WO2016031932A1 - METHOD FOR PRODUCING PROTEIN HAVING Fc REGION BY ALKALI WASHING - Google Patents

METHOD FOR PRODUCING PROTEIN HAVING Fc REGION BY ALKALI WASHING Download PDF

Info

Publication number
WO2016031932A1
WO2016031932A1 PCT/JP2015/074286 JP2015074286W WO2016031932A1 WO 2016031932 A1 WO2016031932 A1 WO 2016031932A1 JP 2015074286 W JP2015074286 W JP 2015074286W WO 2016031932 A1 WO2016031932 A1 WO 2016031932A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
region
seq
sequence listing
antibody
Prior art date
Application number
PCT/JP2015/074286
Other languages
French (fr)
Japanese (ja)
Inventor
昌也 山之内
雄一 井村
俊明 田川
聡 野々山
泰寛 藤野
Original Assignee
田辺三菱製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田辺三菱製薬株式会社 filed Critical 田辺三菱製薬株式会社
Publication of WO2016031932A1 publication Critical patent/WO2016031932A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/113General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to a method for purifying a protein having an Fc region, and a method for producing a protein having an Fc region including the purification method.
  • the present invention also relates to a method for reducing the free thiol content, self-association and aggregation properties of a protein having an Fc region, and a method for enhancing storage stability.
  • the present invention relates to a method for producing a human anti-IL-33 monoclonal antibody.
  • Proteins having an Fc region such as antibodies are widely used in general, such as therapeutic drugs, diagnostic drugs, and research reagents. These proteins are produced by culturing genetically modified cells into which a gene of a protein having an Fc region has been introduced, hybridomas that produce antibodies, or the like. The protein having the Fc region is mainly purified from the culture supernatant obtained by culturing these cells.
  • affinity chromatography As a method for purifying a protein having an Fc region.
  • a carrier for affinity chromatography on which Protein A, Protein G, or a modified form thereof is immobilized is widely used because it binds to the Fc region.
  • Non-patent Document 1 Shukla et al., J. Chromatography, 2007, Vol. 848, p28. Aggregation and precipitation reduce the purification yield of proteins with Fc regions and increase the contamination of impurities.
  • Antibody aggregates can cause inflammation when administered in vivo as a pharmaceutical composition and can enhance the antigenicity of the antibody itself. In addition, antibody aggregates can give erroneous results due to non-specific binding that does not depend on specific binding to an antigen when used as a diagnostic agent or a research reagent. As one of the causes of antibody aggregation and precipitation, it is considered that cysteine residues in the antibody molecule involve free thiol residues that are generated due to the inability to properly form disulfide bonds.
  • HMW high molecular weight impurities
  • a washing solution containing arginine in the washing step in affinity chromatography.
  • HMW is still mixed and removal of HMW is sufficient.
  • No Patent Document 1
  • a washing solution containing a divalent cation salt is used in the washing step in affinity chromatography in order to wash away and remove the underdisulfide bond species (UDB) in which the formation of the disulfide bond of the protein having the Fc region is insufficient.
  • UDB underdisulfide bond species
  • the removal of UDB is not sufficient (Patent Document 2).
  • UDB has free thiol residues and can therefore cause aggregation. Therefore, problems such as aggregation when purifying a protein having an Fc region remain extremely inconvenient.
  • Proteins having an Fc region have problems with physical properties such as free thiol content, self-association and aggregation. Such physical property problems affect the storage stability of a protein having an Fc region. In addition, problems with physical properties such as aggregation affect the yield and purity in the purification process due to loss due to precipitation of proteins with Fc regions, and contamination by impurities bound to protein aggregates with Fc regions. To do. In recent years, high-concentration subcutaneous injections are becoming the mainstream of antibody drugs that have been developed in recent years, and physical properties such as self-association and aggregation are regarded as important. Therefore, there is a need for a method for purifying a protein having an Fc region with reduced physical property problems.
  • the present inventors have obtained a method for purifying a protein having an Fc region, comprising a step of washing the protein having an Fc region with an alkaline washing solution in a state of being bound on an affinity chromatography carrier.
  • the present invention has been completed.
  • the present invention thus relates to the following inventions:
  • a method for purifying a protein having an Fc region comprising: [2] The method according to item 1, wherein the alkaline cleaning liquid has a pH value of 10.5 to 11.5. [3] The method according to item 1 or item 2, wherein the alkaline cleaning solution does not contain 0.2 M or more sodium chloride.
  • a method for producing a protein having an Fc region comprising the method according to any one of items 1 to 8.
  • a method for producing a human monoclonal antibody (I) contacting a solution containing a human monoclonal antibody with an affinity chromatography carrier and binding the human monoclonal antibody to the affinity chromatography carrier; (ii) washing with an alkaline wash having a pH value in the range of 9 to 12, and (iii) a step of eluting the human monoclonal antibody; Wherein the light chain complementarity determining region 1 (LCDR1), the light chain complementarity determining region 2 (LCDR2), the light chain complementarity determining region 3 (LCDR3), and the heavy chain complementarity of a human monoclonal antibody A combination of amino acid sequences of the determination region 1 (HCDR1), the heavy chain complementarity determination region 2 (HCDR2), and the heavy chain complementarity determination region 3 (
  • VL light chain variable region
  • VH heavy chain variable region
  • A VL: QSVLTQPPSASGTPGQRVTISCTGSSSNIGAVYDVHWYQQLPGTAPKLLIYRNNQRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCQTYDSSRWVFGGGTKLTVL and VH (SEQ ID NO: 28 of Sequence Listing): EVQLLESGGGLVQPGGSLRLSCAASGFTFSDYYMNWVRQAPGKGLEWVSSISRYSSYIYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDIGGMDVWGQGTLVTVSS (SEQ ID NO: 29 of the Sequence Listing)
  • B VL: QSVLTQPPSASGTPGQRVTISCSGSSSNIGNNAVSWYQQLPGTAPKLLIYASNMRVIGVPDRFSGSKSG
  • a method for improving the physical properties of a protein having an Fc region contained in a solution (a) contacting a solution containing a protein having an Fc region with an affinity chromatography support, and binding the protein having an Fc region to the affinity chromatography support; (b) contacting an alkaline solution having a pH value in the range of 9.1 to 12, and (c) eluting a protein having an Fc region, Including a method.
  • the method according to item 18, wherein the method for improving the physical properties of a protein having an Fc region is a method for reducing the free thiol content of a protein having an Fc region.
  • the method according to item 18, wherein the method for improving the physical properties of a protein having an Fc region is a method for reducing the self-association property of a protein having an Fc region.
  • the method according to item 18, wherein the method for improving the physical properties of a protein having an Fc region is a method for reducing the aggregation property of a protein having an Fc region.
  • the method according to item 18, wherein the method for improving the physical properties of a protein having an Fc region is a method for further enhancing the storage stability of a protein having an Fc region.
  • the method according to any of items 18 to 22, wherein the alkaline solution has a pH value of 10.6 to 11.5.
  • the method for purifying a protein having an Fc region of the present invention can reduce at least one of the free thiol content, self-association property, and aggregation property of the protein having an Fc region.
  • a protein having an Fc region purified by the present invention is excellent in storage stability.
  • the purification method of the present invention can increase the purity and yield of a protein having an Fc region. Therefore, according to the present invention, a protein having an Fc region having excellent physical properties can be produced with high purity at low cost.
  • the human anti-IL-33 monoclonal antibody produced in the present invention is safe due to reduced free thiol content, self-association and aggregation, and further reduced contamination of impurities. Is excellent. Therefore, the human anti-IL-33 monoclonal antibody produced by the present invention can be used as a new diagnostic, preventive, therapeutic or alleviating agent for diseases related to IL-33.
  • the protein having an Fc region refers to a protein having an Fc region of an immunoglobulin, a variant thereof, or a fragment thereof.
  • the Fc region of an immunoglobulin refers to a region of a fragment on the constant site side of the heavy chain when the immunoglobulin is decomposed with papain, and is usually a region composed of C H 2 and C H 3 regions of the heavy chain.
  • the modified Fc region may include those in which a part of the Fc region is substituted, deleted, and / or added.
  • Proteins with Fc region include not only immunoglobulins such as IgG, IgM, IgD, IgE and IgA, multispecific antibodies such as bispecific antibodies, but also immunoglobulin Fc regions (including variants and fragments thereof). Fusion proteins (Fc fusion proteins) bound to other proteins and peptides.
  • the term also includes an immunoglobulin, a multispecific antibody, or an Fc fusion protein in which a small molecule drug, an imaging compound such as a radioactive substance or a fluorescent dye, or a polymer such as PEG is bound.
  • purification refers to various mixed solutions containing a protein having an Fc region, which is the target protein (for example, animal cell-derived culture supernatant, microorganism-derived culture supernatant, microbial disruption product, cell-free expression system solution, gene set
  • target protein for example, animal cell-derived culture supernatant, microorganism-derived culture supernatant, microbial disruption product, cell-free expression system solution, gene set
  • Impurities include medium-derived components (for example, proteins such as saccharides, lipids, growth factors and peptides thereof), host cell-derived components (for example, host cell-derived proteins, peptides, nucleic acids, lipids and saccharides), and target-derived impurities. (Cleaved body, chemically modified body and aggregate).
  • [Affinity chromatography] It refers to chromatography using a substance having affinity for the target protein, for example, a carrier having a ligand.
  • a protein having the Fc region can be purified and / or produced.
  • a carrier commonly used for antibody purification can be used as a carrier for affinity chromatography having binding properties to a protein having an Fc region.
  • a carrier used for antibody purification a carrier to which a ligand that binds to the Fc region is bound can be used.
  • Protein A, Protein G, or a variant thereof can be used as a ligand that binds to the Fc region.
  • the alkaline washing solution refers to a basic solution used for separating impurities from a target protein bound to an affinity chromatography carrier.
  • the alkaline washing solution not only removes impurities, but also has an effect of reducing the free thiol content, self-association property, and / or aggregation property of the target protein. Furthermore, the recovery rate of the protein having the Fc region is improved by performing a washing step with an alkaline washing solution. The reason for this is not clear, but free thiol groups contained in proteins with Fc regions form appropriate intramolecular disulfide bonds when exposed to alkaline washings on the column, resulting in aggregation or precipitation of proteins with Fc regions. It is thought that there is no loss due to However, it is not intended to be limited to that theory.
  • Protein A exists in the cell wall of S. aureus and has a high affinity for the Fc region of immunoglobulin.
  • Protein A variant is Protein A in which a part of the amino acid sequence of Protein A is modified to modify the binding specificity and stability with the Fc region.
  • ProteinA variants are commercially available, and for example, MabSelect SuRe (GE Healthcare), TOYOPEARL AF-rProtein A HC-650F (Tosoh Corp.), KANEKA KanCap (Kaneka Corp.), etc. can also be used.
  • Protein A and a variant thereof used in the present invention may be a natural protein derived from Staphylococcus aureus, or may be produced by a gene recombination technique. From the viewpoint of carrying out the alkali washing step, it is preferable to use an alkali-durable variant.
  • Protein G is a protein that exists in the cell wall of group G streptococci and has high affinity for the Fc region of immunoglobulin.
  • Protein G variant is Protein G in which a part of the amino acid sequence of Protein G is modified to modify the binding specificity and stability with the Fc region.
  • ProteinG and its variants used in the present invention may be natural proteins derived from group G streptococci, or may be produced by gene recombination techniques. From the viewpoint of carrying out the alkali washing step, it is preferable to use an alkali-durable variant.
  • an antibody refers to an immunoglobulin that is a glycoprotein capable of binding to a specific antigen, or a fragment thereof having an Fc region.
  • the term also includes monoclonal antibodies, polyclonal antibodies, and multispecific antibodies.
  • a human monoclonal antibody refers to a monoclonal antibody having a variable region and a constant region derived from a human germline immunoglobulin sequence, and refers to a human-derived antibody for both light and heavy chains.
  • IgG having IgG heavy chain including IgG1, IgG2, IgG3 and IgG4
  • IgM having ⁇ heavy chain
  • IgA having ⁇ heavy chain IgA1, IgA2
  • IgD having a heavy chain of ⁇ chain
  • IgE having a heavy chain of ⁇ chain.
  • the light chain includes either a kappa chain or a lambda chain.
  • the humanized antibody refers to a monoclonal antibody consisting of a variable region composed of a complementarity determining region of a non-human mammal-derived antibody and a framework region derived from a human antibody, and a constant region derived from a human antibody.
  • a chimeric antibody refers to a monoclonal antibody in which the light chain, the heavy chain, or both are composed of a variable region derived from non-human and a constant region derived from human.
  • Lambda chain refers to one type of immunoglobulin light chain.
  • the amino acid sequence of the variable region of the ⁇ chain is diverse, and immunoglobulins containing the light chain of the ⁇ chain can bind to various antigens.
  • Another type of immunoglobulin light chain is the kappa chain.
  • the complementarity determining region refers to a region that forms an antigen-binding site in the variable region of an immunoglobulin molecule, and is also referred to as a hypervariable region, and refers to a portion that has a particularly large change in amino acid sequence for each immunoglobulin molecule.
  • there are three complementarity determining regions (complementarity determining region 1, complementarity determining region 2 and complementarity determining region 3) in each of the light chain and the heavy chain.
  • complementarity-determining regions of immunoglobulin molecules are determined according to the Kabat numbering system (Kabat et al., 1987, Sequences of Immunological Interstitut, US Department of Health and Human Services, NIH, US).
  • variable region of an antibody refers to a portion that is located on the N-terminal side of the light and heavy chains and determines the antigen-binding property of the antibody.
  • the variable region is composed of three complementarity determining regions and four framework regions surrounding it.
  • self-association means a temporary and reversible interaction between the same kind of protein molecules and a temporary and reversible multimer formation. Such multimer formation easily returns to the monomer by an operation such as dilution.
  • Self-association refers to the ease of self-association. Although a small amount of impurities may affect the self-association of any protein, the association of any protein in the presence of such impurities is also included in the term self-association.
  • the parameter indicating self-association include a second virial coefficient and an interaction parameter.
  • the interaction parameter is an index of self-association calculated using the concentration dependence of the diffusion coefficient obtained by an experimental method.
  • the diffusion coefficient is an index of the ease of diffusion of molecules in a solution and can be measured by a dynamic light scattering method or the like.
  • free thiol refers to a free thiol group contained in a cysteine residue in a protein having an Fc region.
  • a disulfide bond that is supposed to be formed by cross-linking two cysteine residues between the light chain and heavy chain of an antibody or within the heavy chain may not be formed, and exists as a free thiol.
  • the free thiol content refers to the number of moles (molar ratio) of free thiol groups per mole of protein having an Fc region.
  • aggregation refers to an irreversible interaction that occurs between a plurality of protein molecules, and indicates multimer formation that does not dissociate even by manipulation such as dilution.
  • Aggregates are formed by physicochemical interactions or chemical reactions, but are not limited by the formation route. Aggregates can be confirmed by a dynamic light scattering method as a peak having a particle size larger than that of monomers (nonaggregates) that do not dissociate by dilution.
  • Storage stability refers to stability over a storage period under specific storage conditions.
  • the storage stability can be evaluated by an arbitrary index related to the change occurring within the storage period.
  • any index for evaluating the storage stability of a protein having an Fc region includes various factors such as appearance, antigen binding property, degradability, self-association property, free thiol content, aggregation property, and biological activity. However, it is not limited by these.
  • the yield indicates the ratio of the amount of the target protein obtained after the purification step to the amount of the target protein contained in the mixed solution before the purification step.
  • IL-33 is a cytokine belonging to the IL-1 family, and has a chromatin-binding domain on the N-terminal side and an IL-1-like cytokine domain with a molecular weight of 18 kDa having 12 ⁇ -strands on the C-terminal side. .
  • IL-33 is cleaved by enzymes such as esterase, cathepsin G, or proteinase 3 in the process of necrosis in cells, and becomes mature IL-33 consisting only of the C-terminal fragment, and is thought to function as a cytokine. ing.
  • IL-33 When IL-33 is released extracellularly as a cytokine, it binds to IL-33 receptors (ST2 and IL-1RAcP) and initiates intracellular signal transduction in cells that express the IL-33 receptor. It has the function.
  • Signal transduction induced by IL-33 includes, but is not limited to, the NF- ⁇ B pathway and the MAPKKs pathway, and ultimately induces production of various cytokines, chemokines, and inflammatory mediators. Examples of cytokines induced by IL-33 include TNF- ⁇ , IL-1 ⁇ , IL-3, IL-4, IL-5, IL-6, IL-13, and particularly IL-5, IL -6 and IL-13 are induced.
  • chemokines induced by IL-33 include CXCL2, CCL2, CCL3, CCL6, CCL17, and CCL24.
  • inflammatory mediators induced by IL-33 include PGD2 and LTB4.
  • IL-33-induced cytokines, chemokines, and inflammatory mediators are involved in immune system cell migration, cytokine production, and degranulation to cause inflammation.
  • IL-33 may refer to either full-length IL-33 or mature IL-33, as long as it acts by binding to the IL-33 receptor, or a derivative or mutation thereof. It may be a body.
  • human IL-33 or IL-33 derived from other organisms may be used.
  • a method for purifying a protein having an Fc region is provided. This method is characterized in that a protein having an Fc region is bound to an affinity chromatography support and then washed with an alkaline washing solution. Impurities are removed with an alkaline washing solution, and the free thiol content, self-association and aggregation properties of the protein containing the Fc region bound to the affinity chromatography support are reduced. Next, the protein having the Fc region is purified by eluting the protein having the Fc region using the eluate. The cleaning with the cleaning liquid may be performed once, or may be performed a plurality of times using the same or different cleaning liquid.
  • the solution containing a protein having an Fc region includes, but is not limited to, a body fluid containing a protein having an Fc region such as blood, ascites, and milk, and a protein encoding the protein so as to produce a protein having an Fc region.
  • B cells that have been immortalized by cell disruption solutions such as transgenic E. coli, genetically modified yeast, and genetically modified plants transformed with the gene to be transformed, and hybridomas that produce proteins having the Fc region, Epstein-Barrvirus (EBV), etc. Examples include culture supernatants obtained by culturing cells and transgenic animal cells, and culture supernatants containing proteins having an Fc region are preferred.
  • a solution containing a protein having an Fc region a solution obtained by re-dissolving the solution after further precipitation, a concentrated solution, a diluted solution, a dialyzed solution, and a solution subjected to a rough purification process by chromatography or the like Etc.
  • the solution containing the protein having the Fc region may contain impurities other than the protein having the target Fc region.
  • Impurities include components derived from body fluids and host cells (proteins, nucleic acids, lipids, sugar chains, etc.), contaminated viruses, bacteria, fungi and components constituting them, components derived from culture media, and degradation products of proteins having an Fc region , Aggregates, and sub-visible particles.
  • the present invention includes the steps of contacting a protein containing an Fc region with an affinity chromatography support and binding the protein having an Fc region to the affinity chromatography support.
  • the carrier for affinity chromatography Protein A, Protein G, Protein A / G, Protein L, anti-immunoglobulin antibody, Fc receptor extracellular domain and fragments thereof, and carriers on which these variants are immobilized are used.
  • a preferred embodiment of the carrier for affinity chromatography of the present invention is a carrier having Protein A, Protein G, or a modified form thereof.
  • the purification method in the present invention can be performed using a column packed with a carrier for affinity chromatography. Moreover, it can also carry out by a batch process, without using a column.
  • a preferred embodiment of the present invention is a purification method using a column. When a column is used, a contact step, a washing step, and a solution containing a protein having an Fc region are passed through a column packed with an affinity chromatography carrier, then an alkaline washing solution, and finally an elution solution. An elution step is performed. Each process may be performed continuously or at intervals. Further, a cleaning step with a cleaning solution other than the alkaline cleaning solution, a column equilibration step, a regeneration step, and the like may be further added.
  • the column packed with the carrier can be washed with one or a plurality of washing solutions.
  • general cleaning solutions include physiological saline and Phosphate buffered saline (PBS), and a surfactant may be added to these cleaning solutions.
  • the surfactant include polysorbate (Tween 20, Tween 40, Tween 60, Tween 80 (above trade name), etc.) and Triton X-100 (trade name).
  • the amount of the surfactant added may be not less than the critical micelle concentration, and is preferably in the range of 0.01% (V / V) to 1% (V / V).
  • the present invention includes a step of washing an affinity chromatography support to which a protein having an Fc region is bound with an alkaline solution.
  • the pH of the alkaline cleaning solution is in the range of 9 to 12, preferably 9.5 to 12, more preferably 10 to 12, even more preferably 10.1 to 12, 10.5 to 12, 10.6 to 12, 10.5 to 11.5, Most preferably from 10.6 to 11.5.
  • the lower limit of the pH of the alkaline cleaning solution is, for example, 9, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 10, 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10, 7, 10.8, 10.9 and 11 are mentioned, and the upper limit of the pH of the alkaline cleaning liquid is 11, 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, 11.8, 11.9, 12. Buffering agents can be added to maintain the pH of the wash solution.
  • the buffer may be appropriately selected from those commonly used by those skilled in the art depending on the pH to be used.
  • a preferred embodiment of the alkaline washing solution of the present invention is an alkaline washing solution containing sodium carbonate or sodium phosphate, and the concentration of these buffering agents is preferably 10 mM to 1000 mM, more preferably 50 mM to 500 mM, most preferably 100 mM. 250 mM.
  • amino acids for example, arginine, histidine, leucine, isoleucine, valine
  • divalent cations for example, divalent cations of manganese, nickel, copper, magnesium, calcium, barium
  • surfactants for example, , Polysorbate, Triton X-100, etc.
  • protein denaturing agents eg, urea, guanidine hydrochloride
  • redox agents eg, dithiothreitol, 2-mercaptoethanol, TCEP, copper sulfate, cystamine, cystine, glutathione
  • a preferred alkaline cleaning liquid in the present invention is an alkaline cleaning liquid to which these are not added.
  • a salt that is not a buffer may be added to the alkaline washing solution in affinity chromatography.
  • Salts that are not buffering agents are effective in washing impurities bound to the affinity chromatography support by ionic bonds, and are less than 0.05M, less than 0.1M, less than 0.15M, less than 0.2M, less than 0.5M, less than 1M, 2M It can be added to the alkaline cleaning liquid of the present invention at a concentration of less than.
  • a preferred alkaline cleaning solution in the present invention is an alkaline cleaning solution that does not contain a salt that is not a buffer, such as sodium chloride.
  • the present invention includes a step of eluting a protein having an Fc region from an affinity chromatography support.
  • the eluting step is performed using an appropriate eluent. Any eluate may be used as long as the protein having the Fc region can be eluted from the bound affinity chromatography support, for example, a low pH, preferably 2 to 6.5, more preferably 2.5 to 4.0. Can be used.
  • the preferred eluent of the present invention is 100 mM acetate buffer or glycine hydrochloride solution.
  • the protein having the Fc region recovered from the eluate after the alkali washing step has a reduced free thiol content, self-association property, and aggregation property, and is excellent in storage stability.
  • additional purification steps may be performed to remove contaminating impurities. Typical purification steps include ion exchange chromatography, hydrophobic chromatography, hydroxyapatite chromatography, affinity chromatography, size exclusion chromatography, ammonium sulfate precipitation, ethanol precipitation, reverse phase HPLC, chromatofocusing, mixed mode chromatography, Depth filters, ultrafiltration and diafiltration.
  • the protein having an Fc region is an antibody.
  • Particularly preferred embodiments are human monoclonal antibodies, humanized monoclonal antibodies, and chimeric monoclonal antibodies. These antibodies are useful as therapeutic drugs because they have low antigenicity to humans and can be administered to humans. The most preferred embodiment is a human antibody.
  • the protein having an Fc region is an antibody having a ⁇ chain.
  • An antibody having a ⁇ chain is generally more aggregated and difficult to handle than an antibody having a ⁇ chain. Therefore, the purification method of the present invention including an alkali washing step capable of reducing the aggregation property is extremely useful for purifying an antibody having a ⁇ chain.
  • the present invention relates to a method for producing a protein having an Fc region.
  • a method for producing a protein having an Fc region By washing the protein having an Fc region on an affinity chromatography support using an alkaline washing solution, the protein having an Fc region with reduced aggregation, self-association and free thiol content and excellent storage stability is obtained. It can be manufactured inexpensively, easily and in high yield.
  • the present invention relates to a protein having an Fc region produced by the production method of the present invention.
  • the protein having the Fc region produced by the production method of the present invention is characterized in that it has a predetermined self-association property, free thiol content, and aggregation property.
  • Such proteins have excellent non-aggregation properties characterized by having an interaction parameter of -12.4 mL / g or higher, a free thiol content of 0.1 mol or less per mol of protein, and a particle size of greater than 50 nm. Characterized by one or more, preferably 2, and more preferably 3 properties.
  • a preferred embodiment of the present invention is a method for producing a human monoclonal antibody capable of binding to IL-33.
  • Human anti-IL-33 monoclonal antibody is washed on an affinity chromatography carrier with an alkaline washing solution to reduce aggregation, self-association, and free thiol content, and human anti-IL-33 has excellent storage stability
  • Monoclonal antibodies can be produced inexpensively, easily and in high yield.
  • the present invention relates to a human anti-IL-33 monoclonal antibody produced by the production method of the present invention.
  • the human anti-IL-33 monoclonal antibody produced by the production method of the present invention is characterized in that it has a predetermined self-association property, free thiol content, and aggregation property.
  • Such proteins have excellent non-aggregation characteristics characterized by having an interaction parameter of -12.4 mL / g or more, a free thiol content of 0.1 mol or less per mol of antibody, and a particle size of more than 50 nm. Characterized by one or more, preferably 2, and more preferably 3 properties.
  • a human anti-IL-33 monoclonal antibody having such properties has excellent storage stability and is useful as a pharmaceutical product.
  • the present invention relates to a method for reducing the self-association property of a protein having an Fc region contained in a solution.
  • Self-association can be evaluated by analyzing dynamic light scattering and calculating interaction parameters, as described in the Examples of the present application. If the interaction parameter is high, the self-association property is low, and the interaction parameter is preferably ⁇ 12.4 mL / g or more.
  • the interaction parameter in the solution of the protein having the Fc region subjected to the alkaline solution treatment is increased by 1 mL / g or more as compared with the protein having the Fc region not subjected to the alkaline solution treatment.
  • An embodiment is an increase of 5 mL / g or more, and a still more preferable embodiment is an increase of 10 mL / g or more, thereby reducing self-association.
  • the present invention relates to a method for reducing the free thiol content of a protein having an Fc region contained in a solution.
  • Free thiol has high reactivity, and a protein having an Fc region aggregates irreversibly by forming a disulfide bond or a thioether bond between molecules of the protein having the Fc region.
  • the free thiol content can be measured by a chemical method as described in the Examples of the present application.
  • the free thiol content in the solution of the protein having the Fc region subjected to the alkaline solution treatment is reduced by 0.01 or more compared to the protein having the Fc region not subjected to the alkaline solution treatment. Is reduced by 0.05 or more, and more preferably, it is reduced by 0.1 or more.
  • the present invention relates to a method for reducing the aggregation property of a protein having an Fc region contained in a solution.
  • a solution having a constant concentration for example, 1 mg / mL, 10 mg / ml, 50 mg / ml
  • an alkaline solution is compared with a protein having an Fc region that is not treated with an alkaline solution.
  • the peak area (dynamic light scattering, light intensity distribution) of the protein aggregate having the Fc region to be treated is reduced by 65% or more, more preferably 80% or more, and even more preferably 90% or more, most preferably A preferred embodiment is a reduction of 95% or more.
  • the present invention relates to a method for enhancing the storage stability of a protein having an Fc region contained in a solution.
  • evaluation can be performed by storing a protein having an Fc region at a constant temperature for a certain period.
  • proteins with Fc regions can be stored at 4 ° C for 1 month, 2 months, 6 months, 1 year, 2 years, 3 years, or 40 ° C for 3 days, 4 weeks, 8 weeks.
  • the storage stability of a protein having a region can be evaluated by measuring the aforementioned self-association property, free thiol content, and aggregation property.
  • a degradation product of a protein having an Fc region can also be examined by size exclusion chromatography, SDS polyacrylamide electrophoresis or mass spectrum analysis generally performed by those skilled in the art.
  • a peak of an aggregate when a protein having an Fc region in the case of alkaline solution treatment is stored at a constant temperature for a certain period of time.
  • the area (dynamic light scattering, light intensity distribution) is reduced by 80% or more, more preferably 90% or more, and still more preferably 95% or more.
  • the present invention relates to a purification method capable of simultaneously inactivating a virus contained in a solution containing a protein having Fc.
  • Viruses such as retroviruses are known to be rapidly inactivated under alkaline conditions (Biotechnol Prog. 2003. 19 19: 538-43.). Usually, virus inactivation is carried out as a separate step after purification with an affinity column. However, in the present invention, it is possible to reduce the process time and cost by carrying out simultaneously with the purification. Viruses such as retroviruses can be inactivated by using an alkaline washing solution during affinity column purification.
  • the present invention relates to a reduction in the cleaning-in-place (CIP) of the chromatography carrier.
  • CIP cleaning-in-place
  • various impurities are adsorbed on the chromatographic carrier during the purification process using chromatography, and carry over to the next purification cycle.
  • In order to maintain the quality of the target protein obtained by purification it is necessary to wash the chromatographic support at fixed intervals. In-situ cleaning is often performed under harsh conditions such as sodium hydroxide solution or a combination of sodium hydroxide and a high concentration salt (Journal of Chromatography A, 1308 (2013) 86- 95).
  • the impurities adsorbed on the chromatography carrier can be removed by washing under mild alkaline conditions for each cycle. Therefore, by using the present invention, it is possible to eliminate the stationary cleaning under severe conditions or reduce the frequency of stationary cleaning.
  • the pH of the alkaline solution in the present invention is in the range of 9 to 12, preferably 9.5 to 12, more preferably 10 to 12, even more preferably 10.1 to 12, 10.5 to 12, 10.6 to 12, 10.5 to 11.5. And most preferably from 10.6 to 11.5.
  • the lower limit of the pH of the alkaline solution is, for example, 9, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 10, 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10, 7, 10.8, Examples of the upper limit of the pH of the alkaline solution include 11, 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, 11.8, 11.9, 12. Buffering agents can be added to maintain the pH of the alkaline solution.
  • the buffer may be appropriately selected from those commonly used by those skilled in the art depending on the pH to be used. Phosphate, citrate, glycine, trishydroxyaminomethane (Tris), borate, carbonate , Bicarbonate, and good buffer buffers such as CHES, CAPS, Bicine, and TAPS.
  • the buffer used in the alkaline solution of the present invention is preferably a non-amino acid buffer.
  • a preferred embodiment of the alkaline solution of the present invention is an alkaline solution containing sodium carbonate or sodium phosphate, and the concentration of these buffering agents is preferably 10 mM to 1000 mM, more preferably 50 mM to 500 mM, most preferably 100 mM. 250 mM.
  • amino acids for example, arginine, histidine, leucine, isoleucine, valine
  • divalent cations for example, manganese, nickel, copper, magnesium, calcium, barium
  • surfactants for example, polysorbate, Triton
  • protein denaturing agents eg urea, guanidine hydrochloride
  • redox agents eg dithiothreitol, 2-mercaptoethanol, TCEP, copper sulfate, cystamine, cystine, glutathione
  • a preferred alkaline solution in the present invention is an alkaline solution to which these are not added.
  • the alkaline solution in the present invention preferably does not contain arginine and its derivatives.
  • a salt that is not a buffer eg sodium chloride, potassium chloride
  • a salt that is not a buffer is added to the alkaline solution of the present invention at a concentration of less than 0.05M, less than 0.1M, less than 0.15M, less than 0.2M, less than 0.5M, less than 1M, less than 2M. can do.
  • a preferred alkaline solution in the present invention is an alkaline solution that does not contain a salt that is not a buffer, such as sodium chloride.
  • the protein having an Fc region is an antibody.
  • the antibody in the present invention may be a polyclonal antibody or a monoclonal antibody, and may be an antibody derived from any animal such as a mouse antibody, a human antibody, a rat antibody, a rabbit antibody, a goat antibody, or a camel antibody.
  • the antibody in the present invention may be a chimeric antibody or a humanized antibody in which these animal-derived antibodies are combined.
  • Proteins that fuse with the Fc region may be, but are not limited to, extracellular domains of membrane-bound proteins such as TNF receptors and CTLA-4, including cytokines, chemokines, enzymes, growth factors, coagulation factors, hormones and these It may be an agonist or an antagonist whose function is altered. It may also be an artificial antigen-binding protein using the extracellular domain of human fibronectin or the Kunitz domain of a serine protease inhibitor (Clifford Mintz et.al BioProcess International, 2013, Vol.11 (2) , Pp40-48).
  • the Fc region of the protein having the Fc region of the present invention is a C-terminal region of an IgG antibody, preferably a human-derived IgG1, IgG2, IgG3, IgG4 Fc region, more preferably a human IgG1 Fc region. is there.
  • the sugar chain bound to the Fc region may be modified, and in particular, by adjusting the fucose content, the antibody-dependent cytotoxic activity of the antibody can be regulated (WO 2005/035586, International Publication No. 2002/31140, International Publication No. 00/61739). Further, the amino acid sequence of the Fc region may be modified as long as it can bind to the carrier for affinity chromatography.
  • human IgG1 and human IgG3 chimeric Fc region, Fc with enhanced binding to Fc receptor (FcRn) The area can be raised (Shouhei Hashiguchi, Biochemistry, 2010, Vol.82 (8), p710).
  • the protein having an Fc region is an antibody having a ⁇ chain.
  • the light chain of an antibody is composed of a ⁇ chain or a ⁇ chain, but an antibody having a ⁇ chain is useful because it has diversity as well as an antibody having a ⁇ chain and can bind to various antigens.
  • the protein having the Fc region to be purified according to the present invention is a human anti-IL-33 monoclonal antibody.
  • the human anti-IL-33 monoclonal antibody is described in Japanese Patent Application No. 2014-078223 filed on April 4, 2014.
  • DNA containing a DNA sequence encoding a protein having a desired Fc region is incorporated into an expression vector, transformed into a host cell, and the host cell is cultured.
  • a protein having an Fc region can be produced (for example, Borrebaeck C. A. K. and Larrick J. W.
  • the protein having the Fc region is an Fc fusion protein
  • the entire length of the protein having the Fc region is encoded by linking the DNA encoding the Fc region downstream of the DNA encoding the protein to be fused with the Fc region.
  • a DNA sequence can be generated.
  • a chimeric antibody which is a preferred embodiment of the present invention, is produced by ligating a DNA encoding a non-human-derived antibody variable region with a DNA encoding a human antibody constant region, incorporating this into an expression vector, and transforming it into a host cell. (See European Publication No. 125023, International Publication No. 92/197559).
  • a humanized antibody which is a preferred embodiment of the present invention is a ligation of a complementarity determining region of an antibody derived from a non-human mammal and a DNA encoding the other part of the human antibody region, which is incorporated into an expression vector and introduced into a host. It is obtained by making it produce.
  • a human antibody which is a preferred embodiment of the present invention can be obtained, for example, using DNA encoding the light chain and heavy chain variable regions of a human antibody obtained by screening a human antibody phage library.
  • Human antibodies include trioma technology, human B-cell hybridoma technology (Kozbor et al., 1983 Immunol Today 4: p72), and EBV hybridoma technology for generating human monoclonal antibodies (Cole et al., 1985, MONOCLONAL ANTIBODIES ANDANDANCE CANCER R. Liss, Inc., p. 77) etc. can also be used.
  • a human antibody can also be produced by immunizing a transgenic mouse introduced with a human antibody gene with an antigen protein to produce a hybridoma.
  • transgenic mice include HuMab (registered trademark) mice (Medarex, Princeton NJ), KMTM mice (Kirin Pharma Company, Japan), KM (FC ⁇ RIIb-KO) mice and the like.
  • a DNA sequence encoding the full length of the heavy chain and the full length of the light chain of the human anti-IL-33 monoclonal antibody preferable in the present invention is, for example, IgG1 having a ⁇ chain as the light chain, and is represented in Table 1 below:
  • An in vitro production system can be used as a production system for producing a protein having an Fc region.
  • in vitro production systems include production systems using eukaryotic cells such as animal cells, plant cells or fungal cells, and production systems using prokaryotic cells such as bacterial cells such as Escherichia coli and Bacillus subtilis.
  • animal cells used mammalian cells such as CHO, COS, myeloma, BHK, HeLa, Vero, 293, NS0, Namalwa, YB2 / 0, commonly used cells, insect cells, etc. may be used. However, 293 cells and CHO cells are preferred.
  • DNA encoding the protein having the Fc region is incorporated into an expression vector to transform the host.
  • vectors that can be used in animal cells include, but are not limited to, pConPlus, pcDM8, pcDNA I / Amp, pcDNA3.1, and pREP4.
  • a hybridoma can be used as an in vitro production system for producing a protein having an Fc region.
  • a hybridoma can be obtained by fusing lymphocytes and a myeloma cell line according to a general method (for example, Kohler et al. Nature 256, 495 (1975), Gelfre et al. Nature 266, 55052 (1977).
  • Examples of strains include P3-NS1 / 1-Ag4-1, P3-x63-Ag8.653 and Sp2 / O-Ag14.
  • Another aspect of the present invention resides in a pharmaceutical composition comprising a human anti-IL-33 monoclonal antibody produced by the production method of the present invention.
  • This pharmaceutical composition can be used for diagnosis, treatment, prevention or alleviation of IL-33 related diseases.
  • a method for diagnosis, treatment, prevention or alleviation of an IL-33 related disease comprising administering the human anti-IL-33 monoclonal antibody of the present invention, and a medicament for diagnosis, treatment, prevention or alleviation of an IL-33 related disease
  • IL-33 related diseases include, but are not limited to, asthma, atopic dermatitis, urticaria, hay fever, anaphylactic shock, eosinophilic sinusitis, hypereosinophilic syndrome, Churg-Strauss syndrome , Allergic encephalomyelitis, polymyalgia rheumatica, rheumatic heart disease, multiple sclerosis, arthritis (eg, rheumatoid arthritis, juvenile arthritis, psoriatic arthritis, osteoarthritis, Reiter syndrome), systemic Erythromatodes (including discoid lupus), psoriasis, ankylosing spondylitis, hepatitis (eg, autoimmune hepatitis, chronic active hepatitis, etc.), inflammatory bowel disease (eg, ulcerative colitis, Crohn's disease, gluten) Susceptible bowel disease, etc.), systemic lupus erythematosus, S
  • proteins having an Fc region include proteins having an Fc region that is recognized for therapeutic use in humans.
  • proteins having an Fc region include antibodies that bind to tumor cell antigens, cytokines, cytokine receptors or adhesion proteins, and Fc fusion proteins.
  • a protein having an Fc region may be an antibody or Fc fusion protein that binds to an antigen selected from the group consisting of: CD3 (eg, OKT3), CD52 (eg, alemtuzumab) Campath®), VEGF (eg, bevacizumab; Avastin®, EGFR (eg, cetuximab; Erbitux®), CD33 (eg, gemtuzumab; Mylotarg®), CD20 (eg, rituximab); Rituxan®, tositumomab; Bexxar®, ibritumomab; Zevalin®), HER-2 (eg, trastuzumab; Herceptin®), TNF ⁇ (eg, infliximab; Remicade®) Adalimumab: Humira®, etanercept; Embrel®, Golimumab; Simponi®), CD25 (Eg, daclizumab), Humira
  • the examples use seven different human anti-IL-33 monoclonal antibodies (A10-1C04, A23-1A05, A25-2C02, A25-3H04, A26-1F02, A00-0070, A00-0036).
  • An expression vector for mammalian cells expressing IgG was constructed by inserting DNA encoding the light chain and heavy chain amino acid sequences of each antibody downstream of the CMV promoter.
  • the DNA sequence of the light chain of the human anti-IL-33 monoclonal antibody is SEQ ID NO: 38, 40, 42, 44, 46, 48 and 50, respectively, and the heavy chain DNA sequence is respectively SEQ ID NO: 39, 41, 43, 45, 47, 49 and 51 were used.
  • the expression vector was introduced into FreeStyle 293-F cells (Life Technologies) using the gene introduction reagent NeoFection 293-1 (Aspec). The culture supernatant was obtained after culturing for 5 days after gene introduction.
  • a stable expression strain by CHO cells was established by a GS system (Lonza) using pConPlus vector and CHO K1SV cells.
  • the CHO cell stable expression strain was cultured from 0.3 ⁇ 10 6 cells / mL using WAVE Bioreactor SYSTEM 20/50 EHT (GE Healthcare), and the culture supernatant containing secreted IgG was collected. The following examples were carried out using these culture supernatants.
  • Example 1 Antibody purification by Protein A chromatography Purification 1 (without alkaline washing step): A Protein A column (HiTrap MabSelect SuRe, GE Healthcare) was connected to AKTA explorer 100 (GE Healthcare). PBS (pH 7.2) was sent to HiTrap MabSelect SuRe to equilibrate the column, and each culture supernatant was added. PBS (pH7.2) was fed to the column in 6 Column Volume (CV) (6 min) and the column was washed. Then, 100 mM glycine hydrochloride buffer (pH3.2) was sent in 10 CV (10 min), The bound antibody was eluted and the desired fraction was recovered from the chromatogram. Note that 1.0 M Tris-HCl buffer (pH 8.8) was previously added to the collection tube so that the pH was around neutral.
  • a Protein A column (HiTrap MabSelect SuRe) was connected to AKTA explorer 100.
  • PBS (pH 7.2) was sent to HiTrap MabSelect SuRe to equilibrate the column, and each culture supernatant was added.
  • PBS (pH 7.2) was fed to the column at 6 CV (6 min), the column was washed, and then 100 mM sodium carbonate buffer (pH 11.0) was fed at 6 CV (6 min).
  • PBS (pH 7.2) was sent to the column at 8 CV (8 min) and the column was washed, then 100 mM glycine hydrochloride buffer (pH 3.2) was sent at 10 CV (10 min) to elute the antibody bound in the column. The desired fraction was recovered from the chromatogram. Note that 1.0 M Tris-HCl buffer (pH 8.8) was previously added to the collection tube so that the pH was around neutral.
  • Dialysis The antibody solution obtained by the purification 1 or the purification 2 was centrifuged and the supernatant was collected, followed by dialysis with Slide-A-Lyzer G2 10,000 MWCO (Thermo Scientific). PBS (pH 7.2) was used as the dialysis external solution, and the dialysis external solution was exchanged halfway. After collecting the dialyzed sample, it was filtered with 0.45 ⁇ m PES filter GD / X (GE Healthcare) to prepare a purified antibody.
  • the human antibody concentration contained in the culture supernatant was measured by BLItz (Bio-Layer Interferometry) method using BLItz (Pall forte BIO).
  • the concentration of the purified antibody was measured with NanoDrop ND-1000 (Thermo Scientific).
  • the recovery rate under the purification conditions for the presence or absence of the alkaline washing step for each of the five types of antibodies was calculated.
  • the recovery rate ratio (recovery rate with an alkali cleaning step / recovery rate without an alkali cleaning step) with or without an alkali cleaning step was also calculated using this recovery rate.
  • 4 of the 5 antibodies showed an effect of improving the recovery rate by the alkali washing step in the Protein A purification step.
  • the recovery rate was improved about 20 times.
  • 20 antibodies (22 purified batches) 17 antibodies (19 purified batches) showed a yield improvement effect, and the recovery rate was also improved in trastuzumab having ⁇ chains as light chains.
  • the average recovery ratio of 20 antibodies (22 purified batches) was 2.7 times.
  • Example 2 Measurement of free thiol content Reduced glutathione was sequentially diluted with 0.1 M sodium phosphate buffer (pH 6.0) containing 1 M EDTA to prepare a standard solution. After adding 50 ⁇ L of 10 mM 4,4 ′ Dithiodipyridine (4DTP) per 950 ⁇ L of the standard solution and allowing to stand at room temperature for 10 minutes, the absorbance at 324 nm was measured with a spectrophotometer to prepare a calibration curve. The purified antibody was diluted 10-fold with 0.1 M sodium phosphate buffer (pH 6.0) containing 1 mM EDTA to obtain a measurement sample.
  • 4DTP Dithiodipyridine
  • the color was developed with 4DTP as in the standard solution, and the amount of free thiol was calculated from the calibration curve.
  • the free thiol content (molar ratio) per mole of antibody was calculated from the amount of free thiol obtained and the antibody concentration calculated by separately measuring the absorbance at 280 nm.
  • the free thiol content of the antibody obtained by the purification method according to the purification 1 without the alkali washing step is higher than the free thiol content of the antibody obtained by the purification method according to the purification 2 after the alkaline washing step.
  • Table 3 Since the variable region of the antibody subjected to the test does not contain a cysteine residue, the detected free thiol is considered to be a thiol group of a cysteine residue present in the constant region. Since such a free thiol group is highly reactive and may cause aggregation by forming a disulfide bond between molecules, it is possible to obtain an antibody with low risk such as aggregation by adding an alkali washing step. did it.
  • Example 3 Measurement of aggregation property
  • the purified antibody solution dissolved in PBS (pH 7.2) was concentrated to several tens mg / mL using an ultrafiltration membrane (Vivaspin turbo 50000 MWCO 15 mL, Sartorius). .
  • the concentration of the antibody was 45 mg / mL in A00-0070 by Purification 2 with an alkali washing step, 21 mg / mL in A00-0070 by Purification 1 without an alkali washing treatment, and the purification with an alkali washing step.
  • the concentration was 47 mg / mL
  • A00-0036 according to Purification 1 without the alkali washing step it was 44 mg / mL.
  • the concentrated solution was subjected to particle size measurement using a dynamic light scattering measurement device (Nanotrac UPA UT151 Nikkiso).
  • a dynamic light scattering measurement device Naytrac UPA UT151 Nikkiso
  • the particle size of a sample diluted two-fold sequentially with PBS (pH 7.2) was measured.
  • FIG. 1 it was found that A00-0070 and A00-0036 that did not undergo the alkali washing step formed aggregates and formed irreversible aggregates that did not return even after dilution.
  • A00-0070 and A00-0036 that had undergone the alkali washing step hardly formed aggregates. From this, it was possible to obtain an antibody that does not aggregate by using an alkaline washing step even for an antibody that forms an aggregate.
  • Example 4 Measurement of self-association
  • the interaction parameter representing the concentration dependence of the diffusion coefficient is an important index that is also used in the formulation design of high-concentration protein preparations such as antibodies. If the value of the interaction parameter is higher than ⁇ 12.4 mL / g, it is reported that it is a repulsive interaction and excellent in colloidal stability and low in self-association (Saito et al., Pharm. Res., 2013. Vol.30 p1263).
  • the purified antibody solution dissolved in PBS (pH 7.2) is concentrated to a few tens mg / mL with an ultrafiltration membrane, and the particle size measurement of a sample diluted twice with the same solvent is performed.
  • the diffusion coefficient was calculated from the obtained particle diameter by the following Stokes-Einstein equation. ⁇ Where D is the diffusion coefficient (cm 2 / sec), K B is the Boltzmann constant, T is the thermodynamic temperature (° C.), ⁇ is the circumference, ⁇ is the dilution viscosity P (poise), d is the particle size ( cm). ⁇
  • the concentration dependence of the diffusion coefficient was plotted, and the interaction parameter was obtained by fitting with the following calculation formula. From this equation, the interaction parameter k D which is the slope of the fitting line was obtained.
  • the interaction parameters of A23-1A05, A26-1F02, and A25-3H04 by the purification 1 without passing through the alkali washing step are low, and they have an attractive (self-associative) interaction.
  • the interaction parameters of A23-1A05, A26-1F02, and A25-3H04 by the purification 2 after the alkali washing step were high, and the self-association property was reduced.
  • Example 5 Improving storage stability About 10 mg / mL A10-1C04 antibody dissolved in pH 6.3 citrate buffer (50 mM citrate, 150 mM NaCl) was stored at 4 ° C or 40 ° C for 3 days . As shown in FIG. 3, when the particle size was measured by a dynamic light scattering method (Zetasizer ⁇ V, Malvern), when the A10-1C04 antibody purified by the above-mentioned purification 1 without being subjected to an alkali washing step was stored at 40 ° C. for 3 days. In contrast, aggregates were observed, whereas no aggregate formation was observed with the A10-1C04 antibody obtained by the purification 2 after the alkali washing step. The storage stability could be improved by the alkali washing step.
  • a dynamic light scattering method Zetasizer ⁇ V, Malvern
  • Example 6 pH Dependence of Yield
  • a Protein A column (ToyoScreen AF-rProtein A HC-650F) was connected to AKTA explorer 100.
  • FIG. 4 shows the antibody yield when the A10-1C04 antibody was purified from the culture supernatant using the various washing solutions having different pHs. As a result, a yield improving effect was observed when a cleaning solution having a pH of 10.1 or higher was used.
  • Example 7 pH Dependence of Impurity Removal Effect
  • a Protein A column (MabSelect SuRe) was connected to AKTA explorer 100.
  • PBS (pH 7.2) was fed to the Protein A column to equilibrate the column, and then the culture supernatant expressing the A23-1A05 antibody was added to capture the A23-1A05 antibody.
  • PBS (pH 7.2) was sent to the column at 8 CV (8 min), and the column was washed. Then, 100 mM KH 2 PO 4 150 mM NaCl (pH 7.2) neutral washing solution or 6 types of alkaline washing solutions were used at 6 CV (6 min). Liquid was sent.
  • the alkaline cleaning solution used was 100 mM TrisHCl (pH 9.0), 100 mM Na 2 CO 3 (pH 9.5), 100 mM Na 2 CO 3 (pH 10.0), 100 mM Na 2 CO 3 (pH 10.6), 100 mM Na 2 It is a solution of CO 3 (pH 11.0), 100 mM K 2 HPO 4 (pH 11.5).
  • PBS pH 7.2
  • 100 mM glycine hydrochloride buffer pH 3.2
  • was sent at 10 CV (10 min) was sent at 10 CV (10 min), and the antibody bound to the column was removed.
  • the desired fraction was recovered from the chromatogram after elution. Note that 1.0 M Tris-HCl buffer (pH 8.8) was previously added to the collection tube so that the pH was around neutral.
  • Fig. 5 shows the result of electrophoresis of SDS-PAGE (Nupage 4-12% Bris-Tris gels (Life Technologies)) according to the manufacturer's package insert for the fraction washed with a neutral washing solution or an alkaline solution. As a result, impurities were observed at pH 9.5 or higher. It was found that the antibody molecule, which is the target protein, was also washed at pH 11.5.
  • FIG. 6 shows the change over time in the absorbance of the washing solution that passed through the column when washed with washing solutions of various pHs. No increase in absorbance was observed in pH 7.2 and 9 cleaning solutions, and no cleaning effect was observed.In pH 9.5 cleaning solutions, an absorbance peak that appears to be an impurity was observed. A high absorbance peak was observed, confirming the cleaning effect.
  • Example 8 Influence of washing time with alkaline solution
  • a Protein A column (ToyoScreen AF-rProtein A HC-650F) was connected to AKTA explorer 100.
  • a 100 mM KH 2 PO 4 150 mM NaCl (pH 7.2) solution was fed to the column at 6 CV (6 min) to wash the column, and then washed with various alkaline washing solutions.
  • 6,12,18,24,48CV The cleaning process with alkaline cleaning solution was carried out. Thereafter, a 100 mM KH 2 PO 4 150 mM NaCl (pH 7.2) solution was fed to the column at 6 CV (6 min) to wash the column.
  • Example 9 Host cell derived protein Purification 3 (without alkaline washing step): A Protein A column (ToyoScreen AF-rProtein A-650F, TOSOH) was connected to AKTA explorer 100 (GE Healthcare). 20 mM phosphoric acid, 20 mM citric acid, and 20 mM Tris buffer (PCT buffer) (pH 7.0) were fed to the Protein A column to equilibrate the column, and then the culture supernatant of the A10-1C04 antibody was added. The column was washed with 2 CV of PCT buffer (pH 7.0) and the column was washed, and then washed with 6 CV of PCT buffer (pH 8.5). Subsequently, 9 CV of PCT buffer (pH 5.8) was fed. Finally, PCT buffer (pH 2.7) was fed at 10 CV (10 min), the antibody bound in the column was eluted, and the desired fraction was recovered from the chromatogram.
  • PCT buffer pH 7.0
  • a Protein A column (ToyoScreen AF-rProtein A-650F, TOSOH) was connected to AKTA explorer 100 (GE Healthcare).
  • PCT buffer (pH 7.0) was fed to the Protein A column to equilibrate the column, and then the culture supernatant of the A10-1C04 antibody was added.
  • the column was washed with 2 CV of PCT buffer (pH 7.0) and washed with an alkaline washing solution of 100 mM Na 2 CO 3 buffer (pH 11). Subsequently, 9 CV of PCT buffer (pH 5.8) was fed. Finally, PCT buffer (pH 2.7) was fed at 10 CV (10 min), the antibody bound in the column was eluted, and the desired fraction was recovered from the chromatogram.
  • the host cell-derived protein contained in the A10-1C04 antibody solution purified by the methods of purification 3 and 4 was measured according to the package insert using an Immunoenzymetric Assay-for-the-Measurement-of-CHO-Host-Cell Protein Protein kit (CYGNUS-TECHNOLOGIES). .
  • Host cell protein, which contained 373443 ppm in the starting material, was reduced to 6978 ppm in the sample purified by purification 3 (without alkali washing step), whereas it was purified by purification 4 (with alkali washing step). In the sample, the concentration was 1691 ppm, and the removal effect of the host cell-derived protein was confirmed by using an alkaline washing step.
  • Fc fusion protein Fc fusion protein ST2-Fc is a fusion protein of the extracellular region of human ST2 protein and the human antibody constant region (Fc).
  • DNA encoding the amino acid sequence of the fusion protein (SEQ ID NO: 52 in the sequence listing) was inserted into pXC-17.4 vector (Lonza) and GS Xceed TM Gene Expression System (Lonza) using CHOK1SV GS-KO cells. was used in accordance with the package insert to establish the target CHO stable expression strain.
  • the CHO stable expression strain was cultured from 0.3 ⁇ 10 6 cells / mL using an Erlenmeyer flask, and the culture supernatant containing secreted ST2-Fc was recovered.
  • 125 mL of the obtained culture supernatant containing ST2-Fc was purified by the methods of Purification 1 (without alkali washing step) and Purification 2 (with alkali washing step) in Example 1, respectively.
  • the ST2-Fc solution obtained by purification 1 or purification 2 was recovered, and then dialyzed against Slide-A-Lyzer G2 10,000 MWCO (Thermo Scientific).
  • PBS pH 7.2
  • the dialysis external solution was changed halfway. Thereafter, when the concentration was measured, the yield was 46.1 mg in the purification 1 (without the alkali washing step) and 48.4 mg in the purification 2 (with the alkali washing step), and an improvement of about 5% was observed.
  • the particle size of the purified ST2-Fc solution (1.5 mg / mL) was measured using a dynamic light scattering measurement device (Nanotrac UPA UT151 Nikkiso). As shown in FIG. 8, the sample obtained in purification 2 (with an alkali washing step) contained less aggregate than the sample obtained in purification 1 (without an alkali washing step).
  • Example 11 Effect of alkaline washing on protein By washing protein under alkaline conditions, there may be concerns such as deactivation of activity and chemical changes. Therefore, for the biological activity of the antibody, the binding to the Fc ⁇ receptor, and the peptide map, the sample purified by the process including the alkaline washing step and the sample purified by the process not including the alkaline washing step were compared.
  • Example 11-1 Bioactivity of antibodies Human umbilical vein endothelial cells (HUVEC) are suspended in EGM-2 medium (LONZA) and seeded in a 96-well collagen-coated microplate (AGC Technoglass, 4860-010) (1 ⁇ 10 4 cells / 100 ⁇ L / well). Approximately 24 hours later, the medium was removed by suction, and anti-IL-33 antibody (final concentration) containing polymyxin B (final concentration 10 ⁇ g / mL) and hIL-33 (ATGen) (final concentration 0-100 ng / mL) was added. 0-100 ⁇ g / mL) was added (150 ⁇ L / well) and incubated at 37 ° C. for about 24 hours.
  • Example 11-2 Binding to Fc ⁇ receptor Anti-IL-33 antibodies (A23-1A05, A10) purified by the methods of purification 1 (without alkali washing step) and purification 2 (with alkali washing step) of Example 1 -1C04, A26-1F02, A25-3H04) and Fc receptors were analyzed using Biacore T200 (GE healthcare).
  • Fc receptor Recombinant Human Fc ⁇ RIIIA R & D Systems, 4325-FC-050
  • Anti-His antibody was immobilized according to the manual of His capture kit (GE healthcare, BR-1003-51).
  • Dissociation constant (KD) was calculated binding parameters, differences in the dissociation constants K D and binding parameters for Human FcyRIIIA with and without alkali cleaning treatment is not observed, that binds to Fc ⁇ receptors Fc region by alkali washing performed There was no loss of function.
  • Example 11-3 Peptide map Antibodies purified by the methods of Purification 1 (without alkali washing step) and Purification 2 (with alkali washing step) of Example 1 (A23-1A05, A10-1C04, A26-1F02, A25) -3H04) were each reduced with DTT, alkylated with iodoacetamide, and then enzymatically digested with trypsin.
  • a C18 column ACQUITY UPLC Peptide BEH C18 Column, 300 mm, 1.7 ⁇ m, 2.1 mm ⁇ 150 mm (Waters) was connected to a liquid chromatography apparatus Acuity (Waters).
  • Mobile phase A 0.1% formic acid / water
  • mobile phase B 0.1% formic acid / acetonitrile
  • gradient was sent at a flow rate of 0.2 mL / min so that the concentration of mobile phase B was 1 ⁇ 40% / 60 min, and digested with trypsin.
  • Peptide fragments were analyzed on a C18 column.
  • the peptide map patterns of the samples purified in purification 1 (without alkali washing step) and purification 2 (with alkali washing step) are equivalent, and the chemical changes associated with alkali washing are I was not able to admit.
  • the method for purifying a protein having an Fc region of the present invention can reduce the free thiol content, self-association property and aggregation property of a protein having an Fc region as compared with conventional methods, and can improve the yield and storage stability. Can be improved. According to the present invention, a protein having an Fc region having excellent physical properties can be produced with high purity at low cost.
  • the human anti-IL-33 monoclonal antibody produced by the present invention can be used as a pharmaceutical composition for diagnosis, treatment, prevention or alleviation of IL-33-related diseases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 The purpose of the present invention is to provide a method for purifying a protein having an Fc region having reduced problems with properties when purifying a protein having an Fc region having problems with properties such as free thiol content, self-association, and cohesiveness. The free thiol content is decreased and self-association and cohesiveness are also decreased by conducting a step for washing by an alkali wash solution in a state in which a protein having an Fc region is bonded on a carrier for affinity chromatography and refining the protein having an Fc region.

Description

アルカリ洗浄によるFc領域を有するタンパク質の製造方法Method for producing protein having Fc region by alkaline washing
 本願の発明は、Fc領域を有するタンパク質の精製方法、及び当該精製方法を含むFc領域を有するタンパク質の製造方法に関する。また、本発明はFc領域を有するタンパク質のフリーチオール含量、自己会合性及び凝集性を低減する方法、並びに保存安定性を高める方法に関する。さらに、本発明はヒト抗IL-33モノクローナル抗体の製造方法に関する。 The present invention relates to a method for purifying a protein having an Fc region, and a method for producing a protein having an Fc region including the purification method. The present invention also relates to a method for reducing the free thiol content, self-association and aggregation properties of a protein having an Fc region, and a method for enhancing storage stability. Furthermore, the present invention relates to a method for producing a human anti-IL-33 monoclonal antibody.
 抗体などのFc領域を有するタンパク質は治療用医薬品、診断薬、研究用試薬など広く一般的に用いられている。これらのタンパク質は、Fc領域を有するタンパク質の遺伝子を導入した遺伝子組換え細胞や、抗体を産生するハイブリドーマを培養すること等により、製造される。Fc領域を有するタンパク質は、主にこれらの細胞を培養して得られる培養上清から精製される。 Proteins having an Fc region such as antibodies are widely used in general, such as therapeutic drugs, diagnostic drugs, and research reagents. These proteins are produced by culturing genetically modified cells into which a gene of a protein having an Fc region has been introduced, hybridomas that produce antibodies, or the like. The protein having the Fc region is mainly purified from the culture supernatant obtained by culturing these cells.
 Fc領域を有するタンパク質を精製する方法には、アフィニティークロマトグラフィーがある。特に、Protein A、Protein G、またはこれらの改変体を固定化したアフィニティークロマトグラフィー用担体は、Fc領域と結合するため汎用されている。 There is affinity chromatography as a method for purifying a protein having an Fc region. In particular, a carrier for affinity chromatography on which Protein A, Protein G, or a modified form thereof is immobilized is widely used because it binds to the Fc region.
 抗体などのFc領域を有するタンパク質を、Protein A等を用いたアフィニティークロマトグラフィーで精製する場合には、高い頻度で凝集や沈殿などの問題が生じる(非特許文献1:Shukla et al., J.Chromatography, 2007, Vol. 848, p28)。凝集や沈殿はFc領域を有するタンパク質の精製収率を低下させるとともに、不純物の混入を高める。抗体の凝集物は医薬組成物として生体内に投与した時に炎症の原因となり得、抗体自身の抗原性を高め得る。また、抗体の凝集物は、診断薬や研究用試薬として用いる場合にも、抗原との特異的な結合によらない非特異的な結合により、誤った結果をもたらし得る。抗体の凝集や沈殿の原因の1つとして、抗体の分子内でシステイン残基同士が適切にジスルフィド結合を形成できないことにより生じるフリーチオール残基が関与していることが考えられている。 When a protein having an Fc region such as an antibody is purified by affinity chromatography using Protein A etc., problems such as aggregation and precipitation occur frequently (Non-patent Document 1: Shukla et al., J. Chromatography, 2007, Vol. 848, p28). Aggregation and precipitation reduce the purification yield of proteins with Fc regions and increase the contamination of impurities. Antibody aggregates can cause inflammation when administered in vivo as a pharmaceutical composition and can enhance the antigenicity of the antibody itself. In addition, antibody aggregates can give erroneous results due to non-specific binding that does not depend on specific binding to an antigen when used as a diagnostic agent or a research reagent. As one of the causes of antibody aggregation and precipitation, it is considered that cysteine residues in the antibody molecule involve free thiol residues that are generated due to the inability to properly form disulfide bonds.
 抗体の凝集体である高分子量の不純物(HMW)を取り除くために、アフィニティクロマトグラフィーにおける洗浄工程においてアルギニンを含む洗浄液で洗浄する方法があるが、依然としてHMWが混入し、HMWの除去は十分とはいえない(特許文献1)。また、Fc領域を有するタンパク質のジスルフィド結合の形成が不十分なアンダージスルフィド結合種(UDB)を洗浄除去するために、アフィニティクロマトグラフィーにおける洗浄工程において二価カチオン塩を含有する洗浄液が用いられるが、UDBの除去は十分とはいえない(特許文献2)。UDBは、フリーチオール残基を有するため、凝集をもたらしうる。したがって、Fc領域を有するタンパク質を精製する際の凝集性などの問題は依然として極めて不都合なものとなっている。 In order to remove high molecular weight impurities (HMW) that are aggregates of antibodies, there is a method of washing with a washing solution containing arginine in the washing step in affinity chromatography. However, HMW is still mixed and removal of HMW is sufficient. No (Patent Document 1). In addition, a washing solution containing a divalent cation salt is used in the washing step in affinity chromatography in order to wash away and remove the underdisulfide bond species (UDB) in which the formation of the disulfide bond of the protein having the Fc region is insufficient. The removal of UDB is not sufficient (Patent Document 2). UDB has free thiol residues and can therefore cause aggregation. Therefore, problems such as aggregation when purifying a protein having an Fc region remain extremely inconvenient.
国際公開第2012/164046号International Publication No.2012 / 164046 国際公開第2006/138553号International Publication No. 2006/138553
 Fc領域を有するタンパク質には、フリーチオール含量、自己会合性、凝集性等の物性の問題が存在する。このような物性の問題は、Fc領域を有するタンパク質の保存安定性に影響を与える。さらに、凝集等の物性の問題は、Fc領域を有するタンパク質の沈殿等による損失や、またFc領域を有するタンパク質の凝集体等に結合した不純物の混入により、精製工程における収率や純度にも影響する。近年開発されている抗体医薬は高濃度皮下注製剤が主流になりつつあり、自己会合性や凝集性などの物性の問題が重要視されている。従って、物性の問題を低減化したFc領域を有するタンパク質の精製方法が必要とされている。 Proteins having an Fc region have problems with physical properties such as free thiol content, self-association and aggregation. Such physical property problems affect the storage stability of a protein having an Fc region. In addition, problems with physical properties such as aggregation affect the yield and purity in the purification process due to loss due to precipitation of proteins with Fc regions, and contamination by impurities bound to protein aggregates with Fc regions. To do. In recent years, high-concentration subcutaneous injections are becoming the mainstream of antibody drugs that have been developed in recent years, and physical properties such as self-association and aggregation are regarded as important. Therefore, there is a need for a method for purifying a protein having an Fc region with reduced physical property problems.
 本発明者らは、前記課題を解決すべく鋭意検討した結果、Fc領域を有するタンパク質をアフィニティークロマトグラフィー担体上に結合した状態においてアルカリ洗浄液で洗浄する工程を含む、Fc領域を有するタンパク質の精製方法を見出し、本発明を完成するに至った。そこで本発明は以下の発明に関する: As a result of intensive studies to solve the above-mentioned problems, the present inventors have obtained a method for purifying a protein having an Fc region, comprising a step of washing the protein having an Fc region with an alkaline washing solution in a state of being bound on an affinity chromatography carrier. As a result, the present invention has been completed. The present invention thus relates to the following inventions:
[1]Fc領域を有するタンパク質を精製する方法であって、
(a) Fc領域を有するタンパク質を含む溶液をアフィニティークロマトグラフィー用担体に接触させ、Fc領域を有するタンパク質をアフィニティークロマトグラフィー用担体に結合させる工程、
(b) 10.1から12の範囲内のpH値を有するアルカリ洗浄液で洗浄する工程、および
(c) Fc領域を有するタンパク質を溶出する工程、
を含む、Fc領域を有するタンパク質を精製する方法。
[2]アルカリ洗浄液が10.5から11.5のpH値を有する、項目1に記載の方法。
[3]アルカリ洗浄液が0.2M以上の塩化ナトリウムを含まない、項目1または項目2に記載の方法。
[4]アルカリ洗浄液がアルギニンを含まない、項目1から3のいずれかに記載の方法。
[5]アフィニティークロマトグラフィー用担体がProtein A、Protein G、またはこれらの改変体を有する担体である、項目1から4のいずれかに記載の方法。
[6]Fc領域を有するタンパク質が抗体である、項目1から5のいずれかに記載の方法。
[7]Fc領域を有するタンパク質がヒトモノクローナル抗体、ヒト化モノクローナル抗体、キメラモノクローナル抗体である、項目1から6のいずれかに記載の方法。
[8]Fc領域を有するタンパク質がλ鎖を有する抗体である、項目1から7のいずれかに記載の方法。
[9]項目1から8のいずれかに記載の方法を含む、Fc領域を有するタンパク質の製造方法。
[10]項目9に記載の方法により製造されたFc領域を有するタンパク質。
[11]ヒトモノクローナル抗体を製造する方法であって、
(i)ヒトモノクローナル抗体を含む溶液をアフィニティークロマトグラフィー用担体に接触させ、ヒトモノクローナル抗体をアフィニティークロマトグラフィー用担体に結合させる工程、
(ii)9から12の範囲内のpH値を有するアルカリ洗浄液で洗浄する工程、および
(iii)ヒトモノクローナル抗体を溶出する工程、
 を含み、ここでヒトモノクローナル抗体の軽鎖の相補性決定領域1(LCDR1)、軽鎖の相補性決定領域2(LCDR2)、軽鎖の相補性決定領域3(LCDR3)、重鎖の相補性決定領域1(HCDR1)、重鎖の相補性決定領域2(HCDR2)及び重鎖の相補性決定領域3(HCDR3)のそれぞれのアミノ酸配列の組み合わせが、
(a) LCDR1:TGSSSNIGAVYDVH(配列表の配列番号1)、LCDR2:RNNQRPS(配列表の配列番号2)、LCDR3:QTYDSSRWV(配列表の配列番号3)、HCDR1:DYYMN(配列表の配列番号4)、HCDR2:SISRYSSYIYYADSVKG(配列表の配列番号5)、及びHCDR3:DIGGMDV(配列表の配列番号6)
(b) LCDR1:SGSSSNIGNNAVS(配列表の配列番号7)、LCDR2:ASNMRVI(配列表の配列番号8)、LCDR3:GAWDDSQKALV(配列表の配列番号9)、HCDR1:NYYMH(配列表の配列番号10)、HCDR2:SISARSRYHYYADSVKG(配列表の配列番号11)、及びHCDR3:LATRHNAFDI(配列表の配列番号12)
(c) LCDR1:SGSSSNIGRNAVN(配列表の配列番号13)、LCDR2:ASNMRVS(配列表の配列番号14)、LCDR3:WAWDDSQKVGV(配列表の配列番号15)、HCDR1:NYYMH(配列表の配列番号10)、HCDR2:SISARSSYIYYADSVKG(配列表の配列番号16)、及びHCDR3:LATRNNAFDI(配列表の配列番号17)
(d) LCDR1:SGSSSNIGRNAVN(配列表の配列番号13)、LCDR2:ASNMRRS(配列表の配列番号18)、LCDR3:SAWDDSQKVVV(配列表の配列番号19)、HCDR1:RYYMH(配列表の配列番号20)、HCDR2:SISAQSSHIYYADSVEG(配列表の配列番号21)、及びHCDR3:LATRQNAFDI(配列表の配列番号22)または、
(e) LCDR1:SGSSSNIGNNAVN(配列表の配列番号23)、LCDR2:ASNMRRP(配列表の配列番号24)、LCDR3:EAWDDSQKAVV(配列表の配列番号25)、HCDR1:NYYMH(配列表の配列番号10)、HCDR2:SISARSSYLYYADSVKG(配列表の配列番号26)、及びHCDR3:LATRHVAFDI(配列表の配列番号27)
 であるヒトモノクローナル抗体である、ヒトモノクローナル抗体の製造方法。
[12]ヒトモノクローナル抗体の軽鎖可変領域(VL)及び重鎖可変領域(VH)のそれぞれのアミノ酸配列の組み合わせが、
 (a) VL:QSVLTQPPSASGTPGQRVTISCTGSSSNIGAVYDVHWYQQLPGTAPKLLIYRNNQRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCQTYDSSRWVFGGGTKLTVL(配列表の配列番号28)及びVH:EVQLLESGGGLVQPGGSLRLSCAASGFTFSDYYMNWVRQAPGKGLEWVSSISRYSSYIYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDIGGMDVWGQGTLVTVSS(配列表の配列番号29)
 (b) VL:QSVLTQPPSASGTPGQRVTISCSGSSSNIGNNAVSWYQQLPGTAPKLLIYASNMRVIGVPDRFSGSKSGTSASLAISGLRSEDEADYYCGAWDDSQKALVFGGGTKLTVL(配列表の配列番号30)及びVH:EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYYMHWVRQAPGKGLEWVSSISARSRYHYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLATRHNAFDIWGQGTLVTVSS(配列表の配列番号31)
 (c) VL:QSVLTQPPSASGTPGQRVTISCSGSSSNIGRNAVNWYQQLPGTAPKLLIYASNMRVSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCWAWDDSQKVGVFGGGTKLTVL(配列表の配列番号32)及びVH:EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYYMHWVRQAPGKGLEWVSSISARSSYIYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLATRNNAFDIWGQGTLVTVSS(配列表の配列番号33)
 (d) VL:QSVLTQPPSASGTPGQRVTISCSGSSSNIGRNAVNWYQQLPGTAPKLLIYASNMRRSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCSAWDDSQKVVVFGGGTKLTVL(配列表の配列番号34)及びVH:EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYYMHWVRQAPGKGLEWVSSISAQSSHIYYADSVEGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLATRQNAFDIWGQGTLVTVSS(配列表の配列番号35)、または
 (e) VL:QSVLTQPPSASGTPGQRVTISCSGSSSNIGNNAVNWYQQLPGTAPKLLIYASNMRRPGVPDRFSGSKSGTSASLAISGLRSEDEADYYCEAWDDSQKAVVFGGGTKLTVL(配列表の配列番号36)及びVH:EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYYMHWVRQAPGKGLEWVSSISARSSYLYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLATRHVAFDIWGQGTLVTVSS(配列表の配列番号37)、
 である項目11に記載の製造方法。
[13]アルカリ洗浄液が10.5から11.5のpH値を有する、項目11又は項目12に記載の製造方法。
[14]アルカリ洗浄液が0.2M以上の塩化ナトリウムを含まない、項目11から13のいずれかに記載の製造方法。
[15]アルカリ洗浄液がアルギニンを含まない、項目11から14のいずれかに記載の製造方法。
[16] アフィニティークロマトグラフィー用担体がProtein A、Protein G、またはこれらの改変体を有する担体である、項目11から15のいずれかに記載の製造方法。
[17]項目11から16のいずれか1項に記載の方法により製造されたヒトモノクローナル抗体。
[18]溶液中に含まれるFc領域を有するタンパク質の物性を改善する方法であって、
 (a) Fc領域を有するタンパク質を含む溶液をアフィニティークロマトグラフィー用担体に接触させ、Fc領域を有するタンパク質をアフィニティークロマトグラフィー用担体に結合させる工程、
 (b) 9.1から12の範囲内のpH値を有するアルカリ溶液に接触する工程、および
 (c) Fc領域を有するタンパク質を溶出する工程、
を含む、方法。
[19]Fc領域を有するタンパク質の物性を改善する方法が、Fc領域を有するタンパク質のフリーチオール含量を低減する方法である項目18に記載の方法。
[20]Fc領域を有するタンパク質の物性を改善する方法が、Fc領域を有するタンパク質の自己会合性を低減する方法である項目18に記載の方法。
[21]Fc領域を有するタンパク質の物性を改善する方法が、Fc領域を有するタンパク質の凝集性を低減する方法である項目18に記載の方法。

[22]Fc領域を有するタンパク質の物性を改善する方法が、さらにFc領域を有するタンパク質の保存安定性を高める方法である項目18に記載の方法。
[23]アルカリ溶液が10.6から11.5のpH値を有する、項目18から22のいずれかに記載の方法。

[24]アルカリ溶液が0.2M以上の塩化ナトリウムを含まない、項目18から23のいずれかに記載の方法。
[25]アルカリ溶液がアルギニンを含まない、項目18から24のいずれかに記載の方法。

[26]アフィニティークロマトグラフィー用担体がProtein A、Protein G、またはこれらの改変体を有する担体である、項目18から25のいずれかに記載の方法。
[27]Fc領域を有するタンパク質が抗体である、項目18から26のいずれかに記載の方法。
[28]Fc領域を有するタンパク質がヒトモノクローナル抗体、ヒト化モノクローナル抗体、キメラモノクローナル抗体である、項目18から27のいずれかに記載の方法。

[29]Fc領域を有するタンパク質がλ鎖を有する抗体である、項目18から28のいずれかに記載の方法。
[1] A method for purifying a protein having an Fc region,
(a) contacting a solution containing a protein having an Fc region with an affinity chromatography support, and binding the protein having an Fc region to the affinity chromatography support;
(b) washing with an alkaline washing liquid having a pH value in the range of 10.1 to 12, and
(c) eluting a protein having an Fc region,
A method for purifying a protein having an Fc region, comprising:
[2] The method according to item 1, wherein the alkaline cleaning liquid has a pH value of 10.5 to 11.5.
[3] The method according to item 1 or item 2, wherein the alkaline cleaning solution does not contain 0.2 M or more sodium chloride.
[4] The method according to any one of items 1 to 3, wherein the alkaline cleaning solution does not contain arginine.
[5] The method according to any one of items 1 to 4, wherein the carrier for affinity chromatography is a carrier having Protein A, Protein G, or a modified form thereof.
[6] The method according to any one of items 1 to 5, wherein the protein having an Fc region is an antibody.
[7] The method according to any one of items 1 to 6, wherein the protein having an Fc region is a human monoclonal antibody, a humanized monoclonal antibody, or a chimeric monoclonal antibody.
[8] The method according to any one of items 1 to 7, wherein the protein having an Fc region is an antibody having a λ chain.
[9] A method for producing a protein having an Fc region, comprising the method according to any one of items 1 to 8.
[10] A protein having an Fc region produced by the method according to item 9.
[11] A method for producing a human monoclonal antibody,
(I) contacting a solution containing a human monoclonal antibody with an affinity chromatography carrier and binding the human monoclonal antibody to the affinity chromatography carrier;
(ii) washing with an alkaline wash having a pH value in the range of 9 to 12, and
(iii) a step of eluting the human monoclonal antibody;
Wherein the light chain complementarity determining region 1 (LCDR1), the light chain complementarity determining region 2 (LCDR2), the light chain complementarity determining region 3 (LCDR3), and the heavy chain complementarity of a human monoclonal antibody A combination of amino acid sequences of the determination region 1 (HCDR1), the heavy chain complementarity determination region 2 (HCDR2), and the heavy chain complementarity determination region 3 (HCDR3),
(a) LCDR1: TGSSSNIGAVYDVH (SEQ ID NO: 1 in the sequence listing), LCDR2: RNNQRPS (SEQ ID NO: 2 in the sequence listing), LCDR3: QTYDSSRWV (SEQ ID NO: 3 in the sequence listing), HCDR1: DYYMN (SEQ ID NO: 4 in the sequence listing) , HCDR2: SISRYSSYIYYADSVKG (SEQ ID NO: 5 in the sequence listing), and HCDR3: DIGGMDV (SEQ ID NO: 6 in the sequence listing)
(b) LCDR1: SGSSSNIGNNAVS (SEQ ID NO: 7 in the sequence listing), LCDR2: ASNMRVI (SEQ ID NO: 8 in the sequence listing), LCDR3: GAWDDSQKALV (SEQ ID NO: 9 in the sequence listing), HCDR1: NYYMH (SEQ ID NO: 10 in the sequence listing) , HCDR2: SISARSRYHYYADSVKG (SEQ ID NO: 11 in the sequence listing), and HCDR3: LATRHNAFDI (SEQ ID NO: 12 in the sequence listing)
(c) LCDR1: SGSSSNIGRNAVN (SEQ ID NO: 13 in the sequence listing), LCDR2: ASNMRVS (SEQ ID NO: 14 in the sequence listing), LCDR3: WAWDDSQKVGV (SEQ ID NO: 15 in the sequence listing), HCDR1: NYYMH (SEQ ID NO: 10 in the sequence listing) , HCDR2: SISARSSYIYYADSVKG (SEQ ID NO: 16 in the sequence listing), and HCDR3: LATRNNAFDI (SEQ ID NO: 17 in the sequence listing)
(d) LCDR1: SGSSSNIGRNAVN (SEQ ID NO: 13 in the sequence listing), LCDR2: ASNMRRS (SEQ ID NO: 18 in the sequence listing), LCDR3: SAWDDSQKVVV (SEQ ID NO: 19 in the sequence listing), HCDR1: RYYMH (SEQ ID NO: 20 in the sequence listing) HCDR2: SISAQSSHIYYADSVEG (SEQ ID NO: 21 of the sequence listing) and HCDR3: LATRQNAFDI (SEQ ID NO: 22 of the sequence listing), or
(e) LCDR1: SGSSSNIGNNAVN (SEQ ID NO: 23 in the sequence listing), LCDR2: ASNMRRP (SEQ ID NO: 24 in the sequence listing), LCDR3: EAWDDSQKAVV (SEQ ID NO: 25 in the sequence listing), HCDR1: NYYMH (SEQ ID NO: 10 in the sequence listing) , HCDR2: SISARSSYLYYADSVKG (SEQ ID NO: 26 in the sequence listing), and HCDR3: LATRHVAFDI (SEQ ID NO: 27 in the sequence listing)
A method for producing a human monoclonal antibody, which is a human monoclonal antibody.
[12] A combination of amino acid sequences of the light chain variable region (VL) and the heavy chain variable region (VH) of a human monoclonal antibody,
(A) VL: QSVLTQPPSASGTPGQRVTISCTGSSSNIGAVYDVHWYQQLPGTAPKLLIYRNNQRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCQTYDSSRWVFGGGTKLTVL and VH (SEQ ID NO: 28 of Sequence Listing): EVQLLESGGGLVQPGGSLRLSCAASGFTFSDYYMNWVRQAPGKGLEWVSSISRYSSYIYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDIGGMDVWGQGTLVTVSS (SEQ ID NO: 29 of the Sequence Listing)
(B) VL: QSVLTQPPSASGTPGQRVTISCSGSSSNIGNNAVSWYQQLPGTAPKLLIYASNMRVIGVPDRFSGSKSGTSASLAISGLRSEDEADYYCGAWDDSQKALVFGGGTKLTVL (SEQ ID NO: of the Sequence Listing 30) and VH: EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYYMHWVRQAPGKGLEWVSSISARSRYHYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLATRHNAFDIWGQGTLVTVSS (SEQ ID NO: 31 of the Sequence Listing)
(C) VL: QSVLTQPPSASGTPGQRVTISCSGSSSNIGRNAVNWYQQLPGTAPKLLIYASNMRVSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCWAWDDSQKVGVFGGGTKLTVL (SEQ ID NO: 32 of the Sequence Listing) and VH: (SEQ ID NO: 33 of the Sequence Listing) IbuikyuerueruiesujijijierubuikyuPijijiesueruarueruesushieieiesujiefutiefuesuenuwaiwaiemueichidaburyubuiarukyueiPijikeijieruidaburyubuiesuesuaiesueiaruesuesuwaiaiwaiwaieidiesubuikeijiaruefutiaiesuarudienuesukeienutieruwaierukyuemuenuesueruarueiiditieibuiwaiYCARLATRNNAFDIWGQGTLVTVSS
(D) VL: (SEQ ID NO: 34 of Sequence Listing) KyuesubuierutikyuPiPiesueiesujitiPijikyuarubuitiaiesushiesujiesuesuesuenuaijiaruenueibuienudaburyuwaikyukyueruPijitieiPikeierueruaiwaieiesuenuemuaruaruesujibuiPidiaruefuesujiesukeiesujitiesueiesuerueiaiesujieruaruesuidiieiDYYCSAWDDSQKVVVFGGGTKLTVL and VH: (SEQ ID NO: 35 of Sequence Listing) EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYYMHWVRQAPGKGLEWVSSISAQSSHIYYADSVEGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLATRQNAFDIWGQGTLVTVSS, or (e) VL: QSVLTQPPSASGTPGQRVTISCSGSSSNIGNNAVNWYQQLPGTAPKLLIYASNMRRPGVPDRFSGSKSGTSASLAISGLRSEDEADYYCEAWDDSQKAVVFGGGTKLTVL and VH (SEQ ID NO: 36 of Sequence Listing): EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYYMHWVRQAPGKGLEWVSSISARSSYLYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLATRHVAFDIWGQGTLVTVSS (the sequence listing SEQ ID NO: 37),
The manufacturing method of item 11 which is.
[13] The production method according to item 11 or item 12, wherein the alkaline cleaning liquid has a pH value of 10.5 to 11.5.
[14] The production method according to any one of items 11 to 13, wherein the alkaline cleaning solution does not contain 0.2 M or more sodium chloride.
[15] The production method according to any one of items 11 to 14, wherein the alkaline cleaning liquid does not contain arginine.
[16] The production method according to any of items 11 to 15, wherein the carrier for affinity chromatography is a carrier having Protein A, Protein G, or a modified form thereof.
[17] A human monoclonal antibody produced by the method according to any one of items 11 to 16.
[18] A method for improving the physical properties of a protein having an Fc region contained in a solution,
(a) contacting a solution containing a protein having an Fc region with an affinity chromatography support, and binding the protein having an Fc region to the affinity chromatography support;
(b) contacting an alkaline solution having a pH value in the range of 9.1 to 12, and (c) eluting a protein having an Fc region,
Including a method.
[19] The method according to item 18, wherein the method for improving the physical properties of a protein having an Fc region is a method for reducing the free thiol content of a protein having an Fc region.
[20] The method according to item 18, wherein the method for improving the physical properties of a protein having an Fc region is a method for reducing the self-association property of a protein having an Fc region.
[21] The method according to item 18, wherein the method for improving the physical properties of a protein having an Fc region is a method for reducing the aggregation property of a protein having an Fc region.

[22] The method according to item 18, wherein the method for improving the physical properties of a protein having an Fc region is a method for further enhancing the storage stability of a protein having an Fc region.
[23] The method according to any of items 18 to 22, wherein the alkaline solution has a pH value of 10.6 to 11.5.

[24] The method according to any one of items 18 to 23, wherein the alkaline solution does not contain 0.2 M or more sodium chloride.
[25] The method according to any one of items 18 to 24, wherein the alkaline solution does not contain arginine.

[26] The method according to any of items 18 to 25, wherein the carrier for affinity chromatography is a carrier having Protein A, Protein G, or a modified form thereof.
[27] The method according to any of items 18 to 26, wherein the protein having an Fc region is an antibody.
[28] The method according to any of items 18 to 27, wherein the protein having an Fc region is a human monoclonal antibody, a humanized monoclonal antibody, or a chimeric monoclonal antibody.

[29] The method according to any of items 18 to 28, wherein the protein having an Fc region is an antibody having a λ chain.
 本発明の、Fc領域を有するタンパク質の精製方法は、Fc領域を有するタンパク質のフリーチオール含量、自己会合性、及び凝集性のうちの少なくとも1以上を低減することができる。また、本発明により精製されたFc領域を有するタンパク質は保存安定性に優れている。さらに、本発明の精製方法は、Fc領域を有するタンパク質の純度、収率を高めることができる。従って、本発明により物性の優れたFc領域を有するタンパク質を、高純度で、安価に製造することができる。 The method for purifying a protein having an Fc region of the present invention can reduce at least one of the free thiol content, self-association property, and aggregation property of the protein having an Fc region. In addition, a protein having an Fc region purified by the present invention is excellent in storage stability. Furthermore, the purification method of the present invention can increase the purity and yield of a protein having an Fc region. Therefore, according to the present invention, a protein having an Fc region having excellent physical properties can be produced with high purity at low cost.
 また、本発明で製造されるヒト抗IL-33モノクローナル抗体は、フリーチオール含量、自己会合性、及び凝集性が低減されていること、さらには不純物の混入が低減されていることにより、安全性に優れている。したがって、本発明により製造されるヒト抗IL-33モノクローナル抗体は、IL-33に関連する疾患に対して新たな診断、予防、治療または軽減薬として利用できる。 In addition, the human anti-IL-33 monoclonal antibody produced in the present invention is safe due to reduced free thiol content, self-association and aggregation, and further reduced contamination of impurities. Is excellent. Therefore, the human anti-IL-33 monoclonal antibody produced by the present invention can be used as a new diagnostic, preventive, therapeutic or alleviating agent for diseases related to IL-33.
Fc領域を有するタンパク質のアルカリ処理による凝集性の低減を評価したグラフである。It is the graph which evaluated the reduction | decrease of the aggregation property by the alkali treatment of the protein which has Fc area | region. Fc領域を有するタンパク質のアルカリ処理による自己会合性の低減を評価したグラフである。It is the graph which evaluated the reduction of the self-association property by the alkali treatment of the protein which has Fc area | region. Fc領域を有するタンパク質のアルカリ処理による保存安定性の向上を評価したグラフである。It is the graph which evaluated the improvement of the storage stability by the alkali treatment of the protein which has Fc area | region. 培養上清から各種pHの洗浄液を用いてA10-1C04抗体を精製した時の抗体収量を示したグラフである。It is the graph which showed the antibody yield when A10-1C04 antibody was refine | purified using the washing | cleaning liquid of various pH from a culture supernatant. 各種pHの洗浄液を用いてA23-1A05抗体を捕捉したProtein Aカラムを洗浄して得られた洗浄画分をSDS-PAGEにより分析した結果を示した写真である。It is the photograph which showed the result of having analyzed the washing | cleaning fraction obtained by wash | cleaning Protein A column which captured A23-1A05 antibody using the washing | cleaning liquid of various pH by SDS-PAGE. 各種pHの洗浄液を用いてA23-1A05抗体を捕捉したProtein Aカラムを洗浄して得られたカラムを通過した洗浄液の吸光度の経時的変化を示したグラフである。It is the graph which showed the time-dependent change of the light absorbency of the washing | cleaning liquid which passed through the column obtained by wash | cleaning Protein A column which captured A23-1A05 antibody using the washing | cleaning liquid of various pH. 培養上清から各種pHの洗浄液を用いてA23-1A05抗体を精製した時のフリーチオール含量を示したグラフである。It is the graph which showed the free thiol content when A23-1A05 antibody was refine | purified using the washing | cleaning liquid of various pH from a culture supernatant. Fc領域を有するタンパク質ST2-Fcを、Protein Aカラムでアルカリ洗浄工程を加えて精製した場合と、アルカリ洗浄工程を行わずに精製した場合における、精製後のST2-Fcの凝集性を動的光散乱法により測定したグラフである。When the protein ST2-Fc having the Fc region is purified by adding an alkaline washing step on a Protein A column, and when the protein is purified without an alkaline washing step, the aggregation property of ST2-Fc after purification is shown by dynamic light. It is the graph measured by the scattering method.
 本発明の理解を容易にするため、以下に本発明に用いられる用語を説明する。本明細書で示される用語の説明は、特に限定を目的とするものではない。 In order to facilitate understanding of the present invention, terms used in the present invention will be described below. The terminology used herein is not intended to be limiting in particular.
[Fc領域を有するタンパク質]
 本発明においてFc領域を有するタンパク質とは、免疫グロブリンのFc領域、その改変体、またはそのフラグメントを有するタンパク質を示す。免疫グロブリンのFc領域とは、免疫グロブリンをパパインで分解した場合の重鎖の定常部位側のフラグメントの領域を指し、通常、重鎖のCH2及びCH3領域からなる領域である。Fc領域の改変体としては、Fc領域の一部が、置換、欠失及び/又は付加されたものを含んでもよい。Fc領域を有するタンパク質は、IgG、IgM、IgD、IgE、IgAなどの免疫グロブリン、バイスペシフィック抗体などのマルチスペシフィック抗体だけではなく、免疫グロブリンのFc領域(その改変体及びそのフラグメントを含む)を別のタンパク質やペプチドに結合した融合タンパク質(Fc融合タンパク質)を含む。さらに、免疫グロブリン、マルチスペシフィック抗体、またはFc融合タンパク質に低分子薬物、放射性物質もしくは蛍光色素などのイメージング化合物、またはPEGなどのポリマーを結合させたものも本用語には含まれる。
[Protein with Fc region]
In the present invention, the protein having an Fc region refers to a protein having an Fc region of an immunoglobulin, a variant thereof, or a fragment thereof. The Fc region of an immunoglobulin refers to a region of a fragment on the constant site side of the heavy chain when the immunoglobulin is decomposed with papain, and is usually a region composed of C H 2 and C H 3 regions of the heavy chain. The modified Fc region may include those in which a part of the Fc region is substituted, deleted, and / or added. Proteins with Fc region include not only immunoglobulins such as IgG, IgM, IgD, IgE and IgA, multispecific antibodies such as bispecific antibodies, but also immunoglobulin Fc regions (including variants and fragments thereof). Fusion proteins (Fc fusion proteins) bound to other proteins and peptides. In addition, the term also includes an immunoglobulin, a multispecific antibody, or an Fc fusion protein in which a small molecule drug, an imaging compound such as a radioactive substance or a fluorescent dye, or a polymer such as PEG is bound.
[精製]
 本発明において精製とは、目的タンパク質であるFc領域を有するタンパク質を含む種々の混合物溶液(例えば、動物細胞由来培養上清、微生物由来培養上清、微生物破砕物、無細胞発現系溶液、遺伝子組換え動物・植物由来サンプル)を分離工程に供することにより、目的タンパク質とそれ以外の不純物とを分離する技術をいう。不純物には、培地由来成分(例えば、糖類、脂質、成長因子などのタンパク質及びそのペプチド)、宿主細胞由来成分(例えば、宿主細胞由来タンパク質、ペプチド、核酸、脂質及び糖類)、並びに目的物由来不純物(切断体、化学修飾体及び凝集体)等が挙げられる。
[Purification]
In the present invention, purification refers to various mixed solutions containing a protein having an Fc region, which is the target protein (for example, animal cell-derived culture supernatant, microorganism-derived culture supernatant, microbial disruption product, cell-free expression system solution, gene set This refers to a technique for separating a target protein and other impurities by subjecting a sample derived from a modified animal / plant to a separation step. Impurities include medium-derived components (for example, proteins such as saccharides, lipids, growth factors and peptides thereof), host cell-derived components (for example, host cell-derived proteins, peptides, nucleic acids, lipids and saccharides), and target-derived impurities. (Cleaved body, chemically modified body and aggregate).
[アフィニティークロマトグラフィー]
 目的タンパク質に対して親和性を有する物質、例えばリガンドを有する担体を用いたクロマトグラフィーを指す。Fc領域に対して親和性を有する担体を用いたアフィニティークロマトグラフィーを行うことで、Fc領域を有するタンパク質を精製及び/又は製造することができる。Fc領域を有するタンパク質に対して結合性を有するアフィニティ―クロマトグラフィー用担体として、抗体精製に慣用される担体を用いることができる。抗体精製に用いられる担体としては、Fc領域に結合するリガンドを結合させた担体を用いることができる。本発明では、Fc領域に結合するリガンドとして、例えば、ProteinA、ProteinG、またはこれらの改変体を使用することができる。
[Affinity chromatography]
It refers to chromatography using a substance having affinity for the target protein, for example, a carrier having a ligand. By performing affinity chromatography using a carrier having affinity for the Fc region, a protein having the Fc region can be purified and / or produced. A carrier commonly used for antibody purification can be used as a carrier for affinity chromatography having binding properties to a protein having an Fc region. As a carrier used for antibody purification, a carrier to which a ligand that binds to the Fc region is bound can be used. In the present invention, for example, Protein A, Protein G, or a variant thereof can be used as a ligand that binds to the Fc region.
[アルカリ洗浄液]
 本発明においてアルカリ洗浄液とは、アフィニティークロマトグラフィー用担体に結合した目的タンパク質から不純物を分離するのに用いられる塩基性溶液を示す。アルカリ洗浄液は、不純物の除去だけではなく、目的タンパク質のフリーチオール含量、自己会合性、及び/又は凝集性を低減する効果も奏する。さらにアルカリ洗浄液による洗浄工程を経ることにより、Fc領域を有するタンパク質の回収率が改善する。その理由は定かではないが、Fc領域を有するタンパク質に含まれるフリーチオール基が、カラム上でのアルカリ洗浄液暴露により適切な分子内ジスルフィド結合を形成する結果、Fc領域を有するタンパク質の凝集や沈殿等による損失がないためと考えられる。しかしながら、その理論に限定されることを意図するものではない。
[Alkaline cleaning solution]
In the present invention, the alkaline washing solution refers to a basic solution used for separating impurities from a target protein bound to an affinity chromatography carrier. The alkaline washing solution not only removes impurities, but also has an effect of reducing the free thiol content, self-association property, and / or aggregation property of the target protein. Furthermore, the recovery rate of the protein having the Fc region is improved by performing a washing step with an alkaline washing solution. The reason for this is not clear, but free thiol groups contained in proteins with Fc regions form appropriate intramolecular disulfide bonds when exposed to alkaline washings on the column, resulting in aggregation or precipitation of proteins with Fc regions. It is thought that there is no loss due to However, it is not intended to be limited to that theory.
[Protein A]
 Protein A は黄色ブドウ球菌の細胞壁に存在し、免疫グロブリンのFc領域に高親和性を有するタンパク質である。Protein A改変体とはProtein Aのアミノ酸配列の一部を改変し、Fc領域との結合特異性や安定性を改変したProtein Aである。ProteinA改変体は、市販されており、例えば、MabSelect SuRe(GE Healthcare社)、TOYOPEARL AF-rProtein A HC-650F(東ソー社)、KANEKA KanCap(カネカ社)などを用いることもできる。本発明で使用するProtein A及びその改変体は、黄色ブドウ球菌由来の天然タンパク質であってもよく、また遺伝子組み換え技術により製造されたものでもよい。アルカリ洗浄工程を行う観点から、アルカリ耐久性の改変体を使用することが好ましい。
[Protein A]
Protein A exists in the cell wall of S. aureus and has a high affinity for the Fc region of immunoglobulin. Protein A variant is Protein A in which a part of the amino acid sequence of Protein A is modified to modify the binding specificity and stability with the Fc region. ProteinA variants are commercially available, and for example, MabSelect SuRe (GE Healthcare), TOYOPEARL AF-rProtein A HC-650F (Tosoh Corp.), KANEKA KanCap (Kaneka Corp.), etc. can also be used. Protein A and a variant thereof used in the present invention may be a natural protein derived from Staphylococcus aureus, or may be produced by a gene recombination technique. From the viewpoint of carrying out the alkali washing step, it is preferable to use an alkali-durable variant.
[Protein G]
 Protein GはグループG連鎖球菌の細胞壁に存在し、免疫グロブリンのFc領域に高親和性を有する蛋白質である。Protein G改変体とはProtein Gのアミノ酸配列の一部を改変し、Fc領域との結合特異性や安定性を改変したProtein Gである。本発明で使用するProteinG及びその改変体は、グループG連鎖球菌由来の天然タンパク質であってもよく、また遺伝子組み換え技術により製造されたものでもよい。アルカリ洗浄工程を行う観点から、アルカリ耐久性の改変体を使用することが好ましい。
[Protein G]
Protein G is a protein that exists in the cell wall of group G streptococci and has high affinity for the Fc region of immunoglobulin. Protein G variant is Protein G in which a part of the amino acid sequence of Protein G is modified to modify the binding specificity and stability with the Fc region. ProteinG and its variants used in the present invention may be natural proteins derived from group G streptococci, or may be produced by gene recombination techniques. From the viewpoint of carrying out the alkali washing step, it is preferable to use an alkali-durable variant.
[抗体]
 本発明において抗体とは、特定の抗原に結合することができる糖タンパク質である免疫グロブリン、またはそのフラグメントであって、Fc領域を有するものを示す。また、本用語には、モノクローナル抗体、ポリクローナル抗体、マルチスペシフィック抗体も含まれる。
[antibody]
In the present invention, an antibody refers to an immunoglobulin that is a glycoprotein capable of binding to a specific antigen, or a fragment thereof having an Fc region. The term also includes monoclonal antibodies, polyclonal antibodies, and multispecific antibodies.
[ヒトモノクローナル抗体]
 ヒトモノクローナル抗体は、ヒトの生殖系列の免疫グロブリンの配列に由来する可変領域及び定常領域を有するモノクローナル抗体をいい、軽鎖、重鎖ともにヒト由来の抗体をいう。重鎖の定常領域の違いにより、γ鎖の重鎖を有するIgG(IgG1、IgG2、IgG3及びIgG4を含む)、μ鎖の重鎖を有するIgM、α鎖の重鎖を有するIgA(IgA1,IgA2を含む)、δ鎖の重鎖を有するIgD、またはε鎖の重鎖を有するIgEを含む。また原則として軽鎖は、κ鎖とλ鎖のどちらか一方を含む。
[Human monoclonal antibody]
A human monoclonal antibody refers to a monoclonal antibody having a variable region and a constant region derived from a human germline immunoglobulin sequence, and refers to a human-derived antibody for both light and heavy chains. Depending on the constant region of the heavy chain, IgG having IgG heavy chain (including IgG1, IgG2, IgG3 and IgG4), IgM having μ heavy chain, IgA having α heavy chain (IgA1, IgA2) ), IgD having a heavy chain of δ chain, or IgE having a heavy chain of ε chain. In principle, the light chain includes either a kappa chain or a lambda chain.
[ヒト化モノクローナル抗体]
 ヒト化抗体は、非ヒト哺乳動物由来抗体の相補性決定領域と、ヒト抗体由来のフレームワーク領域とからなる可変領域、並びにヒト抗体由来の定常領域からなるモノクローナル抗体をいう。
[Humanized monoclonal antibody]
The humanized antibody refers to a monoclonal antibody consisting of a variable region composed of a complementarity determining region of a non-human mammal-derived antibody and a framework region derived from a human antibody, and a constant region derived from a human antibody.
[キメラモノクローナル抗体]
 キメラ抗体とは、軽鎖、重鎖、またはその両方が、非ヒト由来の可変領域とヒト由来の定常領域からなるモノクローナル抗体をいう。
[Chimeric monoclonal antibody]
A chimeric antibody refers to a monoclonal antibody in which the light chain, the heavy chain, or both are composed of a variable region derived from non-human and a constant region derived from human.
[λ鎖]
 λ鎖とは免疫グロブリンの軽鎖の一つの種類を指す。λ鎖の可変領域のアミノ酸配列は多様であり、λ鎖の軽鎖を含む免疫グロブリンは多様な抗原に結合することができる。免疫グロブリンの軽鎖の種類としては、他にκ鎖がある。
[Λ chain]
Lambda chain refers to one type of immunoglobulin light chain. The amino acid sequence of the variable region of the λ chain is diverse, and immunoglobulins containing the light chain of the λ chain can bind to various antigens. Another type of immunoglobulin light chain is the kappa chain.
[相補性決定領域]
 相補性決定領域とは免疫グロブリン分子の可変領域のうち、抗原結合部位を形成する領域をいい、超可変領域とも呼ばれ、免疫グロブリン分子ごとに特にアミノ酸配列の変化が大きい部分をいう。相補性決定領域には軽鎖、重鎖それぞれに3つの相補性決定領域(相補性決定領域1、相補性決定領域2及び相補性決定領域3)がある。本願では、免疫グロブリン分子の相補性決定領域はカバット(Kabat)の番号付けシステム(Kabatら、1987、Sequences of Proteins of Immunological Interest、US Department of Health and Human Services、NIH、USA)に従って決定される。
[Complementarity determination region]
The complementarity determining region refers to a region that forms an antigen-binding site in the variable region of an immunoglobulin molecule, and is also referred to as a hypervariable region, and refers to a portion that has a particularly large change in amino acid sequence for each immunoglobulin molecule. In the complementarity determining region, there are three complementarity determining regions (complementarity determining region 1, complementarity determining region 2 and complementarity determining region 3) in each of the light chain and the heavy chain. In this application, the complementarity-determining regions of immunoglobulin molecules are determined according to the Kabat numbering system (Kabat et al., 1987, Sequences of Immunological Interstitut, US Department of Health and Human Services, NIH, US).
[可変領域]
 抗体の可変領域とは、軽鎖及び重鎖のN末側に位置し、抗体の抗原結合性を決定する部分をいう。可変領域は、3つの相補性決定領域と、それを取り囲む4つのフレームワーク領域から構成される。
[Variable area]
The variable region of an antibody refers to a portion that is located on the N-terminal side of the light and heavy chains and determines the antigen-binding property of the antibody. The variable region is composed of three complementarity determining regions and four framework regions surrounding it.
[自己会合性]
 本発明において自己会合とは、同種のタンパク質分子間での一時的で可逆な相互作用や一時的で可逆な多量体形成を示す。このような多量体形成は希釈などの操作で簡単に単量体に戻る。自己会合性とは自己会合のしやすさを示すものである。少量の不純物が、任意のタンパク質の自己会合性に影響を与えることも考えられるが、そのような不純物存在下での任意のタンパク質の会合性も自己会合性という用語に含まれる。自己会合性を示すパラメータとしては、第2ビリアル係数や相互作用パラメータなどが挙げられる。相互作用パラメータは実験的手法で得られた拡散係数の濃度依存性を用いて算出される自己会合性の指標であり、その値が-12.4 g/mL以上であれば分子間には斥力的な働き、それ以下であれば引力的(自己会合的)な相互作用となると報告されている(Saito et al.,Pharm.Res., 2013.Vol.30 p1263)。拡散係数とは溶液中の分子の拡散しやすさの指標であり、動的光散乱法などで測定が可能である。
[Self-association]
In the present invention, self-association means a temporary and reversible interaction between the same kind of protein molecules and a temporary and reversible multimer formation. Such multimer formation easily returns to the monomer by an operation such as dilution. Self-association refers to the ease of self-association. Although a small amount of impurities may affect the self-association of any protein, the association of any protein in the presence of such impurities is also included in the term self-association. Examples of the parameter indicating self-association include a second virial coefficient and an interaction parameter. The interaction parameter is an index of self-association calculated using the concentration dependence of the diffusion coefficient obtained by an experimental method. If the value is −12.4 g / mL or more, repulsive force between molecules If it is less than that, it is reported to be an attractive (self-associative) interaction (Saito et al., Pharm. Res., 2013. Vol. 30 p1263). The diffusion coefficient is an index of the ease of diffusion of molecules in a solution and can be measured by a dynamic light scattering method or the like.
[フリーチオール]
 本発明においてフリーチオールとは、Fc領域を有するタンパク質中のシステイン残基に含まれる遊離チオール基を示す。Fc領域を有するタンパク質において、本来抗体の軽鎖と重鎖間、あるいは重鎖内の2個のシステイン残基が架橋して生じるはずのジスルフィド結合が形成されないことがあり、フリーチオールとして存在する。フリーチオール含量とは、Fc領域を有するタンパク質1モルあたりのフリーチオール基のモル数(モル比)をいう。
[Free thiol]
In the present invention, free thiol refers to a free thiol group contained in a cysteine residue in a protein having an Fc region. In a protein having an Fc region, a disulfide bond that is supposed to be formed by cross-linking two cysteine residues between the light chain and heavy chain of an antibody or within the heavy chain may not be formed, and exists as a free thiol. The free thiol content refers to the number of moles (molar ratio) of free thiol groups per mole of protein having an Fc region.
[凝集性]
 本発明において凝集とは、複数のタンパク質分子の分子間で起きる不可逆な相互作用を指し、希釈などの操作によっても解離しない多量体形成を示す。凝集体は物理化学的な相互作用や化学反応によって形成されるが、形成経路によって限定されるものではない。凝集体は動的光散乱法により、希釈によって解離しないモノマー(非凝集体)よりも粒子径の大きなピークとして確認することができる。
[Cohesiveness]
In the present invention, aggregation refers to an irreversible interaction that occurs between a plurality of protein molecules, and indicates multimer formation that does not dissociate even by manipulation such as dilution. Aggregates are formed by physicochemical interactions or chemical reactions, but are not limited by the formation route. Aggregates can be confirmed by a dynamic light scattering method as a peak having a particle size larger than that of monomers (nonaggregates) that do not dissociate by dilution.
[保存安定性]
 保存安定性とは、特定の保存条件下、保存期間における安定性をいう。この保存期間内に生じる変化に関する任意の指標により、保存安定性を評価することができる。本発明においてFc領域を有するタンパク質の保存安定性を評価する任意の指標には、外観、抗原結合性、分解性、自己会合性、フリーチオール含量、凝集性、生物活性など様々なものが挙げられるが、これらによって限定されるものではない。
[Storage stability]
Storage stability refers to stability over a storage period under specific storage conditions. The storage stability can be evaluated by an arbitrary index related to the change occurring within the storage period. In the present invention, any index for evaluating the storage stability of a protein having an Fc region includes various factors such as appearance, antigen binding property, degradability, self-association property, free thiol content, aggregation property, and biological activity. However, it is not limited by these.
[収率]
 本発明において収率とは、精製工程前の混合溶液中に含まれる目的タンパク質の量に対する、精製工程後に得られた目的タンパク質の量の割合を示す。
[yield]
In the present invention, the yield indicates the ratio of the amount of the target protein obtained after the purification step to the amount of the target protein contained in the mixed solution before the purification step.
[IL-33]
 IL-33はIL-1ファミリーに属するサイトカインであり、N末端側にクロマチン結合ドメインを有し、C末端側に12個のβストランドを持つ分子量18kDaのIL-1様サイトカインドメインを有している。IL-33は、細胞がネクローシスを起こす過程で、エスタラーゼ、カテプシンG、またはプロテイナーゼ3などの酵素により切断されて、C末端側断片のみからなる成熟型IL-33になり、サイトカインとして機能すると考えられている。IL-33は、サイトカインとして細胞外に放出されると、IL-33受容体(ST2及びIL-1RAcP)と結合し、当該IL-33受容体を発現する細胞において、細胞内シグナル伝達を開始させるという機能を有する。IL-33により誘導されるシグナル伝達には、非限定的に、NF-κB経路と、MAPKKs経路とがあり、最終的に各種のサイトカインやケモカイン、炎症性メディエータの産生を惹起する。IL-33により誘導されるサイトカインの例として、TNF-α、IL-1β、IL-3、IL-4、IL-5、IL-6、IL-13などが挙げられ、特にIL-5、IL-6、及びIL-13が誘導される。IL-33により誘導されるケモカインの例としてCXCL2、CCL2、CCL3、CCL6、CCL17、CCL24などが挙げられる。IL-33により誘導される炎症性メディエータの例としてPGD2、LTB4などが挙げられる。IL-33により誘導されるサイトカインやケモカイン、炎症性メディエータは、免疫系細胞の遊走、サイトカイン産生、脱顆粒に関与し炎症を惹起する。本発明では、IL-33は、IL-33受容体に結合して作用するものであれば、全長IL-33または成熟型IL-33のいずれかを指してもよいし、それらの誘導体若しくは変異体であってもよい。また、ヒトIL-33でも他の生物由来のIL-33でもよい。
[IL-33]
IL-33 is a cytokine belonging to the IL-1 family, and has a chromatin-binding domain on the N-terminal side and an IL-1-like cytokine domain with a molecular weight of 18 kDa having 12 β-strands on the C-terminal side. . IL-33 is cleaved by enzymes such as esterase, cathepsin G, or proteinase 3 in the process of necrosis in cells, and becomes mature IL-33 consisting only of the C-terminal fragment, and is thought to function as a cytokine. ing. When IL-33 is released extracellularly as a cytokine, it binds to IL-33 receptors (ST2 and IL-1RAcP) and initiates intracellular signal transduction in cells that express the IL-33 receptor. It has the function. Signal transduction induced by IL-33 includes, but is not limited to, the NF-κB pathway and the MAPKKs pathway, and ultimately induces production of various cytokines, chemokines, and inflammatory mediators. Examples of cytokines induced by IL-33 include TNF-α, IL-1β, IL-3, IL-4, IL-5, IL-6, IL-13, and particularly IL-5, IL -6 and IL-13 are induced. Examples of chemokines induced by IL-33 include CXCL2, CCL2, CCL3, CCL6, CCL17, and CCL24. Examples of inflammatory mediators induced by IL-33 include PGD2 and LTB4. IL-33-induced cytokines, chemokines, and inflammatory mediators are involved in immune system cell migration, cytokine production, and degranulation to cause inflammation. In the present invention, IL-33 may refer to either full-length IL-33 or mature IL-33, as long as it acts by binding to the IL-33 receptor, or a derivative or mutation thereof. It may be a body. Moreover, human IL-33 or IL-33 derived from other organisms may be used.
 以下、本発明の実施の形態について説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されない。 Hereinafter, embodiments of the present invention will be described. In addition, the following embodiment is an illustration for demonstrating this invention, and this invention is not limited only to the embodiment.
 本発明の一形態においては、Fc領域を有するタンパク質の精製方法が提供される。本方法は、Fc領域を有するタンパク質をアフィニティークロマトグラフィー用担体に結合した後、アルカリ洗浄液で洗浄することを特徴とする。アルカリ洗浄液により不純物を除去するとともに、アフィニティークロマトグラフィー用担体に結合したFc領域を含むタンパク質のフリーチオール含量、自己会合性、凝集性を低減化する。次いで溶出液を用いてFc領域を有するタンパク質を溶出することにより、Fc領域を有するタンパク質を精製する。洗浄液での洗浄は1回であってもよいし、同一又は異なる洗浄液を用いて複数回行われてもよい。 In one embodiment of the present invention, a method for purifying a protein having an Fc region is provided. This method is characterized in that a protein having an Fc region is bound to an affinity chromatography support and then washed with an alkaline washing solution. Impurities are removed with an alkaline washing solution, and the free thiol content, self-association and aggregation properties of the protein containing the Fc region bound to the affinity chromatography support are reduced. Next, the protein having the Fc region is purified by eluting the protein having the Fc region using the eluate. The cleaning with the cleaning liquid may be performed once, or may be performed a plurality of times using the same or different cleaning liquid.
 本発明における、Fc領域を有するタンパク質を含む溶液としては、非限定的に、血液、腹水及びミルクなどのFc領域を有するタンパク質を含む体液、Fc領域を有するタンパク質を産生するように該タンパク質をコードする遺伝子を形質転換した遺伝子組換え大腸菌、遺伝子組換え酵母、及び遺伝子組換え植物等の細胞破砕溶液、並びにFc領域を有するタンパク質を産生するハイブリドーマ、Epstein-Barrvirus(EBV)等で不死化したB細胞、及び遺伝子組換え動物細胞を培養して得られる培養上清が挙げられるが、Fc領域を有するタンパク質を含む培養上清が好ましい。本発明における、Fc領域を有するタンパク質を含む溶液としては、前記溶液をさらに沈殿後再溶解した溶液、濃縮した溶液、希釈した溶液、透析した溶液、及びクロマトグラフィー等により粗精製処理を行った溶液等であってもよい。 In the present invention, the solution containing a protein having an Fc region includes, but is not limited to, a body fluid containing a protein having an Fc region such as blood, ascites, and milk, and a protein encoding the protein so as to produce a protein having an Fc region. B cells that have been immortalized by cell disruption solutions such as transgenic E. coli, genetically modified yeast, and genetically modified plants transformed with the gene to be transformed, and hybridomas that produce proteins having the Fc region, Epstein-Barrvirus (EBV), etc. Examples include culture supernatants obtained by culturing cells and transgenic animal cells, and culture supernatants containing proteins having an Fc region are preferred. In the present invention, as a solution containing a protein having an Fc region, a solution obtained by re-dissolving the solution after further precipitation, a concentrated solution, a diluted solution, a dialyzed solution, and a solution subjected to a rough purification process by chromatography or the like Etc.
 本発明における、Fc領域を有するタンパク質を含む溶液には目的のFc領域を有するタンパク質以外の不純物が含まれていてもよい。不純物としては、体液及び宿主細胞由来の成分(タンパク質、核酸、脂質及び糖鎖など)、混入したウィルス・細菌・真菌及びこれらを構成する成分、培地由来の成分、Fc領域を有するタンパク質の分解物、凝集体、並びにサブビジブルパーティクルなどが挙げられる。 In the present invention, the solution containing the protein having the Fc region may contain impurities other than the protein having the target Fc region. Impurities include components derived from body fluids and host cells (proteins, nucleic acids, lipids, sugar chains, etc.), contaminated viruses, bacteria, fungi and components constituting them, components derived from culture media, and degradation products of proteins having an Fc region , Aggregates, and sub-visible particles.
 様々な実施形態では、本発明は、Fc領域を含むタンパク質をアフィニティークロマトグラフィー用担体に接触させ、Fc領域を有するタンパク質をアフィニティークロマトグラフィー用担体に結合させる工程を含む。アフィニティークロマトグラフィー用担体としては、Protein A、Protein G、Protein A/G、Protein L、抗免疫グロブリン抗体、Fc受容体の細胞外ドメイン及びこれらの断片、並びにこれらの改変体を固定化した担体が挙げられるが、所望のFc領域を有するタンパク質を結合することができ、アルカリ洗浄液による洗浄工程でもFc領域を有するタンパク質を保持することができ、かつ溶出液でFc領域を有するタンパク質を溶出することができるものであれば特に限定されない。本発明のアフィニティークロマトグラフィー用担体の好ましい態様としては、Protein A、Protein Gまたはこれらの改変体を有する担体である。 In various embodiments, the present invention includes the steps of contacting a protein containing an Fc region with an affinity chromatography support and binding the protein having an Fc region to the affinity chromatography support. As the carrier for affinity chromatography, Protein A, Protein G, Protein A / G, Protein L, anti-immunoglobulin antibody, Fc receptor extracellular domain and fragments thereof, and carriers on which these variants are immobilized are used. As mentioned above, it is possible to bind a protein having a desired Fc region, to retain a protein having an Fc region even in a washing step with an alkaline washing solution, and to elute a protein having an Fc region in an elution solution. There is no particular limitation as long as it is possible. A preferred embodiment of the carrier for affinity chromatography of the present invention is a carrier having Protein A, Protein G, or a modified form thereof.
 本発明における精製方法は、アフィニティークロマトグラフィー用担体を充填したカラムを用いて行うことができる。また、カラムを用いずにバッチ処理で行うこともできる。本発明の好ましい実施形態は、カラムを用いた精製方法である。カラムを用いた場合、アフィニティークロマトグラフィー用担体を充填したカラムに、Fc領域を有するタンパク質を含む溶液を通し、次いでアルカリ洗浄液を通し、最後に溶出液を通すことにより、接触工程、洗浄工程、および溶出工程が行われる。各工程は、連続して行ってもよいし、時間をあけて行ってもよい。また、アルカリ洗浄液以外の洗浄液での洗浄工程、カラムの平衡化工程や再生工程等がさらに付加されてもよい。 The purification method in the present invention can be performed using a column packed with a carrier for affinity chromatography. Moreover, it can also carry out by a batch process, without using a column. A preferred embodiment of the present invention is a purification method using a column. When a column is used, a contact step, a washing step, and a solution containing a protein having an Fc region are passed through a column packed with an affinity chromatography carrier, then an alkaline washing solution, and finally an elution solution. An elution step is performed. Each process may be performed continuously or at intervals. Further, a cleaning step with a cleaning solution other than the alkaline cleaning solution, a column equilibration step, a regeneration step, and the like may be further added.
 アフィニティークロマトグラフィー用担体に結合したFc領域を含むタンパク質を不純物から分離するために、1ないしは複数の洗浄液で上記担体を充填したカラムを洗浄することができる。一般的な洗浄液として生理的食塩水やPhosphate buffered saline(PBS)が挙げられるが、さらにこれらの洗浄液に界面活性剤が添加されていてもよい。界面活性化剤の一例としては、ポリソルベート(Tween 20、Tween 40、Tween 60、Tween 80(以上商品名)等)やTriton X-100(商品名)が挙げられる。界面活性剤の添加量は臨界ミセル濃度以上であればよく、好ましくは0.01%(V/V)から1%(V/V)の範囲である。 In order to separate the protein containing the Fc region bound to the carrier for affinity chromatography from impurities, the column packed with the carrier can be washed with one or a plurality of washing solutions. Examples of general cleaning solutions include physiological saline and Phosphate buffered saline (PBS), and a surfactant may be added to these cleaning solutions. Examples of the surfactant include polysorbate (Tween 20, Tween 40, Tween 60, Tween 80 (above trade name), etc.) and Triton X-100 (trade name). The amount of the surfactant added may be not less than the critical micelle concentration, and is preferably in the range of 0.01% (V / V) to 1% (V / V).
 様々な実施形態では、本発明は、Fc領域を有するタンパク質が結合したアフィニティークロマトグラフィー用担体をアルカリ溶液で洗浄する工程を含む。アルカリ洗浄液のpHは9から12の範囲であり、好ましくは9.5から12、より好ましくは10から12であり、さらにより好ましくは10.1から12、10.5から12、10.6から12、10.5から11.5であり、最も好ましくは10.6から11.5である。アルカリ洗浄液のpHの下限値としては例えば9、9.1、9.2、9.3、9.4、9.5、9.6、9.7、9.8、9.9、10、10.1、10.2、10.3、10.4、10.5、10.6、10,7、10.8、10.9、11が挙げられ、アルカリ洗浄液のpHの上限値としては、11、11.1、11.2、11.3、11.4、11.5、11.6、11.7、11.8、11.9、12が挙げられる。洗浄液のpHを維持するために、緩衝剤を添加することができる。緩衝剤は、使用するpHに応じて当業者が通常用いる緩衝剤の中から適宜選択すればよく、リン酸塩、クエン酸塩、グリシン、トリスヒドロキシアミノメタン(Tris)、ホウ酸塩、炭酸塩、重炭酸塩及びCHESやCAPS、Bicine、TAPSといったグッドバッファー系緩衝剤が挙げられる。本発明のアルカリ洗浄液の好ましい態様としては、炭酸ナトリウムまたはリン酸ナトリウムを含むアルカリ洗浄液であり、これらの緩衝剤の濃度は、好ましくは10mMから1000mM、より好ましくは50mMから500mM、最も好ましくは100mMから250mMである。 In various embodiments, the present invention includes a step of washing an affinity chromatography support to which a protein having an Fc region is bound with an alkaline solution. The pH of the alkaline cleaning solution is in the range of 9 to 12, preferably 9.5 to 12, more preferably 10 to 12, even more preferably 10.1 to 12, 10.5 to 12, 10.6 to 12, 10.5 to 11.5, Most preferably from 10.6 to 11.5. The lower limit of the pH of the alkaline cleaning solution is, for example, 9, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 10, 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10, 7, 10.8, 10.9 and 11 are mentioned, and the upper limit of the pH of the alkaline cleaning liquid is 11, 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, 11.8, 11.9, 12. Buffering agents can be added to maintain the pH of the wash solution. The buffer may be appropriately selected from those commonly used by those skilled in the art depending on the pH to be used. Phosphate, citrate, glycine, trishydroxyaminomethane (Tris), borate, carbonate , Bicarbonate, and good buffer buffers such as CHES, CAPS, Bicine, and TAPS. A preferred embodiment of the alkaline washing solution of the present invention is an alkaline washing solution containing sodium carbonate or sodium phosphate, and the concentration of these buffering agents is preferably 10 mM to 1000 mM, more preferably 50 mM to 500 mM, most preferably 100 mM. 250 mM.
 本発明におけるアルカリ洗浄液に、アミノ酸(例えば、アルギニン、ヒスチジン、ロイシン、イソロイシン、バリン)、二価カチオン(例えば、マンガン、ニッケル、銅、マグネシウム、カルシウム、バリウムの二価カチオン)、界面活性剤(例えば、ポリソルベート、Triton X-100など)、蛋白質変性剤(例えば、尿素、塩酸グアニジン)、酸化還元剤(例えば、ジチオスレイトール、2-メルカプトエタノール、TCEP、硫酸銅、シスタミン、シスチン、グルタチオン)などを添加することができる。本発明における好ましいアルカリ洗浄液は、これらを添加しないアルカリ洗浄液である。 In the alkaline cleaning liquid of the present invention, amino acids (for example, arginine, histidine, leucine, isoleucine, valine), divalent cations (for example, divalent cations of manganese, nickel, copper, magnesium, calcium, barium), surfactants (for example, , Polysorbate, Triton X-100, etc.), protein denaturing agents (eg, urea, guanidine hydrochloride), redox agents (eg, dithiothreitol, 2-mercaptoethanol, TCEP, copper sulfate, cystamine, cystine, glutathione) Can be added. A preferred alkaline cleaning liquid in the present invention is an alkaline cleaning liquid to which these are not added.
 アフィニティークロマトグラフィーでのアルカリ洗浄液には緩衝剤でない塩(例えば塩化ナトリウム、塩化カリウム)が添加されていてもよい。緩衝剤でない塩はアフィニティークロマトグラフィー用担体にイオン結合により結合した不純物を洗浄するのに効果があり、0.05M未満、0.1M未満、0.15M未満、0.2M未満、0.5M未満、1M未満、2M未満の濃度で、本発明のアルカリ洗浄液に添加することができる。本発明における好ましいアルカリ洗浄液は、塩化ナトリウム等の、緩衝剤でない塩を含まないアルカリ洗浄液である。 A salt that is not a buffer (for example, sodium chloride or potassium chloride) may be added to the alkaline washing solution in affinity chromatography. Salts that are not buffering agents are effective in washing impurities bound to the affinity chromatography support by ionic bonds, and are less than 0.05M, less than 0.1M, less than 0.15M, less than 0.2M, less than 0.5M, less than 1M, 2M It can be added to the alkaline cleaning liquid of the present invention at a concentration of less than. A preferred alkaline cleaning solution in the present invention is an alkaline cleaning solution that does not contain a salt that is not a buffer, such as sodium chloride.
 様々な実施形態では、本発明は、Fc領域を有するタンパク質をアフィニティークロマトグラフィー用担体から溶出する工程を含む。溶出する工程は適切な溶出液を用いて行われる。結合したアフィニティークロマトグラフィー用担体からFc領域を有するタンパク質を溶出させることができれば、任意の溶出液であってよく、例えば低いpH、好ましくは2から6.5、より好ましくは2.5から4.0の範囲内のpHを有する溶出液を用いることができる。本発明の好ましい溶出液は100mMの酢酸緩衝液やグリシン塩酸溶液である。 In various embodiments, the present invention includes a step of eluting a protein having an Fc region from an affinity chromatography support. The eluting step is performed using an appropriate eluent. Any eluate may be used as long as the protein having the Fc region can be eluted from the bound affinity chromatography support, for example, a low pH, preferably 2 to 6.5, more preferably 2.5 to 4.0. Can be used. The preferred eluent of the present invention is 100 mM acetate buffer or glycine hydrochloride solution.
 アルカリ洗浄工程を経て溶出液により回収されたFc領域を有するタンパク質は、フリーチオール含量、自己会合性、及び凝集性が低減しており、保存安定性に優れている。さらに混入している不純物を除去するために、追加の精製ステップを行なってもよい。通常行われる精製ステップとしては、イオン交換クロマトグラフィー、疎水性クロマトグラフィー、ハイドロキシアパタイトクロマトグラフィー、アフィニティークロマトグラフィー、サイズ排除クロマトグラフィー、硫酸アンモニウム沈殿、エタノール沈殿、逆相HPLC、クロマトフォーカシング、ミックスモードクロマトグラフィー、デプスフィルター、限外濾過及び透析濾過が挙げられる。 The protein having the Fc region recovered from the eluate after the alkali washing step has a reduced free thiol content, self-association property, and aggregation property, and is excellent in storage stability. In addition, additional purification steps may be performed to remove contaminating impurities. Typical purification steps include ion exchange chromatography, hydrophobic chromatography, hydroxyapatite chromatography, affinity chromatography, size exclusion chromatography, ammonium sulfate precipitation, ethanol precipitation, reverse phase HPLC, chromatofocusing, mixed mode chromatography, Depth filters, ultrafiltration and diafiltration.
 本発明の精製方法の好ましい実施形態としては、Fc領域を有するタンパク質は抗体である。特に好ましい実施形態としては、ヒトモノクローナル抗体、ヒト化モノクローナル抗体、キメラモノクローナル抗体である。これらの抗体は、ヒトに対する抗原性が低く、ヒトに投与できる点で治療用医薬品として有用である。最も好ましい実施形態としてはヒト抗体である。 In a preferred embodiment of the purification method of the present invention, the protein having an Fc region is an antibody. Particularly preferred embodiments are human monoclonal antibodies, humanized monoclonal antibodies, and chimeric monoclonal antibodies. These antibodies are useful as therapeutic drugs because they have low antigenicity to humans and can be administered to humans. The most preferred embodiment is a human antibody.
 本発明の精製方法の別の好ましい実施形態としては、Fc領域を有するタンパク質はλ鎖を有する抗体である。λ鎖を有する抗体は、一般にκ鎖を有する抗体と比べて、凝集性が高く取扱いが困難であった。そこで、凝集性を低下させることができるアルカリ洗浄工程を含む本発明の精製方法は、λ鎖を有する抗体の精製に極めて有用である。 In another preferred embodiment of the purification method of the present invention, the protein having an Fc region is an antibody having a λ chain. An antibody having a λ chain is generally more aggregated and difficult to handle than an antibody having a κ chain. Therefore, the purification method of the present invention including an alkali washing step capable of reducing the aggregation property is extremely useful for purifying an antibody having a λ chain.
 別の態様では、本発明は、Fc領域を有するタンパク質の製造方法に関する。Fc領域を有するタンパク質をアフィニティークロマトグラフィー用担体上でアルカリ洗浄液を用いて洗浄することにより、凝集性、自己会合性、フリーチオール含量を低減し、保存安定性に優れたFc領域を有するタンパク質を、安価で、容易に、また高収率で製造することができる。 In another aspect, the present invention relates to a method for producing a protein having an Fc region. By washing the protein having an Fc region on an affinity chromatography support using an alkaline washing solution, the protein having an Fc region with reduced aggregation, self-association and free thiol content and excellent storage stability is obtained. It can be manufactured inexpensively, easily and in high yield.
 別の態様では、本発明は、本発明の製造方法によって製造される、Fc領域を有するタンパク質に関する。本発明の製造方法によって製造されたFc領域を有するタンパク質は、所定の自己会合性、フリーチオール含量、及び凝集性を有する点で特徴づけられる。かかるタンパク質は、-12.4mL/g以上の相互作用パラメータ、タンパク質1モルあたり0.1モル以下のフリーチオール含量、及び50nmを超える粒径を有さないことにより特徴づけられる優れた非凝集性のうちの1以上、好ましくは2、さらに好ましくは3の性質により特徴づけられる。 In another aspect, the present invention relates to a protein having an Fc region produced by the production method of the present invention. The protein having the Fc region produced by the production method of the present invention is characterized in that it has a predetermined self-association property, free thiol content, and aggregation property. Such proteins have excellent non-aggregation properties characterized by having an interaction parameter of -12.4 mL / g or higher, a free thiol content of 0.1 mol or less per mol of protein, and a particle size of greater than 50 nm. Characterized by one or more, preferably 2, and more preferably 3 properties.
 本発明の好ましい実施形態は、IL-33に結合することができるヒトモノクローナル抗体の製造方法である。ヒト抗IL-33モノクローナル抗体をアフィニティークロマトグラフィー用担体上でアルカリ洗浄液を用いて洗浄することにより、凝集性、自己会合性、フリーチオール含量を低減し、保存安定性に優れたヒト抗IL-33モノクローナル抗体を、安価で、容易に、また高収率で製造することができる。 A preferred embodiment of the present invention is a method for producing a human monoclonal antibody capable of binding to IL-33. Human anti-IL-33 monoclonal antibody is washed on an affinity chromatography carrier with an alkaline washing solution to reduce aggregation, self-association, and free thiol content, and human anti-IL-33 has excellent storage stability Monoclonal antibodies can be produced inexpensively, easily and in high yield.
 別の好ましい実施形態では、本発明は、本発明の製造方法によって製造される、ヒト抗IL-33モノクローナル抗体に関する。本発明の製造方法によって製造されたヒト抗IL-33モノクローナル抗体は、所定の自己会合性、フリーチオール含量、及び凝集性を有する点で特徴づけられる。かかるタンパク質は、-12.4mL/g以上の相互作用パラメータ、抗体1モルあたり0.1モル以下のフリーチオール含量、及び50nmを超える粒径を有さないことにより特徴づけられる優れた非凝集性のうちの1以上、好ましくは2、さらに好ましくは3の性質により特徴づけられる。このような性質を有するヒト抗IL-33モノクローナル抗体は、保存安定性に優れており、医薬品として有用である。 In another preferred embodiment, the present invention relates to a human anti-IL-33 monoclonal antibody produced by the production method of the present invention. The human anti-IL-33 monoclonal antibody produced by the production method of the present invention is characterized in that it has a predetermined self-association property, free thiol content, and aggregation property. Such proteins have excellent non-aggregation characteristics characterized by having an interaction parameter of -12.4 mL / g or more, a free thiol content of 0.1 mol or less per mol of antibody, and a particle size of more than 50 nm. Characterized by one or more, preferably 2, and more preferably 3 properties. A human anti-IL-33 monoclonal antibody having such properties has excellent storage stability and is useful as a pharmaceutical product.
 別の態様では、本発明は、溶液中に含まれるFc領域を有するタンパク質の自己会合性を低減する方法に関する。自己会合性は本願実施例に記載するように、動的光散乱を解析し、相互作用パラメータを算出することにより評価することができる。相互作用パラメータが高ければ自己会合性が低く、相互作用パラメータは-12.4mL/g以上であることが好ましい。本発明の好ましい態様としては、アルカリ溶液処理をしないFc領域を有するタンパク質と比較して、アルカリ溶液処理を行なうFc領域を有するタンパク質の溶液中での相互作用パラメータが1mL/g以上増加、より好ましい態様として5mL/g以上増加、さらにより好ましい態様として10mL/g以上増加して、自己会合性が低減することである。 In another aspect, the present invention relates to a method for reducing the self-association property of a protein having an Fc region contained in a solution. Self-association can be evaluated by analyzing dynamic light scattering and calculating interaction parameters, as described in the Examples of the present application. If the interaction parameter is high, the self-association property is low, and the interaction parameter is preferably −12.4 mL / g or more. As a preferred embodiment of the present invention, the interaction parameter in the solution of the protein having the Fc region subjected to the alkaline solution treatment is increased by 1 mL / g or more as compared with the protein having the Fc region not subjected to the alkaline solution treatment. An embodiment is an increase of 5 mL / g or more, and a still more preferable embodiment is an increase of 10 mL / g or more, thereby reducing self-association.
 さらに別の態様では、本発明は、溶液中に含まれるFc領域を有するタンパク質のフリーチオール含量を低減する方法に関する。フリーチオールは反応性が高く、Fc領域を有するタンパク質の分子間でジスルフィド結合やチオエーテル結合を形成することにより、Fc領域を有するタンパク質は非可逆的に凝集する。フリーチオール含量は本願実施例に記載するように、化学的な方法により測定することができる。本発明の好ましい態様としては、アルカリ溶液処理をしないFc領域を有するタンパク質と比較して、アルカリ溶液処理を行なうFc領域を有するタンパク質の溶液中でのフリーチオール含量が、0.01以上低下、より好ましい態様として0.05以上低下、さらにより好ましい態様として0.1以上低下することである。 In yet another aspect, the present invention relates to a method for reducing the free thiol content of a protein having an Fc region contained in a solution. Free thiol has high reactivity, and a protein having an Fc region aggregates irreversibly by forming a disulfide bond or a thioether bond between molecules of the protein having the Fc region. The free thiol content can be measured by a chemical method as described in the Examples of the present application. As a preferred embodiment of the present invention, the free thiol content in the solution of the protein having the Fc region subjected to the alkaline solution treatment is reduced by 0.01 or more compared to the protein having the Fc region not subjected to the alkaline solution treatment. Is reduced by 0.05 or more, and more preferably, it is reduced by 0.1 or more.
 さらに別の態様では、本発明は、溶液中に含まれるFc領域を有するタンパク質の凝集性を低減する方法に関する。本願実施例に記載するように、動的光散乱などを測定することにより、Fc領域を有するタンパク質のモノマーの粒子径のピークよりも大きな粒子径を示す凝集体のピークを確認することができる。本発明の好ましい態様としては、一定濃度(例えば、1 mg/mL、10 mg/ml、50mg/ml)溶液を測定した場合、アルカリ溶液処理をしないFc領域を有するタンパク質と比較して、アルカリ溶液処理を行なうFc領域を有するタンパク質の凝集体のピーク面積(動的光散乱、光強度分布)が65%以上低下、より好ましい態様として80%以上低下、さらにより好ましい態様として90%以上低下、最も好ましい態様として95%以上低下することである。 In still another aspect, the present invention relates to a method for reducing the aggregation property of a protein having an Fc region contained in a solution. As described in Examples of the present application, by measuring dynamic light scattering or the like, it is possible to confirm a peak of an aggregate having a particle size larger than that of a protein monomer having an Fc region. As a preferred embodiment of the present invention, when a solution having a constant concentration (for example, 1 mg / mL, 10 mg / ml, 50 mg / ml) is measured, an alkaline solution is compared with a protein having an Fc region that is not treated with an alkaline solution. The peak area (dynamic light scattering, light intensity distribution) of the protein aggregate having the Fc region to be treated is reduced by 65% or more, more preferably 80% or more, and even more preferably 90% or more, most preferably A preferred embodiment is a reduction of 95% or more.
 さらに別の態様では、本発明は、溶液中に含まれるFc領域を有するタンパク質の保存安定性を高める方法に関する。本願実施例に記載するように、Fc領域を有するタンパク質を一定期間一定温度で保存することにより、評価することができる。例えば、Fc領域を有するタンパク質を4℃で1月間、2月間、6月間、1年間、2年間、3年間、または40℃で3日間、4週間、8週間保存することができ、それぞれのFc領域を有するタンパク質の保存安定性は、前記した自己会合性、フリーチオール含量、凝集性を測定することにより評価することができる。また、当業者が一般的に行うサイズ排除クロマトグラフィー、SDSポリアクリルアミド電気泳動や、マススペクトル解析によりFc領域を有するタンパク質の分解物の有無を調べることもできる。本発明の好ましい態様としては、アルカリ溶液処理をしないFc領域を有するタンパク質と比較して、アルカリ溶液処理を行なう場合のFc領域を有するタンパク質を一定期間、一定温度で保存した場合の凝集体のピーク面積(動的光散乱、光強度分布)が80%以上低下、より好ましい態様として90%以上低下、さらにより好ましい態様として95%以上低下することである。 In still another aspect, the present invention relates to a method for enhancing the storage stability of a protein having an Fc region contained in a solution. As described in Examples of the present application, evaluation can be performed by storing a protein having an Fc region at a constant temperature for a certain period. For example, proteins with Fc regions can be stored at 4 ° C for 1 month, 2 months, 6 months, 1 year, 2 years, 3 years, or 40 ° C for 3 days, 4 weeks, 8 weeks, The storage stability of a protein having a region can be evaluated by measuring the aforementioned self-association property, free thiol content, and aggregation property. In addition, the presence or absence of a degradation product of a protein having an Fc region can also be examined by size exclusion chromatography, SDS polyacrylamide electrophoresis or mass spectrum analysis generally performed by those skilled in the art. As a preferred embodiment of the present invention, as compared with a protein having an Fc region that is not treated with an alkaline solution, a peak of an aggregate when a protein having an Fc region in the case of alkaline solution treatment is stored at a constant temperature for a certain period of time. The area (dynamic light scattering, light intensity distribution) is reduced by 80% or more, more preferably 90% or more, and still more preferably 95% or more.
 別の態様では、本発明は、Fcを有すタンパク質が含まれる溶液中に含まれるウイルスの不活化を同時に実施できる精製方法に関する。レトロウイルス等のウイルスはアルカリ条件で速やかに不活化することが知られている(Biotechnol Prog. 2003.  19 :538-43.)。通常、ウイルス不活化はアフィニティカラムでの精製後に別工程として行うが、本発明では精製と同時に実施することで、工程時間及びコストを低減できる。アフィニティカラム精製時にアルカリ洗浄溶液を用いることでレトロウイルス等のウイルスを不活化することができる。 In another aspect, the present invention relates to a purification method capable of simultaneously inactivating a virus contained in a solution containing a protein having Fc. Viruses such as retroviruses are known to be rapidly inactivated under alkaline conditions (Biotechnol Prog. 2003. 19 19: 538-43.). Usually, virus inactivation is carried out as a separate step after purification with an affinity column. However, in the present invention, it is possible to reduce the process time and cost by carrying out simultaneously with the purification. Viruses such as retroviruses can be inactivated by using an alkaline washing solution during affinity column purification.
 別の態様では、本発明は、クロマトグラフィー担体の定置洗浄の工程(Cleaning-in-place,CIP)の低減化に関する。バイオ医薬品製造において、クロマトグラフィーを用いた精製過程で様々な不純物がクロマトグラフィー担体に吸着してしまい、次の精製サイクルにキャリーオーバーする。精製によって得られる目的タンパク質の品質を保つには、クロマトグラフィー担体を一定のサイクル毎に定置洗浄する必要がある。定置洗浄には水酸化ナトリウム溶液や水酸化ナトリウムと高濃度の塩の組み合わせといった過酷な条件で行われることが多い(Journal of Chromatography A, 1308 (2013) 86- 95)。本発明では、各サイクル毎に温和なアルカリ条件で洗浄を行うことでクロマトグラフィー担体に吸着した不純物を除去することができる。その為、本発明を用いることで、過酷な条件の定置洗浄を除くこと、あるいは定置洗浄の頻度を低減することができる。 In another aspect, the present invention relates to a reduction in the cleaning-in-place (CIP) of the chromatography carrier. In the production of biopharmaceuticals, various impurities are adsorbed on the chromatographic carrier during the purification process using chromatography, and carry over to the next purification cycle. In order to maintain the quality of the target protein obtained by purification, it is necessary to wash the chromatographic support at fixed intervals. In-situ cleaning is often performed under harsh conditions such as sodium hydroxide solution or a combination of sodium hydroxide and a high concentration salt (Journal of Chromatography A, 1308 (2013) 86- 95). In the present invention, the impurities adsorbed on the chromatography carrier can be removed by washing under mild alkaline conditions for each cycle. Therefore, by using the present invention, it is possible to eliminate the stationary cleaning under severe conditions or reduce the frequency of stationary cleaning.
 本発明におけるアルカリ溶液のpHは9から12の範囲であり、好ましくは9.5から12、より好ましくは10から12であり、さらにより好ましくは10.1から12、10.5から12、10.6から12、10.5から11.5であり、最も好ましくは10.6から11.5である。アルカリ溶液のpHの下限値としては例えば9、9.1、9.2、9.3、9.4、9.5、9.6、9.7、9.8、9.9、10、10.1、10.2、10.3、10.4、10.5、10.6、10,7、10.8、10.9、11が挙げられ、アルカリ溶液のpHの上限値としては、11、11.1、11.2、11.3、11.4、11.5、11.6、11.7、11.8、11.9、12が挙げられる。アルカリ溶液のpHを維持するために、緩衝剤を添加することができる。緩衝剤は、使用するpHに応じて当業者が通常用いる緩衝剤の中から適宜選択すればよく、リン酸塩、クエン酸塩、グリシン、トリスヒドロキシアミノメタン(Tris)、ホウ酸塩、炭酸塩、重炭酸塩及びCHESやCAPS、Bicine、TAPSといったグッドバッファー系緩衝剤が挙げられる。本発明のアルカリ溶液に用いる緩衝剤としては、非アミノ酸系緩衝剤が好ましい。本発明のアルカリ溶液の好ましい態様としては、炭酸ナトリウムまたはリン酸ナトリウムを含むアルカリ溶液であり、これらの緩衝剤の濃度は、好ましくは10mMから1000mM、より好ましくは50mMから500mM、最も好ましくは100mMから250mMである。 The pH of the alkaline solution in the present invention is in the range of 9 to 12, preferably 9.5 to 12, more preferably 10 to 12, even more preferably 10.1 to 12, 10.5 to 12, 10.6 to 12, 10.5 to 11.5. And most preferably from 10.6 to 11.5. The lower limit of the pH of the alkaline solution is, for example, 9, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 10, 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10, 7, 10.8, Examples of the upper limit of the pH of the alkaline solution include 11, 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, 11.8, 11.9, 12. Buffering agents can be added to maintain the pH of the alkaline solution. The buffer may be appropriately selected from those commonly used by those skilled in the art depending on the pH to be used. Phosphate, citrate, glycine, trishydroxyaminomethane (Tris), borate, carbonate , Bicarbonate, and good buffer buffers such as CHES, CAPS, Bicine, and TAPS. The buffer used in the alkaline solution of the present invention is preferably a non-amino acid buffer. A preferred embodiment of the alkaline solution of the present invention is an alkaline solution containing sodium carbonate or sodium phosphate, and the concentration of these buffering agents is preferably 10 mM to 1000 mM, more preferably 50 mM to 500 mM, most preferably 100 mM. 250 mM.
 本発明におけるアルカリ溶液に、アミノ酸(例えば、アルギニン、ヒスチジン、ロイシン、イソロイシン、バリン)、二価カチオン(例えば、マンガン、ニッケル、銅、マグネシウム、カルシウム、バリウム)、界面活性剤(例えば、ポリソルベート、Triton X-100など)、蛋白質変性剤(例えば、尿素、塩酸グアニジン)、酸化還元剤(例えば、ジチオスレイトール、2-メルカプトエタノール、TCEP、硫酸銅、シスタミン、シスチン、グルタチオン)などを添加することができる。本発明における好ましいアルカリ溶液は、これらを添加しないアルカリ溶液である。本発明におけるアルカリ溶液は、特にアルギニン及びその誘導体を含まないことが好ましい。 In the alkaline solution of the present invention, amino acids (for example, arginine, histidine, leucine, isoleucine, valine), divalent cations (for example, manganese, nickel, copper, magnesium, calcium, barium), surfactants (for example, polysorbate, Triton) X-100 etc.), protein denaturing agents (eg urea, guanidine hydrochloride), redox agents (eg dithiothreitol, 2-mercaptoethanol, TCEP, copper sulfate, cystamine, cystine, glutathione) may be added. it can. A preferred alkaline solution in the present invention is an alkaline solution to which these are not added. In particular, the alkaline solution in the present invention preferably does not contain arginine and its derivatives.
 本発明におけるアルカリ溶液に、緩衝剤でない塩(例えば塩化ナトリウム、塩化カリウム)を、0.05M未満、0.1M未満、0.15M未満、0.2M未満、0.5M未満、1M未満、2M未満の濃度で添加することができる。本発明における好ましいアルカリ溶液は、塩化ナトリウム等の、緩衝剤でない塩を含まないアルカリ溶液である。 A salt that is not a buffer (eg sodium chloride, potassium chloride) is added to the alkaline solution of the present invention at a concentration of less than 0.05M, less than 0.1M, less than 0.15M, less than 0.2M, less than 0.5M, less than 1M, less than 2M. can do. A preferred alkaline solution in the present invention is an alkaline solution that does not contain a salt that is not a buffer, such as sodium chloride.
 本発明における一実施形態において、Fc領域を有するタンパク質は抗体である。本発明における抗体は、ポリクローナル抗体、モノクローナル抗体であってもよく、マウス抗体、ヒト抗体、ラット抗体、ウサギ抗体、ヤギ抗体、ラクダ抗体など、任意の動物由来の抗体であってもよい。さらに、本発明における抗体はこれらの動物由来の抗体を組み合わせたキメラ抗体やヒト化抗体であってもよい。 In one embodiment of the present invention, the protein having an Fc region is an antibody. The antibody in the present invention may be a polyclonal antibody or a monoclonal antibody, and may be an antibody derived from any animal such as a mouse antibody, a human antibody, a rat antibody, a rabbit antibody, a goat antibody, or a camel antibody. Furthermore, the antibody in the present invention may be a chimeric antibody or a humanized antibody in which these animal-derived antibodies are combined.
 本発明のFc領域を有するタンパク質の別の実施形態としては、Fc融合タンパク質が含まれる。Fc領域と融合するタンパク質としては非限定的に、TNF受容体やCTLA-4などの膜結合タンパク質の細胞外ドメインであってもよく、サイトカイン、ケモカイン、酵素、増殖因子、凝固因子、ホルモン及びこれらの機能を改変したアゴニスト、アンタゴニストであってもよい。また、ヒトファイブロネクチンの細胞外ドメインやセリンプロテアーゼ阻害剤のKunitzドメインなどを利用した、人工的な抗原結合蛋白質であってもよい(Clifford Mintz et.al BioProcess International, 2013, Vol.11(2), pp40-48)。 Another embodiment of the protein having the Fc region of the present invention includes an Fc fusion protein. Proteins that fuse with the Fc region may be, but are not limited to, extracellular domains of membrane-bound proteins such as TNF receptors and CTLA-4, including cytokines, chemokines, enzymes, growth factors, coagulation factors, hormones and these It may be an agonist or an antagonist whose function is altered. It may also be an artificial antigen-binding protein using the extracellular domain of human fibronectin or the Kunitz domain of a serine protease inhibitor (Clifford Mintz et.al BioProcess International, 2013, Vol.11 (2) , Pp40-48).
 本発明のFc領域を有するタンパク質のFc領域は、IgG抗体のC末端領域であるが、好ましくはヒト由来のIgG1、IgG2、IgG3、IgG4のFc領域であり、より好ましくはヒトIgG1のFc領域である。なお、Fc領域に結合する糖鎖は改変されていてもよく、特にフコース含量を調節することにより、抗体の抗体依存性細胞傷害活性を調節することができる(国際公開第2005/035586号、国際公開第2002/31140号、国際公開第00/61739号)。また、Fc領域のアミノ酸配列はアフィニティークロマトグラフィー用担体に結合できる範囲で改変されていてもよく、例えばヒトIgG1とヒトIgG3のキメラFc領域、Fc受容体(FcRn)への結合性を高めたFc領域があげられる(橋口周平ら、生化学、2010、Vol.82(8), p710)。 The Fc region of the protein having the Fc region of the present invention is a C-terminal region of an IgG antibody, preferably a human-derived IgG1, IgG2, IgG3, IgG4 Fc region, more preferably a human IgG1 Fc region. is there. The sugar chain bound to the Fc region may be modified, and in particular, by adjusting the fucose content, the antibody-dependent cytotoxic activity of the antibody can be regulated (WO 2005/035586, International Publication No. 2002/31140, International Publication No. 00/61739). Further, the amino acid sequence of the Fc region may be modified as long as it can bind to the carrier for affinity chromatography. For example, human IgG1 and human IgG3 chimeric Fc region, Fc with enhanced binding to Fc receptor (FcRn) The area can be raised (Shouhei Hashiguchi, Biochemistry, 2010, Vol.82 (8), p710).
 本発明における一実施形態において、Fc領域を有するタンパク質はλ鎖を有する抗体である。抗体の軽鎖はλ鎖またはκ鎖からなるが、λ鎖を有する抗体もκ鎖を有する抗体と同様に多様性を有し、さまざまな抗原に結合し得るので有用である。 In one embodiment of the present invention, the protein having an Fc region is an antibody having a λ chain. The light chain of an antibody is composed of a λ chain or a κ chain, but an antibody having a λ chain is useful because it has diversity as well as an antibody having a κ chain and can bind to various antigens.
 好ましい実施形態では、本発明によって精製されるべきFc領域を有するタンパク質はヒト抗IL-33モノクローナル抗体である。ヒト抗IL-33モノクローナル抗体は2014年4月4日出願の特願2014-078223号明細書に記載されている。 In a preferred embodiment, the protein having the Fc region to be purified according to the present invention is a human anti-IL-33 monoclonal antibody. The human anti-IL-33 monoclonal antibody is described in Japanese Patent Application No. 2014-078223 filed on April 4, 2014.
 以下に、本発明のFc領域を有するタンパク質の製造方法について説明する。遺伝子工学的手法を用いれば、所望のFc領域を有するタンパク質をコードするDNA配列を含むDNAを発現ベクターに組み込み、これを宿主細胞に形質転換して、該宿主細胞を培養することにより本発明のFc領域を有するタンパク質を製造することができる(例えば、Borrebaeck C. A. K. and Larrick J. W. THERAPEUTIC MONOCLONAL ANTIBODIES, Published in theUnited Kingdom by MACMILLAN PUBLISHERS LTD, 1990参照)。Fc領域を有するタンパク質が、Fc融合タンパク質である場合、Fc領域と融合するタンパク質をコードするDNAの下流に、Fc領域をコードするDNAを連結することにより、Fc領域を有するタンパク質の全長をコードするDNA配列を作製することができる。 Hereinafter, the method for producing a protein having an Fc region of the present invention will be described. Using a genetic engineering technique, DNA containing a DNA sequence encoding a protein having a desired Fc region is incorporated into an expression vector, transformed into a host cell, and the host cell is cultured. A protein having an Fc region can be produced (for example, Borrebaeck C. A. K. and Larrick J. W. THERAPEUTIC MONOCLONAL ANTIBODIES, Publicized in the United KingdomMIBLISSL When the protein having the Fc region is an Fc fusion protein, the entire length of the protein having the Fc region is encoded by linking the DNA encoding the Fc region downstream of the DNA encoding the protein to be fused with the Fc region. A DNA sequence can be generated.
 本発明の好ましい実施形態であるキメラ抗体は非ヒト由来の抗体可変領域をコードするDNAを、ヒト抗体定常領域をコードするDNAと連結し、これを発現ベクターに組み込んで宿主細胞に形質転換し産生させることにより得られる(欧州公開第125023号、国際公開92/19759号参照)。 A chimeric antibody, which is a preferred embodiment of the present invention, is produced by ligating a DNA encoding a non-human-derived antibody variable region with a DNA encoding a human antibody constant region, incorporating this into an expression vector, and transforming it into a host cell. (See European Publication No. 125023, International Publication No. 92/197559).
 本発明の好ましい実施形態であるヒト化抗体は非ヒト哺乳動物由来抗体の相補性決定領域と、その他の部分のヒト抗体領域をコードするDNAを連結し、これを発現ベクターに組み込んで宿主に導入し産生させることにより得られる。 A humanized antibody which is a preferred embodiment of the present invention is a ligation of a complementarity determining region of an antibody derived from a non-human mammal and a DNA encoding the other part of the human antibody region, which is incorporated into an expression vector and introduced into a host. It is obtained by making it produce.
 本発明の好ましい実施形態であるヒト抗体は、例えば、ヒト抗体ファージライブラリーをスクリーニングして得られるヒト抗体の軽鎖及び重鎖可変領域をコードするDNAを利用して取得することができる。またヒト抗体は、トリオーマ技術、ヒトB-細胞ハイブリドーマ技術(Kozborら, 1983 Immunol Today 4: p72)及びヒトモノクローナル抗体を生成するためのEBVハイブリドーマ技術(Coleら, 1985, MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc.,p. 77)等を使用し、調製することもできる。さらに、ヒト抗体遺伝子を導入したトランスジェニックマウスに抗原蛋白質を免疫し、ハイブリドーマを作製することにより、ヒト抗体を生成することもできる。トランスジェニックマウスとしては、HuMab(登録商標)マウス(Medarex, Princeton NJ)、KMTMマウス (Kirin Pharma Company, Japan)、KM(FCγRIIb-KO)マウス等が挙げられる。 A human antibody which is a preferred embodiment of the present invention can be obtained, for example, using DNA encoding the light chain and heavy chain variable regions of a human antibody obtained by screening a human antibody phage library. Human antibodies include trioma technology, human B-cell hybridoma technology (Kozbor et al., 1983 Immunol Today 4: p72), and EBV hybridoma technology for generating human monoclonal antibodies (Cole et al., 1985, MONOCLONAL ANTIBODIES ANDANDANCE CANCER R. Liss, Inc., p. 77) etc. can also be used. Furthermore, a human antibody can also be produced by immunizing a transgenic mouse introduced with a human antibody gene with an antigen protein to produce a hybridoma. Examples of the transgenic mice include HuMab (registered trademark) mice (Medarex, Princeton NJ), KMTM mice (Kirin Pharma Company, Japan), KM (FCγRIIb-KO) mice and the like.
 本発明において好ましいヒト抗IL-33モノクローナ抗体の重鎖全長及び軽鎖全長をコードするDNA配列は、例えば軽鎖としてλ鎖を有するIgG1であり、以下の表1に表される:
Figure JPOXMLDOC01-appb-T000001
A DNA sequence encoding the full length of the heavy chain and the full length of the light chain of the human anti-IL-33 monoclonal antibody preferable in the present invention is, for example, IgG1 having a λ chain as the light chain, and is represented in Table 1 below:
Figure JPOXMLDOC01-appb-T000001
 Fc領域を有するタンパク質の製造のための産生系は、in vitroの産生系を利用することができる。in vitroの産生系としては、真核細胞、例えば動物細胞、植物細胞または真菌細胞を使用する産生系や原核細胞、例えば大腸菌、枯草菌などの細菌細胞を使用する産生系等が挙げられる。使用される動物細胞としては、哺乳動物細胞、例えばCHO、COS、ミエローマ、BHK、HeLa、Vero、293、NS0、Namalwa、YB2/0といった一般に使用される細胞、昆虫細胞などが用いられてもよいが、293細胞やCHO細胞が好ましい。 An in vitro production system can be used as a production system for producing a protein having an Fc region. Examples of in vitro production systems include production systems using eukaryotic cells such as animal cells, plant cells or fungal cells, and production systems using prokaryotic cells such as bacterial cells such as Escherichia coli and Bacillus subtilis. As animal cells used, mammalian cells such as CHO, COS, myeloma, BHK, HeLa, Vero, 293, NS0, Namalwa, YB2 / 0, commonly used cells, insect cells, etc. may be used. However, 293 cells and CHO cells are preferred.
 上述のようにin vitroの産生系にてFc領域を有するタンパク質を産生する場合、Fc領域を有するタンパク質をコードするDNAを発現ベクターに組み込んで宿主を形質転換させる。動物細胞で使用され得るベクターとしては、例えばpConPlus、pcDM8、pcDNA I/Amp、pcDNA3.1、pREP4などが好ましいが、これらに限定されるものではない。 As described above, when a protein having an Fc region is produced in an in vitro production system, DNA encoding the protein having the Fc region is incorporated into an expression vector to transform the host. Preferred examples of vectors that can be used in animal cells include, but are not limited to, pConPlus, pcDM8, pcDNA I / Amp, pcDNA3.1, and pREP4.
 Fc領域を有するタンパク質の製造のためのin vitroの産生系として、ハイブリドーマを用いることができる。ハイブリドーマは一般的な方法に従って、リンパ球とミエローマ細胞株を融合することにより取得できる(例えば、Kohler et al. Nature 256, 495(1975)、Gelfre et al. Nature 266, 55052(1977)。ミエローマ細胞株としては、例えばP3-NS1/1-Ag4-1、P3-x63-Ag8.653およびSp2/O-Ag14が挙げられる。 A hybridoma can be used as an in vitro production system for producing a protein having an Fc region. A hybridoma can be obtained by fusing lymphocytes and a myeloma cell line according to a general method (for example, Kohler et al. Nature 256, 495 (1975), Gelfre et al. Nature 266, 55052 (1977). Examples of strains include P3-NS1 / 1-Ag4-1, P3-x63-Ag8.653 and Sp2 / O-Ag14.
 本発明の別の態様では、本発明の製造方法により製造されたヒト抗IL-33モノクローナル抗体を含む医薬組成物に存する。この医薬組成物は、IL-33関連疾患の診断、治療、予防、又は軽減のために使用することができる。また、本発明のヒト抗IL-33モノクローナル抗体を投与することを含むIL-33関連疾患の診断、治療、予防または軽減方法、並びに、IL-33関連疾患の診断、治療、予防または軽減用医薬の製造のための本発明のモノクローナル抗体の使用に関する。 Another aspect of the present invention resides in a pharmaceutical composition comprising a human anti-IL-33 monoclonal antibody produced by the production method of the present invention. This pharmaceutical composition can be used for diagnosis, treatment, prevention or alleviation of IL-33 related diseases. Further, a method for diagnosis, treatment, prevention or alleviation of an IL-33 related disease comprising administering the human anti-IL-33 monoclonal antibody of the present invention, and a medicament for diagnosis, treatment, prevention or alleviation of an IL-33 related disease To the use of the monoclonal antibodies of the invention for the production of
 IL-33関連疾患の例として、非限定的に、喘息、アトピー性皮膚炎、じんま疹、花粉症、アナフィラキシーショック、好酸球性副鼻腔炎、好酸球増多症候群、 チャーグ・ストラウス症候群、アレルギー性脳脊髄炎、リウマチ性多発筋痛、リウマチ性心疾患、多発性硬化症、関節炎(例えば、関節リウマチ、若年性関節炎、乾癬性関節炎、変形性関節症、ライター症候群等)、全身性エリトマトーデス(円板状狼蒼を含む)、乾癬、強直性脊椎炎、肝炎(例えば、自己免疫性肝炎、慢性活動性肝炎等)、炎症性腸疾患(例えば、潰瘍性大腸炎、クローン病、グルテン感受性腸疾患等)、全身性エリトマトーデス、シェーグレン症候群、ベーチェット病、天疱瘡、類天疱瘡、自己免疫性溶血性貧血、自己免疫性炎症性眼疾患、自己免疫性新生児血小板減少症、自己免疫性好中球減少、自己免疫性卵巣炎及び睾丸炎、自己免疫性血小板減少症、自己免疫性甲状腺炎、多発性筋炎、皮膚筋炎、重症筋無力症、アドレナリン作動薬耐性、円形脱毛症(alopecia greata)、抗リン脂質症候群、副腎の自己免疫疾患(例えば、自己免疫性アジソン病等)、セリアックスプルー-皮膚炎、慢性疲労免疫機能障害症候群(CFIDS)、寒冷凝集素病、本態性混合クリオグロブリン血症、線維筋痛-線維筋炎、糸球体腎炎(例えば、IgA腎症(nephrophathy)等)、グレーブス病、甲状腺機能亢進症(すなわち、橋本甲状腺炎)、特発性血小板減少性紫斑病(ITP)、混合結合組織病、1型または免疫介在性糖尿病、悪性貧血、多発性軟骨炎(polychrondritis)、多腺症候群、スティッフマン症候群、白斑、サルコイドーシス、多腺性内分泌障害、他の内分泌腺不全、動脈硬化症、肝線維症(例えば、原発性胆汁性肝硬変等)、肺線維症(例えば、突発性肺線維症等)、慢性閉塞性肺疾患、強皮症(CREST症候群、レイノー現象等を含む)、尿細管間質性腎炎、デンスデポジット病、急性腎障害、心筋炎、心筋症、神経炎(例えば、ギラン・バレー症候群等)、結節性多発性動脈炎、心臓切開症候群(cardiotomy syndrome)、慢性炎症性脱髄性多発神経障害、IgA神経障害、扁平苔癬、メニエール病、ポスト心筋梗塞(post-MI)、ブドウ膜炎、ブドウ膜炎眼炎(Uveitis Opthalmia)、血管炎、原発性無ガンマグロブリン血症、癌(例えば、脳腫瘍、喉頭癌、口唇口腔癌、下咽頭癌、甲状腺癌、食道癌、乳癌、肺癌、胃癌、副腎皮質癌、胆管癌、胆嚢癌、肝臓癌、膵臓癌、膀胱癌、大腸癌、子宮癌、卵巣癌、前立腺癌、睾丸癌、慢性リンパ球性白血病、慢性骨髄性白血病、ユーイング腫瘍、ホジキン病、非ホジキンリンパ腫、黒色腫、中皮腫、多発性骨髄腫等)、免疫系による排除に抵抗を示す感染(例えば、重症急性呼吸器症候群(SARS))、強毒性インフルエンザ感染症に伴う致死的サイトカインストーム、並びに、敗血症が挙げられ、好ましくは、喘息、アトピー性皮膚炎、花粉症、アナフィラキシーショック、強皮症、クローン病、潰瘍性大腸炎、関節炎、全身性エリトマトーデス、強直性脊椎炎、肝線維症、肺線維症、急性腎障害、血管炎及び癌などが挙げられる。 Examples of IL-33 related diseases include, but are not limited to, asthma, atopic dermatitis, urticaria, hay fever, anaphylactic shock, eosinophilic sinusitis, hypereosinophilic syndrome, Churg-Strauss syndrome , Allergic encephalomyelitis, polymyalgia rheumatica, rheumatic heart disease, multiple sclerosis, arthritis (eg, rheumatoid arthritis, juvenile arthritis, psoriatic arthritis, osteoarthritis, Reiter syndrome), systemic Erythromatodes (including discoid lupus), psoriasis, ankylosing spondylitis, hepatitis (eg, autoimmune hepatitis, chronic active hepatitis, etc.), inflammatory bowel disease (eg, ulcerative colitis, Crohn's disease, gluten) Susceptible bowel disease, etc.), systemic lupus erythematosus, Sjogren's syndrome, Behcet's disease, pemphigus, pemphigoid, autoimmune hemolytic anemia, autoimmune inflammatory eye disease, autoimmune neonatal blood Platelet reduction, autoimmune neutropenia, autoimmune ovitis and testicularitis, autoimmune thrombocytopenia, autoimmune thyroiditis, polymyositis, dermatomyositis, myasthenia gravis, adrenergic agonist Tolerance, alopecia greata, antiphospholipid syndrome, autoimmune diseases of the adrenal glands (eg, autoimmune Addison disease), celiac sprue-dermatitis, chronic fatigue immune dysfunction syndrome (CFIDS), cold agglutinin Disease, essential mixed cryoglobulinemia, fibromyalgia-fibromyositis, glomerulonephritis (eg, IgA nephropathy), Graves' disease, hyperthyroidism (ie, Hashimoto's thyroiditis), idiopathic platelets Reduced purpura (ITP), mixed connective tissue disease, type 1 or immune-mediated diabetes, pernicious anemia, polychrondritis itis), multi-gland syndrome, stiff man syndrome, vitiligo, sarcoidosis, multi-endocrine disorders, other endocrine insufficiency, arteriosclerosis, liver fibrosis (eg primary biliary cirrhosis, etc.), pulmonary fibrosis (eg , Idiopathic pulmonary fibrosis, etc.), chronic obstructive pulmonary disease, scleroderma (including CREST syndrome, Raynaud phenomenon, etc.), tubulointerstitial nephritis, dense deposit disease, acute kidney injury, myocarditis, cardiomyopathy, Neuritis (eg, Guillain-Barre syndrome), nodular polyarteritis, cardiotomy syndrome, chronic inflammatory demyelinating polyneuropathy, IgA neuropathy, lichen planus, Meniere's disease, post-myocardial Infarction (post-MI), uveitis, uveitis ophthalmitis (Uveitis Optalmia), vasculitis, primary agammaglobulinemia, cancer ( For example, brain tumor, laryngeal cancer, oral cavity cancer, hypopharyngeal cancer, thyroid cancer, esophageal cancer, breast cancer, lung cancer, stomach cancer, adrenocortical cancer, bile duct cancer, gallbladder cancer, liver cancer, pancreatic cancer, bladder cancer, colon cancer, uterus Cancer, ovarian cancer, prostate cancer, testicular cancer, chronic lymphocytic leukemia, chronic myelogenous leukemia, Ewing tumor, Hodgkin disease, non-Hodgkin lymphoma, melanoma, mesothelioma, multiple myeloma, etc.), immune system exclusion Infection (eg, severe acute respiratory syndrome (SARS)), lethal cytokine storm associated with highly toxic influenza infection, and sepsis, preferably asthma, atopic dermatitis, hay fever, Anaphylactic shock, scleroderma, Crohn's disease, ulcerative colitis, arthritis, systemic lupus erythematosus, ankylosing spondylitis, liver fibrosis, pulmonary fibrosis, acute kidney injury, vasculitis and cancer It is.
 他の好ましいFc領域を有するタンパク質としては、ヒトにおける治療用途として認められているFc領域を有するタンパク質が挙げられる。かかるFc領域を有するタンパク質としては、腫瘍細胞抗原、サイトカイン、サイトカイン受容体または接着タンパク質などに結合する抗体やFc融合タンパク質が挙げられる。したがって、様々な実施形態では、Fc領域を有するタンパク質は、以下からなる群から選択される抗原に結合する抗体またはFc融合タンパク質であってもよい:CD3(例えば、OKT3)、CD52(例えば、アレムツズマブ;Campath(登録商標))、VEGF(例えば、ベバシズマブ;Avastin(登録商標)、EGFR(例えばセツキシマブ;Erbitux(登録商標))、CD33(例えば、ゲムツズマブ;Mylotarg(登録商標))、CD20(例えば、リツキシマブ;Rituxan(登録商標)、トシツモマブ;Bexxar(登録商標)、イブリツモマブ;Zevalin(登録商標))、HER-2(例えば、トラスツズマブ;Herceptin(登録商標))、TNFα(例えば、インフリキシマブ;Remicade(登録商標)、アダリムマブ:Humira(登録商標)、エタネルセプト;Embrel(登録商標)、ゴリムマブ;Simponi(登録商標))、CD25(例えば、ダクリズマブ;Zenapax(登録商標)、バシリキシマブ;Simulect(登録商標))、RSV(例えば、パリビズマブ;Synagis(登録商標))、IgE(例えば、オマリズマブ;Xolair(登録商標))、gpIIb/IIIa(例えば、アブシキシマブ;Reopro(登録商標))、CD11a(例えば、エファリズマブ;Raptiva(登録商標))、α4インテグリン(例えば、ナタリツマブ;Tysabri(登録商標))、IL-6受容体(例えば、トシリズマブ;Actemra(登録商標))、CD80/86(例えば、アバタセプト;Orencia(登録商標))、CTLA-4(例えば、イピリムマブ; YERVOY(登録商標))、BLys(例えば、ベリムマブ;Benlysta(登録商標))、IL-17A(例えば、セクキヌマブ;Cosentyx(登録商標))、PD-1(例えば、ニボルマブ;Opdivo(登録商標)、ペンブロリズマブ;KEYTRUDA(登録商標))。 Other preferred proteins having an Fc region include proteins having an Fc region that is recognized for therapeutic use in humans. Examples of such proteins having an Fc region include antibodies that bind to tumor cell antigens, cytokines, cytokine receptors or adhesion proteins, and Fc fusion proteins. Thus, in various embodiments, a protein having an Fc region may be an antibody or Fc fusion protein that binds to an antigen selected from the group consisting of: CD3 (eg, OKT3), CD52 (eg, alemtuzumab) Campath®), VEGF (eg, bevacizumab; Avastin®, EGFR (eg, cetuximab; Erbitux®), CD33 (eg, gemtuzumab; Mylotarg®), CD20 (eg, rituximab); Rituxan®, tositumomab; Bexxar®, ibritumomab; Zevalin®), HER-2 (eg, trastuzumab; Herceptin®), TNFα (eg, infliximab; Remicade®) Adalimumab: Humira®, etanercept; Embrel®, Golimumab; Simponi®), CD25 (Eg, daclizumab; Zenapax®, basiliximab; Simulect®), RSV (eg, palivizumab; Synagis®), IgE (eg, omalizumab; Xolair®), gpIIb / IIIa ( For example, abciximab; Reopro®), CD11a (eg, efalizumab; Raptiva®), α4 integrin (eg, natalizumab; Tysabri®), IL-6 receptor (eg, tocilizumab; Actemra) Registered trademark)), CD80 / 86 (eg, abatacept; Orencia®), CTLA-4 (eg, ipilimumab; YERVOY®), BLys (eg, belimumab; Benlysta®), IL- 17A (eg, secukinumab; Cosentyx®), PD-1 (eg, nivolumab; Opdivo®, pembrolizumab; KEY TRUDA (registered trademark)).
 以下、本発明を実施例により詳細に説明するが、特に言及しない限り、本発明は以下に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following unless otherwise specified.
 実施例は7つの異なるヒト抗IL-33モノクローナル抗体(A10-1C04、A23-1A05、A25-2C02、A25-3H04、A26-1F02、A00-0070、A00-0036)を用いている。各抗体の軽鎖及び重鎖のアミノ酸配列をコードするDNAをCMVプロモータの下流に挿入することにより、IgGを発現する哺乳細胞用発現ベクターを構築した。ヒト抗IL-33モノクローナル抗体の軽鎖のDNA配列はそれぞれ、配列表の配列番号38,40,42,44,46,48及び50を用い、重鎖のDNA配列はそれぞれ、配列表の配列番号39,41,43,45,47,49及び51を用いた。遺伝子導入試薬 NeoFection-293-1 (Astec)を使用して、上記発現ベクターをFreeStyle 293-F 細胞(Life Technologies)に導入した。遺伝子導入後5日間培養した後に培養上清を取得した。CHO細胞による安定発現株はpConPlusベクターとCHO K1SV細胞を用いたGSシステム(Lonza社)にて樹立した。CHO細胞安定発現株はWAVE Bioreactor SYSTEM 20/50 EHT(GE Healthcare社)を用いて0.3×106 cells/mLから培養を開始し、分泌されたIgGを含む培養上清を回収した。これらの培養上清を用いて以下の実施例を行なった。 The examples use seven different human anti-IL-33 monoclonal antibodies (A10-1C04, A23-1A05, A25-2C02, A25-3H04, A26-1F02, A00-0070, A00-0036). An expression vector for mammalian cells expressing IgG was constructed by inserting DNA encoding the light chain and heavy chain amino acid sequences of each antibody downstream of the CMV promoter. The DNA sequence of the light chain of the human anti-IL-33 monoclonal antibody is SEQ ID NO: 38, 40, 42, 44, 46, 48 and 50, respectively, and the heavy chain DNA sequence is respectively SEQ ID NO: 39, 41, 43, 45, 47, 49 and 51 were used. The expression vector was introduced into FreeStyle 293-F cells (Life Technologies) using the gene introduction reagent NeoFection 293-1 (Aspec). The culture supernatant was obtained after culturing for 5 days after gene introduction. A stable expression strain by CHO cells was established by a GS system (Lonza) using pConPlus vector and CHO K1SV cells. The CHO cell stable expression strain was cultured from 0.3 × 10 6 cells / mL using WAVE Bioreactor SYSTEM 20/50 EHT (GE Healthcare), and the culture supernatant containing secreted IgG was collected. The following examples were carried out using these culture supernatants.
実施例1:ProteinAクロマトグラフィーによる抗体精製
精製1(アルカリ洗浄工程なし):
  ProteinAカラム(HiTrap MabSelect SuRe, GE Healthcare)をAKTA explorer 100(GE Healthcare)に接続した。HiTrap MabSelect SuReにPBS (pH7.2)を送液しカラムを平衡化後、前記の各培養上清を添加した。カラムにPBS (pH7.2)を6 Column Volume(CV)(6 min)送液しカラムを洗浄後、100 mMグリシン塩酸バッファー(pH3.2)を10CV(10 min)送液し、カラム内に結合した抗体を溶出しクロマトグラムより目的のフラクションを回収した。尚、回収チューブにはpHが中性付近となるように予め1.0 Mのトリス塩酸バッファー(pH8.8)を添加しておいた。
Example 1: Antibody purification by Protein A chromatography Purification 1 (without alkaline washing step):
A Protein A column (HiTrap MabSelect SuRe, GE Healthcare) was connected to AKTA explorer 100 (GE Healthcare). PBS (pH 7.2) was sent to HiTrap MabSelect SuRe to equilibrate the column, and each culture supernatant was added. PBS (pH7.2) was fed to the column in 6 Column Volume (CV) (6 min) and the column was washed. Then, 100 mM glycine hydrochloride buffer (pH3.2) was sent in 10 CV (10 min), The bound antibody was eluted and the desired fraction was recovered from the chromatogram. Note that 1.0 M Tris-HCl buffer (pH 8.8) was previously added to the collection tube so that the pH was around neutral.
精製2(アルカリ洗浄工程あり):
  ProteinAカラム(HiTrap MabSelect SuRe)をAKTA explorer 100に接続した。HiTrap MabSelect SuReにPBS (pH7.2)を送液しカラムを平衡化後、前記の各培養上清を添加した。カラムにPBS (pH7.2)を6CV(6 min)送液しカラムを洗浄後、100 mM 炭酸ナトリウムバッファー(pH11.0)を6CV(6 min)送液した。カラムにPBS(pH7.2)を8CV(8 min)送液しカラムを洗浄後、100 mMグリシン塩酸バッファー(pH3.2)を10CV(10 min)送液し、カラム内に結合した抗体を溶出しクロマトグラムより目的のフラクションを回収した。尚、回収チューブにはpHが中性付近となるように予め1.0 Mのトリス塩酸バッファー(pH8.8)を添加しておいた。
Purification 2 (with alkali cleaning process):
A Protein A column (HiTrap MabSelect SuRe) was connected to AKTA explorer 100. PBS (pH 7.2) was sent to HiTrap MabSelect SuRe to equilibrate the column, and each culture supernatant was added. PBS (pH 7.2) was fed to the column at 6 CV (6 min), the column was washed, and then 100 mM sodium carbonate buffer (pH 11.0) was fed at 6 CV (6 min). PBS (pH 7.2) was sent to the column at 8 CV (8 min) and the column was washed, then 100 mM glycine hydrochloride buffer (pH 3.2) was sent at 10 CV (10 min) to elute the antibody bound in the column. The desired fraction was recovered from the chromatogram. Note that 1.0 M Tris-HCl buffer (pH 8.8) was previously added to the collection tube so that the pH was around neutral.
透析:
 前記の精製1または精製2により得られた抗体溶液を遠心分離しその上清を回収後、Slide-A-Lyzer G2 10,000 MWCO(Thermo Scientific)にて透析を行った。透析外液にはPBS(pH7.2)を用い、途中で透析外液を交換して2回実施した。透析後のサンプルを回収後、0.45 μm PES filter GD/X(GE Healthcare)にてろ過を行い、精製抗体を調製した。
Dialysis:
The antibody solution obtained by the purification 1 or the purification 2 was centrifuged and the supernatant was collected, followed by dialysis with Slide-A-Lyzer G2 10,000 MWCO (Thermo Scientific). PBS (pH 7.2) was used as the dialysis external solution, and the dialysis external solution was exchanged halfway. After collecting the dialyzed sample, it was filtered with 0.45 μm PES filter GD / X (GE Healthcare) to prepare a purified antibody.
濃度測定:
 培養上清中に含まれるヒト抗体濃度はBLI(Bio-Layer Interferometry)法にてBLItz(Pall forteBIO社製)を用いて測定した。
精製抗体の濃度はNanoDrop ND-1000 (Thermo Scientific)にて測定した。その時の吸光係数はE1% 280 = 13.7を使用し濃度値を算出した。
Concentration measurement:
The human antibody concentration contained in the culture supernatant was measured by BLItz (Bio-Layer Interferometry) method using BLItz (Pall forte BIO).
The concentration of the purified antibody was measured with NanoDrop ND-1000 (Thermo Scientific). The concentration value was calculated by using E 1% 280 = 13.7 as the extinction coefficient at that time.
 精製抗体の濃度測定結果及び、培養上清中の抗体濃度測定結果から5種類の各抗体のアルカリ洗浄工程の有無の精製条件での回収率を算出した。また、本回収率を用いてアルカリ洗浄工程の有無による回収率比(アルカリ洗浄工程ありの回収率 / アルカリ洗浄工程なしの回収率)も算出した。その結果、5抗体のうち4抗体においてProtein A精製工程でのアルカリ洗浄工程による回収率の改善効果が示された。特にA25-2C02においては回収率が約20倍に向上した。20抗体(22精製バッチ)の内、17抗体(19精製バッチ)で収率改善効果が認められ、さらに軽鎖としてκ鎖を有するtrastuzumabにおいても回収率が向上した。20抗体(22精製バッチ)の平均の回収率比は2.7倍であった。
Figure JPOXMLDOC01-appb-T000002
From the result of measuring the concentration of the purified antibody and the result of measuring the antibody concentration in the culture supernatant, the recovery rate under the purification conditions for the presence or absence of the alkaline washing step for each of the five types of antibodies was calculated. In addition, the recovery rate ratio (recovery rate with an alkali cleaning step / recovery rate without an alkali cleaning step) with or without an alkali cleaning step was also calculated using this recovery rate. As a result, 4 of the 5 antibodies showed an effect of improving the recovery rate by the alkali washing step in the Protein A purification step. In particular, in A25-2C02, the recovery rate was improved about 20 times. Of 20 antibodies (22 purified batches), 17 antibodies (19 purified batches) showed a yield improvement effect, and the recovery rate was also improved in trastuzumab having κ chains as light chains. The average recovery ratio of 20 antibodies (22 purified batches) was 2.7 times.
Figure JPOXMLDOC01-appb-T000002
 実施例2:フリーチオール含量の測定
 還元型グルタチオンを1 M EDTA を含む0.1 M リン酸ナトリウムバッファー(pH 6.0)で順次希釈し標準溶液を作製した。標準溶液950 μLあたり10 mM 4,4’ Dithiodipyridine(4DTP)を50 μL添加し室温で10分間静置した後、分光光度計で324 nmの吸光度を測定し検量線を作成した。
 精製抗体を1 mM EDTA を含む0.1 M リン酸ナトリウムバッファー(pH 6.0)で10倍希釈し測定用サンプルとした。標準溶液と同様に4DTPで発色し、検量線からフリーチオール量を算出した。得られたフリーチオール量と別途280nmの吸光度を測定して算出した抗体濃度から、抗体1 モルあたりのフリーチオール含量(モル比)を算出した。
Example 2: Measurement of free thiol content Reduced glutathione was sequentially diluted with 0.1 M sodium phosphate buffer (pH 6.0) containing 1 M EDTA to prepare a standard solution. After adding 50 μL of 10 mM 4,4 ′ Dithiodipyridine (4DTP) per 950 μL of the standard solution and allowing to stand at room temperature for 10 minutes, the absorbance at 324 nm was measured with a spectrophotometer to prepare a calibration curve.
The purified antibody was diluted 10-fold with 0.1 M sodium phosphate buffer (pH 6.0) containing 1 mM EDTA to obtain a measurement sample. The color was developed with 4DTP as in the standard solution, and the amount of free thiol was calculated from the calibration curve. The free thiol content (molar ratio) per mole of antibody was calculated from the amount of free thiol obtained and the antibody concentration calculated by separately measuring the absorbance at 280 nm.
 その結果、アルカリ洗浄工程を経ない前記精製1による精製方法で得られた抗体のフリーチオール含量は、アルカリ洗浄工程を経た前記精製2による精製方法で得られた抗体のフリーチオール含量より高いことが示された(表3)。試験に供された抗体の可変領域にはシステイン残基を含まないことから、検出されたフリーチオールは定常領域に存在するシステイン残基のチオール基であると考えられる。このようなフリーチオール基は反応性が高く分子間でジスルフィド結合を形成することにより凝集等を生じる恐れがあることから、アルカリ洗浄工程を加えることで凝集性などのリスクの低い抗体を得ることができた。アルカリ洗浄工程を行うことにより、フリーチオール含量が低くなる理由としては、抗体分子内で適切なジスルフィド結合を形成できなかったシステイン残基内のフリーチオール基が、アルカリ条件下で適切な分子内ジスルフィド結合を形成するためと考えられるが、この理論に束縛されることを意図するものではない。 As a result, the free thiol content of the antibody obtained by the purification method according to the purification 1 without the alkali washing step is higher than the free thiol content of the antibody obtained by the purification method according to the purification 2 after the alkaline washing step. (Table 3). Since the variable region of the antibody subjected to the test does not contain a cysteine residue, the detected free thiol is considered to be a thiol group of a cysteine residue present in the constant region. Since such a free thiol group is highly reactive and may cause aggregation by forming a disulfide bond between molecules, it is possible to obtain an antibody with low risk such as aggregation by adding an alkali washing step. did it. The reason why the free thiol content is reduced by performing the alkali washing step is that the free thiol group in the cysteine residue that could not form an appropriate disulfide bond in the antibody molecule is converted into an appropriate intramolecular disulfide under alkaline conditions. It is thought to form a bond, but is not intended to be bound by this theory.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
実施例3:凝集性の測定
 PBS (pH 7.2)に溶解した前記の精製抗体溶液を限外ろ過膜(Vivaspin turbo 50000 MWCO 15 mL, ザルトリウス)を用いて数10 mg/mLになるように濃縮した。抗体の濃度は、アルカリ洗浄工程を行なった前記精製2によるA00-0070では45mg/mL、アルカリ洗浄処理を行なわなかった前記精製1によるA00-0070では21mg/mL、アルカリ洗浄工程を行なった前記精製2によるA00-0036では47mg/mL、アルカリ洗浄工程を行なわなかった前記精製1によるA00-0036では44mg/mLとなった。その濃縮溶液を動的光散乱測定装置(Nanotrac UPA UT151 日機装)を用いて粒子径測定を実施した。また、その凝集体形成が可逆的なものかどうかを確かめるため、PBS (pH 7.2)で順次2倍希釈したサンプルの粒子径を測定した。図1に示すように、アルカリ洗浄工程を経ないA00-0070、A00-0036は凝集体が見られ、希釈しても戻らない不可逆な凝集体を形成することが分かった。一方、アルカリ洗浄工程を経たA00-0070、A00-0036は凝集体の形成がほとんどみられないことが示された。このことから、凝集体を形成する抗体でもアルカリ洗浄工程を用いることで、凝集しない抗体を得ることが可能であった。
Example 3: Measurement of aggregation property The purified antibody solution dissolved in PBS (pH 7.2) was concentrated to several tens mg / mL using an ultrafiltration membrane (Vivaspin turbo 50000 MWCO 15 mL, Sartorius). . The concentration of the antibody was 45 mg / mL in A00-0070 by Purification 2 with an alkali washing step, 21 mg / mL in A00-0070 by Purification 1 without an alkali washing treatment, and the purification with an alkali washing step. In A00-0036 according to No. 2, the concentration was 47 mg / mL, and in A00-0036 according to Purification 1 without the alkali washing step, it was 44 mg / mL. The concentrated solution was subjected to particle size measurement using a dynamic light scattering measurement device (Nanotrac UPA UT151 Nikkiso). In addition, in order to confirm whether the aggregate formation was reversible, the particle size of a sample diluted two-fold sequentially with PBS (pH 7.2) was measured. As shown in FIG. 1, it was found that A00-0070 and A00-0036 that did not undergo the alkali washing step formed aggregates and formed irreversible aggregates that did not return even after dilution. On the other hand, it was shown that A00-0070 and A00-0036 that had undergone the alkali washing step hardly formed aggregates. From this, it was possible to obtain an antibody that does not aggregate by using an alkaline washing step even for an antibody that forms an aggregate.
実施例4: 自己会合性の測定
 拡散係数(粒子径と反比例)の濃度依存性を表す相互作用パラメータは、抗体などのタンパク質高濃度製剤の処方設計にも利用される重要な指標である。相互作用パラメータの値は-12.4mL/gより高い値であれば斥力的な相互作用でコロイド安定性に優れ、自己会合性が低いものであると報告されている(Saito et al.,Pharm.Res., 2013.Vol.30 p1263)。
Example 4: Measurement of self-association The interaction parameter representing the concentration dependence of the diffusion coefficient (inversely proportional to the particle diameter) is an important index that is also used in the formulation design of high-concentration protein preparations such as antibodies. If the value of the interaction parameter is higher than −12.4 mL / g, it is reported that it is a repulsive interaction and excellent in colloidal stability and low in self-association (Saito et al., Pharm. Res., 2013. Vol.30 p1263).
 PBS (pH 7.2)に溶解した前記精製抗体溶液を限外ろ過膜で数10 mg/mLになるように濃縮し、同溶媒で順次2倍希釈したサンプルの粒子径測定を動的光散乱測定装置(Nanotrac UPA UT151 日機装)を用いて行った。得られた粒子径から拡散係数を以下のStokes-Einsteinの式で算出した。
Figure JPOXMLDOC01-appb-M000004
 {式中、Dは拡散係数(cm2/sec)、KBはボルツマン定数、Tは熱力学温度(℃)、πは円周率、ηは希釈粘度P(poise)、dは粒径(cm)である。}
 拡散係数の濃度依存性をプロットし、以下の計算式でフィッティングすることで相互作用パラメータを求めた。
Figure JPOXMLDOC01-appb-M000005
 この式からフィッティング直線の傾きである相互作用パラメータkDを得た。
The purified antibody solution dissolved in PBS (pH 7.2) is concentrated to a few tens mg / mL with an ultrafiltration membrane, and the particle size measurement of a sample diluted twice with the same solvent is performed. (Nanotrac UPA UT151 Nikkiso). The diffusion coefficient was calculated from the obtained particle diameter by the following Stokes-Einstein equation.
Figure JPOXMLDOC01-appb-M000004
{Where D is the diffusion coefficient (cm 2 / sec), K B is the Boltzmann constant, T is the thermodynamic temperature (° C.), π is the circumference, η is the dilution viscosity P (poise), d is the particle size ( cm). }
The concentration dependence of the diffusion coefficient was plotted, and the interaction parameter was obtained by fitting with the following calculation formula.
Figure JPOXMLDOC01-appb-M000005
From this equation, the interaction parameter k D which is the slope of the fitting line was obtained.
 図2に示すように、アルカリ洗浄工程を経ない前記精製1によるA23-1A05、A26-1F02、A25-3H04の相互作用パラメータは低く、引力的(自己会合的)な相互作用をしている。一方で、アルカリ洗浄工程を経た前記精製2によるA23-1A05、A26-1F02、A25-3H04の相互作用パラメータは高く、自己会合性が低減されていた。アルカリ洗浄処理工程を用いることで、自己会合性が低減された抗体を得ることが可能であった。 As shown in FIG. 2, the interaction parameters of A23-1A05, A26-1F02, and A25-3H04 by the purification 1 without passing through the alkali washing step are low, and they have an attractive (self-associative) interaction. On the other hand, the interaction parameters of A23-1A05, A26-1F02, and A25-3H04 by the purification 2 after the alkali washing step were high, and the self-association property was reduced. By using an alkali washing treatment step, it was possible to obtain an antibody with reduced self-association properties.
実施例5: 保存安定性の向上
 pH 6.3クエン酸バッファー(50 mM クエン酸, 150 mM NaCl)に溶解している約10 mg/mLのA10-1C04抗体を4℃もしくは40℃で3日間保存した。図3に示すように、動的光散乱法(Zetasizer μV, マルバーン)で粒子径測定を行ったところ、アルカリ洗浄工程を経ない前記精製1によるA10-1C04抗体では40℃で3日間保存した際、凝集体が見られたのに対し、アルカリ洗浄工程を経た前記精製2によるA10-1C04抗体では凝集形成は見られなかった。アルカリ洗浄工程により、保存安定性を改善することが可能であった。
Example 5: Improving storage stability About 10 mg / mL A10-1C04 antibody dissolved in pH 6.3 citrate buffer (50 mM citrate, 150 mM NaCl) was stored at 4 ° C or 40 ° C for 3 days . As shown in FIG. 3, when the particle size was measured by a dynamic light scattering method (Zetasizer μV, Malvern), when the A10-1C04 antibody purified by the above-mentioned purification 1 without being subjected to an alkali washing step was stored at 40 ° C. for 3 days. In contrast, aggregates were observed, whereas no aggregate formation was observed with the A10-1C04 antibody obtained by the purification 2 after the alkali washing step. The storage stability could be improved by the alkali washing step.
実施例6: 収率のpH依存性
 アルカリ洗浄工程による収率改善効果のpH依存性を確認するために、7種のpHの異なる洗浄液を用いて精製を実施した。ProteinAカラム(ToyoScreen AF-rProtein A HC-650F)をAKTA explorer 100に接続した。ProteinAカラムに100 mM KH2PO4 150 mM NaCl(pH 7.2)溶液を送液しカラムを平衡化後、A10-1C04抗体を発現させた培養上清を添加した。カラムに100 mM KH2PO4 150 mM NaCl(pH 7.2)溶液を6CV(6 min)送液しカラムを洗浄後、100 mM KH2PO4 150 mM NaCl(pH 7.2)の中性洗浄液又は各種アルカリ洗浄液を6CV(6 min)送液した。用いたアルカリ洗浄液は100 mM TrisHCl(pH9.1)、100 mM Gly-NaOH(pH9.5)、100 mM Na2CO3(pH10.1)、100 mM Na2CO3(pH10.6)、100 mM Na2CO3(pH11.0)、100 mM Na2HPO4(pH11.5)の溶液である。その後、カラムに100 mM KH2PO4 150 mM NaCl(pH 7.2)溶液を6CV(6 min)送液しカラムを洗浄後、100 mMグリシン塩酸バッファー(pH3.2)を8CV(8 min)送液し、カラム内に結合した抗体を溶出しクロマトグラムより目的のフラクションを回収した。尚、回収チューブにはpHが中性付近となるように予め1.0 Mのトリス塩酸バッファー(pH8.8)を添加しておいた。精製抗体の濃度はNanoDrop ND-1000 (Thermo Scientific)にて測定した。
Example 6: pH Dependence of Yield In order to confirm the pH dependency of the yield improvement effect by the alkali washing step, purification was carried out using seven kinds of washing solutions having different pHs. A Protein A column (ToyoScreen AF-rProtein A HC-650F) was connected to AKTA explorer 100. A 100 mM KH 2 PO 4 150 mM NaCl (pH 7.2) solution was fed to the Protein A column to equilibrate the column, and then the culture supernatant in which the A10-1C04 antibody was expressed was added. After feeding the column with 100 mM KH 2 PO 4 150 mM NaCl (pH 7.2) solution at 6 CV (6 min) and washing the column, the column is washed with 100 mM KH 2 PO 4 150 mM NaCl (pH 7.2) neutral washing solution or various alkalis. The cleaning solution was fed at 6 CV (6 min). The alkaline washing solution used was 100 mM TrisHCl (pH 9.1), 100 mM Gly-NaOH (pH 9.5), 100 mM Na 2 CO 3 (pH 10.1), 100 mM Na 2 CO 3 (pH 10.6), 100 It is a solution of mM Na 2 CO 3 (pH 11.0), 100 mM Na 2 HPO 4 (pH 11.5). Then, 100 mM KH 2 PO 4 150 mM NaCl (pH 7.2) solution was sent to the column at 6 CV (6 min), the column was washed, and 100 mM glycine hydrochloride buffer (pH 3.2) was sent at 8 CV (8 min). The antibody bound in the column was eluted, and the target fraction was recovered from the chromatogram. Note that 1.0 M Tris-HCl buffer (pH 8.8) was previously added to the collection tube so that the pH was around neutral. The concentration of the purified antibody was measured with NanoDrop ND-1000 (Thermo Scientific).
 培養上清から前記のpHの異なる各種洗浄液を用いてA10-1C04抗体を精製した時の抗体収量を図4に示した。その結果、pH10.1以上の洗浄液を用いた場合に収率改善効果が認められた。 FIG. 4 shows the antibody yield when the A10-1C04 antibody was purified from the culture supernatant using the various washing solutions having different pHs. As a result, a yield improving effect was observed when a cleaning solution having a pH of 10.1 or higher was used.
実施例7: 不純物除去効果のpH依存性
 ProteinAカラム(MabSelect SuRe)をAKTA explorer 100に接続した。ProteinAカラムにPBS(pH 7.2)を送液しカラムを平衡化後、A23-1A05抗体を発現させた培養上清を添加し、A23-1A05抗体を捕捉した。カラムにPBS(pH 7.2)を8CV(8 min)送液しカラムを洗浄後、100 mM KH2PO4 150 mM NaCl(pH 7.2)の中性洗浄液又は6種のアルカリ洗浄液を6CV(6 min)送液した。用いたアルカリ洗浄液は100 mM TrisHCl(pH 9.0)、100 mM Na2CO3(pH 9.5)、100 mM Na2CO3(pH 10.0)、100 mM Na2CO3(pH 10.6)、100 mM Na2CO3(pH 11.0)、100 mM K2HPO4(pH 11.5)の溶液である。その後、カラムにPBS(pH 7.2)を8CV(8 min)送液しカラムを洗浄後、100 mMグリシン塩酸バッファー(pH3.2)を10CV(10 min)送液し、カラム内に結合した抗体を溶出しクロマトグラムより目的のフラクションを回収した。尚、回収チューブにはpHが中性付近となるように予め1.0 Mのトリス塩酸バッファー(pH8.8)を添加しておいた。
Example 7: pH Dependence of Impurity Removal Effect A Protein A column (MabSelect SuRe) was connected to AKTA explorer 100. PBS (pH 7.2) was fed to the Protein A column to equilibrate the column, and then the culture supernatant expressing the A23-1A05 antibody was added to capture the A23-1A05 antibody. PBS (pH 7.2) was sent to the column at 8 CV (8 min), and the column was washed. Then, 100 mM KH 2 PO 4 150 mM NaCl (pH 7.2) neutral washing solution or 6 types of alkaline washing solutions were used at 6 CV (6 min). Liquid was sent. The alkaline cleaning solution used was 100 mM TrisHCl (pH 9.0), 100 mM Na 2 CO 3 (pH 9.5), 100 mM Na 2 CO 3 (pH 10.0), 100 mM Na 2 CO 3 (pH 10.6), 100 mM Na 2 It is a solution of CO 3 (pH 11.0), 100 mM K 2 HPO 4 (pH 11.5). Then, PBS (pH 7.2) was sent to the column at 8 CV (8 min) and the column was washed. Then, 100 mM glycine hydrochloride buffer (pH 3.2) was sent at 10 CV (10 min), and the antibody bound to the column was removed. The desired fraction was recovered from the chromatogram after elution. Note that 1.0 M Tris-HCl buffer (pH 8.8) was previously added to the collection tube so that the pH was around neutral.
 中性洗浄液又はアルカリ溶液で洗浄した画分についてSDS-PAGE(Nupage 4-12% Bris-Tris gels(Life Technologies社))をメーカーの添付文書に準じて泳動した結果を図5に示した。その結果、pH9.5以上で不純物が見られた。pH11.5では目的タンパク質である抗体分子も洗浄されることが分かった。各種pHの洗浄液で洗浄した際のカラムを通過した洗浄液の吸光度の経時的変化を図6に示した。pH 7.2及び9の洗浄液では吸光度の上昇がみられず、洗浄効果が見られなかったが、pH9.5の洗浄液では不純物と思われる吸光度のピークが認められ、pH 10以上の洗浄液においては、より高い吸光度のピークが見られ、洗浄効果が確認された。 Fig. 5 shows the result of electrophoresis of SDS-PAGE (Nupage 4-12% Bris-Tris gels (Life Technologies)) according to the manufacturer's package insert for the fraction washed with a neutral washing solution or an alkaline solution. As a result, impurities were observed at pH 9.5 or higher. It was found that the antibody molecule, which is the target protein, was also washed at pH 11.5. FIG. 6 shows the change over time in the absorbance of the washing solution that passed through the column when washed with washing solutions of various pHs. No increase in absorbance was observed in pH 7.2 and 9 cleaning solutions, and no cleaning effect was observed.In pH 9.5 cleaning solutions, an absorbance peak that appears to be an impurity was observed. A high absorbance peak was observed, confirming the cleaning effect.
 上記のとおり各洗浄液で洗浄後、溶出された目的タンパク質である抗体のフリーチオール含量を実施例2と同様にして測定した。その結果、pH 9以上のアルカリ洗浄液による洗浄工程を行うことでフリーチオール含量が低減することが示された(図7)。 After washing with each washing solution as described above, the free thiol content of the antibody as the eluted target protein was measured in the same manner as in Example 2. As a result, it was shown that the free thiol content was reduced by performing a washing step with an alkaline washing solution having a pH of 9 or higher (FIG. 7).
実施例8: アルカリ溶液での洗浄時間の影響
 アルカリ洗浄工程による収率改善効果に及ぼす洗浄時間の影響を調べるため、複数の送液時間の条件で精製を実施した。ProteinAカラム(ToyoScreen AF-rProtein A HC-650F)をAKTA explorer 100に接続した。ProteinAカラムに100 mM KH2PO4 150 mM NaCl(pH 7.2)溶液を送液しカラムを平衡化後、A25-3H04抗体を発現させた培養上清を添加した。カラムに100 mM KH2PO4 150 mM NaCl(pH 7.2)溶液を6CV(6 min)送液しカラムを洗浄後、各種アルカリ洗浄液で洗浄を行った。用いた洗浄液は100 mM TrisHCl(pH 8.0)、100 mM TrisHCl(pH 9.0)、100 mM Na2CO3(pH 10.0)、100 mM Na2CO3(pH 11.0)の4種類であり、1,3,6,12,18,24,48CVの条件でアルカリ洗浄液による洗浄工程を実施した。その後、カラムに100 mM KH2PO4 150 mM NaCl(pH 7.2)溶液を6CV(6 min)送液しカラムを洗浄した。次に、100 mMグリシン塩酸バッファー(pH3.2)を8CV(8 min)送液し、カラム内に結合した抗体を溶出しクロマトグラムより目的のフラクションを回収した。尚、回収チューブにはpHが中性付近となるように予め1.0 Mのトリス塩酸バッファー(pH8.8)を添加しておいた。精製抗体の濃度はNanoDrop ND-1000 (Thermo Scientific)にて測定した。
Example 8: Influence of washing time with alkaline solution In order to investigate the influence of washing time on the yield improvement effect by the alkali washing step, purification was carried out under conditions of a plurality of liquid feeding times. A Protein A column (ToyoScreen AF-rProtein A HC-650F) was connected to AKTA explorer 100. A 100 mM KH 2 PO 4 150 mM NaCl (pH 7.2) solution was fed to the Protein A column to equilibrate the column, and then the culture supernatant in which the A25-3H04 antibody was expressed was added. A 100 mM KH 2 PO 4 150 mM NaCl (pH 7.2) solution was fed to the column at 6 CV (6 min) to wash the column, and then washed with various alkaline washing solutions. There are 4 types of washing solutions: 100 mM TrisHCl (pH 8.0), 100 mM TrisHCl (pH 9.0), 100 mM Na 2 CO 3 (pH 10.0), and 100 mM Na 2 CO 3 (pH 11.0). , 6,12,18,24,48CV The cleaning process with alkaline cleaning solution was carried out. Thereafter, a 100 mM KH 2 PO 4 150 mM NaCl (pH 7.2) solution was fed to the column at 6 CV (6 min) to wash the column. Next, 100 mM glycine hydrochloride buffer (pH 3.2) was fed at 8 CV (8 min), the antibody bound in the column was eluted, and the desired fraction was recovered from the chromatogram. Note that 1.0 M Tris-HCl buffer (pH 8.8) was previously added to the collection tube so that the pH was around neutral. The concentration of the purified antibody was measured with NanoDrop ND-1000 (Thermo Scientific).
 アルカリ洗浄の処理時間の影響を調べるために、1CV(1 min)、3CV(3 min)、6CV(6 min)、12CV(12 min)、18CV(18 min)、24CV(24 min)、48CV(48 min)の上記アルカリ洗浄液(pH11)で洗浄後にA25-3H04抗体を溶出した。抗体の収率を計算した結果、1CV(1 min)でもアルカリ洗浄工程を組み込むことによる収率改善効果が認められた。 To investigate the effect of alkali cleaning time, 1CV (1 min), 3CV (3 min), 6CV (6 min), 12CV (12 min), 18CV (18 min), 24CV (24 min), 48CV ( The A25-3H04 antibody was eluted after washing with the alkaline washing solution (pH 11) at 48 μmin). As a result of calculating the yield of the antibody, the yield improvement effect by incorporating the alkali washing step was recognized even at 1 CV (1 min).
実施例9: 宿主細胞由来タンパク質
精製3(アルカリ洗浄工程なし):
 ProteinAカラム(ToyoScreen AF-rProtein A -650F, TOSOH)をAKTA explorer 100(GE Healthcare)に接続した。ProteinAカラムに20mM リン酸、20mM クエン酸、20mM Trisバッファー(PCTバッファー)(pH7.0)を送液しカラムを平衡化後、A10-1C04抗体の培養上清を添加した。カラムにPCTバッファー(pH7.0)を2CV送液しカラムを洗浄後、PCTバッファー(pH8.5)を6CV送液して洗浄を行った。続いて、PCTバッファー(pH5.8)を9CV送液した。最後に、PCTバッファー(pH2.7)を10CV(10 min)送液し、カラム内に結合した抗体を溶出しクロマトグラムより目的のフラクションを回収した。
Example 9: Host cell derived protein Purification 3 (without alkaline washing step):
A Protein A column (ToyoScreen AF-rProtein A-650F, TOSOH) was connected to AKTA explorer 100 (GE Healthcare). 20 mM phosphoric acid, 20 mM citric acid, and 20 mM Tris buffer (PCT buffer) (pH 7.0) were fed to the Protein A column to equilibrate the column, and then the culture supernatant of the A10-1C04 antibody was added. The column was washed with 2 CV of PCT buffer (pH 7.0) and the column was washed, and then washed with 6 CV of PCT buffer (pH 8.5). Subsequently, 9 CV of PCT buffer (pH 5.8) was fed. Finally, PCT buffer (pH 2.7) was fed at 10 CV (10 min), the antibody bound in the column was eluted, and the desired fraction was recovered from the chromatogram.
精製4(アルカリ洗浄工程あり):
 ProteinAカラム(ToyoScreen AF-rProtein A -650F, TOSOH)をAKTA explorer 100(GE Healthcare)に接続した。ProteinAカラムにPCTバッファー(pH7.0)を送液しカラムを平衡化後、A10-1C04抗体の培養上清を添加した。カラムにPCTバッファー(pH7.0)を2CV送液しカラムを洗浄後、アルカリ洗浄液100 mM Na2CO3バッファー(pH11)を6CV送液して洗浄を行った。続いて、PCTバッファー(pH5.8)を9CV送液した。最後に、PCTバッファー(pH2.7)を10CV(10 min)送液し、カラム内に結合した抗体を溶出しクロマトグラムより目的のフラクションを回収した。
Purification 4 (with alkali cleaning process):
A Protein A column (ToyoScreen AF-rProtein A-650F, TOSOH) was connected to AKTA explorer 100 (GE Healthcare). PCT buffer (pH 7.0) was fed to the Protein A column to equilibrate the column, and then the culture supernatant of the A10-1C04 antibody was added. The column was washed with 2 CV of PCT buffer (pH 7.0) and washed with an alkaline washing solution of 100 mM Na 2 CO 3 buffer (pH 11). Subsequently, 9 CV of PCT buffer (pH 5.8) was fed. Finally, PCT buffer (pH 2.7) was fed at 10 CV (10 min), the antibody bound in the column was eluted, and the desired fraction was recovered from the chromatogram.
 精製3及び精製4の方法で精製されたA10-1C04抗体溶液中に含まれる宿主細胞由来タンパク質を、Immunoenzymetric Assay for the Measurement of CHO Host Cell Proteinsキット(CYGNUS TECHNOLOGIES社)を用いて添付文書に従い測定した。出発材料中には373443 ppm含まれていたホストセルプロテインは、精製3(アルカリ洗浄工程なし)で精製したサンプル中には6978 ppmに減少したのに対し、精製4(アルカリ洗浄工程あり)で精製したサンプル中には1691 ppmであり、アルカリ洗浄工程を用いることで宿主細胞由来タンパク質の除去効果が確認された。 The host cell-derived protein contained in the A10-1C04 antibody solution purified by the methods of purification 3 and 4 was measured according to the package insert using an Immunoenzymetric Assay-for-the-Measurement-of-CHO-Host-Cell Protein Protein kit (CYGNUS-TECHNOLOGIES). . Host cell protein, which contained 373443 ppm in the starting material, was reduced to 6978 ppm in the sample purified by purification 3 (without alkali washing step), whereas it was purified by purification 4 (with alkali washing step). In the sample, the concentration was 1691 ppm, and the removal effect of the host cell-derived protein was confirmed by using an alkaline washing step.
実施例10:Fc融合タンパク質
 Fc融合タンパク質ST2-Fcは、ヒトST2タンパク質の細胞外領域とヒト抗体定常領域(Fc)の融合タンパク質である。当該融合タンパク質のアミノ酸配列をコードするDNA(配列表の配列番号52)をpXC-17.4ベクター(Lonza社)に挿入し、CHOK1SV GS―KO細胞を用いたGS XceedTM Gene Expression System(Lonza社)を添付文書に従い用いることで、目的のCHO安定発現株を樹立した。CHO安定発現株を、三角フラスコを用いて0.3×10 cells/mLから培養を開始し、分泌されたST2-Fcを含む培養上清を回収した。得られたST2-Fcを含む培養上清125mLをそれぞれ実施例1の精製1(アルカリ洗浄工程なし)、精製2(アルカリ洗浄工程あり)の方法で精製を実施した。この精製1または精製2により得られたST2-Fc溶液を回収後、Slide-A-Lyzer G2 10,000 MWCO(Thermo Scientific)にて透析を行った。透析外液にはPBS(pH7.2)を用い、途中で透析外液を交換して3回実施した。その後、濃度測定を行ったところ、収量は精製1(アルカリ洗浄工程なし)では46.1mg、精製2(アルカリ洗浄工程あり)では48.4mgであり、約5%の収量改善が見られた。
Example 10: Fc fusion protein Fc fusion protein ST2-Fc is a fusion protein of the extracellular region of human ST2 protein and the human antibody constant region (Fc). DNA encoding the amino acid sequence of the fusion protein (SEQ ID NO: 52 in the sequence listing) was inserted into pXC-17.4 vector (Lonza) and GS Xceed ™ Gene Expression System (Lonza) using CHOK1SV GS-KO cells. Was used in accordance with the package insert to establish the target CHO stable expression strain. The CHO stable expression strain was cultured from 0.3 × 10 6 cells / mL using an Erlenmeyer flask, and the culture supernatant containing secreted ST2-Fc was recovered. 125 mL of the obtained culture supernatant containing ST2-Fc was purified by the methods of Purification 1 (without alkali washing step) and Purification 2 (with alkali washing step) in Example 1, respectively. The ST2-Fc solution obtained by purification 1 or purification 2 was recovered, and then dialyzed against Slide-A-Lyzer G2 10,000 MWCO (Thermo Scientific). PBS (pH 7.2) was used as the external dialysis solution, and the dialysis external solution was changed halfway. Thereafter, when the concentration was measured, the yield was 46.1 mg in the purification 1 (without the alkali washing step) and 48.4 mg in the purification 2 (with the alkali washing step), and an improvement of about 5% was observed.
 精製したST2-Fc溶液(1.5mg/mL)の粒子径測定を動的光散乱測定装置(Nanotrac UPA UT151 日機装)を用いて実施した。図8に示すように、精製2(アルカリ洗浄工程あり)で取得したサンプルは精製1(アルカリ洗浄工程なし)で得られたサンプルよりも含まれる凝集体の量が少なかった。 The particle size of the purified ST2-Fc solution (1.5 mg / mL) was measured using a dynamic light scattering measurement device (Nanotrac UPA UT151 Nikkiso). As shown in FIG. 8, the sample obtained in purification 2 (with an alkali washing step) contained less aggregate than the sample obtained in purification 1 (without an alkali washing step).
実施例11:アルカリ洗浄がタンパク質に及ぼす影響
 タンパク質をアルカリ条件で洗浄することで、活性の失活や化学的な変化などの懸念が考えられる。そこで、抗体の生物活性、Fcγ受容体への結合、ペプチドマップについて、アルカリ洗浄工程を含むプロセスで精製されたサンプルとアルカリ洗浄工程を含まないプロセスで精製されたサンプルを比較した。
Example 11: Effect of alkaline washing on protein By washing protein under alkaline conditions, there may be concerns such as deactivation of activity and chemical changes. Therefore, for the biological activity of the antibody, the binding to the Fcγ receptor, and the peptide map, the sample purified by the process including the alkaline washing step and the sample purified by the process not including the alkaline washing step were compared.
実施例11-1:抗体の生物活性
 ヒト臍帯静脈血管内皮細胞 (HUVEC)をEGM-2培地(LONZA社)に懸濁させ、96ウェルコラーゲンコートマイクロプレート(AGCテクノグラス,4860-010)に播種した(1 x 104細胞/100 μL/ウェル)。約24時間後、培地を吸引除去し、polymyxin B(終濃度10 μg/mL)とhIL-33(ATGen社)(終濃度0~100 ng/mL)を添加した抗IL-33抗体(終濃度0~100 μg/mL)を添加し(150 μL/ウェル)、37℃にて約24時間インキュベートした。培養上清を採取し、培地中のサイトカインレベルをHuman IL-6 ELISA Kitキット(R&D systems)を用いて測定した。実施例1の精製1(アルカリ洗浄工程なし)及び精製2(アルカリ洗浄工程あり)の方法で精製された複数の抗体(A10-1C04、A23-1A05、A25-3H04を含む8抗体)について、IL-6産生阻害作用の違いを検討したが、両者の中和能に差はなく、アルカリ洗浄の実施による機能喪失は見られなかった。
Example 11-1: Bioactivity of antibodies Human umbilical vein endothelial cells (HUVEC) are suspended in EGM-2 medium (LONZA) and seeded in a 96-well collagen-coated microplate (AGC Technoglass, 4860-010) (1 × 10 4 cells / 100 μL / well). Approximately 24 hours later, the medium was removed by suction, and anti-IL-33 antibody (final concentration) containing polymyxin B (final concentration 10 μg / mL) and hIL-33 (ATGen) (final concentration 0-100 ng / mL) was added. 0-100 μg / mL) was added (150 μL / well) and incubated at 37 ° C. for about 24 hours. Culture supernatants were collected and cytokine levels in the medium were measured using a Human IL-6 ELISA Kit kit (R & D systems). A plurality of antibodies (8 antibodies including A10-1C04, A23-1A05, and A25-3H04) purified by the method of Purification 1 (without alkali washing step) and Purification 2 (with alkali washing step) of Example 1 -6 production inhibitory effect was examined, but there was no difference in the neutralizing ability between the two, and no functional loss was observed due to the alkaline washing.
実施例11-2: Fcγ受容体への結合
 実施例1の精製1(アルカリ洗浄工程なし)及び精製2(アルカリ洗浄工程あり)の方法で精製された抗IL-33抗体(A23-1A05、A10-1C04、A26-1F02、A25-3H04)とFc受容体との相互作用をBiacore T200(GE healthcare社)を用いて解析した。Fc受容体Recombinant Human FcγRIIIA(R&D Systems, 4325-FC-050)を、抗His抗体を用いてセンサーチップに固定化した。抗His抗体はHis capture kit(GE healthcare,BR-1003-51)のマニュアルに準じて固定化した。HBS-EP+(pH 7.4)溶液(GE healthcare社)を用いて0.5 μg/mLに調製したRecombinant Human FcγRIIIA溶液を5 μL/minにて30 sec添加した。次に、各種抗体溶液を低濃度サンプルから順に30 μL/minにて60 sec添加した(Single-cycle法)。その後、HBS-EP+(pH 7.4)溶液を30 μL/minにて600 sec添加してアナライトを解離させた。 付属ソフトBIAevaluation softwareでTwo state reactionモデルを用いて解析した。解離定数(KD)、結合パラメータを算出したところ、アルカリ洗浄処理の有無によるHuman FcγRIIIAに対する解離定数KD及び結合パラメータの違いは見られず、アルカリ洗浄実施によるFc領域のFcγ受容体への結合する機能の喪失は認められなかった。
Example 11-2: Binding to Fcγ receptor Anti-IL-33 antibodies (A23-1A05, A10) purified by the methods of purification 1 (without alkali washing step) and purification 2 (with alkali washing step) of Example 1 -1C04, A26-1F02, A25-3H04) and Fc receptors were analyzed using Biacore T200 (GE healthcare). Fc receptor Recombinant Human FcγRIIIA (R & D Systems, 4325-FC-050) was immobilized on a sensor chip using an anti-His antibody. Anti-His antibody was immobilized according to the manual of His capture kit (GE healthcare, BR-1003-51). A Recombinant Human FcγRIIIA solution prepared to 0.5 μg / mL using HBS-EP + (pH 7.4) solution (GE healthcare) was added at 5 μL / min for 30 sec. Next, various antibody solutions were added in order from a low-concentration sample at 30 μL / min for 60 sec (Single-cycle method). Thereafter, the HBS-EP + (pH 7.4) solution was added at 30 μL / min for 600 sec to dissociate the analyte. The analysis was performed using the two state reaction model with the attached software BIAevaluation software. Dissociation constant (KD), was calculated binding parameters, differences in the dissociation constants K D and binding parameters for Human FcyRIIIA with and without alkali cleaning treatment is not observed, that binds to Fcγ receptors Fc region by alkali washing performed There was no loss of function.
実施例11-3: ペプチドマップ
 実施例1の精製1(アルカリ洗浄工程なし)及び精製2(アルカリ洗浄工程あり)の方法で精製された抗体(A23-1A05、A10-1C04、A26-1F02、A25-3H04)をそれぞれDTTで還元し、ヨードアセトアミドでアルキル化した後に、トリプシンで酵素消化した。液体クロマトグラフィー装置Acuity(Waters社)にC18カラムACQUITY UPLC Peptide BEH C18 Column, 300Å, 1.7 μm, 2.1 mm X 150 mm(Waters社)を接続した。移動相A:0.1%ギ酸/水、移動相B:0.1%ギ酸/アセトニトリルでグラジエントは移動相B濃度 1→40%/60minとなるように流量0.2 mL/minで送液し、トリプシン消化されたペプチド断片をC18カラムで分析した。得られたUVクロマトグラムを比較した結果、精製1(アルカリ洗浄工程なし)及び精製2(アルカリ洗浄工程あり)で精製されたサンプルのペプチドマップパターンは同等であり、アルカリ洗浄に伴う化学的変化は認められなかった。
Example 11-3: Peptide map Antibodies purified by the methods of Purification 1 (without alkali washing step) and Purification 2 (with alkali washing step) of Example 1 (A23-1A05, A10-1C04, A26-1F02, A25) -3H04) were each reduced with DTT, alkylated with iodoacetamide, and then enzymatically digested with trypsin. A C18 column ACQUITY UPLC Peptide BEH C18 Column, 300 mm, 1.7 μm, 2.1 mm × 150 mm (Waters) was connected to a liquid chromatography apparatus Acuity (Waters). Mobile phase A: 0.1% formic acid / water, mobile phase B: 0.1% formic acid / acetonitrile, gradient was sent at a flow rate of 0.2 mL / min so that the concentration of mobile phase B was 1 → 40% / 60 min, and digested with trypsin. Peptide fragments were analyzed on a C18 column. As a result of comparing the obtained UV chromatograms, the peptide map patterns of the samples purified in purification 1 (without alkali washing step) and purification 2 (with alkali washing step) are equivalent, and the chemical changes associated with alkali washing are I was not able to admit.
 本発明のFc領域を有するタンパク質の精製方法は、従来の方法と比較してFc領域を有するタンパク質のフリーチオール含量、自己会合性、凝集性を低減することができ、収率や保存安定性を向上することができる。本発明により、物性の優れたFc領域を有するタンパク質を、高純度で、安価に製造することができる。また、本発明により製造されるヒト抗IL-33モノクローナル抗体は、IL-33関連疾患の診断、治療、予防または軽減用の医薬組成物として用いることができる。 The method for purifying a protein having an Fc region of the present invention can reduce the free thiol content, self-association property and aggregation property of a protein having an Fc region as compared with conventional methods, and can improve the yield and storage stability. Can be improved. According to the present invention, a protein having an Fc region having excellent physical properties can be produced with high purity at low cost. The human anti-IL-33 monoclonal antibody produced by the present invention can be used as a pharmaceutical composition for diagnosis, treatment, prevention or alleviation of IL-33-related diseases.

Claims (29)

  1.  Fc領域を有するタンパク質を精製する方法であって、
    (a)Fc領域を有するタンパク質を含む溶液をアフィニティークロマトグラフィー用担体に接触させ、Fc領域を有するタンパク質をアフィニティークロマトグラフィー用担体に結合させる工程、
    (b)10.1から12の範囲内のpH値を有するアルカリ洗浄液で洗浄する工程、および
    (c)Fc領域を有するタンパク質を溶出する工程、
    を含む、Fc領域を有するタンパク質を精製する方法。
    A method for purifying a protein having an Fc region,
    (a) contacting a solution containing a protein having an Fc region with an affinity chromatography support, and binding the protein having an Fc region to the affinity chromatography support;
    (b) washing with an alkaline washing liquid having a pH value in the range of 10.1 to 12, and
    (c) elution of a protein having an Fc region,
    A method for purifying a protein having an Fc region, comprising:
  2.  アルカリ洗浄液が10.5から11.5のpH値を有する、請求項1に記載の方法。 The method according to claim 1, wherein the alkaline cleaning liquid has a pH value of 10.5 to 11.5.
  3.  アルカリ洗浄液が0.2M以上の塩化ナトリウムを含まない、請求項1または請求項2に記載の方法。 The method according to claim 1 or 2, wherein the alkaline cleaning solution does not contain 0.2 M or more sodium chloride.
  4.  アルカリ洗浄液がアルギニンを含まない、請求項1から3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein the alkaline cleaning solution does not contain arginine.
  5.  アフィニティークロマトグラフィー用担体がProtein A、Protein G、またはこれらの改変体を有する担体である、請求項1から4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4, wherein the carrier for affinity chromatography is a carrier having Protein Pro A, Protein 改 変 G, or a modified form thereof.
  6.  Fc領域を有するタンパク質が抗体である、請求項1から5のいずれか1項に記載の方法。 The method according to any one of claims 1 to 5, wherein the protein having an Fc region is an antibody.
  7.  Fc領域を有するタンパク質がヒトモノクローナル抗体、ヒト化モノクローナル抗体、キメラモノクローナル抗体である、請求項1から6のいずれか1項に記載の方法。 The method according to any one of claims 1 to 6, wherein the protein having an Fc region is a human monoclonal antibody, a humanized monoclonal antibody, or a chimeric monoclonal antibody.
  8.  Fc領域を有するタンパク質がλ鎖を有する抗体である、請求項1から7のいずれか1項に記載の方法。 The method according to any one of claims 1 to 7, wherein the protein having an Fc region is an antibody having a λ chain.
  9.  請求項1から8のいずれか1項に記載の方法を含む、Fc領域を有するタンパク質の製造方法。 A method for producing a protein having an Fc region, comprising the method according to any one of claims 1 to 8.
  10.  請求項9に記載の方法により製造されたFc領域を有するタンパク質。 A protein having an Fc region produced by the method according to claim 9.
  11.  ヒトモノクローナル抗体を製造する方法であって、
    (i)ヒトモノクローナル抗体を含む溶液をアフィニティークロマトグラフィー用担体に接触させ、ヒトモノクローナル抗体をアフィニティークロマトグラフィー用担体に結合させる工程、
    (ii)9から12の範囲内のpH値を有するアルカリ洗浄液で洗浄する工程、および
    (iii) ヒトモノクローナル抗体を溶出する工程、
    を含み、ヒトモノクローナル抗体の軽鎖の相補性決定領域1(LCDR1)、軽鎖の相補性決定領域2(LCDR2)、軽鎖の相補性決定領域3(LCDR3)、重鎖の相補性決定領域1(HCDR1)、重鎖の相補性決定領域2(HCDR2)及び重鎖の相補性決定領域3(HCDR3)のそれぞれのアミノ酸配列の組み合わせが、
    (a)LCDR1:TGSSSNIGAVYDVH(配列表の配列番号1)、LCDR2:RNNQRPS(配列表の配列番号2)、LCDR3:QTYDSSRWV(配列表の配列番号3)、HCDR1:DYYMN(配列表の配列番号4)、HCDR2:SISRYSSYIYYADSVKG(配列表の配列番号5)、及びHCDR3:DIGGMDV(配列表の配列番号6)
    (b)LCDR1:SGSSSNIGNNAVS(配列表の配列番号7)、LCDR2:ASNMRVI(配列表の配列番号8)、LCDR3:GAWDDSQKALV(配列表の配列番号9)、HCDR1:NYYMH(配列表の配列番号10)、HCDR2:SISARSRYHYYADSVKG(配列表の配列番号11)、及びHCDR3:LATRHNAFDI(配列表の配列番号12)
    (c)LCDR1:SGSSSNIGRNAVN(配列表の配列番号13)、LCDR2:ASNMRVS(配列表の配列番号14)、LCDR3:WAWDDSQKVGV(配列表の配列番号15)、HCDR1:NYYMH(配列表の配列番号10)、HCDR2:SISARSSYIYYADSVKG(配列表の配列番号16)、及びHCDR3:LATRNNAFDI(配列表の配列番号17)
    (d)LCDR1:SGSSSNIGRNAVN(配列表の配列番号13)、LCDR2:ASNMRRS(配列表の配列番号18)、LCDR3:SAWDDSQKVVV(配列表の配列番号19)、HCDR1:RYYMH(配列表の配列番号20)、HCDR2:SISAQSSHIYYADSVEG(配列表の配列番号21)、及びHCDR3:LATRQNAFDI(配列表の配列番号22)または、
    (e)LCDR1:SGSSSNIGNNAVN(配列表の配列番号23)、LCDR2:ASNMRRP(配列表の配列番号24)、LCDR3:EAWDDSQKAVV(配列表の配列番号25)、HCDR1:NYYMH(配列表の配列番号10)、HCDR2:SISARSSYLYYADSVKG(配列表の配列番号26)、及びHCDR3:LATRHVAFDI(配列表の配列番号27)
    であるヒトモノクローナル抗体である、ヒトモノクローナル抗体の製造方法。
    A method for producing a human monoclonal antibody comprising:
    (i) contacting a solution containing a human monoclonal antibody with an affinity chromatography support, and binding the human monoclonal antibody to the affinity chromatography support;
    (ii) washing with an alkaline wash having a pH value in the range of 9 to 12, and
    (iii) a step of eluting the human monoclonal antibody;
    A light chain complementarity determining region 1 (LCDR1), a light chain complementarity determining region 2 (LCDR2), a light chain complementarity determining region 3 (LCDR3), and a heavy chain complementarity determining region 1 (HCDR1), heavy chain complementarity determining region 2 (HCDR2) and heavy chain complementarity determining region 3 (HCDR3),
    (a) LCDR1: TGSSSNIGAVYDVH (SEQ ID NO: 1 in the sequence listing), LCDR2: RNNQRPS (SEQ ID NO: 2 in the sequence listing), LCDR3: QTYDSSRWV (SEQ ID NO: 3 in the sequence listing), HCDR1: DYYMN (SEQ ID NO: 4 in the sequence listing) , HCDR2: SISRYSSYIYYADSVKG (SEQ ID NO: 5 in the sequence listing), and HCDR3: DIGGMDV (SEQ ID NO: 6 in the sequence listing)
    (b) LCDR1: SGSSSNIGNNAVS (SEQ ID NO: 7 in the sequence listing), LCDR2: ASNMRVI (SEQ ID NO: 8 in the sequence listing), LCDR3: GAWDDSQKALV (SEQ ID NO: 9 in the sequence listing), HCDR1: NYYMH (SEQ ID NO: 10 in the sequence listing) , HCDR2: SISARSRYHYYADSVKG (SEQ ID NO: 11 in the sequence listing), and HCDR3: LATRHNAFDI (SEQ ID NO: 12 in the sequence listing)
    (c) LCDR1: SGSSSNIGRNAVN (SEQ ID NO: 13 in the sequence listing), LCDR2: ASNMRVS (SEQ ID NO: 14 in the sequence listing), LCDR3: WAWDDSQKVGV (SEQ ID NO: 15 in the sequence listing), HCDR1: NYYMH (SEQ ID NO: 10 in the sequence listing) , HCDR2: SISARSSYIYYADSVKG (SEQ ID NO: 16 in the sequence listing), and HCDR3: LATRNNAFDI (SEQ ID NO: 17 in the sequence listing)
    (d) LCDR1: SGSSSNIGRNAVN (SEQ ID NO: 13 in the sequence listing), LCDR2: ASNMRRS (SEQ ID NO: 18 in the sequence listing), LCDR3: SAWDDSQKVVV (SEQ ID NO: 19 in the sequence listing), HCDR1: RYYMH (SEQ ID NO: 20 in the sequence listing) HCDR2: SISAQSSHIYYADSVEG (SEQ ID NO: 21 of the sequence listing) and HCDR3: LATRQNAFDI (SEQ ID NO: 22 of the sequence listing), or
    (e) LCDR1: SGSSSNIGNNAVN (SEQ ID NO: 23 in the sequence listing), LCDR2: ASNMRRP (SEQ ID NO: 24 in the sequence listing), LCDR3: EAWDDSQKAVV (SEQ ID NO: 25 in the sequence listing), HCDR1: NYYMH (SEQ ID NO: 10 in the sequence listing) , HCDR2: SISARSSYLYYADSVKG (SEQ ID NO: 26 in the sequence listing), and HCDR3: LATRHVAFDI (SEQ ID NO: 27 in the sequence listing)
    A method for producing a human monoclonal antibody, which is a human monoclonal antibody.
  12.  ヒトモノクローナル抗体の軽鎖可変領域(VL)及び重鎖可変領域(VH)のそれぞれのアミノ酸配列の組み合わせが、
    (a)VL:QSVLTQPPSASGTPGQRVTISCTGSSSNIGAVYDVHWYQQLPGTAPKLLIYRNNQRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCQTYDSSRWVFGGGTKLTVL(配列表の配列番号28)及びVH:EVQLLESGGGLVQPGGSLRLSCAASGFTFSDYYMNWVRQAPGKGLEWVSSISRYSSYIYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDIGGMDVWGQGTLVTVSS(配列表の配列番号29)
    (b)VL:QSVLTQPPSASGTPGQRVTISCSGSSSNIGNNAVSWYQQLPGTAPKLLIYASNMRVIGVPDRFSGSKSGTSASLAISGLRSEDEADYYCGAWDDSQKALVFGGGTKLTVL(配列表の配列番号30)及びVH:EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYYMHWVRQAPGKGLEWVSSISARSRYHYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLATRHNAFDIWGQGTLVTVSS(配列表の配列番号31)
    (c)VL:QSVLTQPPSASGTPGQRVTISCSGSSSNIGRNAVNWYQQLPGTAPKLLIYASNMRVSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCWAWDDSQKVGVFGGGTKLTVL(配列表の配列番号32)及びVH:EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYYMHWVRQAPGKGLEWVSSISARSSYIYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLATRNNAFDIWGQGTLVTVSS(配列表の配列番号33)
    (d)VL:QSVLTQPPSASGTPGQRVTISCSGSSSNIGRNAVNWYQQLPGTAPKLLIYASNMRRSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCSAWDDSQKVVVFGGGTKLTVL(配列表の配列番号34)及びVH:EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYYMHWVRQAPGKGLEWVSSISAQSSHIYYADSVEGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLATRQNAFDIWGQGTLVTVSS(配列表の配列番号35)、または
    (e)VL:QSVLTQPPSASGTPGQRVTISCSGSSSNIGNNAVNWYQQLPGTAPKLLIYASNMRRPGVPDRFSGSKSGTSASLAISGLRSEDEADYYCEAWDDSQKAVVFGGGTKLTVL(配列表の配列番号36)及びVH:EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYYMHWVRQAPGKGLEWVSSISARSSYLYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLATRHVAFDIWGQGTLVTVSS(配列表の配列番号37)、
    である請求項11に記載の製造方法。
    The combination of the amino acid sequences of the light chain variable region (VL) and heavy chain variable region (VH) of the human monoclonal antibody is as follows:
    (A) VL: QSVLTQPPSASGTPGQRVTISCTGSSSNIGAVYDVHWYQQLPGTAPKLLIYRNNQRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCQTYDSSRWVFGGGTKLTVL and VH (SEQ ID NO: 28 of Sequence Listing): EVQLLESGGGLVQPGGSLRLSCAASGFTFSDYYMNWVRQAPGKGLEWVSSISRYSSYIYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDIGGMDVWGQGTLVTVSS (SEQ ID NO: 29 of the Sequence Listing)
    (B) VL: QSVLTQPPSASGTPGQRVTISCSGSSSNIGNNAVSWYQQLPGTAPKLLIYASNMRVIGVPDRFSGSKSGTSASLAISGLRSEDEADYYCGAWDDSQKALVFGGGTKLTVL (SEQ ID NO: of the Sequence Listing 30) and VH: EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYYMHWVRQAPGKGLEWVSSISARSRYHYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLATRHNAFDIWGQGTLVTVSS (SEQ ID NO: 31 of the Sequence Listing)
    (C) VL: QSVLTQPPSASGTPGQRVTISCSGSSSNIGRNAVNWYQQLPGTAPKLLIYASNMRVSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCWAWDDSQKVGVFGGGTKLTVL (SEQ ID NO: 32 of the Sequence Listing) and VH: (SEQ ID NO: 33 of the Sequence Listing) IbuikyuerueruiesujijijierubuikyuPijijiesueruarueruesushieieiesujiefutiefuesuenuwaiwaiemueichidaburyubuiarukyueiPijikeijieruidaburyubuiesuesuaiesueiaruesuesuwaiaiwaiwaieidiesubuikeijiaruefutiaiesuarudienuesukeienutieruwaierukyuemuenuesueruarueiiditieibuiwaiYCARLATRNNAFDIWGQGTLVTVSS
    (D) VL: QSVLTQPPSASGTPGQRVTISCSGSSSNIGRNAVNWYQQLPGTAPKLLIYASNMRRSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCSAWDDSQKVVVFGGGTKLTVL (SEQ ID NO: 34 in Sequence Listing) and VH: (SEQ ID NO: 35 of Sequence Listing) IbuikyuerueruiesujijijierubuikyuPijijiesueruarueruesushieieiesujiefutiefuesuaruwaiwaiemueichidaburyubuiarukyueiPijikeijieruidaburyubuiesuesuaiesueikyuesuesueichiaiwaiwaieidiesubuiijiaruefutiaiesuarudienuesukeienutieruwaierukyuemuenuesueruarueiiditieibuiwaiYCARLATRQNAFDIWGQGTLVTVSS, or
    (E) VL: QSVLTQPPSASGTPGQRVTISCSGSSSNIGNNAVNWYQQLPGTAPKLLIYASNMRRPGVPDRFSGSKSGTSASLAISGLRSEDEADYYCEAWDDSQKAVVFGGGTKLTVL (SEQ ID NO: 36 in Sequence Listing) and VH: (SEQ ID NO: 37 of Sequence Listing) IbuikyuerueruiesujijijierubuikyuPijijiesueruarueruesushieieiesujiefutiefuesuenuwaiwaiemueichidaburyubuiarukyueiPijikeijieruidaburyubuiesuesuaiesueiaruesuesuwaieruwaiwaieidiesubuikeijiaruefutiaiesuarudienuesukeienutieruwaierukyuemuenuesueruarueiiditieibuiwaiYCARLATRHVAFDIWGQGTLVTVSS,
    The manufacturing method according to claim 11.
  13.  アルカリ洗浄液が10.5から11.5のpH値を有する、請求項11又は請求項12に記載の製造方法。 The manufacturing method according to claim 11 or 12, wherein the alkaline cleaning liquid has a pH value of 10.5 to 11.5.
  14.  アルカリ洗浄液が0.2M以上の塩化ナトリウムを含まない、請求項11から13のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 11 to 13, wherein the alkaline cleaning liquid does not contain 0.2 M or more sodium chloride.
  15.  アルカリ洗浄液がアルギニンを含まない、請求項11から14のいずれか1項に記載の製造方法。 The production method according to any one of claims 11 to 14, wherein the alkaline cleaning liquid does not contain arginine.
  16.  アフィニティークロマトグラフィー用担体がProtein A、Protein G、またはこれらの改変体を有する担体である、請求項11から15のいずれか1項に記載の製造方法。 The production method according to any one of claims 11 to 15, wherein the carrier for affinity chromatography is a carrier having Protein A, Protein G, or a modified form thereof.
  17.  請求項11から16のいずれか1項に記載の方法により製造されたヒトモノクローナル抗体。 A human monoclonal antibody produced by the method according to any one of claims 11 to 16.
  18.  溶液中に含まれるFc領域を有するタンパク質の物性を改善する方法であって、
    (a)Fc領域を有するタンパク質を含む溶液をアフィニティークロマトグラフィー用担体に接触させ、Fc領域を有するタンパク質をアフィニティークロマトグラフィー用担体に結合させる工程、
    (b)9.1から12の範囲内のpH値を有するアルカリ溶液に接触する工程、および
    (c)Fc領域を有するタンパク質を溶出する工程、
    を含む、方法。
    A method for improving the physical properties of a protein having an Fc region contained in a solution,
    (a) contacting a solution containing a protein having an Fc region with an affinity chromatography support, and binding the protein having an Fc region to the affinity chromatography support;
    (b) contacting an alkaline solution having a pH value in the range of 9.1 to 12, and
    (c) elution of a protein having an Fc region,
    Including a method.
  19.  Fc領域を有するタンパク質の物性を改善する方法が、Fc領域を有するタンパク質のフリーチオール含量を低減する方法である請求項18に記載の方法。 The method according to claim 18, wherein the method for improving the physical properties of a protein having an Fc region is a method for reducing the free thiol content of a protein having an Fc region.
  20.  Fc領域を有するタンパク質の物性を改善する方法が、Fc領域を有するタンパク質の自己会合性を低減する方法である請求項18に記載の方法。 The method according to claim 18, wherein the method for improving the physical properties of a protein having an Fc region is a method for reducing the self-association property of a protein having an Fc region.
  21.  Fc領域を有するタンパク質の物性を改善する方法が、Fc領域を有するタンパク質の凝集性を低減する方法である請求項18に記載の方法。 The method according to claim 18, wherein the method for improving the physical properties of a protein having an Fc region is a method for reducing the aggregation property of a protein having an Fc region.
  22.  Fc領域を有するタンパク質の物性を改善する方法が、さらにFc領域を有するタンパク質の保存安定性を高める方法である請求項18に記載の方法。 The method according to claim 18, wherein the method for improving the physical properties of a protein having an Fc region is a method for further enhancing the storage stability of a protein having an Fc region.
  23.  アルカリ溶液が10.6から11.5のpH値を有する、請求項18から22のいずれか1項に記載の方法。 23. The method according to any one of claims 18 to 22, wherein the alkaline solution has a pH value of 10.6 to 11.5.
  24.  アルカリ溶液が0.2M以上の塩化ナトリウムを含まない、請求項18から23のいずれか1項に記載の方法。 The method according to any one of claims 18 to 23, wherein the alkaline solution does not contain 0.2 M or more of sodium chloride.
  25.  アルカリ溶液がアルギニンを含まない、請求項18から24のいずれか1項に記載の方法。 The method according to any one of claims 18 to 24, wherein the alkaline solution does not contain arginine.
  26.  アフィニティークロマトグラフィー用担体がProtein A、Protein G、またはこれらの改変体を有する担体である、請求項18から25のいずれか1項に記載の方法。 The method according to any one of claims 18 to 25, wherein the carrier for affinity chromatography is a carrier having Protein A, Protein G, or a modified form thereof.
  27.  Fc領域を有するタンパク質が抗体である、請求項18から26のいずれか1項に記載の方法。 The method according to any one of claims 18 to 26, wherein the protein having an Fc region is an antibody.
  28.  Fc領域を有するタンパク質がヒトモノクローナル抗体、ヒト化モノクローナル抗体、キメラモノクローナル抗体である、請求項18から27のいずれか1項に記載の方法。 The method according to any one of claims 18 to 27, wherein the protein having an Fc region is a human monoclonal antibody, a humanized monoclonal antibody, or a chimeric monoclonal antibody.
  29.  Fc領域を有するタンパク質がλ鎖を有する抗体である、請求項18から28のいずれか1項に記載の方法。 The method according to any one of claims 18 to 28, wherein the protein having an Fc region is an antibody having a λ chain.
PCT/JP2015/074286 2014-08-27 2015-08-27 METHOD FOR PRODUCING PROTEIN HAVING Fc REGION BY ALKALI WASHING WO2016031932A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014173253 2014-08-27
JP2014-173253 2014-08-27

Publications (1)

Publication Number Publication Date
WO2016031932A1 true WO2016031932A1 (en) 2016-03-03

Family

ID=55399815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074286 WO2016031932A1 (en) 2014-08-27 2015-08-27 METHOD FOR PRODUCING PROTEIN HAVING Fc REGION BY ALKALI WASHING

Country Status (1)

Country Link
WO (1) WO2016031932A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3088517A4 (en) * 2013-12-26 2017-11-08 Mitsubishi Tanabe Pharma Corporation Human anti-il-33 neutralizing monoclonal antibody
US10695693B2 (en) 2015-03-13 2020-06-30 Bristol-Myers Squibb Company Use of alkaline washes during chromatography to remove impurities
CN112739378A (en) * 2018-09-14 2021-04-30 田边三菱制药株式会社 Pharmaceutical composition containing human anti-IL-33 monoclonal antibody
WO2021191684A1 (en) * 2020-03-27 2021-09-30 Haemalogix Pty Ltd Composition and method
US11492398B2 (en) 2017-08-31 2022-11-08 Mitsubishi Tanabe Pharma Corporation IL-33 antagonist-containing therapeutic agent for endometriosis

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135798A (en) * 1987-10-05 1989-05-29 Becton Dickinson & Co Purification of antibody
JPH02290900A (en) * 1989-04-05 1990-11-30 Bioprobe Internatl Inc Method for purifying antibody
JP2013504621A (en) * 2009-09-15 2013-02-07 アルシア テクノロジーズ, インコーポレイテッド Protein A crystals and cross-linked crystals and methods of use thereof
JP2014515389A (en) * 2011-06-01 2014-06-30 ノバルティス アーゲー Washing solutions and methods for affinity chromatography
WO2015099175A1 (en) * 2013-12-26 2015-07-02 田辺三菱製薬株式会社 Human anti-il-33 neutralizing monoclonal antibody

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135798A (en) * 1987-10-05 1989-05-29 Becton Dickinson & Co Purification of antibody
JPH02290900A (en) * 1989-04-05 1990-11-30 Bioprobe Internatl Inc Method for purifying antibody
JP2013504621A (en) * 2009-09-15 2013-02-07 アルシア テクノロジーズ, インコーポレイテッド Protein A crystals and cross-linked crystals and methods of use thereof
JP2014515389A (en) * 2011-06-01 2014-06-30 ノバルティス アーゲー Washing solutions and methods for affinity chromatography
WO2015099175A1 (en) * 2013-12-26 2015-07-02 田辺三菱製薬株式会社 Human anti-il-33 neutralizing monoclonal antibody

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3088517A4 (en) * 2013-12-26 2017-11-08 Mitsubishi Tanabe Pharma Corporation Human anti-il-33 neutralizing monoclonal antibody
US11725049B2 (en) 2013-12-26 2023-08-15 Mitsubishi Tanabe Pharma Corporation Human anti-IL-33 neutralizing monoclonal antibody
EP4223874A3 (en) * 2013-12-26 2023-09-27 Mitsubishi Tanabe Pharma Corporation Human anti-il-33 neutralizing monoclonal antibody
US10695693B2 (en) 2015-03-13 2020-06-30 Bristol-Myers Squibb Company Use of alkaline washes during chromatography to remove impurities
US11492398B2 (en) 2017-08-31 2022-11-08 Mitsubishi Tanabe Pharma Corporation IL-33 antagonist-containing therapeutic agent for endometriosis
CN112739378A (en) * 2018-09-14 2021-04-30 田边三菱制药株式会社 Pharmaceutical composition containing human anti-IL-33 monoclonal antibody
EP3851121A4 (en) * 2018-09-14 2022-06-08 Mitsubishi Tanabe Pharma Corporation Human anti-il-33 monoclonal-antibody-containing pharmaceutical composition
WO2021191684A1 (en) * 2020-03-27 2021-09-30 Haemalogix Pty Ltd Composition and method

Similar Documents

Publication Publication Date Title
JP6548696B2 (en) Human anti-IL-33 neutralizing monoclonal antibody
US20230018821A1 (en) Antibodies against signal-regulatory protein alpha and methods of use
KR102483016B1 (en) Fcrc Antibodies and Methods of Use Thereof
JP6858185B2 (en) Anti-TfR antibody and its use in the treatment of proliferative and inflammatory diseases
CN107955072B (en) PD-1 antibodies
JP2021072810A (en) High affinity and aggregation resistant antibody based on variable domain vl and vhh derivative
WO2016031932A1 (en) METHOD FOR PRODUCING PROTEIN HAVING Fc REGION BY ALKALI WASHING
AU2014315744B2 (en) Method for obtaining APRIL-binding peptides, process for producing the peptides, APRIL-binding peptides obtainable with said method/process and use of the APRIL-binding peptides
US20190048069A1 (en) Human antibodies that bind human tnf-alpha and methods of preparing the same
CN107849087A (en) The method that host cell proteins are reduced in affinity chromatography
JP6901402B2 (en) How to increase the percentage of monomeric antibody Fab-dsFv multimeric species
CA3003759A1 (en) Bi-specific antibodies for enhanced tumor selectivity and inhibition and uses thereof
KR20210027254A (en) Antibodies to TIM-3 and uses thereof
WO2022224997A1 (en) Anti-cldn4/anti-cd137 bispecific antibody
JP6501650B2 (en) Human anti-IL-33 neutralizing monoclonal antibody
US20220169741A1 (en) Methods of Engineering Surface Charge for Bispecific Antibody Production
IL305230A (en) Pharmaceutical composition containing anti-tslp antibody
KR20240049318A (en) FAP/CD40 binding molecules and their medical uses
CN118251412A (en) Anti-ANG 2 antibody, and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP