WO2016029461A1 - 一种前馈与反馈结合式消除噪声的耳机及其驱动电路 - Google Patents

一种前馈与反馈结合式消除噪声的耳机及其驱动电路 Download PDF

Info

Publication number
WO2016029461A1
WO2016029461A1 PCT/CN2014/085603 CN2014085603W WO2016029461A1 WO 2016029461 A1 WO2016029461 A1 WO 2016029461A1 CN 2014085603 W CN2014085603 W CN 2014085603W WO 2016029461 A1 WO2016029461 A1 WO 2016029461A1
Authority
WO
WIPO (PCT)
Prior art keywords
feedforward
feedback
driving circuit
amplifier
audio
Prior art date
Application number
PCT/CN2014/085603
Other languages
English (en)
French (fr)
Inventor
李健强
陈永才
Original Assignee
安百特半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安百特半导体有限公司 filed Critical 安百特半导体有限公司
Priority to PCT/CN2014/085603 priority Critical patent/WO2016029461A1/zh
Publication of WO2016029461A1 publication Critical patent/WO2016029461A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Definitions

  • the present invention relates to the field of audio equipment, and more particularly to a feedforward and feedback combined noise canceling earphone and a driving circuit thereof.
  • ANC Active Noise Cancellation technique
  • FIG 1 is a circuit diagram of an existing infeed-type noise-reducing in-ear or semi-in-ear earphone 100, see Figure 3, headphone 100
  • the left ear chamber and the right ear chamber each include a feedforward microphone 110 and a speaker 120, and a drive circuit 30 is disposed in the control unit of the earphone 100.
  • Feedforward microphone 110 It is fixedly placed on the housing of the left/right ear cavity, exposed to noise, and isolated from the speaker 120 for collecting noise outside the eardrum housing.
  • Drive circuit 30 includes discrete or DSP with battery
  • the ANC device and the audio amplifier the first input of the driving circuit 30 is connected to the feedforward microphone 110, the second input is connected to the audio signal, and the output is connected to the speaker 120.
  • FIG 2 is a circuit diagram of an existing in-ear or semi-ear earphone 200 with feedback noise cancellation, see Figure 3, earphone 200
  • a feedback microphone 210 and a speaker 220 are disposed in each of the left ear chamber and the right ear chamber, and the driving circuit 230 is included in the control unit of the earphone 200.
  • Feedback microphone 210 is used to collect noise inside the eardrum housing
  • the drive circuit 230 includes a discrete or DSP ANC device with a battery and an audio amplifier, the drive circuit 230 The first input is connected to the feedback microphone 210, the second input is connected to the audio signal, and the output is connected to the speaker 220.
  • Typical feedforward or feedback noise-reducing in- or semi-in-ear headphones typically produce a noise cancellation of up to 20 decibels ( From passive noise isolation measurements, in order to increase the noise cancellation effect to more than 30 dB, a feedforward and feedback combination configuration is required.
  • Figure 3 shows an existing infeed or feedback combined noise canceling in-ear or semi-ear earphone 300, earphone 300
  • Connected to control component 320, second cable 340 connects control component 320 to the portable audio device via terminal 350.
  • the left ear cavity and the right ear cavity 310 are respectively included 1 feedforward microphone 311, 1 feedback microphone 312 and 1 speaker 313, the control component 320 includes a driving circuit 321 and a driving circuit 321 Including a discrete or DSP ANC device with a battery and an audio amplifier, the first input of the driver circuit 321 is connected to the feedback microphone 312, and the second input is connected to the feedforward microphone 311 The third input is connected to the audio signal, and the output is connected to the speaker 313.
  • the line from the microphone in the ear chamber to the ANC device in the control unit is too long and may introduce a new noise signal
  • DSP ANC devices require software integration
  • DSP and discrete ANC devices have high energy consumption and are prone to high frequency interference
  • the technical problem to be solved by the present invention is to provide a feedforward and feedback combined noise canceling in-ear type for the above-mentioned defects of the existing feedforward and feedback combined noise canceling in-ear or semi-ear earphones.
  • the semi-in-ear earphone can integrate the components in the control component of the earphone on one chip and place it in the ear tip chamber of the earphone.
  • a feedforward and feedback combined noise canceling driver circuit includes a first audio amplifier, a feedforward and feedback combined analog ANC, a mixer, and a second audio amplifier, wherein:
  • the first audio amplifier is used for Receiving and amplifying an audio signal from an audio device, and outputting the amplified audio signal to a first input of the mixer;
  • the feedforward and feedback combined analog ANC is configured to receive a first noise signal from a feedback microphone through its first input, And performing the first processing on the first noise signal and outputting to the third input end of the mixer; the feedforward and feedback combined analog ANC through the second The input end receives the second noise signal from the feedforward microphone, and performs the second processing on the second noise signal to output to the second input end of the mixer;
  • the mixer is used for Mixing the first processed first noise signal, the second processed second noise signal, and the amplified audio signal, and outputting the obtained mixed audio signal to an input end of the second audio amplifier;
  • the second audio amplifier is configured to amplify the mixed audio signal and drive the speaker to play the amplified mixed audio signal.
  • the feedforward and feedback combined analog ANC includes a first differential input variable gain amplifier and a first phase controller, a second differential input variable gain amplifier, and a second phase controller, wherein:
  • the first differential input variable gain amplifier is used for Receiving a first noise signal from the feedback microphone, and amplifying the first noise signal and outputting to the first phase controller;
  • the first phase controller is configured to invert a phase of the amplified noise portion by 180 degrees and output the third input to the mixer ;
  • the second differential input variable gain amplifier is used for Receiving a second noise signal from the feedforward microphone, and amplifying the second noise signal and outputting to the second phase controller;
  • the second phase controller is configured to invert the phase of the amplified second noise signal by 180 degrees and output the second to the mixer Input.
  • the drive circuit of the present invention further includes a single-wire digital control interface and a storage device, wherein:
  • the single-line digital control interface for receiving Gain data of the first differential input variable gain amplifier and the second differential input variable gain amplifier, and storing the gain data to the storage device;
  • the first differential input variable gain amplifier and the second differential input variable gain amplifier extract respective gain data from the storage device and adjust their gain based on the extracted gain data.
  • the driving circuit of the present invention further comprises:
  • a mute control module respectively connected to the first audio amplifier and the feedforward and feedback combined analog ANC For controlling the first audio amplifier and the feedforward and feedback combined analog ANC to mute.
  • the driving circuit of the present invention further comprises:
  • a delay control module connected to the first differential input variable gain amplifier and the second differential input variable gain amplifier, respectively A delay time for controlling the first noise signal and/or the second noise signal.
  • the drive circuit is integrated into a chip by SOC technology.
  • the single-wire digital control interface shares the same pin as the input of the first audio amplifier.
  • the first audio amplifier is a differential input audio amplifier.
  • the second audio amplifier is a BTL (bridge tied load) audio amplifier.
  • the drive circuit is powered by an audio device.
  • a feedforward and feedback combined noise canceling earphone comprising a left ear cavity and a right ear cavity respectively fixed on the left and right ears, and respectively a control assembly coupled to the left ear chamber and the right ear chamber; a speaker, a feedback microphone, and a housing in the left ear chamber and the right ear chamber, respectively a driving circuit board, the driving circuit board comprising the driving circuit of any one of the above, wherein the left ear protrusion chamber and the outer side of the right ear protrusion chamber are respectively fixedly provided with a feedforward microphone, the feedforward microphone, The feedback microphone and the speaker are respectively connected to the driving circuit board.
  • the driving circuit of the present invention has the following beneficial effects: When the processed first noise signal and the second noise signal are mixed with the amplified audio signal, destructive interference with noise from the inside of the eardrum and noise from outside the ear canal can be generated. , Effectively The noise from the inside of the ear tip and the noise from outside the ear tip are eliminated, and the drive circuit has a simple structure, is easy to implement, and is low in cost.
  • the device includes a first differential input variable gain amplifier and a first phase controller, a second differential input variable gain amplifier, and a second phase controller;
  • the first differential input variable gain amplifier and the second differential input variable gain amplifier adopt a digital gain control scheme to adjust the gain of the gain based on the extracted gain data by extracting the gain data stored in the storage device.
  • Variable resistor reduces the area of the integrated driver circuit; further, the driver circuit passes the SOC
  • the technology is integrated on a single chip, which reduces the size of the driver circuit and can be placed in the ear tip chamber of the earphone.
  • the drive circuit When the drive circuit is placed in the ear tip chamber of the earphone: Can the microphone be shortened from the ANC to the ANC
  • the connection line of the device avoids introducing a new noise signal; shortens the connection line of the audio amplifier to the speaker, avoids signal attenuation and distortion; simplifies the wiring of the drive circuit;
  • the driving circuit is moved from the control component to the ear tip chamber, which greatly reduces the size and weight of the control component, and the user wears the earphone more easily and conveniently.
  • the feedforward and feedback combined noise canceling earphone of the invention adopts a digital gain control scheme for the driving circuit, and does not need
  • the manual tool adjusts the amplifier gain, plus the driver circuit is integrated into a chip using SOC technology.
  • the driver board can be, for example, less than 12 in diameter.
  • a millimeter circular printed circuit board is implemented, so the driver circuit board for eliminating noise can be placed in the ear tip chamber, and further, since the driving circuit board is disposed in the ear tip chamber, the earphone Has the following beneficial effects:
  • Figure 1 is a cross-sectional view of the electric heating wire assembly of the present invention
  • FIG. 2 is a system block diagram of an electronic cigarette performance detecting apparatus of the present invention
  • FIG. 3 is a schematic structural view of the electronic cigarette performance detecting device shown in FIG. 2;
  • FIG. 4 is a schematic structural view of a degreasing mechanism of the electronic cigarette performance detecting device shown in FIG. 3;
  • FIG. 5 is a schematic view showing a state in which the degreasing mechanism shown in FIG. 4 holds the heating wire assembly.
  • Figure 1 is a circuit diagram of an existing infeed-type noise-reducing in-ear or semi-in-ear earphone
  • Figure 2 is a circuit diagram of an existing in-ear noise-removing in-ear or semi-in-ear earphone
  • FIG. 3 is a schematic structural view of an in-ear or semi-in-ear earphone with a combination of feedforward and feedback combined with noise elimination;
  • Figure 4 is a circuit diagram of an existing infeed or feedback combined noise canceling in-ear or semi-ear earphone
  • FIG. 5 is a schematic structural diagram of a first embodiment of a feedforward and feedback combined noise canceling headphone driving circuit according to the present invention
  • FIG. 6 is a schematic structural view of a feedforward and feedback combined analog ANC in a first embodiment of a driving circuit of the present invention
  • FIG. 7 is a schematic structural diagram of a second embodiment of a feedforward and feedback combined noise canceling headphone driving circuit according to the present invention.
  • FIG. 8 is a schematic structural diagram of a third embodiment of a feedforward and feedback combined noise canceling headphone driving circuit according to the present invention.
  • FIG. 9 is a schematic structural diagram of a first embodiment of a feedforward and feedback combined noise canceling headphone according to the present invention.
  • FIG. 10 is a schematic structural view of a left ear cavity in a first embodiment of a feedforward and feedback combined noise canceling headphone according to the present invention
  • FIG. 11 is a schematic structural view of a right ear cavity in a first embodiment of a feedforward and feedback combined noise canceling headphone according to the present invention.
  • FIG. 5 is a schematic diagram showing the structure of a headphone driving circuit for feeding forward and feedback combined noise elimination according to the present invention.
  • the driving circuit includes a first audio amplifier 10, a feedforward and feedback combined analog ANC 11, a mixer 12, and a second audio amplifier 13.
  • the input terminal is connected to the audio device for receiving an audio signal from the audio device, and the audio signal is amplified and output to the first input of the mixer 12.
  • the first audio amplifier 10 can be a differential input audio
  • the preamplifier has a gain range of 0dB to 6dB.
  • Feedforward and feedback combined analog ANC 11 The first input is connected to the feedback microphone for receiving the first noise signal from the feedback microphone, and the first noise signal is first processed and output to the third input of the mixer 12. Feedforward and feedback combined simulation The second input of the ANC 11 is connected to the feedforward microphone for receiving the second noise signal from the feedforward microphone, and the second noise signal is subjected to the second processing and output to the mixer. The second input.
  • the feedforward and feedback combined analog ANC 11 includes a first differential input variable gain amplifier. 111 and a first phase controller 112, a second differential input variable gain amplifier 113, and a second phase controller 114.
  • the input of the first differential input variable gain amplifier 111 receives the first noise signal from the feedback microphone
  • the first noise signal is amplified and output to the first phase controller 112.
  • the first phase controller 111 inverts the phase of the amplified first noise signal by 180 degrees and outputs it to the mixer 12 The third input.
  • the second noise signal from the feedforward microphone is amplified and output to the second phase controller 114.
  • the second phase controller 114 inverts the phase of the amplified second noise signal. The output is then output to the second input of the mixer 12.
  • the first differential input variable gain amplifier 111 and the second differential input variable gain amplifier 113 The gain range is from 3dB to 39dB.
  • the first processed first noise signal, the second processed second noise signal, and the amplified audio signal are mixed, and the resulting mixed audio signal is output to the input end of the second audio amplifier 13.
  • the second audio amplifier 13 amplifies the received mixed audio signal and drives the speaker 511 Play the amplified mixed audio signal.
  • the second audio amplifier 13 can be a BTL audio amplifier.
  • the variable gain amplifier 111 is input through the first differential input. Amplifying the first noise signal collected by the feedback microphone, and rotating the phase of the amplified first noise signal by 180 degrees through the first phase controller 112; and passing through the second differential input variable gain amplifier 113 Amplifying the second noise signal collected by the feedforward microphone, and flipping the phase of the amplified second noise signal by the second phase controller 114 Degree.
  • the first noise signal and the second noise signal after the above processing are mixed with the amplified audio signal, the noise from the inside of the eardrum and the noise from the outside of the ear canal can be canceled. put one's oar in, Effectively eliminates noise from the inside of the ear canal and noise from outside the ear canal.
  • the drive circuit has a simple structure, is easy to implement, and is low in cost.
  • FIG. 7 is a schematic structural view of a second embodiment of a feedforward and feedback combined noise canceling headphone driving circuit according to the present invention, as shown in FIG. 7
  • the present embodiment differs from the first embodiment of the drive circuit in that, in the present embodiment, the drive circuit further includes a single-wire digital control interface 14 and a storage device 15. And, the drive circuit passes the SOC Technology is integrated into one chip.
  • the single-wire digital control interface 14 is used to access the first differential input variable gain amplifier 111 and the second differential input variable gain amplifier
  • the gain data of 113 and the gain data of both are stored in different memory locations in the storage device.
  • a first differential input variable gain amplifier 111 and a second differential input variable gain amplifier 113 It is also used to extract gain data from the corresponding memory cells of the memory device and adjust its own gain (i.e., magnification) based on the extracted gain data.
  • the single-line digital control interface 14 and the input of the first audio amplifier 10 can share the same pin, saving the drive circuit.
  • the number of pins and the number of wires connected to the drive circuit are the same pin, saving the drive circuit.
  • the driver circuit implemented by SOC technology integrated on one chip includes the ground terminal (pin 1 shown in Figure 9-11) ), the power supply terminal (pin 2 shown in Figure 9-11), the channel audio signal terminal (pin 3 or 4 shown in Figure 9-11, specifically, the drive circuit provided in the left ear cavity) Including left Channel audio signal terminal, that is, pin 3, feedforward microphone positive and negative input terminals (ie, two inputs of the second differential input variable gain amplifier 113), feedback microphone positive and negative input terminals (ie Two inputs of the first differential input variable gain amplifier 111, and positive and negative speaker outputs (ie, the positive and negative terminals of the second audio amplifier 13); the driving circuit disposed in the right ear chamber includes the right Channel audio signal terminal, that is, pin 4, feedforward microphone positive and negative input terminals (ie, two inputs of the second differential input variable gain amplifier 113), and feedback microphone positive and negative input terminals (ie Two inputs of the first differential input variable gain amplifier 111, and positive and negative speaker outputs (ie, the positive and negative outputs of the
  • connection line and control unit 53 (see Figure 9, control unit 53 is responsible for the ANC function switch of the headset) Connection, control unit 53 Then, the connection line and the terminal are connected with the audio device, and the positive and negative input terminals of the feedforward microphone are connected with the positive and negative poles of the feedforward microphone through the connection line, and the positive and negative input terminals of the feedback microphone pass through the positive and negative of the connection line and the feedback microphone.
  • the pole connection is connected to the positive and negative terminals of the speaker through the connecting line.
  • the noise canceling headphone driving circuit adopts a manual gain adjustment scheme, and an area of 2x2 mm is used.
  • the variable resistor adjusts the gain of the microphone amplifier to achieve a balance of noise cancellation on both the left and right sides. Even if the variable resistor and the noise-canceling headphone drive circuit can be placed together in the ear protrusion chamber, the ear protrusion chamber is sealed, and it is impossible to adjust the microphone amplifier gain by using a hand tool to extend into the ear tip chamber. Therefore, in practical applications, the prior art in-ear and half-in-ear headphones cannot set the noise-eliminating earphone driving circuit in the ear protrusion room, and can only be disposed in the control component (as shown in the figure). 3 shown 320).
  • the first differential input variable gain amplifier 111 And the second differential input variable gain amplifier 113 adopts a digital gain control scheme to adjust its gain based on the extracted gain data by extracting the gain data stored in the storage device 15, Achieve noise balance on both the left and right sides, eliminating the need for manual tools to adjust amplifier gain and saving an area of 2x2mm over the prior art
  • the variable resistor reduces the area of the integrated driver circuit.
  • the drive circuit passes the SOC The technology is integrated on a single chip, which reduces the size of the driver circuit and can be placed in the ear tip chamber of the earphone.
  • the drive circuit When the drive circuit is placed in the ear tip chamber of the earphone: Can the microphone be shortened from the ANC to the ANC
  • the connection line of the device avoids introducing a new noise signal; shortens the connection line of the audio amplifier to the speaker, avoids signal attenuation and distortion; simplifies the wiring of the drive circuit;
  • the driving circuit is moved from the control component to the ear tip chamber, which greatly reduces the size and weight of the control component, and the user wears the earphone more easily and conveniently.
  • FIG. 8 is a schematic structural diagram of a third embodiment of a feedforward and feedback combined noise canceling headphone driving circuit according to the present invention, as shown in FIG. As shown, the present embodiment differs from the second embodiment of the drive circuit in that the drive circuit further includes a mute control module 16 and a delay control module 17.
  • the mute control module 16 is combined with the feedforward and feedback analog analog ANC 11 and the first audio amplifier 10 respectively.
  • the communication connection, the mute control module 16 controls the mute of the noise signal collected by the feedforward microphone and the feedback microphone and the mute of the first audio amplifier 10.
  • Delay control module 17 is coupled to first differential input variable gain amplifier 111 and second differential input variable gain amplifier 113, respectively The communication connection, delay control module 17 controls the delay time of the second noise signal from the feedforward microphone and the first noise signal of the feedback microphone.
  • the mute control module 16 can be passed.
  • the noise signal collected by the feedforward microphone and the feedback microphone is separately or simultaneously controlled to be muted and the first audio amplifier 10 is muted.
  • it is also possible to pass the delay control module 17 The second noise signal of the feedforward microphone from the two ear chambers and the delay time of the first noise signal of the feedback microphone are controlled.
  • FIG. 9 is a schematic diagram of a structure of a first embodiment of a feedforward and feedback combined noise canceling headphone 50 of the present invention, and an earphone 50
  • the earphone 50 includes a left ear cavity 51 and a right ear cavity 52 for fixing to the left and right ears, respectively, and also includes a left ear cavity 51 and a right ear, respectively.
  • Chamber 52 Connected Control Components 53 .
  • a feedback microphone 510, a speaker 511, and a driving circuit board 513 are disposed in the housing of the left ear chamber 51.
  • a feedforward microphone 512 is fixedly disposed outside the casing.
  • the feedback microphone 510, the speaker 511, and the feedforward microphone 512 are respectively connected to the driving circuit board 513.
  • Feedback microphone 510 is configured to receive a first noise signal, where the first noise signal is a noise signal inside the eardrum housing.
  • a feedback microphone 520, a speaker 521, and a driving circuit board are disposed in the housing of the right ear chamber 52. 523, a feedforward microphone 522 is fixedly disposed outside the casing. The feedback microphone 520, the speaker 521, and the feedforward microphone 522 are respectively connected to the driving circuit board 5 2 3 .
  • the feedback microphone 520 is configured to receive a first noise signal, and the first noise signal is a noise signal inside the ear chamber housing.
  • Feedforward microphone 522 And for receiving a second noise signal, the second noise signal is a noise signal outside the ear chamber housing.
  • the driving circuit boards 513 and 523 are realized by the second or third embodiment of the driving circuit of the present invention.
  • headset The 50 can be powered by an audio device or powered by a miniature rechargeable lithium battery built into the control unit 53.
  • the feedforward and feedback combined noise canceling earphone 50 of the present invention In the first embodiment, since the driving circuit adopts a digital gain control scheme, no manual tool is needed to adjust the amplifier gain, and the driving circuit is integrated with a SOC technology on one chip, and the driving circuit board ( 513 or 523) can be implemented by a circular printed circuit board with a diameter of less than 12 mm (for example, not for limitation), so the noise is used to drive the board (513 or 523) ) can be placed in the ear cavity. Further, since the driving circuit board (513 or 523) is disposed in the ear tip chamber, the earphone 50 has the following advantages:
  • the driving circuit is moved from the control component to the ear tip chamber, which greatly reduces the size and weight of the control component, and the user wears the earphone more easily and conveniently.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Headphones And Earphones (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

一种前馈与反馈结合式消除噪声的耳机及其驱动电路,耳机包括左耳突室(51)和右耳突室(52),左耳突室(51)和右耳突室(52)的壳体内分别设置有扬声器(511,521)、反馈式麦克风(510,520)以及包括驱动电路的驱动电路板((513,523),壳体外侧分别固定设置有前馈式麦克风(512,522),前馈式麦克风(512,522)、反馈式麦克风(510,520)以及扬声器(511,521)分别连接驱动电路板(513,523)。驱动电路板设置于耳突室内,缩短了从麦克风至ANC器件的连接线,避免引入新的噪声信号,缩短了音频放大器至扬声器的连接线,避免了信号的衰减及失真,简化了驱动电路的布线,大幅度缩小了控制组件的尺寸和重量。

Description

一种前馈与反馈结合式消除噪声的耳机及其驱动电路 技术领域
本发明涉及音频设备领域,更具体地说,涉及一种前馈与反馈结合式消除噪声的耳机及其驱动电路。
背景技术
自卡带机时代以来,便携式电子设备的市场不断增长。噪声消除技术始终是便携式设备的发展领域之一,用于减少达到用户耳膜的不必要的背景噪声。有源噪声消除( Active Noise Cancellation technique , ANC )技术采用了电子手段产生与输入的背景噪声振幅相同但相位相差 180 度的声波,使产生的声波与背景噪声声波在听者的耳膜点产生相消干涉,从而消除背景噪声。
由于诸如 MP3 、手机、 iPod 等便携式音频设备的数量不断增加,对于 ANC 技术的要求不断提高。这种需求驱使着 ANC 技术向着低成本、小尺寸、低能耗以及便于大规模生产的方向发展。
图 1 为现有的前馈式消除噪声的入耳式或半入耳式的耳机 100 的电路图,参见图 3 ,耳机 100 的左耳突室和右耳突室各包括 1 个前馈式麦克风 110 以及 1 个扬声器 120 ,耳机 100 的控制组件中设置有驱动电路 30 。前馈式麦克风 110 固定设置在左 / 右耳突室的壳体上,暴露在噪声之中,并与扬声器 120 隔离,用于收集耳突室壳体外部的噪声。驱动电路 30 包括带有电池的分立式或 DSP 的 ANC 器件以及音频放大器,驱动电路 30 的第一输入端连接前馈式麦克风 110 ,第二输入端接入音频信号,输出端连接扬声器 120 。
图 2 为现有的反馈式消除噪声的入耳式或半入耳式的耳机 200 的电路图,参见图 3 ,耳机 200 的左耳突室和右耳突室中各设置有 1 个反馈式麦克风 210 以及 1 个扬声器 220 ,耳机 200 的控制组件中设备有驱动电路 230 。反馈式麦克风 210 用于收集耳突室壳体内部的噪声,驱动电路 230 包括带有电池的分立式或 DSP 的 ANC 器件以及音频放大器,驱动电路 230 的第一输入端连接反馈式麦克风 210 ,第二输入端接入音频信号,输出端连接扬声器 220 。
典型的前馈式或反馈式消除噪声的入耳式或半入耳式的耳机一般只能产生最大 20 分贝的噪声消除效果 ( 从被动噪声隔离测量 ) ,为了将噪声消除效果提高到大于 30 分贝,需要采用前馈与反馈结合式配置 。
图 3 示出了一种现有的前馈与反馈结合式消除噪声的入耳式或半入耳式的耳机 300 ,耳机 300 包括左耳突室和右耳突室 310 、控制组件 320 、第一连接线 330 以及第二连接线 340 ,第一连接线 330 分别将左耳突室和右耳突室 310 于控制组件 320 连接,第二连接线 340 将控制组件 320 通过端子 350 与便携式音频设备连接。结合图 4 ,左耳突室和右耳突室 310 分别包括 1 个前馈式麦克风 311 、 1 个反馈式麦克风 312 以及 1 个扬声器 313 ,控制组件 320 包括驱动电路 321 ,驱动电路 321 包括带有电池的分立式或 DSP 的 ANC 器件以及音频放大器,驱动电路 321 的第一输入端连接反馈式麦克风 312 ,第二输入端接入前馈式麦克风 311 ,第三输入端接入音频信号,输出端连接扬声器 313 。
然而在使用图 3-4 所示的耳机时,有以下问题:
1. 从耳突室的麦克风至控制组件中的 ANC 器件的线路过长,可能引入新的噪声信号;
2. 从控制组件中的音频放大器至耳突室的扬声器的线路过长,信号会衰减 及失真;
3. 控制组件与带有扬声器和麦克风的耳突之间的布线比较复杂;
4. 分立式和 DSP 的 ANC 器件尺寸太大,无法放入耳突室中;
5. 分立式和 DSP 的 ANC 器件需要大量的外部组件,从而导致引脚过多,且成本较高;
6.DSP 的 ANC 器件需要软件集成;
7.DSP 及分立式的 ANC 器件的能耗较高,且易产生高频干扰;
8. 分立式和DSP的ANC器件不利于大规模生产。
发明内容
本发明要解决的技术问题在于,针对现有的前馈与反馈结合式消除噪声的入耳式或半入耳式的耳机存在的上述缺陷,提供一种前馈与反馈结合式消除噪声的入耳式或半入耳式的耳机,能够将耳机的控制组件中的各组件集成在一个芯片上,放置于耳机的耳突室中。
本发明要解决其技术问题采用的技术方案是: 提供 一种前馈与反馈结合式消除噪声的耳机的驱动电路,包括第一音频放大器、前馈与反馈结合式模拟 ANC 器、混合器和第二音频放大器,其中:
所述第一音频放大器 ,用于 接收并放大来自音频设备的音频信号,并将放大后的音频信号输出至所述混合器的第一输入端;
所述前馈与反馈结合式模拟 ANC 器 ,用于 通过其第 一 输入端接收来自反馈式麦克风的第一噪声信号, 并 对所述第一噪声信号进行第一处理后输出至所述混合器的第 三 输入端;所述前馈与反馈结合式模拟 ANC 器通过其第 二 输入端接收来自前馈式麦克风的第二噪声信号,并对所述第二噪声信号进行第二处理后输出至所述混合器的第 二 输入端;
所述混合器 ,用于 混合经过第一处理后的第一噪声信号、经过第二处理后的第二噪声信号以及放大后的音频信号,并将得到的混合音频信号输出至所述第二音频放大器的输入端;
所述第二音频放大器 ,用于 放大所述混合音频信号,并驱动扬声器播放放大后的混合音频信号。
优选地 ,所述前馈与反馈结合式模拟 ANC 器包括第一差分输入可变增益放大器以及第一相位控制器,第二差分输入可变增益放大器以及第二相位控制器 , 其中:
所述第一差分输入可变增益放大器 ,用于 接收来自反馈式麦克风的第一噪声信号,并对所述第一噪声信号进行放大后输出至所述第一相位控制器;
所述第一相位控制器 ,用于 将放大后的噪声部分的相位翻转 180 度后输出至所述混合器的第 三 输入端 ;
所述第二差分输入可变增益放大器 ,用于 接收来自前馈式麦克风的第二噪声信号,并对所述第二噪声信号进行放大后输出至所述第二相位控制器;
所述第二相位控制器 ,用于 将放大后的所述第二噪声信号的相位翻转 180 度后输出至所述混合器的第 二 输入端。
优选地,本发明的 驱动电路还包括单线数字控制接口以及存储装置,其中:
所述单线数字控制接口 ,用于接收 所述第一差分输入可变增益放大器和所述第二差分输入可变增益放大器的增益数据,并将所述增益数据存储到所述存储装置;
所述第一差分输入可变增益放大器和所述第二差分输入可变增益放大器从所述存储装置提取相应的增益数据,基于提取的增益数据调节自身的增益。
优选地,本发明的 驱动电路还包括 :
静音控制模块 ,分别与所述 第一音频放大器以及所述前馈与反馈结合式模拟 ANC 器 连接, 用于控制所述第一音频放大器以及所述前馈与反馈结合式模拟 ANC 器静音。
优选地,本发明的 驱动电路还包括 :
延迟控制模块 ,分别与 所述第一差分输入可变增益放大器和所述第二差分输入可变增益放大器 连接, 用于控制所述第一噪声信号和 / 或所述第二噪声信号的延迟时间。
优选地,所述驱动电路通过 SOC 技术集成到一个芯片 。
优选地, 所述单线数字控制接口 与 第一音频放大器的输入端 共用同一引脚 。
优选地 ,所述第一音频放大器为差分输入音频放大器。
优选地 ,所述第二音频放大器为 BTL ( bridge tied load ) 音频放大器。
优选地,所述驱动电路由音频设备供电。
提供 一种前馈与反馈结合式消除噪声的耳机,包括分别用于固定在左右耳朵上的左耳突室和右耳突室, 以及分别 与 所述 左耳突室和 所述 右耳突室 连接的控制组件; 所述左耳突室和所述右耳突室的壳体内分别设置有扬声器 、 反馈式麦克风以及 驱动电路板,驱动电路板包括上述 任一项 中 的驱动电路,所述左耳突室和所述右耳突室的壳体外侧分别固定设置有前馈式麦克风,所述前馈式麦克风 、 所述反馈式麦克风以及所述扬声器分别连接所述驱动电路 板 。
本发明的 驱动电路 具有以下有益效果: 当经过处理后的第一噪声信号、第二噪声信号与放大后的音频信号混合时,能够和音频信号中掺杂的来自耳突室内部的噪声以及来自耳突室外部的噪声产生 相消干涉, 有效地 消除 来自耳突室内部的噪声以及来自耳突室外部的噪声,另外,驱动电路结构简单,便于实施且成本低。
另外, 前馈与反馈结合式模拟 ANC 器包括第一差分输入可变增益放大器以及第一相位控制器,第二差分输入可变增益放大器以及第二相位控制器 ; 第一差分输入可变增益放大器和第二差分输入可变增益放大器采用数字增益控制方案,通过 提取存储装置中存储的增益数据,基于提取的增益数据调节自身的增益, 达到左右两边消除噪声的平衡, 无需 手动工具调校放大器增益 ,并且比现有技术节省了一个面积为 2x2mm 的可变电阻,降低了集成的驱动电路的面积;再者,驱动电路通过 SOC 技术集成到一个芯片上,缩小了驱动电路的体积,能够设置于耳机的耳突室中。当驱动电路设置于耳机的耳突室中时能够: 缩短了从麦克风至 ANC 器件的连接线,避免引入新的噪声信号;缩短了音频放大器至扬声器的连接线,避免了信号的衰减及失真;简化了驱动电路的布线 ; 由于 将 驱动电路从控制组件移到耳突室内,大幅度缩小了控制组件的尺寸和重量,用户佩戴耳机更轻松方便。
本发明 的前馈与反馈结合式消除噪声的耳机,由于驱动电路采用了数字增益控制方案, 无需 手动工具调校放大器增益 ,再 加上 驱动电路采用了 SOC 技术集成到一个芯片上,驱动电路板 可以由例如直径小于 12 毫米的圆形印刷电路板来实现,因此用于消除噪声的 驱动电路板 可以设置 于 耳突室中,进一步,由于 驱动电路板 设置于耳突室内,耳机 具有了以下有益效果:
1. 缩短了从麦克风至 ANC 器件的连接线,避免引入新的噪声信号;
2. 缩短了音频放大器至扬声器的连接线,避免了信号的衰减及失真;
3. 简化了驱动电路的布线,且使左耳突室、右耳突室和控制组件 之间 的连线减少,现有技术的前馈与反馈结合式消除噪声的入耳式或半入耳式耳机在左耳突室、右耳突室和控制组件 之间 的连线共有七条,包括接地、左声道音频信号、左反馈式麦克风信号、左前馈式麦克风信号、右声道音频信号、右反馈式麦克风信号和右前馈式麦克风信号,本发明实施例中的耳机在左耳突室、右耳突室和控制组件 之间 的连线只有四条,包括电源、接地、左声道音频信号和右声道音频信号;
4. 由于将驱动电路从控制组件移到耳突室内,大幅度缩小了控制组件的尺寸和重量,用户佩戴耳机更轻松方便。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1为本发明的电热丝组件的剖视图;
图2为本发明的电子烟性能检测装置的系统框图;
图3是图2所示电子烟性能检测装置的结构示意图;
图4是图3所示电子烟性能检测装置的除胶机构的结构示意图;
图5为图4所示的除胶机构夹持电热丝组件的状态示意图。
图 1 为现有的前馈式消除噪声的入耳式或半入耳式的耳机的电路图;
图 2 为现有的反馈式消除噪声的入耳式或半入耳式的耳机的电路图;
图 3 为现有的前馈与反馈结合式消除噪声的入耳式或半入耳式的耳机的结构示意图;
图 4 为现有的前馈与反馈结合式消除噪声的入耳式或半入耳式的耳机的电路图;
图 5 为本发明的前馈与反馈结合式消除噪声的耳机驱动电路的第一实施例的结构示意图;
图 6 为本发明的驱动电路第一实施例中前馈与反馈结合式模拟 ANC 器的结构示意图;
图 7 为本发明的前馈与反馈结合式消除噪声的耳机驱动电路的第二实施例的结构示意图;
图 8 为本发明的前馈与反馈结合式消除噪声的耳机驱动电路的第三实施例的结构示意图;
图 9 为本发明的前馈与反馈结合式消除噪声的耳机第一实施例的结构示意图;
图 10 为本发明的前馈与反馈结合式消除噪声的耳机第一实施例中左耳突室的结构示意图;
图 11 为本发明的前馈与反馈结合式消除噪声的耳机第一实施例中右耳突室的结构示意图。
具体实施方式
以下结合附图以及实施例对本发明做进一步的解释说明。
图 5 为本发明的前馈与反馈结合式消除噪声的耳机驱动电路 第一实施例的结构示意 图,驱动电路包括第一音频放大器 10 、前馈与反馈结合式模拟 ANC 器 11 、混合器 12 和第二音频放大器 13 。
其中,第一音频放大器 10 的输入端连接音频设备,用于接收来自音频设备的音频信号,并对该音频信号进行放大处理后输出至混合器 12 的第一输入端。第一音频放大器 10 可以是差分输入音频 前置 放大器,其增益范围为 0dB 至 6dB 。
前馈与反馈结合式模拟 ANC 器 11 的第一输入端连接反馈式麦克风,用于接收来自反馈式麦克风的第一噪声信号,并对第一噪声信号进行第一处理后输出至混合器 12 的第三输入端。前馈与反馈结合式模拟 ANC 器 11 的第二输入端连接前馈式麦克风,用于接收来自前馈式麦克风的第二噪声信号,并对第二噪声信号进行第二处理后输出至混合器 12 的第二输入端。
在本实施例中,如图 6 所示, 前馈与反馈结合式模拟 ANC 器 11 包括 第一差分输入可变增益放大器 111 以及第一相位控制器 112 , 第二差分输入可变增益放大器 113 以及第二相位控制器 114 。
其中 , 第一差分输入可变增益放大器 111 的输入端 接收来自反馈式麦克风的第一噪声信号 ,对第一噪声信号进行放大后 输出至第一相位控制器 112 。 第一相位控制器 111 将放大后的 第一 噪声信号的相位翻转 180 度后输出至混合器 12 的第三输入端。
第二差分输入可变增益放大器 113 的输入端接收 来自前馈式麦克风的第二噪声信号,并对第二噪声信号进行放大后输出至第二相位控制器 114 。 第二相位控制器 114 将放大后的第二噪声信号的相位翻转 180 度后输出至混合器 12 的第二输入端。
在本实施例中, 第一差分输入可变增益放大器 111 和 第二差分输入可变增益放大器 113 的 增益范围为 3dB 至 39dB 。
混合器 12 混合经过第一处理后的第一噪声信号、经过第二处理后的第二噪声信号以及放大后的音频信号,并将得到的混合音频信号输出至第二音频放大器 13 的输入端。
第二音频放大器 13 放大接收到的混合音频信号,并驱动扬声器 511 播放放大后的混合音频信号。第二音频放大器 13 可以是 BTL 音频放大器。
在本发明的 驱动电路 的第一实施例中,通过第一 差分输入可变增益放大器 111 放大反馈式麦克风采集到的第一噪声信号,通过第一相位控制器 112 将放大后的第一噪声信号的相位翻转 180 度;通过第二 差分输入可变增益放大器 113 放大前馈式麦克风采集到的第二噪声信号,通过第二相位控制器 114 将放大后的第二噪声信号的相位翻转 180 度。当经过上述处理后的第一噪声信号、第二噪声信号与放大后的音频信号混合时,能够和音频信号中掺杂的来自耳突室内部的噪声以及来自耳突室外部的噪声产生 相消干涉, 有效地 消除 来自耳突室内部的噪声以及来自耳突室外部的噪声 。 另外,驱动电路结构简单,便于实施且成本低。
图 7 为本发明的前馈与反馈结合式消除噪声的耳机驱动电路的第二实施例的结构示意图,如图 7 所示,本实施例与驱动电路的第一实施例的区别在于,在本实施例中,驱动电路还包括单线数字控制接口 14 以及存储装置 15 。并且,驱动电路通过 SOC 技术集成到一个芯片。
其中,单 线数字控制接口 14 用于接入第一差分输入可变增益放大器 111 和第二差分输入可变增益放大器 113 的增益数据,并将 两者的 增益数据存储到存储装置 中不同的存储单元。 第一差分输入可变增益放大器 111 和第二差分输入可变增益放大器 113 还用于从存储装置 的相应存储单元中 提取增益数据, 并 基于提取的增益数据调节自身的增益 (即放大倍数) 。
单 线数字控制接口 14 与 第一音频放大器 10 的输入端 可以共用同一引脚, 节省 了 驱动电路的 引脚数目以及 驱动电路 与 外部的 连接 线 数目。
通过 SOC 技术集成到一个芯片上实现的驱动电路包括接地端(图 9-11 中所示的引脚 1 )、电源端(图 9-11 中所示的引脚 2 )、声道音频信号端(图 9-11 中所示的引脚 3 或 4 ,具体的,设置于左耳突室的驱动电路包括左 声道音频信号端 ,即引脚 3 、前馈式麦克风正负输入端(即 第二 差分输入可变增益放大器 113 的两个输入端 )、反馈式麦克风正负输入端(即 第一差分输入可变增益放大器 111 的两个输入端 ) 、 以及正负扬声器输出端(即第二音频放大器 13 的输出端正负极) ;设置于右耳突室的驱动电路包括右 声道音频信号端 ,即引脚 4 、前馈式麦克风正负输入端(即 第二 差分输入可变增益放大器 113 的两个输入端 )、反馈式麦克风正负输入端(即 第一差分输入可变增益放大器 111 的两个输入端 ) 、 以及正负扬声器输出端(即第二音频放大器 13 的输出端正负极)。驱动电路的引脚 1 - 4 过连接线与控制组件 53 (参见图 9 ,控制组件 53 负责耳机的 ANC 功能开关) 连接 , 控制组件 53 再通过连接线以及端子与音频设备连接,前馈式麦克风正负输入端通过连接线与前馈式麦克风的正负极连接,反馈式麦克风正负输入端通过连接线与反馈式麦克风的正负极连接,正负扬声器输出端通过连接线与扬声器的正负极连接。
在 现有技术中 , 消除噪声的耳机驱动电路采用手动增益调节方案,用一个面积为 2x2mm 的可变电阻来调校麦克风放大器的增益,从而达到左右两边消除噪声的平衡。就算可以勉强把可变电阻和消除噪声的耳机驱动电路一起放入耳突室内,因为耳突室已密封,亦无法用手动工具伸入耳突室内调校麦克风放大器增益。因此,在实际应用中,现有技术的入耳式和半入耳式耳机无法把消除噪声的耳机驱动电路设置于耳突室内,只能设置于控制组件(如图 3 所示的 320 )。
在本发明的驱动电路的 第 二 实施例 中, 第一差分输入可变增益放大器 111 和第二差分输入可变增益放大器 113 采用数字增益控制方案,通过 提取存储装置 15 中存储的增益数据,基于提取的增益数据调节自身的增益, 达到左右两边消除噪声的平衡, 无需 手动工具调校放大器增益 ,并且比现有技术节省了一个面积为 2x2mm 的可变电阻,降低了集成的驱动电路的面积。再者,驱动电路通过 SOC 技术集成到一个芯片上,缩小了驱动电路的体积,能够设置于耳机的耳突室中。当驱动电路设置于耳机的耳突室中时能够: 缩短了从麦克风至 ANC 器件的连接线,避免引入新的噪声信号;缩短了音频放大器至扬声器的连接线,避免了信号的衰减及失真;简化了驱动电路的布线 ; 由于 将 驱动电路从控制组件移到耳突室内,大幅度缩小了控制组件的尺寸和重量,用户佩戴耳机更轻松方便。
图 8 为本发明的前馈与反馈结合式消除噪声的耳机驱动电路的第三实施例的结构示意图,如图 8 所示,本实施例与驱动电路第二实施例的区别在于,驱动电路还包括静音控制模块 16 和延迟控制模块 17 。
其中,静音控制模块 16 分别与前馈与反馈结合式模拟 ANC 器 11 以及第一音频放大器 10 通信连接,静音控制模块 16 控制前馈式麦克风和反馈式麦克风采集到的噪声信号静音以及第一音频放大器 10 静音。
延迟控制模块 17 分别与第一差分输入可变增益放大器 111 和第二差分输入可变增益放大器 113 通信连接,延迟控制模块 17 控制来自前馈式麦克风的第二噪声信号以及反馈式麦克风的第一噪声信号的延迟时间。
在本发明的驱动电路的第三实施例中, 可以通过静音控制模块 16 单独或者同时控制前馈式麦克风和反馈式麦克风采集到的噪声信号静音以及第一音频放大器 10 静音。再者,还可以通过延迟控制模块 17 控制来自两耳突室的前馈式麦克风的第二噪声信号以及反馈式麦克风的第一噪声信号的延迟时间。
图 9 为本发明的前馈与反馈结合式消除噪声的耳机 50 第一实施例 的结构示意图,耳机 50 为入耳式或者半入耳式,如图 9 所示,耳机 50 包括分别用于固定在左右耳朵上的左耳突室 51 、 右耳突室 52 ,还包括分别与左耳突室 51 和 右耳突室 52 连接的控制组件 53 。参见图 10 ,左耳突室 51 的壳体内设置有反馈式麦克风 510 、扬声器 511 以及驱动电路板 513 ,壳体外侧固定设置有前馈式麦克风 512 。其中,反馈式麦克风 510 、扬声器 511 以及前馈式麦克风 512 分别连接驱动电路板 513 。反馈式麦克风 510 用于接收第一噪声信号,第一噪声信号为耳突室壳体内部的噪声信号。前馈式麦克风 512 用于接收第二噪声信号,第二噪声信号为耳突室壳体外部的噪声信号。
参见图 11 ,右耳突室 52 的壳体内设置有反馈式麦克风 520 、扬声器 521 以及驱动电路板 523 ,壳体外侧固定设置有前馈式麦克风 522 。其中,反馈式麦克风 520 、扬声器 521 以及前馈式麦克风 522 分别连接驱动电路板 5 2 3 。反馈式麦克风 520 用于接收第一噪声信号,第一噪声信号为耳突室壳体内部的噪声信号。前馈式麦克风 522 用于接收第二噪声信号,第二噪声信号为耳突室壳体外部的噪声信号。
在本实施例中, 驱动电路板 513 和 523 通过本发明的驱动电路的第二或者第三实施例来实现。耳机 50 可以由音频设备供电,或者由控制组件 53 内置的微型可再充电锂电池供电。 在本发明的前馈与反馈结合式消除噪声的耳机 50 的第一实施例中,由于驱动电路采用了数字增益控制方案, 无需 手动工具调校放大器增益 ,再 加上 驱动电路采用了 SOC 技术集成到一个芯片上,驱动电路板 ( 513 或者 523 )可以由直径小于 12 毫米的圆形印刷电路板(举例,不用于限制)来实现,因此用于消除噪声的 驱动电路板 ( 513 或者 523 )可以设置 于 耳突室中。进一步,由于 驱动电路板 ( 513 或者 523 )设置于耳突室内,耳机 50 具有了以下有益效果:
1. 缩短了从麦克风至 ANC 器件的连接线,避免引入新的噪声信号;
2. 缩短了音频放大器至扬声器的连接线,避免了信号的衰减及失真;
3. 简化了驱动电路的布线,且使左耳突室、右耳突室和控制组件 之间 的连线减少,现有技术的前馈与反馈结合式消除噪声的入耳式或半入耳式耳机在左耳突室、右耳突室和控制组件 之间 的连线共有七条,包括接地、左声道音频信号、左反馈式麦克风信号、左前馈式麦克风信号、右声道音频信号、右反馈式麦克风信号和右前馈式麦克风信号,本发明实施例中的耳机在左耳突室、右耳突室和控制组件 之间 的连线只有四条,包括电源、接地、左声道音频信号和右声道音频信号;
4. 由于 将 驱动电路从控制组件移到耳突室内,大幅度缩小了控制组件的尺寸和重量,用户佩戴耳机更轻松方便。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (11)

  1. 一种前馈与反馈结合式消除噪声的耳机的驱动电路,其特征在于,包括第一音频放大器( 10 )、前馈与反馈结合式模拟 ANC 器( 11 )、混合器( 12 )和第二音频放大器( 13 ) ,其中:
    所述第一音频放大器( 10 ) ,用于 接收并放大来自音频设备的音频信号,并将放大后的音频信号输出至所述混合器( 12 )的第一输入端;
    所述前馈与反馈结合式模拟 ANC 器( 11 ) ,用于 通过其第 一 输入端接收来自反馈式麦克风的第一噪声信号, 并 对所述第一噪声信号进行第一处理后输出至所述混合器( 12 )的第 三 输入端;所述前馈与反馈结合式模拟 ANC 器( 11 )通过其第 二 输入端接收来自前馈式麦克风的第二噪声信号,并对所述第二噪声信号进行第二处理后输出至所述混合器( 12 )的第 二 输入端;
    所述混合器( 12 ) ,用于 混合经过第一处理后的第一噪声信号、经过第二处理后的第二噪声信号以及放大后的音频信号,并将得到的混合音频信号输出至所述第二音频放大器( 13 )的输入端;
    所述第二音频放大器( 13 ) ,用于 放大所述混合音频信号,并驱动扬声器播放放大后的混合音频信号。
  2. 根据权利要求 1 所述的驱动电路,其特征在于,所述前馈与反馈结合式模拟 ANC 器( 11 )包括第一差分输入可变增益放大器( 111 )以及第一相位控制器( 112 ) , 第二差分输入可变增益放大器( 113 )以及第二相位控制器( 114 ),其中:
    所述第一差分输入可变增益放大器( 111 ) ,用于 接收来自反馈式麦克风的第一噪声信号,并对所述 第一 噪声 信号 进行放大后输出至所述第一相位控制器( 112 );
    所述第一相位控制器( 112 ) ,用于 将放大后的 第一噪声信号 的相位翻转 180 度后输出至所述混合器( 12 )的第 三 输入端 ;
    所述第二差分输入可变增益放大器( 113 ) ,用于 接收来自前馈式麦克风的第二噪声信号,并对所述第二噪声信号进行放大后输出至所述第二相位控制器( 114 );
    所述第二相位控制器( 114 ) ,用于 将放大后的所述第二噪声信号的相位翻转 180 度后输出至所述混合器( 12 )的第 二 输入端。
  3. 根据权利要求 2 所述的驱动电路,其特征在于,还包括单线数字控制接口( 14 )以及存储装置( 15 ),其中:
    所述单线数字控制接口( 14 ) ,用于接收 所述第一差分输入可变增益放大器( 111 )和所述第二差分输入可变增益放大器( 113 )的增益数据,并将所述增益数据存储到所述存储装置( 15 );
    所述第一差分输入可变增益放大器( 111 )和所述第二差分输入可变增益放大器( 113 )从所述存储装置( 15 )提取相应的增益数据,基于提取的增益数据调节自身的增益。
  4. 根据权利要求 3 所述的驱动电路,其特征在于,还包括 :
    静音控制模块( 16 ) ,分别与 所述第一音频放大器( 10 )以及所述前馈与反馈结合式模拟 ANC 器( 11 ) 连接,用于 控制所述第一音频放大器( 10 )以及所述前馈与反馈结合式模拟 ANC 器( 11 )静音。
  5. 根据权利要求 4 所述的驱动电路,其特征在于,还包括 :
    延迟控制模块( 17 ) ,分别与所述 第一差分输入可变增益放大器( 111 )和所述第二差分输入可变增益放大器( 113 ) 连接, 用于控制 所述 第一差分输入可变增益放大器( 111 ) 接收到的 所述第一噪声信号 和所述 第 二 差分输入可变增益放大器( 11 3 ) 接收到的 所述第二噪声信号的延迟时间。
  6. 根据权利要求 5 所述的 驱动电路,其特征在于, 所述驱动电路通过 SOC 技术集成到一个芯片 。
  7. 根据权利要求 3 所述的驱动电路,其特征在于, 所述单线数字控制接口 与 第一音频放大器的输入端 共用同一引脚 。
  8. 根据权利要求 1 所述的驱动电路,其特征在于,所述第一音频放大器( 10 )为差分输入音频 前置 放大器。
  9. 根据权利要求 1 所述的驱动电路,其特征在于,所述第二音频放大器( 13 )为 BTL 音频放大器。
  10. 根据权利要求 1 所述的驱动电路,其特征在于, 所述驱动电路由音频设备供电 。
  11. 一种前馈与反馈结合式消除噪声的耳机,包括分别用于固定在左右耳朵上的左耳突室( 51 )和右耳突室( 52 ),以及分别 与 所述左耳突室( 51 )和所述右耳突室( 52 )连接的控制组件( 53 );其特征在于,所述左耳突室( 51 )和所述右耳突室( 52 )的壳体内分别设置有扬声器( 511,521 )、反馈式麦克风( 510,520 )以及驱动电路板( 513,523 ),所述驱动电路板( 513,523 )包括权利要求 1-10 中任一项所述的驱动电路;所述左耳突室( 51 )和所述右耳突室( 52 )的壳体外侧分别固定设置有前馈式麦克风( 512,522 ),所述前馈式麦克风( 512,522 )、所述反馈式麦克风( 510,520 )以及所述扬声器( 511,521 )分别连接所述驱动电路板( 513,523 )。
PCT/CN2014/085603 2014-08-29 2014-08-29 一种前馈与反馈结合式消除噪声的耳机及其驱动电路 WO2016029461A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/085603 WO2016029461A1 (zh) 2014-08-29 2014-08-29 一种前馈与反馈结合式消除噪声的耳机及其驱动电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/085603 WO2016029461A1 (zh) 2014-08-29 2014-08-29 一种前馈与反馈结合式消除噪声的耳机及其驱动电路

Publications (1)

Publication Number Publication Date
WO2016029461A1 true WO2016029461A1 (zh) 2016-03-03

Family

ID=55398667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085603 WO2016029461A1 (zh) 2014-08-29 2014-08-29 一种前馈与反馈结合式消除噪声的耳机及其驱动电路

Country Status (1)

Country Link
WO (1) WO2016029461A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111656435A (zh) * 2017-11-02 2020-09-11 ams有限公司 用于确定启用噪声消除的音频设备的响应函数的方法
CN113315480A (zh) * 2021-05-31 2021-08-27 头领科技(昆山)有限公司 一种音频处理芯片及耳机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040264706A1 (en) * 2001-06-22 2004-12-30 Ray Laura R Tuned feedforward LMS filter with feedback control
CN102137319A (zh) * 2010-01-22 2011-07-27 安百特半导体有限公司 一种消除噪声的耳机及其驱动电路
CN102461204A (zh) * 2009-04-28 2012-05-16 伯斯有限公司 可动态配置的anr滤波器以及信号处理拓扑
CN103139677A (zh) * 2011-11-22 2013-06-05 鹦鹉股份有限公司 用于收听音频音乐源和/或免提电话功能的具有非适应型的主动噪声控制的音频耳机
CN103460715A (zh) * 2011-03-31 2013-12-18 伯斯有限公司 自适应前馈降噪

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040264706A1 (en) * 2001-06-22 2004-12-30 Ray Laura R Tuned feedforward LMS filter with feedback control
CN102461204A (zh) * 2009-04-28 2012-05-16 伯斯有限公司 可动态配置的anr滤波器以及信号处理拓扑
CN102137319A (zh) * 2010-01-22 2011-07-27 安百特半导体有限公司 一种消除噪声的耳机及其驱动电路
CN103460715A (zh) * 2011-03-31 2013-12-18 伯斯有限公司 自适应前馈降噪
CN103139677A (zh) * 2011-11-22 2013-06-05 鹦鹉股份有限公司 用于收听音频音乐源和/或免提电话功能的具有非适应型的主动噪声控制的音频耳机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111656435A (zh) * 2017-11-02 2020-09-11 ams有限公司 用于确定启用噪声消除的音频设备的响应函数的方法
CN113315480A (zh) * 2021-05-31 2021-08-27 头领科技(昆山)有限公司 一种音频处理芯片及耳机

Similar Documents

Publication Publication Date Title
US9191732B2 (en) Headset with auxiliary input(s) for cell phone and/or other devices
US8320591B1 (en) ANR headphones and headsets
US20160365083A1 (en) Low-Power-Consumption Active Noise-Reduction In-Ear Music Headphones and Method for Noise Reduction
JP2005094777A5 (zh)
WO2013147384A1 (ko) 귓속 삽입형 마이크를 사용하는 유무선 이어셋
US20060182287A1 (en) Audio monitoring system
US20050249355A1 (en) [feedback active noise controlling circuit and headphone]
US20120155668A1 (en) Noise Canceling Earphone and a Driving Circuit
WO2020117008A1 (en) Electronic device including speaker and microphone
EP3058563A1 (en) Limiting active noise cancellation output
ATE144066T1 (de) Elektroakustische anordnung für hörgeräte mit lärmunterdrückung
US9779718B2 (en) Control circuit for active noise control and method for active noise control
TWI822662B (zh) 耳機充電器節點
US20140211970A1 (en) Earphone arrangements
JP6336830B2 (ja) レベル調節回路、デジタルサウンドプロセッサ、オーディオアンプ集積回路、電子機器、オーディオ信号の自動レベル調節方法
WO2023098401A1 (zh) 具有主动降噪功能的耳机及主动降噪方法
WO2016029461A1 (zh) 一种前馈与反馈结合式消除噪声的耳机及其驱动电路
KR20200003395A (ko) 차지 펌프 잡음을 감소시키기 위한 신호 경로의 잡음 전달 함수의 제어
JP4786605B2 (ja) 信号増幅回路およびそれを用いたオーディオシステム
CN109842836B (zh) 一种消除音频信号播放通路之间串扰的方法、电路及设备
CN110610693A (zh) 权重式混合型态主动抗噪系统及控制器
TW202002673A (zh) 耳機
CN111656436B (zh) 噪声消除滤波器结构、噪声消除系统及信号处理方法
WO2016007480A1 (en) Low power uplink noise cancellation
KR101109748B1 (ko) 마이크로폰

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14900501

Country of ref document: EP

Kind code of ref document: A1