WO2016031112A1 - Transmission belt and manufacturing method therefor - Google Patents

Transmission belt and manufacturing method therefor Download PDF

Info

Publication number
WO2016031112A1
WO2016031112A1 PCT/JP2015/003192 JP2015003192W WO2016031112A1 WO 2016031112 A1 WO2016031112 A1 WO 2016031112A1 JP 2015003192 W JP2015003192 W JP 2015003192W WO 2016031112 A1 WO2016031112 A1 WO 2016031112A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission belt
hollow particles
foaming agent
rubber
power transmission
Prior art date
Application number
PCT/JP2015/003192
Other languages
French (fr)
Japanese (ja)
Inventor
張 偉
貴幸 大久保
松川 浩和
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to JP2016544911A priority Critical patent/JP6546595B2/en
Publication of WO2016031112A1 publication Critical patent/WO2016031112A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D29/00Producing belts or bands
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/28Driving-belts with a contact surface of special shape, e.g. toothed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/20V-belts, i.e. belts of tapered cross-section with a contact surface of special shape, e.g. toothed

Definitions

  • the present invention relates to a transmission belt and a manufacturing method thereof.
  • Patent Document 1 discloses an uncrosslinked rubber composition in which a surface layer on the side of forming a V rib of a V-ribbed belt is blended with hollow particles and / or a foaming agent for forming a concave hole on the surface of the V rib. Is composed of a rubber composition crosslinked by heating and pressing.
  • an uncrosslinked rubber composition in which a rubber component is blended with unexpanded hollow particles and a thermally decomposable foaming agent is heated and pressurized and crosslinked to form a plurality of recesses formed by expanding the hollow particles.
  • a method for producing a transmission belt in which a pulley contact portion is constituted by a rubber composition having holes exposed on the surface, wherein the decomposition temperature of the pyrolytic foaming agent is higher than the expansion start temperature of the hollow particles.
  • an uncrosslinked rubber composition in which a rubber component is blended with unexpanded hollow particles and a thermally decomposable foaming agent is heated and pressurized and crosslinked to form a plurality of recesses formed by expanding the hollow particles.
  • a transmission belt having a pulley contact portion made of a rubber composition with holes exposed on the surface, wherein an average pore diameter of the plurality of concave holes due to the hollow particles is 70 to 120 ⁇ m, and The hole diameter difference between the concave holes is 50 ⁇ m or less.
  • FIG. 3 is a perspective view of a V-ribbed belt according to Embodiment 1.
  • FIG. It is a cross-sectional enlarged view of a surface rubber layer. It is a longitudinal cross-sectional view of a belt forming die. It is a longitudinal cross-sectional enlarged view of a part of belt forming die.
  • FIG. 6 It is a figure which shows the pulley layout of the auxiliary machine drive belt transmission of a motor vehicle.
  • 6 is a perspective view of a V-ribbed belt according to Embodiment 2.
  • FIG. It is a figure which shows the pulley layout of the belt running test machine for abnormal noise evaluation at the time of flooding.
  • FIG. 1 shows a V-ribbed belt B (power transmission belt) according to the first embodiment.
  • the V-ribbed belt B according to the first embodiment is used, for example, in an auxiliary machine drive belt transmission provided in an engine room of an automobile.
  • the V-ribbed belt B according to Embodiment 1 has, for example, a belt circumferential length of 700 to 3000 mm, a belt width of 10 to 36 mm, and a belt thickness of 4.0 to 5.0 mm.
  • the V-ribbed belt B according to Embodiment 1 includes a V-ribbed belt main body 10 configured in a triple layer of a compression rubber layer 11 on the belt inner peripheral side, an intermediate adhesive rubber layer 12 and a back rubber layer 13 on the belt outer peripheral side.
  • a core wire 14 is embedded in the adhesive rubber layer 12 of the V-ribbed belt body 10 so as to form a spiral having a pitch in the belt width direction.
  • the compression rubber layer 11 is provided so that a plurality of V ribs 15 hang down to the inner peripheral side of the belt.
  • the plurality of V ribs 15 are each formed in a ridge having a substantially inverted triangular cross section extending in the belt length direction, and arranged in parallel in the belt width direction.
  • Each V-rib 15 has, for example, a rib height of 2.0 to 3.0 mm and a width between rib base ends of 1.0 to 3.6 mm.
  • the number of ribs is 3 to 6, for example (the number of ribs is 6 in FIG. 1).
  • the compression rubber layer 11 has a surface rubber layer 11a (pulley contact portion) provided in a layered manner along the entire pulley contact surface and an internal rubber layer 11b provided on the inner side of the belt with respect to the surface rubber layer 11a. .
  • the thickness of the surface rubber layer 11a is, for example, 50 to 500 ⁇ m.
  • the surface rubber layer 11a is a rubber composition obtained by heating and pressurizing and cross-linking an uncrosslinked rubber composition obtained by mixing and kneading a rubber compounding component containing unexpanded hollow particles and a pyrolytic foaming agent in a rubber component. Accordingly, a large number of hollow portions 16 having shells therein are formed, and the surface is constituted by a rubber composition in which a large number of concave holes 17 having shells are formed on the pulley contact surface.
  • the hollow portion 16 having the shell is formed by the expansion of the hollow particles, and the concave hole 17 having the shell is formed by opening the expanded hollow particles by breaking the shell on the surface. .
  • the decomposition temperature of a thermal decomposition type foaming agent is higher than the expansion
  • the surface rubber layer 11a composed of a rubber composition in which a non-crosslinked rubber composition in which a rubber component is blended with unexpanded hollow particles and a pyrolytic foaming agent is heated and pressurized, the hollow particles are formed. Since the decomposition temperature of the pyrolytic foaming agent is higher than the expansion start temperature of the surface, the average pore diameter due to the hollow particles is large on the surface of the surface rubber layer 11a as shown in FIG. Thus, a small concave hole 17 is formed.
  • the expansion start temperature is a temperature at which the unexpanded hollow particles start expanding at normal pressure (1 atm).
  • the decomposition temperature is a temperature at which the pyrolytic foaming agent starts to decompose at normal pressure (1 atm).
  • V-ribbed belts that run in the engine room to suppress the generation of slip noise when the belts are run under wet conditions. It has been.
  • a large number of concave holes 17 having a large average pore diameter due to the hollow particles are formed on the surface of the surface rubber layer 11a of the compressed rubber layer 11. Therefore, even when the belt travels in a wet condition, the water film on the pulley surface can be efficiently destroyed by the concave hole 17, thereby effectively suppressing the occurrence of slip noise.
  • Examples of the rubber component of the rubber composition constituting the surface rubber layer 11a include ethylene-propylene copolymer (EPR), ethylene-propylene-diene terpolymer (EPDM), ethylene-octene copolymer, ethylene-butene copolymer, and other ethylene- Examples include ⁇ -olefin elastomers; chloroprene rubber (CR); chlorosulfonated polyethylene rubber (CSM); hydrogenated acrylonitrile rubber (H-NBR). As the rubber component, one or more of these are preferably used, and an ethylene- ⁇ -olefin elastomer is more preferably used.
  • EPR ethylene-propylene copolymer
  • EPDM ethylene-propylene-diene terpolymer
  • ethylene-octene copolymer ethylene-butene copolymer
  • other ethylene- Examples include ⁇ -olefin elastomers; chloroprene rubber (CR); chloro
  • the rubber composition constituting the surface rubber layer 11a is formed by crosslinking an uncrosslinked rubber composition in which unexpanded hollow particles and a pyrolytic foaming agent are blended in a rubber component.
  • the particles include particles in which a solvent is enclosed in a shell formed of a thermoplastic polymer (for example, acrylonitrile-based polymer).
  • the hollow particles may be either a single species or a plurality of species.
  • the particle diameter of the unexpanded hollow particles is preferably 15 ⁇ m or more from the viewpoint of forming the concave holes 17 having a large average pore diameter due to the hollow particles suitable for suppressing the generation of abnormal noise due to slippage when wet on the surface of the surface rubber layer 11a.
  • the expansion start temperature of the hollow particles is preferably 140 ° C. or higher, from the viewpoint of forming the concave holes 17 having a large average pore diameter due to the hollow particles suitable for suppressing the generation of abnormal noise due to slippage at the time of water on the surface of the surface rubber layer 11a. More preferably, it is 150 degreeC or more, Preferably it is 180 degreeC or less, More preferably, it is 170 degreeC or less.
  • the amount of the hollow particles to be blended is 100 parts by mass of the rubber component. And preferably 0.5 parts by mass or more, more preferably 1.0 parts by mass or more, and preferably 10 parts by mass or less, more preferably 5.0 parts by mass or less.
  • Examples of commercially available hollow particles include Sekisui Chemical Co., Ltd. trade name: ADVANCEL EM403 (particle size 26 to 34 ⁇ m, expansion start temperature: 150 to 170 ° C.).
  • the rubber composition that constitutes the surface rubber layer 11a has a large number of hollow portions 16 formed by hollow particles expanded inside, and a large number of concave holes 17 that are opened by breaking the shell of the hollow particles on the surface. ing.
  • the average hole diameter of the concave holes 17 is preferably not less than 70 ⁇ m, more preferably not less than 80 ⁇ m, and more preferably not more than 120 ⁇ m, more preferably from the viewpoint that it is suitable for suppressing the generation of abnormal noise due to slippage when wet. Is 110 ⁇ m or less.
  • the difference between the maximum value and the minimum value of the hole diameter of the concave hole 17, that is, the hole diameter difference is an indicator of the variation in the hole diameter of the concave hole 17, but is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less.
  • the hole diameter of the concave hole 17 is an opening diameter of the concave hole 17 exposed on the surface of the surface rubber layer 11a
  • the average hole diameter is the number of arbitrary 50 to 100 hole diameters measured from the surface image.
  • the pore diameter difference can be obtained as an average, and the pore diameter difference can be obtained as a difference between the maximum value and the minimum value of arbitrary 50 to 100 pore diameters measured from the surface image.
  • thermally decomposable foaming agent blended in the uncrosslinked rubber composition examples include, for example, an ADCA foaming agent mainly composed of azodicarbonamide, a DPT foaming agent mainly composed of dinitrosopentamethylenetetramine, p, p
  • organic foaming agents such as an OBSH foaming agent mainly composed of '-oxybisbenzenesulfonylhydrazide and an HDCA foaming agent mainly composed of hydrazodicarbonamide.
  • these pyrolytic foaming agents are preferably used, and ADCA foaming agents are more preferably used.
  • the Sankyo Kasei Co., Ltd. brand name: Cell microphone series etc. are mentioned, for example.
  • the decomposition temperature of the pyrolytic foaming agent is higher than the expansion start temperature of the hollow particles, specifically, the average of the hollow particles suitable for suppressing the generation of abnormal noise due to slip on the surface of the surface rubber layer 11a.
  • the concave hole 17 having a large hole diameter it is preferably 150 ° C. or higher, more preferably 160 ° C. or higher, and preferably 230 ° C. or lower, more preferably 210 ° C. or lower.
  • the temperature difference between the expansion start temperature of the hollow particles and the decomposition temperature of the thermal decomposition type foaming agent forms a concave hole 17 having a large average hole diameter suitable for suppressing the generation of abnormal noise due to slippage when the water is wet on the surface of the surface rubber layer 11a.
  • it is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, still more preferably 35 ° C. or higher, and preferably 80 ° C. or lower, more preferably 60 ° C. or lower.
  • the compounding amount of the pyrolytic foaming agent is 100 masses of the rubber component from the viewpoint of forming the concave holes 17 having a large average pore diameter due to the hollow particles suitable for suppressing the generation of abnormal noise due to slippage at the time of water on the surface of the surface rubber layer 11a.
  • the amount is preferably 0.5 parts by mass or more, more preferably 4 parts by mass or more, and preferably 10 parts by mass or less, more preferably 7 parts by mass or less.
  • the blending amount of the pyrolytic foaming agent with respect to 100 parts by weight of the rubber component is preferably larger than the blending amount of unexpanded hollow particles with respect to 100 parts by weight of the rubber component.
  • Mass ratio of blended amount of unexpanded hollow particles to 100 parts by weight of rubber component of rubber component of pyrolytic foaming agent to blended amount of 100 parts by weight of rubber component is from the viewpoint of forming the concave holes 17 having a large average pore diameter due to the hollow particles suitable for suppressing the generation of abnormal noise due to slippage at the time of water on the surface rubber layer 11a.
  • the rubber composition constituting the surface rubber layer 11a has a large number of hollow portions 18 that do not have a shell formed therein by foaming of a pyrolytic foaming agent, and a large number that does not have a shell formed on the surface.
  • the recessed hole 19 is exposed.
  • the difference between the maximum value and the minimum value of the hole diameter of the concave hole 19, that is, the hole diameter difference is larger than the hole diameter difference of the concave hole 17 formed by the hollow particles, and therefore, the variation in the hole diameter is large.
  • the hole diameter of the concave hole 19 having no shell is the opening diameter exposed on the surface of the surface rubber layer 11a.
  • the rubber composition constituting the surface rubber layer 11a includes a decomposition residue after the thermal decomposition type foaming agent is decomposed and foamed.
  • a decomposition residue after the thermal decomposition type foaming agent is decomposed and foamed.
  • urazole biurea cyanurate is included as a decomposition residue in the rubber composition constituting the surface rubber layer 11a.
  • hexamethylenetetramine is contained as a decomposition residue in the rubber composition constituting the surface rubber layer 11a.
  • the rubber composition constituting the surface rubber layer 11a contains polydithiophenyl ether and polythiophenylbenzenesulfonyl ether as decomposition residues.
  • the rubber composition constituting the surface rubber layer 11a contains urazole as a decomposition residue.
  • Examples of other rubber compounding agents blended in the rubber composition constituting the surface rubber layer 11a include reinforcing materials such as carbon black, oil, processing aids, vulcanization aids, crosslinking agents, vulcanization accelerators, and the like. Is mentioned. Short fibers may be blended in the rubber composition constituting the surface rubber layer 11a.
  • the rubber composition constituting the surface rubber layer 11a may be a sulfur-crosslinked rubber composition in which sulfur is used as a crosslinking agent, or an organic peroxide crosslinked system in which an organic peroxide is used as a crosslinking agent. Either a rubber composition or a combined cross-linked rubber composition using them in combination may be used.
  • the inner rubber layer 11b is composed of a rubber composition in which an uncrosslinked rubber composition obtained by mixing and kneading a rubber compounding agent with a rubber component is heated and pressurized and crosslinked.
  • the rubber component of the rubber composition constituting the inner rubber layer 11b for example, an ethylene- ⁇ -olefin elastomer and the like can be cited as in the case of the surface rubber layer 11a.
  • the rubber component of the rubber composition constituting the inner rubber layer 11b is preferably the same as the rubber component of the rubber composition constituting the surface rubber layer 11a.
  • a rubber compounding agent compounded in the rubber composition constituting the internal rubber layer 11b for example, as in the case of the surface rubber layer 11a, for example, a reinforcing material such as carbon black, a softening agent, a processing aid, a vulcanizing aid, Examples thereof include a crosslinking agent, a vulcanization accelerator, a rubber compounding resin, and an antioxidant.
  • the uncrosslinked rubber composition before crosslinking of the rubber composition constituting the inner rubber layer 11b is preferably not blended with unexpanded hollow particles and a pyrolytic foaming agent. That is, the rubber composition constituting the inner rubber layer 11b is preferably solid.
  • the rubber composition constituting the inner rubber layer 11b may be a sulfur-crosslinked rubber composition in which sulfur is used as a crosslinking agent, or an organic peroxide crosslinked system in which an organic peroxide is used as a crosslinking agent. Either a rubber composition or a combined cross-linked rubber composition using them in combination may be used.
  • the cross-linking system of the inner rubber layer 11b may be the same as or different from the cross-linking system of the surface rubber layer 11a.
  • the adhesive rubber layer 12 is formed in a band shape having a horizontally long cross section and has a thickness of, for example, 1.0 to 2.5 mm.
  • the back rubber layer 13 is also formed in a band shape having a horizontally long cross section and has a thickness of, for example, 0.4 to 0.8 mm.
  • the surface of the back rubber layer 13 is preferably formed in a form in which the texture of the woven fabric is transferred from the viewpoint of suppressing the sound generated between the back rubber layer 13 and the flat pulley in contact with the belt back surface.
  • Each of the adhesive rubber layer 12 and the back rubber layer 13 is composed of a rubber composition obtained by heating and pressurizing and crosslinking a non-crosslinked rubber composition obtained by mixing a rubber compounding agent with a rubber component and kneading.
  • Examples of the rubber component of the rubber composition constituting the adhesive rubber layer 12 and the back rubber layer 13 include, for example, ethylene- ⁇ -olefin elastomers as in the case of the surface rubber layer 11a.
  • the rubber component of the rubber composition constituting the adhesive rubber layer 12 and the back rubber layer 13 is preferably the same as the rubber component of the rubber composition constituting the surface rubber layer 11a and / or the internal rubber layer 11b.
  • a rubber compounding agent compounded in the rubber composition constituting the adhesive rubber layer 12 and the back rubber layer 13 for example, a reinforcing material such as carbon black, a softening agent, a processing aid, as in the case of the surface rubber layer 11a
  • a reinforcing material such as carbon black, a softening agent, a processing aid, as in the case of the surface rubber layer 11a
  • examples include vulcanization aids, crosslinking agents, vulcanization accelerators, rubber compounding resins, anti-aging agents, and the like.
  • the uncrosslinked rubber composition before crosslinking of the rubber composition constituting the adhesive rubber layer 12 and the back rubber layer 13 is preferably not blended with unexpanded hollow particles and a pyrolytic foaming agent. That is, it is preferable that the rubber composition constituting the adhesive rubber layer 12 and the back rubber layer 13 is solid.
  • Short fibers may be blended in the rubber composition constituting the adhesive rubber layer 12 and the back rubber layer 13.
  • the rubber composition constituting the adhesive rubber layer 12 and the back rubber layer 13 may be a sulfur-crosslinked rubber composition in which sulfur is used as a crosslinking agent, or an organic material in which an organic peroxide is used as a crosslinking agent. Either a peroxide cross-linked rubber composition or a combined cross-linked rubber composition using them in combination may be used.
  • the crosslinking system of the adhesive rubber layer 12 and the back rubber layer 13 may be the same as or different from the crosslinking system of the surface rubber layer 11a and / or the internal rubber layer 11b.
  • the inner rubber layer 11b, the adhesive rubber layer 12, and the back rubber layer 13 of the compressed rubber layer 11 are formed of a rubber composition of a different composition or a rubber composition of the same composition, either will do.
  • the core wire 14 is composed of twisted yarns such as polyester fiber (PET), polyethylene naphthalate fiber (PEN), aramid fiber, vinylon fiber and the like.
  • PET polyester fiber
  • PEN polyethylene naphthalate fiber
  • aramid fiber vinylon fiber and the like.
  • the core 14 is subjected to an adhesive treatment that is heated after being immersed in an RFL aqueous solution before forming and / or an adhesive treatment that is dried after being immersed in rubber paste in order to impart adhesion to the V-ribbed belt body 10. It has been subjected.
  • a belt forming die 20 including a cylindrical inner die 21 and an outer die 22 provided concentrically is used.
  • the inner mold 21 is formed of a flexible material such as rubber.
  • the outer mold 22 is made of a rigid material such as metal.
  • the inner peripheral surface of the outer mold 22 is formed as a molding surface, and V rib forming grooves 23 are provided on the inner peripheral surface of the outer mold 22 at a constant pitch in the axial direction.
  • the outer mold 22 is provided with a temperature control mechanism that controls the temperature by circulating a heat medium such as water vapor or a coolant such as water.
  • the belt mold 20 is provided with a pressurizing means for pressurizing and expanding the inner mold 21 from the inside.
  • each rubber compounding agent is blended with the rubber component and kneaded by a kneader such as a kneader or a Banbury mixer, and the obtained uncrosslinked rubber composition is formed by calendar molding or the like.
  • the uncrosslinked rubber sheets 11a ′ and 11b ′ for the surface rubber layer and the internal rubber layer of the compressed rubber layer 11 are produced by forming into a sheet shape.
  • uncrosslinked rubber sheets 12 'and 13' for the adhesive rubber layer and the back rubber layer are also produced.
  • an adhesive treatment is performed in which the twisted wire 14 ′ for the core wire is immersed in an RFL aqueous solution and heated, and thereafter, an adhesive treatment is performed in which the strand 14 d is immersed in rubber paste and dried by heating.
  • the rubber component is blended with unexpanded hollow particles 16' and a pyrolytic foaming agent.
  • a rubber sleeve 25 is placed on a cylindrical drum 24 having a smooth surface, and an uncrosslinked rubber sheet 13 ′ for the back rubber layer and an uncrosslinked rubber sheet for the adhesive rubber layer are placed thereon. 12 ′ are wound in order and laminated, and then a strand 14 ′ for a core wire is spirally wound around the cylindrical inner mold 21, and further, an uncrosslinked rubber sheet 12 ′ for an adhesive rubber layer is further formed thereon.
  • the uncrosslinked rubber sheet 11b ′ for the inner rubber layer in the compressed rubber layer 11 and the uncrosslinked rubber sheet 11a ′ for the surface rubber layer are wound in order to form the laminate 10 ′.
  • the rubber sleeve 25 provided with the laminated body 10 ′ is removed from the cylindrical drum 24, and as shown in FIG. 6, it is set in an fitted state on the inner peripheral surface side of the outer mold 22.
  • the inner mold 21 is positioned and sealed in the rubber sleeve 25 set on the outer mold 22.
  • the outer mold 22 is heated, and high-pressure air or the like is injected into the sealed interior of the inner mold 21 to pressurize it.
  • the inner mold 21 expands, and the laminate 10 ′ is pressed against the molding surface of the outer mold 22.
  • the uncrosslinked rubber sheets 11a ', 11b', 12 ', and 13' are heated and pressurized and cross-linked and integrated, and a cylindrical belt slab S that is combined with the twisted yarn 14 'is molded.
  • the uncrosslinked rubber sheet 11a ′ for the surface rubber layer forms a large number of hollow portions 16 having shells inside due to expansion of the hollow particles 16 ′, and the shell of the hollow particles 16 ′ is broken on the surface.
  • the molding temperature of the belt slab S is, for example, 100 to 180 ° C.
  • the molding pressure is, for example, 0.5 to 2.0 MPa
  • the molding time is, for example, 10 to 60 minutes.
  • the surface of the surface rubber layer 11a constituting the pulley contact portion has a large average pore diameter due to the hollow particles and a small variation in the pore diameter.
  • a concave hole 17 is formed. This is because, since the decomposition temperature of the pyrolytic foaming agent is higher than the expansion start temperature of the hollow particle 16 ′, the hollow particle 16 ′ first expands, and then the pyrolytic foaming agent decomposes and foams. Therefore, it is considered that the foaming gas by the pyrolytic foaming agent is introduced into the expanded hollow particles 16 ′, and as a result, the expansion of any hollow particles 16 ′ is promoted.
  • the expansion of the hollow particles 16 ′ is restricted, and it is difficult to sufficiently expand the hollow particles 16 ′.
  • the expansion of the hollow particles 16 ′ is promoted by the decomposition and foaming of the pyrolytic foaming agent.
  • the hollow particles 16 ′ can be expanded sufficiently large even under. From this point of view, the effect of expansion promotion of the hollow particles 16 ′ can be remarkably obtained when the molding pressure is 0.7 MPa or more, particularly 0.9 MPa or more.
  • the foaming gas produced by the pyrolytic foaming agent is, for example, nitrogen for ADCA foaming agents, nitrogen, carbon monoxide and carbon dioxide for DPT foaming agents, nitrogen and water vapor for OBSH foaming agents, and HDCA foaming agents. Nitrogen and ammonia.
  • the inside of the inner mold 21 is decompressed to release the seal, the belt slab S molded between the inner mold 21 and the outer mold 22 is taken out via the rubber sleeve 25, and the belt slab S is cut into a predetermined width.
  • the V-ribbed belt B is obtained by turning the front and back. If necessary, the outer peripheral side of the belt slab S, that is, the surface on the V rib 15 side may be polished.
  • FIG. 9 shows a pulley layout of the auxiliary drive belt transmission device 30 for an automobile using the V-ribbed belt B according to the first embodiment.
  • This accessory drive belt transmission device 30 is of a serpentine drive type in which a V-ribbed belt B is wound around six pulleys, four rib pulleys and two flat pulleys, to transmit power.
  • the auxiliary drive belt transmission device 30 is provided with a power steering pulley 31 of a rib pulley at the uppermost position, and an AC generator pulley 32 of a rib pulley is provided below the power steering pulley 31.
  • a flat pulley tensioner pulley 33 is provided at the lower left of the power steering pulley 31, and a flat pulley water pump pulley 34 is provided below the tensioner pulley 33.
  • a ribshaft crankshaft pulley 35 is provided on the lower left side of the tensioner pulley 33, and a rib pulley air conditioner pulley 36 is provided on the lower right side of the crankshaft pulley 35.
  • These pulleys are made of, for example, a metal stamped product, a molded product such as a casting, nylon resin, or phenol resin, and have a pulley diameter of 50 to 150 mm.
  • the V-ribbed belt B is wound around the power steering pulley 31 so that the V-rib 15 side contacts, and then wound around the tensioner pulley 33 so that the back surface of the belt contacts. After that, it is wound around the crankshaft pulley 35 and the air conditioner pulley 36 in order so that the V rib 15 side comes into contact, and further wound around the water pump pulley 34 so that the back surface of the belt comes into contact. Thus, it is wound around the AC generator pulley 32 and finally returned to the power steering pulley 31.
  • the belt span length which is the length of the V-ribbed belt B spanned between the pulleys, is, for example, 50 to 300 mm. Misalignment that can occur between pulleys is 0-2 °.
  • FIG. 10 shows a V-ribbed belt B (power transmission belt) according to the second embodiment.
  • the part of the same name as Embodiment 1 is shown using the same code
  • FIG. 10 shows a V-ribbed belt B (power transmission belt) according to the second embodiment.
  • the part of the same name as Embodiment 1 is shown using the same code
  • the compressed rubber layer 11 is composed of the same rubber composition as the surface rubber layer 11a in the V-ribbed belt B according to the first embodiment. That is, the compressed rubber layer 11 is a rubber composition in which an uncrosslinked rubber composition obtained by mixing and kneading a rubber compounding agent containing unexpanded hollow particles and a pyrolytic foaming agent in a rubber component is heated and pressurized and crosslinked.
  • an uncrosslinked rubber sheet for the compressed rubber layer unexpanded hollow particles for the surface rubber layer in the V-ribbed belt B according to the first embodiment and pyrolytic foaming
  • An uncrosslinked rubber sheet similar to the uncrosslinked rubber sheet containing the agent may be used.
  • the V-ribbed belt B is shown as the friction transmission belt, but it is not particularly limited to this, and a low-edge type V-belt or the like may be used.
  • the V-ribbed belt main body 10 is configured by the compressed rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13.
  • the present invention is not particularly limited thereto, and the compressed rubber layer 11 is not limited thereto.
  • the V-ribbed belt main body 10 is constituted by the adhesive rubber layer 12, and is constituted by a woven fabric, a knitted fabric, a non-woven fabric or the like formed of, for example, cotton, polyamide fiber, polyester fiber, aramid fiber or the like instead of the back rubber layer 13. It may be provided with a reinforcing cloth.
  • the auxiliary drive belt transmission device 20 of an automobile is shown as a belt transmission device, the belt transmission device is not particularly limited to this, and may be a belt transmission device for general industries.
  • Rubber composition The uncrosslinked rubber compositions of Examples 1 to 3 and Comparative Examples 1 and 2 below were prepared. Each configuration is also shown in Table 1.
  • EPDM (trade name: EP22 manufactured by JSR) as a rubber component is put into a chamber of a closed Banbury mixer and masticated, and then carbon black (product manufactured by Tokai Carbon Co., Ltd.) is added to 100 parts by mass of the rubber component.
  • a master batch was prepared by charging and kneading 5 parts by mass of trade name: zinc oxide (3 types).
  • the master batch After cooling the master batch to room temperature, the master batch is put into a sealed banbury mixer chamber and kneaded again, and there is sulfur (100 parts by mass of rubber component) : Seimi OT) 1.7 parts by mass, vulcanization accelerator (trade name: MSA, manufactured by Ouchi Shinsei Chemical Co., Ltd.), hollow particles (trade name: Advancel EM403, expansion start temperature Ta: 150 by Sekisui Chemical Co., Ltd.) ⁇ 170 ° C) 2.3 parts by mass and thermal decomposition type foaming agent 1 (manufactured by Sankyo Kasei Co., Ltd., trade name: Cellmic CE, ADCA-based foaming agent, decomposition temperature Tb: 208 ° C) 6.9 parts by mass are charged and mixed.
  • the uncrosslinked rubber composition kneaded was released when the temperature in the chamber reached 110 ° C.
  • the uncrosslinked rubber composition was designated as Example 1.
  • Example 1 the temperature difference (Tb-Ta) between the expansion start temperature of the hollow particles and the decomposition temperature of the pyrolytic foaming agent 1 is 38 to 58 ° C., and the blending amount of the hollow particles having the blending amount of the pyrolytic foaming agent is used.
  • the mass ratio to the amount is 3.0.
  • Example 2 Except that the blending amounts of the hollow particles and the pyrolyzable foaming agent 1 were 1.2 parts by mass and 8.7 parts by mass, respectively, with respect to 100 parts by mass of the rubber component, the same composition as in Example 1 The crosslinked rubber composition was designated as Example 2.
  • the temperature difference (Tb-Ta) between the expansion start temperature of the hollow particles and the decomposition temperature of the pyrolytic foaming agent 1 is 38 to 58 ° C., and the blending amount of the hollow particles in the blending amount of the pyrolytic foaming agent is used.
  • the mass ratio to the quantity is 7.3.
  • Example 3 The blended amount of the hollow particles is 3.5 parts by mass with respect to 100 parts by mass of the rubber component, and instead of the pyrolyzable foaming agent 1, a pyrolyzable foaming agent 2 (trade name: Cellmic A DPT foaming manufactured by Sankyo Kasei Co., Ltd.) An uncrosslinked rubber composition having the same structure as Example 1 was used in Example 3, except that 4.1 parts by mass of the agent decomposition temperature Tb: 205 ° C. was added to 100 parts by mass of the rubber component.
  • Example 3 the temperature difference (Tb-Ta) between the expansion start temperature of the hollow particles and the decomposition temperature of the pyrolytic foaming agent 2 is 35 to 55 ° C., and the blending amount of the hollow particles in the blending amount of the pyrolytic foaming agent is used.
  • the mass ratio to the quantity is 1.2.
  • Example 1 An uncrosslinked rubber composition having the same configuration as that of Example 1 was compared except that the pyrolytic foaming agent 1 was not blended and the blended amount of the hollow particles was 10 parts by mass with respect to 100 parts by mass of the rubber component. It was set to 1.
  • Example 2 A non-crosslinked rubber composition having the same configuration as that of Example 1 was compared except that the hollow particles were not blended and the blending amount of the pyrolyzable foaming agent 1 was 10 parts by mass with respect to 100 parts by mass of the rubber component. 2.
  • Example 1 the surface morphology of the test piece was observed with a microscope (Model: VHX-2000, manufactured by Keyence Corporation) at a magnification of 200 times.
  • a concave hole having a shell made of hollow particles was observed.
  • Comparative Example 2 with respect to the concave holes that do not have a shell made of the pyrolytic foaming agent, arbitrary 100 hole diameters were measured, and the number average thereof was taken as the average hole diameter.
  • FIG. 11 shows a pulley layout of the belt running test machine 40 for evaluating abnormal noise when wet.
  • the belt running test machine 40 for evaluating abnormal noise when wet is provided with a drive pulley 41 that is a rib pulley having a pulley diameter of 140 mm, and a first driven pulley 42 that is a rib pulley having a pulley diameter of 75 mm is provided to the right of the drive pulley 41.
  • a second driven pulley 43 which is a rib pulley having a pulley diameter of 50 mm, is provided above the first driven pulley 42 and diagonally right above the driving pulley 41.
  • An idler pulley 44 which is a flat pulley having a pulley diameter of 75 mm, is provided in the middle.
  • the V-rib side of the V-ribbed belt B is in contact with the drive pulley 41, the first and second driven pulleys 42, 43, which are rib pulleys, and the back side is a flat pulley. It is configured to be wound around in contact with the idler pulley 44.
  • V-ribbed belts each having a compressed rubber layer formed of the uncrosslinked rubber compositions of Examples 1 to 3 and Comparative Examples 1 and 2 were manufactured.
  • the running test machine 40 position the pulley so that a belt tension of 49 N per rib is applied, give resistance to the second driven pulley 43 so that a current of 60 A flows to the alternator to which it is attached.
  • the drive pulley 41 was rotated at a rotation speed of 800 rpm, and water was dropped at a rate of 1000 ml per minute on the V rib side of the V ribbed belt B at the entry portion of the V ribbed belt B into the drive pulley 41.
  • production situation at the time of belt running was evaluated in four steps, large, small, minute, and nothing.
  • Table 1 shows the test results.
  • the average pore diameter of the hollow holes due to the hollow particles is relatively large as 92 ⁇ m, 109 ⁇ m, and 78 ⁇ m, whereas only the hollow particles are used.
  • the average pore diameter of the hollow holes by the hollow particles is 50 ⁇ m, which is smaller than the concave holes by the hollow particles of Examples 1 to 3.
  • Examples 1 to 3 have a higher noise suppressing effect during belt travel than Comparative Examples 1 and 2.
  • the present invention is useful for a transmission belt and a manufacturing method thereof.

Abstract

The present invention is a transmission belt manufacturing method in which a pulley contact portion is formed by a rubber composition on the surface of which a large number of recessed holes formed by expansion of hollow particles by heating, pressurizing, and crosslinking an uncrosslinked rubber composition formed by mixing the hollow particles not yet expanded and a thermally decomposable blowing agent into a rubber component are exposed. The decomposition temperature of the thermally decomposable blowing agent is higher than the expansion start temperature of the hollow particles.

Description

伝動ベルト及びその製造方法Transmission belt and manufacturing method thereof
 本発明は、伝動ベルト及びその製造方法に関する。 The present invention relates to a transmission belt and a manufacturing method thereof.
 ゴム成分に未膨張の中空粒子や熱分解型発泡剤を配合した未架橋ゴム組成物を加熱及び加圧すると共に架橋させることにより表面に多数の凹孔が形成されたゴム組成物を製造する技術が知られている。 Technology for producing a rubber composition having a large number of concave holes formed on the surface by heating and pressurizing and crosslinking an uncrosslinked rubber composition in which unexpanded hollow particles and a pyrolytic foaming agent are blended in a rubber component Are known.
 例えば、特許文献1には、VリブドベルトのVリブを形成する側の表面層を、Vリブの表面に凹孔を形成するための中空粒子及び/又は発泡剤が配合された未架橋ゴム組成物を加熱及び加圧して架橋させたゴム組成物で構成することが開示されている。 For example, Patent Document 1 discloses an uncrosslinked rubber composition in which a surface layer on the side of forming a V rib of a V-ribbed belt is blended with hollow particles and / or a foaming agent for forming a concave hole on the surface of the V rib. Is composed of a rubber composition crosslinked by heating and pressing.
WO2012/172717A1WO2012 / 172717A1
 本発明は、ゴム成分に未膨張の中空粒子と熱分解型発泡剤とを配合した未架橋ゴム組成物を加熱及び加圧すると共に架橋させることにより前記中空粒子が膨張して形成された多数の凹孔が表面に露出したゴム組成物でプーリ接触部分を構成する伝動ベルトの製造方法であって、前記中空粒子の膨張開始温度よりも前記熱分解型発泡剤の分解温度の方が高い。 In the present invention, an uncrosslinked rubber composition in which a rubber component is blended with unexpanded hollow particles and a thermally decomposable foaming agent is heated and pressurized and crosslinked to form a plurality of recesses formed by expanding the hollow particles. A method for producing a transmission belt in which a pulley contact portion is constituted by a rubber composition having holes exposed on the surface, wherein the decomposition temperature of the pyrolytic foaming agent is higher than the expansion start temperature of the hollow particles.
 本発明は、ゴム成分に未膨張の中空粒子と熱分解型発泡剤とを配合した未架橋ゴム組成物を加熱及び加圧すると共に架橋させることにより前記中空粒子が膨張して形成された多数の凹孔が表面に露出したゴム組成物でプーリ接触部分が構成された伝動ベルトであって、前記中空粒子による前記多数の凹孔の平均孔径が70~120μmであり、且つ前記中空粒子による前記多数の凹孔の孔径差が50μm以下である。 In the present invention, an uncrosslinked rubber composition in which a rubber component is blended with unexpanded hollow particles and a thermally decomposable foaming agent is heated and pressurized and crosslinked to form a plurality of recesses formed by expanding the hollow particles. A transmission belt having a pulley contact portion made of a rubber composition with holes exposed on the surface, wherein an average pore diameter of the plurality of concave holes due to the hollow particles is 70 to 120 μm, and The hole diameter difference between the concave holes is 50 μm or less.
実施形態1に係るVリブドベルトの斜視図である。3 is a perspective view of a V-ribbed belt according to Embodiment 1. FIG. 表面ゴム層の断面拡大図である。It is a cross-sectional enlarged view of a surface rubber layer. ベルト成形型の縦断面図である。It is a longitudinal cross-sectional view of a belt forming die. ベルト成形型の一部分の縦断面拡大図である。It is a longitudinal cross-sectional enlarged view of a part of belt forming die. 積層体を形成する工程を示す説明図である。It is explanatory drawing which shows the process of forming a laminated body. 積層体を外型にセットする工程を示す説明図である。It is explanatory drawing which shows the process of setting a laminated body to an outer type | mold. 外型を内型の外側に設ける工程を示す説明図である。It is explanatory drawing which shows the process of providing an outer type | mold on the outer side of an inner type | mold. ベルトスラブを成型する工程を示す説明図である。It is explanatory drawing which shows the process of shape | molding a belt slab. 自動車の補機駆動ベルト伝動装置のプーリレイアウトを示す図である。It is a figure which shows the pulley layout of the auxiliary machine drive belt transmission of a motor vehicle. 実施形態2に係るVリブドベルトの斜視図である。6 is a perspective view of a V-ribbed belt according to Embodiment 2. FIG. 被水時異音評価用ベルト走行試験機のプーリレイアウトを示す図である。It is a figure which shows the pulley layout of the belt running test machine for abnormal noise evaluation at the time of flooding.
 以下、実施形態について図面に基づいて詳細に説明する。 Hereinafter, embodiments will be described in detail based on the drawings.
 (実施形態1)
 図1は、実施形態1に係るVリブドベルトB(伝動ベルト)を示す。実施形態1に係るVリブドベルトBは、例えば、自動車のエンジンルーム内に設けられる補機駆動ベルト伝動装置等に用いられるものである。実施形態1に係るVリブドベルトBは、例えば、ベルト周長が700~3000mm、ベルト幅が10~36mm、及びベルト厚さが4.0~5.0mmである。
(Embodiment 1)
FIG. 1 shows a V-ribbed belt B (power transmission belt) according to the first embodiment. The V-ribbed belt B according to the first embodiment is used, for example, in an auxiliary machine drive belt transmission provided in an engine room of an automobile. The V-ribbed belt B according to Embodiment 1 has, for example, a belt circumferential length of 700 to 3000 mm, a belt width of 10 to 36 mm, and a belt thickness of 4.0 to 5.0 mm.
 実施形態1に係るVリブドベルトBは、ベルト内周側の圧縮ゴム層11と中間の接着ゴム層12とベルト外周側の背面ゴム層13との三重層に構成されたVリブドベルト本体10を備える。Vリブドベルト本体10の接着ゴム層12には、ベルト幅方向にピッチを有する螺旋を形成するように配された心線14が埋設されている。 The V-ribbed belt B according to Embodiment 1 includes a V-ribbed belt main body 10 configured in a triple layer of a compression rubber layer 11 on the belt inner peripheral side, an intermediate adhesive rubber layer 12 and a back rubber layer 13 on the belt outer peripheral side. A core wire 14 is embedded in the adhesive rubber layer 12 of the V-ribbed belt body 10 so as to form a spiral having a pitch in the belt width direction.
 圧縮ゴム層11は、複数のVリブ15がベルト内周側に垂下するように設けられている。複数のVリブ15は、各々がベルト長さ方向に延びる断面略逆三角形の突条に形成されていると共に、ベルト幅方向に並設されている。各Vリブ15は、例えば、リブ高さが2.0~3.0mm、リブ基端間の幅が1.0~3.6mmである。リブ数は例えば3~6個である(図1ではリブ数が6)。 The compression rubber layer 11 is provided so that a plurality of V ribs 15 hang down to the inner peripheral side of the belt. The plurality of V ribs 15 are each formed in a ridge having a substantially inverted triangular cross section extending in the belt length direction, and arranged in parallel in the belt width direction. Each V-rib 15 has, for example, a rib height of 2.0 to 3.0 mm and a width between rib base ends of 1.0 to 3.6 mm. The number of ribs is 3 to 6, for example (the number of ribs is 6 in FIG. 1).
 圧縮ゴム層11は、プーリ接触表面全体に沿うように層状に設けられた表面ゴム層11a(プーリ接触部分)とその表面ゴム層11aよりもベルト内部側に設けられた内部ゴム層11bとを有する。表面ゴム層11aの厚さは例えば50~500μmである。 The compression rubber layer 11 has a surface rubber layer 11a (pulley contact portion) provided in a layered manner along the entire pulley contact surface and an internal rubber layer 11b provided on the inner side of the belt with respect to the surface rubber layer 11a. . The thickness of the surface rubber layer 11a is, for example, 50 to 500 μm.
 表面ゴム層11aは、ゴム成分に未膨張の中空粒子と熱分解型発泡剤とを含むゴム配合剤を配合して混練した未架橋ゴム組成物を加熱及び加圧すると共に架橋させたゴム組成物であって、それにより内部にシェルを有する多数の中空部16が形成され且つ表面、つまり、プーリ接触表面にシェルを有する多数の凹孔17が形成されたゴム組成物で構成されている。このシェルを有する中空部16は中空粒子の膨張により形成されたものであり、また、シェルを有する凹孔17は膨張した中空粒子が表面においてシェルが破れて開口することにより形成されたものである。そして、未架橋ゴム組成物に配合された中空粒子の膨張開始温度よりも、熱分解型発泡剤の分解温度の方が高い。このようにゴム成分に未膨張の中空粒子と熱分解型発泡剤とを配合した未架橋ゴム組成物を加熱及び加圧すると共に架橋させたゴム組成物で構成された表面ゴム層11aでは、中空粒子の膨張開始温度よりも熱分解型発泡剤の分解温度の方が高いことにより、図2に示すように、表面ゴム層11aの表面に、中空粒子による、平均孔径が大きく、しかも、孔径のばらつきが小さい凹孔17が形成されることとなる。ここで、膨張開始温度とは、常圧(1気圧)において未膨張の中空粒子が膨張を開始する温度である。分解温度とは、常圧(1気圧)において熱分解型発泡剤が分解を開始する温度である。 The surface rubber layer 11a is a rubber composition obtained by heating and pressurizing and cross-linking an uncrosslinked rubber composition obtained by mixing and kneading a rubber compounding component containing unexpanded hollow particles and a pyrolytic foaming agent in a rubber component. Accordingly, a large number of hollow portions 16 having shells therein are formed, and the surface is constituted by a rubber composition in which a large number of concave holes 17 having shells are formed on the pulley contact surface. The hollow portion 16 having the shell is formed by the expansion of the hollow particles, and the concave hole 17 having the shell is formed by opening the expanded hollow particles by breaking the shell on the surface. . And the decomposition temperature of a thermal decomposition type foaming agent is higher than the expansion | swelling start temperature of the hollow particle mix | blended with the uncrosslinked rubber composition. In the surface rubber layer 11a composed of a rubber composition in which a non-crosslinked rubber composition in which a rubber component is blended with unexpanded hollow particles and a pyrolytic foaming agent is heated and pressurized, the hollow particles are formed. Since the decomposition temperature of the pyrolytic foaming agent is higher than the expansion start temperature of the surface, the average pore diameter due to the hollow particles is large on the surface of the surface rubber layer 11a as shown in FIG. Thus, a small concave hole 17 is formed. Here, the expansion start temperature is a temperature at which the unexpanded hollow particles start expanding at normal pressure (1 atm). The decomposition temperature is a temperature at which the pyrolytic foaming agent starts to decompose at normal pressure (1 atm).
 自動車の走行中における静音性に対するニーズが高まっているが、かかるニーズから、エンジンルーム内で走行するVリブドベルトに対しては、被水状態でベルト走行した際のスリップ異音の発生の抑制が求められている。かかる要求に対し、実施形態1に係るVリブドベルトBによれば、上記の通り、圧縮ゴム層11の表面ゴム層11aの表面に中空粒子による平均孔径が大きい多数の凹孔17が形成されているので、被水状態でベルト走行した際でも、凹孔17によりプーリ表面の水膜を効率的に破壊し、それによってスリップ異音の発生を効果的に抑制することができる。 There is an increasing need for quietness during driving of automobiles. However, for these needs, it is necessary for V-ribbed belts that run in the engine room to suppress the generation of slip noise when the belts are run under wet conditions. It has been. In response to such a request, according to the V-ribbed belt B according to the first embodiment, as described above, a large number of concave holes 17 having a large average pore diameter due to the hollow particles are formed on the surface of the surface rubber layer 11a of the compressed rubber layer 11. Therefore, even when the belt travels in a wet condition, the water film on the pulley surface can be efficiently destroyed by the concave hole 17, thereby effectively suppressing the occurrence of slip noise.
 表面ゴム層11aを構成するゴム組成物のゴム成分としては、例えば、エチレン・プロピレンコポリマー(EPR)、エチレン・プロピレン・ジエンターポリマー(EPDM)、エチレン・オクテンコポリマー、エチレン・ブテンコポリマーなどのエチレン-α-オレフィンエラストマー;クロロプレンゴム(CR);クロロスルホン化ポリエチレンゴム(CSM);水素添加アクリロニトリルゴム(H-NBR)等が挙げられる。ゴム成分は、これらのうちの1種又は2種以上を用いることが好ましく、エチレン-α-オレフィンエラストマーを用いることがより好ましい。 Examples of the rubber component of the rubber composition constituting the surface rubber layer 11a include ethylene-propylene copolymer (EPR), ethylene-propylene-diene terpolymer (EPDM), ethylene-octene copolymer, ethylene-butene copolymer, and other ethylene- Examples include α-olefin elastomers; chloroprene rubber (CR); chlorosulfonated polyethylene rubber (CSM); hydrogenated acrylonitrile rubber (H-NBR). As the rubber component, one or more of these are preferably used, and an ethylene-α-olefin elastomer is more preferably used.
 表面ゴム層11aを構成するゴム組成物は、ゴム成分に未膨張の中空粒子と熱分解型発泡剤とが配合された未架橋ゴム組成物が架橋して形成されるが、その未膨張の中空粒子としては、例えば、熱可塑性ポリマー(例えばアクリロニトリル系ポリマー)等で形成されたシェルの内部に溶剤が封入された粒子が挙げられる。中空粒子は、単一種だけを用いても、また、複数種を用いても、どちらでもよい。未膨張の中空粒子の粒径は、表面ゴム層11aの表面に被水時のスリップによる異音発生抑制に好適な中空粒子による平均孔径が大きい凹孔17を形成する観点から、好ましくは15μm以上、より好ましくは25μm以上であり、また、好ましくは50μm以下、より好ましくは35μm以下である。中空粒子の膨張開始温度は、表面ゴム層11aの表面に被水時のスリップによる異音発生抑制に好適な中空粒子による平均孔径が大きい凹孔17を形成する観点から、好ましくは140℃以上、より好ましくは150℃以上であり、また、好ましくは180℃以下、より好ましくは170℃以下である。中空粒子の配合量は、表面ゴム層11aの表面に被水時のスリップによる異音発生抑制に好適な中空粒子による平均孔径が大きい凹孔17を形成する観点から、ゴム成分100質量部に対して、好ましくは0.5質量部以上、より好ましくは1.0質量部以上であり、また、好ましくは10質量部以下、より好ましくは5.0質量部以下である。なお、市販の中空粒子としては、例えば、積水化学工業社製の商品名:アドバンセルEM403(粒径26~34μm,膨張開始温度:150~170℃)等が挙げられる。 The rubber composition constituting the surface rubber layer 11a is formed by crosslinking an uncrosslinked rubber composition in which unexpanded hollow particles and a pyrolytic foaming agent are blended in a rubber component. Examples of the particles include particles in which a solvent is enclosed in a shell formed of a thermoplastic polymer (for example, acrylonitrile-based polymer). The hollow particles may be either a single species or a plurality of species. The particle diameter of the unexpanded hollow particles is preferably 15 μm or more from the viewpoint of forming the concave holes 17 having a large average pore diameter due to the hollow particles suitable for suppressing the generation of abnormal noise due to slippage when wet on the surface of the surface rubber layer 11a. More preferably, it is 25 μm or more, preferably 50 μm or less, more preferably 35 μm or less. The expansion start temperature of the hollow particles is preferably 140 ° C. or higher, from the viewpoint of forming the concave holes 17 having a large average pore diameter due to the hollow particles suitable for suppressing the generation of abnormal noise due to slippage at the time of water on the surface of the surface rubber layer 11a. More preferably, it is 150 degreeC or more, Preferably it is 180 degreeC or less, More preferably, it is 170 degreeC or less. From the viewpoint of forming the concave holes 17 having a large average pore diameter due to the hollow particles suitable for suppressing the generation of abnormal noise due to slippage at the time of moisture on the surface of the surface rubber layer 11a, the amount of the hollow particles to be blended is 100 parts by mass of the rubber component. And preferably 0.5 parts by mass or more, more preferably 1.0 parts by mass or more, and preferably 10 parts by mass or less, more preferably 5.0 parts by mass or less. Examples of commercially available hollow particles include Sekisui Chemical Co., Ltd. trade name: ADVANCEL EM403 (particle size 26 to 34 μm, expansion start temperature: 150 to 170 ° C.).
 表面ゴム層11aを構成するゴム組成物は、内部に膨張した中空粒子により形成された多数の中空部16を有すると共に、表面に中空粒子のシェルが破れて開口した多数の凹孔17が露出している。それらの凹孔17の平均孔径は、被水時のスリップによる異音発生抑制に好適であるという観点から、好ましくは70μm以上、より好ましくは80μm以上であり、また、好ましくは120μm以下、より好ましくは110μm以下である。凹孔17の孔径の最大値と最小値との差、つまり、孔径差は、凹孔17の孔径のばらつきの指標となるが、好ましくは50μm以下、より好ましくは40μm以下である。ここで、凹孔17の孔径とは、表面ゴム層11aの表面に露出した凹孔17の開口径であり、その平均孔径は、表面画像から測定される任意の50~100個の孔径の数平均として求めることができ、また、孔径差は、表面画像から測定される任意の50~100個の孔径の最大値と最小値との差として求めることができる。 The rubber composition that constitutes the surface rubber layer 11a has a large number of hollow portions 16 formed by hollow particles expanded inside, and a large number of concave holes 17 that are opened by breaking the shell of the hollow particles on the surface. ing. The average hole diameter of the concave holes 17 is preferably not less than 70 μm, more preferably not less than 80 μm, and more preferably not more than 120 μm, more preferably from the viewpoint that it is suitable for suppressing the generation of abnormal noise due to slippage when wet. Is 110 μm or less. The difference between the maximum value and the minimum value of the hole diameter of the concave hole 17, that is, the hole diameter difference is an indicator of the variation in the hole diameter of the concave hole 17, but is preferably 50 μm or less, more preferably 40 μm or less. Here, the hole diameter of the concave hole 17 is an opening diameter of the concave hole 17 exposed on the surface of the surface rubber layer 11a, and the average hole diameter is the number of arbitrary 50 to 100 hole diameters measured from the surface image. The pore diameter difference can be obtained as an average, and the pore diameter difference can be obtained as a difference between the maximum value and the minimum value of arbitrary 50 to 100 pore diameters measured from the surface image.
 未架橋ゴム組成物に配合される熱分解型発泡剤としては、例えば、アゾジカルボンアミドを主成分とするADCA系発泡剤、ジニトロソペンタメチレンテトラミンを主成分とするDPT系発泡剤、p,p’-オキシビスベンゼンスルホニルヒドラジドを主成分とするOBSH系発泡剤、ヒドラゾジカルボンアミドを主成分とするHDCA系発泡剤などの有機系発泡剤等が挙げられる。熱分解型発泡剤は、これらのうちの1種又は2種以上を用いることが好ましく、ADCA系発泡剤を用いることがより好ましい。なお、市販の熱分解型発泡剤としては、例えば、三協化成社製の商品名:セルマイクシリーズ等が挙げられる。 Examples of the thermally decomposable foaming agent blended in the uncrosslinked rubber composition include, for example, an ADCA foaming agent mainly composed of azodicarbonamide, a DPT foaming agent mainly composed of dinitrosopentamethylenetetramine, p, p Examples thereof include organic foaming agents such as an OBSH foaming agent mainly composed of '-oxybisbenzenesulfonylhydrazide and an HDCA foaming agent mainly composed of hydrazodicarbonamide. Of these, one or more of these pyrolytic foaming agents are preferably used, and ADCA foaming agents are more preferably used. In addition, as a commercially available thermal decomposition type foaming agent, the Sankyo Kasei Co., Ltd. brand name: Cell microphone series etc. are mentioned, for example.
 熱分解型発泡剤の分解温度は、中空粒子の膨張開始温度よりも高いが、具体的には、表面ゴム層11aの表面に被水時のスリップによる異音発生抑制に好適な中空粒子による平均孔径が大きい凹孔17を形成する観点から、好ましくは150℃以上、より好ましくは160℃以上であり、また、好ましくは230℃以下、より好ましくは210℃以下である。中空粒子の膨張開始温度と熱分解型発泡剤の分解温度との温度差は、表面ゴム層11aの表面に被水時のスリップによる異音発生抑制に好適な平均孔径が大きい凹孔17を形成する観点から、好ましくは10℃以上、より好ましくは20℃以上、更に好ましくは35℃以上であり、また、好ましくは80℃以下、より好ましくは60℃以下である。 Although the decomposition temperature of the pyrolytic foaming agent is higher than the expansion start temperature of the hollow particles, specifically, the average of the hollow particles suitable for suppressing the generation of abnormal noise due to slip on the surface of the surface rubber layer 11a. From the viewpoint of forming the concave hole 17 having a large hole diameter, it is preferably 150 ° C. or higher, more preferably 160 ° C. or higher, and preferably 230 ° C. or lower, more preferably 210 ° C. or lower. The temperature difference between the expansion start temperature of the hollow particles and the decomposition temperature of the thermal decomposition type foaming agent forms a concave hole 17 having a large average hole diameter suitable for suppressing the generation of abnormal noise due to slippage when the water is wet on the surface of the surface rubber layer 11a. From this viewpoint, it is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, still more preferably 35 ° C. or higher, and preferably 80 ° C. or lower, more preferably 60 ° C. or lower.
 熱分解型発泡剤の配合量は、表面ゴム層11aの表面に被水時のスリップによる異音発生抑制に好適な中空粒子による平均孔径が大きい凹孔17を形成する観点から、ゴム成分100質量部に対して、好ましくは0.5質量部以上、より好ましくは4質量部以上であり、また、好ましくは10質量部以下、より好ましくは7質量部以下である。熱分解型発泡剤のゴム成分100質量部に対する配合量は、未膨張の中空粒子のゴム成分100質量部に対する配合量よりも多いことが好ましい。熱分解型発泡剤のゴム成分100質量部に対する配合量の未膨張の中空粒子のゴム成分100質量部に対する配合量に対する質量比(熱分解型発泡剤のゴム成分100質量部に対する配合量/未膨張の中空粒子のゴム成分100質量部に対する配合量)は、表面ゴム層11aの表面に被水時のスリップによる異音発生抑制に好適な中空粒子による平均孔径が大きい凹孔17を形成する観点から、好ましくは1以上、より好ましくは2.5以上であり、また、好ましくは10以下、より好ましくは8以下である。 The compounding amount of the pyrolytic foaming agent is 100 masses of the rubber component from the viewpoint of forming the concave holes 17 having a large average pore diameter due to the hollow particles suitable for suppressing the generation of abnormal noise due to slippage at the time of water on the surface of the surface rubber layer 11a. The amount is preferably 0.5 parts by mass or more, more preferably 4 parts by mass or more, and preferably 10 parts by mass or less, more preferably 7 parts by mass or less. The blending amount of the pyrolytic foaming agent with respect to 100 parts by weight of the rubber component is preferably larger than the blending amount of unexpanded hollow particles with respect to 100 parts by weight of the rubber component. Mass ratio of blended amount of unexpanded hollow particles to 100 parts by weight of rubber component of rubber component of pyrolytic foaming agent to blended amount of 100 parts by weight of rubber component (blended amount of 100 parts by weight of pyrolyzable foaming agent / unswelled The amount of the hollow particles blended with 100 parts by mass of the rubber component) is from the viewpoint of forming the concave holes 17 having a large average pore diameter due to the hollow particles suitable for suppressing the generation of abnormal noise due to slippage at the time of water on the surface rubber layer 11a. , Preferably 1 or more, more preferably 2.5 or more, and preferably 10 or less, more preferably 8 or less.
 表面ゴム層11aを構成するゴム組成物は、熱分解型発泡剤の発泡により内部に形成されたシェルを有さない多数の中空部18を有すると共に、表面に形成されたシェルを有さない多数の凹孔19が露出している。凹孔19の孔径の最大値と最小値との差、つまり、孔径差は、中空粒子により形成された凹孔17の孔径差よりも大きく、従って、孔径のばらつきが大きい。ここで、シェルを有さない凹孔19の孔径とは、表面ゴム層11aの表面に露出したその開口径である。 The rubber composition constituting the surface rubber layer 11a has a large number of hollow portions 18 that do not have a shell formed therein by foaming of a pyrolytic foaming agent, and a large number that does not have a shell formed on the surface. The recessed hole 19 is exposed. The difference between the maximum value and the minimum value of the hole diameter of the concave hole 19, that is, the hole diameter difference is larger than the hole diameter difference of the concave hole 17 formed by the hollow particles, and therefore, the variation in the hole diameter is large. Here, the hole diameter of the concave hole 19 having no shell is the opening diameter exposed on the surface of the surface rubber layer 11a.
 表面ゴム層11aを構成するゴム組成物には、熱分解型発泡剤が分解して発泡した後の分解残渣が含まれる。具体的には、例えば、ADCA系発泡剤の場合には、表面ゴム層11aを構成するゴム組成物に分解残渣としてビウレアシアヌール酸ウラゾールが含まれることとなる。DPT系発泡剤の場合には、表面ゴム層11aを構成するゴム組成物に分解残渣としてヘキサメチレンテトラミンが含まれることとなる。OBSH系発泡剤の場合には、表面ゴム層11aを構成するゴム組成物に分解残渣としてポリジチオフェニルエーテル及びポリチオフェニルベンゼンスルホニルエーテルが含まれることとなる。HDCA系発泡剤の場合には、表面ゴム層11aを構成するゴム組成物に分解残渣としてウラゾールが含まれることとなる。 The rubber composition constituting the surface rubber layer 11a includes a decomposition residue after the thermal decomposition type foaming agent is decomposed and foamed. Specifically, for example, in the case of an ADCA foaming agent, urazole biurea cyanurate is included as a decomposition residue in the rubber composition constituting the surface rubber layer 11a. In the case of the DPT foaming agent, hexamethylenetetramine is contained as a decomposition residue in the rubber composition constituting the surface rubber layer 11a. In the case of the OBSH-based foaming agent, the rubber composition constituting the surface rubber layer 11a contains polydithiophenyl ether and polythiophenylbenzenesulfonyl ether as decomposition residues. In the case of the HDCA-based foaming agent, the rubber composition constituting the surface rubber layer 11a contains urazole as a decomposition residue.
 表面ゴム層11aを構成するゴム組成物に配合されるその他のゴム配合剤としては、例えば、カーボンブラックなどの補強材、オイル、加工助剤、加硫助剤、架橋剤、加硫促進剤等が挙げられる。表面ゴム層11aを構成するゴム組成物には短繊維が配合されていてもよい。表面ゴム層11aを構成するゴム組成物は、架橋剤として硫黄が用いられた硫黄架橋系ゴム組成物であっても、また、架橋剤として有機過酸化物が用いられた有機過酸化物架橋系ゴム組成物であっても、更に、それらを併用した併用架橋系ゴム組成物であっても、いずれでもよい。 Examples of other rubber compounding agents blended in the rubber composition constituting the surface rubber layer 11a include reinforcing materials such as carbon black, oil, processing aids, vulcanization aids, crosslinking agents, vulcanization accelerators, and the like. Is mentioned. Short fibers may be blended in the rubber composition constituting the surface rubber layer 11a. The rubber composition constituting the surface rubber layer 11a may be a sulfur-crosslinked rubber composition in which sulfur is used as a crosslinking agent, or an organic peroxide crosslinked system in which an organic peroxide is used as a crosslinking agent. Either a rubber composition or a combined cross-linked rubber composition using them in combination may be used.
 内部ゴム層11bは、ゴム成分にゴム配合剤を配合して混練した未架橋ゴム組成物を加熱及び加圧すると共に架橋させたゴム組成物で構成されている。 The inner rubber layer 11b is composed of a rubber composition in which an uncrosslinked rubber composition obtained by mixing and kneading a rubber compounding agent with a rubber component is heated and pressurized and crosslinked.
 内部ゴム層11bを構成するゴム組成物のゴム成分としては、表面ゴム層11aの場合と同様、例えば、エチレン-α-オレフィンエラストマー等が挙げられる。内部ゴム層11bを構成するゴム組成物のゴム成分は、表面ゴム層11aを構成するゴム組成物のゴム成分と同一であることが好ましい。 As the rubber component of the rubber composition constituting the inner rubber layer 11b, for example, an ethylene-α-olefin elastomer and the like can be cited as in the case of the surface rubber layer 11a. The rubber component of the rubber composition constituting the inner rubber layer 11b is preferably the same as the rubber component of the rubber composition constituting the surface rubber layer 11a.
 内部ゴム層11bを構成するゴム組成物に配合されるゴム配合剤としては、表面ゴム層11aの場合と同様、例えば、カーボンブラックなどの補強材、軟化剤、加工助剤、加硫助剤、架橋剤、加硫促進剤、ゴム配合用樹脂、老化防止剤等が挙げられる。内部ゴム層11bを構成するゴム組成物の架橋前の未架橋ゴム組成物には、未膨張の中空粒子及び熱分解型発泡剤が配合されていないことが好ましい。つまり、内部ゴム層11bを構成するゴム組成物は中実であることが好ましい。内部ゴム層11bを構成するゴム組成物には短繊維が配合されていないことが好ましい。内部ゴム層11bを構成するゴム組成物は、架橋剤として硫黄が用いられた硫黄架橋系ゴム組成物であっても、また、架橋剤として有機過酸化物が用いられた有機過酸化物架橋系ゴム組成物であっても、更に、それらを併用した併用架橋系ゴム組成物であっても、いずれでもよい。内部ゴム層11bの架橋系は、表面ゴム層11aの架橋系と同一であっても、また、異なっていても、どちらでもよい。 As a rubber compounding agent compounded in the rubber composition constituting the internal rubber layer 11b, for example, as in the case of the surface rubber layer 11a, for example, a reinforcing material such as carbon black, a softening agent, a processing aid, a vulcanizing aid, Examples thereof include a crosslinking agent, a vulcanization accelerator, a rubber compounding resin, and an antioxidant. The uncrosslinked rubber composition before crosslinking of the rubber composition constituting the inner rubber layer 11b is preferably not blended with unexpanded hollow particles and a pyrolytic foaming agent. That is, the rubber composition constituting the inner rubber layer 11b is preferably solid. It is preferable that the short fiber is not mix | blended with the rubber composition which comprises the internal rubber layer 11b. The rubber composition constituting the inner rubber layer 11b may be a sulfur-crosslinked rubber composition in which sulfur is used as a crosslinking agent, or an organic peroxide crosslinked system in which an organic peroxide is used as a crosslinking agent. Either a rubber composition or a combined cross-linked rubber composition using them in combination may be used. The cross-linking system of the inner rubber layer 11b may be the same as or different from the cross-linking system of the surface rubber layer 11a.
 接着ゴム層12は、断面横長矩形の帯状に形成されており、厚さが例えば1.0~2.5mmである。背面ゴム層13も、断面横長矩形の帯状に形成されており、厚さが例えば0.4~0.8mmである。背面ゴム層13の表面は、ベルト背面が接触する平プーリとの間で生じる音を抑制する観点から、織布の布目が転写された形態に形成されていることが好ましい。 The adhesive rubber layer 12 is formed in a band shape having a horizontally long cross section and has a thickness of, for example, 1.0 to 2.5 mm. The back rubber layer 13 is also formed in a band shape having a horizontally long cross section and has a thickness of, for example, 0.4 to 0.8 mm. The surface of the back rubber layer 13 is preferably formed in a form in which the texture of the woven fabric is transferred from the viewpoint of suppressing the sound generated between the back rubber layer 13 and the flat pulley in contact with the belt back surface.
 接着ゴム層12及び背面ゴム層13のそれぞれは、ゴム成分にゴム配合剤を配合して混練した未架橋ゴム組成物を加熱及び加圧すると共に架橋させたゴム組成物で構成されている。 Each of the adhesive rubber layer 12 and the back rubber layer 13 is composed of a rubber composition obtained by heating and pressurizing and crosslinking a non-crosslinked rubber composition obtained by mixing a rubber compounding agent with a rubber component and kneading.
 接着ゴム層12及び背面ゴム層13を構成するゴム組成物のゴム成分としては、表面ゴム層11aの場合と同様、例えば、エチレン-α-オレフィンエラストマー等が挙げられる。接着ゴム層12及び背面ゴム層13を構成するゴム組成物のゴム成分は、表面ゴム層11a及び/又は内部ゴム層11bを構成するゴム組成物のゴム成分と同一であることが好ましい。 Examples of the rubber component of the rubber composition constituting the adhesive rubber layer 12 and the back rubber layer 13 include, for example, ethylene-α-olefin elastomers as in the case of the surface rubber layer 11a. The rubber component of the rubber composition constituting the adhesive rubber layer 12 and the back rubber layer 13 is preferably the same as the rubber component of the rubber composition constituting the surface rubber layer 11a and / or the internal rubber layer 11b.
 接着ゴム層12及び背面ゴム層13を構成するゴム組成物に配合されるゴム配合剤としては、表面ゴム層11aの場合と同様、例えば、カーボンブラックなどの補強材、軟化剤、加工助剤、加硫助剤、架橋剤、加硫促進剤、ゴム配合用樹脂、老化防止剤等が挙げられる。接着ゴム層12及び背面ゴム層13を構成するゴム組成物の架橋前の未架橋ゴム組成物には、未膨張の中空粒子及び熱分解型発泡剤が配合されていないことが好ましい。つまり、接着ゴム層12及び背面ゴム層13を構成するゴム組成物は中実であることが好ましい。接着ゴム層12及び背面ゴム層13を構成するゴム組成物には短繊維が配合されていてもよい。接着ゴム層12及び背面ゴム層13を構成するゴム組成物は、架橋剤として硫黄が用いられた硫黄架橋系ゴム組成物であっても、また、架橋剤として有機過酸化物が用いられた有機過酸化物架橋系ゴム組成物であっても、更に、それらを併用した併用架橋系ゴム組成物であっても、いずれでもよい。接着ゴム層12及び背面ゴム層13の架橋系は、表面ゴム層11a及び/又は内部ゴム層11bの架橋系と同一であっても、また、異なっていても、どちらでもよい。 As a rubber compounding agent compounded in the rubber composition constituting the adhesive rubber layer 12 and the back rubber layer 13, for example, a reinforcing material such as carbon black, a softening agent, a processing aid, as in the case of the surface rubber layer 11a, Examples include vulcanization aids, crosslinking agents, vulcanization accelerators, rubber compounding resins, anti-aging agents, and the like. The uncrosslinked rubber composition before crosslinking of the rubber composition constituting the adhesive rubber layer 12 and the back rubber layer 13 is preferably not blended with unexpanded hollow particles and a pyrolytic foaming agent. That is, it is preferable that the rubber composition constituting the adhesive rubber layer 12 and the back rubber layer 13 is solid. Short fibers may be blended in the rubber composition constituting the adhesive rubber layer 12 and the back rubber layer 13. The rubber composition constituting the adhesive rubber layer 12 and the back rubber layer 13 may be a sulfur-crosslinked rubber composition in which sulfur is used as a crosslinking agent, or an organic material in which an organic peroxide is used as a crosslinking agent. Either a peroxide cross-linked rubber composition or a combined cross-linked rubber composition using them in combination may be used. The crosslinking system of the adhesive rubber layer 12 and the back rubber layer 13 may be the same as or different from the crosslinking system of the surface rubber layer 11a and / or the internal rubber layer 11b.
 圧縮ゴム層11の内部ゴム層11b、接着ゴム層12、及び背面ゴム層13は、別配合のゴム組成物で形成されていても、また、同じ配合のゴム組成物で形成されていても、どちらでもよい。 Even if the inner rubber layer 11b, the adhesive rubber layer 12, and the back rubber layer 13 of the compressed rubber layer 11 are formed of a rubber composition of a different composition or a rubber composition of the same composition, either will do.
 心線14は、ポリエステル繊維(PET)、ポリエチレンナフタレート繊維(PEN)、アラミド繊維、ビニロン繊維等の撚り糸で構成されている。心線14は、Vリブドベルト本体10に対する接着性を付与するために、成形加工前にRFL水溶液に浸漬された後に加熱される接着処理及び/又はゴム糊に浸漬された後に乾燥される接着処理が施されている。 The core wire 14 is composed of twisted yarns such as polyester fiber (PET), polyethylene naphthalate fiber (PEN), aramid fiber, vinylon fiber and the like. The core 14 is subjected to an adhesive treatment that is heated after being immersed in an RFL aqueous solution before forming and / or an adhesive treatment that is dried after being immersed in rubber paste in order to impart adhesion to the V-ribbed belt body 10. It has been subjected.
 次に、実施形態1に係るVリブドベルトBの製造方法について説明する。 Next, a method for manufacturing the V-ribbed belt B according to the first embodiment will be described.
 実施形態1に係るVリブドベルトBの製造では、図3及び4に示すように、同心状に設けられた、各々、円筒状の内型21及び外型22からなるベルト成形型20を用いる。 In the manufacture of the V-ribbed belt B according to the first embodiment, as shown in FIGS. 3 and 4, a belt forming die 20 including a cylindrical inner die 21 and an outer die 22 provided concentrically is used.
 このベルト成形型20では、内型21はゴム等の可撓性材料で形成されている。外型22は金属等の剛性材料で形成されている。外型22の内周面は成型面に構成されており、その外型22の内周面には、Vリブ形成溝23が軸方向に一定ピッチで設けられている。また、外型22には、水蒸気等の熱媒体や水等の冷媒体を流通させて温調する温調機構が設けられている。更に、このベルト成形型20では、内型21を内部から加圧膨張させるための加圧手段が設けられている。 In the belt mold 20, the inner mold 21 is formed of a flexible material such as rubber. The outer mold 22 is made of a rigid material such as metal. The inner peripheral surface of the outer mold 22 is formed as a molding surface, and V rib forming grooves 23 are provided on the inner peripheral surface of the outer mold 22 at a constant pitch in the axial direction. Further, the outer mold 22 is provided with a temperature control mechanism that controls the temperature by circulating a heat medium such as water vapor or a coolant such as water. Further, the belt mold 20 is provided with a pressurizing means for pressurizing and expanding the inner mold 21 from the inside.
 実施形態1に係るVリブドベルトBの製造において、まず、ゴム成分に各ゴム配合剤を配合し、ニーダー、バンバリーミキサー等の混練機で混練し、得られた未架橋ゴム組成物をカレンダー成形等によってシート状に成形して圧縮ゴム層11の表面ゴム層用及び内部ゴム層用の未架橋ゴムシート11a’,11b’を作製する。同様に、接着ゴム層用及び背面ゴム層用の未架橋ゴムシート12’,13’も作製する。また、心線用の撚り糸14’をRFL水溶液に浸漬して加熱する接着処理を行い、必要に応じて、その後、ゴム糊に浸漬して加熱乾燥する接着処理を行う。 In the manufacture of the V-ribbed belt B according to the first embodiment, first, each rubber compounding agent is blended with the rubber component and kneaded by a kneader such as a kneader or a Banbury mixer, and the obtained uncrosslinked rubber composition is formed by calendar molding or the like. The uncrosslinked rubber sheets 11a ′ and 11b ′ for the surface rubber layer and the internal rubber layer of the compressed rubber layer 11 are produced by forming into a sheet shape. Similarly, uncrosslinked rubber sheets 12 'and 13' for the adhesive rubber layer and the back rubber layer are also produced. Further, an adhesive treatment is performed in which the twisted wire 14 ′ for the core wire is immersed in an RFL aqueous solution and heated, and thereafter, an adhesive treatment is performed in which the strand 14 d is immersed in rubber paste and dried by heating.
 このとき、表面ゴム層用の未架橋ゴムシート11a’の作製においては、ゴム成分に未膨張の中空粒子16’と熱分解型発泡剤とを配合する。 At this time, in the production of the uncrosslinked rubber sheet 11a 'for the surface rubber layer, the rubber component is blended with unexpanded hollow particles 16' and a pyrolytic foaming agent.
 次いで、図5に示すように、表面が平滑な円筒ドラム24上にゴムスリーブ25を被せ、その上に、背面ゴム層用の未架橋ゴムシート13’、及び接着ゴム層用の未架橋ゴムシート12’を順に巻き付けて積層し、その上から心線用の撚り糸14’を円筒状の内型21に対して螺旋状に巻き付け、更にその上から接着ゴム層用の未架橋ゴムシート12’、並びに圧縮ゴム層11における内部ゴム層用の未架橋ゴムシート11b’、及び表面ゴム層用の未架橋ゴムシート11a’を順に巻き付けて積層体10’を形成する。 Next, as shown in FIG. 5, a rubber sleeve 25 is placed on a cylindrical drum 24 having a smooth surface, and an uncrosslinked rubber sheet 13 ′ for the back rubber layer and an uncrosslinked rubber sheet for the adhesive rubber layer are placed thereon. 12 ′ are wound in order and laminated, and then a strand 14 ′ for a core wire is spirally wound around the cylindrical inner mold 21, and further, an uncrosslinked rubber sheet 12 ′ for an adhesive rubber layer is further formed thereon. In addition, the uncrosslinked rubber sheet 11b ′ for the inner rubber layer in the compressed rubber layer 11 and the uncrosslinked rubber sheet 11a ′ for the surface rubber layer are wound in order to form the laminate 10 ′.
 次いで、積層体10’を設けたゴムスリーブ25を円筒ドラム24から外し、図6に示すように、それを外型22の内周面側に内嵌め状態にセットする。 Next, the rubber sleeve 25 provided with the laminated body 10 ′ is removed from the cylindrical drum 24, and as shown in FIG. 6, it is set in an fitted state on the inner peripheral surface side of the outer mold 22.
 次いで、図7に示すように、内型21を外型22にセットされたゴムスリーブ25内に位置付けて密閉する。 Next, as shown in FIG. 7, the inner mold 21 is positioned and sealed in the rubber sleeve 25 set on the outer mold 22.
 続いて、外型22を加熱すると共に、内型21の密封された内部に高圧空気等を注入して加圧する。 Subsequently, the outer mold 22 is heated, and high-pressure air or the like is injected into the sealed interior of the inner mold 21 to pressurize it.
 このとき、図8に示すように、内型21が膨張し、外型22の成型面に積層体10’が圧接される。未架橋ゴムシート11a’,11b’,12’,13’は、加熱及び加圧されると共に架橋して一体化し、また、撚り糸14’と複合化した円筒状のベルトスラブSが成型される。表面ゴム層用の未架橋ゴムシート11a’は、中空粒子16’が膨張することにより、内部にシェルを有する多数の中空部16を形成すると共に、表面に中空粒子16’のシェルが破れて開口した多数の凹孔17が露出し、また、それと共に、熱分解型発泡剤が分解することにより、内部にシェルを有さない中空部18を形成すると共に、表面にシェルを有さない凹孔19が露出した表面ゴム層11aを構成する。ベルトスラブSの成型温度は例えば100~180℃、成型圧力は例えば0.5~2.0MPa、及び成型時間は例えば10~60分である。 At this time, as shown in FIG. 8, the inner mold 21 expands, and the laminate 10 ′ is pressed against the molding surface of the outer mold 22. The uncrosslinked rubber sheets 11a ', 11b', 12 ', and 13' are heated and pressurized and cross-linked and integrated, and a cylindrical belt slab S that is combined with the twisted yarn 14 'is molded. The uncrosslinked rubber sheet 11a ′ for the surface rubber layer forms a large number of hollow portions 16 having shells inside due to expansion of the hollow particles 16 ′, and the shell of the hollow particles 16 ′ is broken on the surface. A large number of the concave holes 17 are exposed, and the pyrolytic foaming agent is decomposed together with this to form a hollow portion 18 having no shell inside and a concave hole having no shell on the surface. The surface rubber layer 11a with 19 exposed is formed. The molding temperature of the belt slab S is, for example, 100 to 180 ° C., the molding pressure is, for example, 0.5 to 2.0 MPa, and the molding time is, for example, 10 to 60 minutes.
 この実施形態1に係るVリブドベルトBの製造方法によれば、既述の通り、プーリ接触部分を構成する表面ゴム層11aの表面には、中空粒子による平均孔径が大きく、且つ孔径のばらつきが小さい凹孔17が形成される。これは、中空粒子16’の膨張開始温度よりも熱分解型発泡剤の分解温度の方が高いことにより、まず中空粒子16’が膨張した後、熱分解型発泡剤が分解して発泡することから、膨張した中空粒子16’の内部に熱分解型発泡剤による発泡気体が導入され、その結果、どの中空粒子16’の膨張もが助長されるためではないかと考えられる。 According to the method for manufacturing the V-ribbed belt B according to the first embodiment, as described above, the surface of the surface rubber layer 11a constituting the pulley contact portion has a large average pore diameter due to the hollow particles and a small variation in the pore diameter. A concave hole 17 is formed. This is because, since the decomposition temperature of the pyrolytic foaming agent is higher than the expansion start temperature of the hollow particle 16 ′, the hollow particle 16 ′ first expands, and then the pyrolytic foaming agent decomposes and foams. Therefore, it is considered that the foaming gas by the pyrolytic foaming agent is introduced into the expanded hollow particles 16 ′, and as a result, the expansion of any hollow particles 16 ′ is promoted.
 また、通常、ベルト成型時の成型圧力は高いため、中空粒子16’の膨張が規制され、中空粒子16’を十分に膨張させることは困難である。しかしながら、この実施形態1に係るVリブドベルトBの製造方法によれば、熱分解型発泡剤が分解して発泡することにより中空粒子16’の膨張が助長されるので、ベルト成型時の高い成型圧力の下でも、中空粒子16’を十分に大きく膨張させることができる。かかる観点からは、この中空粒子16’の膨張助長の作用効果は、成型圧力が0.7MPa以上の場合、特には0.9MPa以上の場合に顕著に得ることができる。 In addition, since the molding pressure during belt molding is usually high, the expansion of the hollow particles 16 ′ is restricted, and it is difficult to sufficiently expand the hollow particles 16 ′. However, according to the manufacturing method of the V-ribbed belt B according to the first embodiment, the expansion of the hollow particles 16 ′ is promoted by the decomposition and foaming of the pyrolytic foaming agent. The hollow particles 16 ′ can be expanded sufficiently large even under. From this point of view, the effect of expansion promotion of the hollow particles 16 ′ can be remarkably obtained when the molding pressure is 0.7 MPa or more, particularly 0.9 MPa or more.
 なお、熱分解型発泡剤による発泡気体は、例えば、ADCA系発泡剤では窒素、DPT系発泡剤では窒素、一酸化炭素、及び二酸化炭素、OBSH系発泡剤では窒素及び水蒸気、HDCA系発泡剤では窒素及びアンモニアである。 The foaming gas produced by the pyrolytic foaming agent is, for example, nitrogen for ADCA foaming agents, nitrogen, carbon monoxide and carbon dioxide for DPT foaming agents, nitrogen and water vapor for OBSH foaming agents, and HDCA foaming agents. Nitrogen and ammonia.
 そして、内型21の内部を減圧して密閉を解き、内型21と外型22との間でゴムスリーブ25を介して成型されたベルトスラブSを取り出し、ベルトスラブSを所定幅に輪切りして表裏を裏返すことによりVリブドベルトBが得られる。なお、必要に応じて、ベルトスラブSの外周側、つまり、Vリブ15側の表面を研磨してもよい。 Then, the inside of the inner mold 21 is decompressed to release the seal, the belt slab S molded between the inner mold 21 and the outer mold 22 is taken out via the rubber sleeve 25, and the belt slab S is cut into a predetermined width. The V-ribbed belt B is obtained by turning the front and back. If necessary, the outer peripheral side of the belt slab S, that is, the surface on the V rib 15 side may be polished.
 図9は、実施形態1に係るVリブドベルトBを用いた自動車の補機駆動ベルト伝動装置30のプーリレイアウトを示す。この補機駆動ベルト伝動装置30は、VリブドベルトBが4つのリブプーリ及び2つの平プーリの6つのプーリに巻き掛けられて動力を伝達するサーペンタインドライブ方式のものである。 FIG. 9 shows a pulley layout of the auxiliary drive belt transmission device 30 for an automobile using the V-ribbed belt B according to the first embodiment. This accessory drive belt transmission device 30 is of a serpentine drive type in which a V-ribbed belt B is wound around six pulleys, four rib pulleys and two flat pulleys, to transmit power.
 この補機駆動ベルト伝動装置30は、最上位置にリブプーリのパワーステアリングプーリ31が設けられ、そのパワーステアリングプーリ31の下方にリブプーリのACジェネレータプーリ32が設けられている。また、パワーステアリングプーリ31の左下方には平プーリのテンショナプーリ33が設けられており、そのテンショナプーリ33の下方には平プーリのウォーターポンププーリ34が設けられている。更に、テンショナプーリ33の左下方にはリブプーリのクランクシャフトプーリ35が設けられており、そのクランクシャフトプーリ35の右下方にリブプーリのエアコンプーリ36が設けられている。これらのプーリは、例えば、金属のプレス加工品や鋳物、ナイロン樹脂、フェノール樹脂などの樹脂成形品で構成されており、また、プーリ径がφ50~150mmである。 The auxiliary drive belt transmission device 30 is provided with a power steering pulley 31 of a rib pulley at the uppermost position, and an AC generator pulley 32 of a rib pulley is provided below the power steering pulley 31. A flat pulley tensioner pulley 33 is provided at the lower left of the power steering pulley 31, and a flat pulley water pump pulley 34 is provided below the tensioner pulley 33. Further, a ribshaft crankshaft pulley 35 is provided on the lower left side of the tensioner pulley 33, and a rib pulley air conditioner pulley 36 is provided on the lower right side of the crankshaft pulley 35. These pulleys are made of, for example, a metal stamped product, a molded product such as a casting, nylon resin, or phenol resin, and have a pulley diameter of 50 to 150 mm.
 そして、この補機駆動ベルト伝動装置30では、VリブドベルトBは、Vリブ15側が接触するようにパワーステアリングプーリ31に巻き掛けられ、次いで、ベルト背面が接触するようにテンショナプーリ33に巻き掛けられた後、Vリブ15側が接触するようにクランクシャフトプーリ35及びエアコンプーリ36に順に巻き掛けられ、更に、ベルト背面が接触するようにウォーターポンププーリ34に巻き掛けられ、そして、Vリブ15側が接触するようにACジェネレータプーリ32に巻き掛けられ、最後にパワーステアリングプーリ31に戻るように設けられている。プーリ間で掛け渡されるVリブドベルトBの長さであるベルトスパン長は例えば50~300mmである。プーリ間で生じ得るミスアライメントは0~2°である。 In this accessory drive belt transmission device 30, the V-ribbed belt B is wound around the power steering pulley 31 so that the V-rib 15 side contacts, and then wound around the tensioner pulley 33 so that the back surface of the belt contacts. After that, it is wound around the crankshaft pulley 35 and the air conditioner pulley 36 in order so that the V rib 15 side comes into contact, and further wound around the water pump pulley 34 so that the back surface of the belt comes into contact. Thus, it is wound around the AC generator pulley 32 and finally returned to the power steering pulley 31. The belt span length, which is the length of the V-ribbed belt B spanned between the pulleys, is, for example, 50 to 300 mm. Misalignment that can occur between pulleys is 0-2 °.
 (実施形態2)
 図10は、実施形態2に係るVリブドベルトB(伝動ベルト)を示す。なお、実施形態1と同一名称の部分は、実施形態1と同一符号を用いて示す。
(Embodiment 2)
FIG. 10 shows a V-ribbed belt B (power transmission belt) according to the second embodiment. In addition, the part of the same name as Embodiment 1 is shown using the same code | symbol as Embodiment 1. FIG.
 実施形態2に係るVリブドベルトBでは、圧縮ゴム層11が実施形態1に係るVリブドベルトBにおける表面ゴム層11aと同様のゴム組成物で構成されている。すなわち、圧縮ゴム層11は、ゴム成分に未膨張の中空粒子と熱分解型発泡剤とを含むゴム配合剤を配合して混練した未架橋ゴム組成物を加熱及び加圧すると共に架橋させたゴム組成物であって、それにより内部にシェルを有する中空粒子による多数の中空部が形成され且つ表面、つまり、プーリ接触表面にシェルを有する中空粒子による多数の凹孔17が形成されたゴム組成物で構成されている。 In the V-ribbed belt B according to the second embodiment, the compressed rubber layer 11 is composed of the same rubber composition as the surface rubber layer 11a in the V-ribbed belt B according to the first embodiment. That is, the compressed rubber layer 11 is a rubber composition in which an uncrosslinked rubber composition obtained by mixing and kneading a rubber compounding agent containing unexpanded hollow particles and a pyrolytic foaming agent in a rubber component is heated and pressurized and crosslinked. A rubber composition in which a large number of hollow portions are formed by hollow particles having a shell inside and a large number of concave holes 17 are formed by a hollow particle having a shell on the pulley contact surface. It is configured.
 また、実施形態2に係るVリブドベルトBを製造においては、圧縮ゴム層用の未架橋ゴムシートとして、実施形態1に係るVリブドベルトBにおける表面ゴム層用の未膨張の中空粒子及び熱分解型発泡剤が配合された未架橋ゴムシートと同様の未架橋ゴムシートを用いればよい。 Further, in the manufacture of the V-ribbed belt B according to the second embodiment, as an uncrosslinked rubber sheet for the compressed rubber layer, unexpanded hollow particles for the surface rubber layer in the V-ribbed belt B according to the first embodiment and pyrolytic foaming An uncrosslinked rubber sheet similar to the uncrosslinked rubber sheet containing the agent may be used.
 その他の構成及び作用効果については実施形態1と同一である。 Other configurations and operational effects are the same as those in the first embodiment.
 (その他の実施形態)
 実施形態1及び2では、摩擦伝動ベルトとしてVリブドベルトBを示したが、特にこれに限定されるものではなく、ローエッジタイプのVベルト等であってもよい。
(Other embodiments)
In the first and second embodiments, the V-ribbed belt B is shown as the friction transmission belt, but it is not particularly limited to this, and a low-edge type V-belt or the like may be used.
 実施形態1及び2では、圧縮ゴム層11、接着ゴム層12、及び背面ゴム層13によりVリブドベルト本体10が構成されたものとしたが、特にこれに限定されるものではなく、圧縮ゴム層11及び接着ゴム層12によりVリブドベルト本体10が構成され、背面ゴム層13の代わりに、例えば、綿、ポリアミド繊維、ポリエステル繊維、アラミド繊維等の糸で形成された織布、編物、不織布等で構成された補強布が設けられたものであってもよい。 In the first and second embodiments, the V-ribbed belt main body 10 is configured by the compressed rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13. However, the present invention is not particularly limited thereto, and the compressed rubber layer 11 is not limited thereto. In addition, the V-ribbed belt main body 10 is constituted by the adhesive rubber layer 12, and is constituted by a woven fabric, a knitted fabric, a non-woven fabric or the like formed of, for example, cotton, polyamide fiber, polyester fiber, aramid fiber or the like instead of the back rubber layer 13. It may be provided with a reinforcing cloth.
 実施形態1及び2では、ベルト伝動装置として自動車の補機駆動ベルト伝動装置20を示したが、特にこれに限定されるものではなく、一般産業用等のベルト伝動装置であってもよい。 In Embodiments 1 and 2, although the auxiliary drive belt transmission device 20 of an automobile is shown as a belt transmission device, the belt transmission device is not particularly limited to this, and may be a belt transmission device for general industries.
 (ゴム組成物)
 以下の実施例1~3並びに比較例1及び2の未架橋ゴム組成物を調製した。それぞれの構成については表1にも示す。
(Rubber composition)
The uncrosslinked rubber compositions of Examples 1 to 3 and Comparative Examples 1 and 2 below were prepared. Each configuration is also shown in Table 1.
 <実施例1>
 密閉式のバンバリーミキサーのチャンバーにゴム成分としてのEPDM(JSR社製 商品名:EP22)を投入して素練りし、次いで、このゴム成分100質量部に対して、カーボンブラック(東海カーボン社製 商品名:シースト3)50質量部、ステアリン酸(花王社製 商品名:ルナック)1質量部、オイル(日本サン石油社製 商品名:サンパー2280)8質量部、及び酸化亜鉛(堺化学工業社製 商品名:酸化亜鉛3種)5質量部を投入配合して混練することによりマスターバッチを調製した。
<Example 1>
EPDM (trade name: EP22 manufactured by JSR) as a rubber component is put into a chamber of a closed Banbury mixer and masticated, and then carbon black (product manufactured by Tokai Carbon Co., Ltd.) is added to 100 parts by mass of the rubber component. Name: Seast 3) 50 parts by mass, stearic acid (product name: Lunac) 1 part by mass, oil (manufactured by Nippon San Oil Co., Ltd., product name: Thamper 2280), and zinc oxide (manufactured by Sakai Chemical Industry Co., Ltd.) A master batch was prepared by charging and kneading 5 parts by mass of trade name: zinc oxide (3 types).
 マスターバッチを室温まで冷却した後、密閉式のバンバリーミキサーのチャンバーにそのマスターバッチを投入して再び混練すると共に、そこに、ゴム成分100質量部に対して、硫黄(日本乾溜工業社製 商品名:セイミOT)1.7質量部、加硫促進剤(大内新興化学社製 商品名:MSA)4質量部、中空粒子(積水化学工業社製 商品名:アドバンセルEM403 膨張開始温度Ta:150~170℃)2.3質量部、及び熱分解型発泡剤1(三協化成社製 商品名:セルマイクCE ADCA系発泡剤 分解温度Tb:208℃)6.9質量部を投入配合して混練を継続し、チャンバー内の温度が110℃に達した時点で混練した未架橋ゴム組成物を放出した。そして、この未架橋ゴム組成物を実施例1とした。 After cooling the master batch to room temperature, the master batch is put into a sealed banbury mixer chamber and kneaded again, and there is sulfur (100 parts by mass of rubber component) : Seimi OT) 1.7 parts by mass, vulcanization accelerator (trade name: MSA, manufactured by Ouchi Shinsei Chemical Co., Ltd.), hollow particles (trade name: Advancel EM403, expansion start temperature Ta: 150 by Sekisui Chemical Co., Ltd.) ~ 170 ° C) 2.3 parts by mass and thermal decomposition type foaming agent 1 (manufactured by Sankyo Kasei Co., Ltd., trade name: Cellmic CE, ADCA-based foaming agent, decomposition temperature Tb: 208 ° C) 6.9 parts by mass are charged and mixed. The uncrosslinked rubber composition kneaded was released when the temperature in the chamber reached 110 ° C. The uncrosslinked rubber composition was designated as Example 1.
 実施例1では、中空粒子の膨張開始温度と熱分解型発泡剤1の分解温度との温度差(Tb-Ta)が38~58℃、及び熱分解型発泡剤の配合量の中空粒子の配合量に対する質量比が3.0である。 In Example 1, the temperature difference (Tb-Ta) between the expansion start temperature of the hollow particles and the decomposition temperature of the pyrolytic foaming agent 1 is 38 to 58 ° C., and the blending amount of the hollow particles having the blending amount of the pyrolytic foaming agent is used. The mass ratio to the amount is 3.0.
 <実施例2>
 中空粒子及び熱分解型発泡剤1の配合量を、ゴム成分100質量部に対して、それぞれ1.2質量部及び8.7質量部としたことを除いて、実施例1と同一構成の未架橋ゴム組成物を実施例2とした。実施例2では、中空粒子の膨張開始温度と熱分解型発泡剤1の分解温度との温度差(Tb-Ta)が38~58℃、及び熱分解型発泡剤の配合量の中空粒子の配合量に対する質量比が7.3である。
<Example 2>
Except that the blending amounts of the hollow particles and the pyrolyzable foaming agent 1 were 1.2 parts by mass and 8.7 parts by mass, respectively, with respect to 100 parts by mass of the rubber component, the same composition as in Example 1 The crosslinked rubber composition was designated as Example 2. In Example 2, the temperature difference (Tb-Ta) between the expansion start temperature of the hollow particles and the decomposition temperature of the pyrolytic foaming agent 1 is 38 to 58 ° C., and the blending amount of the hollow particles in the blending amount of the pyrolytic foaming agent is used. The mass ratio to the quantity is 7.3.
 <実施例3>
 中空粒子の配合量をゴム成分100質量部に対して3.5質量部とし、熱分解型発泡剤1の代わりに熱分解型発泡剤2(三協化成社製 商品名:セルマイクA DPT系発泡剤 分解温度Tb:205℃)をゴム成分100質量部に対して4.1質量部配合したことを除いて、実施例1と同一構成の未架橋ゴム組成物を実施例3とした。実施例3では、中空粒子の膨張開始温度と熱分解型発泡剤2の分解温度との温度差(Tb-Ta)が35~55℃、及び熱分解型発泡剤の配合量の中空粒子の配合量に対する質量比が1.2である。
<Example 3>
The blended amount of the hollow particles is 3.5 parts by mass with respect to 100 parts by mass of the rubber component, and instead of the pyrolyzable foaming agent 1, a pyrolyzable foaming agent 2 (trade name: Cellmic A DPT foaming manufactured by Sankyo Kasei Co., Ltd.) An uncrosslinked rubber composition having the same structure as Example 1 was used in Example 3, except that 4.1 parts by mass of the agent decomposition temperature Tb: 205 ° C. was added to 100 parts by mass of the rubber component. In Example 3, the temperature difference (Tb-Ta) between the expansion start temperature of the hollow particles and the decomposition temperature of the pyrolytic foaming agent 2 is 35 to 55 ° C., and the blending amount of the hollow particles in the blending amount of the pyrolytic foaming agent is used. The mass ratio to the quantity is 1.2.
 <比較例1>
 熱分解型発泡剤1を配合せず、中空粒子の配合量をゴム成分100質量部に対して10質量部としたことを除いて、実施例1と同一構成の未架橋ゴム組成物を比較例1とした。
<Comparative Example 1>
An uncrosslinked rubber composition having the same configuration as that of Example 1 was compared except that the pyrolytic foaming agent 1 was not blended and the blended amount of the hollow particles was 10 parts by mass with respect to 100 parts by mass of the rubber component. It was set to 1.
 <比較例2>
 中空粒子を配合せず、熱分解型発泡剤1の配合量をゴム成分100質量部に対して10質量部としたことを除いて、実施例1と同一構成の未架橋ゴム組成物を比較例2とした。
<Comparative example 2>
A non-crosslinked rubber composition having the same configuration as that of Example 1 was compared except that the hollow particles were not blended and the blending amount of the pyrolyzable foaming agent 1 was 10 parts by mass with respect to 100 parts by mass of the rubber component. 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (試験評価方法)
 <平均孔径>
 実施例1~3並びに比較例1及び2の未架橋ゴム組成物のそれぞれについて、ロールミルにより厚さ2mmのシート状に圧延し、それを用いてプレス成型することにより長さ75mm、幅25mm、及び厚さ5mmの架橋したゴム組成物の板状の試験片を作製した。成型条件は、成型温度を170℃、成型圧力を0.9MPa、及び成型時間を30分とした。
(Test evaluation method)
<Average pore diameter>
Each of the uncrosslinked rubber compositions of Examples 1 to 3 and Comparative Examples 1 and 2 was rolled into a sheet having a thickness of 2 mm by a roll mill, and press-molded using the rolled sheet, and the length was 75 mm, the width was 25 mm, and A plate-shaped test piece of a crosslinked rubber composition having a thickness of 5 mm was prepared. The molding conditions were a molding temperature of 170 ° C., a molding pressure of 0.9 MPa, and a molding time of 30 minutes.
 そして、試験片の表面形態をマイクロスコープ(キーエンス社製 型番:VHX-2000)で200倍に拡大して観察し、実施例1~3及び比較例1では、中空粒子によるシェルを有する凹孔について、また、比較例2では、熱分解型発泡剤によるシェルを有さない凹孔について、任意の100個の孔径を測定し、それらの数平均を平均孔径とした。 Then, the surface morphology of the test piece was observed with a microscope (Model: VHX-2000, manufactured by Keyence Corporation) at a magnification of 200 times. In Examples 1 to 3 and Comparative Example 1, a concave hole having a shell made of hollow particles was observed. Moreover, in Comparative Example 2, with respect to the concave holes that do not have a shell made of the pyrolytic foaming agent, arbitrary 100 hole diameters were measured, and the number average thereof was taken as the average hole diameter.
 <孔径差>
 実施例1~3並びに比較例1及び2の架橋したゴム組成物のそれぞれについて、マイクロスコープ(キーエンス社製 型番:VHX-2000)で200倍に拡大して観察し、任意の100個の孔径を測定し、孔径の最大値と最小値との差を孔径のばらつき(孔径差)とした。
<Diameter difference>
Each of the crosslinked rubber compositions of Examples 1 to 3 and Comparative Examples 1 and 2 was observed with a microscope (model number: VHX-2000, manufactured by Keyence Corporation) at a magnification of 200 times, and an arbitrary 100 pore sizes were observed. Measurement was made and the difference between the maximum value and the minimum value of the pore diameter was defined as the variation in pore diameter (pore diameter difference).
 <異音評価>
 図11は被水時異音評価用ベルト走行試験機40のプーリレイアウトを示す。
<Allophone evaluation>
FIG. 11 shows a pulley layout of the belt running test machine 40 for evaluating abnormal noise when wet.
 被水時異音評価用ベルト走行試験機40は、プーリ径が140mmのリブプーリである駆動プーリ41を備え、その駆動プーリ41の右方にプーリ径が75mmのリブプーリである第1従動プーリ42が設けられ、また、第1従動プーリ42の上方で駆動プーリ41の右斜め上方にプーリ径が50mmのリブプーリである第2従動プーリ43が設けられ、さらに、駆動プーリ41と第2従動プーリ43との中間にプーリ径が75mmの平プーリであるアイドラプーリ44が設けられている。そして、この被水時異音評価用ベルト走行試験機40は、VリブドベルトBのVリブ側がリブプーリである駆動プーリ41、第1及び第2従動プーリ42,43に接触すると共に、背面側が平プーリであるアイドラプーリ44に接触して巻き掛けられるように構成されている。 The belt running test machine 40 for evaluating abnormal noise when wet is provided with a drive pulley 41 that is a rib pulley having a pulley diameter of 140 mm, and a first driven pulley 42 that is a rib pulley having a pulley diameter of 75 mm is provided to the right of the drive pulley 41. A second driven pulley 43, which is a rib pulley having a pulley diameter of 50 mm, is provided above the first driven pulley 42 and diagonally right above the driving pulley 41. Further, the driving pulley 41, the second driven pulley 43, An idler pulley 44, which is a flat pulley having a pulley diameter of 75 mm, is provided in the middle. In this belt running test machine 40 for evaluating abnormal noise when wet, the V-rib side of the V-ribbed belt B is in contact with the drive pulley 41, the first and second driven pulleys 42, 43, which are rib pulleys, and the back side is a flat pulley. It is configured to be wound around in contact with the idler pulley 44.
 実施例1~3並びに比較例1及び2のそれぞれの未架橋ゴム組成物により圧縮ゴム層を形成した5種のVリブドベルトを製作し、各VリブドベルトBについて、上記被水時異音評価用ベルト走行試験機40にセットし、1リブ当たり49Nのベルト張力が負荷されるようにプーリ位置決めを行い、第2従動プーリ43にそれが取り付けられたオルタネータに60Aの電流が流れるように抵抗を与え、常温下、駆動プーリ41を800rpmの回転数で回転させると共に、VリブドベルトBの駆動プーリ41への進入部においてVリブドベルトBのVリブ側に毎分1000mlの割合で水を滴下した。そして、ベルト走行時の異音発生状況を、大、小、微小、及び無の四段階で評価した。 Five types of V-ribbed belts each having a compressed rubber layer formed of the uncrosslinked rubber compositions of Examples 1 to 3 and Comparative Examples 1 and 2 were manufactured. Set in the running test machine 40, position the pulley so that a belt tension of 49 N per rib is applied, give resistance to the second driven pulley 43 so that a current of 60 A flows to the alternator to which it is attached, Under normal temperature, the drive pulley 41 was rotated at a rotation speed of 800 rpm, and water was dropped at a rate of 1000 ml per minute on the V rib side of the V ribbed belt B at the entry portion of the V ribbed belt B into the drive pulley 41. And the abnormal noise generation | occurrence | production situation at the time of belt running was evaluated in four steps, large, small, minute, and nothing.
 (試験評価結果)
 表1に試験結果を示す。
(Test evaluation results)
Table 1 shows the test results.
 表1によれば、中空粒子及び熱分解型発泡剤を併用した実施例1~3では、中空粒子による凹孔の平均孔径が92μm、109μm、及び78μmと比較的大きいのに対し、中空粒子のみを用いた比較例1では、中空粒子による凹孔の平均孔径が50μmであり、実施例1~3の中空粒子による凹孔に比べると小さいことが分かる。 According to Table 1, in Examples 1 to 3 in which the hollow particles and the pyrolytic foaming agent are used in combination, the average pore diameter of the hollow holes due to the hollow particles is relatively large as 92 μm, 109 μm, and 78 μm, whereas only the hollow particles are used. In Comparative Example 1 using No. 1, the average pore diameter of the hollow holes by the hollow particles is 50 μm, which is smaller than the concave holes by the hollow particles of Examples 1 to 3.
 また、表面形態の観察によれば、中空粒子及び熱分解型発泡剤を併用した実施例1~3では、中空粒子による凹孔の孔径差が小さい、つまり、凹孔の孔径のばらつきが小さいのに対し、熱分解型発泡剤のみを用いた比較例2では、凹孔の平均孔径は大きいものの、実施例1~3の中空粒子による凹孔に比べると、孔径差が大きい、つまり、凹孔の孔径のばらつきが明らかに大きいことが分かる。 In addition, according to the observation of the surface form, in Examples 1 to 3 in which the hollow particles and the pyrolytic foaming agent are used in combination, the difference in the hole diameters of the hollow holes due to the hollow particles is small, that is, the variation in the hole diameters of the concave holes is small. On the other hand, in Comparative Example 2 using only the pyrolytic foaming agent, although the average pore diameter of the concave holes is large, the pore diameter difference is large compared to the concave holes of the hollow particles of Examples 1 to 3, that is, the concave holes It can be seen that the variation in the pore diameter is clearly large.
 更に、実施例1~3では、比較例1及び2に比べ、ベルト走行時の異音抑制効果が高いことが分かる。 Furthermore, it can be seen that Examples 1 to 3 have a higher noise suppressing effect during belt travel than Comparative Examples 1 and 2.
 本発明は、伝動ベルト及びその製造方法について有用である。 The present invention is useful for a transmission belt and a manufacturing method thereof.

Claims (13)

  1.  ゴム成分に未膨張の中空粒子と熱分解型発泡剤とを配合した未架橋ゴム組成物を加熱及び加圧すると共に架橋させることにより前記中空粒子が膨張して形成された多数の凹孔が表面に露出したゴム組成物でプーリ接触部分を構成する伝動ベルトの製造方法であって、
     前記中空粒子の膨張開始温度よりも前記熱分解型発泡剤の分解温度の方が高い伝動ベルトの製造方法。
    An uncrosslinked rubber composition in which unexpanded hollow particles and a thermally decomposable foaming agent are blended with a rubber component is heated and pressurized and crosslinked to form a number of concave holes formed on the surface by expanding the hollow particles. A method of manufacturing a power transmission belt comprising a pulley contact portion with an exposed rubber composition,
    A method for producing a transmission belt, wherein the decomposition temperature of the pyrolytic foaming agent is higher than the expansion start temperature of the hollow particles.
  2.  請求項1に記載された伝動ベルトの製造方法において、
     前記中空粒子の膨張開始温度が140~180℃である伝動ベルトの製造方法。
    In the manufacturing method of the power transmission belt described in Claim 1,
    A method for producing a transmission belt, wherein the expansion start temperature of the hollow particles is 140 to 180 ° C.
  3.  請求項1又は2に記載された伝動ベルトの製造方法において、
     前記熱分解型発泡剤の分解温度が150~230℃である伝動ベルトの製造方法。
    In the manufacturing method of the power transmission belt described in Claim 1 or 2,
    A method for producing a power transmission belt, wherein the decomposition temperature of the pyrolytic foaming agent is 150 to 230 ° C.
  4.  請求項1乃至3のいずれかに記載された伝動ベルトの製造方法において、
     前記中空粒子の膨張開始温度と前記熱分解型発泡剤の分解温度との温度差が10~80℃である伝動ベルトの製造方法。
    In the manufacturing method of the power transmission belt according to any one of claims 1 to 3,
    A method for producing a transmission belt, wherein a temperature difference between an expansion start temperature of the hollow particles and a decomposition temperature of the pyrolytic foaming agent is 10 to 80 ° C.
  5.  請求項1乃至4のいずれかに記載された伝動ベルトの製造方法において、
     前記未膨張の中空粒子の前記ゴム成分100質量部に対する配合量が0.5~10質量部である伝動ベルトの製造方法。
    In the manufacturing method of the power transmission belt according to any one of claims 1 to 4,
    A method for producing a transmission belt, wherein the blending amount of the unexpanded hollow particles with respect to 100 parts by mass of the rubber component is 0.5 to 10 parts by mass.
  6.  請求項1乃至5のいずれかに記載された伝動ベルトの製造方法において、
     前記熱分解型発泡剤の前記ゴム成分100質量部に対する配合量が0.5~10質量部である伝動ベルトの製造方法。
    In the manufacturing method of the power transmission belt according to any one of claims 1 to 5,
    A method for producing a power transmission belt, wherein a blending amount of the pyrolytic foaming agent with respect to 100 parts by mass of the rubber component is 0.5 to 10 parts by mass.
  7.  請求項1乃至3のいずれかに記載された伝動ベルトの製造方法において、
     前記未膨張の中空粒子の前記ゴム成分100質量部に対する配合量よりも前記熱分解型発泡剤の前記ゴム成分100質量部に対する配合量の方が多い伝動ベルトの製造方法。
     
    In the manufacturing method of the power transmission belt according to any one of claims 1 to 3,
    A method for producing a transmission belt, wherein the amount of the thermally decomposable foaming agent added to 100 parts by mass of the rubber component is larger than the amount of the unexpanded hollow particles to 100 parts by mass of the rubber component.
  8.  請求項1乃至7のいずれかに記載された伝動ベルトの製造方法において、
     前記熱分解型発泡剤のゴム成分100質量部に対する配合量の前記未膨張の中空粒子のゴム成分100質量部に対する配合量に対する質量比(熱分解型発泡剤のゴム成分100質量部に対する配合量/未膨張の中空粒子のゴム成分100質量部に対する配合量)が1~10である伝動ベルトの製造方法。
    In the manufacturing method of the power transmission belt according to any one of claims 1 to 7,
    Mass ratio of blending amount of 100 parts by weight of the thermally decomposable foaming agent to 100 parts by weight of the unexpanded hollow particles (blending amount of 100 parts by weight of the thermally decomposable foaming agent / A method for producing a transmission belt, wherein the amount of unexpanded hollow particles is 1 to 10 with respect to 100 parts by mass of the rubber component.
  9.  請求項1乃至8のいずれかに記載された伝動ベルトの製造方法において、
     前記熱分解型発泡剤が、ADCA系発泡剤、DPT系発泡剤、OBSH系発泡剤、及びHDCA系発泡剤のうちの1種又は2種以上である伝動ベルトの製造方法。
    In the manufacturing method of the power transmission belt according to any one of claims 1 to 8,
    A method for producing a transmission belt, wherein the pyrolyzable foaming agent is one or more of an ADCA foaming agent, a DPT foaming agent, an OBSH foaming agent, and an HDCA foaming agent.
  10.  請求項1乃至9のいずれかに記載された伝動ベルトの製造方法において、
     前記未架橋ゴム組成物を加熱及び加圧するときの成型圧力を0.7MPa以上とする伝動ベルトの製造方法。
    In the manufacturing method of the power transmission belt according to any one of claims 1 to 9,
    A method for producing a transmission belt, wherein a molding pressure when the uncrosslinked rubber composition is heated and pressurized is 0.7 MPa or more.
  11.  請求項1乃至10のいずれかに記載された伝動ベルトの製造方法において、
     前記中空粒子による前記多数の凹孔の平均孔径が70~120μmである伝動ベルトの製造方法。
    In the manufacturing method of the power transmission belt according to any one of claims 1 to 10,
    A method for producing a power transmission belt, wherein the average diameter of the plurality of concave holes by the hollow particles is 70 to 120 μm.
  12.  請求項1乃至11のいずれかに記載された伝動ベルトの製造方法において、
     前記中空粒子による前記多数の凹孔の孔径差が50μm以下である伝動ベルトの製造方法。
    In the manufacturing method of the power transmission belt according to any one of claims 1 to 11,
    A method for producing a transmission belt, wherein a difference in the diameters of the plurality of concave holes due to the hollow particles is 50 μm or less.
  13.  ゴム成分に未膨張の中空粒子と熱分解型発泡剤とを配合した未架橋ゴム組成物を加熱及び加圧すると共に架橋させることにより前記中空粒子が膨張して形成された多数の凹孔が表面に露出したゴム組成物でプーリ接触部分が構成された伝動ベルトであって、
     前記中空粒子による前記多数の凹孔の平均孔径が70~120μmであり、且つ前記中空粒子による前記多数の凹孔の孔径差が50μm以下である伝動ベルト。
    An uncrosslinked rubber composition in which unexpanded hollow particles and a thermally decomposable foaming agent are blended with a rubber component is heated and pressurized and crosslinked to form a number of concave holes formed on the surface by expanding the hollow particles. A transmission belt having a pulley contact portion made of an exposed rubber composition,
    The transmission belt, wherein an average hole diameter of the plurality of concave holes due to the hollow particles is 70 to 120 μm, and a hole diameter difference between the multiple concave holes due to the hollow particles is 50 μm or less.
PCT/JP2015/003192 2014-08-26 2015-06-25 Transmission belt and manufacturing method therefor WO2016031112A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016544911A JP6546595B2 (en) 2014-08-26 2015-06-25 Transmission belt and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014171623 2014-08-26
JP2014-171623 2014-08-26

Publications (1)

Publication Number Publication Date
WO2016031112A1 true WO2016031112A1 (en) 2016-03-03

Family

ID=55399037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003192 WO2016031112A1 (en) 2014-08-26 2015-06-25 Transmission belt and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JP6546595B2 (en)
WO (1) WO2016031112A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017123722A1 (en) * 2017-10-12 2019-04-18 Arntz Beteiligungs Gmbh & Co. Kg At least three-layer power transmission belt with a foamed buffer layer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123457A (en) * 1976-04-08 1977-10-17 Keiichi Yamamoto Resilient composite foamed material and its manufacturing process
JPS5774340A (en) * 1980-10-27 1982-05-10 Meiji Gomme Kasei:Kk Rubber composition
JPS591541A (en) * 1982-06-29 1984-01-06 Japan Synthetic Rubber Co Ltd Expanded rubber composition
JPH11275930A (en) * 1998-03-27 1999-10-12 Mitsuboshi Belting Ltd Belt for harvesting agricultural product
WO2009101799A1 (en) * 2008-02-13 2009-08-20 Bando Chemical Industries, Ltd. Friction transmission belt
WO2012172717A1 (en) * 2011-06-17 2012-12-20 バンドー化学株式会社 Method for manufacturing a v-ribbed belt

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123457A (en) * 1976-04-08 1977-10-17 Keiichi Yamamoto Resilient composite foamed material and its manufacturing process
JPS5774340A (en) * 1980-10-27 1982-05-10 Meiji Gomme Kasei:Kk Rubber composition
JPS591541A (en) * 1982-06-29 1984-01-06 Japan Synthetic Rubber Co Ltd Expanded rubber composition
JPH11275930A (en) * 1998-03-27 1999-10-12 Mitsuboshi Belting Ltd Belt for harvesting agricultural product
WO2009101799A1 (en) * 2008-02-13 2009-08-20 Bando Chemical Industries, Ltd. Friction transmission belt
WO2012172717A1 (en) * 2011-06-17 2012-12-20 バンドー化学株式会社 Method for manufacturing a v-ribbed belt

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017123722A1 (en) * 2017-10-12 2019-04-18 Arntz Beteiligungs Gmbh & Co. Kg At least three-layer power transmission belt with a foamed buffer layer
DE102017123722B4 (en) 2017-10-12 2020-05-28 Arntz Beteiligungs Gmbh & Co. Kg At least three-layer power transmission belt with a foamed buffer layer and method for producing such a power transmission belt

Also Published As

Publication number Publication date
JPWO2016031112A1 (en) 2017-06-08
JP6546595B2 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
JP5829614B2 (en) Friction transmission belt
JP5156881B2 (en) V-ribbed belt manufacturing method
WO2011074182A1 (en) Friction transmission belt
KR101917709B1 (en) V-ribbed belt
CN108496024B (en) Friction transmission belt and method for manufacturing same
JP5400991B1 (en) Method for measuring the tension of a transmission belt when stable
KR101992937B1 (en) Friction drive belt
WO2016031112A1 (en) Transmission belt and manufacturing method therefor
JP6306267B2 (en) Friction transmission belt
JP6227843B1 (en) Transmission belt
JP6348136B2 (en) Friction transmission belt and manufacturing method thereof
JP6007353B2 (en) V-ribbed belt, method for manufacturing the same, and belt transmission device
JP7209773B2 (en) friction transmission belt
JP6348133B2 (en) Friction transmission belt and manufacturing method thereof
JP6078702B1 (en) V-ribbed belt
JP6581892B2 (en) Friction transmission belt
JP6903791B2 (en) Friction transmission belt
JP2017106518A (en) Friction transmission belt
JP5881409B2 (en) Transmission belt
WO2015146032A1 (en) Friction transmission belt and manufacturing method thereof
JP2016211587A (en) Transmission belt and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836460

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016544911

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836460

Country of ref document: EP

Kind code of ref document: A1