WO2016028061A1 - Method for preparing a collecting plate, and an apparatus for measuring floating organisms - Google Patents

Method for preparing a collecting plate, and an apparatus for measuring floating organisms Download PDF

Info

Publication number
WO2016028061A1
WO2016028061A1 PCT/KR2015/008618 KR2015008618W WO2016028061A1 WO 2016028061 A1 WO2016028061 A1 WO 2016028061A1 KR 2015008618 W KR2015008618 W KR 2015008618W WO 2016028061 A1 WO2016028061 A1 WO 2016028061A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
filter
collecting plate
unit
concentration
Prior art date
Application number
PCT/KR2015/008618
Other languages
French (fr)
Korean (ko)
Inventor
박철우
이성화
정춘수
Original Assignee
주식회사 엘지전자
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지전자 filed Critical 주식회사 엘지전자
Priority to CN201580042779.6A priority Critical patent/CN106574222A/en
Publication of WO2016028061A1 publication Critical patent/WO2016028061A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/12Apparatus for enzymology or microbiology with sterilisation, filtration or dialysis means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters

Definitions

  • the present invention relates to a method for producing a collecting plate and an apparatus for measuring suspended microorganisms.
  • Conventional methods for measuring airborne microorganisms include collecting microorganisms suspended in a sample gas on a solid or liquid surface suitable for propagation, incubating in a suitable temperature and humidity environment for a certain period of time, and then collecting microorganisms in colony water that appeared on the surface.
  • ATP bioluminescence method uses the principle that ATP (adenosine triphosphate) and luciferin / luciferase react to make light, which is a series of ATP scavenging process, ATP extraction and emission measurement The process has been reduced to about 30 minutes, allowing for quick work.
  • an ATP extractant in order to apply the ATP bioluminescence method, is basically required, but when it is used in a gaseous floating microbial measurement system, it may adversely affect humans.
  • the ATP extractant must be continuously supplied in order to be applied to an automatic system, but there is a problem in that a cost burden is required to continuously supply the ATP extractant which is currently commercially available.
  • the present invention has been proposed to improve the above problems, and an object of the present invention is to provide a method for manufacturing a collecting plate and a floating microorganism measuring device for quickly measuring the floating microorganisms without having to go through a series of manual operations for light emission of the floating microorganisms. It is done.
  • preparing a filter for collecting or filtering microorganisms Preparing a solvent of a coating unit for coating the filter; Mixing a surfactant in the solvent; Preparing a coating part by diluting a bioluminescent material in the solvent; And it provides a method for producing a collecting plate comprising the step of coating the prepared coating to the filter.
  • the method may further include adding an antifoaming agent to the coating part in which the bioluminescent material is diluted.
  • the antifoam can be sterilized and composed at a concentration of 0.02%.
  • it may further comprise the step of mixing the enzyme stabilizer in the prepared coating.
  • enzyme stabilizers may include sucrase or fructose.
  • the enzyme stabilizer may be composed of a concentration of 0.1 ⁇ 0.5M.
  • the method may further include drying the filter after coating the coating part on the filter.
  • the method may further include sterilizing the filter before coating the coating part.
  • the solvent may be distilled water.
  • the solvent may include a solvent, and the solvent may include an extractant or a degradable buffer (Lysis-Buffer).
  • the coating unit may be coated with 0.01ml to 0.1ml per 1cm 2 area on the filter.
  • the sterilization may be wet heat sterilization or autoclave (Autoclave).
  • the concentration of the surfactant in the coating portion may be 0.1%.
  • the particle fractionation unit including a filter for collecting or filtering the suspended microorganism; A microbial dissolution unit for dissolving suspended microorganisms collected or filtered in the particle sorting unit to extract adenosine triphosphate (ATP); A light receiving element installed at one side of the particle sorting unit and extracting the concentration or contamination level of the floating microorganism by detecting light of the floating microorganism emitted from the particle sorting unit; A display unit which displays data detected by the light receiving element; And a flow generating unit installed at the other side of the particle fractionation unit to flow air, wherein the filter is coated with at least one material selected from the group consisting of a surfactant, a bioluminescent material, a foam inhibitor, and an enzyme stabilizer.
  • Microbiological measuring apparatus is provided.
  • Triton X-100 may be composed at a concentration of 0.1%.
  • bioluminescent material may include luciferin and luciferase.
  • the enzyme stabilizer, sucrase or fructose may be composed of a concentration of 0.1 ⁇ 0.5M.
  • the proposed invention it is possible to apply the light emitting material to the floating microorganisms without going through a separate manual operation, there is an advantage that the measurement process of the floating microorganisms is simplified.
  • the light emitting material can be uniformly distributed in the filter by adding the surfactant to the coating portion.
  • FIG. 1 is a conceptual diagram showing a floating microbial measurement apparatus according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram illustrating various embodiments of the particle classification unit.
  • FIG 3 is a perspective view of a collecting plate according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of the collecting plate according to an embodiment of the present invention.
  • FIG. 5 is a flow chart of a collecting plate manufacturing method according to an embodiment of the present invention.
  • Figure 6 is a graph showing the degree of bioluminescence according to the concentration of the enzyme stabilizer according to an embodiment of the present invention.
  • FIG. 7 is an enlarged cross-sectional view of a filter when only a bioluminescent material is coated on the filter;
  • FIG. 8 is an enlarged cross-sectional view of a filter when a coating part is formed on a filter according to an embodiment of the present invention
  • the airborne microbial measurement apparatus using ATP light emission will be described as an example.
  • the present invention is not limited thereto, and the collecting plate according to the embodiment of the present invention may be applied to various floating microbial measuring apparatuses for emitting microorganisms.
  • FIG. 1 is a conceptual diagram illustrating an apparatus for measuring suspended microorganisms according to an embodiment of the present invention
  • FIG. 2 is a conceptual diagram illustrating various embodiments of a particle sorting unit.
  • the airborne microbial measurement apparatus 1 the particle classification unit 10 for collecting and emitting microorganisms, and is collected in the particle classification unit 10
  • the microbial dissolution unit 20 which dissolves the microorganisms and extracts ATP (adenosine triphosphate), DNA, RNA, etc. in the microorganism, and is disposed at one side of the particle classification unit 10 to emit light from the particle classification unit 10.
  • the light receiving device 30 for detecting the concentration or contamination of the microorganisms by detecting the light of the microorganisms, the display unit 40 for displaying the data detected by the light receiving device 30, and the particle sorting unit 10 Is installed on the other side of the flow includes a flow generating portion 50 for flowing air.
  • the particle sorting unit 10 is shown in a flat plate shape on FIG. 1, it is mainly used to express the action between the particle sorting unit 10, the microorganism dissolving unit 20, and the light receiving device 30.
  • the particle sorting unit 10 is shown in a flat plate shape on FIG. 1, it is mainly used to express the action between the particle sorting unit 10, the microorganism dissolving unit 20, and the light receiving device 30.
  • only components corresponding to the collecting plate 11 are conceptually illustrated, and the shape and structure of the particle classification unit 10 are not particularly limited, and the particle classification unit 10 will be described below. Applicable in various embodiments.
  • the particle fractionation unit 10 may be a solid collecting method or a liquid collecting method for collecting particles in air, such as an electrostatic pricipitator, an inertial impactor, a cyclone, a centrifuge, or the like.
  • the dust collector or filter system which has a collecting plate or a collection space which can be collected by this is called.
  • the electrostatic precipitator generates a corona discharge when a negative voltage (or a positive voltage) is applied to the discharge electrode by DC high voltage, and the negative ions (or positive ions) generated in the gas
  • It is a dust collecting device that uses an electrostatic principle that is charged with dust particles and is moved and collected by an electric force to a collecting electrode (collection plate) to which a positive voltage (or negative voltage) is applied.
  • FIG. 2 (a) shows an example of a wire to plate type that is most widely applied among various electrostatic precipitator structures.
  • An electric field is formed between a charging wire and a collecting plate. As it passes between the line and the collecting plate, the charged particles are collected in the collecting plate.
  • An inertial collision device has a structure in which an impingement plate or a receiving tube (hereinafter referred to as a 'collecting plate') is provided under an acceleration nozzle (impaction nozzle).
  • Figure 2 (b) shows an example of such an inertial collision device, the air passing through the acceleration nozzle or jet (jet) is changed by the collecting plate 90 ° of the flow direction, among the particles contained in the air Particles having a certain mass or more impinge on the collecting plate and are collected by the inertia without completely changing the flow direction.
  • Cyclone is one of centrifugal force separators widely used for separating solid particles in a fluid or separating liquid droplets from a gas, and has various kinds and specifications, and FIG. 2 (c) shows an example of such a cyclone. It is shown.
  • the air containing the particles is tangentially introduced inside the circular cyclone, and then forms a swirling flow along the inner wall of the cylinder, which is maintained by the centrifugal force while continuing to the cone region below the cyclone. It is pushed toward the inner wall and separated from the flow, and the particle-free flow (air) rises from the bottom of the cone to the top and is discharged through the outlet, and the separated particles descend through the cone inner wall to form a dust hopper or the like ( (Collectively referred to as "collection plate").
  • Centrifuge is a device that applies continuous centrifugal force generated when rotating at high speed. Cyclones and centrifugal force separators can be used to separate particles contained in air to the outer wall of the rotating vessel by using a rotating container that rotates at high speed compared to cyclone. have.
  • the electrostatic precipitator has a low pressure loss, which is suitable for applying a large capacity or a high flow rate agent, and has a high dust collection efficiency even for fine particles of nano size (100 nm or less).
  • the inertial collision device, the cyclone, etc. have a simple structure and thus have low cost and maintenance cost.
  • the solid collecting method is a method for collecting a substance to be measured on a solid by adsorption, reaction, or the like by sucking the sample air through a particle layer of a solid, and the like. It is applicable in the process of collecting on a collecting plate or a collecting space.
  • the liquid collection method is a method of collecting a substance to be measured in the liquid by dissolution, reaction, precipitation, suspension, etc. by passing the sample air through the liquid or contacting the surface of the liquid. Will be different.
  • Floating microorganisms in the air may be collected by applying a liquid collecting method for applying or accommodating liquid on the collecting plate or the collecting space of the particle sorting unit 10.
  • a sample collection method for collecting the material to be measured by passing the sample air through the filter medium, the sample air to contact the condensation, such as a cooling tube and condensed material to be measured After using the principle of cooling condensation collection method to collect, direct collection method to directly collect the collection bag, collection bottle, vacuum collection bottle, syringe, etc. without dissolving, reacting and adsorbing the sample air, Analytical diffusion collection methods can also be applied.
  • the microorganisms suspended in the air are collected in the particle fractionation section 10 while passing through the particle fractionation section 10, and on the particle fractionation section 10 where microorganisms are collected, an ATP reactive light emitting agent necessary for ATP bioluminescence is provided.
  • a coated collecting plate 11 is provided.
  • the collection plate, the filter agent, and the filter system described above are constituted by the collecting plate 11, so that the ATP bioluminescence is achieved when the microorganism passes or collects the collecting plate 11.
  • the microbial dissolution unit 20 dissolves the microorganisms collected in the particle fractionation unit 10 or flows to the particle fractionation unit 10 using ions, electromagnetic forces, antimicrobial substances, thermal energy, and a catalyst.
  • ATP adenosine triphosphate
  • DNA, RNA, etc. are the collective components that extract the device, where dissolving the microorganisms do not dissolve the microorganisms in liquid state, but to break down a single microorganism into a number of elements It means to extract the elements of.
  • the microorganism dissolving unit 20 When the microorganism dissolving unit 20 is configured as an ion generator, power consumption increases as the diameter of the discharge tip provided in the ion generator increases, and when the power consumption increases, ozone harmful to the human body as well as ions. It is preferable to apply an ozone-free ion generator that uses a carbon brush having a diameter of the discharge tip of 10 ⁇ m or less, because it may occur up to.
  • the ozone-free ion generator using a carbon brush having a discharge tip diameter of 10 ⁇ m or less it has a low power consumption of 4 W or less, and ozone is generated at less than 0.01 ppm. Ozone management standards of 0.06 ppm or less under Article 27 (1) of the Industrial Safety and Health Act can be satisfactorily satisfied.
  • the microbial dissolution unit 20 When the microbial dissolution unit 20 is configured as an ion generator, the microbial cell wall of the microorganism is damaged by repulsion between charged ions attached to the microorganisms, and ATP is extracted. As a result of the collision of electrons, ATP is extracted while damaging the cell wall of the microorganism.
  • the ATP extracted by the microbial dissolution unit 20 is exposed to the outside of the cell of the microorganism and at the same time reacts with the ATP reactive light emitting agent in the particle sorting unit 10 to generate light, and converts the light into electricity.
  • the light receiving element 30, such as a photodiode (PD), an avalanche photodiode (APD), detects light generated by ATP bioluminescence and extracts a concentration or contamination level of a microorganism.
  • a light receiving element is a device that measures the photon flux or optical power by converting the energy of photons absorbed into the device into a form that can measure the energy.
  • the light receiving element has the advantages of operating wavelength sensitivity, fast response speed, and minimum noise.
  • Near-infrared region 0.8-1.6 It is widely used as a device for detecting optical signals in optical fiber communication systems operating in m).
  • photoelectric detectors of light-receiving elements generate carriers such as electrons and holes in a material constituting the element by photons absorbed by the element, and by the flow of the carriers
  • a device in which a measurable current is generated, ie based on photoeffects, is suitable for application in the present invention.
  • the wavelength of the electromagnetic wave which is felt brightly by the human eye, ranges from about 380 nm to 780 nm.
  • the wavelength is short to celadon 400 to 500 nm, blue 450 to 500 nm, green 500 to 570 nm, sulfur 570 to 590 nm, and orange 590 to At 610 nm and red 610 to 700 nm, the light receiving element 30 has a sensitivity capable of receiving a wavelength band of 400 nm or more and 700 nm or less.
  • a pneumatic pressure difference forcing the flow of one side of the particle fractionation unit 10 to the other side by using a flow generator 50 such as a blower and a pump.
  • a flow generator 50 such as a blower and a pump.
  • the light receiving element 30 converts the received light into electrical signals such as voltage, current, and frequency, and outputs it. do.
  • the microbial concentration calculation unit (not shown) data-formulates or formulates or compares data-formulated or formulated relations between the electrical signal output from the light receiving element 30 and the bioluminescence value according to the microbial concentration.
  • the light detected by the light receiving device 30 displays a concentration or contamination level of the microorganism in real time through the display unit 40 through a signal processing process that is modified or dataized through the microorganism concentration calculator.
  • the particle sorting unit 10 includes a collecting plate 11 for collecting microbial particles.
  • a collecting plate 11 for collecting microbial particles Hereinafter, the structure to the said collecting plate 11 is demonstrated.
  • FIG 3 is a perspective view of a collecting plate according to an embodiment of the present invention
  • Figure 4 is a cross-sectional view of the collecting plate according to an embodiment of the present invention.
  • the collecting plate 11 includes a filter 12 for collecting suspended microorganisms, and a coating unit coated on the filter 12 to emit suspended microorganisms. (14) includes.
  • the coating part 14 is formed by coating a light emitting solution on the filter 12.
  • the filter 12 is a concept of collectively filtering paper and a collecting substrate for filtration and collecting to measure suspended microorganisms. Accordingly, the filter 12 may be configured in various forms such as a porous filter through which air can flow or a plate form for collecting suspended microorganisms.
  • the filter 12 is formed in a substantially plate shape.
  • the filter 12 is a component included in the particle fractionation unit in the airborne microbial measurement apparatus, which will be described later, and the airborne microorganisms contained in the air are collected in the filter 12.
  • the filter introduced into the suspended microbial measuring apparatus may be a plate having a diameter of about 15 mm, but is not limited thereto.
  • the filter may be formed in various sizes and shapes.
  • One or both surfaces of the filter 12 is provided with a coating 14 for emitting floating microorganisms. That is, in order to measure the concentration of the suspended microorganisms, the coating portion 14 is understood as a configuration for emitting the suspended microorganisms collected in the filter 12.
  • FIG. 5 is a flowchart illustrating a method of manufacturing a collecting plate according to an embodiment of the present invention.
  • the disc available for the filter 12 is cut into a size usable for the floating microbial measuring apparatus (S100), and the sterilized filter 12 is sterilized to remove residual fine dust and bacteria ( S110). Sterilization of the filter 12 is performed to reduce errors in suspended microbial measurement.
  • wet heat sterilization using steam and an autoclave method using pressurized steam may be used.
  • the moist heat sterilization is a thermal method using steam
  • the autoclave method is a steam sterilization method using an internal pressure vessel or high temperature used to react at high temperature and high pressure.
  • the present invention is not limited thereto, and various sterilization methods may be used to remove fine dust and bacteria remaining in the filter.
  • a solvent for preparing the coating unit 14 is prepared (S200).
  • the coating unit 14 uses a solvent as a solvent.
  • the solubilizer includes an extractant, Lysis-Buffer or distilled water.
  • the solvent is also sterilized in the same manner as the filter 12.
  • the surfactant is added to the solubilizer (S300).
  • the bioluminescent material may be uniformly mixed into the solubilizer by adding a surfactant to the solubilizer.
  • the surfactant may use TritonX-100.
  • the surfactant is added to the solubilizer so that the final concentration is approximately 0.1%.
  • the bioluminescent material is diluted (S400).
  • the bioluminescent material may be luciferin.
  • Bioluminescence is a kind of photochemical reaction in which an organic compound is oxidized by the action of an enzyme, and the energy released by the body is in the form of light energy. Luciferin, a luminescent substance, combines with ATP to form a complex of luciferin-ATP. Produce two molecules. Luciferin is here reduced and is therefore represented as LH2. (LH2 + ATP LH2-AMP + 2H3PO4)
  • the LH2-AMP generated in the reaction is in an unstable energy state as it reacts with oxygen and oxidizes, and thus, the unstable oxidized product decomposes to generate light (hv) while generating oxidized luciferin and AMP.
  • L is the oxidized luciferin and L-AMP * indicates the luciferin-AMP complex in an unstable energy state (LH2-AMP + 1/2 O2 L-AMP * + H2O) (L-AMP * ⁇ L + AMP + hv ( Light energy)).
  • Bioluminescent materials are enzymes that perform catalysis and include luciferases.
  • LH2-AMP is reacted with oxygen (1/2 O2) and oxidized by the catalysis of an enzyme called luciferase
  • bioluminescence occurs in the presence of luciferin, ATP, luciferase and oxygen. It is calculated that 1 photon is emitted from oxidation of.
  • the bioluminescent material is composed of luciferin
  • suspended microorganisms can be quickly measured within 5 minutes, and maximum luminance can be measured within 3 minutes (180sec), From this the measurement time can be shortened to within 3 minutes.
  • the bioluminescent material is diluted in the solubilizer at a concentration of 400 mg / ml.
  • a foam inhibitor is added (S500).
  • the foam inhibitor can be added in a sterile state at a concentration of approximately 0.02%. Since a surfactant was added to uniformly mix the bioluminescent material in the dissolving agent, a film may be formed on the surface of the dissolving agent due to the chemical property of the surfactant. As a result, since the coating part 14 may be unevenly distributed on the filter, the antifoaming agent may be added to prevent the film from being formed on the surface of the dissolving agent.
  • An enzyme stabilizer may be added to the coating part 14 (S510).
  • FIG. 6 is a graph showing the degree of bioluminescence according to the concentration of the enzyme stabilizer according to an embodiment of the present invention.
  • the horizontal axis represents the emission duration
  • the vertical axis represents the degree of emission.
  • the bioluminescence reaction when the enzyme stabilizer is added to the coating unit 14, the bioluminescence reaction lasts longer. That is, the suspended floating microorganisms can be measured for a longer time. And, it can be seen that the bioluminescence value is also increased due to the appropriate amount of enzyme stabilizer.
  • Sucrose and fructose may be used as the enzyme stabilizer, and the enzyme stabilizer is added to the coating unit 14 at a concentration of about 0.1 to 0.5 mol (M).
  • the luminescent solution prepared in the filter 12 prepared to form the coating portion 14 is dropped (S600).
  • the coating unit 14 is formed to distribute 0.01 ⁇ 0.1ml per 1cm2 area in the filter 12.
  • the collecting plate 11 coated with the luminescent solution is dried in an environment having a humidity of 10% or less and deposited on the luminescent solution the filter 12 (S700). Therefore, when the luminescent solution is coated on the filter 12, the retention period at room temperature can be extended.
  • FIG. 7 is an enlarged cross-sectional view of the filter when only the bioluminescent material is coated on the filter
  • FIG. 8 is an enlarged cross-sectional view of the filter when the coating unit is formed on the filter according to an embodiment of the present invention.
  • the pressure loss is increased because a film formed by the bioluminescent material is formed on the filter. Therefore, the luminous efficiency of the light emitting material to the floating microorganisms is lowered.
  • the bioluminescent material eg luciferin
  • the coating unit 14 according to the present embodiment when the coating unit 14 according to the present embodiment is coated on a filter, it may be confirmed that porosity is ensured by the surfactant and the antifoaming agent. Accordingly, the pressure loss may be reduced and the luminous efficiency of the light emitting material to the suspended microorganisms may be increased.
  • the proposed invention it is possible to apply the light emitting material to the floating microorganisms without going through a separate manual operation, there is an advantage that the process of measuring the floating microorganisms is simplified.
  • the light emitting material is uniformly distributed in the filter by adding the surfactant to the coating portion.
  • the light emission duration of the floating microorganisms is maintained for a long time, and the light emission value of the floating microorganisms is increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The present invention relates to a method for preparing a collecting plate, and an apparatus for measuring floating organisms. A method for preparing a collecting plate, according to an embodiment, comprises the steps of: preparing a filter for collecting or filtering microorganisms; preparing a solvent for a coating portion for coating the filter; mixing a surfactant into the solvent; preparing a coating portion by diluting the solvent with a bioluminescent material; and coating the filter with the prepared coating portion.

Description

포집판 제조 방법 및 부유 미생물 측정장치Collection plate manufacturing method and airborne microbial measuring device
본 발명은 포집판 제조 방법 및 부유 미생물 측정장치에 관한 것이다.The present invention relates to a method for producing a collecting plate and an apparatus for measuring suspended microorganisms.
최근 조류 인플루엔자, 신종 인플루엔자 등이 이슈화되면서 공기감염 문제가 대두되고 있으며, 이에 따라 공기 중 부유 미생물 측정(airborne microbial measurement)이 보다 중요하게 다루어지고, 바이오센서 시장도 이에 맞추어 큰 폭으로 성장하고 있다.Recently, avian influenza, swine flu, etc. have been raised, the problem of air infection has emerged, and thus airborne microbial measurement is more important, and the biosensor market is growing rapidly accordingly.
기존에 공기 중 부유 미생물을 측정하는 방법에는, 시료기체 중에 부유하고 있는 생물입자를 증식에 적합한 고체 또는 액체 표면에 포집하고 일정기간 적당 온습도 환경 하에서 배양한 후, 표면에 출현한 콜로니수에서 포집 미생물수를 구하는 배양법과, 염색 후 형광현미경을 이용하는 염색법 등이 있다.Conventional methods for measuring airborne microorganisms include collecting microorganisms suspended in a sample gas on a solid or liquid surface suitable for propagation, incubating in a suitable temperature and humidity environment for a certain period of time, and then collecting microorganisms in colony water that appeared on the surface. There are a culture method for obtaining water and a dyeing method using a fluorescence microscope after dyeing.
근래에는 ATP(아데노신삼인산, adenosine triphosphate)와 루시페린(luciferin)/루시페라아제(luciferase)가 반응하여 빛을 내는 원리를 이용하는 ATP 생물 발광법에 의해, ATP 소거처리, ATP 추출, 발광량 측정까지 소요되는 일련의 과정을 30분 정도로 축소하여 신속한 작업이 가능하게 되었다.Recently, ATP bioluminescence method uses the principle that ATP (adenosine triphosphate) and luciferin / luciferase react to make light, which is a series of ATP scavenging process, ATP extraction and emission measurement The process has been reduced to about 30 minutes, allowing for quick work.
그러나, ATP 생물 발광법을 적용하기 위해서는, 기본적으로 ATP 추출제가 필요하나, 기상 부유미생물 측정 시스템에 이를 이용할 경우, 인체에 독성 등의 악영향을 미칠 수 있다. 또한, 자동 시스템에 적용하기 위해서는 ATP 추출제를 지속적으로 공급해주어야 하나, 현재 상용되고 있는 ATP 추출제를 지속적으로 공급하기에는 비용 부담이 크다는 문제점이 있다.However, in order to apply the ATP bioluminescence method, an ATP extractant is basically required, but when it is used in a gaseous floating microbial measurement system, it may adversely affect humans. In addition, the ATP extractant must be continuously supplied in order to be applied to an automatic system, but there is a problem in that a cost burden is required to continuously supply the ATP extractant which is currently commercially available.
이처럼, 부유 미생물을 측정을 위해서는 부유 미생물의 발광을 위한 발광 물질을 포집된 미생물에 계속적으로 투입하는 등 일련의 수작업이 요구되므로, 기상 중 부유미생물을 자동으로 측정하기 위한 시스템의 개발에는 한계가 있다. As such, since a series of manual operations are required for continuously measuring a microorganism in order to measure suspended microorganisms, the development of a system for automatically measuring suspended microorganisms in the weather is limited. .
본 발명은 상기와 같은 문제점을 개선하기 위하여 제안된 것으로서, 부유 미생물의 발광을 위한 일련의 수작업을 거칠 필요 없이 신속하게 부유 미생물을 측정하기 위한 포집판 제조방법 및 부유 미생물 측정장치를 제공하는 것을 목적으로 한다. The present invention has been proposed to improve the above problems, and an object of the present invention is to provide a method for manufacturing a collecting plate and a floating microorganism measuring device for quickly measuring the floating microorganisms without having to go through a series of manual operations for light emission of the floating microorganisms. It is done.
상기 또는 다른 목적을 달성하기 위해 본 발명의 일 측면에 따르면, 미생물을 포집 또는 여과하기 위한 필터를 준비하는 단계; 상기 필터를 코팅하기 위한 코팅부의 용매를 준비하는 단계; 상기 용매에 계면 활성제를 혼합하는 단계; 상기 용매에 생물 발광 물질을 희석하여 코팅부를 제조하는 단계; 및 상기 제조된 코팅부를 상기 필터에 코팅하는 단계를 포함하는 포집판의 제조 방법이 제공된다. According to an aspect of the present invention to achieve the above or another object, preparing a filter for collecting or filtering microorganisms; Preparing a solvent of a coating unit for coating the filter; Mixing a surfactant in the solvent; Preparing a coating part by diluting a bioluminescent material in the solvent; And it provides a method for producing a collecting plate comprising the step of coating the prepared coating to the filter.
상기 생물 발광 물질을 희석시킨 코팅부에 거품억제제를 첨가하는 단계를 더 포함할 수 있다. The method may further include adding an antifoaming agent to the coating part in which the bioluminescent material is diluted.
또한, 거품 억제제는 멸균되어, 0.02%의 농도로 구성될 수 있다. In addition, the antifoam can be sterilized and composed at a concentration of 0.02%.
또한, 상기 제조된 코팅부에 효소 안정제를 혼합하는 단계를 더 포함할 수 있다. In addition, it may further comprise the step of mixing the enzyme stabilizer in the prepared coating.
또한, 효소 안정제에는, 수크라아제 또는 프락토오스가 포함될 수 있다. In addition, enzyme stabilizers may include sucrase or fructose.
또한, 효소 안정제는 0.1~0.5M의 농도로 구성될 수 있다. In addition, the enzyme stabilizer may be composed of a concentration of 0.1 ~ 0.5M.
또한, 상기 필터에 상기 코팅부를 코팅한 후, 상기 필터를 건조하는 단계를 더 포함할 수 있다. The method may further include drying the filter after coating the coating part on the filter.
또한, 상기 코팅부를 코팅하기 전에 상기 필터를 멸균하는 단계를 더 포함할 수 있다. In addition, the method may further include sterilizing the filter before coating the coating part.
또한, 상기 용매는 증류수일 수 있다. In addition, the solvent may be distilled water.
또한, 상기 용매에는 용해제가 포함되며, 상기 용해제에는, 추출용매(Extractant) 또는 분해가능한 버퍼(Lysis-Buffer)가 포함될 수 있다. The solvent may include a solvent, and the solvent may include an extractant or a degradable buffer (Lysis-Buffer).
또한, 상기 코팅부는 상기 필터에 1cm2 면적당 0.01ml 내지 0.1ml가 코팅될 수 있다. In addition, the coating unit may be coated with 0.01ml to 0.1ml per 1cm 2 area on the filter.
또한, 상기 멸균은 습열 멸균 또는 오토클레이브(Autoclave)일 수 있다. In addition, the sterilization may be wet heat sterilization or autoclave (Autoclave).
또한, 상기 코팅부에서 상기 계면 활성제의 농도는 0.1%일 수 있다. In addition, the concentration of the surfactant in the coating portion may be 0.1%.
상기 또는 다른 목적을 달성하기 위해 본 발명의 다른 측면에 따르면, 부유 미생물이 포집 또는 여과되는 필터를 포함하는 입자분류부; 상기 입자분류부에 포집 또는 여과되는 부유 미생물을 용해하여 에이티피(ATP: adenosine triphosphate)를 추출하는 미생물 용해부; 상기 입자분류부의 일측에 설치되며 상기 입자분류부에서 발광된 부유 미생물의 빛을 검출하여 상기 부유 미생물의 농도 또는 오염도를 추출하는 수광소자; 상기 수광소자에서 검출된 데이터를 디스플레이 하는 디스플레이부; 및 상기 입자분류부의 타측에 설치되어 공기를 유동시키는 유동 발생부를 포함하며, 상기 필터에는 계면활성제, 생물발광 물질, 거품억제제 및 효소안정제로 이루어진 군에서 선택된 하나 이상의 물질이 코팅되는 것을 특징으로 하는 부유 미생물 측정장치가 제공된다. According to another aspect of the present invention to achieve the above or another object, the particle fractionation unit including a filter for collecting or filtering the suspended microorganism; A microbial dissolution unit for dissolving suspended microorganisms collected or filtered in the particle sorting unit to extract adenosine triphosphate (ATP); A light receiving element installed at one side of the particle sorting unit and extracting the concentration or contamination level of the floating microorganism by detecting light of the floating microorganism emitted from the particle sorting unit; A display unit which displays data detected by the light receiving element; And a flow generating unit installed at the other side of the particle fractionation unit to flow air, wherein the filter is coated with at least one material selected from the group consisting of a surfactant, a bioluminescent material, a foam inhibitor, and an enzyme stabilizer. Microbiological measuring apparatus is provided.
상기 계면 활성제에는, Triton X-100이 0.1%의 농도로 구성될 수 있다. In the surfactant, Triton X-100 may be composed at a concentration of 0.1%.
또한, 상기 생물발광 물질에는, 루시페린 및 루시페라아제가 포함될 수 있다. In addition, the bioluminescent material may include luciferin and luciferase.
또한, 상기 효소안정제에는, 수크라아제 또는 프락토스가 0.1~0.5M의 농도로 구성될 수 있다.In addition, the enzyme stabilizer, sucrase or fructose may be composed of a concentration of 0.1 ~ 0.5M.
제안되는 발명에 의하면, 별도의 수작업을 거칠 필요 없이 발광 물질을 부유 미생물에 도포할 수 있어 부유 미생물의 측정 과정이 간소화 되는 장점이 있다. According to the proposed invention, it is possible to apply the light emitting material to the floating microorganisms without going through a separate manual operation, there is an advantage that the measurement process of the floating microorganisms is simplified.
또한, 계면활성제를 코팅부에 첨가함으로써 필터에 발광물질이 균일하게 분포될 수 있는 장점이 있다. In addition, there is an advantage that the light emitting material can be uniformly distributed in the filter by adding the surfactant to the coating portion.
또한, 거품억제제를 코팅부에 첨가함으로써 계면활성제에 의해 필터에 막이 생기는 것이 억제되는 장점이 있다.In addition, by adding a foam inhibitor to the coating portion, there is an advantage that the film is formed on the filter by the surfactant.
또한, 효소안정제를 코팅부에 첨가함으로써 부유 미생물의 발광 지속 시간이 오래 유지되고, 부유 미생물의 발광값이 증가될 수 있는 장점이 있다. In addition, by adding the enzyme stabilizer to the coating portion there is an advantage that the light emission duration of the suspended microorganisms is maintained for a long time, the emission value of the suspended microorganisms can be increased.
도 1은 본 발명의 일 실시 예에 따른 부유 미생물 측정 장치를 도시한 개념도.1 is a conceptual diagram showing a floating microbial measurement apparatus according to an embodiment of the present invention.
도 2는 입자분류부의 다양한 실시예를 도시한 개념도.2 is a conceptual diagram illustrating various embodiments of the particle classification unit.
도 3은 본 발명의 일 실시 예에 따른 포집판의 사시도.3 is a perspective view of a collecting plate according to an embodiment of the present invention.
도 4는 본 발명의 일 실시 예에 따른 포집판의 단면도.4 is a cross-sectional view of the collecting plate according to an embodiment of the present invention.
도 5는 본 발명의 일 실시 예에 따른 포집판 제조 방법의 흐름도.5 is a flow chart of a collecting plate manufacturing method according to an embodiment of the present invention.
도 6은 본 발명의 일 실시 예에 의한 효소안정제의 농도에 따른 생물발광 정도를 나타낸 그래프.Figure 6 is a graph showing the degree of bioluminescence according to the concentration of the enzyme stabilizer according to an embodiment of the present invention.
도 7은 필터 상에 생물발광 물질만을 코팅시킨 경우에 필터를 확대하여 바라본 단면도.7 is an enlarged cross-sectional view of a filter when only a bioluminescent material is coated on the filter;
도 8은 본 발명의 일 실시 예에 따른 필터 상에 코팅부를 형성시킨 경우에 필터를 확대하여 바라본 단면도.8 is an enlarged cross-sectional view of a filter when a coating part is formed on a filter according to an embodiment of the present invention;
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings, and the same or similar components are denoted by the same reference numerals regardless of the reference numerals, and redundant description thereof will be omitted. The suffixes "module" and "unit" for components used in the following description are given or used in consideration of ease of specification, and do not have distinct meanings or roles from each other. In addition, in describing the embodiments disclosed herein, when it is determined that the detailed description of the related known technology may obscure the gist of the embodiments disclosed herein, the detailed description thereof will be omitted. In addition, the accompanying drawings are intended to facilitate understanding of the embodiments disclosed herein, but are not limited to the technical spirit disclosed herein by the accompanying drawings, all changes included in the spirit and scope of the present invention. It should be understood to include equivalents and substitutes.
본 명세서에서는 설명의 편의를 위해 ATP발광을 이용한 부유 미생물 측정장치를 일 예로 들어 설명한다. 다만 이에 한정되는 것은 아니며, 본 발명의 실시 예에 따른 포집판은 미생물을 발광시키기 위한 다양한 부유 미생물 측정장치에 응용될 수 있다. In the present specification, for the convenience of description, the airborne microbial measurement apparatus using ATP light emission will be described as an example. However, the present invention is not limited thereto, and the collecting plate according to the embodiment of the present invention may be applied to various floating microbial measuring apparatuses for emitting microorganisms.
도 1은 본 발명의 일 실시 예에 따른 부유 미생물 측정 장치를 도시한 개념도이고, 도 2는 입자분류부의 다양한 실시예를 도시한 개념도이다. 1 is a conceptual diagram illustrating an apparatus for measuring suspended microorganisms according to an embodiment of the present invention, and FIG. 2 is a conceptual diagram illustrating various embodiments of a particle sorting unit.
도 1 및 도 2를 참조하면, 본 발명의 일 실시 예에 따른 부유 미생물 측정 장치(1) 는, 미생물을 포집하여 발광시키기 위한 입자분류부(10)와, 상기 입자분류부(10)에 포집된 미생물을 용해하여 미생물 안에 있는 ATP(adenosine triphosphate), DNA, RNA 등을 추출하는 미생물 용해부(20)과, 상기 입자분류부(10)의 일측에 설치되어 상기 입자분류부(10)에서 발광된 미생물의 빛을 검출하여 미생물의 농도 또는 오염 정도를 추출하는 수광소자(30)와, 상기 수광소자(30)에서 검출된 데이터를 디스플레이 하는 디스플레이부(40)와, 상기 입자분류부(10)의 타측에 설치되어 공기를 유동시키는 유동 발생부(50)을 포함한다. 1 and 2, the airborne microbial measurement apparatus 1 according to an embodiment of the present invention, the particle classification unit 10 for collecting and emitting microorganisms, and is collected in the particle classification unit 10 The microbial dissolution unit 20 which dissolves the microorganisms and extracts ATP (adenosine triphosphate), DNA, RNA, etc. in the microorganism, and is disposed at one side of the particle classification unit 10 to emit light from the particle classification unit 10. The light receiving device 30 for detecting the concentration or contamination of the microorganisms by detecting the light of the microorganisms, the display unit 40 for displaying the data detected by the light receiving device 30, and the particle sorting unit 10 Is installed on the other side of the flow includes a flow generating portion 50 for flowing air.
도 1 상에서 상기 입자분류부(10)는, 납작한 판형상으로 표시되어 있으나, 이는 상기 입자분류부(10)와 상기 미생물 용해부(20) 및 수광소자(30)간의 작용을 주요하게 표현하기 위한 것으로, 포집판(11)에 해당되는 구성요소만을 개념적으로 도시한 것으로, 상기 입자분류부(10)의 형상, 구조를 특정하게 한정하고자 하는 것이 아니며, 상기 입자분류부(10)는 이하 설명되는 다양한 실시예로 적용가능하다.Although the particle sorting unit 10 is shown in a flat plate shape on FIG. 1, it is mainly used to express the action between the particle sorting unit 10, the microorganism dissolving unit 20, and the light receiving device 30. In this regard, only components corresponding to the collecting plate 11 are conceptually illustrated, and the shape and structure of the particle classification unit 10 are not particularly limited, and the particle classification unit 10 will be described below. Applicable in various embodiments.
상기 입자분류부(10)는, 전기집진기(electrostatic pricipitator), 관성충돌장치(inertial impactor), 사이클론(cyclone), 원심분리기(centrifuge) 등과 같이, 공기 중의 입자를 고체 포집방법, 또는 액체 포집방법에 의해 포집할 수 있는 포집판 또는 포집공간을 가지는 집진장치 내지 필터시스템을 통칭한다.The particle fractionation unit 10 may be a solid collecting method or a liquid collecting method for collecting particles in air, such as an electrostatic pricipitator, an inertial impactor, a cyclone, a centrifuge, or the like. The dust collector or filter system which has a collecting plate or a collection space which can be collected by this is called.
전기집진기는, 직류고압전압에 의하여 방전극에 (-)전압(또는 (+)전압)을 인가시키면 코로나 방전이 발생하는데, 이때 발생되는 음(-)이온(또는 양(+)이온)은 가스 중의 더스트 입자와 대전되어, (+)전압(또는 (-)전압)이 인가되고 있는 집진극(포집판)으로 전기력에 의하여 이동되어 포집되는 정전기적인 원리를 이용하는 집진장치이다.The electrostatic precipitator generates a corona discharge when a negative voltage (or a positive voltage) is applied to the discharge electrode by DC high voltage, and the negative ions (or positive ions) generated in the gas It is a dust collecting device that uses an electrostatic principle that is charged with dust particles and is moved and collected by an electric force to a collecting electrode (collection plate) to which a positive voltage (or negative voltage) is applied.
도 2의 (a)는 다양한 전기집진기 구조 중 가장 광범위하게 적용되고 있는 wire to plate type의 일례를 도시한 것으로, 충전선(charging wire)과 포집판(collecting plate) 사이에 전기장이 형성되며, 충전선과 포집판 사이를 통과하면서 하전된 입자는 포집판에 포집된다.FIG. 2 (a) shows an example of a wire to plate type that is most widely applied among various electrostatic precipitator structures. An electric field is formed between a charging wire and a collecting plate. As it passes between the line and the collecting plate, the charged particles are collected in the collecting plate.
관성충돌장치는, 가속노즐(acceleration nozzle, impaction nozzle) 아래에 충돌판(impaction plate) 또는 수집관(receiving tube)(이하 '포집판'으로 통징한다)이 설치된 구조를 가진다.An inertial collision device has a structure in which an impingement plate or a receiving tube (hereinafter referred to as a 'collecting plate') is provided under an acceleration nozzle (impaction nozzle).
도 2의 (b)는 이러한 관성충돌장치의 일례를 도시한 것으로, 가속노즐 또는 분출구(jet)를 통과한 공기는 포집판에 의해 그 유동 방향을 90°전환하게 되며, 공기에 포함된 입자 중 일정 이상의 질량을 가지는 입자는 관성에 의해 유동 방향이 완전히 전환되지 않고 포집판에 충돌, 포집된다.Figure 2 (b) shows an example of such an inertial collision device, the air passing through the acceleration nozzle or jet (jet) is changed by the collecting plate 90 ° of the flow direction, among the particles contained in the air Particles having a certain mass or more impinge on the collecting plate and are collected by the inertia without completely changing the flow direction.
사이클론은, 유체 중의 고체 입자를 분리하거나 액체 방울을 기체와 분리하는 데에 광범위하게 사용되고 있는 원심력을 이용한 분리장치의 하나로서, 다양한 종류와 사양을 가지며, 도 2의 (c)는 이러한 사이클론의 일례를 도시한 것이다.Cyclone is one of centrifugal force separators widely used for separating solid particles in a fluid or separating liquid droplets from a gas, and has various kinds and specifications, and FIG. 2 (c) shows an example of such a cyclone. It is shown.
입자를 포함한 공기는 원형 사이클론 내부에 접선방향으로 유입된 후, 원통형의 내벽을 따라 돌며 선회 유동을 형성하게 되며, 이 선회 유동은 사이클론 하부의 콘(cone)영역까지 계속 유지되면서 입자들을 원심력에 의해 내벽측으로 밀어내며 유동으로부터 분리시키게 되고, 입자가 제거된 유동(공기)은 콘 하단부에서 상부로 상승하여 출구를 통해 배출되고, 분리된 입자들은 콘 내벽을 타고 하강하여 더스트 호퍼(dust hopper) 등(이하 '포집판'으로 통칭한다)에 집진된다.The air containing the particles is tangentially introduced inside the circular cyclone, and then forms a swirling flow along the inner wall of the cylinder, which is maintained by the centrifugal force while continuing to the cone region below the cyclone. It is pushed toward the inner wall and separated from the flow, and the particle-free flow (air) rises from the bottom of the cone to the top and is discharged through the outlet, and the separated particles descend through the cone inner wall to form a dust hopper or the like ( (Collectively referred to as "collection plate").
원심분리기는 빠른 속도로 회전 시 발생되는 지속적인 원심력을 응용한 장치로써 사이클론 또한 원심력을 이용한 분리장치이나, 사이클론과 비교해 고속회전하는 회전용기를 이용하여 공기중에 포함된 입자를 회전용기 외측벽측으로 분리시킬 수 있다.Centrifuge is a device that applies continuous centrifugal force generated when rotating at high speed. Cyclones and centrifugal force separators can be used to separate particles contained in air to the outer wall of the rotating vessel by using a rotating container that rotates at high speed compared to cyclone. have.
전기집진기는 압력손실이 낮아 대용량 또는 고유량제 적용하기 적합하며, 나노사이즈(100㎚ 이하)의 미세입자에 대해서도 높은 집진효율을 가진다. 이에 대해, 관성충돌장치, 싸이클론 등은 간단한 구조를 가짐에 따라 원가 및 유지보수 비용이 적은 장점이 있다.The electrostatic precipitator has a low pressure loss, which is suitable for applying a large capacity or a high flow rate agent, and has a high dust collection efficiency even for fine particles of nano size (100 nm or less). On the contrary, the inertial collision device, the cyclone, etc. have a simple structure and thus have low cost and maintenance cost.
고체 포집방법은 시료공기를 고체의 입자층을 통과시켜 흡인하는 것 등에 의하여 흡착, 반응 등에 의하여 고체에 측정하고자 하는 물질을 포집하는 방법으로, 공기 중 부유 미생물을 상기 입자분류부(10)에 구비된 포집판 또는 포집공간상에 포집시키는 과정에서 적용가능하다.The solid collecting method is a method for collecting a substance to be measured on a solid by adsorption, reaction, or the like by sucking the sample air through a particle layer of a solid, and the like. It is applicable in the process of collecting on a collecting plate or a collecting space.
액체 포집방법은, 시료공기를 액체에 통과시키거나 또는 액체의 표면과 접촉시킴으로써 용해, 반응, 침전, 현탁 등에 의하여 액체에 측정하고자 하는 물질을 포집하는 방법으로, 흡수액의 종류는 포집대상 물질에 따라 달라지게 된다.The liquid collection method is a method of collecting a substance to be measured in the liquid by dissolution, reaction, precipitation, suspension, etc. by passing the sample air through the liquid or contacting the surface of the liquid. Will be different.
상기 입자분류부(10)의 포집판 또는 포집공간 상에 액체를 도포하거나 수용시키는 액체 포집방법을 적용하여 공기 중 부유 미생물을 포집할 수도 있다.Floating microorganisms in the air may be collected by applying a liquid collecting method for applying or accommodating liquid on the collecting plate or the collecting space of the particle sorting unit 10.
그 외, 상기 입자분류부(10)를 이용해, 시료공기를 여과재에 통과시켜 여과재에 측정하고자 하는 물질을 포집하는 여과 포집방법, 시료공기를 냉각한 관 등에 접촉시켜 응축시킨 후에 측정하고자 하는 물질을 포집하는 냉각 응축 포집방법, 시료공기를 용해, 반응, 흡착시키지 않고 직접 포집포대, 포집병, 진공포집병, 주사통(syringe) 등에 포집하는 직접 포집방법, 분자확산의 원리를 이용하여 포집한 후에 분석하는 확산포집방법 등을 적용할 수도 있다.In addition, by using the particle fractionation unit 10, a sample collection method for collecting the material to be measured by passing the sample air through the filter medium, the sample air to contact the condensation, such as a cooling tube and condensed material to be measured After using the principle of cooling condensation collection method to collect, direct collection method to directly collect the collection bag, collection bottle, vacuum collection bottle, syringe, etc. without dissolving, reacting and adsorbing the sample air, Analytical diffusion collection methods can also be applied.
대기 중에 부유되어 있는 미생물들은 상기 입자분류부(10)를 통과하면서 상기 입자분류부(10)에 포집되며, 미생물의 포집이 이루어지는 상기 입자분류부(10)상에는 ATP 생물 발광에 필요한 ATP 반응 발광제가 코팅된 포집판(11)이 구비된다. The microorganisms suspended in the air are collected in the particle fractionation section 10 while passing through the particle fractionation section 10, and on the particle fractionation section 10 where microorganisms are collected, an ATP reactive light emitting agent necessary for ATP bioluminescence is provided. A coated collecting plate 11 is provided.
따라서, 전술한 포집판, 여과제, 필터시스템을 상기 포집판(11)으로 구성하여, 미생물이 상기 포집판(11)를 통과 또는 포집 될 경우에 ATP 생물 발광이 이루어 진다. Therefore, the collection plate, the filter agent, and the filter system described above are constituted by the collecting plate 11, so that the ATP bioluminescence is achieved when the microorganism passes or collects the collecting plate 11.
상기 미생물 용해부(20)는, 이온, 전자의 전자기력, 항균 물질, 열에너지, 촉매 등을 이용해 상기 입자분류부(10)에 포집되거나 상기 입자분류부(10)측으로 유동중인 미생물을 용해하여 미생물 안에 있는 ATP(adenosine triphosphate), DNA, RNA 등을 추출하는 장치적 구성요소를 통칭하는 것으로, 여기서, 미생물을 용해한다는 것은 미생물을 녹여 액체상태로 만드는 것이 아니라, 미생물 하나를 다수의 요소로 분해하거나 다수의 요소를 추출하는 것을 의미한다.The microbial dissolution unit 20 dissolves the microorganisms collected in the particle fractionation unit 10 or flows to the particle fractionation unit 10 using ions, electromagnetic forces, antimicrobial substances, thermal energy, and a catalyst. ATP (adenosine triphosphate), DNA, RNA, etc. are the collective components that extract the device, where dissolving the microorganisms do not dissolve the microorganisms in liquid state, but to break down a single microorganism into a number of elements It means to extract the elements of.
상기 미생물 용해부(20)를 이온 발생기로 구성하는 경우, 이온 발생기에 구비되는 방전팁의 직경이 클수록 소비전력이 상승하고, 소비전력이 상승 될 경우, 이온뿐 만 아니라 인체에 유해한 오존(ozone)까지 발생할 수 있으므로, 방전팁의 직경이 10㎛ 이하인 카본 브러시를 사용하는 오존 프리(ozone-free) 이온 발생기를 적용하는 것이 바람직하다.When the microorganism dissolving unit 20 is configured as an ion generator, power consumption increases as the diameter of the discharge tip provided in the ion generator increases, and when the power consumption increases, ozone harmful to the human body as well as ions. It is preferable to apply an ozone-free ion generator that uses a carbon brush having a diameter of the discharge tip of 10 μm or less, because it may occur up to.
방전팁의 직경이 10㎛ 이하인 카본 브러시를 사용하는 오존 프리(ozone-free) 이온 발생기에 의하면, 4W 이하의 낮은 소비전력을 가지게 되어, 오존이 0.01 ppm 미만으로 발생하게 되므로, 사무실 공기관리 지침, 산업안전보건법 제27조 제1항의 0.06 ppm 이하의 오존 관리기준을 안정적으로 만족할 수 있다.According to the ozone-free ion generator using a carbon brush having a discharge tip diameter of 10 μm or less, it has a low power consumption of 4 W or less, and ozone is generated at less than 0.01 ppm. Ozone management standards of 0.06 ppm or less under Article 27 (1) of the Industrial Safety and Health Act can be satisfactorily satisfied.
상기 미생물 용해부(20)을 이온발생기로 구성하면 미생물에 부착된 하전 이온간의 척력에 의해 미생물의 셀벽을 손상시키며 ATP를 추출하게 되며, 플라즈마 방전기로 구성하면 고전압의 방전에 의해 생성되는 고농도의 이온, 전자의 충돌에 의해 미생물의 셀벽을 손상시키며 ATP를 추출하게 된다.When the microbial dissolution unit 20 is configured as an ion generator, the microbial cell wall of the microorganism is damaged by repulsion between charged ions attached to the microorganisms, and ATP is extracted. As a result of the collision of electrons, ATP is extracted while damaging the cell wall of the microorganism.
상기 미생물 용해부(20)에 의해 추출된 ATP는, 미생물의 셀 외부로 노출됨과 동시에 상기 입자분류부(10)에 있는 ATP 반응 발광제와 반응하여 빛을 발생시키게 되며, 빛을 전기로 변환하는 광 다이오드(PD), 애벌란시 포토 다이오드(APD) 등의 수광소자(30)는 ATP 생물 발광에 의해 발생된 빛을 검출하여 미생물의 농도 또는 오염 정도를 추출한다.The ATP extracted by the microbial dissolution unit 20 is exposed to the outside of the cell of the microorganism and at the same time reacts with the ATP reactive light emitting agent in the particle sorting unit 10 to generate light, and converts the light into electricity. The light receiving element 30, such as a photodiode (PD), an avalanche photodiode (APD), detects light generated by ATP bioluminescence and extracts a concentration or contamination level of a microorganism.
모든 생물은 유기물의 산화에서 생긴 에너지를 ATP라는 화합물 속에 일단 저장하였다가 필요에 따라 이를 가수분해시켜 그때 방출되는 에너지를 이용하여 운동을 하고 체온을 유지하게 되는데, 이러한 ATP는 생체전기를 발생시키기도 하고 생체발광(發光)을 일으키기도 한다.All organisms store the energy from the oxidation of organic matter in a compound called ATP, and then hydrolyze it as needed to exercise and maintain body temperature using the energy released at that time. It also causes bioluminescence.
수광소자는, 소자에 흡수된 광자의 에너지를 측정할 수 있는 형태로 변환함으로써 광자 선속(線束)이나 광전력을 측정하는 소자로, 작동 파장의 고민감도, 빠른 응답속도, 최소 잡음이라는 장점을 지니고 있어 근적외선영역(0.8~1.6
Figure PCTKR2015008618-appb-I000001
m)에서 작동하는 광섬유 통신체계에서 광신호를 검출하는 소자로 널리 쓰이고 있다.
A light receiving element is a device that measures the photon flux or optical power by converting the energy of photons absorbed into the device into a form that can measure the energy. The light receiving element has the advantages of operating wavelength sensitivity, fast response speed, and minimum noise. Near-infrared region (0.8-1.6
Figure PCTKR2015008618-appb-I000001
It is widely used as a device for detecting optical signals in optical fiber communication systems operating in m).
특히, 수광소자 중 광전소자(photoelectric detectors)는, 소자에 흡수된 광자에 의해 소자를 이루는 물질 내에 전자(electron), 홀(hole)과 같은 운반체(carrier)가 발생되며, 이 운반체의 흐름에 의해 측정 가능한 전류가 발생되는, 즉, 광전효과(photoeffect)에 기반을 둔 소자로, 본 발명에 적용하기 적합하다.In particular, photoelectric detectors of light-receiving elements generate carriers such as electrons and holes in a material constituting the element by photons absorbed by the element, and by the flow of the carriers A device in which a measurable current is generated, ie based on photoeffects, is suitable for application in the present invention.
전자파 중에 빛으로서 사람의 눈에 밝게 느껴지는 파장은 약 380nm에서 780nm의 범위이며, 단색광으로서는 파장이 짧은 것에서부터 청자 400~500nm,청 450~500nm, 녹 500~570nm, 황 570~590nm, 오렌지색 590~610nm, 적색 610~700nm로, 상기 수광소자(30)는, 400㎚이상 내지 700㎚이하의 파장대역을 수신 가능한 감도를 가진다.The wavelength of the electromagnetic wave, which is felt brightly by the human eye, ranges from about 380 nm to 780 nm. For monochromatic light, the wavelength is short to celadon 400 to 500 nm, blue 450 to 500 nm, green 500 to 570 nm, sulfur 570 to 590 nm, and orange 590 to At 610 nm and red 610 to 700 nm, the light receiving element 30 has a sensitivity capable of receiving a wavelength band of 400 nm or more and 700 nm or less.
대기 중 부유 미생물을 상기 입자분류부(10)에 포집함에 있어서, 송풍기, 펌프와 같은 유동 발생부(50)을 이용하여 상기 입자분류부(10)의 일측의 대기를 타측으로 강제 유동시키는 공압차를 생성한다. 상세히, 상기 미생물 용해부(20)와 수광소자(30)는, 대기가 상기 입자분류부(10)까지의 유동되는 경로인 상기 입자분류부(10)의 일측에 설치되고, 상기 유동 발생부(50)는 상기 입자분류부(10)의 타측에 설치된다.In collecting the airborne microorganisms in the particle fractionation unit 10, a pneumatic pressure difference forcing the flow of one side of the particle fractionation unit 10 to the other side by using a flow generator 50 such as a blower and a pump. Create In detail, the microorganism dissolving unit 20 and the light receiving element 30 are installed at one side of the particle sorting unit 10, which is a path through which air flows to the particle sorting unit 10, and the flow generating unit ( 50 is installed on the other side of the particle fractionation unit 10.
미생물의 농도가 높을수록 추출되는 ATP의 양이 많아지고, 광도의 정도 또한 커지게 되며, 상기 수광소자(30)는 받아들인 빛을 전압, 전류, 주파수(frquency)와 같은 전기적 신호로 변환하여 출력한다. 미생물 농도 계산부(미도시)에서는 상기 수광소자(30)에서 출력된 전기적 신호와 미생물 농도에 따른 생물 발광값의 관계를 데이터화 또는 수식화하거나, 데이터화 또는 수식화한 값들을 비교한다.The higher the concentration of microorganisms, the greater the amount of ATP extracted and the greater the intensity of light. The light receiving element 30 converts the received light into electrical signals such as voltage, current, and frequency, and outputs it. do. The microbial concentration calculation unit (not shown) data-formulates or formulates or compares data-formulated or formulated relations between the electrical signal output from the light receiving element 30 and the bioluminescence value according to the microbial concentration.
상기 수광소자(30)에서 검출된 빛은 상기 미생물 농도 계산부 등를 통해 수식화 또는 데이터화되는 신호처리과정을 거쳐 디스플레이부(40)를 통해 미생물의 농도 또는 오염 정도를 실시간으로 표시하게 된다.The light detected by the light receiving device 30 displays a concentration or contamination level of the microorganism in real time through the display unit 40 through a signal processing process that is modified or dataized through the microorganism concentration calculator.
상기 입자분류부(10)에는, 미생물 입자가 포집되는 포집판(11)이 포함된다. 이하에서는, 상기 포집판(11)에의 구성에 대해서 설명하기로 한다. , The particle sorting unit 10 includes a collecting plate 11 for collecting microbial particles. Hereinafter, the structure to the said collecting plate 11 is demonstrated. ,
도 3은 본 발명의 일 실시 예에 따른 포집판의 사시도 이고, 도 4는 본 발명의 일 실시 예에 따른 포집판을 측면에서 바라본 단면도이다. 3 is a perspective view of a collecting plate according to an embodiment of the present invention, Figure 4 is a cross-sectional view of the collecting plate according to an embodiment of the present invention.
도 3 및 도 4를 참조하면, 본 발명의 일 실시 예에 포집판(11)은 부유 미생물을 포집 하기 위한 필터(12)와, 상기 필터(12)에 코팅되어 부유 미생물을 발광시키기 위한 코팅부(14)가 포함한다. 3 and 4, in one embodiment of the present invention, the collecting plate 11 includes a filter 12 for collecting suspended microorganisms, and a coating unit coated on the filter 12 to emit suspended microorganisms. (14) includes.
상기 코팅부(14)는, 발광 용액이 상기 필터(12)에 코팅되어 형성된다.The coating part 14 is formed by coating a light emitting solution on the filter 12.
본 명세서에서 필터(12)는 부유 미생물을 측정하기 위해 여과, 포집 하기 위한 여과지, 포집 기판을 총칭하는 개념이다. 따라서, 상기 필터(12)는 공기가 유동 가능한 다공성 필터 또는 부유 미생물을 포집하기 위한 판 형태 등 다양한 형태로 구성될 수 있다. In the present specification, the filter 12 is a concept of collectively filtering paper and a collecting substrate for filtration and collecting to measure suspended microorganisms. Accordingly, the filter 12 may be configured in various forms such as a porous filter through which air can flow or a plate form for collecting suspended microorganisms.
상기 필터(12)는 대략 판형상으로 형성된다. 상기 필터(12)는 후술할 부유 미생물 측정장치에서 입자분류부에 포함되는 일 구성요소로서, 공기 중에 포함된 부유 미생물이 상기 필터(12)에 포집된다. 부유 미생물 측정장치에 투입되는 필터는 대략 직경이 15mm인 판이 이용되나, 이에 한정되는 것은 아니며 다양한 크기 및 모양으로 형성될 수 있다. The filter 12 is formed in a substantially plate shape. The filter 12 is a component included in the particle fractionation unit in the airborne microbial measurement apparatus, which will be described later, and the airborne microorganisms contained in the air are collected in the filter 12. The filter introduced into the suspended microbial measuring apparatus may be a plate having a diameter of about 15 mm, but is not limited thereto. The filter may be formed in various sizes and shapes.
상기 필터(12)의 일면 또는 양면에는 부유 미생물을 발광시키기 위한 코팅부(14)가 구비된다. 즉, 부유 미생물의 농도를 측정하기 위해, 상기 코팅부(14)는 상기 필터(12)에 포집된 부유 미생물을 발광시키는 구성으로서 이해된다. One or both surfaces of the filter 12 is provided with a coating 14 for emitting floating microorganisms. That is, in order to measure the concentration of the suspended microorganisms, the coating portion 14 is understood as a configuration for emitting the suspended microorganisms collected in the filter 12.
이하에서는, 상기 필터(12)에 코팅부(14)을 코팅하는 과정에 대해 설명하기로 한다. Hereinafter, a process of coating the coating part 14 on the filter 12 will be described.
도 5는 본 발명의 일 실시 예에 따른 포집판 제조 방법의 흐름도이다. 5 is a flowchart illustrating a method of manufacturing a collecting plate according to an embodiment of the present invention.
먼저, 상기 필터(12)에 이용 가능한 원판을 부유 미생물 측정장치에 이용 가능한 크기로 절개하고(S100), 잔존해 있는 미세 먼지 및 세균을 제거하기 위해 절개된 상기 필터(12)를 멸균하게 된다(S110). 상기 필터(12)를 멸균은, 부유 미생물측정에 오차를 줄이기 위해 수행된다. First, the disc available for the filter 12 is cut into a size usable for the floating microbial measuring apparatus (S100), and the sterilized filter 12 is sterilized to remove residual fine dust and bacteria ( S110). Sterilization of the filter 12 is performed to reduce errors in suspended microbial measurement.
멸균 방식으로는 증기를 이용한 습열멸균, 가압증기를 이용한 오토클래이브(Autoclace) 방식을 이용할 수 있다. 습열멸균은 증기를 이용한 온열 방식이고, 오토클래이브 방식은 고온, 고압에서 반응시키기 위해 사용되는 내압 용기 또는 고열에 의한 증기 살균 방식이다.As a sterilization method, wet heat sterilization using steam and an autoclave method using pressurized steam may be used. The moist heat sterilization is a thermal method using steam, and the autoclave method is a steam sterilization method using an internal pressure vessel or high temperature used to react at high temperature and high pressure.
다만, 이에 한정되는 것은 아니며 상기 필터에 잔존한 미세 먼지 및 세균을 제거하기 위해 다양한 멸균 방식이 이용될 수 있다. However, the present invention is not limited thereto, and various sterilization methods may be used to remove fine dust and bacteria remaining in the filter.
상기 필터(12)가 준비된 후에는 상기 코팅부(14)를 제조할 용매를 준비한다(S200). 상기 코팅부(14)은 용매로서 용해제를 사용한다. 상기 용해제에는, 추출용매(Extractant), 분해가능한 버퍼(Lysis-Buffer) 또는 증류수가 포함된다. 상기 용매도 상기 필터(12)와 마찬가지로 멸균 과정을 거친다. After the filter 12 is prepared, a solvent for preparing the coating unit 14 is prepared (S200). The coating unit 14 uses a solvent as a solvent. The solubilizer includes an extractant, Lysis-Buffer or distilled water. The solvent is also sterilized in the same manner as the filter 12.
멸균 과정을 마친 후에는 상기 용해제에 계면활성제를 투입하게 된다(S300). 상기 계면활성제의 투입 없이 용해제에 생물발광 물질만 투입하는 경우, 용해제에 생물발광 물질이 균일하게 혼합되지 않아 생물 발광에 어려움이 있다. 따라서, 본 실시 예에서는 상기 용해제에 계면활성제를 투입하여 생물발광 물질이 용해제에 에 균일하게 혼합될 수 있다. 일 예로 상기 계면활성제는 TritonX-100을 이용할 수 있다. After the sterilization process, the surfactant is added to the solubilizer (S300). When only the bioluminescent material is added to the solubilizer without adding the surfactant, the bioluminescent material is not uniformly mixed in the solubilizer, which causes difficulty in bioluminescence. Therefore, in the present embodiment, the bioluminescent material may be uniformly mixed into the solubilizer by adding a surfactant to the solubilizer. For example, the surfactant may use TritonX-100.
상기 계면활성제는 상기 용해제에 최종농도가 대략 0.1%가 되도록 투입된다. The surfactant is added to the solubilizer so that the final concentration is approximately 0.1%.
용해제에 계면활성제를 혼합한 후에는 생물발광 물질을 희석시킨다(S400). 일 예로 상기 생물발광 물질은 루시페린(Luciferin)일 수 있다. 생물발광은 어떤 유기화합물이 효소의 작용으로 산화되면서 방출되는 에너지가 빛 에너지의 형태로 체외로 나오는 일종의 광화학반응으로, 발광물질인 루시페린은 ATP와 결합하여 루시페린-ATP의 복합물을 형성하면서 무기인산 H3PO4 두 분자를 생성한다. 여기서 루시페린은 환원형이어서 LH2와 같이 표기된다. (LH2+ATP LH2-AMP+2H3PO4)After the surfactant is mixed with the solvent, the bioluminescent material is diluted (S400). For example, the bioluminescent material may be luciferin. Bioluminescence is a kind of photochemical reaction in which an organic compound is oxidized by the action of an enzyme, and the energy released by the body is in the form of light energy. Luciferin, a luminescent substance, combines with ATP to form a complex of luciferin-ATP. Produce two molecules. Luciferin is here reduced and is therefore represented as LH2. (LH2 + ATP LH2-AMP + 2H3PO4)
상기 반응에서 생긴 LH2-AMP는 산소와 반응하여 산화되면서 불안정한 에너지 상태에 있게 되므로, 이 불안정한 상태의 산화 산물은 곧 분해되어 산화형 루시페린과 AMP를 생성하면서 빛(hv)을 발생시키게 된다. 여기서 L은 산화형 루시페린, L-AMP*는 불안정한 에너지 상태의 루시페린-AMP복합물을 가리킨다(LH2-AMP+1/2 O2 L-AMP*+H2O)(L-AMP* → L+AMP+hv(빛에너지)). The LH2-AMP generated in the reaction is in an unstable energy state as it reacts with oxygen and oxidizes, and thus, the unstable oxidized product decomposes to generate light (hv) while generating oxidized luciferin and AMP. Where L is the oxidized luciferin and L-AMP * indicates the luciferin-AMP complex in an unstable energy state (LH2-AMP + 1/2 O2 L-AMP * + H2O) (L-AMP * → L + AMP + hv ( Light energy)).
생물발광물질은 촉매작용을 수행하는 효소로서, 루시페라아제를 포함한다. Bioluminescent materials are enzymes that perform catalysis and include luciferases.
LH2-AMP가 산소(1/2 O2)와 반응하여 산화되는 과정은 루시페라아제(luciferase)라는 효소의 촉매작용에 의하여 이루어지므로, 생물발광은 루시페린 ,ATP, 루시페라아제 및 산소의 존재하에서 일어나며, 루시페린 한 분자의 산화에서 1광량자가 방출되는 것으로 계산되고 있다.Because LH2-AMP is reacted with oxygen (1/2 O2) and oxidized by the catalysis of an enzyme called luciferase, bioluminescence occurs in the presence of luciferin, ATP, luciferase and oxygen. It is calculated that 1 photon is emitted from oxidation of.
따라서, 생물발광 물질을 루시페린(luciferin)으로 구성하면, 상기와 같은 과정에 의해, 부유미생물을 5분 이내로 신속하게 측정할 수 있으며, 3분(180sec) 이내에 최대값의 광도가 측정될 수 있고, 이로부터 측정 시간이 3분 이내로 단축될 수 있다. Therefore, if the bioluminescent material is composed of luciferin, by the above-described process, suspended microorganisms can be quickly measured within 5 minutes, and maximum luminance can be measured within 3 minutes (180sec), From this the measurement time can be shortened to within 3 minutes.
상기 생물발광 물질은 400mg/ml의 농도로 상기 용해제에 희석시킨다. The bioluminescent material is diluted in the solubilizer at a concentration of 400 mg / ml.
상기 용해제에 생물발광 물질을 희석시킨 뒤에는 거품억제제를 첨가한다(S500). 상기 거품 억제제는 멸균된 상태로, 대략 0.02%의 농도로 첨가될 수 있다. 상기 용해제에 생물발광 물질을 균일하게 혼합하기 위해 계면활성제를 첨가하였으므로, 상기 계면활성제의 화학적 특성으로 인해 상기 용해제의 표면에 막이 형성될 수 있다. 이로 인해, 상기 필터 상에 코팅부(14)가 불균일하게 분포될 수 있으므로, 상기 거품억제제를 첨가하여 상기 용해제의 표면에 막이 형성되는 것을 방지할 수 있다. After diluting the bioluminescent material in the solubilizer, a foam inhibitor is added (S500). The foam inhibitor can be added in a sterile state at a concentration of approximately 0.02%. Since a surfactant was added to uniformly mix the bioluminescent material in the dissolving agent, a film may be formed on the surface of the dissolving agent due to the chemical property of the surfactant. As a result, since the coating part 14 may be unevenly distributed on the filter, the antifoaming agent may be added to prevent the film from being formed on the surface of the dissolving agent.
상기 코팅부(14)에는 효소안정제가 추가될 수 있다(S510). An enzyme stabilizer may be added to the coating part 14 (S510).
도 6은 본 발명의 일 실시 예에 의한 효소안정제의 농도에 따른 생물발광 정도를 나타낸 그래프이다. 6 is a graph showing the degree of bioluminescence according to the concentration of the enzyme stabilizer according to an embodiment of the present invention.
도 6의 그래프에서 가로축은 발광 지속 시간을 나타내고 있고, 세로축은 발광 정도를 나타내고 있다. In the graph of FIG. 6, the horizontal axis represents the emission duration, and the vertical axis represents the degree of emission.
도 6을 참조하면, 상기 코팅부(14)에 효소안정제를 첨가할 경우 생물발광 반응이 보다 장시간으로 지속되는 것을 확인할 수 있다. 즉, 발광된 부유 미생물을 더 오랫동안 측정할 수 있다. 그리고, 적정량의 효소안정제로 인해 생물 발광값도 증가되는 것을 확인할 수 있다. Referring to FIG. 6, it can be seen that when the enzyme stabilizer is added to the coating unit 14, the bioluminescence reaction lasts longer. That is, the suspended floating microorganisms can be measured for a longer time. And, it can be seen that the bioluminescence value is also increased due to the appropriate amount of enzyme stabilizer.
상기 효소안정제로는 자당(Sucrose), 과당(Fructose)이 사용될 수 있고, 상기 효소안정제는 상기 코팅부(14)에 대략 0.1~0,5 몰농도(M)로 첨가된다. Sucrose and fructose may be used as the enzyme stabilizer, and the enzyme stabilizer is added to the coating unit 14 at a concentration of about 0.1 to 0.5 mol (M).
상기 필터(12) 및 발광 용액의 제조가 완료되면, 코팅부(14)를 형성시키기 위해 준비된 상기 필터(12)에 제조된 발광 용액를 적하한다(S600). 상기 코팅부(14)는 상기 필터(12)에 1cm2 면적당 0.01~0.1ml가 분포하도록 형성된다. 상기 발광 용액를 적하한 뒤에는, 상기 발광 용액이 코팅된 상기 포집판(11)를 습도가 10% 이하인 환경에서 건조시켜 상기 발광 용액 상기 필터(12) 상에 침착시킨다(S700). 따라서, 상기 발광 용액이 상기 필터(12)에 코팅 시, 상온에서의 유지 기간을 보다 길게 연장시킬 수 있다. When the manufacture of the filter 12 and the luminescent solution is completed, the luminescent solution prepared in the filter 12 prepared to form the coating portion 14 is dropped (S600). The coating unit 14 is formed to distribute 0.01 ~ 0.1ml per 1cm2 area in the filter 12. After dropping the luminescent solution, the collecting plate 11 coated with the luminescent solution is dried in an environment having a humidity of 10% or less and deposited on the luminescent solution the filter 12 (S700). Therefore, when the luminescent solution is coated on the filter 12, the retention period at room temperature can be extended.
도 7은 필터 상에 생물발광 물질만을 코팅시킨 경우에 필터를 확대하여 바라본 단면도이고, 도 8은 본 발명의 일 실시 예에 따른 필터 상에 코팅부를 형성시킨 경우에 필터를 확대하여 바라본 단면도이다. 7 is an enlarged cross-sectional view of the filter when only the bioluminescent material is coated on the filter, and FIG. 8 is an enlarged cross-sectional view of the filter when the coating unit is formed on the filter according to an embodiment of the present invention.
도 7를 참조하면, 필터 상에 생물발광 물질(일 예로 루시페린)만을 코팅시킬 경우에는 필터에 생물 발광물질에 의한 막이 형성되기 때문에 압력 손실이 증가하게 된다. 따라서, 부유 미생물에 대한 발광 물질의 발광 효율이 떨어진다. Referring to FIG. 7, when only the bioluminescent material (eg luciferin) is coated on the filter, the pressure loss is increased because a film formed by the bioluminescent material is formed on the filter. Therefore, the luminous efficiency of the light emitting material to the floating microorganisms is lowered.
도 8를 참조하면, 필터 상에 본 실시 예에 따른 코팅부(14)을 코팅시켰을 때에는, 상기 계면활성제와 상기 거품억제제 의해 다공성이 확보되는 것을 확인할 수 있다. 이에 따라 압력 손실도 줄어들고 부유 미생물에 대한 발광 물질의 발광 효율도 증가될 수 있다. Referring to FIG. 8, when the coating unit 14 according to the present embodiment is coated on a filter, it may be confirmed that porosity is ensured by the surfactant and the antifoaming agent. Accordingly, the pressure loss may be reduced and the luminous efficiency of the light emitting material to the suspended microorganisms may be increased.
제안되는 발명에 의하면, 별도의 수작업을 거칠 필요 없이 발광 물질을 부유 미생물에 도포할 수 있어 부유 미생물 측정 과정이 간소화 되는 장점이 있다. According to the proposed invention, it is possible to apply the light emitting material to the floating microorganisms without going through a separate manual operation, there is an advantage that the process of measuring the floating microorganisms is simplified.
또한, 계면활성제를 코팅부에 첨가함으로써 필터에 발광물질이 균일하게 분포되는 장점이 있다. In addition, there is an advantage that the light emitting material is uniformly distributed in the filter by adding the surfactant to the coating portion.
또한, 거품억제제를 코팅부에 첨가함으로써 계면활성제에 의해 필터에 막이 생기는 것이 억제되는 장점이 있다.In addition, by adding a foam inhibitor to the coating portion, there is an advantage that the film is formed on the filter by the surfactant.
또한, 효소안정제를 코팅부에 첨가함으로써 부유 미생물의 발광 지속 시간이 오래 유지되고, 부유 미생물의 발광값이 증가하는 장점이 있다. In addition, by adding an enzyme stabilizer to the coating portion, the light emission duration of the floating microorganisms is maintained for a long time, and the light emission value of the floating microorganisms is increased.

Claims (17)

  1. 미생물을 포집 또는 여과하기 위한 필터를 준비하는 단계;Preparing a filter for collecting or filtering the microorganisms;
    상기 필터를 코팅하기 위한 코팅부의 용매를 준비하는 단계;Preparing a solvent of a coating unit for coating the filter;
    상기 용매에 계면 활성제를 혼합하는 단계;Mixing a surfactant in the solvent;
    상기 용매에 생물 발광 물질을 희석하여 코팅부를 제조하는 단계; 및Preparing a coating part by diluting a bioluminescent material in the solvent; And
    상기 제조된 코팅부를 상기 필터에 코팅하는 단계를 포함하는 포집판의 제조 방법.Method for producing a collecting plate comprising the step of coating the prepared coating on the filter.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 생물 발광 물질을 희석시킨 코팅부에 거품억제제를 첨가하는 단계를 더 포함하는 포집판의 제조 방법. The method of manufacturing a collecting plate further comprises the step of adding a foam inhibitor to the coating diluted the bioluminescent material.
  3. 제 2 항에 있어서, The method of claim 2,
    거품 억제제는 멸균되어, 0.02%의 농도로 구성되는 것을 특징으로 하는 포집판의 제조 방법.The foam inhibitor is sterilized and composed of a concentration of 0.02%.
  4. 제 1 항에 있어서, The method of claim 1,
    상기 제조된 코팅부에 효소 안정제를 혼합하는 단계를 더 포함하는 포집판의 제조 방법. Method for producing a collecting plate further comprises the step of mixing the enzyme stabilizer in the prepared coating.
  5. 제 4 항에 있어서, The method of claim 4, wherein
    효소 안정제에는, 수크라아제 또는 프락토오스가 포함되는 것을 특징으로 하는 포집판의 제조 방법.The enzyme stabilizer contains sucralase or fructose.
  6. 제 4 항에 있어서, The method of claim 4, wherein
    효소 안정제는 0.1~0.5M의 농도로 구성되는 것을 특징으로 하는 포집판의 제조 방법Enzyme stabilizer is a production method of the collecting plate, characterized in that composed of a concentration of 0.1 ~ 0.5M
  7. 제 1 항에 있어서,The method of claim 1,
    상기 필터에 상기 코팅부를 코팅한 후, 상기 필터를 건조하는 단계를 더 포함하는 포집판의 제조 방법.After coating the coating on the filter, the method of manufacturing a collecting plate further comprising the step of drying the filter.
  8. 제 1 항에 있어서, The method of claim 1,
    상기 코팅부를 코팅하기 전에 상기 필터를 멸균하는 단계를 더 포함하는 포집판의 제조 방법. The method of manufacturing a collecting plate further comprises the step of sterilizing the filter before coating the coating.
  9. 제 1 항에 있어서, The method of claim 1,
    상기 용매는 증류수인 것을 특징으로 하는 포집판의 제조 방법.The solvent is a method for producing a collecting plate, characterized in that the distilled water.
  10. 제 1 항에 있어서, The method of claim 1,
    상기 용매에는 용해제가 포함되며, The solvent includes a solvent,
    상기 용해제에는, 추출용매(Extractant) 또는 분해가능한 버퍼(Lysis-Buffer)가 포함되는 것을 특징으로 하는 포집판의 제조 방법. The solubilizer includes an extractant or a degradable buffer (Lysis-Buffer).
  11. 제 1 항에 있어서,The method of claim 1,
    상기 코팅부는 상기 필터에 1cm2 면적당 0.01ml 내지 0.1ml가 코팅되는 것을 특징으로 하는 포집판의 제조 방법.The coating unit is a manufacturing method of the collecting plate, characterized in that the coating is coated with 0.01ml to 0.1ml per 1cm 2 area.
  12. 제 8 항에 있어서, The method of claim 8,
    상기 멸균은 습열 멸균 또는 오토클레이브(Autoclave) 인 것을 특징으로 하는 포집판의 제조 방법.The sterilization is wet heat sterilization or autoclave (Autoclave) manufacturing method of the collecting plate, characterized in that.
  13. 제 1 항에 있어서, The method of claim 1,
    상기 코팅부에서 상기 계면 활성제의 농도는 0.1%인 것을 특징으로 하는 포집판의 제조 방법.Method for producing a collecting plate, characterized in that the concentration of the surfactant in the coating portion is 0.1%.
  14. 부유 미생물이 포집 또는 여과되는 필터를 포함하는 입자분류부;A particle fractionation unit including a filter in which suspended microorganisms are collected or filtered;
    상기 입자분류부에 포집 또는 여과되는 부유 미생물을 용해하여 에이티피(ATP: adenosine triphosphate)를 추출하는 미생물 용해부;A microbial dissolution unit for dissolving suspended microorganisms collected or filtered in the particle sorting unit to extract adenosine triphosphate (ATP);
    상기 입자분류부의 일측에 설치되며 상기 입자분류부에서 발광된 부유 미생물의 빛을 검출하여 상기 부유 미생물의 농도 또는 오염도를 추출하는 수광소자;A light receiving element installed at one side of the particle sorting unit and extracting the concentration or contamination level of the floating microorganism by detecting light of the floating microorganism emitted from the particle sorting unit;
    상기 수광소자에서 검출된 데이터를 디스플레이 하는 디스플레이부; 및A display unit which displays data detected by the light receiving element; And
    상기 입자분류부의 타측에 설치되어 공기를 유동시키는 유동 발생부를 포함하며, It is installed on the other side of the particle fractionation unit includes a flow generating unit for flowing air,
    상기 필터에는 계면활성제, 생물발광 물질, 거품억제제 및 효소안정제로 이루어진 군에서 선택된 하나 이상의 물질이 코팅되는 것을 특징으로 하는 부유 미생물 측정장치. The filter is suspended microorganisms, characterized in that the filter is coated with one or more substances selected from the group consisting of surfactants, bioluminescent materials, foam inhibitors and enzyme stabilizers.
  15. 제 14 항에 있어서, The method of claim 14,
    계면 활성제에는, Triton X-100이 0.1%의 농도로 구성되는 것을 특징으로 하는 부유 미생물 측정장치. In the surfactant, Triton X-100 is composed of a concentration of 0.1% airborne microbial measurement apparatus.
  16. 제 14 항에 있어서, The method of claim 14,
    상기 생물발광 물질에는, 루시페린 및 루시페라아제가 포함되는 부유 미생물 측정장치.The bioluminescent material, a floating microbial measurement apparatus that includes luciferin and luciferase.
  17. 제 14 항에 있어서, The method of claim 14,
    상기 효소안정제에는, 수크라아제 또는 프락토스가 0.1~0.5M의 농도로 구성되는 것을 특징으로 하는 부유 미생물 측정장치.Suspension or fructose in the enzyme stabilizer, suspended microbial measurement device, characterized in that composed of a concentration of 0.1 ~ 0.5M.
PCT/KR2015/008618 2014-08-18 2015-08-18 Method for preparing a collecting plate, and an apparatus for measuring floating organisms WO2016028061A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580042779.6A CN106574222A (en) 2014-08-18 2015-08-18 Method for preparing a collecting plate, and an apparatus for measuring floating organisms

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0107236 2014-08-18
KR1020140107236A KR102288766B1 (en) 2014-08-18 2014-08-18 Filter coted Luminescent substance and Microbial measurement apparatus having the same

Publications (1)

Publication Number Publication Date
WO2016028061A1 true WO2016028061A1 (en) 2016-02-25

Family

ID=55350947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008618 WO2016028061A1 (en) 2014-08-18 2015-08-18 Method for preparing a collecting plate, and an apparatus for measuring floating organisms

Country Status (3)

Country Link
KR (1) KR102288766B1 (en)
CN (1) CN106574222A (en)
WO (1) WO2016028061A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110079453A (en) * 2019-05-07 2019-08-02 中国科学院电子学研究所 The automatic sampling detector for multifunctional of near space and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109182110A (en) * 2018-10-10 2019-01-11 张朝明 A kind of efficient and environment-friendly type plankton detection device and its microorganism detection method
CN113176118B (en) * 2021-04-29 2021-12-10 江苏大学 Portable gas fax bacterium real-time acquisition and detection device and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000067428A (en) * 1999-04-28 2000-11-15 이충중 Filter for internal combustion engine and its manufacturing method
US20070207514A1 (en) * 2006-02-24 2007-09-06 Raphael Grinon Fast microbiological analysis device and method
KR20080001033A (en) * 2006-06-29 2008-01-03 심재희 Atp measurement system
JP2009232744A (en) * 2008-03-27 2009-10-15 Hitachi Plant Technologies Ltd System for measuring microorganisms
KR20110128600A (en) * 2010-05-24 2011-11-30 연세대학교 산학협력단 Airborne microbial measurement apparatus and measurement method using the microorganism dissolution system
JP2013099340A (en) * 2013-01-08 2013-05-23 Hitachi Plant Technologies Ltd Microorganism detector, detecting method, and sample container for use in the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208756A (en) * 2000-01-28 2001-08-03 Matsushita Electric Ind Co Ltd Bacterium detecting method and kit utilizing it
EP2325328B1 (en) * 2002-12-23 2014-02-12 Promega Corporation Improved luciferase-based assays
DE602005014110D1 (en) * 2004-07-02 2009-06-04 Promega Corp COMPOSITIONS AND METHODS OF EXTRACTION AND DETECTION OF MICROBIAL ATP
JP5753083B2 (en) * 2008-07-22 2015-07-22 プロメガ コーポレイションPromega Corporation Luminescent phosphotransferase or ATP hydrolase assay based on ADP detection
IT1401316B1 (en) * 2010-08-06 2013-07-18 Gvs Spa FILTER PERFECTED FOR THE REMOVAL OF SUBSTANCES FROM THE BLOOD OR FROM EMODERIVED AND METHOD FOR ITS ACHIEVEMENT
US20130171026A1 (en) * 2011-12-29 2013-07-04 General Electric Company Porous membranes having a polymeric coating and methods for their preparation and use

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000067428A (en) * 1999-04-28 2000-11-15 이충중 Filter for internal combustion engine and its manufacturing method
US20070207514A1 (en) * 2006-02-24 2007-09-06 Raphael Grinon Fast microbiological analysis device and method
KR20080001033A (en) * 2006-06-29 2008-01-03 심재희 Atp measurement system
JP2009232744A (en) * 2008-03-27 2009-10-15 Hitachi Plant Technologies Ltd System for measuring microorganisms
KR20110128600A (en) * 2010-05-24 2011-11-30 연세대학교 산학협력단 Airborne microbial measurement apparatus and measurement method using the microorganism dissolution system
JP2013099340A (en) * 2013-01-08 2013-05-23 Hitachi Plant Technologies Ltd Microorganism detector, detecting method, and sample container for use in the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANN, J. H ET AL.: "Inactivation of Airborne Fungi Cladosporium with Ag Nanoparticle Coated HEPA Filter and Rapid Evaluation of Anti-fungal Characteristics using ATP Bioluminiscence Detection Method", JOURNAL OF ODOR AND INDOOR ENVIRONMENT, vol. 10, no. 3, 2013, pages 227 - 237 *
YANG, SHLNHAO ET AL.: "Loading characteristics of filter pretreated with anionic surfactant for monodisperse solid particles", POWDER TECHNOLOGY, vol. 156, no. 1, 2005, pages 52 - 60, XP025306101, DOI: doi:10.1016/j.powtec.2005.06.005 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110079453A (en) * 2019-05-07 2019-08-02 中国科学院电子学研究所 The automatic sampling detector for multifunctional of near space and method
CN110079453B (en) * 2019-05-07 2021-01-15 中国科学院电子学研究所 Automatic sampling detection device and method for near space

Also Published As

Publication number Publication date
CN106574222A (en) 2017-04-19
KR20160021973A (en) 2016-02-29
KR102288766B1 (en) 2021-08-12

Similar Documents

Publication Publication Date Title
WO2012102448A1 (en) Apparatus for measuring floating microorganisms in a gas phase in real time using a system for dissolving microorganisms and atp illumination, and method for detecting same<0}
US20150099272A1 (en) Apparatus for measuring floating microorganisms in a gas phase in real time using a system for dissolving microorganisms and atp illumination, and method for detecting same
WO2015130000A1 (en) Airborne microbial measurement apparatus and method
WO2016028061A1 (en) Method for preparing a collecting plate, and an apparatus for measuring floating organisms
KR101163641B1 (en) airborne microbial measurement apparatus and measurement method using the microorganism dissolution system
WO2010090391A9 (en) Turbidity-measuring probe having polymer membranes modified by a hydrophobic sol-gel
WO2015130002A1 (en) Airborne microbial measurement apparatus and measurement method
KR101479382B1 (en) Calibration method for microorganism detecting device and calibration kit for microorganism detecting device
WO2016017950A1 (en) Airborne micro-organism measurement apparatus and measurement method therefor
KR20190030146A (en) Device and method for detecting airborne microorganism
JP2014054232A (en) Calibration method and calibration kit of microorganism detection device
WO2020032625A1 (en) Apparatus for real-time continuous measurement of suspended microorganisms
US20120247232A1 (en) Method and device for the collection of airborne particles and their concentration in small amounts of liquid
WO2015129979A1 (en) Airborne microbial measurement apparatus and measurement method thereof
CN101715557A (en) Method of measuring microparticles having nucleic acid and apparatus therefor
JP5859329B2 (en) Calibration support apparatus for microorganism detection apparatus and calibration support method for microorganism detection apparatus
JP6227425B2 (en) Method for comparing fluorescence intensity of multiple types of particles and method for evaluating fluorescence detector
KR102575983B1 (en) Real-time analysis device of aerosol in air
JP2014183761A (en) Evaluation kit for microorganism detection device, production method of evaluation kit for microorganism detection device, and evaluation method of microorganism detection device
KR102630291B1 (en) Airborne bacteria automatic measuring apparatus and measuring method thereof
WO2023120814A1 (en) Continuous electrostatic bio particle concentration-measuring instrument, and bio particle concentration and detection method
CN116754444A (en) Miniature handheld nano-grade particulate matter detection device and detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15833506

Country of ref document: EP

Kind code of ref document: A1