WO2016027978A1 - Energy storage device having improved heat-dissipation characteristic - Google Patents

Energy storage device having improved heat-dissipation characteristic Download PDF

Info

Publication number
WO2016027978A1
WO2016027978A1 PCT/KR2015/006596 KR2015006596W WO2016027978A1 WO 2016027978 A1 WO2016027978 A1 WO 2016027978A1 KR 2015006596 W KR2015006596 W KR 2015006596W WO 2016027978 A1 WO2016027978 A1 WO 2016027978A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
case
heat dissipation
ultracapacitor
pad
Prior art date
Application number
PCT/KR2015/006596
Other languages
French (fr)
Korean (ko)
Inventor
이정걸
서태호
Original Assignee
엘에스엠트론 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140179732A external-priority patent/KR20160022207A/en
Application filed by 엘에스엠트론 주식회사 filed Critical 엘에스엠트론 주식회사
Priority to EP15833889.7A priority Critical patent/EP3185265A4/en
Priority to JP2017508672A priority patent/JP6483239B2/en
Priority to CN201580044370.8A priority patent/CN106663533B/en
Priority to US15/503,765 priority patent/US10115531B2/en
Publication of WO2016027978A1 publication Critical patent/WO2016027978A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/08Cooling arrangements; Heating arrangements; Ventilating arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings

Definitions

  • the present invention relates to an energy storage device, and more particularly, to an energy storage device with improved heat dissipation characteristics.
  • an ultracapacitor is also called a supercapacitor, and is an energy storage device having intermediate characteristics between an electrolytic capacitor and a secondary battery.
  • Ultracapacitors can be used with secondary batteries due to their high efficiency and semi-permanent life characteristics, and are next-generation electrical energy storage devices that can replace secondary batteries.
  • Ultracapacitors are often used as battery replacements for applications that are not easy to maintain and require long service life. Ultracapacitors have fast charge and discharge characteristics and can be used as auxiliary power sources for mobile communication information devices such as mobile phones, laptops, and PDAs. It is also ideally suited for mains or auxiliary power sources, such as electric vehicles, night road lights and uninterrupted power supplies, which require high capacity.
  • the high voltage module can be configured by connecting a plurality of ultracapacitors in a case in need quantity.
  • FIG. 1 is a view showing the configuration of an ultracapacitor module according to the prior art.
  • the ultracapacitor module covers a case 20 for accommodating the ultracapacitor array 10, the ultracapacitor array 10, and upper and lower entrances of the case 20. 30, 40).
  • the ultracapacitor array 10 is composed of a plurality of ultracapacitors in which electrode terminals are connected by a bus bar 11 and coupled by a nut.
  • Ultracapacitor modules can improve energy storage by driving multiple ultracapacitors. However, the heat generated when the ultracapacitor module is driven also increases rapidly, which may reduce the reliability and stability of the ultracapacitor module.
  • the busbar 11 which is a connection member for connecting the adjacent ultracapacitor, and the cover 20, 40 of the upper and lower surfaces of the metal covering the case 20 Mainly radiate heat.
  • the side of the case 20 is made of synthetic resin in order to reduce the weight of the ultracapacitor module and lower the production cost, and has a plate shape, so that the contact area with the ultracapacitor is small, so that heat dissipation is hardly achieved.
  • the ultracapacitor can radiate heat mainly through the busbars 11, but the busbars 11 cannot radiate efficiently because the heat radiation area is narrow, so that the temperature inside the case is increased. As the rise occurs, the life of the ultracapacitor is reduced.
  • Patent Document 1 Korean Registered Patent No. 10-1341474 (announced on December 13, 2013)
  • the present invention has been made to solve the above problems, and in order to receive energy storage cells, such as ultracapacitors, into a case, a heat dissipation is achieved through a case surface having a small contact area, thereby improving heat dissipation characteristics.
  • the purpose is to provide.
  • a cell assembly formed by connecting at least two cylindrical energy storage cells in series;
  • a case accommodating the cell assembly, the housing having a shape corresponding to an outer surface of the energy storage cell;
  • a heat dissipation pad disposed between an outer side surface of the energy storage cell of the cell assembly and an inner side surface of the accommodating part, wherein the case includes at least two case blocks.
  • the receiving portion is formed.
  • the center angle of the energy storage cell in contact with the heat radiating pad may be 30 degrees to 60 degrees.
  • An arc formed by the accommodation portion may have a length greater than or equal to the length of the heat radiation pad.
  • the heat dissipation pad may have elasticity, and a distance between the accommodating part and the energy storage cell may be larger than a diameter tolerance of the energy storage cells while being smaller than a thickness before the heat dissipation pad.
  • the heat dissipation pad may be attached to the energy storage cell.
  • the heat dissipation pad may be a heat conductive filler.
  • An adhesive layer may be provided on one side of the heat radiation pad.
  • the energy storage cell may be an ultracapacitor.
  • the case block may include a plurality of convex portions having an arc shape identical to an outer shape of the energy storage cell; A convex portion connecting portion connecting the plurality of convex portions; And a concave portion formed between the convex portion and the convex portion connecting portion.
  • At least one heat sink may protrude vertically in the recess.
  • the case block may be any one of an 'L' shape or a 'c' shape.
  • one of the outermost convex portions of the plurality of convex portions may be connected to connect an arc shape of the convex portion.
  • the case block may further include a case block connecting portion extending from one of the outermost convex portions and bent in a length direction of the case block.
  • the outermost convex portions of the plurality of convex portions may be connected so that an arc shape of the convex portion continues.
  • the case block may further include a case block connecting portion extending from each of the outermost convex portions and bent in a length direction of the case block.
  • the convex connection portion may be formed with a tab for fixing the cover.
  • the distance between the energy storage cell and the case is far from the end point of the heat dissipation pad to insulate the energy storage cell from the case.
  • An insulating film may be further formed on an outer surface of the energy storage cell.
  • the present invention improves the heat dissipation characteristics by widening the contact area between the energy storage cell and the case by providing a heat dissipation pad between the case and the energy storage cell as well as heat dissipation through connection members such as nuts and bus bars.
  • the present invention facilitates the installation of the heat dissipation pad and reduces the cost of manufacturing the case by manufacturing a case accommodating several energy storage cells by combining a plurality of case blocks.
  • the present invention optimizes the product mass of the energy storage device while improving heat dissipation characteristics.
  • the present invention improves product stability by naturally separating the case and the energy storage cell by increasing the distance between the energy storage cell and the case from both ends of the heat radiation pad.
  • FIG. 1 is a view showing an energy storage device module according to the prior art
  • FIG. 2 is a diagram illustrating a configuration of an energy storage device according to an embodiment of the present disclosure
  • FIG. 3 is a view showing a connection between energy storage cells according to another embodiment of the present invention.
  • FIG. 4 is a cross-sectional view taken along line II-II ′ of FIG. 2;
  • FIG. 5 is a view showing the configuration of a case block according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a configuration of a case block according to another embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a center angle when a heat dissipation pad contacts an energy storage cell according to an embodiment of the present invention.
  • FIG. 8 is a view showing the contact shape, the heat dissipation efficiency and the product mass of the heat radiation pad and the energy storage cell according to an embodiment of the present invention with angles.
  • FIG. 9 is a graph showing a change in heat dissipation efficiency and product mass according to a contact angle according to an embodiment of the present invention.
  • FIG. 10 is an enlarged view of a portion A of FIG. 2.
  • FIG. 2 is a diagram illustrating a configuration of an energy storage device according to an embodiment of the present invention
  • FIG. 3 is a diagram illustrating a connection between energy storage cells according to another embodiment of the present invention
  • FIG. 4 is II- of FIG. 2. It is a figure which shows the cross section along the II 'line.
  • the energy storage device includes a case 200 for receiving a cell assembly 100 and a cell assembly 100 in which at least two or more energy storage cells 110 are connected in series. ).
  • the cell assembly 100 may be formed by connecting at least two or more energy storage cells 110 in series.
  • the energy storage cell 110 may be an ultracapacitor, and in describing the present embodiment, the energy storage cell is described as an ultracapacitor.
  • the present invention is not limited thereto, and the energy storage cell may be any cell capable of storing electrical energy such as a secondary battery or a battery.
  • Ultracapacitor 110 has a fast charging and discharging characteristics, and accordingly, as well as an auxiliary power source of mobile communication information devices such as mobile phones, laptops, PDAs, electric vehicles, hybrid vehicles, solar cell power supply, uninterruptible power supply that requires high capacity It can be used as a main power supply or an auxiliary power supply such as an uninterruptible power supply (UPS).
  • mobile communication information devices such as mobile phones, laptops, PDAs, electric vehicles, hybrid vehicles, solar cell power supply, uninterruptible power supply that requires high capacity It can be used as a main power supply or an auxiliary power supply such as an uninterruptible power supply (UPS).
  • UPS uninterruptible power supply
  • the ultracapacitor 110 may have a cylindrical shape, and as shown in FIG. 2, the ultracapacitor 110 may be connected in series with another ultracapacitor in the longitudinal direction in which the electrode is formed to form the cell assembly 100. At this time, the connection of neighboring ultracapacitors may be connected by connecting members, for example, nuts and busbars.
  • the positive terminal of the first ultracapacitor and the negative terminal of the second ultracapacitor are connected to the busbar 130, the nut 150, and the like.
  • the cell assembly 100 may be formed by connecting in series using the same connection member.
  • the plurality of ultracapacitors 110 are connected to the positive terminal and the negative terminal by the busbars 130, and are coupled by the nut 150 to form the cell assembly 100.
  • the cell assembly 100 may be accommodated in the case 200 to form an ultracapacitor module.
  • the case 200 may accommodate the cell assembly 100 formed by connecting the ultracapacitor 110 in series.
  • the case 200 may include a receiving unit having a shape corresponding to an outer surface of the ultracapacitor 110 to accommodate the cell assembly 100 formed by connecting the ultracapacitor 110 in series.
  • the case 200 may be formed by combining at least two or more case blocks (510 of FIG. 5 or 610 of FIG. 6) of the same shape.
  • a receptacle for accommodating the cell assembly 100 may be formed by coupling the case block 510 of FIG. 5 or 610 of FIG. 6.
  • the case block 510 of FIG. 5 or 610 of FIG. 6 will be described in detail below with reference to FIGS. 5 and 6.
  • FIG. 5 is a diagram illustrating a configuration of a case block according to an embodiment of the present invention.
  • the case block 510 may have an 'L' shape and has a receiving portion 518 in a shape corresponding to an outer shape of the ultracapacitor 110.
  • the inner surface of the case block 510 in contact with the outer surface of the ultracapacitor 110 may have a cylindrical round shape.
  • the case 200 may be completed by combining four 'L' shaped case blocks, and thus an accommodating part 518 may be formed.
  • the case block 510 may include a plurality of convex parts 511 and convex parts 511 having the same arc shape as the outer shape of the ultracapacitor 110.
  • Convex portion connecting portion 513 to connect, a concave portion 512 formed between the convex portion 511 and the convex portion connecting portion 513, and case block connecting portion 514, 515 connecting the case block 510.
  • the plurality of convex portions 511 has the same arc shape as the outer shape of the ultracapacitor 110 to form an accommodating portion 518 for accommodating the ultracapacitor 110, and a heat radiation pad 210 is formed therein. Attached.
  • the heat dissipation pad 210 emits heat generated in the ultracapacitor 110 to the convex portion 511, and also functions to insulate the ultracapacitor 110 and the convex portion 511 (that is, the case 200).
  • the convex parts 511 are connected by the convex part connecting part 513, and a tab for fixing the upper cover and the lower cover which covers the case 200 is formed at the convex part connecting part 513.
  • the tab is a structure for bolting (bolting) process is inserted into the bolt for fixing the case 200 and the cover.
  • the cave block 510 formed by connecting the plurality of convex portions 511 may have an 'L' shape.
  • one of the outermost convex portions is arranged and connected in the width direction, and the other convex portions are arranged and connected in the longitudinal direction.
  • one of the outermost convex portions in the longitudinal direction of the plurality of convex portions 511 is connected so that an arc shape of the convex portion 511 is continued.
  • the concave portion 512 is formed between the convex portion 511 and the convex portion connecting portion 513.
  • the concave portion 512 is formed by folding a part of the convex portion 511 outward, which is for securing an insulation distance, which will be described later.
  • a plurality of heat sinks 517 are vertically installed at regular intervals to radiate heat generated from the ultracapacitor 110 to the outside. That is, the heat sink 517 is vertically installed at regular intervals in order to increase heat radiation efficiency through the air flow between the heat sinks 517.
  • a plurality of heat sinks 517 are installed to widen the heat dissipation area.
  • the height of the heat sink 517 is formed to be the same as the height of the convex connection portion 513.
  • the concave portion 512 is not formed on both sides of the convex connection portion 513 located on the leftmost side in the longitudinal direction, but similarly to the other convex connection portion 513, the concave portions 512 on both sides. Can be formed.
  • Case block connections 514 and 515 connect the cable block 510.
  • the case block connecting portion 514 of the case block connecting portions 514 and 515 extends from the convex portion 511 and is bent in the longitudinal direction, and connects the case block 510 in the width direction.
  • the case block connecting portion 515 of the case block connecting portions 514 and 515 extends from the convex portion 511 and is bent in the width direction, and connects the case block 510 in the longitudinal direction.
  • FIG. 6 is a diagram illustrating a configuration of a case block according to another embodiment of the present invention.
  • the case block 610 may have a 'c' shape and has a receiving portion 618 in a shape corresponding to an outer shape of the ultracapacitor 110.
  • the inner surface of the case block 610 contacting the outer surface of the ultracapacitor 110 may have a cylindrical round shape.
  • the case 200 may be completed by combining two 'c' shaped case blocks, and thus an accommodating part 618 may be formed.
  • the case block 610 may include a plurality of convex parts 611 and convex parts 611 having the same arc shape as the outer shape of the ultracapacitor 110.
  • Convex portion connecting portion 613 to connect, a concave portion 612 formed between the convex portion 611 and the convex portion connecting portion 613, and a case block connecting portion 614 for connecting the case block 610.
  • the plurality of convex portions 611 have the same arc shape as the outer side of the ultracapacitor 110 to form an accommodating portion 618 for accommodating the ultracapacitor 110, and a heat radiation pad 210 is formed therein. Attached.
  • the heat dissipation pad 210 emits heat generated in the ultracapacitor 110 to the convex portion 611, and also functions to insulate the ultracapacitor 110 and the convex portion 611 (that is, the case 200).
  • the convex parts 611 are connected by the convex part connecting part 613, and the tabs for fixing the upper cover and the lower cover which cover the case 200 are formed in the convex part connecting part 613.
  • the tab is a structure for bolting (bolting) process is inserted into the bolt for fixing the case 200 and the cover.
  • the cave block 610 formed by connecting the plurality of convex portions 611 has a 'c' shape.
  • the outermost convex portions are arranged in the width direction and connected, and the remaining convex portions are arranged in the longitudinal direction and connected. That is, the outermost convex portions of the plurality of convex portions 611 are connected so that arc shapes of the convex portions 611 are continued.
  • the recess 612 is formed between the convex portion 611 and the convex portion connecting portion 613.
  • the concave portion 612 is formed by folding a part of the convex portion 611 outward, which is for securing an insulation distance, which will be described later.
  • a plurality of heat sinks 617 are vertically installed at the recesses 612 at regular intervals to radiate heat generated from the ultracapacitor 110 to the outside. That is, the heat sink 617 is vertically installed at regular intervals in order to increase the heat radiation efficiency through the air flow between the heat sink 617.
  • a plurality of heat sinks 617 are installed to widen the heat radiation area.
  • the height of the heat sink 617 is formed to be the same as the height of the convex connection portion 613.
  • the concave portion 612 is not formed at both sides of the convex connection portion 613 positioned at the outermost side in the longitudinal direction, but like the other convex connection portion 613, the concave portion 612 is formed at both sides. Can be formed.
  • the case block connecting portion 614 connects the cable block 610.
  • the case block connecting portion 614 extends from the convex portion 611 and is bent in the longitudinal direction, and connects the case block 610 in the width direction.
  • the case 200 formed by the combination of the case blocks 510 and 610 described above with reference to FIGS. 5 and 6 may be formed of a metal material.
  • the receiving portions 518 and 618 formed inside the case 200 are manufactured to maximize the shape of the ultracapacitor 110 in a form corresponding to the outer surface of the ultracapacitor 110. Therefore, the heat dissipation effect may be enhanced by maximizing the contact surface between the case 200 and the ultracapacitor 110 to increase the area where heat is released.
  • the heat dissipation pad 210 is attached to the inner surfaces of the accommodating parts 518 and 618 to further improve the heat dissipation effect. That is, when the cell assembly 100 is inserted into the receiving portions 518 and 618, the receiving portion 518 may be positioned between the cell assembly 100 and the receiving portions 518 and 618.
  • the heat dissipation pad 210 may be attached to an inner surface of the 618.
  • the heat dissipation pad 210 may be attached to the inner surfaces of the accommodating parts 518 and 618 in the length direction of the electrode of the ultracapacitor 110.
  • the width of the heat radiation pad 210 is smaller than the length of the arc formed by the receiving portions 518 and 618.
  • the width of the heat radiation pad 210 is greater than the length of the arc formed by the accommodating portions 518 and 618, a part of the heat dissipation pad 210 may not come into contact with the accommodating portions 518 and 618 to radiate heat. Because you can't. Conversely, the receptacles 518 and 618 should have an arc of length longer than the width of the heat dissipation pad 210.
  • the heat dissipation pad 210 may include a heat conductive filler for heat transfer, for example, metal powder or ceramic powder.
  • a heat conductive filler for heat transfer for example, metal powder or ceramic powder.
  • the metal powder may be any one or a mixture of two or more of aluminum, silver, copper, nickel and tungsten.
  • examples of the ceramic powder may be silicon, graphite, and carbon black.
  • the heat dissipation pad 210 may be made of silicon synthetic rubber.
  • the heat dissipation pad 210 may serve to fix the ultracapacitor 110 accommodated in the case 200. That is, when the ultracapacitor 110 is accommodated in the case 200, the heat dissipation pad 210 may directly contact the ultracapacitor 110 to prevent the ultracapacitor 110 from moving. Even if the receiving portions 518 and 618 are manufactured in a form corresponding to the outer surface of the ultracapacitor 110, the intimate contact surface with the ultracapacitor 110 may not be formed, and thus, proper heat dissipation may not be achieved.
  • the case 200 is fixed while the ultracapacitor 110 is fixed in the case 200. It is possible to increase the heat dissipation effect by widening the contact area between the ultracapacitor 110.
  • the heat radiation pad 210 may have elasticity.
  • a plurality of ultracapacitors 110 are inserted into the case 200, and there may be a difference in diameter for each ultracapacitor 110. Accordingly, the ultracapacitor 110 may not be completely pressed onto the heat radiation pad 210. Therefore, by using the heat radiation pad 210 having elasticity in consideration of the diameter difference between the ultra-capacitor 110, all the ultra-capacitor 110 can be sufficiently compressed to the heat radiation pad 210.
  • the thickness before the compression of the heat radiation pad 210 is preferably larger than the diameter tolerance of the ultracapacitors 110.
  • the thickness before compression of the heat radiation pad 210 is preferably greater than 1.4 mm (0.7 mm ⁇ 2), for example. Have a thickness of 2mm.
  • the heat dissipation pad 210 has elasticity, when the ultra capacitor 110 is inserted into the case 200, the heat dissipation pad 210 is deformed to fit the outer shape of the ultra capacitor 110 and thus the ultra capacitor 110 is formed. Adhesion can be increased, resulting in an increase in contact area. Therefore, the heat dissipation efficiency can be further increased as the contact area is increased.
  • the space between the accommodating portions 518 and 618 of the case 200 and the ultracapacitor 110 is smaller than the thickness before compression of the heat radiation pad 210 and the ultracapacitor. It is desirable to be larger than the diameter tolerance of 110.
  • the interval between the accommodating parts 518 and 618 and the ultracapacitor 110 is an interval when the assembling of the energy storage device is completed without using the heat dissipation pad 210.
  • the gap should be larger than the diameter tolerance of the ultracapacitors 110, because if the gap is smaller than the diameter tolerance, case assembly may be incomplete and a gap may occur.
  • the reason why the interval should be smaller than the thickness before the heat radiation pad 210 is compressed is to allow the ultracapacitors 110 to be sufficiently compressed to the heat radiation pad 210.
  • the gap is smaller than the thickness before the compression of the heat radiating pad 210, the ultra-capacitors 110 to the heat-compressing pad 210 during the assembly of the case, thus fixing the ultra-capacitor 110 in the case 200
  • the heat dissipation effect may be enhanced by increasing the contact area between the ultracapacitor 110 and the heat dissipation pad 210.
  • one side surface of the heat radiation pad 210 may be provided with an adhesive layer to easily bond the heat radiation pad to the receiving portions 518 and 618 of the case 200.
  • the adhesive layer may further include a thermally conductive filler, such as a metal powder or a ceramic powder, to prevent the thermal conductivity from being lowered through the adhesive layer.
  • the heat dissipation pad 210 is attached to the inner surface of the case 200, that is, the outer surface of the ultracapacitor 110 and the inner surface of the accommodating parts 518 and 618.
  • the heat dissipation through the heat dissipation may be further improved, and the case 200 may be discharged by effectively transferring heat generated inside the case 200 to the outside by using a material having excellent thermal conductivity such as copper or aluminum. You can.
  • connection member that connects the adjacent ultracapacitors 110, that is, busbars, but the busbars had a small area capable of emitting heat, so the effect was insignificant.
  • the busbar has a horizontal length of 100 (mm) and a vertical length of 28 (mm)
  • the area capable of dissipating heat through the busbar per ultracapacitor is 100 * 28/2 (the area of the busbar per ultra capacitor).
  • 2 (Top & Bottom side) 2800 (mm 2 ).
  • the heat inside the case 200 may be more efficiently released to the outside by releasing heat through the side surface of the case 200, that is, by increasing the heat dissipation area.
  • the heat dissipation performance may be further improved by attaching a heat dissipation member having excellent thermal conductivity, that is, a heat dissipation pad 210 to the inner surface of the case 200 that the ultracapacitor 110 contacts.
  • the heat dissipation area per ultracapacitor is 2 * 3.14 * (60 (the diameter of the ultracapacitor) / 2).
  • * 130 (length of the thermal pad) (mm) * 60 (angle) * 2/360 8164 (mm 2 ).
  • the reason for multiplying the angle by 2 is that the heat radiation pad 210 is attached to two places in the present embodiment.
  • the center angle is an angle made by two radii in a circle or a sector, and in the embodiment of the present invention, the center angle is a portion of the ultra-capacitor 110 that is in contact with the heat dissipation pad 210 and the ultra-capacitor 110.
  • FIG. 7 is a view illustrating a center angle when the heat dissipation pad 210 and the ultracapacitor 110 contact each other according to an embodiment of the present invention. As shown in FIG. 7, the center angle ⁇ is a heat dissipation pad 210.
  • the ultracapacitor 110 is an angle formed by two radii connecting the two ends of the contact portion from the center of the ultracapacitor 110.
  • the both ends mean both ends when the heat dissipation pad 210 is compressed between the ultracapacitor 110 and the case 200.
  • the contact angle of the ultracapacitor 110 in contact with the heat dissipation pad 210 is preferably 30 degrees to 60 degrees.
  • the heat radiation efficiency when the center angle ⁇ is 30 degrees or more is much greater than the heat radiation efficiency when the center angle ⁇ is less than 30 degrees.
  • the product mass of the storage device becomes large.
  • the center angle ⁇ of the ultracapacitor 110 in contact with the heat radiating pad 210 is preferably 30 degrees to 60 degrees. This will be described with reference to the drawings.
  • FIG. 8 is a view showing the contact shape, the heat dissipation efficiency, and the product mass of the heat radiation pad and the energy storage cell according to an embodiment of the present invention according to the angle
  • Figure 9 is a heat dissipation efficiency according to the contact angle according to an embodiment of the present invention
  • graphs showing changes in product mass.
  • Heat dissipation efficiency is calculated using the following formula.
  • the product mass adds the total weight of the ultracapacitors, the mass of the case, the mass of the heat dissipation pad, and the mass of the other components.
  • an energy storage cell that is, an ultracapacitor 110
  • an ultracapacitor 110 is inserted into the accommodating parts 518 and 618 formed between the case blocks, and the ultracapacitor 110 and the inner surface of the accommodating parts 518 and 618 are inserted into the accommodating part 518 and 618.
  • the heat dissipation pad 210 which contacts is attached.
  • the width of the heat dissipation pad 210 should be increased and thus the length of the arcs of the accommodating parts 518 and 618 must be increased at the same time. .
  • the center angle of the ultracapacitor 110 in contact with the heat dissipation pad 210 increases.
  • the depths of the recesses 512 and 612 formed on the outer surface of the case 200 between the adjacent ultracapacitors 110 are increased.
  • the left Y axis represents heat dissipation efficiency and the right Y axis represents product mass.
  • reference numeral 910 is a heat dissipation efficiency and reference numeral 920 is a graph of product mass.
  • the center angle ⁇ of the ultracapacitor 110 in contact with the heat radiation pad 210 is increased, the heat radiation efficiency of the energy storage device is improved.
  • the center angle ⁇ is 30 degrees or more, the heat dissipation efficiency is drastically improved than when the center angle ⁇ is less than 30 degrees.
  • the center angle ⁇ is 10 degrees
  • the heat radiation efficiency is 90.66%.
  • the center angle ⁇ is 30 degrees
  • the heat radiation efficiency is 97.28%.
  • the center angle ⁇ When the center angle ⁇ is 30 degrees, the heat radiation efficiency is very good.
  • the numbers indicated along the heat dissipation efficiency graph in FIG. 9 indicate an increase in heat dissipation efficiency per degree. For example, when the center angle ⁇ increases from 10 degrees to 20 degrees, the heat radiation efficiency increases by 0.36% point (3.6% ⁇ 10) per degree on average. When the central angle ⁇ increases from 20 degrees to 25 degrees, the heat dissipation efficiency increases by 0.30% point per degree on average. As shown in FIG. 9, the heat dissipation efficiency is greatly increased to the center angle ⁇ of 30 degrees, and the increase in heat dissipation efficiency is slowed at the central angle ⁇ . Therefore, the center angle ⁇ of the ultracapacitor 110 in contact with the heat radiation pad 210 is preferably 30 degrees or more.
  • the product mass of the energy storage device increases accordingly.
  • the reason is that the width of the heat dissipation pad 210 increases, so that the mass of the heat dissipation pad 210 increases, and the length of the arcs of the accommodating parts 518 and 618 also increases simultaneously, between the adjacent ultracapacitors 110.
  • the concave portions 512 and 612 formed on the outer surface of the case 200 are increased in depth to increase the mass of the case 200.
  • the product mass gradually increases until the center angle ⁇ becomes 60 degrees, but when the center angle ⁇ exceeds 60 degrees, the product mass rapidly increases.
  • the product mass increase rate at the center angle ⁇ exceeding 60 degrees is greater than the product mass increase rate at the center angle ⁇ below 60 degrees.
  • the numbers indicated along the product mass graph in FIG. 9 indicate the increase in product mass per degree. For example, when the center angle ⁇ increases from 10 degrees to 20 degrees, the product mass increases by 0.25% point (2.5% ⁇ 10) per degree. When the central angle ⁇ increases from 20 degrees to 22.5 degrees, the product mass increases by 0.23 percentage points per degree on average. As shown in FIG. 9, the product mass gradually increases up to 60 degrees of the central angle ⁇ , and the product mass rapidly increases when the central angle ⁇ exceeds 60 degrees.
  • the center angle ⁇ of the ultracapacitor 110 in contact with the heat radiation pad 210 is preferably 30 degrees to 60 degrees.
  • FIG. 10 is an enlarged view of a portion A of FIG. 2.
  • the distance 1010 between the case 200 and the ultracapacitor 110 gradually increases from the recesses 512 and 612 formed by folding the case 200 back. That is, the distance 1010 between the case 200 and the ultracapacitor 110 is gradually increased from the tips of the recesses 512 and 612.
  • the case 200 away from the adjacent concave portions 512 and 612 of a particular cell meets the case 200 away from the adjacent concave portions 512 and 612 of the neighboring cell at the convex connection portions 513 and 613. To achieve.
  • the heat dissipation pad 210 functions to insulate between the case 200 and the ultracapacitor 110 in addition to the heat dissipation function. From the portion where the heat dissipation pad 210 is not present, that is, the point at which the heat dissipation pad 210 ends, the distance 200 between the case 200 and the ultracapacitor 110 is indirectly increased, thereby indirectly the case 200 and the ultracapacitor 110. Insulation between them. As an insulation measure other than securing the insulation distance, an insulation film may be applied to the outer surface of each cell, or an insulation coating may be applied.
  • a space 1020 in which a harness for sensing and balancing is installed is formed between the neighboring ultracapacitor 110 and the case 200. The harness passes through this space 1020 and further heats up with the flow of air present in this space 1020.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

An energy storage device having an improved heat-dissipation characteristic is disclosed. The energy storage device, according to the present invention, comprises: a cell assembly formed by connecting at least two cylindrical energy storage cells in series; a case having an accommodation part in a shape corresponding to the outer side surface of the energy storage cells so as to accommodate the cell assembly; and a heat-dissipation pad provided between the outer side surface of the energy storage cells of the cell assembly and the inner side surface of the accommodation part, wherein the case comprises at least two case blocks and the accommodation part is formed by combining the case blocks.

Description

방열 특성이 향상된 에너지 저장 장치Energy storage device with improved heat dissipation
본 발명은 에너지 저장 장치에 관한 것으로서, 더욱 상세하게는 방열 특성이 향상된 에너지 저장 장치에 관한 것이다.The present invention relates to an energy storage device, and more particularly, to an energy storage device with improved heat dissipation characteristics.
또한, 본 출원은 2014년 08월 19일에 출원된 한국특허출원 제10-2014-0107939호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.In addition, the present application claims priority based on Korean Patent Application No. 10-2014-0107939, filed August 19, 2014, all the contents disclosed in the specification and drawings of the application is incorporated in this application.
또한, 본 출원은 2014년 12월 12일에 출원된 한국특허출원 제10-2014-0179732호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.In addition, this application claims the priority based on Korea Patent Application No. 10-2014-0179732 filed December 12, 2014, all the contents disclosed in the specification and drawings of the application is incorporated in this application.
또한, 본 출원은 2015년 06월 18일에 출원된 한국특허출원 제10-2015-0086880호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.In addition, this application claims the priority based on Korean Patent Application No. 10-2015-0086880 filed on June 18, 2015, all the contents disclosed in the specification and drawings of the application is incorporated in this application.
일반적으로 울트라 캐패시터(Ultra Capacitor)는 슈퍼 캐패시터(Super Capacitor)라고도 불리우며, 전해 콘덴서와 이차 전지의 중간적인 특성을 갖는 에너지 저장 장치이다. 울트라 캐패시터는 높은 효율, 반영구적인 수명 특성으로 인해 이차 전지와 병용할 수 있고, 또한 이차 전지를 대체할 수 있는 차세대 전기 에너지 저장 장치이다.In general, an ultracapacitor is also called a supercapacitor, and is an energy storage device having intermediate characteristics between an electrolytic capacitor and a secondary battery. Ultracapacitors can be used with secondary batteries due to their high efficiency and semi-permanent life characteristics, and are next-generation electrical energy storage devices that can replace secondary batteries.
울트라 캐패시터는 유지보수가 용이하지 않고 장기간의 사용 수명이 요구되는 어플리케이션에 대해서는 축전지 대체용으로 이용되기도 한다. 울트라 캐패시터는 빠른 충방전 특성을 가지며 이에 따라 이동통신 정보기기인 핸드폰, 노트북, PDA 등의 보조 전원으로서 사용될 수 있다. 또한 고용량이 요구되는 전기자동차, 야간 도로 표시등, UPS(Uninterrupted Power Supply) 등의 주전원 혹은 보조 전원으로 매우 적합하다.Ultracapacitors are often used as battery replacements for applications that are not easy to maintain and require long service life. Ultracapacitors have fast charge and discharge characteristics and can be used as auxiliary power sources for mobile communication information devices such as mobile phones, laptops, and PDAs. It is also ideally suited for mains or auxiliary power sources, such as electric vehicles, night road lights and uninterrupted power supplies, which require high capacity.
이러한 울트라 캐패시터를 적용함에 있어서, 고전압용 전지로 사용되기 위해서는 수천 패럿(Farad) 또는 수백 볼트의 고전압 모듈(Module)이 필요하다. 고전압 모듈은 복수 개의 울트라 캐패시터를 필요한 수량만큼 연결하여 케이스 내에 연결함으로써 구성할 수 있다.In applying such ultracapacitors, in order to be used as a high voltage battery, thousands of farads or hundreds of volts of high voltage modules are required. The high voltage module can be configured by connecting a plurality of ultracapacitors in a case in need quantity.
도 1은 종래 기술에 따른 울트라 캐패시터 모듈의 구성을 도시한 도면이다.1 is a view showing the configuration of an ultracapacitor module according to the prior art.
도 1에 도시한 바와 같이, 종래 기술에 따른 울트라 캐패시터 모듈은, 울트라 캐패시터 어레이(10), 울트라 캐패시터 어레이(10)를 수용하는 케이스(20) 그리고 케이스(20)의 상, 하면 입구를 덮개(30, 40)를 포함한다. 울트라 캐패시터 어레이(10)는 다수의 울트라 캐패시터가 부스바(11)에 의해 전극 터미널들이 연결되고 너트에 의해 결합되어 구성된다. As shown in FIG. 1, the ultracapacitor module according to the related art covers a case 20 for accommodating the ultracapacitor array 10, the ultracapacitor array 10, and upper and lower entrances of the case 20. 30, 40). The ultracapacitor array 10 is composed of a plurality of ultracapacitors in which electrode terminals are connected by a bus bar 11 and coupled by a nut.
울트라 캐패시터 모듈은 다수의 울트라 캐패시터의 구동을 통해 에너지 저장 특성을 향상시킬 수 있다. 그러나, 울트라 캐패시터 모듈의 구동시 발생되는 열도 함께 급격하게 증가되어 울트라 캐패시터 모듈의 신뢰성이나 안정성이 저하될 수 있다.Ultracapacitor modules can improve energy storage by driving multiple ultracapacitors. However, the heat generated when the ultracapacitor module is driven also increases rapidly, which may reduce the reliability and stability of the ultracapacitor module.
상기와 같은 종래 기술에 따른 울트라 캐패시터 모듈은, 이웃한 울트라 캐패시터를 연결하는 연결 부재인 부스바(11)와, 케이스(20)를 덮는 상, 하면의 금속 재질의 덮개(30, 40)를 통해 주로 방열을 한다. 그런데 케이스(20)의 측면은, 울트라 캐패시터 모듈의 무게를 줄이고 생산 단가를 낮추기 위해 합성 수지로 제작되고, 판 형상으로 되어 있어, 울트라 캐패시터와의 접촉 면적이 작아 방열이 거의 이루어지지 않는다.Ultracapacitor module according to the prior art as described above, through the busbar 11, which is a connection member for connecting the adjacent ultracapacitor, and the cover 20, 40 of the upper and lower surfaces of the metal covering the case 20 Mainly radiate heat. By the way, the side of the case 20 is made of synthetic resin in order to reduce the weight of the ultracapacitor module and lower the production cost, and has a plate shape, so that the contact area with the ultracapacitor is small, so that heat dissipation is hardly achieved.
또한, 상기와 같은 종래 기술에 따르면 울트라 캐패시터는 주로 부스바(11)를 통해 방열을 할 수 있는데, 부스바(11)는 방열 면적이 좁기 때문에 효율적으로 방열을 할 수 없어, 케이스 내부의 온도가 상승에 따라 울트라 캐패시터의 수명이 줄어드는 문제점이 발생한다.In addition, according to the prior art as described above, the ultracapacitor can radiate heat mainly through the busbars 11, but the busbars 11 cannot radiate efficiently because the heat radiation area is narrow, so that the temperature inside the case is increased. As the rise occurs, the life of the ultracapacitor is reduced.
(특허문헌 1) 한국등록특허 제10-1341474호(2013.12.13 공고)(Patent Document 1) Korean Registered Patent No. 10-1341474 (announced on December 13, 2013)
본 발명은 상기와 같은 문제점을 해결하기 위하여 창출된 것으로서, 울트라 캐패시터와 같은 에너지 저장 셀들을 케이스에 수용하는데 있어서 접촉 면적이 넒은 케이스 측면을 통해 방열이 이루어지게 하여 방열 특성을 향상시킨 에너지 저장 장치를 제공하는 데 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and in order to receive energy storage cells, such as ultracapacitors, into a case, a heat dissipation is achieved through a case surface having a small contact area, thereby improving heat dissipation characteristics. The purpose is to provide.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시 예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.Other objects and advantages of the present invention can be understood by the following description, and will be more clearly understood by the embodiments of the present invention. It will also be appreciated that the objects and advantages of the present invention may be realized by the means and combinations thereof indicated in the claims.
상기와 같은 목적을 달성하기 위한 본 발명의 일 측면에 따른 에너지 저장 장치는, 적어도 2개 이상의 원통형의 에너지 저장 셀이 직렬 연결되어 형성된 셀 어셈블리; 상기 에너지 저장 셀의 외측면에 대응하는 형상의 수용부를 구비하여, 상기 셀 어셈블리를 수용하는 케이스; 및 상기 셀 어셈블리의 에너지 저장 셀의 외측면과 상기 수용부의 내측면의 사이에 설치되는 방열 패드;를 포함하고, 상기 케이스는 적어도 2개 이상의 케이스 블록을 포함하며, 상기 케이스 블록의 결합에 의해 상기 수용부가 형성된다.Energy storage device according to an aspect of the present invention for achieving the above object, a cell assembly formed by connecting at least two cylindrical energy storage cells in series; A case accommodating the cell assembly, the housing having a shape corresponding to an outer surface of the energy storage cell; And a heat dissipation pad disposed between an outer side surface of the energy storage cell of the cell assembly and an inner side surface of the accommodating part, wherein the case includes at least two case blocks. The receiving portion is formed.
상기 방열 패드와 접촉하는 상기 에너지 저장 셀의 중심각은, 30도 내지 60도일 수 있다.The center angle of the energy storage cell in contact with the heat radiating pad may be 30 degrees to 60 degrees.
상기 수용부가 형성하는 호(arc)의 길이는, 상기 방열 패드의 길이 이상일 수 있다.An arc formed by the accommodation portion may have a length greater than or equal to the length of the heat radiation pad.
상기 방열 패드는, 탄성을 가지며, 상기 수용부와 상기 에너지 저장 셀 간의 간격은, 상기 방열 패드의 압착 전 두께보다 작으면서 상기 에너지 저장 셀들의 직경 공차보다 클 수 있다.The heat dissipation pad may have elasticity, and a distance between the accommodating part and the energy storage cell may be larger than a diameter tolerance of the energy storage cells while being smaller than a thickness before the heat dissipation pad.
상기 방열 패드는 상기 에너지 저장 셀에 부착될 수 있다. The heat dissipation pad may be attached to the energy storage cell.
상기 방열 패드는 열전도 필러일 수 있다.The heat dissipation pad may be a heat conductive filler.
상기 방열 패드의 일측면에는 접착층을 구비할 수 있다.An adhesive layer may be provided on one side of the heat radiation pad.
상기 에너지 저장 셀은 울트라 캐패시터일 수 있다.The energy storage cell may be an ultracapacitor.
상기 케이스 블록은, 상기 에너지 저장 셀의 외측 형상과 동일한 호(arc) 형상을 갖는 복수의 볼록부; 상기 복수의 볼록부들을 연결하는 볼록부 연결부; 및 상기 볼록부와 상기 볼록부 연결부 사이에 형성된 오목부;를 포함할 수 있다.The case block may include a plurality of convex portions having an arc shape identical to an outer shape of the energy storage cell; A convex portion connecting portion connecting the plurality of convex portions; And a concave portion formed between the convex portion and the convex portion connecting portion.
상기 오목부에는 적어도 하나 이상의 방열판이 수직하게 돌출되어 형성될 수 있다.At least one heat sink may protrude vertically in the recess.
상기 케이스 블록은, 'L'자 형상 또는 'ㄷ'자 형상 중 어느 하나일 수 있다.The case block may be any one of an 'L' shape or a 'c' shape.
상기 케이스 블록이 'L'자 형상인 경우, 상기 복수의 볼록부의 최외측 볼록부 중 하나는, 볼록부의 호(arc) 형상이 이어지도록 연결될 수 있다.When the case block has an 'L' shape, one of the outermost convex portions of the plurality of convex portions may be connected to connect an arc shape of the convex portion.
상기 케이스 블록은, 상기 최외곽 볼록부 중 하나로부터 연장되어 상기 케이스 블록의 길이 방향으로 절곡된 케이스 블록 연결부;를 더 포함할 수 있다.The case block may further include a case block connecting portion extending from one of the outermost convex portions and bent in a length direction of the case block.
상기 케이스 블록이 'ㄷ'자 형상인 경우, 상기 복수의 볼록부 중 최외곽 볼록부들은, 볼록부의 호(arc) 형상이 이어지도록 연결될 수 있다.When the case block has a 'c' shape, the outermost convex portions of the plurality of convex portions may be connected so that an arc shape of the convex portion continues.
상기 케이스 블록은, 상기 최외곽 볼록부들 각각으로부터 연장되어 상기 케이스 블록의 길이 방향으로 절곡된 케이스 블록 연결부;를 더 포함할 수 있다.The case block may further include a case block connecting portion extending from each of the outermost convex portions and bent in a length direction of the case block.
상기 볼록부 연결부에는 덮개를 고정하기 위한 탭이 형성될 수 있다.The convex connection portion may be formed with a tab for fixing the cover.
상기 방열 패드의 끝단 지점부터 상기 에너지 저장 셀과 상기 케이스 간의 거리가 멀어져 상기 에너 저장 셀과 상기 케이스 사이를 절연할 수 있다.The distance between the energy storage cell and the case is far from the end point of the heat dissipation pad to insulate the energy storage cell from the case.
상기 에너지 저장 셀의 외면에 절연 필름이 더 형성될 수 있다.An insulating film may be further formed on an outer surface of the energy storage cell.
본 발명은, 너트 및 부스바와 같은 연결 부재를 통한 방열뿐만 아니라, 케이스와 에너지 저장 셀 사이에 방열 패드를 설치함으로써 에너지 저장 셀과 케이스의 접촉 면적을 넓혀 방열 특성을 향상시킨다.The present invention improves the heat dissipation characteristics by widening the contact area between the energy storage cell and the case by providing a heat dissipation pad between the case and the energy storage cell as well as heat dissipation through connection members such as nuts and bus bars.
본 발명은, 여러 에너지 저장 셀을 수용하는 케이스를 복수의 케이스 블록의 결합으로 제조함으로써 상기 방열 패드의 설치를 용이하게 하고 케이스를 제조하는데 드는 비용을 절감할 수 있다.The present invention facilitates the installation of the heat dissipation pad and reduces the cost of manufacturing the case by manufacturing a case accommodating several energy storage cells by combining a plurality of case blocks.
본 발명은, 방열 특성을 향상시키면서 동시에 에너지 저장 장치의 제품 질량을 최적화한다.The present invention optimizes the product mass of the energy storage device while improving heat dissipation characteristics.
본 발명은, 방열 패드의 양 첨단에서부터 에너지 저장 셀과 케이스 간의 거리를 멀어지게 하여 케이스와 에너지 저장 셀 사이를 자연스럽게 절연하여 제품 안정성을 향상시킨다.The present invention improves product stability by naturally separating the case and the energy storage cell by increasing the distance between the energy storage cell and the case from both ends of the heat radiation pad.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시 예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.The following drawings attached to this specification are illustrative of preferred embodiments of the present invention, and together with the detailed description of the invention to serve as a further understanding of the spirit of the present invention, the present invention is a matter described in such drawings It should not be construed as limited to.
도 1은 종래 기술에 따른 에너지 저장 장치 모듈을 도시한 도면,1 is a view showing an energy storage device module according to the prior art,
도 2는 본 발명의 일 실시 예에 따른 에너지 저장 장치의 구성을 도시한 도면,2 is a diagram illustrating a configuration of an energy storage device according to an embodiment of the present disclosure;
도 3은 본 발명의 다른 실시 예에 따른 에너지 저장 셀 간의 연결을 도시한 도면,3 is a view showing a connection between energy storage cells according to another embodiment of the present invention;
도 4는 도 2의 Ⅱ-Ⅱ'선에 따른 단면을 도시한 도면,4 is a cross-sectional view taken along line II-II ′ of FIG. 2;
도 5는 본 발명의 일 실시 예에 따른 케이스 블록의 구성을 도시한 도면,5 is a view showing the configuration of a case block according to an embodiment of the present invention;
도 6은 본 발명의 다른 실시 예에 따른 케이스 블록의 구성을 도시한 도면이다.6 is a diagram illustrating a configuration of a case block according to another embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 방열 패드와 에너지 저장 셀이 접촉할 때의 중심각을 나타낸 도면이다.FIG. 7 is a diagram illustrating a center angle when a heat dissipation pad contacts an energy storage cell according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 방열 패드와 에너지 저장 셀의 접촉 형상과 방열 효율 및 제품 질량을 각도에 따라 나타낸 도면이다. 8 is a view showing the contact shape, the heat dissipation efficiency and the product mass of the heat radiation pad and the energy storage cell according to an embodiment of the present invention with angles.
도 9는 본 발명의 일 실시예에 따른 접촉각에 따른 방열 효율 및 제품 질량의 변화를 나타낸 그래프이다.9 is a graph showing a change in heat dissipation efficiency and product mass according to a contact angle according to an embodiment of the present invention.
도 10은 도 2의 A 부분을 확대한 도면이다.FIG. 10 is an enlarged view of a portion A of FIG. 2.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시 예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, the terms or words used in the present specification and claims are consistent with the technical spirit of the present invention on the basis of the principle that the concept of the term may be appropriately defined in order to best explain the invention of its own. It must be interpreted as meaning and concept. Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiments of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.
또한, 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.In addition, in describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
도 2는 본 발명의 일 실시 예에 따른 에너지 저장 장치의 구성을 도시한 도면, 도 3은 본 발명의 다른 실시 예에 따른 에너지 저장 셀 간의 연결을 도시한 도면, 도 4는 도 2의 Ⅱ-Ⅱ'선에 따른 단면을 도시한 도면이다.2 is a diagram illustrating a configuration of an energy storage device according to an embodiment of the present invention, FIG. 3 is a diagram illustrating a connection between energy storage cells according to another embodiment of the present invention, and FIG. 4 is II- of FIG. 2. It is a figure which shows the cross section along the II 'line.
도 2 내지 도 4를 참조하면, 본 실시 예에 따른 에너지 저장 장치는, 적어도 2개 이상의 에너지 저장 셀(110)이 직렬로 연결된 셀 어셈블리(100), 셀 어셈블리(100)를 수용하는 케이스(200)를 포함한다.2 to 4, the energy storage device according to the present embodiment includes a case 200 for receiving a cell assembly 100 and a cell assembly 100 in which at least two or more energy storage cells 110 are connected in series. ).
셀 어셈블리(100)는 적어도 2개 이상의 에너지 저장 셀(110)이 직렬 연결되어 형성될 수 있다. 에너지 저장 셀(110)은 울트라 캐패시터일 수 있으며, 본 실시 예를 설명함에 있어서 에너지 저장 셀은 울트라 캐패시터로 설명한다. 하지만 이에 한하지 않으며 상기 에너지 저장 셀은 이차 전지, 배터리 등 전기 에너지를 저장할 수 있는 셀이면 관계없다.The cell assembly 100 may be formed by connecting at least two or more energy storage cells 110 in series. The energy storage cell 110 may be an ultracapacitor, and in describing the present embodiment, the energy storage cell is described as an ultracapacitor. However, the present invention is not limited thereto, and the energy storage cell may be any cell capable of storing electrical energy such as a secondary battery or a battery.
울트라 캐패시터(110)는 빠른 충방전 특성을 가지며 이에 따라 이동통신 정보기기인 휴대폰, 노트북, PDA 등의 보조 전원으로서 뿐만 아니라, 고용량이 요구되는 전기 자동차나 하이브리드 자동차, 태양전지용 전원 장치, 무정전 전원 공급 장치(Uninterruptible Power Supply : UPS) 등의 주전원 또는 보조전원으로 사용될 수 있다. Ultracapacitor 110 has a fast charging and discharging characteristics, and accordingly, as well as an auxiliary power source of mobile communication information devices such as mobile phones, laptops, PDAs, electric vehicles, hybrid vehicles, solar cell power supply, uninterruptible power supply that requires high capacity It can be used as a main power supply or an auxiliary power supply such as an uninterruptible power supply (UPS).
울트라 캐패시터(110)는 원통 형상의 형태일 수 있으며, 도 2에 도시된 바와 같이, 전극이 형성된 길이 방향으로 다른 울트라 캐패시터와 직렬 연결되어 셀 어셈블리(100)를 구성할 수 있다. 이때, 이웃한 울트라 캐패시터의 연결은 연결 부재, 예를 들어 너트 및 부스바에 의해 연결될 수 있다.The ultracapacitor 110 may have a cylindrical shape, and as shown in FIG. 2, the ultracapacitor 110 may be connected in series with another ultracapacitor in the longitudinal direction in which the electrode is formed to form the cell assembly 100. At this time, the connection of neighboring ultracapacitors may be connected by connecting members, for example, nuts and busbars.
또한, 도 3에 도시된 바와 같이, 울트라 캐패시터(110)를 병렬로 위치시킨 상태에서, 제 1 울트라 캐패시터의 양극 단자와 제 2 울트라 캐패시터의 음극 단자를 부스바(130) 및 너트(150) 등과 같은 연결 부재를 이용하여 직렬로 연결시켜 셀 어셈블리(100)를 형성할 수 있다. 이때, 다수의 울트라 캐패시터(110)는 부스바(130)에 의해 양극 단자와 음극 단자가 연결되고, 너트(150)에 의해 결합되어 셀 어셈블리(100)를 구성한다. 셀 어셈블리(100)는 케이스(200)에 수용되어 울트라 캐패시터 모듈을 구성할 수 있다.In addition, as shown in FIG. 3, in a state where the ultracapacitor 110 is placed in parallel, the positive terminal of the first ultracapacitor and the negative terminal of the second ultracapacitor are connected to the busbar 130, the nut 150, and the like. The cell assembly 100 may be formed by connecting in series using the same connection member. In this case, the plurality of ultracapacitors 110 are connected to the positive terminal and the negative terminal by the busbars 130, and are coupled by the nut 150 to form the cell assembly 100. The cell assembly 100 may be accommodated in the case 200 to form an ultracapacitor module.
케이스(200)는 울트라 캐패시터(110)가 직렬 연결되어 형성된 셀 어셈블리(100)를 수용할 수 있다. 케이스(200)는 울트라 캐패시터(110)의 외측면에 대응되는 형상의 수용부를 구비하여 울트라 캐패시터(110)가 직렬 연결되어 형성된 셀 어셈블리(100)를 수용할 수 있다.The case 200 may accommodate the cell assembly 100 formed by connecting the ultracapacitor 110 in series. The case 200 may include a receiving unit having a shape corresponding to an outer surface of the ultracapacitor 110 to accommodate the cell assembly 100 formed by connecting the ultracapacitor 110 in series.
케이스(200)는 동일한 형태의 적어도 2개 이상의 케이스 블록(도 5의 510 또는 도 6의 610)이 결합되어 형성될 수 있다. 케이스 블록(도 5의 510 또는 도 6의 610)의 결합에 의해 셀 어셈블리(100)를 수용하는 수용부가 형성될 수 있다. 케이스 블록(도 5의 510 또는 도 6의 610)은 도 5 및 도 6을 참조하여 이하에서 자세히 설명하기로 한다.The case 200 may be formed by combining at least two or more case blocks (510 of FIG. 5 or 610 of FIG. 6) of the same shape. A receptacle for accommodating the cell assembly 100 may be formed by coupling the case block 510 of FIG. 5 or 610 of FIG. 6. The case block 510 of FIG. 5 or 610 of FIG. 6 will be described in detail below with reference to FIGS. 5 and 6.
도 5는 본 발명의 일 실시 예에 따른 케이스 블록의 구성을 도시한 도면이다. 5 is a diagram illustrating a configuration of a case block according to an embodiment of the present invention.
도 5를 참조하면, 케이스 블록(510)은 'L'자 형상일 수 있으며, 울트라 캐패시터(110)의 외측 형상에 대응하는 형태의 수용부(518)를 갖는다. 울트라 캐패시터(110)가 원통 형상인 경우, 울트라 캐패시터(110)의 외측면과 접하는 케이스 블록(510)의 내측면은 원통 형상의 둥근 모양일 수 있다. 상기 'L'자 형상의 케이스 블록 4개를 결합하여 케이스(200)를 완성할 수 있고 이에 따라 수용부(518)가 형성될 수 있다.Referring to FIG. 5, the case block 510 may have an 'L' shape and has a receiving portion 518 in a shape corresponding to an outer shape of the ultracapacitor 110. When the ultracapacitor 110 has a cylindrical shape, the inner surface of the case block 510 in contact with the outer surface of the ultracapacitor 110 may have a cylindrical round shape. The case 200 may be completed by combining four 'L' shaped case blocks, and thus an accommodating part 518 may be formed.
보다 구체적으로, 도 5에 도시된 바와 같이, 케이스 블록(510)은, 울트라 캐패시터(110)의 외측 형상과 동일한 호(arc) 형상을 갖는 복수의 볼록부(511), 볼록부(511)를 연결하는 볼록부 연결부(513), 볼록부(511)와 볼록부 연결부(513) 사이에 형성된 오목부(512), 케이스 블록(510)을 연결하는 케이스 블록 연결부(514, 515)를 포함한다.More specifically, as shown in FIG. 5, the case block 510 may include a plurality of convex parts 511 and convex parts 511 having the same arc shape as the outer shape of the ultracapacitor 110. Convex portion connecting portion 513 to connect, a concave portion 512 formed between the convex portion 511 and the convex portion connecting portion 513, and case block connecting portion 514, 515 connecting the case block 510.
복수의 볼록부(511)는 울트라 캐패시터(110)의 외측 형상과 동일한 호(arc) 형상을 가져 울트라 캐패시터(110)를 수용하는 수용부(518)를 형성하고 그 내측에 방열 패드(210)가 부착된다. 방열 패드(210)는 울트라 캐패시터(110)에서 발생한 열을 볼록부(511)로 방출하고, 또한 울트라 캐패시터(110)와 볼록부(511)(즉 케이스(200)) 간의 절연 기능을 한다. 이러한 볼록부(511)들은 볼록부 연결부(513)에 의해 연결되고 볼록부 연결부(513)에는 케이스(200)를 덮는 상부 덮개와 하부 덮개를 고정하기 위한 탭이 형성되어 있다. 탭은 볼팅(bolting) 처리를 위한 구조물로서 케이스(200)와 덮개를 고정하기 위한 볼트가 삽입된다. The plurality of convex portions 511 has the same arc shape as the outer shape of the ultracapacitor 110 to form an accommodating portion 518 for accommodating the ultracapacitor 110, and a heat radiation pad 210 is formed therein. Attached. The heat dissipation pad 210 emits heat generated in the ultracapacitor 110 to the convex portion 511, and also functions to insulate the ultracapacitor 110 and the convex portion 511 (that is, the case 200). The convex parts 511 are connected by the convex part connecting part 513, and a tab for fixing the upper cover and the lower cover which covers the case 200 is formed at the convex part connecting part 513. The tab is a structure for bolting (bolting) process is inserted into the bolt for fixing the case 200 and the cover.
복수의 볼록부(511)들이 연결되어 형성되는 케이브 블록(510)이 'L'자 형상을 갖는다. 폭 방향으로 케이스 블록(510)을 연결하기 위해, 최외측 볼록부 중 하나는 폭 방향으로 배치되어 연결되고, 나머지 볼록부들은 길이 방향으로 배치되어 연결된다. 즉 복수의 볼록부(511)의 길이 방향의 최외측 볼록부 중 하나는, 볼록부(511)의 호(arc) 형상이 이어지도록 연결된다.The cave block 510 formed by connecting the plurality of convex portions 511 may have an 'L' shape. In order to connect the case block 510 in the width direction, one of the outermost convex portions is arranged and connected in the width direction, and the other convex portions are arranged and connected in the longitudinal direction. In other words, one of the outermost convex portions in the longitudinal direction of the plurality of convex portions 511 is connected so that an arc shape of the convex portion 511 is continued.
오목부(512)는 볼록부(511)와 볼록부 연결부(513) 사이에 형성된다. 오목부(512)는 볼록부(511)의 일부를 바깥쪽으로 되접어 꺾음으로써 형성되는데, 이는 절연거리 확보를 위한 것으로 자세한 내용은 후술하기로 한다. 오목부(512)에는 일정한 간격으로 복수의 방열판(517)이 수직으로 설치되어 울트라 캐패시터(110)에서 발생하는 열을 외부로 방출한다. 즉 방열판(517) 사이의 공기 흐름을 통한 방열 효율을 높이기 위해 일정한 간격으로 방열판(517)이 수직으로 설치된다. 그리고 방열 면적을 넓히기 위해 복수의 방열판(517)이 설치된다. 이때 방열판(517)의 높이는 볼록부 연결부(513)의 높이와 동일하게 형성된다. 도 5에서 길이 방향의 가장 좌측에 위치하는 볼록부 연결부(513)의 양측에는 오목부(512)가 형성되어 있지 않은 것으로 도시되어 있지만 다른 볼록부 연결부(513)와 마찬가지로 양측에 오목부(512)를 형성할 수 있다. The concave portion 512 is formed between the convex portion 511 and the convex portion connecting portion 513. The concave portion 512 is formed by folding a part of the convex portion 511 outward, which is for securing an insulation distance, which will be described later. In the recess 512, a plurality of heat sinks 517 are vertically installed at regular intervals to radiate heat generated from the ultracapacitor 110 to the outside. That is, the heat sink 517 is vertically installed at regular intervals in order to increase heat radiation efficiency through the air flow between the heat sinks 517. In addition, a plurality of heat sinks 517 are installed to widen the heat dissipation area. At this time, the height of the heat sink 517 is formed to be the same as the height of the convex connection portion 513. In FIG. 5, the concave portion 512 is not formed on both sides of the convex connection portion 513 located on the leftmost side in the longitudinal direction, but similarly to the other convex connection portion 513, the concave portions 512 on both sides. Can be formed.
케이스 블록 연결부(514, 515)는 케이블 블록(510)을 연결한다. 케이스 블록 연결부(514, 515) 중 케이스 블록 연결부(514)는, 볼록부(511)에서 연장되어 길이 방향으로 절곡되어 있고, 폭 방향으로 케이스 블록(510)을 연결한다. 케이스 블록 연결부(514, 515) 중 케이스 블록 연결부(515)는, 볼록부(511)에서 연장되어 폭 방향으로 절곡되어 있고, 길이 방향으로 케이스 블록(510)을 연결한다. Case block connections 514 and 515 connect the cable block 510. The case block connecting portion 514 of the case block connecting portions 514 and 515 extends from the convex portion 511 and is bent in the longitudinal direction, and connects the case block 510 in the width direction. The case block connecting portion 515 of the case block connecting portions 514 and 515 extends from the convex portion 511 and is bent in the width direction, and connects the case block 510 in the longitudinal direction.
도 6은 본 발명의 다른 실시 예에 따른 케이스 블록의 구성을 도시한 도면이다. 6 is a diagram illustrating a configuration of a case block according to another embodiment of the present invention.
도 6을 참조하면, 케이스 블록(610)은 'ㄷ'자 형상일 수 있고, 울트라 캐패시터(110)의 외측 형상에 대응하는 형태의 수용부(618)를 갖는다. 울트라 캐패시터가 원통 형상인 경우, 울트라 캐패시터(110)의 외측면과 접하는 케이스 블록(610)의 내측면은 원통 형상의 둥근 모양일 수 있다. 상기 'ㄷ'자 형상의 케이스 블록 2개를 결합하여 케이스(200)를 완성할 수 있고 이에 따라 수용부(618)가 형성될 수 있다.Referring to FIG. 6, the case block 610 may have a 'c' shape and has a receiving portion 618 in a shape corresponding to an outer shape of the ultracapacitor 110. When the ultracapacitor has a cylindrical shape, the inner surface of the case block 610 contacting the outer surface of the ultracapacitor 110 may have a cylindrical round shape. The case 200 may be completed by combining two 'c' shaped case blocks, and thus an accommodating part 618 may be formed.
보다 구체적으로, 도 6에 도시된 바와 같이, 케이스 블록(610)은, 울트라 캐패시터(110)의 외측 형상과 동일한 호(arc) 형상을 갖는 복수의 볼록부(611), 볼록부(611)를 연결하는 볼록부 연결부(613), 볼록부(611)와 볼록부 연결부(613) 사이에 형성된 오목부(612), 케이스 블록(610)을 연결하는 케이스 블록 연결부(614)를 포함한다.More specifically, as shown in FIG. 6, the case block 610 may include a plurality of convex parts 611 and convex parts 611 having the same arc shape as the outer shape of the ultracapacitor 110. Convex portion connecting portion 613 to connect, a concave portion 612 formed between the convex portion 611 and the convex portion connecting portion 613, and a case block connecting portion 614 for connecting the case block 610.
복수의 볼록부(611)는 울트라 캐패시터(110)의 외측 형성과 동일한 호(arc) 형상을 가져 울트라 캐패시터(110)를 수용하는 수용부(618)를 형성하고 그 내측에 방열 패드(210)가 부착된다. 방열 패드(210)는 울트라 캐패시터(110)에서 발생한 열을 볼록부(611)로 방출하고, 또한 울트라 캐패시터(110)와 볼록부(611)(즉 케이스(200)) 간의 절연 기능을 한다. 이러한 볼록부(611)들은 볼록부 연결부(613)에 의해 연결되고 볼록부 연결부(613)에는 케이스(200)를 덮는 상부 덮개와 하부 덮개를 고정하기 위한 탭이 형성되어 있다. 탭은 볼팅(bolting) 처리를 위한 구조물로서 케이스(200)와 덮개를 고정하기 위한 볼트가 삽입된다.The plurality of convex portions 611 have the same arc shape as the outer side of the ultracapacitor 110 to form an accommodating portion 618 for accommodating the ultracapacitor 110, and a heat radiation pad 210 is formed therein. Attached. The heat dissipation pad 210 emits heat generated in the ultracapacitor 110 to the convex portion 611, and also functions to insulate the ultracapacitor 110 and the convex portion 611 (that is, the case 200). The convex parts 611 are connected by the convex part connecting part 613, and the tabs for fixing the upper cover and the lower cover which cover the case 200 are formed in the convex part connecting part 613. The tab is a structure for bolting (bolting) process is inserted into the bolt for fixing the case 200 and the cover.
복수의 볼록부(611)들이 연결되어 형성되는 케이브 블록(610)은 'ㄷ'자 형상을 갖는다. 폭 방향으로 두 개의 케이스 블록(610)을 연결하기 위해, 최외측 볼록부는 폭 방향으로 배치되어 연결되고, 나머지 볼록부들은 길이 방향으로 배치되어 연결된다. 즉 복수의 볼록부(611)의 최외측 볼록부들은 볼록부(611)의 호(arc) 형상이 이어지도록 연결된다.The cave block 610 formed by connecting the plurality of convex portions 611 has a 'c' shape. In order to connect the two case blocks 610 in the width direction, the outermost convex portions are arranged in the width direction and connected, and the remaining convex portions are arranged in the longitudinal direction and connected. That is, the outermost convex portions of the plurality of convex portions 611 are connected so that arc shapes of the convex portions 611 are continued.
오목부(612)는 볼록부(611)와 볼록부 연결부(613) 사이에 형성된다. 오목부(612)는 볼록부(611)의 일부를 바깥쪽으로 되접어 꺾음으로써 형성되는데, 이는 절연거리 확보를 위한 것으로 자세한 내용은 후술하기로 한다. 오목부(612)에는 일정한 간격으로 복수의 방열판(617)이 수직으로 설치되어 울트라 캐패시터(110)에서 발생하는 열을 외부로 방출한다. 즉 방열판(617) 사이의 공기 흐름을 통한 방열 효율을 높이기 위해 일정한 간격으로 방열판(617)이 수직으로 설치된다. 그리고 방열 면적을 넓히기 위해 복수의 방열판(617)이 설치된다. 이때 방열판(617)의 높이는 볼록부 연결부(613)의 높이와 동일하게 형성된다. 도 6에서 길이 방향의 최외측에 위치하는 볼록부 연결부(613)의 양측에는 오목부(612)가 형성되어 있지 않은 것으로 도시되어 있지만 다른 볼록부 연결부(613)와 마찬가지로 양측에 오목부(612)를 형성할 수 있다. The recess 612 is formed between the convex portion 611 and the convex portion connecting portion 613. The concave portion 612 is formed by folding a part of the convex portion 611 outward, which is for securing an insulation distance, which will be described later. A plurality of heat sinks 617 are vertically installed at the recesses 612 at regular intervals to radiate heat generated from the ultracapacitor 110 to the outside. That is, the heat sink 617 is vertically installed at regular intervals in order to increase the heat radiation efficiency through the air flow between the heat sink 617. A plurality of heat sinks 617 are installed to widen the heat radiation area. At this time, the height of the heat sink 617 is formed to be the same as the height of the convex connection portion 613. In FIG. 6, the concave portion 612 is not formed at both sides of the convex connection portion 613 positioned at the outermost side in the longitudinal direction, but like the other convex connection portion 613, the concave portion 612 is formed at both sides. Can be formed.
케이스 블록 연결부(614)는 케이블 블록(610)을 연결한다. 케이스 블록 연결부(614)는 볼록부(611)에서 연장되어 길이 방향으로 절곡되어 있고, 폭 방향으로 케이스 블록(610)을 연결한다. The case block connecting portion 614 connects the cable block 610. The case block connecting portion 614 extends from the convex portion 611 and is bent in the longitudinal direction, and connects the case block 610 in the width direction.
이상의 도 5 및 도 6을 참조하여 설명한 케이스 블록(510, 610)의 결합으로 형성되는 케이스(200)는 금속 재질로 형성할 수 있다. 케이스(200)의 내부에 형성되는 수용부(518, 618)는 울트라 캐패시터(110)의 외측면과 대응하는 형태로 울트라 캐패시터(110)의 형상을 최대한 살려 제작한다. 따라서 케이스(200)와 울트라 캐패시터(110) 간의 접촉면을 최대화하여 열이 방출되는 면적을 증가시킴으로써 방열 효과를 높일 수 있다.The case 200 formed by the combination of the case blocks 510 and 610 described above with reference to FIGS. 5 and 6 may be formed of a metal material. The receiving portions 518 and 618 formed inside the case 200 are manufactured to maximize the shape of the ultracapacitor 110 in a form corresponding to the outer surface of the ultracapacitor 110. Therefore, the heat dissipation effect may be enhanced by maximizing the contact surface between the case 200 and the ultracapacitor 110 to increase the area where heat is released.
앞서 설명한 바와 같이, 본 실시 예에 따르면 방열 효과를 더욱 향상시키기 위해 수용부(518, 618)의 내측면에 방열 패드(210)가 부착된다. 즉, 셀 어셈블리(100)가 수용부(518, 618)에 삽입되었을 때, 셀 어셈블리(100)와 수용부(518, 618) 사이에 방열 패드(210)가 위치할 수 있도록, 수용부(518, 618)의 내측면에 방열 패드(210)를 부착할 수 있다. 방열 패드(210)는 울트라 캐패시터(110)의 전극 길이 방향으로 수용부(518, 618)의 내측면에 부착될 수 있다. 방열 패드(210)의 폭은 수용부(518, 618)가 형성하는 호(arc)의 길이보다 작다. 방열 패드(210)의 폭이 수용부(518, 618)가 형성하는 호(arc)의 길이보다 큰 경우 방열 패드(210)의 일부는 수용부(518, 618)에 맞닿지 않게 되어 방열을 할 수 없기 때문이다. 반대로 얘기하면, 수용부(518, 618)는 방열 패드(210)의 폭보다 긴 길이의 호(arc)를 가져야 한다. As described above, according to the present embodiment, the heat dissipation pad 210 is attached to the inner surfaces of the accommodating parts 518 and 618 to further improve the heat dissipation effect. That is, when the cell assembly 100 is inserted into the receiving portions 518 and 618, the receiving portion 518 may be positioned between the cell assembly 100 and the receiving portions 518 and 618. The heat dissipation pad 210 may be attached to an inner surface of the 618. The heat dissipation pad 210 may be attached to the inner surfaces of the accommodating parts 518 and 618 in the length direction of the electrode of the ultracapacitor 110. The width of the heat radiation pad 210 is smaller than the length of the arc formed by the receiving portions 518 and 618. If the width of the heat radiation pad 210 is greater than the length of the arc formed by the accommodating portions 518 and 618, a part of the heat dissipation pad 210 may not come into contact with the accommodating portions 518 and 618 to radiate heat. Because you can't. Conversely, the receptacles 518 and 618 should have an arc of length longer than the width of the heat dissipation pad 210.
방열 패드(210)는 열 전달을 위한 열전도 필러, 예컨대, 금속 파우더 또는 세라믹 분말을 포함할 수 있다. 금속 파우더의 예로서는 알루미늄, 은, 구리, 니켈 및 텅스텐 중 어느 하나 또는 둘 이상의 혼합물일 수 있다. 또한, 세라믹 분말의 예로서는 실리콘(silicone), 그라파이트(graphite) 및 카본 블랙(carborn black)일 수 있다. 본 발명의 실시예에서 방열 패드(210)의 재질에 대해 한정하는 것은 아니다. 또는 방열 패드(210)의 재질은 실리콘 합성고무일 수 있다.The heat dissipation pad 210 may include a heat conductive filler for heat transfer, for example, metal powder or ceramic powder. Examples of the metal powder may be any one or a mixture of two or more of aluminum, silver, copper, nickel and tungsten. In addition, examples of the ceramic powder may be silicon, graphite, and carbon black. In the embodiment of the present invention is not limited to the material of the heat radiation pad 210. Alternatively, the heat dissipation pad 210 may be made of silicon synthetic rubber.
방열 패드(210)는 케이스(200) 내부에 수용되는 울트라 캐패시터(110)를 고정하는 역할을 할 수 있다. 즉, 방열 패드(210)는, 케이스(200) 내부에 울트라 캐패시터(110)가 수용될 경우, 울트라 캐패시터(110)와 직접적으로 맞닿아 울트라 캐패시터(110)의 움직임을 방지하여 고정할 수 있다. 수용부(518, 618)는 울트라 캐패시터(110)의 외측면에 대응하는 형태로 제작되더라도, 울트라 캐패시터(110)와 긴밀한 접촉면이 형성되지 않을 수 있고, 이에 따라 적절한 방열이 이루어지지 않을 수 있다. 따라서, 방열 패드(210)를, 울트라 캐패시터(110)와 접촉하는 수용부(518, 618)의 내측면에 부착함으로써, 울트라 캐패시터(110)를 케이스(200) 내에 고정시켜주면서, 케이스(200)와 울트라 캐패시터(110) 간의 접촉 면적을 넓혀 방열 효과를 높일 수 있다.The heat dissipation pad 210 may serve to fix the ultracapacitor 110 accommodated in the case 200. That is, when the ultracapacitor 110 is accommodated in the case 200, the heat dissipation pad 210 may directly contact the ultracapacitor 110 to prevent the ultracapacitor 110 from moving. Even if the receiving portions 518 and 618 are manufactured in a form corresponding to the outer surface of the ultracapacitor 110, the intimate contact surface with the ultracapacitor 110 may not be formed, and thus, proper heat dissipation may not be achieved. Therefore, by attaching the heat dissipation pad 210 to the inner surfaces of the receiving portions 518 and 618 in contact with the ultracapacitor 110, the case 200 is fixed while the ultracapacitor 110 is fixed in the case 200. It is possible to increase the heat dissipation effect by widening the contact area between the ultracapacitor 110.
또한, 방열 패드(210)는 탄성을 가질 수 있다. 케이스(200)에는 복수의 울트라 캐패시터(110)가 삽입되는데 각 울트라 캐패시터(110)마다 직경 차이가 있을 수 있다. 이에 따라 울트라 캐패시터(110)가 방열 패드(210)에 완벽하게 압착되지 않을 수 있다. 따라서 이러한 울트라 캐패시터(110) 간의 직경 차이를 고려하여 탄성을 갖는 방열 패드(210)를 이용함으로써 모든 울트라 캐패시터(110)들이 방열 패드(210)에 충분히 압착될 수 있도록 한다. 이때 방열 패드(210)의 압착 전 두께는 울트라 캐패시터(110)들의 직경 공차보다 큰 것이 바람직하다. 예를 들어, 울트라 캐패시터(110)들의 표준 직경이 60.7mm이고 공차가 ±0.7mm인 경우 방열 패드(210)의 압착 전 두께는 1.4mm(0.7mm×2) 보다 큰 것이 바람직하고, 예를 들면 2mm의 두께를 갖도록 한다. In addition, the heat radiation pad 210 may have elasticity. A plurality of ultracapacitors 110 are inserted into the case 200, and there may be a difference in diameter for each ultracapacitor 110. Accordingly, the ultracapacitor 110 may not be completely pressed onto the heat radiation pad 210. Therefore, by using the heat radiation pad 210 having elasticity in consideration of the diameter difference between the ultra-capacitor 110, all the ultra-capacitor 110 can be sufficiently compressed to the heat radiation pad 210. In this case, the thickness before the compression of the heat radiation pad 210 is preferably larger than the diameter tolerance of the ultracapacitors 110. For example, when the standard diameter of the ultracapacitors 110 is 60.7 mm and the tolerance is ± 0.7 mm, the thickness before compression of the heat radiation pad 210 is preferably greater than 1.4 mm (0.7 mm × 2), for example. Have a thickness of 2mm.
방열 패드(210)가 탄성을 가질 경우, 케이스(200)에 울트라 캐패시터(110)가 삽입되면, 방열 패드(210)는 울트라 캐패시터(110)의 외형에 맞게 변형이 되고 따라서 울트라 캐패시터(110)와의 밀착력을 높일 수 있어 결국 접촉 면적이 증가하게 된다. 따라서 접촉 면적의 증가에 따라 방열 효율을 더 높일 수 있다.When the heat dissipation pad 210 has elasticity, when the ultra capacitor 110 is inserted into the case 200, the heat dissipation pad 210 is deformed to fit the outer shape of the ultra capacitor 110 and thus the ultra capacitor 110 is formed. Adhesion can be increased, resulting in an increase in contact area. Therefore, the heat dissipation efficiency can be further increased as the contact area is increased.
한편 방열 패드(210)의 사용과 관련하여, 케이스(200)의 수용부(518, 618)와 울트라 캐패시터(110) 간의 간격은 방열 패드(210)의 압착 전 두께보다 작으면서 상기 울트라 패캐시터(110)들의 직경 공차보다 큰 것이 바람직하다. 여기서 수용부(518, 618)와 울트라 캐패시터(110) 간의 간격은, 방열 패드(210)를 사용하지 않고 에너지 저장 장치의 조립을 완료했을 때의 간격이다. 상기 간격이 울트라 캐패시터(110)들의 직경 공차보다 커야 하는 이유는, 만약 상기 간격이 상기 직경 공차보다 작을 경우 케이스 조립이 불완전하게 되어 틈이 발생할 수 있기 때문이다. 그리고 상기 간격이 방열 패드(210)의 압착 전 두께보다 작아야 하는 이유는, 울트라 캐패시터(110)들이 방열 패드(210)에 충분히 압착될 수 있도록 하기 위함이다. 상기 간격이 방열 패드(210)의 압착 전 두께보다 작게 되면, 케이스 조립시 울트라 캐패시터(110)들이 방열 패드(210)를 압착하게 되고, 따라서 울트라 캐패시터(110)를 케이스(200) 내에 고정시켜주면서 울트라 캐패시터(110)와 방열 패드(210) 간의 접촉 면적을 넓혀 방열 효과를 높일 수 있다.Meanwhile, in relation to the use of the heat radiation pad 210, the space between the accommodating portions 518 and 618 of the case 200 and the ultracapacitor 110 is smaller than the thickness before compression of the heat radiation pad 210 and the ultracapacitor. It is desirable to be larger than the diameter tolerance of 110. The interval between the accommodating parts 518 and 618 and the ultracapacitor 110 is an interval when the assembling of the energy storage device is completed without using the heat dissipation pad 210. The gap should be larger than the diameter tolerance of the ultracapacitors 110, because if the gap is smaller than the diameter tolerance, case assembly may be incomplete and a gap may occur. The reason why the interval should be smaller than the thickness before the heat radiation pad 210 is compressed is to allow the ultracapacitors 110 to be sufficiently compressed to the heat radiation pad 210. When the gap is smaller than the thickness before the compression of the heat radiating pad 210, the ultra-capacitors 110 to the heat-compressing pad 210 during the assembly of the case, thus fixing the ultra-capacitor 110 in the case 200 The heat dissipation effect may be enhanced by increasing the contact area between the ultracapacitor 110 and the heat dissipation pad 210.
또한, 도면에는 도시하지 않았으나, 방열 패드(210)의 일측면에는 접착층을 구비하여 케이스(200)의 수용부(518, 618)에 상기 방열 패드를 용이하게 접합시킬 수 있다. 여기서 상기 접착층은 열전도 필러, 예컨대 금속 파우더 또는 세라믹 분말을 더 포함하여, 접착층을 통해 열전도율이 저하되는 것을 방지할 수 있다.In addition, although not shown in the drawing, one side surface of the heat radiation pad 210 may be provided with an adhesive layer to easily bond the heat radiation pad to the receiving portions 518 and 618 of the case 200. Here, the adhesive layer may further include a thermally conductive filler, such as a metal powder or a ceramic powder, to prevent the thermal conductivity from being lowered through the adhesive layer.
본 실시 예에 따르면 방열 패드(210)를 케이스(200)의 내측면 즉, 울트라 캐패시터(110)의 외측면과 대응하는 수용부(518, 618)의 내측면에 부착함으로써 케이스(200)의 측면을 통한 방열을 수행하여 방열 성능을 더욱 향상시킬 수 있으며, 상기 케이스(200)는 구리 또는 알루미늄과 같이 열전도성이 뛰어난 재질을 사용함으로써 케이스(200) 내부에서 발생된 열을 효과적으로 외부로 전달하여 방출시킬 수 있다.According to the present exemplary embodiment, the heat dissipation pad 210 is attached to the inner surface of the case 200, that is, the outer surface of the ultracapacitor 110 and the inner surface of the accommodating parts 518 and 618. The heat dissipation through the heat dissipation may be further improved, and the case 200 may be discharged by effectively transferring heat generated inside the case 200 to the outside by using a material having excellent thermal conductivity such as copper or aluminum. You can.
종래에는 서로 이웃한 울트라 캐패시터(110)를 연결하는 연결 부재 즉, 부스바에 의해 주로 열을 방출하였지만, 상기 부스바는 열을 방출할 수 있는 면적이 좁아 그 효과가 미미하였다. 예컨대, 상기 부스바는 가로 길이가 100(mm), 세로 길이가 28(mm)일 경우, 울트라 캐패시터 하나당 부스바를 통해 방열을 할 수 있는 면적은 100*28/2(울트라 캐패시터 하나당 부스바의 면적)*2(Top & Bottom side)=2800(mm2)일 수 있다.Conventionally, heat was mainly released by a connection member that connects the adjacent ultracapacitors 110, that is, busbars, but the busbars had a small area capable of emitting heat, so the effect was insignificant. For example, when the busbar has a horizontal length of 100 (mm) and a vertical length of 28 (mm), the area capable of dissipating heat through the busbar per ultracapacitor is 100 * 28/2 (the area of the busbar per ultra capacitor). ) * 2 (Top & Bottom side) = 2800 (mm 2 ).
하지만, 상술한 바와 같이 본 실시 예에 따르면 케이스(200)의 측면을 통해 즉, 방열 면적을 증가시켜 열을 방출함으로써 보다 효율적으로 케이스(200) 내부의 열을 외부로 방출시킬 수 있다. 또한, 울트라 캐패시터(110)가 접촉하는 케이스(200)의 내측면에 열전도성이 뛰어난 방열 부재 즉, 방열 패드(210)를 부착함으로써 보다 더 방열 성능을 향상시킬 수 있다.However, as described above, according to the present embodiment, the heat inside the case 200 may be more efficiently released to the outside by releasing heat through the side surface of the case 200, that is, by increasing the heat dissipation area. In addition, the heat dissipation performance may be further improved by attaching a heat dissipation member having excellent thermal conductivity, that is, a heat dissipation pad 210 to the inner surface of the case 200 that the ultracapacitor 110 contacts.
예컨대, 도 4에 도시한 바와 같이 방열 패드(210)와 접촉하는 울트라 캐패시터의 접촉각, 즉 중심각이 60도인 경우, 울트라 캐패시터 하나당 방열 면적은 2*3.14*(60(울트라 캐패시터의 직경)/2)*130(방열 패드의 길이)(mm)*60(각도)*2/360=8164(mm2)일 수 있다. 이때, 각도에 2를 곱하는 이유는 본 실시 예에서 두 곳에 방열 패드(210)가 부착되어 있기 때문이다. 일반적으로 중심각은 원이나 부채꼴에서 두 반지름이 만드는 각도로서, 본 발명의 실시예에서 중심각은 방열 패드(210)와 울트라 캐패시터(110)가 접촉할 때 울트라 캐패시터(110)의 중심으로부터 그 접촉하는 부분의 양 끝단을 잇는 두 반지름이 만드는 각도이다. 도 7은 본 발명의 일 실시예에 따른 방열 패드(210)와 울트라 캐패시터(110)가 접촉할 때의 중심각을 나타낸 도면으로, 도 7에 도시된 바와 같이, 중심각(α)은 방열 패드(210)와 울트라 캐패시터(110)가 접촉할 때 울트라 캐패시터(110)의 중심으로부터 그 접촉하는 부분의 양 끝단을 잇는 두 반지름이 만드는 각도이다. 그리고, 상기 양 끝단은 울트라 캐패시터(110)와 케이스(200)의 사이에서 방열 패드(210)가 압착되었을 때의 양 끝단을 의미한다.For example, as shown in FIG. 4, when the contact angle of the ultracapacitor contacting the heat dissipation pad 210, that is, the center angle is 60 degrees, the heat dissipation area per ultracapacitor is 2 * 3.14 * (60 (the diameter of the ultracapacitor) / 2). * 130 (length of the thermal pad) (mm) * 60 (angle) * 2/360 = 8164 (mm 2 ). At this time, the reason for multiplying the angle by 2 is that the heat radiation pad 210 is attached to two places in the present embodiment. In general, the center angle is an angle made by two radii in a circle or a sector, and in the embodiment of the present invention, the center angle is a portion of the ultra-capacitor 110 that is in contact with the heat dissipation pad 210 and the ultra-capacitor 110. The angle created by the two radii that connect the two ends of. FIG. 7 is a view illustrating a center angle when the heat dissipation pad 210 and the ultracapacitor 110 contact each other according to an embodiment of the present invention. As shown in FIG. 7, the center angle α is a heat dissipation pad 210. ) And the ultracapacitor 110 is an angle formed by two radii connecting the two ends of the contact portion from the center of the ultracapacitor 110. The both ends mean both ends when the heat dissipation pad 210 is compressed between the ultracapacitor 110 and the case 200.
한편, 방열 패드(210)와 접촉하는 울트라 캐패시터(110)의 접촉각, 즉 중심각(α)은 30도 내지 60도인 것이 바람직하다. 중심각(α)이 30도 이상일 때의 방열 효율은 중심각(α)이 30도 미만일 때의 방열 효율보다 훨씬 크다. 그리고 방열 패드(210)와 울트라 캐패시터(110)의 접촉 면적이 넓을수록, 즉 방열 패드(210)와 접촉하는 울트라 캐패시터(110)의 중심각(α)이 커질수록, 방열 효율이 좋아지지만, 그만큼 에너지 저장 장치의 제품 질량은 커지게 된다. 상기 중심각(α)이 30도 내지 60도인 경우 제품 질량은 완만하게 증가하지만, 중심각(α)이 60도 보다 커지게 되면 제품 질량이 급격히 증가하게 된다. 따라서 방열 패드(210)와 접촉하는 울트라 캐패시터(110)의 중심각(α)은 30도 내지 60도인 것이 바람직하다. 이를 도면을 참조하여 설명하면 다음과 같다.On the other hand, the contact angle of the ultracapacitor 110 in contact with the heat dissipation pad 210, that is, the center angle α is preferably 30 degrees to 60 degrees. The heat radiation efficiency when the center angle α is 30 degrees or more is much greater than the heat radiation efficiency when the center angle α is less than 30 degrees. The larger the contact area between the heat dissipation pad 210 and the ultracapacitor 110, that is, the greater the center angle α of the ultracapacitor 110 in contact with the heat dissipation pad 210, the better the heat dissipation efficiency. The product mass of the storage device becomes large. When the center angle α is 30 degrees to 60 degrees, the product mass is gradually increased, but when the center angle α is larger than 60 degrees, the product mass is rapidly increased. Therefore, the center angle α of the ultracapacitor 110 in contact with the heat radiating pad 210 is preferably 30 degrees to 60 degrees. This will be described with reference to the drawings.
도 8은 본 발명의 일 실시예에 따른 방열 패드와 에너지 저장 셀의 접촉 형상과 방열 효율 및 제품 질량을 각도에 따라 나타낸 도면이고, 도 9는 본 발명의 일 실시예에 따른 접촉각에 따른 방열 효율 및 제품 질량의 변화를 나타낸 그래프이다.8 is a view showing the contact shape, the heat dissipation efficiency, and the product mass of the heat radiation pad and the energy storage cell according to an embodiment of the present invention according to the angle, Figure 9 is a heat dissipation efficiency according to the contact angle according to an embodiment of the present invention And graphs showing changes in product mass.
먼저 방열 효율의 산출 조건은 다음 [표1]과 같고, 에너지 저장 셀로서 울트라 캐패시터 18개를 사용한다. First, the conditions for calculating the heat dissipation efficiency are shown in Table 1 below, and 18 ultracapacitors are used as energy storage cells.
표 1
구분 물질명 밀도[kg/m3] 열전도도[W/m·k] 비열[kj/kg·K] 점도[Pa·s]
공기 air 비압축성이상기체 0.0242 1006.43 1.7894×10-5
케이스/셀 Al-6063-O 2,700 218 871 -
방열 패드 SB-7100 S/TUTG-E 1540 1.4 871 -
Table 1
division Substance Density [kg / m 3 ] Thermal conductivity [W / m · k] Specific heat [kj / kgK] Viscosity [Pa · s]
air air Incompressible Body 0.0242 1006.43 1.7894 × 10 -5
Case / cell Al-6063-O 2,700 218 871 -
Heat resistant pad SB-7100 S / TUTG-E 1540 1.4 871 -
방열 효율은 다음과 같은 수식을 이용하여 계산한다.Heat dissipation efficiency is calculated using the following formula.
Figure PCTKR2015006596-appb-I000001
Figure PCTKR2015006596-appb-I000001
제품 질량은 울트라 캐패시터들의 총 무게와, 케이스의 질량과, 방열 패드의 질량 그리고 기타 부품의 질량을 더한다. The product mass adds the total weight of the ultracapacitors, the mass of the case, the mass of the heat dissipation pad, and the mass of the other components.
도 8을 참조하면, 케이스 블록 사이에 형성된 수용부(518, 618)에 에너지 저장 셀, 즉 울트라 캐패시터(110)가 삽입되고, 수용부(518, 618)의 내측면에는 울트라 캐패시터(110)와 접촉하는 방열 패드(210)가 부착되어 있다. 울트라 캐패시터(110)와 방열 패드(210) 간의 접촉 면적을 크게 하기 위해서는 방열 패드(210)의 폭이 증가해야 하고 이에 따라 수용부(518, 618)의 호(arc)의 길이도 동시에 증가해야 한다. 이와 같이 울트라 캐패시터(110)와 방열 패드(210) 간의 접촉 면적이 커지면 방열 패드(210)와 접촉하는 울트라 캐패시터(110)의 중심각은 커진다. 그리고 인접한 울트라 캐패시터(110) 사이의 케이스(200) 외측면에 형성되는 오목부(512, 612)는 그 깊이가 증가한다. Referring to FIG. 8, an energy storage cell, that is, an ultracapacitor 110, is inserted into the accommodating parts 518 and 618 formed between the case blocks, and the ultracapacitor 110 and the inner surface of the accommodating parts 518 and 618 are inserted into the accommodating part 518 and 618. The heat dissipation pad 210 which contacts is attached. In order to increase the contact area between the ultracapacitor 110 and the heat dissipation pad 210, the width of the heat dissipation pad 210 should be increased and thus the length of the arcs of the accommodating parts 518 and 618 must be increased at the same time. . As such, when the contact area between the ultracapacitor 110 and the heat dissipation pad 210 increases, the center angle of the ultracapacitor 110 in contact with the heat dissipation pad 210 increases. The depths of the recesses 512 and 612 formed on the outer surface of the case 200 between the adjacent ultracapacitors 110 are increased.
도 9에서 좌측 Y 축은 방열 효율을 나타내고 우측 Y 축은 제품 질량을 나타낸다. 도 9에서 참조번호 910은 방열 효율 그리고 참조번호 920은 제품 질량의 그래프이다. 도 8 및 도 9에 도시된 바와 같이, 방열 패드(210)와 접촉하는 울트라 캐패시터(110)의 중심각(α)이 커지면 에너지 저장 장치의 방열 효율은 좋아진다. 특히 중심각(α)이 30도 이상이 되면 중심각(α)이 30도 미만일 때보다 방열 효율이 급격히 좋아진다. 예를 들어 중심각(α)이 10도일 때의 방열 효율은 90.66%인데 중심각(α)이 30도일 때 방열 효율은 97.28%로, 중심각(α)이 30도가 되면 방열 효율이 매우 좋아진다. 도 9에서 방열 효율 그래프를 따라 표기된 숫자는, 1도당 방열 효율의 증가폭을 나타낸다. 예를 들면, 중심각(α)이 10도에서 20도로 증가할 때, 평균적으로 1도당 0.36% 포인트(3.6% ÷ 10)만큼 방열 효율이 증가한다. 중심각(α)이 20도에서 25도로 증가할 때, 평균적으로 1도당 0.30% 포인트만큼 방열 효율이 증가한다. 도 9에 도시된 바와 같이, 중심각(α) 30도까지 방열 효율이 큰 폭으로 증가하고 그 이상의 중심각(α)에서는 방열 효율의 증가폭이 둔화된다. 따라서 방열 패드(210)와 접촉하는 울트라 캐패시터(110)의 중심각(α)은 30도 이상인 것이 바람직하다.In FIG. 9, the left Y axis represents heat dissipation efficiency and the right Y axis represents product mass. In FIG. 9, reference numeral 910 is a heat dissipation efficiency and reference numeral 920 is a graph of product mass. As shown in FIG. 8 and FIG. 9, when the center angle α of the ultracapacitor 110 in contact with the heat radiation pad 210 is increased, the heat radiation efficiency of the energy storage device is improved. In particular, when the center angle α is 30 degrees or more, the heat dissipation efficiency is drastically improved than when the center angle α is less than 30 degrees. For example, when the center angle α is 10 degrees, the heat radiation efficiency is 90.66%. When the center angle α is 30 degrees, the heat radiation efficiency is 97.28%. When the center angle α is 30 degrees, the heat radiation efficiency is very good. The numbers indicated along the heat dissipation efficiency graph in FIG. 9 indicate an increase in heat dissipation efficiency per degree. For example, when the center angle α increases from 10 degrees to 20 degrees, the heat radiation efficiency increases by 0.36% point (3.6% ÷ 10) per degree on average. When the central angle α increases from 20 degrees to 25 degrees, the heat dissipation efficiency increases by 0.30% point per degree on average. As shown in FIG. 9, the heat dissipation efficiency is greatly increased to the center angle α of 30 degrees, and the increase in heat dissipation efficiency is slowed at the central angle α. Therefore, the center angle α of the ultracapacitor 110 in contact with the heat radiation pad 210 is preferably 30 degrees or more.
그러나 방열 패드(210)와 접촉하는 울트라 캐패시터(110)의 중심각(α)이 30도 이상으로 커지면 그만큼 에너지 저장 장치의 제품 질량은 증가하게 된다. 그 이유는, 방열 패드(210)의 폭이 증가하여 방열 패드(210)의 질량이 증가하고 또한 수용부(518, 618)의 호(arc)의 길이도 동시에 증가하면서 인접한 울트라 캐패시터(110) 사이의 케이스(200) 외측면에 형성되는 오목부(512, 612)는 그 깊이가 증가하여 케이스(200)의 질량도 증가하게 된다. 도 8 및 도 9에 도시된 바와 같이, 중심각(α)이 60도가 될 때까지는 제품 질량이 완만하게 증가하는데 중심각(α)이 60도를 초과하게 되면 제품 질량이 급격하게 증가한다. 즉 60도를 초과하는 중심각(α)에서의 제품 질량 증가율이 60도 이하 중심각(α)에서의 제품 질량 증가율보다 더 커진다. 도 9에서 제품 질량 그래프를 따라 표기된 숫자는, 1도당 제품 질량의 증가폭을 나타낸다. 예를 들면, 중심각(α)이 10도에서 20도로 증가할 때, 평균적으로 1도당 0.25% 포인트(2.5% ÷ 10)만큼 제품 질량이 증가한다. 중심각(α)이 20도에서 22.5도로 증가할 때, 평균적으로 1도당 0.23% 포인트만큼 제품 질량이 증가한다. 도 9에 도시된 바와 같이, 중심각(α) 60도까지 제품 질량은 완만하게 증가하는데 중심각(α)이 60도를 초과하게 되면 제품 질량이 급격하게 증가한다. 예를 들어, 중심각(α)이 55도에서 60도로 증가할 때 1도당 0.34% 포인트만큼 제품 질량이 증가하는 반면, 중심각(α)이 60도에서 65도로 증가하면 1도당 0.45% 포인트만큼 제품 질량이 대폭 증가한다. 그러므로, 방열 패드(210)와 접촉하는 울트라 캐패시터(110)의 중심각(α)은 30도 내지 60도인 것이 바람직하다.However, when the center angle α of the ultracapacitor 110 in contact with the heat dissipation pad 210 becomes greater than 30 degrees, the product mass of the energy storage device increases accordingly. The reason is that the width of the heat dissipation pad 210 increases, so that the mass of the heat dissipation pad 210 increases, and the length of the arcs of the accommodating parts 518 and 618 also increases simultaneously, between the adjacent ultracapacitors 110. The concave portions 512 and 612 formed on the outer surface of the case 200 are increased in depth to increase the mass of the case 200. As shown in Figs. 8 and 9, the product mass gradually increases until the center angle α becomes 60 degrees, but when the center angle α exceeds 60 degrees, the product mass rapidly increases. That is, the product mass increase rate at the center angle α exceeding 60 degrees is greater than the product mass increase rate at the center angle α below 60 degrees. The numbers indicated along the product mass graph in FIG. 9 indicate the increase in product mass per degree. For example, when the center angle α increases from 10 degrees to 20 degrees, the product mass increases by 0.25% point (2.5% ÷ 10) per degree. When the central angle α increases from 20 degrees to 22.5 degrees, the product mass increases by 0.23 percentage points per degree on average. As shown in FIG. 9, the product mass gradually increases up to 60 degrees of the central angle α, and the product mass rapidly increases when the central angle α exceeds 60 degrees. For example, when the center angle (α) increases from 55 degrees to 60 degrees, the product mass increases by 0.34 percentage points per degree, while when the center angle (α) increases from 60 degrees to 65 degrees, the product mass increases by 0.45 percentage points per degree. This greatly increases. Therefore, the center angle α of the ultracapacitor 110 in contact with the heat radiation pad 210 is preferably 30 degrees to 60 degrees.
도 10은 도 2의 A 부분을 확대한 도면이다. 도 10을 참조하면, 케이스(200)를 되접어 꺽음으로써 형성되는 오목부(512, 612)부터, 케이스(200)와 울트라 캐패시터(110) 간의 거리(1010)는 점점 멀어진다. 즉, 오목부(512, 612)의 첨단을 기점으로 케이스(200)와 울트라 캐패시터(110) 간의 거리(1010)는 점점 멀어진다. 특정 셀의 인접 오목부(512, 612)부터 멀어지는 케이스(200)는, 이웃한 셀의 인접 오목부(512, 612)부터 멀어지는 케이스(200)와, 볼록부 연결부(513, 613)에서 만나 케이스를 이룬다. 앞서 설명한 바와 같이, 방열 패드(210)는 방열 기능 이외 케이스(200)와 울트라 캐패시터(110) 사이를 절연하는 기능을 한다. 방열 패드(210)가 없는 부분, 즉 방열 패드(210)가 끝나는 지점부터는, 케이스(200)와 울트라 캐패시터(110) 간의 거리(1010)를 멀어지게 함으로써 간접적으로 케이스(200)와 울트라 캐패시터(110) 간에 절연이 되도록 한다. 상기 절연 거리 확보 외의 절연 대책으로 각각의 셀의 외면에 절연 필름을 씌우거나, 절연 코팅을 할 수도 있다. 또한, 도 10에 도시된 바와 같이, 이웃하는 울트라 캐패시터(110)와 케이스(200) 사이에는 센싱 및 밸런싱을 위한 하네스가 설치될 수 있는 공간(1020)이 형성된다. 이 공간(1020)을 통해 하네스가 통과하고, 또한 이 공간(1020)에 존재하는 공기의 흐름으로 추가적인 방열을 한다. FIG. 10 is an enlarged view of a portion A of FIG. 2. Referring to FIG. 10, the distance 1010 between the case 200 and the ultracapacitor 110 gradually increases from the recesses 512 and 612 formed by folding the case 200 back. That is, the distance 1010 between the case 200 and the ultracapacitor 110 is gradually increased from the tips of the recesses 512 and 612. The case 200 away from the adjacent concave portions 512 and 612 of a particular cell meets the case 200 away from the adjacent concave portions 512 and 612 of the neighboring cell at the convex connection portions 513 and 613. To achieve. As described above, the heat dissipation pad 210 functions to insulate between the case 200 and the ultracapacitor 110 in addition to the heat dissipation function. From the portion where the heat dissipation pad 210 is not present, that is, the point at which the heat dissipation pad 210 ends, the distance 200 between the case 200 and the ultracapacitor 110 is indirectly increased, thereby indirectly the case 200 and the ultracapacitor 110. Insulation between them. As an insulation measure other than securing the insulation distance, an insulation film may be applied to the outer surface of each cell, or an insulation coating may be applied. In addition, as shown in FIG. 10, a space 1020 in which a harness for sensing and balancing is installed is formed between the neighboring ultracapacitor 110 and the case 200. The harness passes through this space 1020 and further heats up with the flow of air present in this space 1020.
이상과 같이, 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As described above, although the present invention has been described by way of limited embodiments and drawings, the present invention is not limited thereto and is intended by those skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of equivalents of the claims to be described.

Claims (18)

  1. 적어도 2개 이상의 원통형의 에너지 저장 셀이 직렬 연결되어 형성된 셀 어셈블리;A cell assembly formed by connecting at least two cylindrical energy storage cells in series;
    상기 에너지 저장 셀의 외측면에 대응하는 형상의 수용부를 구비하여, 상기 셀 어셈블리를 수용하는 케이스; 및A case accommodating the cell assembly, the housing having a shape corresponding to an outer surface of the energy storage cell; And
    상기 셀 어셈블리의 에너지 저장 셀의 외측면과 상기 수용부의 내측면의 사이에 설치되는 방열 패드;를 포함하고,And a heat dissipation pad disposed between an outer side surface of the energy storage cell of the cell assembly and an inner side surface of the receiving portion.
    상기 케이스는 적어도 2개 이상의 케이스 블록을 포함하며,The case includes at least two case blocks,
    상기 케이스 블록의 결합에 의해 상기 수용부가 형성되는, 에너지 저장 장치.And the receiving portion is formed by the combination of the case blocks.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 방열 패드와 접촉하는 상기 에너지 저장 셀의 중심각은, 30도 내지 60도인 것을 특징으로 하는 에너지 저장 장치.And a center angle of the energy storage cell in contact with the heat radiating pad is 30 degrees to 60 degrees.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 수용부가 형성하는 호(arc)의 길이는, 상기 방열 패드의 길이 이상인 것을 특징으로 하는 에너지 저장 장치.The length of the arc (arc) formed by the accommodating portion, characterized in that more than the length of the heat radiation pad.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 방열 패드는, 탄성을 가지며,The heat dissipation pad has elasticity,
    상기 수용부와 상기 에너지 저장 셀 간의 간격은, 상기 방열 패드의 압착 전 두께보다 작으면서 상기 에너지 저장 셀들의 직경 공차보다 큰 것을 특징으로 하는 에너지 저장 장치.The space between the receiving portion and the energy storage cell, energy storage device, characterized in that less than the thickness before the compression pad of the heat dissipation pad and larger than the diameter tolerance of the energy storage cells.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 방열 패드는 상기 에너지 저장 셀에 부착되는 것을 특징으로 하는 에너지 저장 장치.The heat dissipation pad is attached to the energy storage cell.
  6. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 방열 패드는 열전도 필러인 것을 특징으로 하는 에너지 저장 장치.The heat dissipation pad is an energy storage device, characterized in that the heat conducting filler.
  7. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 방열 패드의 일측면에는 접착층을 구비하는 것을 특징으로 하는 방열 성능이 향상된 에너지 저장 장치.An energy storage device having improved heat dissipation performance, characterized in that an adhesive layer is provided on one side of the heat dissipation pad.
  8. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 에너지 저장 셀은 울트라 캐패시터인 것을 특징으로 방열 특성이 향상된 에너지 저장 장치.The energy storage cell is an energy storage device, characterized in that the heat dissipation characteristics, characterized in that the ultracapacitor.
  9. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 케이스 블록은,The case block,
    상기 에너지 저장 셀의 외측 형상과 동일한 호(arc) 형상을 갖는 복수의 볼록부;A plurality of convex portions having the same arc shape as the outer shape of the energy storage cell;
    상기 복수의 볼록부들을 연결하는 볼록부 연결부; 및A convex portion connecting portion connecting the plurality of convex portions; And
    상기 볼록부와 상기 볼록부 연결부 사이에 형성된 오목부;를 포함하는 것을 특징으로 하는 에너지 저장 장치.And a concave portion formed between the convex portion and the convex portion connecting portion.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 오목부에는 적어도 하나 이상의 방열판이 수직하게 돌출되어 형성되는 것을 특징으로 하는 에너지 저장 장치.At least one heat sink protrudes vertically in the concave portion.
  11. 제 9 항에 있어서,The method of claim 9,
    상기 케이스 블록은,The case block,
    'L'자 형상 또는 'ㄷ'자 형상 중 어느 하나인 것을 특징으로 하는 에너지 저장 장치.Energy storage device, characterized in that any one of the 'L' shape or '' 'shape.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 케이스 블록이 'L'자 형상인 경우,When the case block has an 'L' shape,
    상기 복수의 볼록부의 최외측 볼록부 중 하나는, 볼록부의 호(arc) 형상이 이어지도록 연결되는 것을 특징으로 하는 에너지 저장 장치.One of the outermost convex portions of the plurality of convex portions is connected to the arc shape of the convex portion is connected.
  13. 제 12 항에 있어서,The method of claim 12,
    상기 케이스 블록은,The case block,
    상기 최외곽 볼록부 중 하나로부터 연장되어 상기 케이스 블록의 길이 방향으로 절곡된 케이스 블록 연결부;를 더 포함하는 것을 특징으로 하는 에너지 저장 장치.And a case block connecting portion extending from one of the outermost convex portions and bent in a length direction of the case block.
  14. 제 11 항에 있어서,The method of claim 11,
    상기 케이스 블록이 'ㄷ'자 형상인 경우,If the case block is a 'c' shape,
    상기 복수의 볼록부 중 최외곽 볼록부들은, 볼록부의 호(arc) 형상이 이어지도록 연결되는 것을 특징으로 하는 에너지 저장 장치.The outermost convex portions of the plurality of convex portions, the energy storage device, characterized in that connected so that the arc (arc) shape of the convex portion continues.
  15. 제 14 항에 있어서,The method of claim 14,
    상기 케이스 블록은,The case block,
    상기 최외곽 볼록부들 각각으로부터 연장되어 상기 케이스 블록의 길이 방향으로 절곡된 케이스 블록 연결부;를 더 포함하는 것을 특징으로 하는 에너지 저장 장치.And a case block connecting portion extending from each of the outermost convex portions and bent in the longitudinal direction of the case block.
  16. 제 9 항에 있어서,The method of claim 9,
    상기 볼록부 연결부에는 덮개를 고정하기 위한 탭이 형성되어 있는 것을 특징으로 하는 에너지 저장 장치.The convex connection portion is an energy storage device, characterized in that the tab for fixing the cover is formed.
  17. 제 1 항에 있어서,The method of claim 1,
    상기 방열 패드의 끝단 지점부터 상기 에너지 저장 셀과 상기 케이스 간의 거리가 멀어져 상기 에너 저장 셀과 상기 케이스 사이를 절연하는 것을 특징으로 하는 에너지 저장 장치.The energy storage device, characterized in that the distance between the energy storage cell and the case away from the end point of the heat radiation pad to insulate between the energy storage cell and the case.
  18. 제 1 항에 있어서,The method of claim 1,
    상기 에너지 저장 셀의 외면에 절연 필름이 더 형성된 것을 특징으로 하는 에너지 저장 장치.Energy storage device, characterized in that the insulating film is further formed on the outer surface of the energy storage cell.
PCT/KR2015/006596 2014-08-19 2015-06-26 Energy storage device having improved heat-dissipation characteristic WO2016027978A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15833889.7A EP3185265A4 (en) 2014-08-19 2015-06-26 Energy storage device having improved heat-dissipation characteristic
JP2017508672A JP6483239B2 (en) 2014-08-19 2015-06-26 Energy storage device with improved heat dissipation characteristics
CN201580044370.8A CN106663533B (en) 2014-08-19 2015-06-26 Heat dissipation characteristics obtain improved energy storage device
US15/503,765 US10115531B2 (en) 2014-08-19 2015-06-26 Energy storage device having improved heat-dissipation characteristic

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2014-0107939 2014-08-19
KR20140107939 2014-08-19
KR1020140179732A KR20160022207A (en) 2014-08-19 2014-12-12 Energy storage device having improved heat-dissipating
KR10-2014-0179732 2014-12-12
KR10-2015-0086880 2015-06-18
KR20150086880 2015-06-18

Publications (1)

Publication Number Publication Date
WO2016027978A1 true WO2016027978A1 (en) 2016-02-25

Family

ID=55350892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006596 WO2016027978A1 (en) 2014-08-19 2015-06-26 Energy storage device having improved heat-dissipation characteristic

Country Status (1)

Country Link
WO (1) WO2016027978A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108063048A (en) * 2017-12-12 2018-05-22 珠海格力新元电子有限公司 Busbar and with its capacitor
DE102019205491A1 (en) * 2019-04-16 2020-06-10 Siemens Aktiengesellschaft Arrangement for cooling a condenser, converter and vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100129703A1 (en) * 2007-04-24 2010-05-27 Olivier Caumont Module for an electric energy storage assembly
US20110090614A1 (en) * 2007-12-06 2011-04-21 Fabien Guerin Electrical power supply device comprising a tray for accommodating ultra-high capacity storage units
KR20120019845A (en) * 2010-08-27 2012-03-07 삼성전기주식회사 Supercapacitor module
JP2013089735A (en) * 2011-10-17 2013-05-13 Nippon Chemicon Corp Capacitor module and manufacturing method therefor
KR20130093697A (en) * 2011-12-23 2013-08-23 비나텍주식회사 Module for high-capacity supercapacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100129703A1 (en) * 2007-04-24 2010-05-27 Olivier Caumont Module for an electric energy storage assembly
US20110090614A1 (en) * 2007-12-06 2011-04-21 Fabien Guerin Electrical power supply device comprising a tray for accommodating ultra-high capacity storage units
KR20120019845A (en) * 2010-08-27 2012-03-07 삼성전기주식회사 Supercapacitor module
JP2013089735A (en) * 2011-10-17 2013-05-13 Nippon Chemicon Corp Capacitor module and manufacturing method therefor
KR20130093697A (en) * 2011-12-23 2013-08-23 비나텍주식회사 Module for high-capacity supercapacitor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3185265A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108063048A (en) * 2017-12-12 2018-05-22 珠海格力新元电子有限公司 Busbar and with its capacitor
CN108063048B (en) * 2017-12-12 2024-02-27 珠海格力新元电子有限公司 Busbar and capacitor with same
DE102019205491A1 (en) * 2019-04-16 2020-06-10 Siemens Aktiengesellschaft Arrangement for cooling a condenser, converter and vehicle

Similar Documents

Publication Publication Date Title
WO2015152639A1 (en) Battery module array
CN106935927B (en) Battery module and vehicle including same
WO2013089470A1 (en) Battery module assembly having improved reliability,and medium and large-sized battery pack including same
WO2018174451A1 (en) Battery module, battery pack including the battery module, and automobile including the battery pack
WO2013019008A2 (en) Battery module having improved stability
WO2012023731A2 (en) Battery module and battery pack including same
WO2012023754A1 (en) Voltage detection assembly and battery module including same
WO2012070782A2 (en) Battery pack having a compact structure
US20120171544A1 (en) Galvanic cell, cell stack, and heat sink
WO2017146379A1 (en) Battery module, battery pack and vehicle having same
JP6483239B2 (en) Energy storage device with improved heat dissipation characteristics
KR101713192B1 (en) Energy storage device having improved heat-dissipating
WO2021025321A1 (en) Battery pack with fixing bar, and electronic device and automobile comprising same
WO2016027978A1 (en) Energy storage device having improved heat-dissipation characteristic
WO2019198897A1 (en) Battery pack and power supply device including battery pack
WO2021060735A1 (en) Battery module, and battery rack and power storage device, each comprising same battery module
US20220359930A1 (en) Battery module and battery system
KR102418597B1 (en) Energy storage module
CN215527971U (en) Copper-core high-voltage-resistant electric cable for photovoltaic power generation
WO2011126161A1 (en) Secondary battery module
WO2012086995A2 (en) Sodium-sulfur battery and method for manufacturing same
WO2020101214A1 (en) Electronic component assembly
KR102336724B1 (en) Apparatus for fixing a plurality of energy storage cell and energy storage module using the same
US20240120593A1 (en) Battery pack for supplying power to an electronic device
WO2018101615A1 (en) Fixing device for fixing plurality of energy storage cells, and energy storage module using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833889

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15503765

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017508672

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015833889

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015833889

Country of ref document: EP