specifically, the aromatic anhydride is not particularly limited, for example, phthalic anhydride, pyromellitic dihydride, 3,3'4,4'-biphenyltetracarboxylic dianhydride, 4'4-oxy Diphthalic anhydride, 3,3'4,4'-benzophenonetetracarboxylic dianhydride, trimellitic ethylene glycol, 4,4 '-(4'4-isopropylbiphenoxy) biphthalic It may be any one selected from the group consisting of an anhydride and a trimellitic anhydride, or a mixture of two or more thereof.
또한, 상기 방향족 디아민은 특별히 제한되는 것은 아니나, 예컨대 4,4'-옥시다이아닐린(4,4'-oxydianiline), p-페닐 다이아민, 2,2-비스(4-(4-아미노페녹시)-페닐)프로판, p-메틸렌다이아닐린, 프로필테트라메틸다이실록산, 폴리아로매틱 아민, 4,4'-다이아미노다이페닐 설폰, 2,2'-비스(트리플루오로메틸)-4,4'-다이아미노바이페닐 및 3,5-다이아미노-1,2,4-트리아졸로 이루어진 군으로부터 선택된 어느 하나, 또는 이들 중 2종 이상의 혼합물일 수 있다.In addition, the aromatic diamine is not particularly limited, for example, 4,4'-oxydianiline, p-phenyl diamine, 2,2-bis (4- (4-aminophenoxy ) -Phenyl) propane, p-methylenedianiline, propyltetramethyldisiloxane, polyaromatic amine, 4,4'-diaminodiphenyl sulfone, 2,2'-bis (trifluoromethyl) -4,4 It may be any one selected from the group consisting of '-diaminobiphenyl and 3,5-diamino-1,2,4-triazole, or a mixture of two or more thereof.
상기 폴리아믹산은 유기 용매 100 중량%를 기준으로 0.1 중량% 내지 1 중량%로 사용될 수 있다. The polyamic acid may be used in an amount of 0.1 wt% to 1 wt% based on 100 wt% of the organic solvent.
상기 유기 용매는 상기 폴리아믹산을 용해할 수 있는 용매라면 특별히 제한되는 것은 아니나, 예컨대 시클로헥산, 사염화탄소, 클로로포름, 메틸렌클로라이드, 디메틸포름아마이드, 디메틸아세트아마이드 및 N-메틸피롤리돈으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.The organic solvent is not particularly limited as long as it is a solvent capable of dissolving the polyamic acid, but is selected from the group consisting of cyclohexane, carbon tetrachloride, chloroform, methylene chloride, dimethylformamide, dimethylacetamide and N-methylpyrrolidone. It may be any one or a mixture of two or more thereof.
또한, 본 발명에 따른 상기 카본블랙은 전술한 바와 같이 상기 양극 활물질 100 중량%에 대하여 0.05 중량% 내지 5 중량%로 사용할 수 있으며, 바람직하게는 0.2 중량% 내지 2 중량%로 사용할 수 있다. In addition, the carbon black according to the present invention may be used in the amount of 0.05% to 5% by weight with respect to 100% by weight of the positive electrode active material, preferably 0.2% to 2% by weight.
상기 단계 2는, 양극 활물질 표면에 피막을 형성시키기 위하여 상기 단계 1에서 제조된 혼합 용액에 양극 활물질을 분산시켜 상기 양극 활물질 표면에 폴리아믹산 및 카본블랙을 포함하는 피막을 형성시키는 단계로, 상기 혼합 용액에 양극 활물질을 첨가하고 균일하게 분산시킨 후 가열, 농축하여 용매를 제거하여 수행할 수 있다.In the step 2, in order to form a film on the surface of the positive electrode active material, the positive electrode active material is dispersed in the mixed solution prepared in step 1 to form a film containing polyamic acid and carbon black on the surface of the positive electrode active material, the mixing The positive electrode active material may be added to the solution, uniformly dispersed, and heated and concentrated to remove the solvent.
상기 양극 활물질의 분산은 특별히 제한되는 것은 아니나, 예컨대 상기 혼합 용액에 양극 활물질을 투입한 후 고속 교반기를 이용하여 1시간 이상 교반시켜 수행한 것일 수 있다. Dispersion of the positive electrode active material is not particularly limited, but for example, the positive electrode active material may be added to the mixed solution, followed by stirring for 1 hour or more using a high speed stirrer.
상기 단계 3은, 표면에 나노피막이 형성된 양극 활물질을 제조하기 위하여 상기 단계 2에서 제조된 피막을 포함하는 양극 활물질을 이미드화 반응시키는 단계이다. Step 3 is a step of imidizing the cathode active material including the film prepared in step 2 to produce a cathode active material having a nano-film formed on the surface.
상기 이미드화 반응은 상기 단계 2에서 얻은 상기 피막을 포함하는 양극 활물질을 약 300 내지 400℃까지 50 내지 100℃ 간격으로 3℃/분의 속도로 승온시키고, 300 내지 400℃의 범위에서 10분 내지 120분 동안 유지함으로써 이루어질 수 있다. 또한, 50 내지 100℃ 간격으로 승온 후, 예를 들어 10분 내지 120분 동안 유지시킨 후, 다시 승온시킬 수 있다. 더욱 구체적으로, 상기 피막을 포함하는 양극 활물질을 60℃, 120℃, 200℃, 300℃, 400℃로 각각 3℃/분의 속도로 승온시키고, 60℃에서 30분, 120℃에서 30분, 200℃에서 60분, 300℃에서 60분, 400℃에서 10분 동안 유지시켜, 이미드화 반응을 진행시킬 수 있다.In the imidization reaction, the positive electrode active material including the film obtained in step 2 is heated to a rate of 3 ° C./minute at intervals of 50 ° C. to 100 ° C. to about 300 ° C. to 400 ° C., and 10 minutes to 300 ° C. in a range of 300 ° C. to 400 ° C. By holding for 120 minutes. In addition, after the temperature is raised at intervals of 50 to 100 ° C., for example, it may be maintained for 10 minutes to 120 minutes, and then heated again. More specifically, the positive electrode active material including the coating is heated at a rate of 3 ° C./minute at 60 ° C., 120 ° C., 200 ° C., 300 ° C., and 400 ° C., respectively, at 60 ° C. for 30 minutes, at 120 ° C. for 30 minutes, The imidation reaction may be advanced by maintaining at 200 ° C. for 60 minutes, at 300 ° C. for 60 minutes, and at 400 ° C. for 10 minutes.
아울러, 본 발명은 상기 표면 코팅된 양극 활물질을 포함하는 양극을 제공한다. In addition, the present invention provides a positive electrode including the surface-coated positive electrode active material.
상기 양극은 당 분야에 알려져 있는 통상적인 방법으로 제조할 수 있다. 예컨대, 상기 표면 코팅된 양극 활물질에 용매, 필요에 따라 바인더, 도전제, 충진제, 분산제를 혼합 및 교반하여 양극 활물질 슬러리를 제조한 후 이를 양극 집전체에 도포(코팅)하고 압축한 뒤 건조하여 양극을 제조할 수 있다.The positive electrode can be prepared by conventional methods known in the art. For example, a solvent, a binder, a conductive agent, a filler, and a dispersant may be mixed and stirred in the surface-coated positive electrode active material to prepare a positive electrode active material slurry, which is then coated (coated) on a positive electrode current collector, compressed, and then dried to obtain a positive electrode. Can be prepared.
상기 양극 집전체는 일반적으로 3 ㎛ 내지 500 ㎛의 두께인 것을 사용할 수 있으며, 상기 양극 활물질 슬러리가 용이하게 접착할 수 있는 금속으로 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 어느 것이라도 사용할 수 있다. 양극 집전체의 비제한적인 예로는 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸의 표면에 카본, 니켈, 티탄 또는 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 활물질과의 결합을 위하여 표면에 미세한 요철을 형성된 형태이거나 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The positive electrode current collector may be generally used having a thickness of 3 ㎛ to 500 ㎛, any of the positive electrode active material slurry is a metal that can easily adhere as long as it has a high conductivity without causing chemical changes in the battery. Can also be used. Non-limiting examples of the positive electrode current collector include copper, stainless steel, aluminum, nickel, titanium, calcined carbon or a surface treated with carbon, nickel, titanium, or silver on the surface of aluminum or stainless steel, and an aluminum-cadmium alloy. Can be used. In addition, in order to bond with the positive electrode active material, fine concavo-convex is formed on the surface, or may be used in various forms such as film, sheet, foil, net, porous body, foam, nonwoven fabric.
상기 양극을 형성하기 위한 용매로는 NMP(N-메틸 피롤리돈), DMF(디메틸 포름아미드), 아세톤, 디메틸 아세트아미드 등의 유기 용매 또는 물 등이 있으며, 이들 용매는 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다. 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 바인더, 도전제를 용해 및 분산시킬 수 있는 정도이면 충분하다.The solvent for forming the positive electrode includes an organic solvent such as NMP (N-methyl pyrrolidone), DMF (dimethyl formamide), acetone, dimethyl acetamide or water, and these solvents alone or in combination of two or more. Can be mixed and used. The amount of the solvent used is sufficient to dissolve and disperse the positive electrode active material, the binder, and the conductive agent in consideration of the coating thickness of the slurry and the production yield.
상기 바인더로는 상기 양극 활물질과 도전제의 결합과 상기 양극 집전체에 대한 결합에 조력하는 성분으로서, 예컨대 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산 (poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 고분자, 또는 다양한 공중합체 등의 다양한 종류의 바인더 고분자가 사용될 수 있다. The binder is a component that assists the bonding between the positive electrode active material and the conductive agent and the positive electrode current collector, for example, polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene Fluoride (polyvinylidenefluoride), polyacrylonitrile, polymethylmethacrylate, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, Tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluorine rubber, poly acrylic acid and hydrogens thereof , Polymers substituted with Na or Ca, or Various kinds of binder polymers such as various copolymers can be used.
상기 도전제는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. The conductive agent is not particularly limited as long as it has conductivity without causing chemical change in the battery. Examples of the conductive agent include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, farnes black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Conductive tubes such as carbon nanotubes; Metal powders such as fluorocarbon, aluminum and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 필요에 따라 사용 여부를 정할 수 있으며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니나, 예컨대 폴리에틸렌, 폴리프로필렌 등의 올레핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질일 수 있다.The filler is a component that suppresses the expansion of the positive electrode and can be used or not as necessary, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery. For example, an olefin polymer such as polyethylene or polypropylene may be used. ; It may be a fibrous material such as glass fiber, carbon fiber.
상기 분산제는 수계 분산제 또는 N-메틸-2-피롤리돈 등의 유기 분산제를 사용할 수 있다. The dispersant may be an aqueous dispersant or an organic dispersant such as N-methyl-2-pyrrolidone.
상기 도포는 당업계에 통상적으로 공지된 방법에 의하여 수행할 수 있으나, 에컨대 상기 양극 활물질 슬러리를 양극 집전체 상면에 분배시킨 후 닥터 플레이드(doctor blade) 등을 사용하여 균일하게 분산시켜 수행할 수 있다. 이외에도, 다이 캐스팅(die casting), 콤마 코팅(comma coating), 스크린 프린팅(screen printing) 등의 방법을 통하여 수행할 수 있다. The coating may be performed by a method commonly known in the art, but for example, the positive electrode active material slurry may be distributed on the upper surface of the positive electrode current collector and then uniformly dispersed using a doctor blade or the like. Can be. In addition, the method may be performed by a die casting method, a comma coating method, a screen printing method, or the like.
상기 건조는 특별히 제한되는 것은 아니나, 50 내지 200℃의 진공오븐에서 1일 이내로 수행하는 것일 수 있다. The drying is not particularly limited, but may be performed within one day in a vacuum oven at 50 to 200 ℃.
더 나아가, 본 발명은 상기의 양극, 음극 및 상기 양극과 음극 사이에 개재된 분리막을 포함하는 리튬 이차전지를 제공한다Furthermore, the present invention provides a lithium secondary battery including the positive electrode, the negative electrode, and a separator interposed between the positive electrode and the negative electrode.
본 발명의 일 실시예에 따른 상기 리튬 이차전지는 폴리이미드 및 카본블랙을 포함하는 나노피막이 표면에 코팅된 양극 활물질을 포함하는 상기의 양극과 음극, 상기 양극과 음극 사이에 개재된 분리막 및 전해질을 포함하는 것을 특징으로 한다. The lithium secondary battery according to an embodiment of the present invention comprises a separator and an electrolyte interposed between the positive electrode and the negative electrode, the positive electrode and the negative electrode including a positive electrode active material coated on the surface of the nano-film including polyimide and carbon black It is characterized by including.
또한, 본 발명의 일 실시예에 따른 상기 리튬 이차전지는 일반전압 및 고전압 영역 모두에서 우수한 수명 특성을 나타낼 수 있으며, 특히 고온 및 고전압 여역에서의 수명 특성이 더욱 우수할 수 있다. 구체적으로, 상기 리튬 이차전지의 충전 전압은 4.2V 내지 5.0V인 것을 특징으로 한다.In addition, the lithium secondary battery according to an embodiment of the present invention may exhibit excellent life characteristics in both the normal voltage and the high voltage region, and may be particularly excellent in the high temperature and high voltage region. Specifically, the charging voltage of the lithium secondary battery is characterized in that the 4.2V to 5.0V.
본 명세서에서 사용되는 용어 "일반전압"은 리튬 이차전지의 충전 전압이 3.0V 내지 4.2V 미만 범위의 영역인 경우를 의미하고, 용어 "고전압"은 충전 전압이 4.2V 내지 5.0V 범위의 영역인 경우를 의미할 수 있으며, 용어 "고온"은 45 내지 65℃의 범위를 의미할 수 있다.The term "general voltage" as used herein refers to the case where the charging voltage of the lithium secondary battery is in the range of 3.0V to less than 4.2V, the term "high voltage" is the region of the charge voltage is 4.2V to 5.0V range It may mean a case, the term "high temperature" may mean a range of 45 to 65 ℃.
상기 음극은 특별히 제한되는 것은 아니나, 음극 집전체 일측 상면에 음극 활물질 슬러리를 도포한 후 건조하여 제조할 수 있으며, 상기 음극 활물질 슬러리는 음극 활물질 이외에 필요에 따라 바인더, 도전제, 충진제 및 분산제와 같은 첨가제를 포함할 수 있다. The negative electrode is not particularly limited, but may be prepared by applying a negative electrode active material slurry on the upper surface of one side of the negative electrode current collector and then drying the negative electrode active material slurry, in addition to the negative electrode active material, such as a binder, a conductive agent, a filler, and a dispersant as necessary. It may include an additive.
본 발명의 일 실시예에 따른 상기 음극에 사용되는 음극 활물질로는 통상적으로 리튬 이온이 흡장 및 방출될 수 있는 탄소재, 리튬 금속, 규소 또는 주석 등을 사용할 수 있다. 바람직하게는 탄소재를 사용할 수 있는데, 탄소재로는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성 탄소가 대표적이다. As the negative electrode active material used for the negative electrode according to an embodiment of the present invention, a carbon material, lithium metal, silicon, tin, or the like, in which lithium ions may be occluded and released, may be used. Preferably, a carbon material may be used, and as the carbon material, both low crystalline carbon and high crystalline carbon may be used. Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is natural graphite, Kish graphite, pyrolytic carbon, liquid crystal pitch carbon fiber. High temperature calcined carbon such as (mesophase pitch based carbon fiber), meso-carbon microbeads, Mesophase pitches and petroleum or coal tar pitch derived cokes.
상기 음극 집전체는 앞서 언급한 양극 집전체와 동일한 것이거나, 포함되는 것일 수 있으며, 상기 음극에 사용되는 바인더, 도전제, 충진제 및 분산제와 같은 첨가제는 앞서 언급한 양극 제조에 사용된 것과 동일하거나 포함되는 것일 수 있다.The negative electrode current collector may be the same as or included with the aforementioned positive electrode current collector, and additives such as binders, conductive agents, fillers, and dispersants used in the negative electrode may be the same as those used in the aforementioned positive electrode manufacture. It may be included.
또한, 상기 분리막으로는 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막일 수 있으며, 일반적으로 0.01 ㎛ 내지 10 ㎛의 기공직경, 5 ㎛ 내지 300 ㎛의 두께를 갖는 것일 수 있다. 이러한 분리막으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.In addition, the separator may be an insulating thin film having high ion permeability and mechanical strength, and may generally have a pore diameter of 0.01 μm to 10 μm and a thickness of 5 μm to 300 μm. Such separators include porous polymer films made of polyolefin-based polymers such as ethylene homopolymers, propylene homopolymers, ethylene / butene copolymers, ethylene / hexene copolymers and ethylene / methacrylate copolymers. These may be used alone or in combination thereof, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of high melting glass fibers, polyethylene terephthalate fibers, or the like may be used, but is not limited thereto.
본 발명에서 사용되는 전해질은 전해질에 통상적으로 사용되는 리튬염을 포함할 수 있으며, 특별히 제한되는 것은 아니다. The electrolyte used in the present invention may include a lithium salt commonly used in the electrolyte, and is not particularly limited.
상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-,(SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택된 어느 하나 이상일 수 있다. The lithium salt of the anion is F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 - , (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -, SCN - one selected from the group consisting of - and (CF 3 CF 2 SO 2) 2 N It may be abnormal.
본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다. Examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery. no.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치 (pouch)형 또는 코인 (coin)형 등이 될 수 있다.The external shape of the lithium secondary battery of the present invention is not particularly limited, but may be cylindrical, square, pouch type, or coin type using a can.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.The lithium secondary battery according to the present invention may not only be used in a battery cell used as a power source for a small device, but also preferably used as a unit battery in a medium-large battery module including a plurality of battery cells.
상기 중대형 디바이스의 바람직한 예로는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템 등을 들 수 있지만, 이들 만으로 한정되는 것은 아니다.Preferred examples of the medium-to-large device include, but are not limited to, electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and electric power storage systems.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, the present invention will be described in detail with reference to Examples. However, embodiments according to the present invention can be modified in many different forms, the scope of the present invention should not be construed as limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
제조예Production Example 1  One
디메틸아세트아마이드에 폴리아믹산이 0.5 중량%의 농도가 되도록 희석시킨 용액 20g에 요오드가가 200 mg/g이고, 오일 흡수 수가 150 cc/100 g이며, 평균입경이 200 nm인 카본블랙 0.1g을 첨가하여 균일하게 분산시켜 폴리아믹산 및 카본블랙 혼합 용액을 제조하였다.To 20 g of a solution diluted to a concentration of 0.5% by weight of polyamic acid in dimethylacetamide, 0.1 g of carbon black having an iodine value of 200 mg / g, an oil absorption of 150 cc / 100 g, and an average particle diameter of 200 nm was added. The mixture was uniformly dispersed to prepare a mixed solution of polyamic acid and carbon black.
제조된 혼합 용액에 양극 활물질로 LiNi0 . 6Mn0 . 2Co0 . 2O2 입자 20g을 투입한 후, 1시간 동안 고속 교반기를 이용하여 교반하였다. 교반을 지속하면서 용매의 끓는 점까지 온도를 상승시켜 용매를 증발시킴으로써 폴리아믹산과 카본블랙을 포함하는 피막이 표면에 코팅된 양극 활물질을 제조하였다.LiNi 0 as a positive electrode active material in the prepared mixed solution . 6 Mn 0 . 2 Co 0 . 20 g of 2 O 2 particles were added thereto, followed by stirring using a high speed stirrer for 1 hour. The positive electrode active material coated on the surface of the film containing polyamic acid and carbon black was prepared by increasing the temperature to the boiling point of the solvent while evaporating the solvent while evaporating the solvent.
상기 제조된 폴리아믹산 및 카본블랙을 포함하는 피막이 표면에 코팅된 양극 활물질을 60℃, 120℃, 200℃, 300℃, 400℃로 각각 3 ℃/분의 속도로 승온시키고, 60℃에서 30분, 120℃에서 30분, 200℃에서 60분, 300℃에서 60분, 400℃에서 10분 동안 유지시켜, 이미드화 반응을 진행시켰다. 상기 이미드화 반응이 완료되면서 폴리이미드와 카본블랙을 포함하는 나노피막이 표면에 코팅된 LiNi0 . 6Mn0 . 2Co0 . 2O2 양극 활물질을 제조하였다. 이때, 상기 제조된 나노피막 내에 폴리이미드 및 카본블랙은 1:0.5의 중량비를 나타내었다.The cathode active material coated on the surface of the film containing the polyamic acid and carbon black prepared above was heated to 60 ° C., 120 ° C., 200 ° C., 300 ° C., and 400 ° C. at a rate of 3 ° C./min, respectively, at 60 ° C. for 30 minutes. , 30 minutes at 120 ° C, 60 minutes at 200 ° C, 60 minutes at 300 ° C, and 10 minutes at 400 ° C to proceed with the imidization reaction. LiNi 0 coated on the surface of the nano-film including the polyimide and carbon black as the imidization reaction is completed . 6 Mn 0 . 2 Co 0 . A 2 0 2 positive electrode active material was prepared. At this time, the polyimide and carbon black in the prepared nano-film showed a weight ratio of 1: 0.5.
제조예Production Example 2 2
요오드가가 200 mg/g이 아닌 400 mg/100 g인 카본블랙을 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법을 통하여 폴리이미드 및 카본블랙을 포함하는 나노피막이 표면에 코팅된 LiNi0 . 6Mn0 . 2Co0 . 2O2 양극 활물질을 제조하였다. LiNi 0 coated on the surface of the nano-film including polyimide and carbon black by the same method as in Preparation Example 1, except that the carbon black with iodine value of 400 mg / 100 g instead of 200 mg / g . 6 Mn 0 . 2 Co 0 . 2 O 2 A positive electrode active material was prepared.
제조예Production Example 3 3
요오드가가 300 mg/g이고, 오일 흡수 수가 100 cc/100 g인 카본블랙을 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법을 통하여 폴리이미드 및 카본블랙을 포함하는 나노피막이 표면에 코팅된 LiNi0 . 6Mn0 . 2Co0 . 2O2 양극 활물질을 제조하였다. LiNi coated on the surface of the nano-film including polyimide and carbon black by the same method as Preparation Example 1 except that carbon black having an iodine value of 300 mg / g and an oil absorption number of 100 cc / 100 g was used. 0 . 6 Mn 0 . 2 Co 0 . A 2 0 2 positive electrode active material was prepared.
제조예Production Example 4 4
요오드가가 300 mg/g이고, 오일 흡수 수가 200 cc/100 g인 카본블랙을 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법을 통하여 폴리이미드 및 카본블랙을 포함하는 나노피막이 표면에 코팅된 LiNi0 . 6Mn0 . 2Co0 . 2O2 양극 활물질을 제조하였다. LiNi coated on the surface of the nano-film including polyimide and carbon black by the same method as Preparation Example 1 except that carbon black having an iodine value of 300 mg / g and an oil absorption number of 200 cc / 100 g was used. 0 . 6 Mn 0 . 2 Co 0 . A 2 0 2 positive electrode active material was prepared.
제조예Production Example 5 5
최종 제조된 나노피막 내에 폴리이미드 및 카본블랙이 1:5의 중량비를 갖도록 투입되는 폴리아믹산과 카본블랙 양을 조절한 것을 제외하고는 상기 제조예 1과 동일한 방법을 통하여 폴리이미드 및 카본블랙을 포함하는 나노피막이 표면에 코팅된 LiNi0 . 6Mn0 . 2Co0 . 2O2 양극 활물질을 제조하였다. Including the polyimide and carbon black through the same method as in Preparation Example 1, except that the amount of polyamic acid and carbon black added so that the polyimide and carbon black have a weight ratio of 1: 5 in the final nano-film prepared. LiNi 0 coated on the surface . 6 Mn 0 . 2 Co 0 . A 2 0 2 positive electrode active material was prepared.
비교 compare 제조예Production Example 1 One
표면 코팅되지 않은 LiNi0 . 6Mn0 . 2Co0 . 2O2을 사용하였다.LiNi 0 without surface coating . 6 Mn 0 . 2 Co 0 . 2 0 2 was used.
비교 compare 제조예Production Example 2 2
상기 제조예 1에서 카본블랙을 첨가하지 않은 것을 제외하고는, 상기 제조예 1과 동일한 방법을 수행하여 폴리이미드로 표면 코팅된 LiNi0 . 6Mn0 . 2Co0 . 2O2 양극 활물질을 제조하였다. Except that carbon black was not added in Preparation Example 1, LiNi 0. The surface coating of the polyimide was carried out in the same manner as in Preparation Example 1 . 6 Mn 0 . 2 Co 0 . A 2 0 2 positive electrode active material was prepared.
비교 compare 제조예Production Example 3 3
요오드가가 150 mg/g이고, 오일 흡수 수가 150 cc/100 g인 카본블랙을 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법을 통하여 폴리이미드 및 카본블랙을 포함하는 나노피막이 표면에 코팅된 LiNi0 . 6Mn0 . 2Co0 . 2O2 양극 활물질을 제조하였다. LiNi coated on the surface of the nano-film including polyimide and carbon black by the same method as Preparation Example 1 except that carbon black having an iodine value of 150 mg / g and an oil absorption number of 150 cc / 100 g was used. 0 . 6 Mn 0 . 2 Co 0 . A 2 0 2 positive electrode active material was prepared.
비교 compare 제조예Production Example 4 4
요오드가가 450 mg/g이고, 오일 흡수 수가 150 cc/100 g인 카본블랙을 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법을 통하여 폴리이미드 및 카본블랙을 포함하는 나노피막이 표면에 코팅된 LiNi0 . 6Mn0 . 2Co0 . 2O2 양극 활물질을 제조하였다.LiNi coated on the surface of the nano-film including polyimide and carbon black by the same method as Preparation Example 1 except that carbon black having an iodine value of 450 mg / g and an oil absorption number of 150 cc / 100 g was used. 0 . 6 Mn 0 . 2 Co 0 . A 2 0 2 positive electrode active material was prepared.
비교 compare 제조예Production Example 5 5
요오드가가 300 mg/g이고, 오일 흡수 수가 50 cc/100 g인 카본블랙을 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법을 통하여 폴리이미드 및 카본블랙을 포함하는 나노피막이 표면에 코팅된 LiNi0 . 6Mn0 . 2Co0 . 2O2 양극 활물질을 제조하였다.LiNi coated on the surface of the nano-film including polyimide and carbon black by the same method as Preparation Example 1 except that carbon black having an iodine value of 300 mg / g and an oil absorption number of 50 cc / 100 g was used. 0 . 6 Mn 0 . 2 Co 0 . A 2 0 2 positive electrode active material was prepared.
비교 compare 제조예Production Example 6 6
요오드가가 300 mg/g이고, 오일 흡수 수가 250 cc/100 g인 카본블랙을 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법을 통하여 폴리이미드 및 카본블랙을 포함하는 나노피막이 표면에 코팅된 LiNi0 . 6Mn0 . 2Co0 . 2O2 양극 활물질을 제조하였다.LiNi coated on the surface of the nano-film including polyimide and carbon black by the same method as Preparation Example 1 except that carbon black having an iodine value of 300 mg / g and an oil absorption number of 250 cc / 100 g was used. 0 . 6 Mn 0 . 2 Co 0 . A 2 0 2 positive electrode active material was prepared.
비교 compare 제조예Production Example 7 7
최종 제조된 나노피막 내에 폴리이미드 및 카본블랙이 1:0.1의 중량비를 갖도록 투입되는 폴리아믹산과 카본블랙 양을 조절한 것을 제외하고는 상기 제조예 1과 동일한 방법을 통하여 폴리이미드 및 카본블랙을 포함하는 나노피막이 표면에 코팅된 LiNi0 . 6Mn0 . 2Co0 . 2O2 양극 활물질을 제조하였다.Including the polyimide and carbon black through the same method as in Preparation Example 1, except that the amount of polyamic acid and carbon black added so that the polyimide and carbon black have a weight ratio of 1: 0.1 in the final nano-film prepared LiNi 0 coated on the surface . 6 Mn 0 . 2 Co 0 . A 2 0 2 positive electrode active material was prepared.
비교 compare 제조예Production Example 8 8
최종 제조된 나노피막 내에 폴리이미드 및 카본블랙이 1:15의 중량비를 갖도록 투입되는 폴리아믹산과 카본블랙 양을 조절한 것을 제외하고는 상기 제조예 1과 동일한 방법을 통하여 폴리이미드 및 카본블랙을 포함하는 나노피막이 표면에 코팅된 LiNi0 . 6Mn0 . 2Co0 . 2O2 양극 활물질을 제조하였다.Polyimide and carbon black were included in the same manner as in Preparation Example 1, except that the amount of polyamic acid and carbon black added so that the polyimide and carbon black had a weight ratio of 1:15 in the finally prepared nanofilm. LiNi 0 coated on the surface . 6 Mn 0 . 2 Co 0 . A 2 0 2 positive electrode active material was prepared.
실시예Example 1 One
양극 제조Anode manufacturing
상기 제조예 1에서 제조된 표면 코팅된 LiNi0 . 6Mn0 . 2Co0 . 2O2 양극 활물질, 도전제로 카본 블랙(carbon black), 바인더로 폴리비닐리덴 플루오라이드(PVdF)를 95:3:2의 중량비로 혼합하고, N-메틸-2-피롤리돈(NMP) 용매에 첨가하여 양극 활물질 슬러리를 제조하였다. 상기 양극 활물질 슬러리를 두께가 20 ㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 130℃에서 2시간 동안 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.Surface-coated LiNi 0 prepared in Preparation Example 1 . 6 Mn 0 . 2 Co 0 . 2 O 2 positive electrode active material, carbon black as a conductive agent, polyvinylidene fluoride (PVdF) as a binder is mixed in a weight ratio of 95: 3: 2, and N-methyl-2-pyrrolidone (NMP) solvent It was added to to prepare a positive electrode active material slurry. The positive electrode active material slurry is applied to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of about 20 μm, and dried at 130 ° C. for 2 hours to prepare a positive electrode, followed by roll press to prepare a positive electrode. It was.
음극 제조Cathode manufacturing
음극으로 리튬 금속 호일(foil)을 사용하였다. Lithium metal foil was used as the negative electrode.
전해액 제조Manufacture of electrolyte
전해질로서 에틸렌카보네이트(EC) 및 에틸메틸카보네이트(EMC)를 1:2의 부피비로 혼합하여 제조된 비수전해액 용매에 LiPF6를 첨가하여 1M의 LiPF6 비수성 전해액을 제조하였다. 1 M LiPF 6 non-aqueous electrolyte was prepared by adding LiPF 6 to a non-aqueous electrolyte solvent prepared by mixing ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 1: 2 as an electrolyte.
리튬 이차전지 제조Lithium Secondary Battery Manufacturing
상기 제조된 양극과 음극을 폴리에틸렌 분리막(도넨사, F2OBHE, 두께 = 20 ㎛)을 이용하고, 전해액과 폴리프로필렌의 혼합 분리막를 개재시킨 후 통상적인 방법으로 폴리머형 전지 제작 후, 제조된 상기 비수성 전해액을 주액하여 코인셀 형태의 리튬 이차전지를 제조하였다.The prepared positive electrode and the negative electrode were made of polyethylene separator (Donensa, F2OBHE, thickness = 20 μm), and a mixed separator of an electrolyte solution and a polypropylene was interposed, and then a polymer battery was manufactured by a conventional method. Injecting a lithium secondary battery of the coin cell type was prepared.
실시예Example 2 2
제조예 1에서 제조된 양극 활물질 대신에 제조예 2에서 제조된 양극 활물질을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 리튬 이차전지를 제조하였다. A lithium secondary battery was manufactured in the same manner as in Example 1, except that the cathode active material prepared in Preparation Example 2 was used instead of the cathode active material prepared in Preparation Example 1.
실시예Example 3 3
제조예 1에서 제조된 양극 활물질 대신에 제조예 3에서 제조된 양극 활물질을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 리튬 이차전지를 제조하였다. A lithium secondary battery was manufactured in the same manner as in Example 1, except that the cathode active material prepared in Preparation Example 3 was used instead of the cathode active material prepared in Preparation Example 1.
실시예Example 4 4
제조예 1에서 제조된 양극 활물질 대신에 제조예 4에서 제조된 양극 활물질을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 리튬 이차전지를 제조하였다. A lithium secondary battery was manufactured in the same manner as in Example 1, except that the cathode active material prepared in Preparation Example 4 was used instead of the cathode active material prepared in Preparation Example 1.
실시예Example 5 5
제조예 1에서 제조된 양극 활물질 대신에 제조예 5에서 제조된 양극 활물질을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 리튬 이차전지를 제조하였다. A lithium secondary battery was manufactured in the same manner as in Example 1, except that the cathode active material prepared in Preparation Example 5 was used instead of the cathode active material prepared in Preparation Example 1.
비교예Comparative example 1 One
제조예 1에서 제조된 양극 활물질 대신에 비교 제조예 1에서 제조된 양극 활물질을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 리튬 이차전지를 제조하였다. A lithium secondary battery was manufactured in the same manner as in Example 1, except that the cathode active material prepared in Comparative Preparation Example 1 was used instead of the cathode active material prepared in Preparation Example 1.
비교예Comparative example 2 2
제조예 1에서 제조된 양극 활물질 대신에 비교 제조예 2에서 제조된 양극 활물질을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 리튬 이차전지를 제조하였다. A lithium secondary battery was manufactured in the same manner as in Example 1, except that the cathode active material prepared in Comparative Preparation Example 2 was used instead of the cathode active material prepared in Preparation Example 1.
비교예Comparative example 3 3
제조예 1에서 제조된 양극 활물질 대신에 비교 제조예 3에서 제조된 양극 활물질을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that the cathode active material prepared in Comparative Preparation Example 3 was used instead of the cathode active material prepared in Preparation Example 1.
비교예Comparative example 4 4
제조예 1에서 제조된 양극 활물질 대신에 비교 제조예 4에서 제조된 양극 활물질을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that the cathode active material prepared in Comparative Preparation Example 4 was used instead of the cathode active material prepared in Preparation Example 1.
비교예Comparative example 5 5
제조예 1에서 제조된 양극 활물질 대신에 비교 제조예 5에서 제조된 양극 활물질을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that the cathode active material prepared in Comparative Preparation Example 5 was used instead of the cathode active material prepared in Preparation Example 1.
비교예Comparative example 6 6
제조예 1에서 제조된 양극 활물질 대신에 비교 제조예 6에서 제조된 양극 활물질을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that the cathode active material prepared in Comparative Preparation Example 6 was used instead of the cathode active material prepared in Preparation Example 1.
비교예Comparative example 7 7
제조예 1에서 제조된 양극 활물질 대신에 비교 제조예 7에서 제조된 양극 활물질을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that the cathode active material prepared in Comparative Preparation Example 7 was used instead of the cathode active material prepared in Preparation Example 1.
비교예Comparative example 8 8
제조예 1에서 제조된 양극 활물질 대신에 비교 제조예 8에서 제조된 양극 활물질을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured in the same manner as in Example 1, except that the cathode active material prepared in Comparative Preparation Example 8 was used instead of the cathode active material prepared in Preparation Example 1.
실험예Experimental Example 1:  One: SEMSEM 현미경 사진 Micrograph
상기 제조예 1, 및 비교 제조예 1과 2에서 제조된 양극 활물질에 대한 모폴로지를 전자현미경(FE-SEM)을 이용하여 분석하였다. 그 결과를 각각 도 1 내지 3에 나타내었다.Morphology of the positive electrode active materials prepared in Preparation Example 1 and Comparative Preparation Examples 1 and 2 were analyzed using an electron microscope (FE-SEM). The results are shown in FIGS. 1 to 3, respectively.
구체적으로 살펴보면, 도 1은 본 발명의 실시예 1에서 제조된 폴리이미드와 카본블랙을 포함하는 나노피막이 표면에 코팅된 LiNi0 . 6Mn0 . 2Co0 . 2O2 입자의 표면을 관찰한 결과로서, 코팅된 LiNi0 . 6Mn0 . 2Co0 . 2O2 입자 표면에 폴리이미드와 카본블랙이 잘 분산된 수 나노미터 두께를 지닌 나노피막이 형성되었음을 알 수 있다.Specifically, Figure 1 is LiNi 0 coated on the surface of the nano-film including the polyimide and carbon black prepared in Example 1 of the present invention . 6 Mn 0 . 2 Co 0 . As a result of observing the surface of the 2 O 2 particles, the coated LiNi 0 . 6 Mn 0 . 2 Co 0 . It can be seen that a nanofilm having a thickness of several nanometers in which polyimide and carbon black are well dispersed is formed on the surface of the 2 O 2 particles.
도 2는 비교 제조예 1의 LiNi0 . 6Mn0 . 2Co0 . 2O2 입자로서 표면에 코팅되지 않은 순수 LiNi0 . 6Mn0 . 2Co0 . 2O2 입자이고, 도 3은 비교 제조예 2에서 제조된 폴리이미드로 표면 코팅된 LiNi0 . 6Mn0 . 2Co0 . 2O2 입자로서, 카본블랙이 관찰되지 않았다.2 is LiNi 0 of Comparative Preparation Example 1 . 6 Mn 0 . 2 Co 0 . Pure LiNi 0 with 2 O 2 particles and uncoated on the surface . 6 Mn 0 . 2 Co 0 . 2 O 2 particles, FIG. 3 shows LiNi 0. Surface coated with polyimide prepared in Comparative Preparation Example 2 . 6 Mn 0 . 2 Co 0 . As 2 O 2 particles, no carbon black was observed.
실험예Experimental Example 2:  2: 충방전Charging and discharging 용량 및 효율 특성 평가 Capacity and Efficiency Characterization
실시예 1 내지 5 및 비교예 1 내지 8에서 제조한 각 리튬 이차전지의 충방전 용량 및 효율 특성을 비교 평가하기 위하여, 상기 각 리튬 이차전지(전지용량 4.3mAh)를 45℃에서 3 내지 4.4V의 전압 구간에서 충반전(0.5C 충전/1C 방전)을을 수행하였다. C-rate는 하기 수학식 1과 같이 0.5C로 충전된 전지를 0.1C로 방전했을 때의 용량과 2C로 방전했을 때의 용량의 비이다.In order to evaluate the charging and discharging capacity and the efficiency characteristic of each lithium secondary battery prepared in Examples 1 to 5 and Comparative Examples 1 to 8, the respective lithium secondary batteries (4.3mAh battery capacity) were 3 to 4.4V at 45 ° C. Charge and discharge (0.5C charge / 1C discharge) was performed in the voltage range of. C-rate is the ratio of the capacity when the battery charged at 0.5C charged at 0.1C and the capacity when discharged at 2C as shown in Equation 1 below.
[수학식 1][Equation 1]
Figure PCTKR2015008915-appb-I000001
Figure PCTKR2015008915-appb-I000001
구분division 1회째 충전용량(mAh/g)First charge capacity (mAh / g) 1회째 방전용량(mAh/g)1st discharge capacity (mAh / g) 1회째 효율(%)First efficiency (%) C-rate(%)C-rate (%) 50회째 용량 보유율(%)50th capacity retention rate (%)
실시예 1Example 1 219219 198198 90.490.4 91.391.3 9797
실시예 2Example 2 220220 199199 90.590.5 91.891.8 9797
실시예 3Example 3 220220 199199 90.590.5 91.591.5 9797
실시예 4Example 4 219219 198198 90.490.4 91.491.4 9797
실시예 5Example 5 220220 199199 90.590.5 91.891.8 9797
비교예 1Comparative Example 1 218218 200200 91.691.6 91.291.2 8585
비교예 2Comparative Example 2 218218 196196 90.090.0 88.588.5 9595
비교예 3Comparative Example 3 219219 195195 89.089.0 88.588.5 8585
비교예 4Comparative Example 4 218218 194194 89.089.0 88.788.7 8888
비교예 5Comparative Example 5 220220 195195 88.688.6 90.090.0 9090
비교예 6Comparative Example 6 219219 194194 88.688.6 90.090.0 9090
비교예 7Comparative Example 7 219219 195195 89.089.0 88.788.7 8585
비교예 8Comparative Example 8 220220 190190 86.486.4 88.088.0 8080
상기 표 1에서 알 수 있는 바와 같이, 실시예 1 내지 5의 리튬 이차전지는 비교예 1 내지 비교예 8의 리튬 이차전지와 비교하여 초기 충방 용량은 유사하였으나, 율속 특성(C-rate) 및 50회째 용량 보유율이 현저히 우수함을 확인할 수 있다.As can be seen in Table 1, the lithium secondary batteries of Examples 1 to 5 were similar in the initial charge and discharge capacity compared to the lithium secondary batteries of Comparative Examples 1 to 8, but the rate-rate characteristics (C-rate) and 50 It can be seen that the capacity retention rate is remarkably excellent.
구체적으로 살펴보면, 본 발명에 따른 실시예 1 내지 실시예 5의 리튬 이차전지와 표면이 코팅되지 않은 양극 활물질을 포함하는 비교에 1의 리튬 이차전지를 비교한 결과 율석 특성은 유사하나 현저히 우수한 50회째 용량 보유율을 나타내는 것을 확인하였으며, 폴리이미드로만 표면이 코팅된 양극 활물질을 포함하는 리튬 이차전지인 비교예 2와 비교한 결과 50회째 용량 보유율은 약간 높은 수준이었으나 율속 특성이 현저히 우수하였다. Specifically, when comparing the lithium secondary battery of Example 1 to Example 5, the lithium secondary battery of Example 1 to Example 5 and the lithium secondary battery according to the present invention, which had a surface-coated positive electrode active material is similar but significantly superior 50 times It was confirmed that the capacity retention ratio was compared with Comparative Example 2, which is a lithium secondary battery including a cathode active material coated only with polyimide, and the capacity retention ratio of the 50th time was slightly higher, but the rate-rate characteristic was remarkably excellent.
또한, 폴리이미드와 카본블랙으로 표면이 코팅되었으나, 본 발명에 따른 카본블랙이 아니거나 혼합 비율에서 벗어난 양극 활물질을 포함하는 비교예 3 내지 8의 리튬 이차전지와 비해서는, 본 발명에 따른 양극 활물질을 포함하는 실시예 1 내지 실시예 5의 리튬 이차전지가 율속 특성 및 50회째 용량 보유율이 모두 우수하였으며, 특히 50회째 용량 보유율이 현저히 증가함을 확인하였다. In addition, the positive electrode active material according to the present invention is compared with the lithium secondary batteries of Comparative Examples 3 to 8, which are coated with polyimide and carbon black, but which are not carbon black according to the present invention or include a positive electrode active material which is out of the mixing ratio. It was confirmed that the lithium secondary batteries of Examples 1 to 5, including the rate-rate characteristics and the 50th capacity retention rate were excellent, in particular, the 50th capacity retention rate was significantly increased.
따라서, 실시예 1 내지 5의 리튬 이차전지는 비교예 1 내지 8에 비해 리튬 이차전지의 성능이 전반적으로 향상되었음을 확인할 수 있었다.Therefore, it was confirmed that the lithium secondary batteries of Examples 1 to 5 generally improved the performance of the lithium secondary batteries as compared to Comparative Examples 1 to 8.

Claims (25)

  1. 양극 활물질; 및 상기 양극 활물질 표면에 코팅된 폴리이미드(PI) 및 카본블랙을 포함하는 나노피막을 포함하고,Positive electrode active material; And a nano coating comprising polyimide (PI) and carbon black coated on the surface of the positive electrode active material,
    상기 나노피막은 상기 폴리이미드와 카본블랙을 1: 0.5 내지 5 중량비로 포함하는 것을 특징으로 하는 표면 코팅된 양극 활물질.The nano coating is a surface-coated positive electrode active material, characterized in that containing the polyimide and carbon black in a weight ratio of 1: 0.5 to 5.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 카본블랙은 ASTM D-1510에 의거하여 측정된 요오드가(iodine number)가 200 mg/g 내지 400 mg/g인 것을 특징으로 하는 표면 코팅된 양극 활물질.The carbon black has a surface coated positive active material, characterized in that the iodine number (iodine number) measured in accordance with ASTM D-1510 is 200 mg / g to 400 mg / g.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 카본블랙은 ASTM D-2414에 의거하여 측정된 오일 흡수 수(oil absorption number)가 100 cc/100 g 내지 200 cc/100 g인 것을 특징으로 하는 표면 코팅된 양극 활물질.The carbon black has a surface absorption positive electrode active material, characterized in that the oil absorption number (oil absorption number) measured in accordance with ASTM D-2414 is 100 cc / 100 g to 200 cc / 100 g.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 카본블랙은 표면이 소수화처리된 것인 것을 특징으로 하는 표면 코팅된 양극 활물질.The carbon black is a surface-coated positive electrode active material, characterized in that the surface is hydrophobized.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 카본블랙은 평균입경이 1000 nm 미만인 것을 특징으로 하는 표면 코팅된 양극 활물질.The carbon black has a surface-coated positive electrode active material, characterized in that the average particle diameter is less than 1000 nm.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 나노피막의 두께는 1 nm 내지 200nm의 범위인 것을 특징으로 하는 표면 코팅된 양극 활물질.The thickness of the nano-film is a surface-coated positive electrode active material, characterized in that in the range of 1 nm to 200 nm.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 카본블랙의 함량은 표면 코팅된 양극 활물질 전체 100 중량%에 대해 0.05 중량% 내지 5 중량%인 것을 특징으로 하는 표면 코팅된 양극 활물질.The content of the carbon black is a surface-coated positive electrode active material, characterized in that 0.05% to 5% by weight relative to the total 100% by weight of the surface-coated positive electrode active material.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 양극 활물질은 하기 화학식 1 내지 화학식 3의 산화물, 및 V2O5, TiS, MoS로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 표면 코팅된 양극 활물질:The cathode active material is a surface-coated cathode active material, characterized in that the oxide of Formula 1 to Formula 3, and any one or a mixture of two or more selected from the group consisting of V 2 O 5 , TiS, MoS:
    <화학식 1><Formula 1>
    Li1 + x[NiaCobMnc]O2 (-0.5 ≤ x ≤ 0.6, 0 ≤ a, b, c ≤ 1, x+a+b+c=1임);Li 1 + x [Ni a Co b Mn c ] O 2 (−0.5 ≦ x ≦ 0.6, 0 ≦ a, b, c ≦ 1, x + a + b + c = 1);
    <화학식 2><Formula 2>
    LiMn2 - xMxO4 (M=Ni, Co, Fe, P, S, Zr, Ti 및 Al로 이루어진 군에서 선택되는 하나 이상의 원소, 0 ≤ x ≤ 2);LiMn 2 - x M x O 4 (M = Ni, Co, Fe, P, S, Zr, Ti and Al, at least one element selected from the group consisting of 0 ≦ x ≦ 2);
    <화학식 3><Formula 3>
    Li1 + aFe1 - xMx(PO4-b) Xb (M=Al, Mg, Ni, Co, Mn, Ti, Ga, Cu, V, Nb, Zr, Ce, In, Zn 및 Y 로 이루어진 군에서 선택되는 하나 이상의 원소이고, X는 F, S 및 N로 이루어진 군에서 선택되는 하나 이상의 원소이며, -0.5 ≤ a ≤ +0.5, 0 ≤ x ≤ 0.5, 0 ≤ b ≤ 0.1임)Li 1 + a Fe 1 - x M x (PO 4-b ) X b (M = Al, Mg, Ni, Co, Mn, Ti, Ga, Cu, V, Nb, Zr, Ce, In, Zn and Y At least one element selected from the group consisting of: X is at least one element selected from the group consisting of F, S, and N, and -0.5 ≤ a ≤ +0.5, 0 ≤ x ≤ 0.5, 0 ≤ b ≤ 0.1)
  9. 청구항 8에 있어서,The method according to claim 8,
    상기 양극 활물질은 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li[NiaCobMnc]O2 (0 < a, b, c ≤ 1, a+b+c=1이고) 및 LiFePO4로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 표면 코팅된 양극 활물질.The positive electrode active material is LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , Li [Ni a Co b Mn c ] O 2 (0 <a, b, c ≤ 1, a + b + c = 1) and Surface-coated positive electrode active material, characterized in that any one selected from the group consisting of LiFePO 4 or a mixture of two or more thereof.
  10. 폴리아믹산이 희석된 유기 용매에 카본블랙을 혼합 분산시킨 혼합 용액을 제조하는 단계;Preparing a mixed solution in which carbon black is mixed and dispersed in an organic solvent in which a polyamic acid is diluted;
    상기 혼합 용액에 양극 활물질을 분산시켜 양극 활물질 표면에 폴리아믹산 및 카본블랙을 포함하는 피막을 형성하는 단계; 및Dispersing a positive electrode active material in the mixed solution to form a film including polyamic acid and carbon black on the surface of the positive electrode active material; And
    상기 피막이 형성된 양극 활물질을 이미드화 반응시키는 단계를 포함하고,Imidating the positive electrode active material having the coating formed thereon;
    상기 카본블랙을 양극 활물질 100 중량%를 기준으로 0.05 중량% 내지 5 중량%의 양으로 사용하는 것을 특징으로 하는 표면 코팅된 양극 활물질의 제조방법.Method for producing a surface-coated positive electrode active material, characterized in that using the carbon black in an amount of 0.05% to 5% by weight based on 100% by weight of the positive electrode active material.
  11. 청구항 10에 있어서,The method according to claim 10,
    상기 이미드화 반응은 300 내지 400℃까지 50 내지 100℃ 간격으로 3℃/분의 속도로 승온시키면서 수행하는 것을 특징으로 하는 표면 코팅된 양극 활물질의 제조방법.The imidation reaction is a method of producing a surface-coated positive electrode active material, characterized in that performed at a rate of 3 ℃ / min at a temperature of 50 to 100 ℃ interval to 300 to 400 ℃.
  12. 청구항 11에 있어서,The method according to claim 11,
    상기 이미드화 반응은 상기 승온 이후에 300 내지 400℃의 범위에서 10분 내지 120분 동안 유지시키는 단계를 더 포함하여 수행하는 것을 특징으로 하는 표면 코팅된 양극 활물질의 제조방법.The imidation reaction is a method of producing a surface-coated positive electrode active material, characterized in that it further comprises the step of maintaining for 10 to 120 minutes in the range of 300 to 400 ℃ after the elevated temperature.
  13. 청구항 10에 있어서,The method according to claim 10,
    상기 카본블랙은 ASTM D-1510에 의거하여 측정된 요오드가(iodine number)가 200 mg/g 내지 400 mg/g인 것을 특징으로 하는 표면 코팅된 양극 활물질의 제조방법.The carbon black is a method of producing a surface-coated positive electrode active material, characterized in that the iodine number (iodine number) measured according to ASTM D-1510 is 200 mg / g to 400 mg / g.
  14. 청구항 10에 있어서,The method according to claim 10,
    상기 카본블랙은 ASTM D-2414에 의거하여 측정된 오일 흡수 수(oil absorption number)가 100 cc/100g 내지 200 cc/100 g인 것을 특징으로 하는 표면 코팅된 양극 활물질의 제조방법.The carbon black is a method of producing a surface-coated positive electrode active material, characterized in that the oil absorption number (oil absorption number) measured in accordance with ASTM D-2414 is 100 cc / 100g to 200 cc / 100 g.
  15. 청구항 10에 있어서,The method according to claim 10,
    상기 카본블랙은 표면이 소수화처리된 것인 것을 특징으로 하는 표면 코팅된 양극 활물질의 제조방법.The carbon black is a method of producing a surface-coated positive electrode active material, characterized in that the surface is hydrophobized.
  16. 청구항 10에 있어서,The method according to claim 10,
    상기 폴리아믹산은 유기 용매 100 중량%를 기준으로 0.1 중량% 내지 1 중량%의 양으로 사용되는 것을 특징으로 하는 표면 코팅된 양극 활물질의 제조방법.Wherein the polyamic acid is used in an amount of 0.1 wt% to 1 wt% based on 100 wt% of the organic solvent.
  17. 청구항 10에 있어서,The method according to claim 10,
    상기 폴리아믹산은 방향족 무수물과 다이아민을 동일 당량으로 반응시켜 제조된 것임을 특징으로 하는 표면 코팅된 양극 활물질의 제조방법.The polyamic acid is a method of producing a surface-coated positive electrode active material, characterized in that prepared by reacting the aromatic anhydride and diamine in the same equivalent.
  18. 청구항 17에 있어서,The method according to claim 17,
    상기 방향족 무수물은 프탈릭 언하이드라이드, 피로멜리틱 디언하이드리드, 3,3'4,4'-바이페닐테트라카복실릭 디언하이드라이드, 4'4-옥시디프탈릭 언하이드라이드, 3,3'4,4'-벤조페논테트라카르복실릭 디언하이드라이드, 트리멜리틱 에틸렌 글리콜, 4,4'-(4'4-이소프로필바이페녹시)바이프탈릭 언하이드라이드 및 트리멜리틱 언하이드라이드로 이루어진 군으로부터 선택된 어느 하나, 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 표면 코팅된 양극 활물질의 제조방법.The aromatic anhydrides are phthalic anhydride, pyromellitic dihydride, 3,3'4,4'-biphenyltetracarboxylic dionhydride, 4'4-oxydiphthalic anhydride, 3,3 ' 4,4'-benzophenonetetracarboxylic dianhydride, trimellitic ethylene glycol, 4,4 '-(4'4-isopropylbiphenoxy) biphthalic unhydride and trimellitic unhydride Method of producing a surface-coated positive electrode active material, characterized in that any one selected from the group consisting of, or a mixture of two or more thereof.
  19. 청구항 17에 있어서,The method according to claim 17,
    상기 다이아민은 4,4'-옥시다이아닐린(4,4'-oxydianiline), p-페닐 다이아민, 2,2-비스(4-(4-아미노페녹시)-페닐)프로판, p-메틸렌다이아닐린, 프로필테트라메틸다이실록산, 폴리아로매틱 아민, 4,4'-다이아미노다이페닐 설폰, 2,2'-비스(트리플루오로메틸)-4,4'-다이아미노바이페닐 및 3,5-다이아미노-1,2,4-트리아졸로 이루어진 군으로부터 선택된 어느 하나, 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 표면 코팅된 양극 활물질의 제조방법.The diamine is 4,4'-oxydianiline, p-phenyl diamine, 2,2-bis (4- (4-aminophenoxy) -phenyl) propane, p-methylene Dianiline, propyltetramethyldisiloxane, polyaromatic amine, 4,4'-diaminodiphenyl sulfone, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl and 3, Method for producing a surface-coated positive electrode active material, characterized in that any one selected from the group consisting of 5-diamino-1,2,4-triazole, or a mixture of two or more thereof.
  20. 청구항 10에 있어서,The method according to claim 10,
    상기 폴리아믹산은 4 성분계 폴리아믹산을 포함하는 것을 특징으로 하는 표면 코팅된 양극 활물질의 제조방법.The polyamic acid is a method of producing a surface-coated positive electrode active material, characterized in that it comprises a four-component polyamic acid.
  21. 청구항 20에 있어서, The method of claim 20,
    상기 4 성분계 폴리아믹산은 피로멜리틱 디언하이드리드(pyromellitic dianhydride), 바이페닐 디언하이드리드(biphenyl dianhydride), 페닐렌다이아민(phenylenediamine) 및 옥시다이아닐린(oxydianiline)을 포함하는 폴리아믹산인 것을 특징으로 하는 표면 코팅된 양극 활물질의 제조방법.The four-component polyamic acid is a polyamic acid including pyromellitic dianhydride, biphenyl dianhydride, phenylenediamine and oxydianiline. Method for producing a surface-coated positive electrode active material.
  22. 청구항 10에 있어서,The method according to claim 10,
    상기 유기 용매는 시클로헥산, 사염화탄소, 클로로포름, 메틸렌클로라이드, 디메틸포름아마이드, 디메틸아세트아마이드 및 N-메틸피롤리돈으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 표면 코팅된 양극 활물질의 제조방법.The organic solvent includes any one selected from the group consisting of cyclohexane, carbon tetrachloride, chloroform, methylene chloride, dimethylformamide, dimethylacetamide and N-methylpyrrolidone or a mixture of two or more thereof. Method for producing a coated positive electrode active material.
  23. 청구항 1에 기재된 표면 코팅된 양극 활물질을 포함하는 양극.A positive electrode comprising the surface-coated positive electrode active material according to claim 1.
  24. 청구항 23에 기재된 양극, 음극 및 상기 양극과 음극 사이에 개재된 분리막을 포함하는 리튬 이차전지.A lithium secondary battery comprising the positive electrode, the negative electrode and the separator interposed between the positive electrode and the negative electrode of claim 23.
  25. 청구항 24에 있어서, The method of claim 24,
    상기 리튬 이차전지의 충전 전압은 4.2V 내지 5.0V인 것을 특징으로 하는 리튬 이차전지.The charge voltage of the lithium secondary battery is a lithium secondary battery, characterized in that 4.2V to 5.0V.
PCT/KR2015/008915 2014-08-26 2015-08-26 Surface-coated positive electrode active material, method for preparing same, and lithium secondary battery comprising same WO2016032223A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/039,266 US10476082B2 (en) 2014-08-26 2015-08-26 Surface coated positive electrode active material, preparation method thereof and lithium secondary battery including the same
EP15835187.4A EP3188290B1 (en) 2014-08-26 2015-08-26 Surface-coated positive electrode active material, method for preparing same, and lithium secondary battery comprising same
CN201580030667.9A CN106663799B (en) 2014-08-26 2015-08-26 Positive electrode active materials, preparation method and the lithium secondary battery comprising it of surface coating

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0111504 2014-08-26
KR20140111504 2014-08-26
KR1020150117752A KR101714892B1 (en) 2014-08-26 2015-08-21 Surface coated cathode active material, preparation method thereof and lithium secondary battery comprising the same
KR10-2015-0117752 2015-08-21

Publications (1)

Publication Number Publication Date
WO2016032223A1 true WO2016032223A1 (en) 2016-03-03

Family

ID=55400044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008915 WO2016032223A1 (en) 2014-08-26 2015-08-26 Surface-coated positive electrode active material, method for preparing same, and lithium secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2016032223A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3419088A4 (en) * 2016-08-10 2019-05-01 LG Chem, Ltd. Cathode active material comprising polyimide, manufacturing method thereof, and lithium-sulfur battery comprising same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100081947A (en) * 2009-01-06 2010-07-15 주식회사 엘지화학 Cathode active material for lithium secondary battery
KR20110126418A (en) * 2010-05-17 2011-11-23 강원대학교산학협력단 Surface-modified cathode active materials by chemically crosslinkable polymer electrolytes and lithium ion rechargeable batteries comprising the same
WO2013115219A1 (en) * 2012-01-31 2013-08-08 独立行政法人産業技術総合研究所 Resin composition for lithium ion cell positive electrode
JP2014041996A (en) * 2012-07-27 2014-03-06 Seiko Instruments Inc Electrochemical cell and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100081947A (en) * 2009-01-06 2010-07-15 주식회사 엘지화학 Cathode active material for lithium secondary battery
KR20110126418A (en) * 2010-05-17 2011-11-23 강원대학교산학협력단 Surface-modified cathode active materials by chemically crosslinkable polymer electrolytes and lithium ion rechargeable batteries comprising the same
WO2013115219A1 (en) * 2012-01-31 2013-08-08 独立行政法人産業技術総合研究所 Resin composition for lithium ion cell positive electrode
JP2014041996A (en) * 2012-07-27 2014-03-06 Seiko Instruments Inc Electrochemical cell and method for manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PARK, JANG-HOON ET AL.: "Polyimide gel polymer electolyte-nanoenapsulated LiCoO2 cathode materials for high-voltage Li-ion batteries", ELECTROCHEMISTRY (COMMUNICATIONS, vol. 12, no. 8, 2010, pages 1099 - 1102, XP027137114 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3419088A4 (en) * 2016-08-10 2019-05-01 LG Chem, Ltd. Cathode active material comprising polyimide, manufacturing method thereof, and lithium-sulfur battery comprising same
US10756333B2 (en) 2016-08-10 2020-08-25 Lg Chem, Ltd. Cathode active material comprising polyimide, manufacturing method thereof, and lithium-sulfur battery comprising same

Similar Documents

Publication Publication Date Title
WO2017164624A1 (en) Surface-coated cathode active material particles and secondary battery comprising same
WO2017111542A1 (en) Anode active material for lithium secondary battery and anode for lithium secondary battery including same
WO2020040586A1 (en) Silicon-based composite, anode comprising same, and lithium secondary battery
WO2019078503A1 (en) Cathode material for lithium secondary battery, fabrication method therefor, cathode comprising same for lithium secondary battery, and lithium secondary battery
WO2020184938A1 (en) Anode and secondary battery comprising same anode
WO2019117531A1 (en) Cathode active material for lithium secondary battery, preparation method therefor, and lithium secondary battery cathode and lithium secondary battery which comprise same
WO2022019572A1 (en) Separator for secondary battery, manufacturing method therefor, manufacturing method of secondary battery comprising same, and secondary battery manufactured thereby
WO2021066560A1 (en) Positive electrode and secondary battery including same
WO2017209561A1 (en) Cathode active material, cathode comprising same, and lithium secondary battery comprising same
WO2021066494A1 (en) Electrode and secondary battery comprising same
WO2018221827A1 (en) Negative electrode active material, negative electrode comprising negative electrode active material, and secondary battery comprising negative electrode
WO2020036336A1 (en) Electrolyte for lithium secondary battery
WO2023282684A1 (en) Anode for lithium secondary battery, manufacturing method of anode for lithium secondary battery, and lithium secondary battery comprising anode
WO2018034553A1 (en) Negative electrode material comprising silicon flakes and method for preparing silicon flakes
WO2022158951A2 (en) Separator for lithium secondary battery and lithium secondary battery comprising same
WO2017095151A1 (en) Cathode for secondary battery and secondary battery comprising same
WO2017171372A1 (en) Electrode active material slurry and lithium secondary battery comprising same
WO2021086098A1 (en) Anode active material, preparation method therefor, and anode and secondary battery which comprise same
WO2021153987A1 (en) Negative electrode active material, negative electrode comprising same, and secondary battery comprising same
WO2021066495A1 (en) Electrode and secondary battery comprising same
WO2016032222A1 (en) Surface-coated positive electrode active material, method for preparing same, and lithium secondary battery comprising same
WO2017099358A1 (en) Conductive dispersion and lithium secondary battery manufactured using same
WO2016032223A1 (en) Surface-coated positive electrode active material, method for preparing same, and lithium secondary battery comprising same
WO2018012877A1 (en) Polymer, and electrolyte and lithium battery each comprising same
WO2022131852A1 (en) Binder composition for secondary battery, and electrode mixture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835187

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15039266

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015835187

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015835187

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE