WO2016027792A1 - Fiber identification method - Google Patents

Fiber identification method Download PDF

Info

Publication number
WO2016027792A1
WO2016027792A1 PCT/JP2015/073066 JP2015073066W WO2016027792A1 WO 2016027792 A1 WO2016027792 A1 WO 2016027792A1 JP 2015073066 W JP2015073066 W JP 2015073066W WO 2016027792 A1 WO2016027792 A1 WO 2016027792A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
fibers
analysis
test
discrimination
Prior art date
Application number
PCT/JP2015/073066
Other languages
French (fr)
Japanese (ja)
Inventor
高柳 正夫
季織 吉村
暢 山形
健 安藤
麻奈美 菅野
Original Assignee
一般財団法人ニッセンケン品質評価センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一般財団法人ニッセンケン品質評価センター filed Critical 一般財団法人ニッセンケン品質評価センター
Priority to JP2016544208A priority Critical patent/JP6798885B2/en
Publication of WO2016027792A1 publication Critical patent/WO2016027792A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor

Definitions

  • the present invention relates to a fiber discrimination method for discriminating the type and mixed rate of fibers used in textile products or woven or knitted fabrics.
  • the present invention relates to a fiber discrimination method for differentiating different types of similar fibers such as cellulosic fibers and animal hair fibers.
  • JIS L-1030-1 Fiber product mix rate test method-Part 1: Fiber discrimination
  • JISL 1030-2 Fiber product mix rate test method-2 Part: fiber mixed rate
  • the discrimination method in JIS L1030-1 includes a combustion test, a chlorine check test in a fiber, a nitrogen check test in a fiber, a microscopic test, There are coloring test with iodine-potassium iodide solution, xanthoprotein reaction test, infrared absorption spectrum measurement test and so on.
  • fibers having the same chemical composition for example, cellulose fibers such as cotton, various hemps, various rayons, copper ammonia rayon, solvent-spun cellulose fibers, cashmere, wool, yak, mohair Animal fibers such as Angola, Alpaca, Vicuna, Camel, and Llama are distinguished from the same or similar fibers by the chemical test method among the above test methods. Therefore, these chemical test methods cannot clearly distinguish homologous heterogeneous fibers.
  • the above test method includes an infrared absorption spectrum measurement test.
  • this measurement test is intended only to distinguish fibers having different chemical compositions (hereinafter referred to as “heterogeneous fibers”), and it is said that homogenous heterogeneous fibers cannot be clearly distinguished.
  • a microscopic test mainly using the difference in appearance characteristics as an index is effective and widely used for the discrimination of similar fibers such as cellulosic fibers and animal hair fibers.
  • an inspector visually compares the fiber to be inspected with a standard photograph sample using an optical microscope.
  • an inspector visually determines the number and diameter of different types of fibers contained in the mixed fiber to be inspected using an optical microscope, or separates and determines each of the mixed fibers. This is done by measuring the weight.
  • solvent-spun cellulose fibers such as Tencel (registered trademark) and Lyocell (registered trademark) (hereinafter also referred to as “lyocell”) have an appearance characteristic of copper ammonia rayon (hereinafter “cupra”). It has the same circular cross-section as (also called).
  • the fiber products using cashmere which is considered to be a particularly high-class animal hair fiber, are mixed with yak hair that is difficult to distinguish from cashmere, or the wool scale is removed (referred to as “descaling”). Elaborate camouflage such as mixing is performed. In such a case, it is difficult for an inspector who has experience in a microscopic examination to make an accurate judgment.
  • Patent Document 1 proposes a method for discriminating between cellulose fiber (same as solvent-spun cellulose fiber) and cupra, which are cellulosic heterogeneous fibers.
  • this discrimination method the dissolved state when both fibers are immersed in 61% or more of sulfuric acid is observed under a microscope to discriminate cellulosic homologous different fibers.
  • Patent Document 2 a fiber discrimination method and a fiber discrimination device for animal hair similar and different fibers are proposed.
  • This fiber discrimination method uses the terahertz spectroscopy that uses electromagnetic waves with longer wavelengths than general infrared rays to analyze the cell structure (primary structure) and cell aggregation (higher order structure) of animal hair fibers. The system distinguishes between similar and dissimilar fibers.
  • the inventor of the present invention proposes discrimination of a fabric material using near infrared spectroscopy having a wavelength shorter than that of general infrared rays.
  • This discriminating method applies a technique of spectrum fluctuation analysis by Fourier transform to near-infrared spectroscopy.
  • Non-Patent Document 2 the inventor of the present invention proposes fiber discrimination and mixed ratio measurement of a blended fiber fabric by near infrared spectroscopy.
  • This discrimination method is an application of an analysis method using near infrared spectroscopy and chemometrics (a coined word consisting of chemistry indicating chemistry and metrics indicating metric).
  • the discrimination method of the above-mentioned Patent Document 1 is to observe the dissolved state of the fiber under a microscope. In this case as well, there is a problem that the discrimination results vary due to differences in inspector experience and know-how. In addition, when the fibers are dyed or processed with resin, there is a problem in that the state of dissolution changes and accurate discrimination cannot be performed.
  • the fiber discrimination method of the above-mentioned Patent Document 2 if the fiber to be identified is not sufficiently smaller in size (about 10 ⁇ m) than the wavelength of the terahertz electromagnetic wave, the incident terahertz electromagnetic wave is scattered and incident on the detector. The intensity of is attenuated. Therefore, there is a demand for a method of freeze pulverization while preventing a temperature rise associated with pulverization. These operations are complicated, and there is a problem that the higher-order structure of the fiber is destroyed by pulverization, and the amount of information is reduced.
  • the discrimination method of Non-Patent Document 1 suggests the possibility of discrimination, but has not yet made an accurate discrimination. Further, in the discrimination method of Non-Patent Document 2 above, it suggests the possibility of obtaining the blending rate of cotton-polyester blended fabrics that are mainly different fibers. It is not a suggestion.
  • the present invention addresses the above-described problems, and provides a fiber discrimination method that is relatively easy to differentiate and has objectivity, and that can distinguish between different types of similar fibers without relying on the experience and know-how of the inspector.
  • the purpose is to provide.
  • the present inventors In solving the above-mentioned problems, the present inventors, as a result of earnest research, adopted general infrared spectroscopy, which has abundant amount of information of absorption spectrum compared to terahertz spectroscopy and near infrared spectroscopy, and obtained absorption It was found that spectral data of a specific wavelength range was extracted from the spectrum, and this type of information was statistically processed to distinguish homologous heterogeneous fibers. Thus, the present invention was completed.
  • the fiber discrimination method according to the present invention is as follows.
  • a fiber discrimination method for differentiating different types of similar fibers classified as the same, such as cellulosic fibers and animal hair fibers, And providing a plurality of comparison fibers types of fibers to originate from a plurality of known single fibers, and irradiating infrared rays in the wave number range of 4000 cm -1 ⁇ 500 cm -1, excluding the near infrared for each comparative fibers Find each absorption spectrum,
  • the test fiber is an unknown fiber type, and the analysis data is obtained from the absorption spectrum of the test fiber in the same manner as the database creation step.
  • this invention is the fiber identification method of Claim 1,
  • the cellulosic fiber in the database creation step, two types of comparative fibers according to the following combinations, (1) Natural fiber, pair, regenerated fiber, (2) Cotton, pair, hemp, (3) Flax, VS, Hemp, (4) Viscose rayon, pair, copper ammonia rayon or solvent-spun cellulose fiber, (5) Copper ammonia rayon, pair, solvent-spun cellulose fiber,
  • Each analysis data obtained by multivariate analysis of the spectrum data of is accumulated as a database of differential models related to each combination,
  • the analysis data of the test fiber is collated with a discrimination model according to each combination of the databases, and the type of the test fiber is discriminated.
  • the present invention is the fiber discrimination method according to claim 1,
  • a series of comparative fibers composed of mixed fibers prepared by mixing the same type of different kinds of fibers prepared in advance at a series of mixing ratios are prepared.
  • a series of analysis data groups obtained in the same way as the database creation process is accumulated as a database,
  • the analysis data of the test fiber is collated with a series of analysis data groups of the database, the type of the test fiber, the test fiber is a mixture of at least two kinds of similar dissimilar fibers, It is characterized by discriminating the kind of the same kind of different fibers mixed in the test fiber and / or the mixed rate of the test fiber.
  • the present invention is the fiber discrimination method according to claim 3,
  • the database creation step in addition to the spectral data of the plurality of comparison fibers originating from the plurality of single fibers, two types of comparison fibers according to the following combinations, (1) Natural fiber, pair, regenerated fiber, (2) Cotton, pair, hemp, (3) Flax, VS, Hemp, (4) Viscose rayon, pair, copper ammonia rayon or solvent-spun cellulose fiber, (5) Copper ammonia rayon, pair, solvent-spun cellulose fiber,
  • Each analysis data obtained by multivariate analysis of the spectrum data of the mixed fiber mixed with a series of mixed rate is accumulated as a database of differential models of mixed rate related to each combination,
  • the analysis data of the test fiber is collated with a discrimination model according to each combination of the databases, and the mixed use rate of the test fiber is discriminated.
  • the present invention is the fiber discrimination method according to any one of claims 1 to 4,
  • the cellulosic fiber for distinguishing between natural fiber and regenerated fiber, one or two or more spectral data including mainly in the range of wave number 1200 to 850 cm ⁇ 1 or in the vicinity thereof are used for the analysis. To do.
  • the present invention is the fiber discrimination method according to any one of claims 1 to 4,
  • one or more spectral data including mainly in the range of wave numbers 1400 to 900 cm ⁇ 1 or in the vicinity thereof are used for the analysis in order to distinguish cotton from hemp. .
  • the present invention is the fiber discrimination method according to any one of claims 1 to 4, Cellulosic fibers are characterized in that one or two or more spectral data including mainly in the range of wave numbers 1400 to 800 cm ⁇ 1 or in the vicinity thereof are used for the analysis in order to distinguish between regenerated fibers.
  • the present invention is the fiber discrimination method according to any one of claims 1 to 4,
  • one or more spectral data including mainly in the range of wave number 1250 to 900 cm ⁇ 1 or in the vicinity thereof is used for analysis. It is characterized by.
  • the present invention is the fiber identification method according to any one of claims 1 to 4,
  • Cellulose fibers are characterized in that, for differentiation between flax and urn, one or more spectral data including mainly in the range of wave numbers 3500 to 3000 cm ⁇ 1 or in the vicinity thereof are used for the analysis.
  • this invention is the fiber identification method of Claim 5 or 6,
  • the cellulosic fiber is characterized in that an absorption spectrum is obtained after pretreatment with an alkaline substance is performed on the comparative fiber and the test fiber.
  • the present invention is the fiber discrimination method according to any one of claims 1 to 10,
  • the multivariate analysis is principal component analysis, or multiple regression analysis such as principal component regression or PLS regression.
  • the present invention is the fiber discrimination method according to any one of claims 1 to 11,
  • the method for obtaining the absorption spectra of the comparative fiber and the test fiber is an ATR method (total reflection measurement method).
  • the present invention is the fiber identification method according to any one of claims 1 to 12,
  • the same type of heterogeneous fibers classified as cellulose fibers include cotton, flax, linseed, jute, cannabis, viscose rayon, high wet modulus rayon, polynosic rayon, copper ammonia rayon, and solvent-spun cellulose fiber. It is characterized by.
  • this invention is a fiber discrimination method which discriminate
  • Fibers having the same chemical composition but different origins can be distinguished by infrared absorption spectra.
  • a plurality of types of similar and different types of fibers originating from a plurality of single fibers whose fiber types are known are prepared as comparative fibers.
  • infrared absorption spectra for these comparative fibers are obtained. Infrared used uses a range of wave number 4000 cm -1 ⁇ 500 cm -1, excluding the near-infrared.
  • spectrum data in a predetermined wave number range is extracted from the obtained absorption spectrum.
  • an analysis data group obtained by multivariate analysis of the extracted spectrum data is accumulated as a database.
  • databases a plurality of sets of databases in which two types of single fibers are combined may be created.
  • accurate discrimination is made possible. As a result, more accurate fiber discrimination can be performed comparatively easily and objectively.
  • a fiber whose type of fiber to be identified is unknown is prepared as a test fiber.
  • spectrum data in a predetermined wave number region is extracted from the absorption spectrum of the test fiber in the same manner as the database creation step, and analysis data is obtained.
  • the analysis data of the test fiber is collated with the data group of the database. This makes it possible to objectively identify the type of test fiber.
  • a plurality of types of similar heterogeneous fibers are mixed in advance with a series of mixed ratios. You may make it produce the database with respect to a series of comparison fibers which consist of the mixed fiber which were made.
  • a plurality of sets of databases in which two types of single fibers are combined may be created.
  • the analysis data of the test fiber is collated with a series of analysis data groups in the database.
  • the spectrum data in a predetermined wave number region extracted by a combination of similar and different fibers to be differentiated may be changed. In this way, the discrimination accuracy can be further improved by selecting the wave number region used for the analysis.
  • the absorption spectrum may be obtained after the comparison fiber and the test fiber are pretreated with an alkaline substance.
  • the accuracy of discrimination can be further improved by performing pre-processing.
  • the present invention it is possible to provide a fiber discrimination method that has a relatively simple discrimination operation, has objectivity, and can discriminate between different types of fibers without depending on the experience and know-how of an inspector. .
  • FIG. 2 It is a figure which shows the absorption spectrum (average spectrum) of various cellulosic fibers. It is a figure which shows the spectrum (differential spectrum) which carried out the primary differentiation of each spectrum of FIG. It is a discrimination flow figure showing the analysis procedure which discriminates test fiber in a 1st embodiment.
  • FIG. 2 It is the partial flowchart which extracted a part of identification flowchart of FIG. 2 is a scatter diagram of principal component scores of “natural fibers” and “regenerated fibers” obtained in Example 1.
  • FIG. 2 is a scatter diagram of principal component scores of “cotton” and “hemp” obtained in Example 1.
  • FIG. 4 is a scatter diagram of principal component scores of “linen” and “ramie” obtained in Example 1.
  • FIG. 4 is a scatter diagram of principal component scores of “rayon” and “cupra and lyocell” obtained in Example 1.
  • FIG. 4 is a scatter diagram of principal component scores of “cupra” and “lyocell” obtained in Example 1.
  • FIG. It is a discrimination flow figure showing the analysis procedure which discriminates test fiber in a 2nd embodiment.
  • FIG. 6 is a scatter diagram of principal component scores of “natural fibers” and “regenerated fibers” in which principal component scores of test fibers are plotted in Example 2.
  • FIG. 6 is a scatter diagram of principal component scores of “cotton” and “hemp” plotting principal component scores of test fibers in Example 2.
  • FIG. 6 is a scatter diagram of principal component scores of “rayon” and “cupra and lyocell” in which principal component scores of test fibers are plotted in Example 2. It is the figure which compared the mixed use rate of the test fiber calculated
  • FIG. 6 is a scatter diagram of principal component scores of “natural fibers” and “regenerated fibers” in which principal component scores of test fibers are plotted in Example 3.
  • FIG. 6 is a scatter diagram of principal component scores of “cotton” and “hemp” plotting principal component scores of test fibers in Example 3.
  • FIG. 6 is a scatter diagram of principal component scores of “rayon” and “cupra and lyocell” in which principal component scores of test fibers are plotted in Example 3.
  • FIG. 6 is a scatter diagram of principal component scores of “cupra” and “lyocell” in which principal component scores of test fibers are plotted in Example 3. It is the figure which compared the mixing ratio of the test fiber calculated
  • the fiber generally means all fibers used in various textile products such as clothing and industrial materials.
  • synthetic fibers include polyester, nylon, and acrylic.
  • semi-synthetic fibers include acetate.
  • natural cellulose fibers include cotton, and hemp such as flax (linen), ramie (ramie), jute, and hemp.
  • regenerated cellulose fiber include viscose rayon, high wet modulus rayon (also referred to as “HWM rayon”), polynosic rayon, copper ammonia rayon (cupra), solvent-spun cellulose fiber (tensel and lyocell), and the like.
  • viscose rayon high wet modulus rayon (HWM rayon) and polynosic rayon, which are fibers regenerated by the viscose method among these regenerated cellulose fibers, are also referred to as “viscose rayon”.
  • protein fibers include wool (sheep wool), cashmere (cashmere goat hair), yak (cow yak hair), mohair (Angola goat hair), and angora Hair), alpaca (small humpless camel alpaca hair), vicuna (small humpless camel vicuna hair), camel (camel hair), llama (small humpless camel llama hair), fox (fox's And hair fibers such as mink (weasel type mink hair), chinchilla (mouse type chinchilla hair), rabbit (rabbit hair) and the like.
  • fibers having the same chemical composition are defined as “similar heterogeneous fibers”.
  • the fiber group contained in the above-mentioned natural cellulose fiber and regenerated cellulose fiber is made into a cellulose fiber, for example.
  • the fiber group contained in protein fibers other than the above-mentioned silk be an animal hair fiber.
  • optical measurement methods such as infrared absorption spectrum, which is an easy-to-use and objective differentiation method, are effective in differentiating different fibers with different chemical compositions. It has been.
  • the present invention is effective in differentiating cellulosic fibers or animal hair fibers, which are similar and different fibers.
  • infrared absorption spectra are obtained from fibers having known fiber types (hereinafter referred to as “comparison fibers”) and fibers to be differentiated (hereinafter referred to as “test fibers”).
  • the method of obtaining is described.
  • This method is generally referred to as infrared spectroscopy (hereinafter referred to as “IR spectroscopy”). Irradiation of a material to be measured with infrared rays and spectrum of transmitted light or reflected light is obtained to obtain characteristics of the object. It is a way to know.
  • This IR spectroscopy is used to know the molecular structure and state of an object, and is a very general method for analyzing organic substances having different chemical compositions.
  • spectroscopy is a method for measuring the emission or absorption of electromagnetic waves widely from radio waves to gamma rays.
  • IR spectroscopy is widely used not only in research departments but also in manufacturing departments and quality control departments. is doing.
  • infrared rays are distinguished as near infrared rays, middle infrared rays, and far infrared rays, but they may be further finely distinguished, and the definition of the wavelength range is not clear. Therefore, in the present invention, the wavelength range used in IR spectroscopy is 2500 nm to 20000 nm excluding near infrared rays.
  • the IR spectroscopy it is often (in the present invention also referred to as "WN") also wavenumber than the wavelength using the wave number range used in the present invention, the 4000 cm -1 ⁇ 500 cm -1, excluding the near infrared Within range.
  • NIR spectroscopy near-infrared spectroscopy
  • the wavelength range used in the NIR spectroscopy is 800nm ⁇ 2500nm (12500cm -1 ⁇ 4000cm -1 in wavenumber ranges).
  • NIR spectroscopy has extremely small absorption compared to general IR spectroscopy, and therefore, non-destructive and non-contact measurement is possible.
  • direct association with chemical composition is difficult, and the amount of information is extremely small compared to general IR spectroscopy.
  • the development of chemometrics by multivariate analysis has made it possible to apply to quantitative analysis in recent years.
  • the boundary of the wavenumber region used in IR spectroscopy and NIR spectroscopy is set to 4000 cm ⁇ 1 . Therefore, there may be doubts whether 4000 cm ⁇ 1 itself is near infrared or mid infrared. Therefore, in the present invention, when it is necessary to strictly interpret the meaning of "4000cm range of -1 ⁇ 500 cm -1, excluding the near-infrared", the "wave number (WN) is 4000cm -1> WN ⁇ 500cm -1 Within the range of ".
  • NIR spectroscopy has been proposed for use in fiber discrimination (Patent Documents 1 and 2 above).
  • Patent Documents 1 and 2 above due to the small amount of information, practical discrimination between homologous and dissimilar fibers and accurate discrimination of the mixed rate have not been achieved. Therefore, the present invention is generally used only for differentiating different fibers having different chemical compositions in spite of a large amount of information obtained from the fiber, and has not been used for differentiating similar different fibers. It uses the law.
  • the infrared spectrophotometer used in the present invention is inexpensive because it is used in many industries, and the cost of equipment investment and maintenance for identification can be suppressed.
  • FT / IR spectrophotometer a commonly used Fourier transform infrared spectrophotometer
  • the fiber may be finely pulverized to form a tablet together with potassium bromide (KBr) powder, and measurement may be performed by the KBr tablet method in which the transmitted light is measured. Or you may make it measure by ATR method (total reflection measuring method) which can measure reflected light as it is, without destroying a woven or knitted fabric.
  • ATR method total reflection measuring method
  • the obtained absorption spectrum is preferably subjected to atmospheric correction, baseline correction, smoothing correction, submersion depth correction, and the like by a normal method as necessary.
  • the length and diameter of the fiber after pulverization may be arbitrary, but pulverization is preferable.
  • the hygroscopicity is different among the same type of different fibers, and the absorption spectrum may be affected by free water in the fibers.
  • FIG. 1 is a diagram showing absorption spectra (average spectra) of various cellulosic fibers.
  • Each absorption spectrum of FIG. 1 (1-6) was measured in a wave number range of 4000 cm -1 ⁇ 500 cm -1 in the ATR method of FT / IR spectrophotometer.
  • Avicel registered trademark, Asahi Kasei Kogyo
  • the absorption spectra of rayon (3), cupra (4), and lyocell (5) that are regenerated fibers from 3600 cm ⁇ 1 to 3100 cm ⁇ 1 are the natural fibers of cotton (1) and hemp (2).
  • a wider peak width is shown.
  • a sharp peak appears at 3330 cm ⁇ 1 in natural fibers such as cotton (1) and hemp (2), but in regenerated fibers such as rayon (3), cupra (4), and lyocell (5).
  • the main peak appearing over the 1200 cm -1 ⁇ 800 cm -1, cotton (1) is a natural fiber
  • two peaks appear in the vertex hemp compound (2)
  • natural fibers and regenerated fibers which are cellulosic fibers having the same chemical composition, can be distinguished from the absorption spectrum obtained by IR spectroscopy is that the crystalline state of cellulose constituting these fibers is different. It seems to be.
  • natural fibers are type I crystals and regenerated fibers constitute type II crystals.
  • the orientation state of cellulose molecules natural fibers have a parallel structure in which the reducing ends of the molecules are directed in the same direction, and regenerated fibers have an antiparallel structure in which the reducing ends of the molecules are alternately changed in position.
  • the fiber identification method according to the present invention will be described in detail by each embodiment.
  • the present invention is not limited to the following embodiments.
  • spectrum data of each type of comparative fiber is subjected to multivariate analysis, and the obtained analysis data group is accumulated as a database (also referred to as “differentiation model”).
  • database creation process This process is called “database creation process”.
  • the analysis data obtained from the spectrum data of the test fiber is collated with the analysis data group in the database.
  • the type and mixed rate of the test fiber are discriminated using the consistency between the analysis data of the test fiber and the data group of the database of the comparison fiber as an index. This process is called “discrimination process”.
  • each absorption spectrum is calculated
  • the absorption spectrum may be obtained with linen, ramie, jute, hemp and the like as hemp as one hemp group.
  • an absorption spectrum may be obtained with linen and ramie as separate groups, and each group may be distinguished from a cotton group.
  • fiber processing with an alkaline substance may be performed in order to improve dyeability and physical properties at the stage of becoming a woven or knitted fabric.
  • this fiber processing generally an immersion treatment with an alkaline aqueous solution or liquid ammonia is performed.
  • the soaking treatment of cotton with an aqueous sodium hydroxide solution is called “mercerizing” and is widely performed.
  • an infrared absorption spectrum may change a little depending on whether the fiber processing by an alkaline substance is given to the cellulosic fiber which is a discrimination target. Therefore, when discrimination is performed using a sample group in which the presence or absence of fiber processing using an alkaline substance is mixed, the discrimination accuracy may be reduced.
  • cellulosic fiber products that have been subjected to fiber processing with an alkaline substance and cellulosic fiber products that have not been subjected to fiber processing with an alkaline substance are on the market. Accordingly, the present inventors have found that the discrimination accuracy is improved by obtaining an infrared absorption spectrum after pre-treating the comparative fiber and the test fiber with an alkaline substance having a predetermined concentration. In other words, by performing pretreatment with an alkaline substance on comparative fibers and test fibers mixed with or without fiber processing with an alkaline substance, these are unified and absorbed as cellulosic fibers subjected to fiber processing with an alkaline substance. The spectrum approximates and the discrimination accuracy is improved.
  • the conditions for the pretreatment with the alkaline substance are not particularly limited, and may be appropriately selected depending on the kind and concentration of the alkaline substance to be used, the kind of fiber to be treated, and the like.
  • the cellulosic fiber is cotton, it is 8 to 24% by weight as an alkaline substance, preferably 10 to 20% by weight, more preferably 15 to By using a 20 wt% sodium hydroxide aqueous solution and soaking at room temperature, the discrimination accuracy is improved.
  • each fiber has distinction between woven and knitted fabrics, differences in yarn thickness, presence or absence of dyeing, presence or absence of fiber processing agents, and the like. Therefore, the absorption spectrum of each group is obtained in consideration of the relationship between the influence of these pieces of information on the absorption spectrum and the wave number range (described later) used for analysis.
  • an FT / IR spectrophotometer is used when obtaining the absorption spectrum of the comparative fiber. This is because the FT / IR spectrophotometer is inexpensive because it is used in many industries, and the cost of equipment investment and maintenance for identification can be suppressed.
  • the ATR method is used for measurement. This is because, in many cases, the fibers to be identified are already in a woven or knitted state as a fiber product, and there is an advantage that the fibers can be identified in a non-destructive state in the woven or knitted state.
  • the kind of prism used for ATR method is not specifically limited, In the case of a fiber sample, it is generally preferable to use a ZnSe prism.
  • the first embodiment it obtains the respective absorption spectrum by irradiating infrared range of wave number 4000 cm -1 ⁇ 500 cm -1, excluding the near-infrared.
  • “excluding near infrared rays” does not mean that “the absorption spectrum of the near infrared portion is not measured” when measuring the absorption spectrum.
  • range of the absorption spectrum to be used for discrimination is intended to be within the range of the wave number 4000cm -1 ⁇ 500cm -1".
  • this first embodiment it is not intended to analyze the absorption spectra of all regions in the wave number range of 4000cm -1 ⁇ 500cm -1.
  • spectrum data in a predetermined wave number range is used for analysis. This is because by limiting the wave number range used for the analysis, infrared absorption necessary for discrimination is emphasized and noise is eliminated to improve discrimination accuracy.
  • a measurement region may be determined in advance, and an absorption spectrum may be obtained only within that range.
  • the predetermined wave number range here as appropriate depending on the type and combination of fibers to be identified. For example, in cellulosic fibers, natural fiber and regenerated fiber, cotton and linen, linen and ramie, regenerated fibers, cupra and lyocell, etc. There is an appropriate wavenumber range. In addition, about the predetermined wave number range used for discrimination, you may make it analyze only in one wave number range, or you may make it analyze combining two or more several wave number ranges.
  • first preprocess the spectral data for example, first-order differentiation, second-order differentiation, or higher-order differentiation processing is preferably performed. This is because spectral information can be enhanced by such differential processing, such as sharpening a peak buried in the spectrum or eliminating the influence of the background.
  • the method and dimension used in the differentiation process are not particularly limited and are preferably selected as appropriate depending on the type and combination of fibers to be identified. As an example, FIG. 2 shows the spectra (1 to 5) obtained by first-order differentiation of the spectra (1 to 5) in FIG. 1 by the Savitzky-Golay method.
  • spectrum data in a predetermined wavenumber region effective for analysis is extracted from the obtained differential spectrum.
  • the method for extracting the spectral data is not particularly limited. You may make it select the wave number range by the specific functional group considered to be required for an analysis with respect to the kind and combination of the fiber to identify. Further, spectrum data in a wave number range considered to have noise for analysis may be positively excluded. For example, in the case of cellulosic fibers, spectral data in the range of wave numbers from 2750 to 1850 cm ⁇ 1 may not be used for analysis. This is because there is little information effective for analysis from this wave number range, and conversely, absorption of CO 2 or the like may appear as noise.
  • spectral data in the range of wave numbers 3500 cm ⁇ 1 to 3000 cm ⁇ 1 O—H
  • wave numbers 1200 cm ⁇ 1 to 1000 cm ⁇ 1 C—OH, C— Since spectrum data of O-C, C-C) and the like are considered important, they may be analyzed in combination.
  • spectral data within a wave number range of 3500 cm ⁇ 1 to 3000 cm ⁇ 1 is easily affected by the hygroscopic state, and it is conceivable to distinguish them by eliminating them.
  • wave number range selection may be performed using various analysis software such as PCR Moving Window.
  • PCR Moving Window first, a spectrum of a predetermined width is cut out from the end, and principal component regression (PCR) is performed on that portion to create a calibration model. The predicted value derived from this calibration model is compared with the actual measurement value, and the residual sum of squares is recorded. Next, the same operation is performed by moving the region to be cut out to the region adjacent to one spectrum point. By performing this over the entire wave number range, the part where the difference between the predicted value and the actual measurement value becomes small is selected as the wave number range necessary for the analysis.
  • PCR Moving Window first, a spectrum of a predetermined width is cut out from the end, and principal component regression (PCR) is performed on that portion to create a calibration model. The predicted value derived from this calibration model is compared with the actual measurement value, and the residual sum of squares is recorded. Next, the same operation is performed by moving the region to be cut out to the region adjacent to one spectrum point. By performing this over the entire wave number
  • the following spectral data could be extracted using PCR Moving Window.
  • spectral data within a wave number range of 1200 to 850 cm ⁇ 1 C—OH, C—O—C, C—C
  • spectral data in the range of wave numbers 1400 to 900 cm ⁇ 1 O—H, C—OH, C—O—C, C—C
  • spectral data in the range of wave numbers 3500 to 3000 cm ⁇ 1 O—H
  • the discrimination between regenerated fibers that is, the discrimination between rayon and “cupra and lyocell”
  • the spectrum in the range of wave numbers 1400 to 800 cm ⁇ 1 (OH, C—OH, C—O—C, C—C) Data was extracted.
  • spectral data in the range of wave numbers 1250 to 900 cm ⁇ 1 (C—OH, C—O—C, C—C) were extracted.
  • the extracted range may be used for analysis as it is, or the range in the vicinity of the extracted range is analyzed in order to further improve the analysis accuracy. You may make it use for. That is, for the range extracted by PCR Moving Window (for example, wave number 1250 to 900 cm ⁇ 1 ), the analysis has a slightly wider range (for example, wave number 1300 to 850 cm ⁇ 1 ), or within a slightly narrow range (for example, wave number 1250 to 900 cm ⁇ 1 ). A wave number of 1200 to 1000 cm ⁇ 1 ) may be used.
  • the range extracted by PCR Moving Window for example, wave number 1250 to 900 cm ⁇ 1
  • the analysis has a slightly wider range (for example, wave number 1300 to 850 cm ⁇ 1 ), or within a slightly narrow range (for example, wave number 1250 to 900 cm ⁇ 1 ).
  • a wave number of 1200 to 1000 cm ⁇ 1 ) may be used.
  • multivariate analysis is performed on the extracted spectrum data to obtain an analysis data group.
  • the analysis method used for the multivariate analysis is not particularly limited, and any method may be adopted as long as it is an analysis method used for chemometrics.
  • multivariate analysis methods include principal component analysis, multiple regression analysis, independent component analysis, factor analysis, discriminant analysis, quantification theory, cluster analysis, and multidimensional scaling method.
  • PCA principal component analysis
  • PCR principal component regression
  • PLS regression principal component regression
  • the software used for each analysis is not particularly limited.
  • PCA principal component analysis
  • a principal component analysis is performed on one or two or more wave number spectrum data groups extracted from absorption spectra of two fiber groups to be distinguished (for example, cotton and hemp), and each principal component score is analyzed.
  • the analysis software used for the principal component analysis is not particularly limited. In the first embodiment, analysis was performed using a program constructed by the inventor himself using commercially available program creation software. Moreover, after classifying two fiber groups (for example, cotton and hemp) which should be distinguished beforehand, you may make it perform a layered analysis by a principal component analysis. In this case, the principal component analysis is performed after setting a dummy variable in which one fiber (for example, cotton) to be identified is set to “1” and the other fiber (for example, hemp) is set to “0”. It may be.
  • the analysis data group when the principal component analysis is performed on the spectrum data of each fiber group combination thus obtained is stored as a database (differentiation model). These differentiation models will be described in detail in Example 1 below.
  • an absorption spectrum of a test fiber to be identified is obtained.
  • a method for obtaining an absorption spectrum, a method for performing various corrections on the absorption spectrum, and a method for performing a pretreatment such as a differentiation process on the obtained absorption spectrum are the same as those for the above-described comparative fiber.
  • spectral data in the same wave number region as that of the comparative fiber is extracted from the obtained differential spectrum, and each principal component score (described later) is obtained from the spectral data in the same manner as the comparative fiber.
  • the principal component score of the obtained test fiber is compared with the principal component score of the database (discrimination model) to discriminate which fiber group the test fiber belongs to.
  • the principal component analysis may be performed by combining the extracted spectral data of the test fiber with the spectral data of the comparative fiber.
  • the type of test fiber is unknown, but it has been found that the test fiber is a cellulosic fiber by relatively simple microscopy. However, it is not clear which of the cellulosic fibers the test fiber is. Therefore, in the first embodiment, it is preferable to perform fiber discrimination according to the following procedure.
  • FIG. 3 is a discrimination flowchart showing an analysis procedure for discriminating the test fiber in the first embodiment.
  • the test fiber is a natural fiber or a regenerated fiber.
  • a discrimination model obtained from natural fibers and regenerated fibers is used.
  • the test fiber is a natural fiber
  • a discrimination model obtained from cotton and hemp is used.
  • whether linen or ramie is the most common linen is discriminated.
  • a discrimination model obtained from linen and ramie is used.
  • test fiber when it is determined that the test fiber is a regenerated fiber, it is subsequently determined whether the test fiber is rayon or “cupra or lyocell”. At this time, a differential model obtained from rayon and “cupra and lyocell” is used.
  • test fiber when it is determined that the test fiber is “cupra or lyocell”, it is subsequently determined whether the test fiber is cupra or lyocell. At this time, a discrimination model obtained from cupra and lyocell is used.
  • FIG. 4 is a partial flow diagram in which a part of the discrimination flow diagram of FIG. 3 is extracted.
  • the test fiber indistinguishable in FIG. 4 may be a mixed fiber of natural fibers and regenerated fibers, or fibers other than cellulosic fibers may be mixed.
  • a mixed fiber of natural fiber and regenerated fiber it is necessary to identify the mixed rate according to the second embodiment described later.
  • the type of the test fiber can be objectively discriminated.
  • the identification method of the first embodiment will be described in detail with reference to Example 1.
  • This Example 1 performs discrimination between each single fiber according to the first embodiment, and performs discrimination according to a discrimination flow diagram (see FIG. 3) with respect to a plurality of test fibers.
  • Each of the test fibers has been found to be a cellulosic fiber in preliminary identification such as microscopy.
  • Example 1 An absorption spectrum of 45 points in total, which is 9 points of cotton, 6 points of linen, 3 points of ramie, 9 points of rayon, 9 points of cupra, 9 points of lyocell, is obtained. It was. The cotton was pretreated with an aqueous sodium hydroxide solution at room temperature. Measurement of absorption spectrum, using FT / IR spectrophotometer VIR-9550 a (JASCO Corporation), in the ATR method by ZnSe prism, the absorption spectrum was measured at a wavenumber of 4000cm -1 ⁇ 500cm -1. Next, each absorption spectrum after multiplicative scattering correction (MSC) was first-order differentiated by the Savitzky-Golay method to obtain a differential spectrum.
  • MSC multiplicative scattering correction
  • Differential model A “Natural fiber” and “Regenerated fiber” First group (A1) and second group (A2): wave number 1200 to 850 cm ⁇ 1 ⁇
  • Differential Model B “Cotton” and “Hemp” 3rd group (B1) and 4th group (B2): Wave number 1400-900cm -1 ⁇
  • Model C “Linen” and “Rummy” 5th group (C1) and 6th group (C2): Wave number 3500-3000cm -1 ⁇
  • Differential Model D “Rayon” and “Cupra and Lyocell” 7th group (D1) and 8th group (D2): Wave number 1400-800cm -1 ⁇
  • Difference model E “Cupra” and “Lyocell” Ninth group (E1) and tenth group (E2): wave number 1250 to 900 cm ⁇ 1 FIGS.
  • FIG. 5 to 9 are scatter diagrams of principal component scores for the differentiating models A to E obtained in the first embodiment.
  • FIG. 5 is a scatter diagram of the principal component scores of the discrimination model A: “natural fiber” and “regenerated fiber”, with the first principal component (PC1) as the horizontal axis and the second principal component (PC2) as the vertical axis, Two fiber groups, “natural fibers” and “regenerated fibers”, were clearly stratified.
  • the linear discriminant function (L1) for distinguishing between “natural fibers” and “regenerated fibers” is shown in FIG. FIG.
  • FIG. 6 is a scatter diagram of the principal component scores of the discrimination model B: “cotton” and “hemp”, with the first principal component (PC1) as the horizontal axis and the second principal component (PC2) as the vertical axis. Two fiber groups, cotton and hemp, were clearly stratified.
  • a linear discriminant function (L2) for distinguishing between “cotton” and “hemp” is shown in FIG.
  • FIG. 7 is a scatter diagram of principal component scores of the discrimination model C: “linen” and “ramie”, with the second principal component (PC2) as the horizontal axis and the third principal component (PC3) as the vertical axis. "And” Rummy "are clearly stratified.
  • the linear discriminant function (L3) for distinguishing between “linen” and “ramie” is shown in FIG.
  • FIG. 8 is a scatter diagram of principal component scores of differential model D: “rayon” and “cupra and lyocell”, with the second principal component (PC2) as the horizontal axis and the third principal component (PC3) as the vertical axis.
  • PC2 principal component
  • PC3 principal component
  • FIG. 9 is a scatter diagram of principal component scores of the discrimination model E: “cupra” and “lyocell”, with the second principal component (PC2) as the horizontal axis and the third principal component (PC3) as the vertical axis.
  • “And” Lyocell “were clearly stratified.
  • a linear discriminant function (L5) for distinguishing between “cupra” and “lyocell” is shown in FIG.
  • the analysis data group obtained in this way was accumulated as a database of Example 1 as a differential model for each combination.
  • Example 2 Identification process In the identification process of Example 1, five test fibers X1 to X5 made of a single fiber of cellulosic fibers were prepared. First, in the same manner as in the database creation step, absorption spectra of the test fibers X1 to X5 to be identified were obtained, and a differential spectrum was obtained.
  • test fibers X1 to X5 belong to the group of “natural fibers” or “regenerated fibers”. Specifically, spectrum data in the same wave number region (wave number 1200 to 850 cm ⁇ 1 ) as the database was extracted from the obtained differential spectrum, and each principal component score was obtained. The principal component scores of the test fibers X1 to X5 thus obtained were collated with a database (differentiation model A) of “natural fibers” and “regenerated fibers”. Further, the principal component scores of the test fibers X1 to X5 were plotted in the scatter diagram of the principal component scores in FIG. 5 (X1 to X5 in FIG. 5).
  • test fibers X1 to X5 of Example 1 are fibers belonging to the first group (A1) of “natural fibers”.
  • test fibers X3 to X5 are fibers belonging to the second group (A2) of “regenerated fibers”.
  • test fibers X1, X2 identified as “natural fibers” belong to “cotton” or “linen”.
  • spectrum data in the same wave number region (wave number 1400 to 900 cm ⁇ 1 ) as the database was extracted from the obtained differential spectrum, and each principal component score was obtained.
  • the principal component scores of the test fibers X1 and X2 thus obtained were collated with the “cotton” and “hemp” database (differentiation model B).
  • the principal component scores of the test fibers X1 and X2 were plotted in the scatter diagram of the principal component scores in FIG. 6 (X1 and X2 in FIG. 6).
  • FIG. 6 X1 and X2 in FIG. 6
  • test fiber X1 is a fiber belonging to the third group (B1) of “cotton”.
  • test fiber X2 is a fiber belonging to the fourth group (B2) of “Hemp”.
  • test fiber X2 identified as “Hemp” belongs to “linen” or “ramie”. Specifically, spectrum data in the same wave number region (wave number 3500 to 3000 cm ⁇ 1 ) as that in the database was extracted from the obtained differential spectrum to obtain a principal component score. The principal component score of the test fiber X2 thus obtained was collated with the “linen” and “ramie” databases (differentiation model C). Further, the principal component score of the test fiber X2 was plotted in the scatter diagram of the principal component score in FIG. 7 (X2 in FIG. 7). In FIG. 7, it can be seen that the test fiber X2 of Example 1 is a fiber belonging to the fifth group (C1) of “linen”.
  • test fibers X3 to X5 identified as “regenerated fibers” belong to “rayon” or “cupra and lyocell” groups was identified. Specifically, spectrum data in the same wave number region (wave number 1400 to 800 cm ⁇ 1 ) as the database was extracted from the obtained differential spectrum, and each principal component score was obtained. The principal component scores of the test fibers X3 to X5 thus obtained were collated with a database (differentiation model D) of “rayon” and “cupra and lyocell”. Further, the principal component scores of the test fibers X3 to X5 were plotted in the scatter diagram of the principal component scores in FIG. 8 (X3 to X5 in FIG. 8). In FIG.
  • test fiber X3 is a fiber belonging to the seventh group (D1) of “rayon”.
  • test fibers X4 and X5 are fibers belonging to the eighth group (D2) of “cupra and lyocell”.
  • test fibers X4 and X5 identified as “cupra and lyocell” belong to “cupra” and “lyocell”. Specifically, spectrum data in the same wave number region (wave number 1250 to 900 cm ⁇ 1 ) as the database was extracted from the obtained differential spectrum, and each principal component score was obtained. The principal component scores of the test fibers X4 and X5 thus obtained were collated with the “cupra” and “Lyocell” databases (differentiation model E). Further, the principal component scores of the test fibers X4 and X5 were plotted in the scatter diagram of the principal component scores in FIG. 9 (X4 and X5 in FIG. 9).
  • test fiber X4 is a fiber belonging to the ninth group (E1) of “cupra”.
  • test fiber X5 is a fiber belonging to the tenth group (E2) of “Lyocell”.
  • the type of fiber could be easily and accurately distinguished from the test fiber consisting of a single fiber. Therefore, in the present invention, it is possible to provide a fiber discrimination method in which discrimination operation is relatively simple and objective, and can discriminate between different types of different fibers without depending on the experience and know-how of the inspector.
  • Second Embodiment it does not distinguish between each single fiber as a test fiber, but makes the case where two or more types of fibers are mixed. That is, although it is a cellulose fiber in preliminary appraisal such as a microscopic method, it is adopted when it is found that two or more kinds of fibers are mixed. Further, in the discrimination process of the first embodiment, the data obtained by analyzing the spectrum data of the test fiber does not match any single fiber region whose fiber type is known, or matches a plurality of single fibers. This is used when the fiber type cannot be clearly identified, such as when it is identified.
  • (1) Database creation step for example, two types of single fibers of cotton and rayon and mixed fibers obtained by mixing these fibers at a series of mixed ratios are prepared as a series of comparative fibers. . Next, each absorption spectrum is obtained for each of these comparative fibers. The method for obtaining the absorption spectrum, the method for performing various corrections on the absorption spectrum, and the method for performing preprocessing such as differentiation on the obtained absorption spectrum are the same as the database creation step of the first embodiment. Further, in the same manner as in the database creation process of the first embodiment, spectrum data of one or more wave numbers is extracted from each absorption spectrum.
  • the analysis method used for multivariate analysis is not particularly limited, and uses multiple regression analysis such as principal component analysis (PCA), principal component regression (PCR), or PLS regression as in the first embodiment. It is preferable to do. In particular, when performing discrimination of mixed fibers, it is preferable to use PLS regression analysis instead of the principal component analysis (PCA) of the first embodiment.
  • PCA principal component analysis
  • PCR principal component regression
  • PLS regression analysis instead of the principal component analysis (PCA) of the first embodiment.
  • the software used for each analysis is not particularly limited.
  • the discrimination using PLS regression analysis will be described. Specifically, with respect to a spectrum data group of one or more wavenumber regions extracted from an absorption spectrum of a series of comparative fibers obtained by mixing two fiber groups (for example, cotton and rayon) to be distinguished at a series of mixed ratios. PLS regression analysis is performed to obtain a discrimination model (also referred to as “quantitative model”).
  • the analysis software used for the PLS regression analysis is not particularly limited. In the second embodiment, analysis was performed using a program constructed by the inventor himself with commercially available program creation software.
  • an absorption spectrum of a test fiber to be identified is obtained.
  • a method for obtaining an absorption spectrum, a method for performing various corrections on the absorption spectrum, and a method for performing a pretreatment such as a differentiation process on the obtained absorption spectrum are the same as those for the above-described comparative fiber.
  • spectrum data in the same wave number region as that of the comparative fiber is extracted from the obtained differential spectrum.
  • the extracted spectrum data of the test fiber is used as analysis data, and the analysis data is applied (multiplied) to the discrimination model (quantitative model) to obtain the mixed ratio of the test fiber.
  • the mixing ratio is unknown as well as the type of fiber mixed with the test fiber, but it became clear that the test fiber was a cellulosic fiber by relatively simple microscopy. ing. Therefore, in the second embodiment, it is preferable to perform fiber discrimination by the following procedure.
  • FIG. 10 is a discrimination flowchart showing an analysis procedure for discriminating the test fiber in the second embodiment.
  • the single fiber discrimination method described in the first embodiment is performed on the test fiber.
  • the type of fiber being mixed is known, an optimum discrimination model (quantitative model) is selected for this test fiber.
  • the spectrum data of the test fiber is used as analysis data, and the analysis data is applied (multiplied) to the selected discrimination model (quantitative model), so that the mixed rate of the test fiber is discriminated. To do.
  • the present Example 2 performs discrimination of mixed fibers in which two or more kinds of fibers according to the second embodiment are mixed, and according to a discrimination flow diagram (see FIG. 10) for a plurality of test fibers. It is to make a discrimination.
  • a knitted or knitted fabric in which cotton and rayon are mixed will be described as an example.
  • Example 2 a series of mixed fibers in which two types of cellulose fibers are mixed at a predetermined ratio are prepared.
  • Example 2 46 woven or knitted fabrics in which cotton and rayon were blended at 100: 0 to 0: 100 were prepared, and absorption spectra were obtained for these.
  • Measurement of absorption spectrum using FT / IR spectrophotometer VIR-9550 a (JASCO Corporation), in the ATR method by ZnSe prism, the absorption spectrum was measured at a wavenumber of 4000cm -1 ⁇ 500cm -1.
  • each absorption spectrum after multiplicative scattering correction (MSC) was first-order differentiated by the Savitzky-Golay method to obtain a differential spectrum.
  • spectral data in the wavenumber region considered to be optimal for distinguishing the mixture ratio of cotton and rayon were extracted using the PLSR Moving Window.
  • a wave number range of wave number 1200 to 850 cm ⁇ 1 was selected.
  • PLS regression analysis was performed in this wave number region, and the obtained analysis data group was accumulated as a database of Example 2 as a differential model (quantitative model) of mixed fibers of cotton and rayon.
  • Example 2 Identification process In the identification process of Example 2, six test fibers Y1 to Y6 in which cotton and rayon were mixed at various ratios were prepared. These mixed rates were unknown at the discrimination stage. First, in the same manner as the database creation step, the absorption spectra of the test fibers Y1 to Y6 to be identified were obtained, and the differential spectra were obtained.
  • test fibers Y1 to Y6 were differentiated according to the combination of each single fiber (differentiation models A to E in Example 1 above) according to the differentiation flow of the first embodiment (see FIG. 3).
  • differentiation models A to E in Example 1 above were differentiated according to the combination of each single fiber (differentiation models A to E in Example 1 above) according to the differentiation flow of the first embodiment (see FIG. 3).
  • differentiation model A natural fibers and regenerated fibers
  • differentiation model B cotton and hemp
  • differentiation model D regenerated fibers
  • FIG. 11 is a scatter diagram (differentiation model A) of principal component scores of “natural fibers” and “regenerated fibers” in which principal component scores of test fibers Y1 to Y6 are plotted.
  • FIG. 12 is a scatter diagram (differentiation model B) of the principal component scores of “cotton” and “hemp” plotting the principal component scores of the test fibers Y1 to Y6.
  • FIG. 13 is a scatter diagram (differentiation model D) of principal component scores of “rayon” and “cupra and lyocell” in which principal component scores of test fibers Y1 to Y6 are plotted.
  • test fibers Y1 to Y6 were plotted in the vicinity of the middle of “natural fiber” and “regenerated fiber” across the linear discriminant function L1 in FIG. Further, although plotted on the “cotton” side of the linear discriminant function L2 in FIG. 12, it is distributed in a wide range of “rayon” and “cupra and lyocell” across the linear discriminant function L4 in FIG. From these, it was determined that the test fibers Y1 to Y6 were mixed with cotton and rayon.
  • each spectral data of the test fibers Y1 to Y6 is used as analysis data, and the analysis data is applied (multiplied) to the selected model (quantitative model) of the mixed fiber of cotton and rayon.
  • the mixed ratio of the fibers Y1 to Y6 was identified.
  • the mixed use rate was identified by the conventional method of JISL 1030-2. Table 1 compares the results of Example 2 with the results of the conventional method.
  • the present Example 3 performs the discrimination of the mixed fiber in which two or more kinds of fibers are mixed similarly to the above Example 2, and according to the discrimination flow diagram (see FIG. 10) for a plurality of test fibers. It is to make a discrimination.
  • a woven or knitted fabric mixed woven fabric in which cotton and lyocell are mixed will be described as an example.
  • spectral data in the wavenumber region considered to be optimal for distinguishing the mixture ratio of cotton and lyocell were extracted using the PLSR Moving Window.
  • a wave number range of wave numbers 1300 to 800 cm ⁇ 1 was selected.
  • a PLS regression analysis was performed in this wavenumber region, and the obtained analysis data group was accumulated as a database of Example 3 as a differentiation model (quantitative model) of mixed fibers of cotton and lyocell.
  • Example 3 Identification process In the identification process of Example 3, six test fibers Z1 to Z6 in which cotton and lyocell were mixed at various ratios were prepared. These mixed rates were unknown at the discrimination stage. First, in the same manner as the database creation step, the absorption spectra of the test fibers Z1 to Z6 to be identified were obtained, and the differential spectra were obtained.
  • test fibers Z1 to Z6 were differentiated according to the combination of each single fiber (differentiation models A to E of Example 1 above) according to the differentiation flow of the first embodiment (see FIG. 3).
  • differentiation model A natural fibers and regenerated fibers
  • differentiation model B cotton and hemp
  • differentiation model D regenerated fibers
  • differentiation model E cupra and lyocell
  • FIG. 15 is a scatter diagram (differentiation model A) of the principal component scores of “natural fibers” and “regenerated fibers” in which the principal component scores of the test fibers Z1 to Z6 are plotted.
  • FIG. 16 is a scatter diagram (differentiation model B) of principal component scores of “cotton” and “hemp” in which principal component scores of test fibers Z1 to Z6 are plotted.
  • FIG. 17 is a scatter diagram (differentiation model D) of principal component scores of “rayon” and “cupra and lyocell” in which principal component scores of test fibers Z1 to Z6 are plotted.
  • FIG. 18 is a scatter diagram (differentiation model E) of principal component scores of “cupra” and “lyocell” in which principal component scores of test fibers Z1 to Z6 are plotted.
  • test fibers Z1 to Z6 are plotted in the vicinity of the middle of “natural fibers” and “regenerated fibers” across the linear discriminant function L1 in FIG. Further, although plotted on the “cotton” side of the linear discriminant function L2 in FIG. 16, in FIG. 17, it is distributed over a wide range of “rayon” and “cupra and lyocell” across the linear discriminant function L4. Furthermore, although plotted on the “lyocell” side of the linear discriminant function L5 in FIG. 18, it is distributed over a fairly wide range. From these, it was determined that the test fibers Z1 to Z6 were mixed with cotton and lyocell.
  • each spectral data of the test fibers Z1 to Z6 is used as analysis data, and the analysis data is applied (multiplied) to the selected model (quantitative model) of the mixed fiber of cotton and lyocell.
  • the mixed ratio of the fibers Z1 to Z6 was identified.
  • the mixed use rate was identified by the conventional method of JISL 1030-2. The results of Example 3 and the results of the conventional method are compared and shown in Table 2.
  • the present invention it is possible to provide a fiber discrimination method in which discrimination operation is relatively simple and objective, and can discriminate between different types of different fibers without depending on the experience and know-how of the inspector.
  • cellulose fibers are used as examples for distinguishing fibers having the same chemical composition.
  • the present invention is not limited to this, and various animal hair fibers as protein fibers are used. You may make it perform discrimination and the discrimination between fibers with the same chemical composition.
  • multivariate analysis is performed between two fiber groups. However, the present invention is not limited to this, and multivariate analysis is performed simultaneously between three or more fiber groups. You may make it do.
  • discrimination is performed based on the absorption spectrum obtained by IR spectroscopic analysis.
  • the present invention is not limited to this, and discrimination may be performed based on the transmission spectrum obtained by IR spectroscopic analysis. Good.
  • an absorption spectrum within a wave number range of 4000 to 500 cm ⁇ 1 is measured, and spectrum data in a predetermined wave number range used for analysis is extracted from the absorption spectrum. Instead, only the absorption spectrum in one or two or more predetermined wavenumber regions used for analysis may be measured.
  • spectrum data is analyzed by principal component analysis.
  • spectrum data is analyzed by PLS regression analysis.
  • the present invention is not limited to this.
  • the spectral data may be analyzed by multiple regression analysis such as principal component regression (PCR) or PLS regression, or other multivariate analysis.
  • PCR principal component regression
  • PLS regression or other multivariate analysis.
  • the absorption spectrum is obtained by the ATR method.
  • the present invention is not limited to this, and other methods such as the KBr tablet method after pulverizing the comparative fiber or the test fiber are used.
  • an absorption spectrum may be obtained.
  • an FT / IR spectrophotometer is used.
  • the present invention is not limited to this, and a dispersive infrared spectrophotometer may be used.
  • Example 1 spectral data in a specific wave number range extracted by PCR Moving Window or PLSR Moving Window is used.
  • the wave number range may be extracted by using a specific functional group that is considered necessary for the analysis.
  • Example 1 the combination of the first principal component and the second principal component or the combination of the second principal component and the third principal component was used for the analysis.
  • the combination of principal components used for the analysis is not limited to these, and any combination of principal components may be used. Moreover, you may make it analyze in three dimensions or more using three or more main components.
  • Example 1 In Example 1 described above, only spectral data within a wave number range of 1200 to 850 cm ⁇ 1 is used for discrimination between natural fibers and regenerated fibers, but the present invention is not limited to this. Spectral data in the range of 3500 to 3000 cm ⁇ 1 or in the vicinity thereof may be used in combination. (11) In the first embodiment, only the spectral data in the range of wave numbers 1400 to 900 cm ⁇ 1 is used for discrimination between cotton and hemp, but the present invention is not limited to this. For example, the wave number 3500 Spectral data in the range of up to 3000 cm ⁇ 1 or in the vicinity thereof may be used in combination.
  • spectral data within a wave number range of 1250 to 900 cm ⁇ 1 is used for discrimination between cupra and lyocell.
  • the present invention is not limited to this.
  • a wave number of 3500 to Spectral data within the range of 3000 cm ⁇ 1 or in the vicinity thereof may be used in combination.
  • the present invention provides an accurate discrimination means for such market demands and does not rely on the experience and know-how of the inspector unlike the conventional method.
  • the present invention provides an effective discrimination means for market stability and international fair trade, and is simply a conventional method JISL 1030-1 (Fiber product mixture rate test method-Part 1). : Fiber discrimination), and to provide a discrimination means that can be used as an international standard, as well as a discrimination means that complements JISL 1030-2 (Fiber mixed rate test method-Part 2: Fiber mixed rate) it can.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Provided is a fiber identification method exhibiting objectivity, using a comparatively simple identification operation, and capable of identifying fibers of the same category but different type, without relying on the experience or know-how of an inspector. The method involves: obtaining absorption spectra by selecting a plurality of single fibers, the fiber type of which is known, and mixed fibers obtained by mixing the known single fibers in a series of mixing ratios as fibers for comparison, and irradiating each of the fibers for comparison with infrared rays in a wavenumber range of 4,000cm-1 to 500cm-1, excluding near-infrared rays; extracting spectrum data in a prescribed wavenumber range from these absorption spectra, and accumulating analysis data groups obtained by multivariate analysis as a database; and next, selecting a fiber, the fiber type of which is unknown, as a fiber to be tested, obtaining analysis data from the absorption spectrum of this fiber to be tested, collating with the data groups in the database, and identifying the mixing ratio and type of the fiber to be tested.

Description

繊維鑑別方法Fiber identification method
 本発明は、繊維製品或いは織編物などに使用されている繊維の種類や混用率を鑑別する繊維鑑別方法に関するものである。特に、セルロース系繊維や獣毛系繊維など同系に分類される同系異種繊維を鑑別する繊維鑑別方法に関するものである。 The present invention relates to a fiber discrimination method for discriminating the type and mixed rate of fibers used in textile products or woven or knitted fabrics. In particular, the present invention relates to a fiber discrimination method for differentiating different types of similar fibers such as cellulosic fibers and animal hair fibers.
 市場には多くの繊維製品が広い用途に流通している。また、繊維製品の生産地と消費地がグローバルに展開される今日においては、繊維製品の輸出入の際に取引の安全や信頼を確保するために、各国の繊維関係の検査機関で繊維鑑別が行われている。 In the market, many textile products are distributed for wide use. In addition, today, where textile products are produced and consumed globally, in order to ensure the safety and trust of transactions when importing and exporting textile products, textile inspection is conducted by textile-related inspection organizations in each country. Has been done.
 これらの検査機関では、例えば日本においては、JIS L 1030‐1(繊維製品の混用率試験方法‐第1部:繊維鑑別)、及び、JISL 1030‐2(繊維製品の混用率試験方法‐第2部:繊維混用率)に基づいて鑑別を行っている。 In these inspection organizations, for example, in Japan, JIS L-1030-1 (Fiber product mix rate test method-Part 1: Fiber discrimination) and JISL 1030-2 (Fiber product mix rate test method-2 Part: fiber mixed rate).
 例えば、JIS L1030‐1(繊維製品の混用率試験方法‐第1部:繊維鑑別)における鑑別方法には、燃焼試験、繊維中の塩素の確認試験、繊維中の窒素の確認試験、顕微鏡試験、よう素‐よう化カリウム溶液による着色試験、キサントプロテイン反応試験、赤外吸収スペクトルの測定試験などがある。 For example, the discrimination method in JIS L1030-1 (Fiber product mixed rate test method-Part 1: Fiber discrimination) includes a combustion test, a chlorine check test in a fiber, a nitrogen check test in a fiber, a microscopic test, There are coloring test with iodine-potassium iodide solution, xanthoprotein reaction test, infrared absorption spectrum measurement test and so on.
 これらの試験法はそれぞれ有効なものであり、これらを組み合わせることにより多くの繊維が鑑別できる。しかし、化学的組成が同じ繊維(以下「同系異種繊維」という)、例えば、綿、各種麻、各種レーヨン、銅アンモニアレーヨン、溶剤紡糸セルロース繊維などのセルロース系繊維や、カシミヤ、ウール、ヤク、モヘア、アンゴラ、アルパカ、ビキューナ、キャメル、リャマなどの獣毛系繊維は、上記各試験法のうち化学的試験法では同一繊維或いは類似繊維と鑑別される。従って、これらの化学的試験法では同系異種繊維を明確に区別することはできない。 These test methods are effective, and many fibers can be identified by combining them. However, fibers having the same chemical composition (hereinafter referred to as “similar heterogeneous fibers”), for example, cellulose fibers such as cotton, various hemps, various rayons, copper ammonia rayon, solvent-spun cellulose fibers, cashmere, wool, yak, mohair Animal fibers such as Angola, Alpaca, Vicuna, Camel, and Llama are distinguished from the same or similar fibers by the chemical test method among the above test methods. Therefore, these chemical test methods cannot clearly distinguish homologous heterogeneous fibers.
 また、上記試験法には赤外吸収スペクトルの測定試験も含まれる。しかし、この測定試験は、専ら化学的組成が異なる繊維(以下「異系繊維」という)を鑑別するものであり、同系異種繊維を明確に区別することはできないとされている。 Also, the above test method includes an infrared absorption spectrum measurement test. However, this measurement test is intended only to distinguish fibers having different chemical compositions (hereinafter referred to as “heterogeneous fibers”), and it is said that homogenous heterogeneous fibers cannot be clearly distinguished.
 そこで、これらのセルロース系繊維や獣毛系繊維などの同系異種繊維の鑑別には、主にその外観的特徴の違いを指標とする顕微鏡試験が有効であり、広く行われている。この顕微鏡試験による繊維鑑別を行うには、検査員が光学顕微鏡を用いて目視により検査対象の繊維を標準写真見本と対比させて行っている。また、この鑑別方法において混合繊維の混用率を求めるには、検査員が光学顕微鏡を用いて目視により検査対象の混合繊維に含まれる異種の繊維の本数や直径を求め、或いは、分別してそれぞれの重量を測定するなどの方法で行っている。 Therefore, a microscopic test mainly using the difference in appearance characteristics as an index is effective and widely used for the discrimination of similar fibers such as cellulosic fibers and animal hair fibers. In order to perform fiber discrimination by this microscopic test, an inspector visually compares the fiber to be inspected with a standard photograph sample using an optical microscope. In addition, in this discrimination method, in order to obtain the mixed fiber mixture rate, an inspector visually determines the number and diameter of different types of fibers contained in the mixed fiber to be inspected using an optical microscope, or separates and determines each of the mixed fibers. This is done by measuring the weight.
 従って、これらの方法においては、各検査機関の検査員の経験とノウハウの違いによる鑑別結果のばらつきが生じるという問題があった。また、混用率を求める場合には、検査員による非常に煩雑で長時間に亘る作業を伴うという問題があった。更に、高価な獣毛系繊維などには手の込んだ偽装が行われていることがあり、上記方法のみでは正確な鑑別が行えないという問題があった。 Therefore, in these methods, there is a problem that the discrimination results vary due to differences in the experience and know-how of the inspectors of each inspection organization. In addition, when the mixed rate is obtained, there is a problem that the inspector is very complicated and requires a long time. Further, expensive animal hair fibers and the like are often subjected to elaborate disguise, and there is a problem that accurate discrimination cannot be performed only by the above method.
 更に、セルロース系繊維の中でもテンセル(登録商標)、リヨセル(登録商標)などの溶剤紡糸セルロース繊維(以下、代表して「リヨセル」ともいう)の外観的特徴は、銅アンモニアレーヨン(以下「キュプラ」ともいう)とほぼ同じ円形断面をしている。また、獣毛系繊維の中でも特に高級品とされるカシミヤを用いた繊維製品には、カシミヤと見分けが付きにくいヤクの毛を混合し、或いは、ウールのスケールを除去(「脱スケール」という)して混合するなど手の込んだ偽装が行われている。このような場合には、顕微鏡試験に経験を積んだ検査員でも正確な判断が困難である。 Further, among cellulose fibers, solvent-spun cellulose fibers such as Tencel (registered trademark) and Lyocell (registered trademark) (hereinafter also referred to as “lyocell”) have an appearance characteristic of copper ammonia rayon (hereinafter “cupra”). It has the same circular cross-section as (also called). In addition, the fiber products using cashmere, which is considered to be a particularly high-class animal hair fiber, are mixed with yak hair that is difficult to distinguish from cashmere, or the wool scale is removed (referred to as “descaling”). Elaborate camouflage such as mixing is performed. In such a case, it is difficult for an inspector who has experience in a microscopic examination to make an accurate judgment.
 これに対して、下記特許文献1においては、セルロース系の同系異種繊維である繊維素繊維(溶剤紡糸セルロース繊維に同じ)とキュプラの鑑別方法が提案されている。この鑑別方法は、両繊維が61%以上の硫酸に浸漬した時の溶解状態を顕微鏡下で観察してセルロース系の同系異種繊維を鑑別するというものである。 On the other hand, the following Patent Document 1 proposes a method for discriminating between cellulose fiber (same as solvent-spun cellulose fiber) and cupra, which are cellulosic heterogeneous fibers. In this discrimination method, the dissolved state when both fibers are immersed in 61% or more of sulfuric acid is observed under a microscope to discriminate cellulosic homologous different fibers.
 また、下記特許文献2においては、獣毛系の同系異種繊維に対する繊維鑑別方法および繊維鑑別装置が提案されている。この繊維鑑別方法は、一般の赤外線より波長の長い電磁波を利用したテラヘルツ分光法を用いて獣毛系繊維の細胞構造(一次構造)や細胞の集合形式(高次構造)を解析して獣毛系の同系異種繊維を鑑別するというものである。 Further, in Patent Document 2 below, a fiber discrimination method and a fiber discrimination device for animal hair similar and different fibers are proposed. This fiber discrimination method uses the terahertz spectroscopy that uses electromagnetic waves with longer wavelengths than general infrared rays to analyze the cell structure (primary structure) and cell aggregation (higher order structure) of animal hair fibers. The system distinguishes between similar and dissimilar fibers.
 更に、下記非特許文献1においては、本発明の発明者により、一般の赤外線より波長の短い近赤外分光法を用いた布地材質の判別が提案されている。この判別方法は、近赤外分光法にフーリエ変換によるスペクトルのゆらぎ解析の手法を応用したものである。 Furthermore, in the following non-patent document 1, the inventor of the present invention proposes discrimination of a fabric material using near infrared spectroscopy having a wavelength shorter than that of general infrared rays. This discriminating method applies a technique of spectrum fluctuation analysis by Fourier transform to near-infrared spectroscopy.
 また、下記非特許文献2においては、本発明の発明者により、近赤外分光法による混紡繊維布地の繊維鑑別と混用率測定が提案されている。この鑑別方法は、近赤外分光法とケモメトリックス(化学を示すchemistryと計量学を示すmetricsからなる造語)を用いた解析手法を応用したものである。 Further, in the following Non-Patent Document 2, the inventor of the present invention proposes fiber discrimination and mixed ratio measurement of a blended fiber fabric by near infrared spectroscopy. This discrimination method is an application of an analysis method using near infrared spectroscopy and chemometrics (a coined word consisting of chemistry indicating chemistry and metrics indicating metric).
特開平10-332684号公報JP-A-10-332684 特開2011-203138号公報JP 2011-203138 A
 上記特許文献1の鑑別方法は、繊維の溶解状態を顕微鏡下で観察するというものであり、この場合にも検査員の経験とノウハウの違いによる鑑別結果のばらつきが生じるという問題があった。また、繊維に染色や樹脂加工などが施されている場合には、溶解状態が変化して正確な鑑別が行えないという問題があった。 The discrimination method of the above-mentioned Patent Document 1 is to observe the dissolved state of the fiber under a microscope. In this case as well, there is a problem that the discrimination results vary due to differences in inspector experience and know-how. In addition, when the fibers are dyed or processed with resin, there is a problem in that the state of dissolution changes and accurate discrimination cannot be performed.
 また、上記特許文献2の繊維鑑別方法においては、鑑別対象である繊維をテラヘルツ電磁波の波長より十分に小さいサイズ(10μm程度)にしなければ、入射テラヘルツ電磁波が散乱して検出器に入射するテラヘルツ電磁波の強度が減衰する。その為、粉砕に伴う温度上昇を防ぎながら凍結粉砕する方法が要求される。これらの操作は煩雑であり、また、粉砕により繊維の高次構造が破壊され、情報量が減少するという問題があった。 Moreover, in the fiber discrimination method of the above-mentioned Patent Document 2, if the fiber to be identified is not sufficiently smaller in size (about 10 μm) than the wavelength of the terahertz electromagnetic wave, the incident terahertz electromagnetic wave is scattered and incident on the detector. The intensity of is attenuated. Therefore, there is a demand for a method of freeze pulverization while preventing a temperature rise associated with pulverization. These operations are complicated, and there is a problem that the higher-order structure of the fiber is destroyed by pulverization, and the amount of information is reduced.
 一方、上記非特許文献1の判別方法においては、判別の可能性は示唆されるものの、未だ正確な鑑別をするには至っていない。また、上記非特許文献2の鑑別方法においては、主に異系繊維である綿‐ポリエステル混紡布地の混用率を求める可能性を示唆するものであり、同系異種繊維の鑑別や混用率の鑑別を提案するものではない。 On the other hand, the discrimination method of Non-Patent Document 1 suggests the possibility of discrimination, but has not yet made an accurate discrimination. Further, in the discrimination method of Non-Patent Document 2 above, it suggests the possibility of obtaining the blending rate of cotton-polyester blended fabrics that are mainly different fibers. It is not a suggestion.
 そこで、本発明は、上記問題に対処して、鑑別操作が比較的簡単で客観性を有し、検査員の経験やノウハウに頼ることなく同系異種繊維の鑑別をすることのできる繊維鑑別方法を提供することを目的とする。 Therefore, the present invention addresses the above-described problems, and provides a fiber discrimination method that is relatively easy to differentiate and has objectivity, and that can distinguish between different types of similar fibers without relying on the experience and know-how of the inspector. The purpose is to provide.
 上記課題の解決にあたり、本発明者らは、鋭意研究の結果、テラヘルツ分光法や近赤外分光法に比べ吸収スペクトルの情報量が豊富な一般の赤外分光法を採用し、得られた吸収スペクトルから特定の波長範囲のスペクトルデータを抽出し、この情報を統計処理することで同系異種繊維を鑑別できることを見出し、本発明の完成に至った。 In solving the above-mentioned problems, the present inventors, as a result of earnest research, adopted general infrared spectroscopy, which has abundant amount of information of absorption spectrum compared to terahertz spectroscopy and near infrared spectroscopy, and obtained absorption It was found that spectral data of a specific wavelength range was extracted from the spectrum, and this type of information was statistically processed to distinguish homologous heterogeneous fibers. Thus, the present invention was completed.
 即ち、本発明に係る繊維鑑別方法は、請求項1の記載によると、
 セルロース系繊維や獣毛系繊維など同系に分類される同系異種繊維を鑑別する繊維鑑別方法であって、
 繊維の種類が既知の複数の単一繊維を起源とする複数の比較繊維を準備し、各比較繊維に対して近赤外線を除く波数4000cm-1~500cm-1の範囲内の赤外線を照射してそれぞれの吸収スペクトルを求め、
 これらの吸収スペクトルから所定の波数域におけるスペクトルデータを抽出し、当該スペクトルデータを多変量解析して得られた解析データ群をデータベースとして蓄積するデータベース作成工程と、
 繊維の種類が未知の繊維を被検繊維とし、前記データベース作成工程と同様にして当該被検繊維の吸収スペクトルから解析データを求め、
 この被検繊維の解析データを前記データベースのデータ群と照合して、前記解析データと前記データベースのデータ群との一致性を指標として、前記被検繊維の種類を鑑別する鑑別工程とを有している。
That is, according to the description of claim 1, the fiber discrimination method according to the present invention is as follows.
A fiber discrimination method for differentiating different types of similar fibers classified as the same, such as cellulosic fibers and animal hair fibers,
And providing a plurality of comparison fibers types of fibers to originate from a plurality of known single fibers, and irradiating infrared rays in the wave number range of 4000 cm -1 ~ 500 cm -1, excluding the near infrared for each comparative fibers Find each absorption spectrum,
A database creation step of extracting spectrum data in a predetermined wavenumber region from these absorption spectra, and accumulating as a database an analysis data group obtained by multivariate analysis of the spectrum data;
The test fiber is an unknown fiber type, and the analysis data is obtained from the absorption spectrum of the test fiber in the same manner as the database creation step.
A verification step of comparing the analysis data of the test fiber with the data group of the database, and using the consistency between the analysis data and the data group of the database as an index, ing.
 また、本発明は、請求項2の記載によると、請求項1に記載の繊維鑑別方法であって、
 セルロース系繊維において、前記データベース作成工程において、下記の各組合せに係る2種類の比較繊維、
(1)天然繊維、対、再生繊維、
(2)綿、対、麻類、
(3)亜麻、対、苧麻、
(4)ビスコース系レーヨン、対、銅アンモニアレーヨン又は溶剤紡糸セルロース繊維、
(5)銅アンモニアレーヨン、対、溶剤紡糸セルロース繊維、
のスペクトルデータを多変量解析して得られた各解析データを各組合せに係る鑑別モデルのデータベースとして蓄積し、
 前記被検繊維の解析データを前記データベースの各組合せに係る鑑別モデルとそれぞれ照合して、前記被検繊維の種類を鑑別することを特徴とする。
Moreover, according to the description of Claim 2, this invention is the fiber identification method of Claim 1,
In the cellulosic fiber, in the database creation step, two types of comparative fibers according to the following combinations,
(1) Natural fiber, pair, regenerated fiber,
(2) Cotton, pair, hemp,
(3) Flax, VS, Hemp,
(4) Viscose rayon, pair, copper ammonia rayon or solvent-spun cellulose fiber,
(5) Copper ammonia rayon, pair, solvent-spun cellulose fiber,
Each analysis data obtained by multivariate analysis of the spectrum data of is accumulated as a database of differential models related to each combination,
The analysis data of the test fiber is collated with a discrimination model according to each combination of the databases, and the type of the test fiber is discriminated.
 また、本発明は、請求項3の記載によると、請求項1に記載の繊維鑑別方法であって、
 前記複数の単一繊維を起源とする複数の比較繊維に加え、予め準備した同系異種繊維を一連の混用率で混合した混合繊維からなる一連の比較繊維を準備し、各比較繊維に対して前記データベース作成工程と同様にして得られた一連の解析データ群をデータベースとして蓄積し、
 前記被検繊維の解析データを前記データベースの一連の解析データ群と照合して、前記被検繊維の種類、前記被検繊維が少なくとも2種類の同系異種繊維が混合されたものであること、前記被検繊維に混合されている同系異種繊維の種類、及び/又は、前記被検繊維の混用率を鑑別することを特徴とする。
According to the description of claim 3, the present invention is the fiber discrimination method according to claim 1,
In addition to the plurality of comparative fibers originating from the plurality of single fibers, a series of comparative fibers composed of mixed fibers prepared by mixing the same type of different kinds of fibers prepared in advance at a series of mixing ratios are prepared. A series of analysis data groups obtained in the same way as the database creation process is accumulated as a database,
The analysis data of the test fiber is collated with a series of analysis data groups of the database, the type of the test fiber, the test fiber is a mixture of at least two kinds of similar dissimilar fibers, It is characterized by discriminating the kind of the same kind of different fibers mixed in the test fiber and / or the mixed rate of the test fiber.
 また、本発明は、請求項4の記載によると、請求項3に記載の繊維鑑別方法であって、
 セルロース系繊維において、前記データベース作成工程において、前記複数の単一繊維を起源とする複数の比較繊維のスペクトルデータに加え、下記の各組合せに係る2種類の比較繊維、
(1)天然繊維、対、再生繊維、
(2)綿、対、麻類、
(3)亜麻、対、苧麻、
(4)ビスコース系レーヨン、対、銅アンモニアレーヨン又は溶剤紡糸セルロース繊維、
(5)銅アンモニアレーヨン、対、溶剤紡糸セルロース繊維、
を一連の混用率で混合した混合繊維のスペクトルデータを多変量解析して得られた各解析データを各組合せに係る混用率の鑑別モデルのデータベースとして蓄積し、
 前記被検繊維の解析データを前記データベースの各組合せに係る鑑別モデルとそれぞれ照合して、前記被検繊維の混用率を鑑別することを特徴とする。
According to the description of claim 4, the present invention is the fiber discrimination method according to claim 3,
In the cellulosic fiber, in the database creation step, in addition to the spectral data of the plurality of comparison fibers originating from the plurality of single fibers, two types of comparison fibers according to the following combinations,
(1) Natural fiber, pair, regenerated fiber,
(2) Cotton, pair, hemp,
(3) Flax, VS, Hemp,
(4) Viscose rayon, pair, copper ammonia rayon or solvent-spun cellulose fiber,
(5) Copper ammonia rayon, pair, solvent-spun cellulose fiber,
Each analysis data obtained by multivariate analysis of the spectrum data of the mixed fiber mixed with a series of mixed rate is accumulated as a database of differential models of mixed rate related to each combination,
The analysis data of the test fiber is collated with a discrimination model according to each combination of the databases, and the mixed use rate of the test fiber is discriminated.
 また、本発明は、請求項5の記載によると、請求項1~4のいずれか1つに記載の繊維鑑別方法であって、
 セルロース系繊維において、天然繊維と再生繊維との鑑別には主に波数1200~850cm-1の範囲内若しくはその近傍の範囲内を含む1又は2以上のスペクトルデータを解析に使用することを特徴とする。
According to the description of claim 5, the present invention is the fiber discrimination method according to any one of claims 1 to 4,
In the cellulosic fiber, for distinguishing between natural fiber and regenerated fiber, one or two or more spectral data including mainly in the range of wave number 1200 to 850 cm −1 or in the vicinity thereof are used for the analysis. To do.
 また、本発明は、請求項6の記載によると、請求項1~4のいずれか1つに記載の繊維鑑別方法であって、
 セルロース系繊維において、綿と麻類との鑑別には主に波数1400~900cm-1の範囲内若しくはその近傍の範囲内を含む1又は2以上のスペクトルデータを解析に使用することを特徴とする。
Further, according to the description of claim 6, the present invention is the fiber discrimination method according to any one of claims 1 to 4,
For cellulosic fibers, one or more spectral data including mainly in the range of wave numbers 1400 to 900 cm −1 or in the vicinity thereof are used for the analysis in order to distinguish cotton from hemp. .
 また、本発明は、請求項7の記載によると、請求項1~4のいずれか1つに記載の繊維鑑別方法であって、
 セルロース系繊維において、再生繊維どうしの鑑別には主に波数1400~800cm-1の範囲内若しくはその近傍の範囲内を含む1又は2以上のスペクトルデータを解析に使用することを特徴とする。
Further, according to the description of claim 7, the present invention is the fiber discrimination method according to any one of claims 1 to 4,
Cellulosic fibers are characterized in that one or two or more spectral data including mainly in the range of wave numbers 1400 to 800 cm −1 or in the vicinity thereof are used for the analysis in order to distinguish between regenerated fibers.
 また、本発明は、請求項8の記載によると、請求項1~4のいずれか1つに記載の繊維鑑別方法であって、
 セルロース系繊維において、銅アンモニアレーヨンと溶剤紡糸セルロース繊維との鑑別には主に波数1250~900cm-1の範囲内若しくはその近傍の範囲内を含む1又は2以上のスペクトルデータを解析に使用することを特徴とする。
Further, according to the description of claim 8, the present invention is the fiber discrimination method according to any one of claims 1 to 4,
For cellulosic fibers, for distinguishing between copper ammonia rayon and solvent-spun cellulose fibers, one or more spectral data including mainly in the range of wave number 1250 to 900 cm −1 or in the vicinity thereof is used for analysis. It is characterized by.
 また、本発明は、請求項9の記載によると、請求項1~4のいずれか1つに記載の繊維鑑別方法であって、
 セルロース系繊維において、亜麻と苧麻との鑑別には主に波数3500~3000cm-1の範囲内若しくはその近傍の範囲内を含む1又は2以上のスペクトルデータを解析に使用することを特徴とする。
According to the description of claim 9, the present invention is the fiber identification method according to any one of claims 1 to 4,
Cellulose fibers are characterized in that, for differentiation between flax and urn, one or more spectral data including mainly in the range of wave numbers 3500 to 3000 cm −1 or in the vicinity thereof are used for the analysis.
 また、本発明は、請求項10の記載によると、請求項請求項5又は6に記載の繊維鑑別方法であって、
 セルロース系繊維において、比較繊維及び被検繊維に対してアルカリ性物質による前処理を施してから吸収スペクトルを求めることを特徴とする。
Moreover, according to the description of Claim 10, this invention is the fiber identification method of Claim 5 or 6,
The cellulosic fiber is characterized in that an absorption spectrum is obtained after pretreatment with an alkaline substance is performed on the comparative fiber and the test fiber.
 また、本発明は、請求項11の記載によると、請求項1~10のいずれか1つに記載の繊維鑑別方法であって、
 前記多変量解析は、主成分分析、又は、主成分回帰、PLS回帰などの重回帰分析であることを特徴とする。
According to the description of claim 11, the present invention is the fiber discrimination method according to any one of claims 1 to 10,
The multivariate analysis is principal component analysis, or multiple regression analysis such as principal component regression or PLS regression.
 また、本発明は、請求項12の記載によると、請求項1~11のいずれか1つに記載の繊維鑑別方法であって、
 前記比較繊維及び前記被検繊維の吸収スペクトルを求める方法は、ATR法(全反射測定法)であることを特徴とする。
According to the description of claim 12, the present invention is the fiber discrimination method according to any one of claims 1 to 11,
The method for obtaining the absorption spectra of the comparative fiber and the test fiber is an ATR method (total reflection measurement method).
 また、本発明は、請求項13の記載によると、請求項1~12のいずれか1つに記載の繊維鑑別方法であって、
 前記セルロース系繊維に分類される同系異種繊維としては、綿、亜麻、苧麻、黄麻、大麻、ビスコースレーヨン、ハイウェットモジュラスレーヨン、ポリノジックレーヨン、銅アンモニアレーヨン、及び、溶剤紡糸セルロース繊維が含まれることを特徴とする。
According to the description of claim 13, the present invention is the fiber identification method according to any one of claims 1 to 12,
The same type of heterogeneous fibers classified as cellulose fibers include cotton, flax, linseed, jute, cannabis, viscose rayon, high wet modulus rayon, polynosic rayon, copper ammonia rayon, and solvent-spun cellulose fiber. It is characterized by.
 上記構成によれば、本発明は、セルロース系繊維や獣毛系繊維など同系に分類される同系異種繊維を鑑別する繊維鑑別方法である。化学的組成が同じ繊維であって起源を異にする繊維どうしを赤外吸収スペクトルにより鑑別することができる。上記構成によれば、まず、データベース作成工程において、繊維の種類が既知の複数の単一繊維を起源とする複数種類の同系異種繊維を比較繊維として準備する。次に、これらの比較繊維に対する赤外吸収スペクトルを求める。使用する赤外線は、近赤外線を除く波数4000cm-1~500cm-1の範囲内を使用する。 According to the said structure, this invention is a fiber discrimination method which discriminate | determines the same type | system | group dissimilar fiber classified into the same type, such as a cellulosic fiber and an animal hair type | system | group fiber. Fibers having the same chemical composition but different origins can be distinguished by infrared absorption spectra. According to the above configuration, first, in the database creation step, a plurality of types of similar and different types of fibers originating from a plurality of single fibers whose fiber types are known are prepared as comparative fibers. Next, infrared absorption spectra for these comparative fibers are obtained. Infrared used uses a range of wave number 4000 cm -1 ~ 500 cm -1, excluding the near-infrared.
 次に、得られた吸収スペクトルから所定の波数域におけるスペクトルデータを抽出する。次に、抽出したスペクトルデータを多変量解析して得られた解析データ群をデータベースとして蓄積する。なお、これらのデータベースとして、2種類の単一繊維どうしを組み合わせた複数組のデータベースを作成するようにしてもよい。このように、比較試料から得られた複数のスペクトルデータを解析し、得られたデータ群をデータベース化することにより、正確な鑑別を可能とする。このことにより、より正確な繊維鑑別を比較的簡単、且つ、客観的に行うことができる。 Next, spectrum data in a predetermined wave number range is extracted from the obtained absorption spectrum. Next, an analysis data group obtained by multivariate analysis of the extracted spectrum data is accumulated as a database. As these databases, a plurality of sets of databases in which two types of single fibers are combined may be created. As described above, by analyzing a plurality of spectral data obtained from the comparative sample and creating a database of the obtained data group, accurate discrimination is made possible. As a result, more accurate fiber discrimination can be performed comparatively easily and objectively.
 また、上記構成によれば、続く鑑別工程において、鑑別対象である繊維の種類が未知の繊維を被検繊維として準備する。次に、データベース作成工程と同様にして当該被検繊維の吸収スペクトルから所定の波数域におけるスペクトルデータを抽出して解析データを求める。この被検繊維の解析データをデータベースのデータ群と照合する。このことにより、被検繊維の種類を客観的に鑑別することができる。 Further, according to the above configuration, in the subsequent discrimination process, a fiber whose type of fiber to be identified is unknown is prepared as a test fiber. Next, spectrum data in a predetermined wave number region is extracted from the absorption spectrum of the test fiber in the same manner as the database creation step, and analysis data is obtained. The analysis data of the test fiber is collated with the data group of the database. This makes it possible to objectively identify the type of test fiber.
 また、上記構成によれば、データベース作成工程において、複数種類の同系異種繊維として、単一繊維を起源とする複数の比較繊維に対するデータベースに加え、予め準備した同系異種繊維を一連の混用率で混合した混合繊維からなる一連の比較繊維に対するデータベースを作成するようにしてもよい。なお、これらのデータベースとして、2種類の単一繊維どうしを組み合わせた複数組のデータベースを作成するようにしてもよい。次に、鑑別工程において、被検繊維の解析データをデータベースの一連の解析データ群と照合する。このことにより、被検繊維が少なくとも2種類の繊維が混合されたものであっても、混合されている繊維の種類とその混用率を客観的に鑑別することができる。 Further, according to the above configuration, in the database creation process, in addition to a database for a plurality of comparative fibers originating from a single fiber, a plurality of types of similar heterogeneous fibers are mixed in advance with a series of mixed ratios. You may make it produce the database with respect to a series of comparison fibers which consist of the mixed fiber which were made. As these databases, a plurality of sets of databases in which two types of single fibers are combined may be created. Next, in the discrimination step, the analysis data of the test fiber is collated with a series of analysis data groups in the database. Thus, even when the test fiber is a mixture of at least two types of fibers, the type of the mixed fibers and the mixture ratio can be objectively differentiated.
 従って、上記構成によれば、客観的な繊維鑑別をすることができ、被検繊維の種類を正確に鑑別することができる。これらの操作は比較的簡単であり、また、機器分析であることから、検査員の経験とノウハウの違いによる鑑別結果のバラツキが生じるということがない。 Therefore, according to the above configuration, objective fiber discrimination can be performed, and the type of the test fiber can be accurately discriminated. Since these operations are relatively simple and are instrumental analysis, there is no variation in discrimination results due to differences in inspector experience and know-how.
 また、上記構成によれば、比較繊維及び被検繊維の解析データを求める際に、鑑別対象とする同系異種繊維の組合せにより抽出する所定の波数域のスペクトルデータを変化させるようにしてもよい。このように、解析に用いる波数域を選択することで鑑別の精度を更に向上させることができる。 Further, according to the above configuration, when obtaining the analysis data of the comparative fiber and the test fiber, the spectrum data in a predetermined wave number region extracted by a combination of similar and different fibers to be differentiated may be changed. In this way, the discrimination accuracy can be further improved by selecting the wave number region used for the analysis.
 また、上記構成によれば、比較繊維及び被検繊維に対してアルカリ性物質による前処理を施してから吸収スペクトルを求めるようにしてもよい。このように、前処理を施すことにより鑑別の精度を更に向上させることができる。 In addition, according to the above configuration, the absorption spectrum may be obtained after the comparison fiber and the test fiber are pretreated with an alkaline substance. Thus, the accuracy of discrimination can be further improved by performing pre-processing.
 よって、本発明によれば、鑑別操作が比較的簡単で客観性を有し、検査員の経験やノウハウに頼ることなく同系異種繊維の鑑別をすることのできる繊維鑑別方法を提供することができる。 Therefore, according to the present invention, it is possible to provide a fiber discrimination method that has a relatively simple discrimination operation, has objectivity, and can discriminate between different types of fibers without depending on the experience and know-how of an inspector. .
各種セルロース系繊維の吸収スペクトル(平均スペクトル)を示す図である。It is a figure which shows the absorption spectrum (average spectrum) of various cellulosic fibers. 図1の各スペクトルを1次微分したスペクトル(微分スペクトル)を示す図である。It is a figure which shows the spectrum (differential spectrum) which carried out the primary differentiation of each spectrum of FIG. 第1実施形態において被検繊維を鑑別する解析手順を表す鑑別フロー図である。It is a discrimination flow figure showing the analysis procedure which discriminates test fiber in a 1st embodiment. 図3の鑑別フロー図の一部を抽出した部分フロー図である。It is the partial flowchart which extracted a part of identification flowchart of FIG. 実施例1で得られた「天然繊維」と「再生繊維」の主成分スコアの散布図である。2 is a scatter diagram of principal component scores of “natural fibers” and “regenerated fibers” obtained in Example 1. FIG. 実施例1で得られた「綿」と「麻類」の主成分スコアの散布図である。2 is a scatter diagram of principal component scores of “cotton” and “hemp” obtained in Example 1. FIG. 実施例1で得られた「リネン」と「ラミー」の主成分スコアの散布図である。4 is a scatter diagram of principal component scores of “linen” and “ramie” obtained in Example 1. FIG. 実施例1で得られた「レーヨン」と「キュプラ及びリヨセル」の主成分スコアの散布図である。4 is a scatter diagram of principal component scores of “rayon” and “cupra and lyocell” obtained in Example 1. FIG. 実施例1で得られた「キュプラ」と「リヨセル」の主成分スコアの散布図である。4 is a scatter diagram of principal component scores of “cupra” and “lyocell” obtained in Example 1. FIG. 第2実施形態において被検繊維を鑑別する解析手順を表す鑑別フロー図である。It is a discrimination flow figure showing the analysis procedure which discriminates test fiber in a 2nd embodiment. 実施例2において被検繊維の主成分スコアをプロットした「天然繊維」と「再生繊維」の主成分スコアの散布図である。FIG. 6 is a scatter diagram of principal component scores of “natural fibers” and “regenerated fibers” in which principal component scores of test fibers are plotted in Example 2. 実施例2において被検繊維の主成分スコアをプロットした「綿」と「麻類」の主成分スコアの散布図である。FIG. 6 is a scatter diagram of principal component scores of “cotton” and “hemp” plotting principal component scores of test fibers in Example 2. 実施例2において被検繊維の主成分スコアをプロットした「レーヨン」と「キュプラ及びリヨセル」の主成分スコアの散布図である。FIG. 6 is a scatter diagram of principal component scores of “rayon” and “cupra and lyocell” in which principal component scores of test fibers are plotted in Example 2. 実施例2で求めた被検繊維の混用率を従来法と比較した図である。It is the figure which compared the mixed use rate of the test fiber calculated | required in Example 2 with the conventional method. 実施例3において被検繊維の主成分スコアをプロットした「天然繊維」と「再生繊維」の主成分スコアの散布図である。FIG. 6 is a scatter diagram of principal component scores of “natural fibers” and “regenerated fibers” in which principal component scores of test fibers are plotted in Example 3. 実施例3において被検繊維の主成分スコアをプロットした「綿」と「麻類」の主成分スコアの散布図である。FIG. 6 is a scatter diagram of principal component scores of “cotton” and “hemp” plotting principal component scores of test fibers in Example 3. 実施例3において被検繊維の主成分スコアをプロットした「レーヨン」と「キュプラ及びリヨセル」の主成分スコアの散布図である。FIG. 6 is a scatter diagram of principal component scores of “rayon” and “cupra and lyocell” in which principal component scores of test fibers are plotted in Example 3. 実施例3において被検繊維の主成分スコアをプロットした「キュプラ」と「リヨセル」の主成分スコアの散布図である。FIG. 6 is a scatter diagram of principal component scores of “cupra” and “lyocell” in which principal component scores of test fibers are plotted in Example 3. 実施例3で求めた被検繊維の混用率を従来法と比較した図である。It is the figure which compared the mixing ratio of the test fiber calculated | required in Example 3 with the conventional method.
 本発明において、繊維とは、一般に衣料や産業資材など各種繊維製品に使用される全ての繊維をいう。例えば、合成繊維としては、ポリエステル、ナイロン、アクリルなどが挙げられる。半合成繊維としては、アセテートなどが挙げられる。天然セルロース繊維としては、綿、及び、亜麻(リネン)、苧麻(ラミー)、黄麻(ジュート)、大麻(ヘンプ)などの麻類が挙げられる。再生セルロース繊維としては、ビスコースレーヨン、ハイウェットモジュラスレーヨン(「HWMレーヨン」ともいう)、ポリノジックレーヨン、銅アンモニアレーヨン(キュプラ)、溶剤紡糸セルロース繊維(テンセル及びリヨセル)などが挙げられる。以下、これらの再生セルロース繊維のうちビスコース法により再生される繊維であるビスコースレーヨン、ハイウェットモジュラスレーヨン(HWMレーヨン)、及び、ポリノジックレーヨンを「ビスコース系レーヨン」ともいう。 In the present invention, the fiber generally means all fibers used in various textile products such as clothing and industrial materials. For example, examples of synthetic fibers include polyester, nylon, and acrylic. Examples of semi-synthetic fibers include acetate. Examples of natural cellulose fibers include cotton, and hemp such as flax (linen), ramie (ramie), jute, and hemp. Examples of the regenerated cellulose fiber include viscose rayon, high wet modulus rayon (also referred to as “HWM rayon”), polynosic rayon, copper ammonia rayon (cupra), solvent-spun cellulose fiber (tensel and lyocell), and the like. Hereinafter, viscose rayon, high wet modulus rayon (HWM rayon) and polynosic rayon, which are fibers regenerated by the viscose method among these regenerated cellulose fibers, are also referred to as “viscose rayon”.
 更に、タンパク質繊維としては、絹の他に、ウール(羊の羊毛)、カシミヤ(カシミヤ山羊の毛)、ヤク(牛の一種ヤクの毛)、モヘア(アンゴラ山羊の毛)、アンゴラ(アンゴラ兎の毛)、アルパカ(小型こぶなしラクダのアルパカの毛)、ビキューナ(小型こぶなしラクダのビクーニャの毛)、キャメル(ラクダの毛)、リャマ(小型こぶなしラクダのリャマの毛)、フォックス(キツネの毛)、ミンク(イタチの一種ミンクの毛)、チンチラ(ネズミの一種チンチラの毛)、ラビット(ウサギの毛)などの獣毛系繊維が挙げられる。 In addition to silk, protein fibers include wool (sheep wool), cashmere (cashmere goat hair), yak (cow yak hair), mohair (Angola goat hair), and angora Hair), alpaca (small humpless camel alpaca hair), vicuna (small humpless camel vicuna hair), camel (camel hair), llama (small humpless camel llama hair), fox (fox's And hair fibers such as mink (weasel type mink hair), chinchilla (mouse type chinchilla hair), rabbit (rabbit hair) and the like.
 これらの繊維の中で、本発明においては、化学的組成が同じ繊維を「同系異種繊維」として定義する。この同系異種繊維としては、例えば、上述の天然セルロース繊維と再生セルロース繊維とに含まれる繊維群をセルロース系繊維とする。また、上述の絹以外のタンパク質繊維に含まれる繊維群を獣毛系繊維とする。 Among these fibers, in the present invention, fibers having the same chemical composition are defined as “similar heterogeneous fibers”. As this similar dissimilar fiber, the fiber group contained in the above-mentioned natural cellulose fiber and regenerated cellulose fiber is made into a cellulose fiber, for example. Moreover, let the fiber group contained in protein fibers other than the above-mentioned silk be an animal hair fiber.
 これらの同系異種繊維は、化学的組成が同じであり鑑別が容易ではない。特に、操作が簡単で客観的な鑑別法である赤外吸収スペクトルなどの光学的測定法は、化学的組成が異なる異系繊維の鑑別に効果を発揮するが、同系異種繊維の鑑別は難しいとされてきた。これに対して、本発明は同系異種繊維であるセルロース系繊維どうし、或いは、獣毛系繊維どうしの鑑別などにおいて効果が発揮される。 These similar and different fibers have the same chemical composition and are not easily distinguished. In particular, optical measurement methods such as infrared absorption spectrum, which is an easy-to-use and objective differentiation method, are effective in differentiating different fibers with different chemical compositions. It has been. On the other hand, the present invention is effective in differentiating cellulosic fibers or animal hair fibers, which are similar and different fibers.
 例えば、セルロース系繊維においては、天然セルロース繊維と再生セルロース繊維との識別が可能となる。また、同じ天然セルロース繊維である綿と麻類との識別が可能となる。また、同じ麻類である亜麻(リネン)と苧麻(ラミー)との識別などが可能となる。更に、同じ再生セルロース繊維であるビスコース系レーヨンと「キュプラ及びリオセル」との識別が可能となる。また、同じ再生セルロース繊維であり繊維断面形状が円形であり顕微鏡観察では判定し辛い、キュプラとリヨセルとの識別が可能となる。更に、獣毛系繊維においては、高級なカシミヤとこれに酷似するヤク、脱スケールしたウールとの識別が可能となる。 For example, in the case of cellulosic fibers, it is possible to distinguish between natural cellulose fibers and regenerated cellulose fibers. In addition, it is possible to distinguish between cotton and hemp, which are the same natural cellulose fibers. In addition, it becomes possible to distinguish flax (linen) and ramie (ramie), which are the same hemp. Furthermore, it becomes possible to distinguish viscose rayon, which is the same regenerated cellulose fiber, from “cupra and lyocell”. In addition, it is possible to distinguish between cupra and lyocell, which are the same regenerated cellulose fibers and have a circular fiber cross-sectional shape and are difficult to determine by microscopic observation. Furthermore, in animal hair fibers, it is possible to distinguish high-quality cashmere from yak that resembles this, and descaled wool.
 ここで、本発明においてデータベースを作成する際に、繊維の種類が既知の繊維(以下「比較繊維」という)、及び、鑑別対象である繊維(以下「被検繊維」という)から赤外吸収スペクトルを得る方法について説明する。この方法は、一般に赤外分光法(以下「IR分光法」という)といわれ、測定対象の物質に赤外線を照射し、透過光或いは反射光を分光することでスペクトルを得て対象物の特性を知る方法である。このIR分光法は、対象物の分子構造や状態を知るために使用され、化学的組成が異なる有機物の分析には極めて一般的な方法である。 Here, when the database is created in the present invention, infrared absorption spectra are obtained from fibers having known fiber types (hereinafter referred to as “comparison fibers”) and fibers to be differentiated (hereinafter referred to as “test fibers”). The method of obtaining is described. This method is generally referred to as infrared spectroscopy (hereinafter referred to as “IR spectroscopy”). Irradiation of a material to be measured with infrared rays and spectrum of transmitted light or reflected light is obtained to obtain characteristics of the object. It is a way to know. This IR spectroscopy is used to know the molecular structure and state of an object, and is a very general method for analyzing organic substances having different chemical compositions.
 一般に分光法は、ラジオ波からガンマ線まで広く電磁波の放出或いは吸収を測定する方法であって、その中でIR分光法は、多くの産業において研究部門だけでなく製造部門、品質管理部門でも広く普及している。一般に赤外線は、近赤外線、中赤外線、及び遠赤外線として区別されるが、更に細かく区別する場合もあり、その波長範囲の定義が明確でない。そこで、本発明においては、IR分光法で使用する波長範囲として、近赤外線を除く2500nm~20000nmとする。また、IR分光法では、波長よりも波数(本発明においては「WN」ともいう)を使用することが多く、本発明において使用する波数範囲は、近赤外線を除く4000cm-1~500cm-1の範囲内となる。 In general, spectroscopy is a method for measuring the emission or absorption of electromagnetic waves widely from radio waves to gamma rays. Among them, IR spectroscopy is widely used not only in research departments but also in manufacturing departments and quality control departments. is doing. In general, infrared rays are distinguished as near infrared rays, middle infrared rays, and far infrared rays, but they may be further finely distinguished, and the definition of the wavelength range is not clear. Therefore, in the present invention, the wavelength range used in IR spectroscopy is 2500 nm to 20000 nm excluding near infrared rays. Further, the IR spectroscopy, it is often (in the present invention also referred to as "WN") also wavenumber than the wavelength using the wave number range used in the present invention, the 4000 cm -1 ~ 500 cm -1, excluding the near infrared Within range.
 ここで、近年各産業において鑑別への使用が提案されている近赤外分光法(以下「NIR分光法」という)との違いについて説明する。一般に、NIR分光法で使用される波長範囲は、800nm~2500nm(波数範囲で12500cm-1~4000cm-1)である。NIR分光法は、一般のIR分光法に比べ吸収が極めて小さいため、非破壊・非接触での測定が可能である。一方、化学的組成との直接的な関連付けは困難であり、また、一般のIR分光法に比べ情報量が極めて少ない。しかし、多変量解析によるケモメトリックスの発展により、近年では定量分析への応用が可能となった。 Here, differences from near-infrared spectroscopy (hereinafter referred to as “NIR spectroscopy”) proposed for use in various industries in recent years will be described. Generally, the wavelength range used in the NIR spectroscopy is 800nm ~ 2500nm (12500cm -1 ~ 4000cm -1 in wavenumber ranges). NIR spectroscopy has extremely small absorption compared to general IR spectroscopy, and therefore, non-destructive and non-contact measurement is possible. On the other hand, direct association with chemical composition is difficult, and the amount of information is extremely small compared to general IR spectroscopy. However, the development of chemometrics by multivariate analysis has made it possible to apply to quantitative analysis in recent years.
 ここで、IR分光法とNIR分光法とで使用する波数域の境界は、4000cm-1とされている。従って、4000cm-1自体が近赤外線であるのか、或いは、中赤外線であるのかで疑義が生じる場合がある。そこで、本発明においては、「近赤外線を除く4000cm-1~500cm-1の範囲内」という意味を厳格に解釈する必要があるときには、「波数(WN)が4000cm-1>WN≧500cm-1の範囲内」とすることができる。 Here, the boundary of the wavenumber region used in IR spectroscopy and NIR spectroscopy is set to 4000 cm −1 . Therefore, there may be doubts whether 4000 cm −1 itself is near infrared or mid infrared. Therefore, in the present invention, when it is necessary to strictly interpret the meaning of "4000cm range of -1 ~ 500 cm -1, excluding the near-infrared", the "wave number (WN) is 4000cm -1> WN ≧ 500cm -1 Within the range of ".
 上述のように、NIR分光法は、繊維の鑑別への利用が提案されている(上記特許文献1及び2)。しかし、その情報量の少なさから同系異種繊維の実用的な鑑別や混用率の正確な鑑別には至っていない。そこで、本発明は、繊維から得られる情報量が多いにもかかわらず、これまで化学的組成が異なる異系繊維の鑑別のみに利用され、同系異種繊維の鑑別に利用されていない一般のIR分光法を利用するものである。また、本発明に使用する赤外分光光度計は、多くの産業で使用されていることから廉価であり、鑑別のための設備投資やメンテナンスの費用が抑えられる。 As described above, NIR spectroscopy has been proposed for use in fiber discrimination ( Patent Documents 1 and 2 above). However, due to the small amount of information, practical discrimination between homologous and dissimilar fibers and accurate discrimination of the mixed rate have not been achieved. Therefore, the present invention is generally used only for differentiating different fibers having different chemical compositions in spite of a large amount of information obtained from the fiber, and has not been used for differentiating similar different fibers. It uses the law. In addition, the infrared spectrophotometer used in the present invention is inexpensive because it is used in many industries, and the cost of equipment investment and maintenance for identification can be suppressed.
 本発明においては、一般に使用されているフーリエ変換赤外分光光度計(以下「FT/IR分光光度計」という)を使用することができる。比較繊維及び被検繊維の吸収スペクトルを得るには、繊維を微粉砕して臭化カリウム(KBr)粉末と共に錠剤を形成して、その透過光を測定するKBr錠剤法で測定してもよい。或いは、織編物を破壊することなくそのまま反射光を測定できるATR法(全反射測定法)で測定するようにしてもよい。また、得られた吸収スペクトルは、必要により通常の方法により大気補正、ベースライン補正、平滑化補正、潜り込み深さ補正などを行うことが好ましい。 In the present invention, a commonly used Fourier transform infrared spectrophotometer (hereinafter referred to as “FT / IR spectrophotometer”) can be used. In order to obtain the absorption spectrum of the comparative fiber and the test fiber, the fiber may be finely pulverized to form a tablet together with potassium bromide (KBr) powder, and measurement may be performed by the KBr tablet method in which the transmitted light is measured. Or you may make it measure by ATR method (total reflection measuring method) which can measure reflected light as it is, without destroying a woven or knitted fabric. In addition, the obtained absorption spectrum is preferably subjected to atmospheric correction, baseline correction, smoothing correction, submersion depth correction, and the like by a normal method as necessary.
 なお、KBr錠剤法において繊維を粉砕する場合には、ハサミでの切断、ミルによる粉砕、或いは、凍結粉砕などを利用することができる。また、粉砕後の繊維の長さ及び径は任意でよいが、微粉砕することが好ましい。また、KBr錠剤法とATR法のいずれを採用する場合であっても、繊維の吸湿状態を制御することが好ましい。特に、吸湿性の高いセルロース系繊維や獣毛系繊維においては、同系異種繊維間で吸湿性が異なり吸収スペクトルが繊維中の自由水の影響を受けることがあるからである。 In addition, when pulverizing fibers in the KBr tablet method, cutting with scissors, pulverization with a mill, freeze pulverization, or the like can be used. Further, the length and diameter of the fiber after pulverization may be arbitrary, but pulverization is preferable. Moreover, it is preferable to control the moisture absorption state of the fiber regardless of whether the KBr tablet method or the ATR method is employed. In particular, in the case of cellulosic fibers and animal hair fibers having high hygroscopicity, the hygroscopicity is different among the same type of different fibers, and the absorption spectrum may be affected by free water in the fibers.
 ここで、セルロース系繊維を例として、これに含まれる綿、麻類(リネン及びラミー)、ビスコース系レーヨン(以下、単に「レーヨン」という)、キュプラ、リヨセルの各繊維の吸収スペクトルを比較する。図1は、各種セルロース系繊維の吸収スペクトル(平均スペクトル)を示す図である。図1の各吸収スペクトル(1~6)は、FT/IR分光光度計のATR法で波数4000cm-1~500cm-1の範囲内で測定した。なお、図1においては、標準サンプルとして結晶セルロース(6)であるアビセル(登録商標、旭化成工業)を標準サンプルとして各繊維(1~5)と比較した。これらの吸収スペクトルは、標準偏差で規格化した平均スペクトルである。 Here, the absorption spectrum of each fiber of cotton, hemp (linen and ramie), viscose rayon (hereinafter, simply referred to as “rayon”), cupra, and lyocell contained in the cellulose fiber is compared. . FIG. 1 is a diagram showing absorption spectra (average spectra) of various cellulosic fibers. Each absorption spectrum of FIG. 1 (1-6) was measured in a wave number range of 4000 cm -1 ~ 500 cm -1 in the ATR method of FT / IR spectrophotometer. In FIG. 1, Avicel (registered trademark, Asahi Kasei Kogyo), which is crystalline cellulose (6), was compared with each fiber (1-5) as a standard sample. These absorption spectra are average spectra normalized by standard deviation.
 図1において、3600cm-1~3100cm-1にかけて、再生繊維であるレーヨン(3)、キュプラ(4)、リヨセル(5)の吸収スペクトルは、天然繊維である綿(1)、麻類(2)に比べ、広いピーク幅を示している。また、天然繊維である綿(1)、麻類(2)には、3330cm-1に鋭いピークが現れるが、再生繊維であるレーヨン(3)、キュプラ(4)、リヨセル(5)には現れない。更に、1200cm-1~800cm-1にかけて現れるメインピークにおいて、天然繊維である綿(1)、麻類(2)には頂点に2つのピークが現れるが、再生繊維であるレーヨン(3)、キュプラ(4)、リヨセル(5)には1つのピークしか現れない。 In FIG. 1, the absorption spectra of rayon (3), cupra (4), and lyocell (5) that are regenerated fibers from 3600 cm −1 to 3100 cm −1 are the natural fibers of cotton (1) and hemp (2). Compared to, a wider peak width is shown. In addition, a sharp peak appears at 3330 cm −1 in natural fibers such as cotton (1) and hemp (2), but in regenerated fibers such as rayon (3), cupra (4), and lyocell (5). Absent. Furthermore, the main peak appearing over the 1200 cm -1 ~ 800 cm -1, cotton (1) is a natural fiber, two peaks appear in the vertex hemp compound (2), a regenerated fiber Rayon (3), cupra (4) Only one peak appears in lyocell (5).
 このように、波数4000cm-1~500cm-1の範囲内の吸収スペクトルを詳細に観察することにより、天然繊維と再生繊維とを鑑別できる可能性がある。しかし、これらの吸収スペクトルを比較するだけでは、セルロース系繊維において、天然繊維と再生繊維とを明確に鑑別することは容易ではない。また、同じ天然繊維である綿と麻類との鑑別、同じ麻類であるリネンとラミーとの鑑別、再生繊維どうしの鑑別、及び形状の類似したキュプラとリヨセルとの鑑別などは難しい。 Thus, there is a possibility that natural fibers and regenerated fibers can be differentiated by observing in detail the absorption spectrum in the range of wave numbers from 4000 cm −1 to 500 cm −1 . However, by simply comparing these absorption spectra, it is not easy to clearly distinguish natural fibers from regenerated fibers in cellulosic fibers. In addition, it is difficult to distinguish between cotton and hemp, which are the same natural fibers, to distinguish between linen and ramie, which are the same hemp, between regenerated fibers, and between cupra and lyocell having similar shapes.
 本発明において、化学的組成が同じセルロース系繊維である天然繊維と再生繊維とがIR分光法で得られた吸収スペクトルから鑑別できる理由は、これらの繊維を構成するセルロースの結晶状態が異なることによるものと思われる。一般にセルロース系繊維の結晶構造については、天然繊維がI型結晶であり、再生繊維がII型結晶を構成している。また、セルロース分子の配向状態について、天然繊維は分子の還元末端を同一方向に向けるパラレル構造を示し、再生繊維は分子の還元末端が交互に位置を変えるアンチパラレル構造を示している。 In the present invention, the reason why natural fibers and regenerated fibers, which are cellulosic fibers having the same chemical composition, can be distinguished from the absorption spectrum obtained by IR spectroscopy is that the crystalline state of cellulose constituting these fibers is different. It seems to be. In general, regarding the crystal structure of cellulosic fibers, natural fibers are type I crystals and regenerated fibers constitute type II crystals. As for the orientation state of cellulose molecules, natural fibers have a parallel structure in which the reducing ends of the molecules are directed in the same direction, and regenerated fibers have an antiparallel structure in which the reducing ends of the molecules are alternately changed in position.
 これらの結晶状態の違いにより、天然繊維と再生繊維の吸収スペクトルにおいては吸収位置のシフトや吸収強度の変化が生じるものと思われる。更に、本発明者らは、同じセルロース系天然繊維である綿と麻類において、或いは、同じセルロース系再生繊維であるレーヨン、キュプラ、リヨセルにおいても、結晶化度、結晶の大きさ、結晶の分布が異なることから、IR分光法の吸収スペクトルに何らかの情報が含まれているものと予測した。 These differences in crystal state are thought to cause shifts in absorption positions and changes in absorption intensity in the absorption spectra of natural fibers and regenerated fibers. Furthermore, the present inventors have also found that in the same cellulosic natural fiber, cotton and hemp, or in the same cellulosic regenerated fiber, rayon, cupra, lyocell, crystallinity, crystal size, crystal distribution. Therefore, it was predicted that some information was included in the absorption spectrum of IR spectroscopy.
 以下、本発明に係る繊維鑑別方法について、各実施形態により詳細に説明する。なお、本発明は、下記の各実施形態にのみ限定されるものではない。本発明においては、各種類の比較繊維のスペクトルデータを多変量解析し、得られた解析データ群をデータベース(「鑑別モデル」ともいう)として蓄積する。この工程を「データベース作成工程」という。次に、同様にして被検繊維のスペクトルデータから得られた解析データをデータベースの解析データ群と照合する。この照合において、被検繊維の解析データと比較繊維のデータベースのデータ群との一致性を指標として、被検繊維の種類及び混用率を鑑別する。この工程を「鑑別工程」という。 Hereinafter, the fiber identification method according to the present invention will be described in detail by each embodiment. The present invention is not limited to the following embodiments. In the present invention, spectrum data of each type of comparative fiber is subjected to multivariate analysis, and the obtained analysis data group is accumulated as a database (also referred to as “differentiation model”). This process is called “database creation process”. Next, the analysis data obtained from the spectrum data of the test fiber is collated with the analysis data group in the database. In this collation, the type and mixed rate of the test fiber are discriminated using the consistency between the analysis data of the test fiber and the data group of the database of the comparison fiber as an index. This process is called “discrimination process”.
 《第1実施形態》
 本第1実施形態においては、複数種類の単一繊維に対して、各単一繊維間の鑑別を行うものである。例えば、セルロース系繊維においては、天然繊維と再生繊維との鑑別、綿と麻類との鑑別、リネンとラミーとの鑑別、再生繊維どうしの鑑別、及び、キュプラとリヨセルとの鑑別などについて説明する。
<< First Embodiment >>
In this 1st Embodiment, discrimination between each single fiber is performed with respect to multiple types of single fiber. For example, in the case of cellulosic fibers, the differentiation between natural fibers and regenerated fibers, the differentiation between cotton and hemp, the differentiation between linen and ramie, the differentiation between regenerated fibers, and the differentiation between cupra and lyocell will be explained. .
 (1)データベース作成工程
 本第1実施形態においては、鑑別しようとする繊維の組合せ、例えば、綿と麻類との鑑別を行う場合には、これらの繊維を比較繊維として吸収スペクトルを求める。なお、これらの吸収スペクトルに対しては、所定の方法で各種補正を行うようにしてもよい。これらの補正としては、例えば、波数の変化による赤外光の潜り込み深さの補正、或いは、乗算的散乱補正(MSC)などがある。
(1) Database creation process In this 1st embodiment, when distinguishing the combination of the fiber which is going to be discriminated, for example, cotton and hemp, absorption spectrum is calculated for these fibers as comparative fibers. In addition, you may make it perform various correction | amendment with respect to these absorption spectra by a predetermined method. Examples of these corrections include correction of the depth of penetration of infrared light due to changes in wave number, or multiplicative scattering correction (MSC).
 ここで、綿の吸収スペクトルを求める場合には、綿からなる複数の試料を1つのグループとしてそれぞれの吸収スペクトルを求める。また、麻類の吸収スペクトルを求める場合にも、麻類からなる複数の試料を1つのグループとしてそれぞれの吸収スペクトルを求める。ここで、麻類としてリネン、ラミー、ジュート、ヘンプなどを1つの麻類グループとして吸収スペクトルを求めるようにしてもよい。また、例えば、リネンとラミーとを別グループとして吸収スペクトルを求め、それぞれのグループを綿のグループと鑑別するようにしてもよい。 Here, when obtaining the absorption spectrum of cotton, a plurality of samples made of cotton are taken as one group, and each absorption spectrum is obtained. Moreover, also when calculating | requiring the absorption spectrum of hemp, each absorption spectrum is calculated | required by making the some sample which consists of hemp into one group. Here, the absorption spectrum may be obtained with linen, ramie, jute, hemp and the like as hemp as one hemp group. Further, for example, an absorption spectrum may be obtained with linen and ramie as separate groups, and each group may be distinguished from a cotton group.
 また、セルロース系繊維製品の場合には、織編物となった段階で染色性や物性を向上させるためにアルカリ性物質による繊維加工が施されることがある。この繊維加工としては、一般にアルカリ水溶液、又は、液体アンモニアなどによる浸漬処理が行われる。特に、綿に対する水酸化ナトリウム水溶液による浸漬処理を「マーセライズ加工」といいい、広く行われている。なお、鑑別対象であるセルロース系繊維にアルカリ性物質による繊維加工が施されているか否かにより、赤外吸収スペクトルが若干変化することがある。従って、アルカリ性物質による繊維加工の有無が混在した試料群による鑑別を行うと、鑑別精度が低下する場合がある。 In the case of cellulosic fiber products, fiber processing with an alkaline substance may be performed in order to improve dyeability and physical properties at the stage of becoming a woven or knitted fabric. As this fiber processing, generally an immersion treatment with an alkaline aqueous solution or liquid ammonia is performed. In particular, the soaking treatment of cotton with an aqueous sodium hydroxide solution is called “mercerizing” and is widely performed. In addition, an infrared absorption spectrum may change a little depending on whether the fiber processing by an alkaline substance is given to the cellulosic fiber which is a discrimination target. Therefore, when discrimination is performed using a sample group in which the presence or absence of fiber processing using an alkaline substance is mixed, the discrimination accuracy may be reduced.
 また、市場にはアルカリ性物質による繊維加工が施されたセルロース系繊維製品とアルカリ性物質による繊維加工が施されていないセルロース系繊維製品が流通する。そこで、本発明者らは、比較繊維及び被検繊維に対して所定濃度のアルカリ性物質による前処理をしてから赤外吸収スペクトルを求めることにより、鑑別精度が向上することを見出した。すなわち、アルカリ性物質による繊維加工の有無が混在した比較繊維及び被検繊維に対してアルカリ性物質による前処理を行うことにより、これらがアルカリ性物質による繊維加工が施されたセルロース系繊維として統一され、吸収スペクトルが近似して鑑別精度が向上する。 In addition, cellulosic fiber products that have been subjected to fiber processing with an alkaline substance and cellulosic fiber products that have not been subjected to fiber processing with an alkaline substance are on the market. Accordingly, the present inventors have found that the discrimination accuracy is improved by obtaining an infrared absorption spectrum after pre-treating the comparative fiber and the test fiber with an alkaline substance having a predetermined concentration. In other words, by performing pretreatment with an alkaline substance on comparative fibers and test fibers mixed with or without fiber processing with an alkaline substance, these are unified and absorbed as cellulosic fibers subjected to fiber processing with an alkaline substance. The spectrum approximates and the discrimination accuracy is improved.
 このアルカリ性物質による前処理の条件は、特に限定するものではなく、使用するアルカリ性物質の種類や濃度、処理する繊維の種類などにより適宜選定すればよい。例えば、セルロース系繊維が綿である場合には、通常のマーセライズ加工と同様にアルカリ性物質として8重量%~24重量%濃度、好ましくは10重量%~20重量%濃度、更に好ましくは15重量%~20重量%濃度の水酸化ナトリウム水溶液を使用し、室温にて浸漬処理することにより鑑別精度が向上する。   The conditions for the pretreatment with the alkaline substance are not particularly limited, and may be appropriately selected depending on the kind and concentration of the alkaline substance to be used, the kind of fiber to be treated, and the like. For example, when the cellulosic fiber is cotton, it is 8 to 24% by weight as an alkaline substance, preferably 10 to 20% by weight, more preferably 15 to By using a 20 wt% sodium hydroxide aqueous solution and soaking at room temperature, the discrimination accuracy is improved. *
 なお、データベースを作成する際の比較繊維、及び、鑑別対象である被検繊維に対して上記のアルカリ性物質による前処理を施した赤外吸収スペクトルと施していない赤外吸収スペクトルの両方を求め、これらを併用して鑑別することにより鑑別精度は更に向上する。 In addition, for both the comparison fiber when creating the database, and the infrared absorption spectrum that has not been subjected to the pretreatment with the alkaline substance and the infrared absorption spectrum that has not been applied to the test fiber to be identified, The discrimination accuracy is further improved by using these in combination.
 更に、各繊維には、織編物の区別、糸の太さの違い、染色の有無、繊維加工剤の有無などがある。従って、これらの情報が吸収スペクトルに与える影響と、解析に使用する波数域(後述する)との関係を考慮して各グループの吸収スペクトルを求めるようにする。 Furthermore, each fiber has distinction between woven and knitted fabrics, differences in yarn thickness, presence or absence of dyeing, presence or absence of fiber processing agents, and the like. Therefore, the absorption spectrum of each group is obtained in consideration of the relationship between the influence of these pieces of information on the absorption spectrum and the wave number range (described later) used for analysis.
 本第1実施形態においては、比較繊維の吸収スペクトルを求める際にFT/IR分光光度計を使用する。FT/IR分光光度計は、多くの産業で使用されていることから廉価であり、鑑別のための設備投資やメンテナンスの費用が抑えられるからである。また、本第1実施形態においては、測定にATR法を使用する。鑑別しようとする繊維は、多くの場合、既に繊維製品として織編物の状態にあり、この織編物の状態のまま非破壊で鑑別できるという利点があるからである。なお、ATR法に使用するプリズムの種類は、特に限定するものではないが、繊維試料の場合、一般にZnSeプリズムを使用することが好ましい。 In the first embodiment, an FT / IR spectrophotometer is used when obtaining the absorption spectrum of the comparative fiber. This is because the FT / IR spectrophotometer is inexpensive because it is used in many industries, and the cost of equipment investment and maintenance for identification can be suppressed. In the first embodiment, the ATR method is used for measurement. This is because, in many cases, the fibers to be identified are already in a woven or knitted state as a fiber product, and there is an advantage that the fibers can be identified in a non-destructive state in the woven or knitted state. In addition, although the kind of prism used for ATR method is not specifically limited, In the case of a fiber sample, it is generally preferable to use a ZnSe prism.
 本第1実施形態においては、近赤外線を除く波数4000cm-1~500cm-1の範囲内の赤外線を照射してそれぞれの吸収スペクトルを求める。ここで、「近赤外線を除く」とは、吸収スペクトルを測定する際に「近赤外線部分の吸収スペクトルを測定しない」という意味に解するものではない。「鑑別に使用する吸収スペクトルの範囲が波数4000cm-1~500cm-1の範囲内のものである」と解するものである。 In the first embodiment, it obtains the respective absorption spectrum by irradiating infrared range of wave number 4000 cm -1 ~ 500 cm -1, excluding the near-infrared. Here, “excluding near infrared rays” does not mean that “the absorption spectrum of the near infrared portion is not measured” when measuring the absorption spectrum. One in which construed as "range of the absorption spectrum to be used for discrimination is intended to be within the range of the wave number 4000cm -1 ~ 500cm -1".
 また、本第1実施形態においては、波数4000cm-1~500cm-1の範囲内の全ての領域の吸収スペクトルで解析を行うものではない。本第1実施形態においては、所定の波数域におけるスペクトルデータを解析に使用する。解析に使用する波数域を限定することにより、鑑別に必要な赤外吸収が強調されると共にノイズを排除して鑑別精度が向上するからである。 Further, in this first embodiment, it is not intended to analyze the absorption spectra of all regions in the wave number range of 4000cm -1 ~ 500cm -1. In the first embodiment, spectrum data in a predetermined wave number range is used for analysis. This is because by limiting the wave number range used for the analysis, infrared absorption necessary for discrimination is emphasized and noise is eliminated to improve discrimination accuracy.
 ここで、所定の波数域におけるスペクトルデータの抽出には、予め測定領域を決めておき、その範囲内でのみ吸収スペクトルを求めるようにしてもよい。しかし、一般には使用する分光光度計の全測定領域で得られた吸収スペクトルから解析に必要とする所定の波数域のスペクトルデータを抽出することが好ましい。 Here, for extraction of spectrum data in a predetermined wave number range, a measurement region may be determined in advance, and an absorption spectrum may be obtained only within that range. However, in general, it is preferable to extract spectral data in a predetermined wave number range required for analysis from the absorption spectrum obtained in the entire measurement region of the spectrophotometer used.
 なお、ここでいう所定の波数域は、鑑別する繊維の種類と組み合わせにより適宜選択することが好ましい。例えば、セルロース系繊維において、天然繊維と再生繊維との鑑別、綿と麻類との鑑別、リネンとラミーとの鑑別、再生繊維どうしの鑑別、及び、キュプラとリヨセルとの鑑別などにおいて、それぞれに適切な波数域が存在する。なお、鑑別に使用される所定の波数域については、1つの波数域だけで解析するようにしてもよく、或いは、2又はそれ以上の複数の波数域を組み合わせて解析するようにしてもよい。 In addition, it is preferable to select the predetermined wave number range here as appropriate depending on the type and combination of fibers to be identified. For example, in cellulosic fibers, natural fiber and regenerated fiber, cotton and linen, linen and ramie, regenerated fibers, cupra and lyocell, etc. There is an appropriate wavenumber range. In addition, about the predetermined wave number range used for discrimination, you may make it analyze only in one wave number range, or you may make it analyze combining two or more several wave number ranges.
 ここで、比較繊維のスペクトルデータを解析するに当たり、まず、スペクトルデータの前処理をすることが好ましい。前処理には、例えば、1次微分、2次微分、或いはそれ以上の高次微分処理などを行うことが好ましい。これらの微分処理により、スペクトルに埋もれたピークの先鋭化やバックグランドの影響の消去など、スペクトル情報の増強を行うことができるからである。微分処理で使用する方法と次元は、特に限定するものではなく、鑑別する繊維の種類と組み合わせにより適宜選択することが好ましい。一例として、図1の各スペクトル(1~5)をSavitzky-Golay法により1次微分した各スペクトル(1~5)を図2に示す。 Here, in analyzing the spectral data of the comparative fiber, it is preferable to first preprocess the spectral data. For the pre-processing, for example, first-order differentiation, second-order differentiation, or higher-order differentiation processing is preferably performed. This is because spectral information can be enhanced by such differential processing, such as sharpening a peak buried in the spectrum or eliminating the influence of the background. The method and dimension used in the differentiation process are not particularly limited and are preferably selected as appropriate depending on the type and combination of fibers to be identified. As an example, FIG. 2 shows the spectra (1 to 5) obtained by first-order differentiation of the spectra (1 to 5) in FIG. 1 by the Savitzky-Golay method.
 次に、得られた微分スペクトルから解析に有効な所定の波数域のスペクトルデータを抽出する。スペクトルデータを抽出する方法は特に限定するものではない。鑑別する繊維の種類と組み合わせに対して、解析に必要と考えられる特定の官能基による波数域を選定するようにしてもよい。また、解析に対してノイズを有すると考えられる波数域のスペクトルデータを積極的に排除するようにしてもよい。例えば、セルロース系繊維の場合には、波数2750~1850cm-1の範囲内のスペクトルデータを解析に使用しないようにしてもよい。この波数域からは解析に有効な情報が少なく、逆に、COの吸収などがノイズとして現れることが考えられるからである。 Next, spectrum data in a predetermined wavenumber region effective for analysis is extracted from the obtained differential spectrum. The method for extracting the spectral data is not particularly limited. You may make it select the wave number range by the specific functional group considered to be required for an analysis with respect to the kind and combination of the fiber to identify. Further, spectrum data in a wave number range considered to have noise for analysis may be positively excluded. For example, in the case of cellulosic fibers, spectral data in the range of wave numbers from 2750 to 1850 cm −1 may not be used for analysis. This is because there is little information effective for analysis from this wave number range, and conversely, absorption of CO 2 or the like may appear as noise.
 例えば、セルロース系繊維の鑑別においては、波数3500cm-1~3000cm-1の範囲内(O-H)のスペクトルデータ、及び、波数1200cm-1~1000cm-1の範囲内(C-OH、C-O-C、C-C)のスペクトルデータなどが重要と考えられるので、これらを組み合わせて解析するようにしてもよい。但し、吸湿性の高いセルロース系繊維の鑑別においては、波数3500cm-1~3000cm-1の範囲内のスペクトルデータが吸湿状態の影響を受けやすく、これらを排除して鑑別することも考えられる。 For example, in the differentiation of cellulosic fibers, spectral data in the range of wave numbers 3500 cm −1 to 3000 cm −1 (O—H) and in the range of wave numbers 1200 cm −1 to 1000 cm −1 (C—OH, C— Since spectrum data of O-C, C-C) and the like are considered important, they may be analyzed in combination. However, in distinguishing highly hygroscopic cellulosic fibers, spectral data within a wave number range of 3500 cm −1 to 3000 cm −1 is easily affected by the hygroscopic state, and it is conceivable to distinguish them by eliminating them.
 一方、スペクトルデータを抽出する他の方法として、PCR Moving Windowなどの各種解析ソフトを利用して波数域選定を行うようにしてもよい。ここで、PCR Moving Windowにおいては、まず、決まった幅のスペクトルを端から切り出してその部分で主成分回帰(PCR)を実行して検量モデルを作成する。この検量モデルから導出される予測値と実測値とを比較し、その残差二乗和を記録する。次に、スペクトル1点分隣の領域へ切り出す領域を移動して同様の操作を行う。これを全波数域に亘って行うことにより、予測値と実測値との差が小さくなる部分を解析に必要な波数域として選定する。 On the other hand, as another method of extracting spectrum data, wave number range selection may be performed using various analysis software such as PCR Moving Window. Here, in PCR Moving Window, first, a spectrum of a predetermined width is cut out from the end, and principal component regression (PCR) is performed on that portion to create a calibration model. The predicted value derived from this calibration model is compared with the actual measurement value, and the residual sum of squares is recorded. Next, the same operation is performed by moving the region to be cut out to the region adjacent to one spectrum point. By performing this over the entire wave number range, the part where the difference between the predicted value and the actual measurement value becomes small is selected as the wave number range necessary for the analysis.
 例えば、PCR Moving Windowを使用して、下記のようなスペクトルデータを抽出することができた。例えば、天然繊維と再生繊維との鑑別において、波数1200~850cm-1の範囲内(C-OH、C-O-C、C-C)のスペクトルデータを抽出した。また、綿と麻類との鑑別において、波数1400~900cm-1の範囲内(O-H、C-OH、C-O-C、C-C)のスペクトルデータを抽出した。また、リネンとラミーとの鑑別において、波数3500~3000cm-1の範囲内(O-H)のスペクトルデータを抽出した。また、再生繊維どうしの鑑別すなわちレーヨンと「キュプラ及びリヨセル」との鑑別において、波数1400~800cm-1の範囲内(O-H、C-OH、C-O-C、C-C)のスペクトルデータを抽出した。また、キュプラとリヨセルとの鑑別において、波数1250~900cm-1の範囲内(C-OH、C-O-C、C-C)のスペクトルデータを抽出した。 For example, the following spectral data could be extracted using PCR Moving Window. For example, in the discrimination between natural fibers and regenerated fibers, spectral data within a wave number range of 1200 to 850 cm −1 (C—OH, C—O—C, C—C) was extracted. Further, in the discrimination between cotton and linen, spectral data in the range of wave numbers 1400 to 900 cm −1 (O—H, C—OH, C—O—C, C—C) were extracted. Further, in the discrimination between linen and ramie, spectral data in the range of wave numbers 3500 to 3000 cm −1 (O—H) was extracted. Further, in the discrimination between regenerated fibers, that is, the discrimination between rayon and “cupra and lyocell”, the spectrum in the range of wave numbers 1400 to 800 cm −1 (OH, C—OH, C—O—C, C—C) Data was extracted. Further, in the discrimination between cupra and lyocell, spectral data in the range of wave numbers 1250 to 900 cm −1 (C—OH, C—O—C, C—C) were extracted.
 なお、PCR Moving Windowを使用して抽出したスペクトルデータについては、抽出した範囲をそのまま解析に使用してもよく、又は、更に解析精度を向上させるために抽出した範囲内の近傍の範囲内を解析に使用するようにしてもよい。すなわち、PCR Moving Windowで抽出した範囲(例えば、波数1250~900cm-1)に対して、解析には若干広い範囲内(例えば、波数1300~850cm-1)、或いは、若干狭い範囲内(例えば、波数1200~1000cm-1)を使用するようにしてもよい。 In addition, about the spectrum data extracted using PCR Moving Window, the extracted range may be used for analysis as it is, or the range in the vicinity of the extracted range is analyzed in order to further improve the analysis accuracy. You may make it use for. That is, for the range extracted by PCR Moving Window (for example, wave number 1250 to 900 cm −1 ), the analysis has a slightly wider range (for example, wave number 1300 to 850 cm −1 ), or within a slightly narrow range (for example, wave number 1250 to 900 cm −1 ). A wave number of 1200 to 1000 cm −1 ) may be used.
 次に、抽出したスペクトルデータを多変量解析して解析データ群を求める。多変量解析に使用する解析法は、特に限定するものではなく、ケモメトリックスに使用される解析法であればどのような方法を採用するようにしてもよい。一般に、多変量解析法としては、主成分分析、重回帰分析、独立成分分析、因子分析、判別分析、数量化理論、クラスター分析、多次元尺度構成法などの方法がある。本発明においては、これらの中で、主成分分析(PCA)、又は、主成分回帰(PCR)、PLS回帰などの重回帰分析を使用することが好ましい。特に、本第1実施形態において各単一繊維間の鑑別を行う際には、主成分分析(PCA)を使用することが好ましい。なお、各分析に使用するソフトは、特に限定するものではない。 Next, multivariate analysis is performed on the extracted spectrum data to obtain an analysis data group. The analysis method used for the multivariate analysis is not particularly limited, and any method may be adopted as long as it is an analysis method used for chemometrics. In general, multivariate analysis methods include principal component analysis, multiple regression analysis, independent component analysis, factor analysis, discriminant analysis, quantification theory, cluster analysis, and multidimensional scaling method. In the present invention, it is preferable to use principal component analysis (PCA) or multiple regression analysis such as principal component regression (PCR) or PLS regression among these. In particular, when performing discrimination between each single fiber in the first embodiment, it is preferable to use principal component analysis (PCA). The software used for each analysis is not particularly limited.
 本第1実施形態において、主成分分析(PCA)を使用した鑑別について説明する。具体的には、鑑別すべき2つの繊維グループ(例えば、綿と麻類)の吸収スペクトルから抽出した1又は2以上の波数域のスペクトルデータ群に対して主成分分析を行い、各主成分スコアを求める。主成分分析に使用する解析ソフトについては、特に限定するものではない。本第1実施形態においては、市販のプログラム作成ソフトにより発明者自らが構成したプログラムを使用して解析した。また、鑑別すべき2つの繊維グループ(例えば、綿と麻類)を予め層別したうえで、主成分分析で層別解析を行うようにしてもよい。この場合には、鑑別すべき一方の繊維(例えば、綿)を「1」とし、他方の繊維(例えば、麻類)を「0」とするダミー変数を設定してから主成分分析を行うようにしてもよい。 In the first embodiment, discrimination using principal component analysis (PCA) will be described. Specifically, a principal component analysis is performed on one or two or more wave number spectrum data groups extracted from absorption spectra of two fiber groups to be distinguished (for example, cotton and hemp), and each principal component score is analyzed. Ask for. The analysis software used for the principal component analysis is not particularly limited. In the first embodiment, analysis was performed using a program constructed by the inventor himself using commercially available program creation software. Moreover, after classifying two fiber groups (for example, cotton and hemp) which should be distinguished beforehand, you may make it perform a layered analysis by a principal component analysis. In this case, the principal component analysis is performed after setting a dummy variable in which one fiber (for example, cotton) to be identified is set to “1” and the other fiber (for example, hemp) is set to “0”. It may be.
 このようにして求めた各繊維グループの組み合わせのスペクトルデータを主成分分析したときの解析データ群をデータベース(鑑別モデル)として蓄積する。なお、これらの鑑別モデルについては、下記の実施例1において詳述する。 The analysis data group when the principal component analysis is performed on the spectrum data of each fiber group combination thus obtained is stored as a database (differentiation model). These differentiation models will be described in detail in Example 1 below.
 (2)鑑別工程
 本第1実施形態の鑑別工程においては、まず、鑑別しようとする被検繊維の吸収スペクトルを求める。吸収スペクトルを求める方法、吸収スペクトルに各種補正をする方法、及び、得られた吸収スペクトルに微分処理などの前処理を行う方法は、上述の比較繊維に対する方法と同様である。次に、求めた微分スペクトルから比較繊維と同じ波数域のスペクトルデータを抽出し、比較繊維と同様にしてスペクトルデータから各主成分スコア(後述する)を求める。次に、得られた被検繊維の主成分スコアをデータベース(鑑別モデル)の主成分スコアと比較して、被検繊維がいずれの繊維グループに属する繊維であるかを鑑別する。或いは、抽出した被検繊維のスペクトルデータを比較繊維のスペクトルデータと合体して主成分分析を行うようにしてもよい。
(2) Identification process In the identification process of the first embodiment, first, an absorption spectrum of a test fiber to be identified is obtained. A method for obtaining an absorption spectrum, a method for performing various corrections on the absorption spectrum, and a method for performing a pretreatment such as a differentiation process on the obtained absorption spectrum are the same as those for the above-described comparative fiber. Next, spectral data in the same wave number region as that of the comparative fiber is extracted from the obtained differential spectrum, and each principal component score (described later) is obtained from the spectral data in the same manner as the comparative fiber. Next, the principal component score of the obtained test fiber is compared with the principal component score of the database (discrimination model) to discriminate which fiber group the test fiber belongs to. Alternatively, the principal component analysis may be performed by combining the extracted spectral data of the test fiber with the spectral data of the comparative fiber.
 なお、本鑑別工程においては、被検繊維の種類は未知であるが、比較的簡単な顕微鏡法などで被検繊維がセルロース系繊維であることが判明している。しかし、被検繊維がセルロース系繊維のうちのいずれの繊維であるかが不明である。そこで、本第1実施形態においては、次のような手順で繊維鑑別することが好ましい。 In this discrimination step, the type of test fiber is unknown, but it has been found that the test fiber is a cellulosic fiber by relatively simple microscopy. However, it is not clear which of the cellulosic fibers the test fiber is. Therefore, in the first embodiment, it is preferable to perform fiber discrimination according to the following procedure.
 図3は、本第1実施形態において被検繊維を鑑別する解析手順を表す鑑別フロー図である。図3において、まず、被検繊維が天然繊維であるか再生繊維であるかを鑑別する。このときには、天然繊維と再生繊維とから得られた鑑別モデルを使用する。ここで、被検繊維が天然繊維であると鑑別された場合には、続いて被検繊維が綿であるか麻類であるかを鑑別する。このときには、綿と麻類とから得られた鑑別モデルを使用する。更に、被検繊維が麻類であると鑑別された場合には、続いて被検繊維がどのような麻であるかを鑑別する。なお、図3においては、麻類として最も一般的なリネンであるかラミーであるかを鑑別する。このときには、リネンとラミーとから得られた鑑別モデルを使用する。 FIG. 3 is a discrimination flowchart showing an analysis procedure for discriminating the test fiber in the first embodiment. In FIG. 3, first, it is discriminated whether the test fiber is a natural fiber or a regenerated fiber. At this time, a discrimination model obtained from natural fibers and regenerated fibers is used. Here, when it is determined that the test fiber is a natural fiber, it is subsequently determined whether the test fiber is cotton or hemp. At this time, a discrimination model obtained from cotton and hemp is used. Further, when it is determined that the test fiber is hemp, it is subsequently determined what hemp is the test fiber. In FIG. 3, whether linen or ramie is the most common linen is discriminated. At this time, a discrimination model obtained from linen and ramie is used.
 同様に、図3において、被検繊維が再生繊維であると鑑別された場合には、続いて被検繊維がレーヨンであるか「キュプラ又はリヨセル」であるかを鑑別する。このときには、レーヨンと「キュプラ及びリヨセル」とから得られた鑑別モデルを使用する。ここで、被検繊維が「キュプラ又はリヨセル」であると鑑別された場合には、続いて被検繊維がキュプラであるかリヨセルであるかを鑑別する。このときには、キュプラとリヨセルとから得られた鑑別モデルを使用する。 Similarly, in FIG. 3, when it is determined that the test fiber is a regenerated fiber, it is subsequently determined whether the test fiber is rayon or “cupra or lyocell”. At this time, a differential model obtained from rayon and “cupra and lyocell” is used. Here, when it is determined that the test fiber is “cupra or lyocell”, it is subsequently determined whether the test fiber is cupra or lyocell. At this time, a discrimination model obtained from cupra and lyocell is used.
 また、図4は、図3の鑑別フロー図の一部を抽出した部分フロー図である。図4において、被検繊維が天然繊維であるか再生繊維であるかを鑑別した際に、天然繊維と再生繊維とから得られた鑑別モデルでは対応できないものがある。この場合、図4の判別不可の被検繊維は、天然繊維と再生繊維の混合繊維であるか、或いは、セルロース系繊維以外の繊維が混合されている可能性がある。天然繊維と再生繊維の混合繊維である場合には、後述の第2実施形態による混用率の鑑別を行うことが必要となる。 FIG. 4 is a partial flow diagram in which a part of the discrimination flow diagram of FIG. 3 is extracted. In FIG. 4, when a test fiber is identified as a natural fiber or a regenerated fiber, there is a model that cannot be handled by a differential model obtained from a natural fiber and a regenerated fiber. In this case, the test fiber indistinguishable in FIG. 4 may be a mixed fiber of natural fibers and regenerated fibers, or fibers other than cellulosic fibers may be mixed. In the case of a mixed fiber of natural fiber and regenerated fiber, it is necessary to identify the mixed rate according to the second embodiment described later.
 このようにして、図3の鑑別フロー図に従って鑑別を行うことにより、被検繊維の種類を客観的に鑑別することができる。次に、本第1実施形態の鑑別方法を実施例1により具体的に説明する。 Thus, by performing discrimination according to the discrimination flow diagram of FIG. 3, the type of the test fiber can be objectively discriminated. Next, the identification method of the first embodiment will be described in detail with reference to Example 1.
 本実施例1は、上記第1実施形態に係る各単一繊維間の鑑別を行うものであり、複数の被検繊維に対して鑑別フロー図(図3参照)に従って鑑別を行うものである。なお、各被検繊維は、いずれも顕微鏡法などの予備鑑定においてセルロース系繊維であることが判明している。 This Example 1 performs discrimination between each single fiber according to the first embodiment, and performs discrimination according to a discrimination flow diagram (see FIG. 3) with respect to a plurality of test fibers. Each of the test fibers has been found to be a cellulosic fiber in preliminary identification such as microscopy.
 (1)データベース作成工程
 本実施例1においては、まず、綿9点、リネン6点、ラミー3点、レーヨン9点、キュプラ9点、リヨセル9点、合計45点の織編物の吸収スペクトルを得た。なお、綿に関しては室温において水酸化ナトリウム水溶液による前処理を行った。吸収スペクトルの測定は、FT/IR分光光度計VIR‐9550(日本分光株式会社)を使用し、ZnSeプリズムによるATR法で、波数4000cm-1~500cm-1の吸収スペクトルを測定した。次に、乗算的散乱補正(MSC)後の各吸収スペクトルをSavitzky-Golay法により1次微分して微分スペクトルを得た。
(1) Database creation step In Example 1, first, an absorption spectrum of 45 points in total, which is 9 points of cotton, 6 points of linen, 3 points of ramie, 9 points of rayon, 9 points of cupra, 9 points of lyocell, is obtained. It was. The cotton was pretreated with an aqueous sodium hydroxide solution at room temperature. Measurement of absorption spectrum, using FT / IR spectrophotometer VIR-9550 a (JASCO Corporation), in the ATR method by ZnSe prism, the absorption spectrum was measured at a wavenumber of 4000cm -1 ~ 500cm -1. Next, each absorption spectrum after multiplicative scattering correction (MSC) was first-order differentiated by the Savitzky-Golay method to obtain a differential spectrum.
 次に、これらの吸収スペクトル(微分スペクトル)を次の各グループに分類した。
・第1グループ(A1):天然繊維(綿、リネン及びラミー)
・第2グループ(A2):再生繊維(レーヨン、キュプラ及びリヨセル)
・第3グループ(B1):綿
・第4グループ(B2):麻類(リネン及びラミー)
・第5グループ(C1):リネン
・第6グループ(C2):ラミー
・第7グループ(D1):レーヨン
・第8グループ(D2):キュプラ及びリヨセル
・第9グループ(E1):キュプラ
・第10グループ(E2):リヨセル
 上記第1グループ(A1)~第10グループ(E2)のうち2つずつ組み合わせて、5組の組み合わせとした。次に、これらの微分スペクトルから各組み合わせを特徴付ける所定の波数域のスペクトルデータをPCR Moving Windowを利用して抽出した。抽出した波数域で主成分分析を行い、各鑑別モデルA~Eを得た。本実施例1において、各鑑別モデルA~Eと抽出した波数域を下記に示す。
・鑑別モデルA:「天然繊維」と「再生繊維」
 第1グループ(A1)と第2グループ(A2):波数1200~850cm-1
・鑑別モデルB:「綿」と「麻類」
 第3グループ(B1)と第4グループ(B2):波数1400~900cm-1
・鑑別モデルC:「リネン」と「ラミー」
 第5グループ(C1)と第6グループ(C2):波数3500~3000cm-1
・鑑別モデルD:「レーヨン」と「キュプラ及びリヨセル」
 第7グループ(D1)と第8グループ(D2):波数1400~800cm-1
・鑑別モデルE:「キュプラ」と「リヨセル」
 第9グループ(E1)と第10グループ(E2):波数1250~900cm-1 
 図5~図9は、本実施例1で得られた各鑑別モデルA~Eに対する主成分スコアの散布図である。図5は、鑑別モデルA:「天然繊維」と「再生繊維」の主成分スコアの散布図であり、第1主成分(PC1)を横軸とし第2主成分(PC2)を縦軸として、「天然繊維」と「再生繊維」の2つの繊維グループが明確に層別された。なお、「天然繊維」と「再生繊維」とを区別する線形判別関数(L1)を図5に記載した。図6は、鑑別モデルB:「綿」と「麻類」の主成分スコアの散布図であり、第1主成分(PC1)を横軸とし第2主成分(PC2)を縦軸として、「綿」と「麻類」の2つの繊維グループが明確に層別された。なお、「綿」と「麻類」とを区別する線形判別関数(L2)を図6に記載した。図7は、鑑別モデルC:「リネン」と「ラミー」の主成分スコアの散布図であり、第2主成分(PC2)を横軸とし第3主成分(PC3)を縦軸として、「リネン」と「ラミー」の2つの繊維グループが明確に層別された。なお、「リネン」と「ラミー」とを区別する線形判別関数(L3)を図7に記載した。図8は、鑑別モデルD:「レーヨン」と「キュプラ及びリヨセル」の主成分スコアの散布図であり、第2主成分(PC2)を横軸とし第3主成分(PC3)を縦軸として、「レーヨン」と「キュプラ及びリヨセル」の2つの繊維グループが明確に層別された。なお、「レーヨン」と「キュプラ及びリヨセル」とを区別する線形判別関数(L4)を図8に記載した。図9は、鑑別モデルE:「キュプラ」と「リヨセル」の主成分スコアの散布図であり、第2主成分(PC2)を横軸とし第3主成分(PC3)を縦軸として、「キュプラ」と「リヨセル」の2つの繊維グループが明確に層別された。なお、「キュプラ」と「リヨセル」とを区別する線形判別関数(L5)を図9に記載した。このようにして求めた解析データ群を各組合せに対する鑑別モデルとして本実施例1のデータベースとして蓄積した。
Next, these absorption spectra (differential spectra) were classified into the following groups.
・ First group (A1): Natural fibers (cotton, linen and ramie)
-Second group (A2): Regenerated fibers (rayon, cupra and lyocell)
・ 3rd group (B1): Cotton ・ 4th group (B2): Hemp (linen and ramie)
・ 5th Group (C1): Linen ・ 6th Group (C2): Ramie ・ 7th Group (D1): Rayon ・ 8th Group (D2): Cupra and Lyocell ・ 9th Group (E1): Cupra ・ 10th Group (E2): Lyocell Two of the first group (A1) to tenth group (E2) were combined to form five combinations. Next, spectrum data of a predetermined wavenumber range characterizing each combination was extracted from these differential spectra using PCR Moving Window. Principal component analysis was performed in the extracted wavenumber region, and differential models A to E were obtained. In the first embodiment, the differential models A to E and the extracted wave number ranges are shown below.
・ Differential model A: “Natural fiber” and “Regenerated fiber”
First group (A1) and second group (A2): wave number 1200 to 850 cm −1
・ Differential Model B: “Cotton” and “Hemp”
3rd group (B1) and 4th group (B2): Wave number 1400-900cm -1
・ Model C: “Linen” and “Rummy”
5th group (C1) and 6th group (C2): Wave number 3500-3000cm -1
・ Differential Model D: “Rayon” and “Cupra and Lyocell”
7th group (D1) and 8th group (D2): Wave number 1400-800cm -1
・ Difference model E: “Cupra” and “Lyocell”
Ninth group (E1) and tenth group (E2): wave number 1250 to 900 cm −1
FIGS. 5 to 9 are scatter diagrams of principal component scores for the differentiating models A to E obtained in the first embodiment. FIG. 5 is a scatter diagram of the principal component scores of the discrimination model A: “natural fiber” and “regenerated fiber”, with the first principal component (PC1) as the horizontal axis and the second principal component (PC2) as the vertical axis, Two fiber groups, “natural fibers” and “regenerated fibers”, were clearly stratified. The linear discriminant function (L1) for distinguishing between “natural fibers” and “regenerated fibers” is shown in FIG. FIG. 6 is a scatter diagram of the principal component scores of the discrimination model B: “cotton” and “hemp”, with the first principal component (PC1) as the horizontal axis and the second principal component (PC2) as the vertical axis. Two fiber groups, cotton and hemp, were clearly stratified. A linear discriminant function (L2) for distinguishing between “cotton” and “hemp” is shown in FIG. FIG. 7 is a scatter diagram of principal component scores of the discrimination model C: “linen” and “ramie”, with the second principal component (PC2) as the horizontal axis and the third principal component (PC3) as the vertical axis. "And" Rummy "are clearly stratified. The linear discriminant function (L3) for distinguishing between “linen” and “ramie” is shown in FIG. FIG. 8 is a scatter diagram of principal component scores of differential model D: “rayon” and “cupra and lyocell”, with the second principal component (PC2) as the horizontal axis and the third principal component (PC3) as the vertical axis. Two fiber groups, “rayon” and “cupra and lyocell” were clearly stratified. A linear discriminant function (L4) for distinguishing between “rayon” and “cupra and lyocell” is shown in FIG. FIG. 9 is a scatter diagram of principal component scores of the discrimination model E: “cupra” and “lyocell”, with the second principal component (PC2) as the horizontal axis and the third principal component (PC3) as the vertical axis. "And" Lyocell "were clearly stratified. A linear discriminant function (L5) for distinguishing between “cupra” and “lyocell” is shown in FIG. The analysis data group obtained in this way was accumulated as a database of Example 1 as a differential model for each combination.
 (2)鑑別工程
 本実施例1の鑑別工程においては、セルロース系繊維の単一繊維からなる5つの被検繊維X1~X5を準備した。まず、データベース作成工程と同様にして、鑑別しようとする被検繊維X1~X5の吸収スペクトルを求め、微分スペクトルを得た。
(2) Identification process In the identification process of Example 1, five test fibers X1 to X5 made of a single fiber of cellulosic fibers were prepared. First, in the same manner as in the database creation step, absorption spectra of the test fibers X1 to X5 to be identified were obtained, and a differential spectrum was obtained.
 まず、被検繊維X1~X5が「天然繊維」と「再生繊維」のいずれのグループに属するかを鑑別した。具体的には、求めた微分スペクトルからデータベースと同様の波数域(波数1200~850cm-1)のスペクトルデータを抽出し、各主成分スコアを得た。このようにして得られた被検繊維X1~X5の各主成分スコアを「天然繊維」と「再生繊維」のデータベース(鑑別モデルA)と照合した。また、被検繊維X1~X5の主成分スコアを図5の主成分スコアの散布図にプロットした(図5のX1~X5)。図5において、本実施例1の被検繊維X1~X5のうち、被検繊維X1とX2は「天然繊維」の第1グループ(A1)に属する繊維であることが分かる。一方、被検繊維X3~X5は「再生繊維」の第2グループ(A2)に属する繊維であることが分かる。 First, it was discriminated whether the test fibers X1 to X5 belong to the group of “natural fibers” or “regenerated fibers”. Specifically, spectrum data in the same wave number region (wave number 1200 to 850 cm −1 ) as the database was extracted from the obtained differential spectrum, and each principal component score was obtained. The principal component scores of the test fibers X1 to X5 thus obtained were collated with a database (differentiation model A) of “natural fibers” and “regenerated fibers”. Further, the principal component scores of the test fibers X1 to X5 were plotted in the scatter diagram of the principal component scores in FIG. 5 (X1 to X5 in FIG. 5). 5, it can be seen that among the test fibers X1 to X5 of Example 1, the test fibers X1 and X2 are fibers belonging to the first group (A1) of “natural fibers”. On the other hand, the test fibers X3 to X5 are fibers belonging to the second group (A2) of “regenerated fibers”.
 次に、「天然繊維」と鑑別された被検繊維X1、X2が「綿」と「麻類」のいずれのグループに属するかを鑑別した。具体的には、求めた微分スペクトルからデータベースと同様の波数域(波数1400~900cm-1)のスペクトルデータを抽出し、各主成分スコアを得た。このようにして得られた被検繊維X1、X2の各主成分スコアを「綿」と「麻類」のデータベース(鑑別モデルB)と照合した。また、被検繊維X1、X2の主成分スコアを図6の主成分スコアの散布図にプロットした(図6のX1、X2)。図6において、本実施例1の被検繊維X1、X2のうち、被検繊維X1は「綿」の第3グループ(B1)に属する繊維であることが分かる。一方、被検繊維X2は「麻類」の第4グループ(B2)に属する繊維であることが分かる。 Next, it was discriminated whether the test fibers X1, X2 identified as “natural fibers” belong to “cotton” or “linen”. Specifically, spectrum data in the same wave number region (wave number 1400 to 900 cm −1 ) as the database was extracted from the obtained differential spectrum, and each principal component score was obtained. The principal component scores of the test fibers X1 and X2 thus obtained were collated with the “cotton” and “hemp” database (differentiation model B). Moreover, the principal component scores of the test fibers X1 and X2 were plotted in the scatter diagram of the principal component scores in FIG. 6 (X1 and X2 in FIG. 6). In FIG. 6, it can be seen that among the test fibers X1 and X2 of Example 1, the test fiber X1 is a fiber belonging to the third group (B1) of “cotton”. On the other hand, it is understood that the test fiber X2 is a fiber belonging to the fourth group (B2) of “Hemp”.
 次に、「麻類」と鑑別された被検繊維X2が「リネン」と「ラミー」のいずれのグループに属するかを鑑別した。具体的には、求めた微分スペクトルからデータベースと同様の波数域(波数3500~3000cm-1)のスペクトルデータを抽出し、主成分スコアを得た。このようにして得られた被検繊維X2の主成分スコアを「リネン」と「ラミー」のデータベース(鑑別モデルC)と照合した。また、被検繊維X2の主成分スコアを図7の主成分スコアの散布図にプロットした(図7のX2)。図7において、本実施例1の被検繊維X2は「リネン」の第5グループ(C1)に属する繊維であることが分かる。 Next, it was discriminated whether the test fiber X2 identified as “Hemp” belongs to “linen” or “ramie”. Specifically, spectrum data in the same wave number region (wave number 3500 to 3000 cm −1 ) as that in the database was extracted from the obtained differential spectrum to obtain a principal component score. The principal component score of the test fiber X2 thus obtained was collated with the “linen” and “ramie” databases (differentiation model C). Further, the principal component score of the test fiber X2 was plotted in the scatter diagram of the principal component score in FIG. 7 (X2 in FIG. 7). In FIG. 7, it can be seen that the test fiber X2 of Example 1 is a fiber belonging to the fifth group (C1) of “linen”.
 一方、「再生繊維」と鑑別された被検繊維X3~X5が「レーヨン」と「キュプラ及びリヨセル」のいずれのグループに属するかを鑑別した。具体的には、求めた微分スペクトルからデータベースと同様の波数域(波数1400~800cm-1)のスペクトルデータを抽出し、各主成分スコアを得た。このようにして得られた被検繊維X3~X5の各主成分スコアを「レーヨン」と「キュプラ及びリヨセル」のデータベース(鑑別モデルD)と照合した。また、被検繊維X3~X5の主成分スコアを図8の主成分スコアの散布図にプロットした(図8のX3~X5)。図8において、本実施例1の被検繊維X3~X5のうち、被検繊維X3は「レーヨン」の第7グループ(D1)に属する繊維であることが分かる。一方、被検繊維X4、X5は「キュプラ及びリヨセル」の第8グループ(D2)に属する繊維であることが分かる。 On the other hand, whether the test fibers X3 to X5 identified as “regenerated fibers” belong to “rayon” or “cupra and lyocell” groups was identified. Specifically, spectrum data in the same wave number region (wave number 1400 to 800 cm −1 ) as the database was extracted from the obtained differential spectrum, and each principal component score was obtained. The principal component scores of the test fibers X3 to X5 thus obtained were collated with a database (differentiation model D) of “rayon” and “cupra and lyocell”. Further, the principal component scores of the test fibers X3 to X5 were plotted in the scatter diagram of the principal component scores in FIG. 8 (X3 to X5 in FIG. 8). In FIG. 8, it can be seen that among the test fibers X3 to X5 of Example 1, the test fiber X3 is a fiber belonging to the seventh group (D1) of “rayon”. On the other hand, it can be seen that the test fibers X4 and X5 are fibers belonging to the eighth group (D2) of “cupra and lyocell”.
 次に、「キュプラ及びリヨセル」と鑑別された被検繊維X4、X5が「キュプラ」と「リヨセル」のいずれのグループに属するかを鑑別した。具体的には、求めた微分スペクトルからデータベースと同様の波数域(波数1250~900cm-1)のスペクトルデータを抽出し、各主成分スコアを得た。このようにして得られた被検繊維X4、X5の主成分スコアを「キュプラ」と「リヨセル」のデータベース(鑑別モデルE)と照合した。また、被検繊維X4、X5の主成分スコアを図9の主成分スコアの散布図にプロットした(図9のX4、X5)。図9において、本実施例1の被検繊維X4、X5のうち、被検繊維X4は「キュプラ」の第9グループ(E1)に属する繊維であることが分かる。一方、被検繊維X5、は「リヨセル」の第10グループ(E2)に属する繊維であることが分かる。 Next, it was discriminated whether the test fibers X4 and X5 identified as “cupra and lyocell” belong to “cupra” and “lyocell”. Specifically, spectrum data in the same wave number region (wave number 1250 to 900 cm −1 ) as the database was extracted from the obtained differential spectrum, and each principal component score was obtained. The principal component scores of the test fibers X4 and X5 thus obtained were collated with the “cupra” and “Lyocell” databases (differentiation model E). Further, the principal component scores of the test fibers X4 and X5 were plotted in the scatter diagram of the principal component scores in FIG. 9 (X4 and X5 in FIG. 9). 9, it can be seen that among the test fibers X4 and X5 of Example 1, the test fiber X4 is a fiber belonging to the ninth group (E1) of “cupra”. On the other hand, it can be seen that the test fiber X5 is a fiber belonging to the tenth group (E2) of “Lyocell”.
 以上説明したように、本第1実施形態においては、単一繊維からなる被検繊維に対して、繊維の種類を容易かつ正確に鑑別することができた。よって、本発明においては、鑑別操作が比較的簡単で客観性を有し、検査員の経験やノウハウに頼ることなく同系異種繊維の鑑別をすることのできる繊維鑑別方法を提供することができる。 As described above, in the first embodiment, the type of fiber could be easily and accurately distinguished from the test fiber consisting of a single fiber. Therefore, in the present invention, it is possible to provide a fiber discrimination method in which discrimination operation is relatively simple and objective, and can discriminate between different types of different fibers without depending on the experience and know-how of the inspector.
 《第2実施形態》
 本第2実施形態においては、被検繊維として各単一繊維間の鑑別を行うものではなく、2種以上の繊維が混合されている場合を対象とする。つまり、顕微鏡法などの予備鑑定においてセルロース系繊維であるが、2種以上の繊維が混合されていると判明している場合に採用する。また、上記第1実施形態の鑑別工程において、被検繊維のスペクトルデータを解析したデータが繊維の種類が既知のいずれの単一繊維の領域にも適合せず、或いは複数の単一繊維に適合すると鑑別された場合など、繊維の種類を明確に鑑別できない場合に採用する。
<< Second Embodiment >>
In this 2nd Embodiment, it does not distinguish between each single fiber as a test fiber, but makes the case where two or more types of fibers are mixed. That is, although it is a cellulose fiber in preliminary appraisal such as a microscopic method, it is adopted when it is found that two or more kinds of fibers are mixed. Further, in the discrimination process of the first embodiment, the data obtained by analyzing the spectrum data of the test fiber does not match any single fiber region whose fiber type is known, or matches a plurality of single fibers. This is used when the fiber type cannot be clearly identified, such as when it is identified.
 (1)データベース作成工程
 本第2実施形態においては、例えば、綿とレーヨンの2種の単一繊維、及び、これらの繊維を一連の混用率で混合した混合繊維を一連の比較繊維として準備する。次に、これらの比較繊維に対して、それぞれ、各吸収スペクトルを求める。なお、吸収スペクトルを求める方法、吸収スペクトルに各種補正をする方法、及び、得られた吸収スペクトルに微分処理などの前処理を行う方法は、上記第1実施形態のデータベース作成工程と同様である。また、上記第1実施形態のデータベース作成工程と同様にして、各吸収スペクトルから1又は2以上の波数域のスペクトルデータを抽出する。
(1) Database creation step In the second embodiment, for example, two types of single fibers of cotton and rayon and mixed fibers obtained by mixing these fibers at a series of mixed ratios are prepared as a series of comparative fibers. . Next, each absorption spectrum is obtained for each of these comparative fibers. The method for obtaining the absorption spectrum, the method for performing various corrections on the absorption spectrum, and the method for performing preprocessing such as differentiation on the obtained absorption spectrum are the same as the database creation step of the first embodiment. Further, in the same manner as in the database creation process of the first embodiment, spectrum data of one or more wave numbers is extracted from each absorption spectrum.
 次に、抽出したスペクトルデータを多変量解析して解析データ群を求める。多変量解析に使用する解析法は、特に限定するものではなく、上記第1実施形態と同様に主成分分析(PCA)、又は、主成分回帰(PCR)、PLS回帰などの重回帰分析を使用することが好ましい。特に、混合繊維の鑑別を行う際には、上記第1実施形態の主成分分析(PCA)に替えて、PLS回帰分析を使用することが好ましい。なお、各分析に使用するソフトは、特に限定するものではない。 Next, multivariate analysis is performed on the extracted spectrum data to obtain an analysis data group. The analysis method used for multivariate analysis is not particularly limited, and uses multiple regression analysis such as principal component analysis (PCA), principal component regression (PCR), or PLS regression as in the first embodiment. It is preferable to do. In particular, when performing discrimination of mixed fibers, it is preferable to use PLS regression analysis instead of the principal component analysis (PCA) of the first embodiment. The software used for each analysis is not particularly limited.
 本第2実施形態において、PLS回帰分析を使用した鑑別について説明する。具体的には、鑑別すべき2つの繊維グループ(例えば、綿とレーヨン)を一連の混用率で混合した一連の比較繊維の吸収スペクトルから抽出した1又は2以上の波数域のスペクトルデータ群に対してPLS回帰分析を行い、鑑別モデル(「定量モデル」ともいう)を求める。PLS回帰分析に使用する解析ソフトについては、特に限定するものではない。本第2実施形態においては、市販のプログラム作成ソフトにより発明者自らが構成したプログラムを使用して解析した。 In the second embodiment, the discrimination using PLS regression analysis will be described. Specifically, with respect to a spectrum data group of one or more wavenumber regions extracted from an absorption spectrum of a series of comparative fibers obtained by mixing two fiber groups (for example, cotton and rayon) to be distinguished at a series of mixed ratios. PLS regression analysis is performed to obtain a discrimination model (also referred to as “quantitative model”). The analysis software used for the PLS regression analysis is not particularly limited. In the second embodiment, analysis was performed using a program constructed by the inventor himself with commercially available program creation software.
 このようにして求めた一連の比較繊維(各混合繊維)のスペクトルデータをPLS回帰分析したときの解析データ群をデータベース(鑑別モデル)として蓄積する。なお、これらの鑑別モデルについては、下記の実施例2及び実施例3において詳述する。 The analysis data group when the spectrum data of the series of comparison fibers (each mixed fiber) thus obtained is subjected to PLS regression analysis is accumulated as a database (differentiation model). These differential models will be described in detail in Example 2 and Example 3 below.
 (2)鑑別工程
 本第2実施形態の鑑別工程においては、まず、鑑別しようとする被検繊維の吸収スペクトルを求める。吸収スペクトルを求める方法、吸収スペクトルに各種補正をする方法、及び、得られた吸収スペクトルに微分処理などの前処理を行う方法は、上述の比較繊維に対する方法と同様である。次に、求めた微分スペクトルから比較繊維と同じ波数域のスペクトルデータを抽出する。PLS回帰分析においては、抽出した被検繊維のスペクトルデータを解析データとして使用し、鑑別モデル(定量モデル)に当該解析データを適用する(乗じる)ことにより、被検繊維の混用率を求める。
(2) Identification process In the identification process of the second embodiment, first, an absorption spectrum of a test fiber to be identified is obtained. A method for obtaining an absorption spectrum, a method for performing various corrections on the absorption spectrum, and a method for performing a pretreatment such as a differentiation process on the obtained absorption spectrum are the same as those for the above-described comparative fiber. Next, spectrum data in the same wave number region as that of the comparative fiber is extracted from the obtained differential spectrum. In the PLS regression analysis, the extracted spectrum data of the test fiber is used as analysis data, and the analysis data is applied (multiplied) to the discrimination model (quantitative model) to obtain the mixed ratio of the test fiber.
 なお、本鑑別工程においては、被検繊維に混合されている繊維の種類と共にその混用率は未知であるが、比較的簡単な顕微鏡法などで被検繊維がセルロース系繊維であることが判明している。そこで、本第2実施形態においては、次のような手順で繊維鑑別することが好ましい。 In this discrimination process, the mixing ratio is unknown as well as the type of fiber mixed with the test fiber, but it became clear that the test fiber was a cellulosic fiber by relatively simple microscopy. ing. Therefore, in the second embodiment, it is preferable to perform fiber discrimination by the following procedure.
 図10は、本第2実施形態において被検繊維を鑑別する解析手順を表す鑑別フロー図である。図10において、まず、被検繊維に対して上記第1実施形態で説明した単一繊維の鑑別手法を行う。その結果、単一繊維ではないこと、及び、混合されている繊維の種類が判明する。混合されている繊維の種類が分かれば、この被検繊維に最適な鑑別モデル(定量モデル)を選択する。次に、上述のように、被検繊維のスペクトルデータを解析データとして使用し、選択した鑑別モデル(定量モデル)に当該解析データを適用する(乗じる)ことにより、被検繊維の混用率を鑑別する。 FIG. 10 is a discrimination flowchart showing an analysis procedure for discriminating the test fiber in the second embodiment. In FIG. 10, first, the single fiber discrimination method described in the first embodiment is performed on the test fiber. As a result, it is determined that the fiber is not a single fiber and the type of fiber being mixed. If the type of fiber being mixed is known, an optimum discrimination model (quantitative model) is selected for this test fiber. Next, as described above, the spectrum data of the test fiber is used as analysis data, and the analysis data is applied (multiplied) to the selected discrimination model (quantitative model), so that the mixed rate of the test fiber is discriminated. To do.
 このようにして、図10の鑑別フロー図に従って鑑別を行うことにより、被検繊維に混合されている繊維の種類、及び、その混用率を客観的に鑑別することができる。次に、本第2実施形態の鑑別方法を実施例2及び実施例3により具体的に説明する。 Thus, by performing discrimination according to the discrimination flow diagram of FIG. 10, it is possible to objectively discriminate the types of fibers mixed in the test fibers and their mixed rate. Next, the discrimination method of the second embodiment will be described in detail with reference to Example 2 and Example 3.
 本実施例2は、上記第2実施形態に係る2種以上の繊維が混合されている混合繊維の鑑別を行うものであり、複数の被検繊維に対して鑑別フロー図(図10参照)に従って鑑別を行うものである。なお、本実施例2においては、綿とレーヨンが混合された織編物(混紡織編物)を例にして説明する。 The present Example 2 performs discrimination of mixed fibers in which two or more kinds of fibers according to the second embodiment are mixed, and according to a discrimination flow diagram (see FIG. 10) for a plurality of test fibers. It is to make a discrimination. In the second embodiment, a knitted or knitted fabric (mixed knitted fabric) in which cotton and rayon are mixed will be described as an example.
 (1)データベース作成工程
 まず、セルロース系繊維を2種類ずつ所定の割合で混合した一連の混合繊維を準備する。本実施例2においては、綿とレーヨンを100:0~0:100に混紡した織編物46点を準備し、これらについて吸収スペクトルを得た。吸収スペクトルの測定は、FT/IR分光光度計VIR‐9550(日本分光株式会社)を使用し、ZnSeプリズムによるATR法で、波数4000cm-1~500cm-1の吸収スペクトルを測定した。次に、乗算的散乱補正(MSC)後の各吸収スペクトルをSavitzky-Golay法により1次微分して微分スペクトルを得た。
(1) Database creation process First, a series of mixed fibers in which two types of cellulose fibers are mixed at a predetermined ratio are prepared. In Example 2, 46 woven or knitted fabrics in which cotton and rayon were blended at 100: 0 to 0: 100 were prepared, and absorption spectra were obtained for these. Measurement of absorption spectrum, using FT / IR spectrophotometer VIR-9550 a (JASCO Corporation), in the ATR method by ZnSe prism, the absorption spectrum was measured at a wavenumber of 4000cm -1 ~ 500cm -1. Next, each absorption spectrum after multiplicative scattering correction (MSC) was first-order differentiated by the Savitzky-Golay method to obtain a differential spectrum.
 次に、これらの吸収スペクトル(微分スペクトル)について、綿とレーヨンとの混用率を鑑別するのに最適と考えられる波数域のスペクトルデータをPLSR Moving Windowを利用して抽出した。綿とレーヨンとの混用率を鑑別するには、波数1200~850cm-1の波数域を選択した。この波数域でPLS回帰分析を行い、求めた解析データ群を綿とレーヨンとの混合繊維の鑑別モデル(定量モデル)として本実施例2のデータベースとして蓄積した。 Next, with respect to these absorption spectra (differential spectra), spectral data in the wavenumber region considered to be optimal for distinguishing the mixture ratio of cotton and rayon were extracted using the PLSR Moving Window. In order to distinguish the mixing ratio of cotton and rayon, a wave number range of wave number 1200 to 850 cm −1 was selected. PLS regression analysis was performed in this wave number region, and the obtained analysis data group was accumulated as a database of Example 2 as a differential model (quantitative model) of mixed fibers of cotton and rayon.
 (2)鑑別工程
 本実施例2の鑑別工程においては、綿とレーヨンとが種々の割合で混合された6つの被検繊維Y1~Y6を準備した。これらの混用率は、鑑別段階においては不明であった。まず、データベース作成工程と同様にして、鑑別しようとする被検繊維Y1~Y6の吸収スペクトルを求め、微分スペクトルを得た。
(2) Identification process In the identification process of Example 2, six test fibers Y1 to Y6 in which cotton and rayon were mixed at various ratios were prepared. These mixed rates were unknown at the discrimination stage. First, in the same manner as the database creation step, the absorption spectra of the test fibers Y1 to Y6 to be identified were obtained, and the differential spectra were obtained.
 まず、被検繊維Y1~Y6を上記第1実施形態の鑑別フロー(図3参照)に従って、各単一繊維の組み合わせ(上記実施例1の鑑別モデルA~E)に従って鑑別した。その結果、上記5つの鑑別モデルのうち、鑑別モデルA(天然繊維と再生繊維)、鑑別モデルB(綿と麻類)、鑑別モデルD(再生繊維どうし)の各鑑別結果から綿とレーヨンの混合繊維であると判断した。 First, the test fibers Y1 to Y6 were differentiated according to the combination of each single fiber (differentiation models A to E in Example 1 above) according to the differentiation flow of the first embodiment (see FIG. 3). As a result, among the above-mentioned five differentiation models, a mixture of cotton and rayon is obtained from the discrimination results of differentiation model A (natural fibers and regenerated fibers), differentiation model B (cotton and hemp), and differentiation model D (regenerated fibers). Judged to be fiber.
 図11は、被検繊維Y1~Y6の主成分スコアをプロットした「天然繊維」と「再生繊維」の主成分スコアの散布図(鑑別モデルA)である。図12は、被検繊維Y1~Y6の主成分スコアをプロットした「綿」と「麻類」の主成分スコアの散布図(鑑別モデルB)である。図13は、被検繊維Y1~Y6の主成分スコアをプロットした「レーヨン」と「キュプラ及びリヨセル」の主成分スコアの散布図(鑑別モデルD)である。 FIG. 11 is a scatter diagram (differentiation model A) of principal component scores of “natural fibers” and “regenerated fibers” in which principal component scores of test fibers Y1 to Y6 are plotted. FIG. 12 is a scatter diagram (differentiation model B) of the principal component scores of “cotton” and “hemp” plotting the principal component scores of the test fibers Y1 to Y6. FIG. 13 is a scatter diagram (differentiation model D) of principal component scores of “rayon” and “cupra and lyocell” in which principal component scores of test fibers Y1 to Y6 are plotted.
 被検繊維Y1~Y6は、図11において線形判別関数L1を跨いで「天然繊維」と「再生繊維」の中間付近にプロットされた。また、図12において線形判別関数L2の「綿」側にプロットされたが、図13においては線形判別関数L4を跨いで「レーヨン」と「キュプラ及びリヨセル」の広い範囲に分布している。これらのことから、被検繊維Y1~Y6は綿とレーヨンとが混合されていると判断した。 The test fibers Y1 to Y6 were plotted in the vicinity of the middle of “natural fiber” and “regenerated fiber” across the linear discriminant function L1 in FIG. Further, although plotted on the “cotton” side of the linear discriminant function L2 in FIG. 12, it is distributed in a wide range of “rayon” and “cupra and lyocell” across the linear discriminant function L4 in FIG. From these, it was determined that the test fibers Y1 to Y6 were mixed with cotton and rayon.
 そこで、被検繊維Y1~Y6の各スペクトルデータを解析データとして使用し、選択した綿とレーヨンとの混合繊維の鑑別モデル(定量モデル)に当該解析データを適用する(乗じる)ことにより、被検繊維Y1~Y6の混用率を鑑別した。また、並行して従来のJISL 1030‐2の方法で混用率を鑑別した。本実施例2の結果と従来法の結果を比較して表1に示す。 Therefore, each spectral data of the test fibers Y1 to Y6 is used as analysis data, and the analysis data is applied (multiplied) to the selected model (quantitative model) of the mixed fiber of cotton and rayon. The mixed ratio of the fibers Y1 to Y6 was identified. In parallel, the mixed use rate was identified by the conventional method of JISL 1030-2. Table 1 compares the results of Example 2 with the results of the conventional method.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1から分かるように、各被検繊維Y1~Y6の混用率は、操作が煩雑な従来法と比較しても、ほぼ同様の値を示していた。また、図14に表1の結果をプロットしたグラフを示す。図14において、本実施例2の結果は従来法と比較して良好な相関を示している。 As can be seen from Table 1, the mixing ratio of the test fibers Y1 to Y6 showed almost the same value even when compared with the conventional method in which the operation was complicated. Moreover, the graph which plotted the result of Table 1 in FIG. 14 is shown. In FIG. 14, the result of the present Example 2 shows a good correlation as compared with the conventional method.
 本実施例3は、上記実施例2と同様に2種以上の繊維が混合されている混合繊維の鑑別を行うものであり、複数の被検繊維に対して鑑別フロー図(図10参照)に従って鑑別を行うものである。なお、本実施例3においては、綿とリヨセルが混合された織編物(混紡織編物)を例にして説明する。 The present Example 3 performs the discrimination of the mixed fiber in which two or more kinds of fibers are mixed similarly to the above Example 2, and according to the discrimination flow diagram (see FIG. 10) for a plurality of test fibers. It is to make a discrimination. In Example 3, a woven or knitted fabric (mixed woven fabric) in which cotton and lyocell are mixed will be described as an example.
 (1)データベース作成工程
 まず、セルロース系繊維を2種類ずつ所定の割合で混合した一連の混合繊維を準備する。本実施例3においては、綿とリヨセルを100:0~0:100に混紡した織編物41点を準備し、これらについて吸収スペクトルを得た。吸収スペクトルの測定は、FT/IR分光光度計VIR‐9550(日本分光株式会社)を使用し、ZnSeプリズムによるATR法で、波数4000cm-1~500cm-1の吸収スペクトルを測定した。次に、乗算的散乱補正(MSC)後の各吸収スペクトルをSavitzky-Golay法により1次微分して微分スペクトルを得た。
(1) Database creation process First, a series of mixed fibers in which two types of cellulose fibers are mixed at a predetermined ratio are prepared. In Example 3, 41 woven or knitted fabrics in which cotton and lyocell were blended at 100: 0 to 0: 100 were prepared, and absorption spectra were obtained for these. Measurement of absorption spectrum, using FT / IR spectrophotometer VIR-9550 a (JASCO Corporation), in the ATR method by ZnSe prism, the absorption spectrum was measured at a wavenumber of 4000cm -1 ~ 500cm -1. Next, each absorption spectrum after multiplicative scattering correction (MSC) was first-order differentiated by the Savitzky-Golay method to obtain a differential spectrum.
 次に、これらの吸収スペクトル(微分スペクトル)について、綿とリヨセルとの混用率を鑑別するのに最適と考えられる波数域のスペクトルデータをPLSR Moving Windowを利用して抽出した。綿とリヨセルとの混用率を鑑別するには、波数1300~800cm-1の波数域を選択した。この波数域でPLS回帰分析を行い、求めた解析データ群を綿とリヨセルとの混合繊維の鑑別モデル(定量モデル)として本実施例3のデータベースとして蓄積した。 Next, with respect to these absorption spectra (differential spectra), spectral data in the wavenumber region considered to be optimal for distinguishing the mixture ratio of cotton and lyocell were extracted using the PLSR Moving Window. In order to distinguish the mixed rate of cotton and lyocell, a wave number range of wave numbers 1300 to 800 cm −1 was selected. A PLS regression analysis was performed in this wavenumber region, and the obtained analysis data group was accumulated as a database of Example 3 as a differentiation model (quantitative model) of mixed fibers of cotton and lyocell.
 (2)鑑別工程
 本実施例3の鑑別工程においては、綿とリヨセルとが種々の割合で混合された6つの被検繊維Z1~Z6を準備した。これらの混用率は、鑑別段階においては不明であった。まず、データベース作成工程と同様にして、鑑別しようとする被検繊維Z1~Z6の吸収スペクトルを求め、微分スペクトルを得た。
(2) Identification process In the identification process of Example 3, six test fibers Z1 to Z6 in which cotton and lyocell were mixed at various ratios were prepared. These mixed rates were unknown at the discrimination stage. First, in the same manner as the database creation step, the absorption spectra of the test fibers Z1 to Z6 to be identified were obtained, and the differential spectra were obtained.
 まず、被検繊維Z1~Z6を上記第1実施形態の鑑別フロー(図3参照)に従って、各単一繊維の組み合わせ(上記実施例1の鑑別モデルA~E)に従って鑑別した。その結果、上記5つの鑑別モデルのうち、鑑別モデルA(天然繊維と再生繊維)、鑑別モデルB(綿と麻類)、鑑別モデルD(再生繊維どうし)、鑑別モデルE(キュプラとリヨセル)の各鑑別結果から綿とリヨセルの混合繊維であると判断した。 First, the test fibers Z1 to Z6 were differentiated according to the combination of each single fiber (differentiation models A to E of Example 1 above) according to the differentiation flow of the first embodiment (see FIG. 3). As a result, among the above five differentiation models, differentiation model A (natural fibers and regenerated fibers), differentiation model B (cotton and hemp), differentiation model D (regenerated fibers), differentiation model E (cupra and lyocell) From each discrimination result, it was judged to be a mixed fiber of cotton and lyocell.
 図15は、被検繊維Z1~Z6の主成分スコアをプロットした「天然繊維」と「再生繊維」の主成分スコアの散布図(鑑別モデルA)である。図16は、被検繊維Z1~Z6の主成分スコアをプロットした「綿」と「麻類」の主成分スコアの散布図(鑑別モデルB)である。図17は、被検繊維Z1~Z6の主成分スコアをプロットした「レーヨン」と「キュプラ及びリヨセル」の主成分スコアの散布図(鑑別モデルD)である。図18は、被検繊維Z1~Z6の主成分スコアをプロットした「キュプラ」と「リヨセル」の主成分スコアの散布図(鑑別モデルE)である。 FIG. 15 is a scatter diagram (differentiation model A) of the principal component scores of “natural fibers” and “regenerated fibers” in which the principal component scores of the test fibers Z1 to Z6 are plotted. FIG. 16 is a scatter diagram (differentiation model B) of principal component scores of “cotton” and “hemp” in which principal component scores of test fibers Z1 to Z6 are plotted. FIG. 17 is a scatter diagram (differentiation model D) of principal component scores of “rayon” and “cupra and lyocell” in which principal component scores of test fibers Z1 to Z6 are plotted. FIG. 18 is a scatter diagram (differentiation model E) of principal component scores of “cupra” and “lyocell” in which principal component scores of test fibers Z1 to Z6 are plotted.
 被検繊維Z1~Z6は、図15において線形判別関数L1を跨いで「天然繊維」と「再生繊維」の中間付近にプロットされた。また、図16において線形判別関数L2の「綿」側にプロットされたが、図17においては線形判別関数L4を跨いで「レーヨン」と「キュプラ及びリヨセル」の広い範囲に分布している。更に、図18において線形判別関数L5の「リヨセル」側にプロットされたがかなり広い範囲に分布している。これらのことから、被検繊維Z1~Z6は綿とリヨセルとが混合されていると判断した。 The test fibers Z1 to Z6 are plotted in the vicinity of the middle of “natural fibers” and “regenerated fibers” across the linear discriminant function L1 in FIG. Further, although plotted on the “cotton” side of the linear discriminant function L2 in FIG. 16, in FIG. 17, it is distributed over a wide range of “rayon” and “cupra and lyocell” across the linear discriminant function L4. Furthermore, although plotted on the “lyocell” side of the linear discriminant function L5 in FIG. 18, it is distributed over a fairly wide range. From these, it was determined that the test fibers Z1 to Z6 were mixed with cotton and lyocell.
 そこで、被検繊維Z1~Z6の各スペクトルデータを解析データとして使用し、選択した綿とリヨセルとの混合繊維の鑑別モデル(定量モデル)に当該解析データを適用する(乗じる)ことにより、被検繊維Z1~Z6の混用率を鑑別した。また、並行して従来のJISL 1030‐2の方法で混用率を鑑別した。本実施例3の結果と従来法の結果を比較して表2に示す。 Therefore, each spectral data of the test fibers Z1 to Z6 is used as analysis data, and the analysis data is applied (multiplied) to the selected model (quantitative model) of the mixed fiber of cotton and lyocell. The mixed ratio of the fibers Z1 to Z6 was identified. In parallel, the mixed use rate was identified by the conventional method of JISL 1030-2. The results of Example 3 and the results of the conventional method are compared and shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 表2から分かるように、各被検繊維Z1~Z6の混用率は、操作が煩雑な従来法と比較しても、ほぼ同様の値を示していた。また、図19に表2の結果をプロットしたグラフを示す。図19において、本実施例3の結果は従来法と比較して良好な相関を示している。 As can be seen from Table 2, the mixed ratio of the test fibers Z1 to Z6 showed almost the same value even when compared with the conventional method in which the operation was complicated. Moreover, the graph which plotted the result of Table 2 in FIG. 19 is shown. In FIG. 19, the result of Example 3 shows a better correlation than the conventional method.
 以上説明したように、本第2実施形態においては、2種類の単一繊維が混合された被検繊維に対して、各混合繊維の混用率を容易かつ正確に鑑別することができた。よって、本発明においては、鑑別操作が比較的簡単で客観性を有し、検査員の経験やノウハウに頼ることなく同系異種繊維の鑑別をすることのできる繊維鑑別方法を提供することができる。 As described above, in the second embodiment, it was possible to easily and accurately distinguish the mixed rate of each mixed fiber with respect to the test fiber in which two types of single fibers were mixed. Therefore, in the present invention, it is possible to provide a fiber discrimination method in which discrimination operation is relatively simple and objective, and can discriminate between different types of different fibers without depending on the experience and know-how of the inspector.
 なお、本発明の実施にあたり、上記各実施形態に限らず次のような種々の変形例が挙げられる。
(1)上記各実施形態においては、化学的組成が同じ繊維どうしの鑑別例としてセルロース系繊維で説明するものであるが、これに限るものではなく、タンパク質繊維としての各種獣毛系繊維どうしの鑑別や、その他の化学的組成が同じ繊維どうしの鑑別を行うようにしてもよい。
(2)上記各実施形態においては、2つの繊維グループ間の鑑別を多変量解析するものであるが、これに限るものではなく、3つ或いはそれ以上の繊維グループ間の鑑別を同時に多変量解析するようにしてもよい。
(3)上記各実施形態においては、IR分光分析により得られる吸収スペクトルにより鑑別を行うものであるが、これに限るものではなく、IR分光分析により得られる透過スペクトルにより鑑別を行うようにしてもよい。
(4)上記各実施形態においては、波数4000~500cm-1の範囲内の吸収スペクトルを測定し、これから解析に使用する所定の波数域におけるスペクトルデータを抽出するものであるが、これに限るものではなく、解析に使用する1つ又は2つ以上の所定の波数域における吸収スペクトルのみを測定するようにしてもよい。
(5)上記第1実施形態においては、主成分分析によりスペクトルデータを解析し、上記第2実施形態においては、PLS回帰分析によりスペクトルデータを解析するが、これに限るものではなく、いずれの鑑別においても、主成分回帰(PCR)、PLS回帰などの重回帰分析、或いは、その他の多変量解析によりスペクトルデータを解析するようにしてもよい。
(6)上記各実施形態においては、ATR法により吸収スペクトルを求めるものであるが、これに限るものではなく、その他の方法、例えば、比較繊維或いは被検繊維を微粉砕してからKBr錠剤法などで吸収スペクトルを求めるようにしてもよい。
(7)上記各実施形態においては、FT/IR分光光度計を使用するものであるが、これに限るものではなく、分散型赤外分光光度計を使用するようにしてもよい。
(8)上記実施例1~実施例3においては、PCR Moving Window 又はPLSR Moving Windowで抽出した特定の波数域のスペクトルデータを使用するものであるが、これに限るものではなく、その他の解析ソフトによる波数域の抽出、或いは、解析に必要と考えられる特定の官能基による波数域の抽出をするようにしてもよい。
(9)上記実施例1においては、解析に第1主成分と第2主成分との組合せ、或いは、第2主成分と第3主成分との組合せを使用した。しかし、解析に使用する主成分の組合せは、これらに限るものではなく、どのような主成分の組合せを使用するようにしてもよい。また、3つ以上の主成分を用いて3次元以上で解析するようにしてもよい。
(10)上記実施例1においては、天然繊維と再生繊維との鑑別に波数1200~850cm-1の範囲内のスペクトルデータのみを使用するものであるが、これに限るものではなく、例えば、波数3500~3000cm-1の範囲内若しくはその近傍の範囲内のスペクトルデータを組み合わせて使用するようにしてもよい。
(11)上記実施例1においては、綿と麻類との鑑別に波数1400~900cm-1の範囲内のスペクトルデータのみを使用するものであるが、これに限るものではなく、例えば、波数3500~3000cm-1の範囲内若しくはその近傍の範囲内のスペクトルデータを組み合わせて使用するようにしてもよい。
(12)上記実施例1においては、リネンとラミーとの鑑別に波数3500~3000cm-1の範囲内のスペクトルデータのみを使用するものであるが、これに限るものではなく、例えば、波数1200~850cm-1の範囲内若しくはその近傍の範囲内のスペクトルデータを組み合わせて使用するようにしてもよい。
(13)上記実施例1においては、再生繊維どうしの鑑別に波数1400~800cm-1の範囲内のスペクトルデータのみを使用するものであるが、これに限るものではなく、例えば、波数3500~3000cm-1の範囲内若しくはその近傍の範囲内のスペクトルデータを組み合わせて使用するようにしてもよい。
(14)上記実施例1においては、キュプラとリヨセルとの鑑別に波数1250~900cm-1の範囲内のスペクトルデータのみを使用するものであるが、これに限るものではなく、例えば、波数3500~3000cm-1の範囲内若しくはその近傍の範囲内のスペクトルデータを組み合わせて使用するようにしてもよい。
In carrying out the present invention, the following various modifications are not limited to the above embodiments.
(1) In each of the embodiments described above, cellulose fibers are used as examples for distinguishing fibers having the same chemical composition. However, the present invention is not limited to this, and various animal hair fibers as protein fibers are used. You may make it perform discrimination and the discrimination between fibers with the same chemical composition.
(2) In each of the above-described embodiments, multivariate analysis is performed between two fiber groups. However, the present invention is not limited to this, and multivariate analysis is performed simultaneously between three or more fiber groups. You may make it do.
(3) In each of the embodiments described above, discrimination is performed based on the absorption spectrum obtained by IR spectroscopic analysis. However, the present invention is not limited to this, and discrimination may be performed based on the transmission spectrum obtained by IR spectroscopic analysis. Good.
(4) In each of the above embodiments, an absorption spectrum within a wave number range of 4000 to 500 cm −1 is measured, and spectrum data in a predetermined wave number range used for analysis is extracted from the absorption spectrum. Instead, only the absorption spectrum in one or two or more predetermined wavenumber regions used for analysis may be measured.
(5) In the first embodiment, spectrum data is analyzed by principal component analysis. In the second embodiment, spectrum data is analyzed by PLS regression analysis. However, the present invention is not limited to this. Also, the spectral data may be analyzed by multiple regression analysis such as principal component regression (PCR) or PLS regression, or other multivariate analysis.
(6) In each of the above embodiments, the absorption spectrum is obtained by the ATR method. However, the present invention is not limited to this, and other methods such as the KBr tablet method after pulverizing the comparative fiber or the test fiber are used. For example, an absorption spectrum may be obtained.
(7) In each of the above embodiments, an FT / IR spectrophotometer is used. However, the present invention is not limited to this, and a dispersive infrared spectrophotometer may be used.
(8) In Examples 1 to 3 above, spectral data in a specific wave number range extracted by PCR Moving Window or PLSR Moving Window is used. However, the present invention is not limited to this, and other analysis software is used. The wave number range may be extracted by using a specific functional group that is considered necessary for the analysis.
(9) In Example 1, the combination of the first principal component and the second principal component or the combination of the second principal component and the third principal component was used for the analysis. However, the combination of principal components used for the analysis is not limited to these, and any combination of principal components may be used. Moreover, you may make it analyze in three dimensions or more using three or more main components.
(10) In Example 1 described above, only spectral data within a wave number range of 1200 to 850 cm −1 is used for discrimination between natural fibers and regenerated fibers, but the present invention is not limited to this. Spectral data in the range of 3500 to 3000 cm −1 or in the vicinity thereof may be used in combination.
(11) In the first embodiment, only the spectral data in the range of wave numbers 1400 to 900 cm −1 is used for discrimination between cotton and hemp, but the present invention is not limited to this. For example, the wave number 3500 Spectral data in the range of up to 3000 cm −1 or in the vicinity thereof may be used in combination.
(12) In the first embodiment, only spectral data within a wave number range of 3500 to 3000 cm −1 is used for discrimination between linen and ramie, but the present invention is not limited to this. Spectral data in the range of 850 cm −1 or in the vicinity thereof may be used in combination.
(13) In Example 1 described above, only the spectral data within the range of wave numbers 1400 to 800 cm −1 is used to distinguish between regenerated fibers, but the present invention is not limited to this. For example, wave numbers of 3500 to 3000 cm are used. The spectral data in the range of −1 or in the vicinity thereof may be used in combination.
(14) In the first embodiment, only spectral data within a wave number range of 1250 to 900 cm −1 is used for discrimination between cupra and lyocell. However, the present invention is not limited to this. For example, a wave number of 3500 to Spectral data within the range of 3000 cm −1 or in the vicinity thereof may be used in combination.
 市場には多くの繊維製品が広い用途に流通している。また、繊維製品の生産地と消費地がグローバルに展開される今日においては、繊維製品の輸出入の際に取引の安全や信頼を確保するために、輸出入の際に迅速、且つ、正確な鑑別方法が望まれている。特に、化学的組成が同じセルロース系繊維どうしの過誤混入や、化学的組成が同じカシミヤなどの高級獣毛系繊維と安価な他の獣毛系繊維との正確な鑑別が望まれている。 In the market, many textile products are distributed for wide use. Also, today, where textile products are produced and consumed globally, in order to ensure the safety and reliability of transactions when importing and exporting textile products, importing and exporting is quick and accurate. A discrimination method is desired. In particular, there is a demand for accurate differentiation between cellulosic fibers having the same chemical composition and high-grade animal hair fibers such as cashmere having the same chemical composition and other cheap animal hair fibers.
 本発明は、このような市場の要求に対して的確な鑑別手段を提供するものであり、また、従来法のように検査員の経験やノウハウに頼ることがない。特に、化学的組成が同じ繊維どうしの種類を客観的に鑑別できること、また、過誤混入や偽装がなされていても正確な鑑別結果が得られるということは、これまでにない画期的な鑑別手段となる。 The present invention provides an accurate discrimination means for such market demands and does not rely on the experience and know-how of the inspector unlike the conventional method. In particular, the fact that it is possible to objectively distinguish between types of fibers that have the same chemical composition, and that accurate discrimination results can be obtained even if they are mistakenly mixed or camouflaged, has never been possible. It becomes.
 このことから、本発明は、市場の安定や国際間の公正取引に有効な鑑別手段を提供するものであり、単に従来法であるJISL 1030‐1(繊維製品の混用率試験方法‐第1部:繊維鑑別)、及び、JISL 1030‐2(繊維製品の混用率試験方法‐第2部:繊維混用率)を補完する鑑別手段に留まらず、国際標準として利用可能な鑑別手段を提供することができる。 Therefore, the present invention provides an effective discrimination means for market stability and international fair trade, and is simply a conventional method JISL 1030-1 (Fiber product mixture rate test method-Part 1). : Fiber discrimination), and to provide a discrimination means that can be used as an international standard, as well as a discrimination means that complements JISL 1030-2 (Fiber mixed rate test method-Part 2: Fiber mixed rate) it can.
1…綿、2…麻類、3…レーヨン、4…キュプラ、5…リヨセル、6…結晶セルロース、
A~E…鑑別モデル、
A1…天然繊維のグループ、A2…再生繊維のグループ、
B1…綿のグループ、B2…麻類のグループ、
C1…リネンのグループ、C2…ラミーのグループ、
D1…レーヨンのグループ、D2…キュプラ及びリヨセルのグループ、
E1…キュプラのグループ、E2…リヨセルのグループ、
L1~L5…線形判別関数、
X1~X5、Y1~Y6、Z1~Z6…被検繊維。
1 ... cotton, 2 ... linen, 3 ... rayon, 4 ... cupra, 5 ... lyocell, 6 ... crystalline cellulose,
A ~ E ... Differential model,
A1 ... natural fiber group, A2 ... regenerated fiber group,
B1 ... cotton group, B2 ... hemp group,
C1 ... Linen group, C2 ... Rummy group,
D1 ... group of rayon, D2 ... group of cupra and lyocell,
E1 ... Cupra group, E2 ... Lyocell group,
L1 to L5: linear discriminant function,
X1 to X5, Y1 to Y6, Z1 to Z6 ... test fibers.

Claims (13)

  1.  セルロース系繊維や獣毛系繊維など同系に分類される同系異種繊維を鑑別する繊維鑑別方法であって、
     繊維の種類が既知の複数の単一繊維を起源とする複数の比較繊維を準備し、各比較繊維に対して近赤外線を除く波数4000cm-1~500cm-1の範囲内の赤外線を照射してそれぞれの吸収スペクトルを求め、
     これらの吸収スペクトルから所定の波数域におけるスペクトルデータを抽出し、当該スペクトルデータを多変量解析して得られた解析データ群をデータベースとして蓄積するデータベース作成工程と、
     繊維の種類が未知の繊維を被検繊維とし、前記データベース作成工程と同様にして当該被検繊維の吸収スペクトルから解析データを求め、
     この被検繊維の解析データを前記データベースのデータ群と照合して、前記解析データと前記データベースのデータ群との一致性を指標として、前記被検繊維の種類を鑑別する鑑別工程とを有する繊維鑑別方法。
    A fiber discrimination method for differentiating different types of similar fibers classified as the same, such as cellulosic fibers and animal hair fibers,
    And providing a plurality of comparison fibers types of fibers to originate from a plurality of known single fibers, and irradiating infrared rays in the wave number range of 4000 cm -1 ~ 500 cm -1, excluding the near infrared for each comparative fibers Find each absorption spectrum,
    A database creation step of extracting spectrum data in a predetermined wavenumber region from these absorption spectra, and accumulating as a database an analysis data group obtained by multivariate analysis of the spectrum data;
    The test fiber is an unknown fiber type, and the analysis data is obtained from the absorption spectrum of the test fiber in the same manner as the database creation step.
    A fiber having a discrimination step of comparing the analysis data of the test fiber with the data group of the database and discriminating the type of the test fiber using the consistency between the analysis data and the data group of the database as an index Identification method.
  2.  セルロース系繊維において、前記データベース作成工程において、下記の各組合せに係る2種類の比較繊維、
    (1)天然繊維、対、再生繊維、
    (2)綿、対、麻類、
    (3)亜麻、対、苧麻、
    (4)ビスコース系レーヨン、対、銅アンモニアレーヨン又は溶剤紡糸セルロース繊維、
    (5)銅アンモニアレーヨン、対、溶剤紡糸セルロース繊維、
    のスペクトルデータを多変量解析して得られた各解析データを各組合せに係る鑑別モデルのデータベースとして蓄積し、
     前記被検繊維の解析データを前記データベースの各組合せに係る鑑別モデルとそれぞれ照合して、前記被検繊維の種類を鑑別することを特徴とする請求項1に記載の繊維鑑別方法。
    In the cellulosic fiber, in the database creation step, two types of comparative fibers according to the following combinations,
    (1) Natural fiber, pair, regenerated fiber,
    (2) Cotton, pair, hemp,
    (3) Flax, VS, Hemp,
    (4) Viscose rayon, pair, copper ammonia rayon or solvent-spun cellulose fiber,
    (5) Copper ammonia rayon, pair, solvent-spun cellulose fiber,
    Each analysis data obtained by multivariate analysis of the spectrum data of is accumulated as a database of differential models related to each combination,
    2. The fiber discrimination method according to claim 1, wherein the analysis data of the test fiber is collated with a discrimination model according to each combination of the databases, and the type of the test fiber is discriminated.
  3.  前記複数の単一繊維を起源とする複数の比較繊維に加え、予め準備した同系異種繊維を一連の混用率で混合した混合繊維からなる一連の比較繊維を準備し、各比較繊維に対して前記データベース作成工程と同様にして得られた一連の解析データ群をデータベースとして蓄積し、
     前記被検繊維の解析データを前記データベースの一連の解析データ群と照合して、前記被検繊維の種類、前記被検繊維が少なくとも2種類の同系異種繊維が混合されたものであること、前記被検繊維に混合されている同系異種繊維の種類、及び/又は、前記被検繊維の混用率を鑑別することを特徴とする請求項1に記載の繊維鑑別方法。
    In addition to the plurality of comparative fibers originating from the plurality of single fibers, a series of comparative fibers composed of mixed fibers prepared by mixing the same type of different kinds of fibers prepared in advance at a series of mixing ratios are prepared. A series of analysis data groups obtained in the same way as the database creation process is accumulated as a database,
    The analysis data of the test fiber is collated with a series of analysis data groups of the database, the type of the test fiber, the test fiber is a mixture of at least two kinds of similar dissimilar fibers, The fiber discrimination method according to claim 1, wherein the type of the same kind of different fibers mixed in the test fiber and / or the mixed rate of the test fiber is discriminated.
  4.  セルロース系繊維において、前記データベース作成工程において、前記複数の単一繊維を起源とする複数の比較繊維のスペクトルデータに加え、下記の各組合せに係る2種類の比較繊維、
    (1)天然繊維、対、再生繊維、
    (2)綿、対、麻類、
    (3)亜麻、対、苧麻、
    (4)ビスコース系レーヨン、対、銅アンモニアレーヨン又は溶剤紡糸セルロース繊維、
    (5)銅アンモニアレーヨン、対、溶剤紡糸セルロース繊維、
    を一連の混用率で混合した混合繊維のスペクトルデータを多変量解析して得られた各解析データを各組合せに係る混用率の鑑別モデルのデータベースとして蓄積し、
     前記被検繊維の解析データを前記データベースの各組合せに係る鑑別モデルとそれぞれ照合して、前記被検繊維の混用率を鑑別することを特徴とする請求項3に記載の繊維鑑別方法。
    In the cellulosic fiber, in the database creation step, in addition to the spectral data of the plurality of comparison fibers originating from the plurality of single fibers, two types of comparison fibers according to the following combinations,
    (1) Natural fiber, pair, regenerated fiber,
    (2) Cotton, pair, hemp,
    (3) Flax, VS, Hemp,
    (4) Viscose rayon, pair, copper ammonia rayon or solvent-spun cellulose fiber,
    (5) Copper ammonia rayon, pair, solvent-spun cellulose fiber,
    Each analysis data obtained by multivariate analysis of the spectrum data of the mixed fiber mixed with a series of mixed rate is accumulated as a database of differential models of mixed rate related to each combination,
    4. The fiber discrimination method according to claim 3, wherein the analysis data of the test fiber is collated with a discrimination model according to each combination of the databases to discriminate the mixed rate of the test fiber.
  5.  セルロース系繊維において、天然繊維と再生繊維との鑑別には主に波数1200~850cm-1の範囲内若しくはその近傍の範囲内を含む1又は2以上のスペクトルデータを解析に使用することを特徴とする請求項1~4のいずれか1つに記載の繊維鑑別方法。 In the cellulosic fiber, for distinguishing between natural fiber and regenerated fiber, one or two or more spectral data including mainly in the range of wave number 1200 to 850 cm −1 or in the vicinity thereof are used for the analysis. The fiber discrimination method according to any one of claims 1 to 4.
  6.  セルロース系繊維において、綿と麻類との鑑別には主に波数1400~900cm-1の範囲内若しくはその近傍の範囲内を含む1又は2以上のスペクトルデータを解析に使用することを特徴とする請求項1~4のいずれか1つに記載の繊維鑑別方法。 For cellulosic fibers, one or more spectral data including mainly in the range of wave numbers 1400 to 900 cm −1 or in the vicinity thereof are used for the analysis in order to distinguish cotton from hemp. The fiber discrimination method according to any one of claims 1 to 4.
  7.  セルロース系繊維において、再生繊維どうしの鑑別には主に波数1400~800cm-1の範囲内若しくはその近傍の範囲内を含む1又は2以上のスペクトルデータを解析に使用することを特徴とする請求項1~4のいずれか1つに記載の繊維鑑別方法。 The cellulosic fiber is characterized in that one or two or more spectral data including mainly in the range of the wave number of 1400 to 800 cm -1 or in the vicinity thereof are used for the analysis for discrimination between the regenerated fibers. 5. The fiber discrimination method according to any one of 1 to 4.
  8.  セルロース系繊維において、銅アンモニアレーヨンと溶剤紡糸セルロース繊維との鑑別には主に波数1250~900cm-1の範囲内若しくはその近傍の範囲内を含む1又は2以上のスペクトルデータを解析に使用することを特徴とする請求項1~4のいずれか1つに記載の繊維鑑別方法。 For cellulosic fibers, for distinguishing between copper ammonia rayon and solvent-spun cellulose fibers, one or more spectral data including mainly in the range of wave number 1250 to 900 cm −1 or in the vicinity thereof is used for analysis. The fiber discrimination method according to any one of claims 1 to 4, wherein:
  9.  セルロース系繊維において、亜麻と苧麻との鑑別には主に波数3500~3000cm-1の範囲内若しくはその近傍の範囲内を含む1又は2以上のスペクトルデータを解析に使用することを特徴とする請求項1~4のいずれか1つに記載の繊維鑑別方法。 In the cellulosic fiber, one or more spectral data including mainly in the range of wave number 3500 to 3000 cm −1 or in the vicinity thereof are used for the analysis in order to distinguish flax from linseed. Item 5. The fiber discrimination method according to any one of Items 1 to 4.
  10.  セルロース系繊維において、比較繊維及び被検繊維に対してアルカリ性物質による前処理を施してから吸収スペクトルを求めることを特徴とする請求項5又は6に記載の繊維鑑別方法。 The fiber discrimination method according to claim 5 or 6, wherein in the cellulose fiber, the absorption spectrum is obtained after pretreatment with an alkaline substance is performed on the comparative fiber and the test fiber.
  11.  前記多変量解析は、主成分分析、又は、主成分回帰、PLS回帰などの重回帰分析であることを特徴とする請求項1~10のいずれか1つに記載の繊維鑑別方法。 The fiber discrimination method according to any one of claims 1 to 10, wherein the multivariate analysis is principal component analysis or multiple regression analysis such as principal component regression or PLS regression.
  12.  前記比較繊維及び前記被検繊維の吸収スペクトルを求める方法は、ATR法(全反射測定法)であることを特徴とする請求項1~11のいずれか1つに記載の繊維鑑別方法。 The fiber identification method according to any one of claims 1 to 11, wherein a method for obtaining an absorption spectrum of the comparative fiber and the test fiber is an ATR method (total reflection measurement method).
  13.  前記セルロース系繊維に分類される同系異種繊維としては、綿、亜麻、苧麻、黄麻、大麻、ビスコースレーヨン、ハイウェットモジュラスレーヨン、ポリノジックレーヨン、銅アンモニアレーヨン、及び、溶剤紡糸セルロース繊維が含まれることを特徴とする請求項1~12のいずれか1つに記載の繊維鑑別方法。 The same type of heterogeneous fibers classified as cellulose fibers include cotton, flax, linseed, jute, cannabis, viscose rayon, high wet modulus rayon, polynosic rayon, copper ammonia rayon, and solvent-spun cellulose fiber. The fiber discrimination method according to any one of claims 1 to 12, wherein:
PCT/JP2015/073066 2014-08-22 2015-08-18 Fiber identification method WO2016027792A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016544208A JP6798885B2 (en) 2014-08-22 2015-08-18 Fiber identification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014169191 2014-08-22
JP2014-169191 2014-08-22

Publications (1)

Publication Number Publication Date
WO2016027792A1 true WO2016027792A1 (en) 2016-02-25

Family

ID=55350736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073066 WO2016027792A1 (en) 2014-08-22 2015-08-18 Fiber identification method

Country Status (2)

Country Link
JP (2) JP6798885B2 (en)
WO (1) WO2016027792A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107340282A (en) * 2017-06-27 2017-11-10 内蒙古农业大学 The method for quick identification of Cashmere and Woolens
WO2018074002A1 (en) * 2016-10-18 2018-04-26 一般財団法人ニッセンケン品質評価センター Fiber differentiation method
CN110485009A (en) * 2018-05-15 2019-11-22 卓郎纺织解决方案两合股份有限公司 For optical detection along the Yarn senser of the yarn of its longitudinal movement
CN112964530A (en) * 2021-03-02 2021-06-15 南通海关综合技术中心(江苏国际旅行卫生保健中心南通分中心、南通海关口岸门诊部) Sample photograph and identification method for imported cellulose fiber solid waste series
JP6947447B1 (en) * 2020-08-11 2021-10-13 株式会社山本製作所 Plastic judgment device and plastic judgment program
CN114112982A (en) * 2021-10-09 2022-03-01 池明旻 Fabric fiber component qualitative method based on k-Shape
JP2022043381A (en) * 2020-08-11 2022-03-16 株式会社山本製作所 Plastic determination device and plastic determination program
CN115436539A (en) * 2022-09-20 2022-12-06 浙江工商大学 Tuna variety and part identification method based on lipidomics analysis method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108645814B (en) * 2018-06-28 2020-12-15 浙江理工大学 Hyperspectral image acquisition method for identifying wetting area of multicolor fabric

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133963A (en) * 2008-12-04 2010-06-17 Boeing Co:The Sorting method of resin type of carbon-fiber reinforced plastic material using infrared spectroscopy
JP2011047759A (en) * 2009-08-26 2011-03-10 Shinshu Univ Method of inspecting fiber product

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310292A (en) * 1996-05-22 1997-12-02 Unitika Ltd Biodegradable wet nonwoven fabric and its production
JP4581039B2 (en) * 2000-09-11 2010-11-17 オプト技研株式会社 Grade identification method for polymer materials
WO2007047299A1 (en) * 2005-10-13 2007-04-26 Baylor University Classification of fabrics by near-infrared spectroscopy
CN101876633B (en) * 2009-11-13 2011-08-31 中国矿业大学 Terahertz time domain spectroscopy-based textile fiber identification method
JP6771576B2 (en) * 2016-10-18 2020-10-21 一般財団法人ニッセンケン品質評価センター Fiber identification method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133963A (en) * 2008-12-04 2010-06-17 Boeing Co:The Sorting method of resin type of carbon-fiber reinforced plastic material using infrared spectroscopy
JP2011047759A (en) * 2009-08-26 2011-03-10 Shinshu Univ Method of inspecting fiber product

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074002A1 (en) * 2016-10-18 2018-04-26 一般財団法人ニッセンケン品質評価センター Fiber differentiation method
CN109844500A (en) * 2016-10-18 2019-06-04 一般财团法人尼森肯品质评价中心 Fibre identification method
JPWO2018074002A1 (en) * 2016-10-18 2019-08-08 一般財団法人ニッセンケン品質評価センター Fiber identification method
CN107340282A (en) * 2017-06-27 2017-11-10 内蒙古农业大学 The method for quick identification of Cashmere and Woolens
US10816534B2 (en) 2018-05-15 2020-10-27 Saurer Spinning Solutions Gmbh & Co. Kg Yarn sensor for optically sensing a yarn moved in the longitudinal direction of the yarn
EP3572803A3 (en) * 2018-05-15 2019-12-04 Saurer Spinning Solutions GmbH & Co. KG Yarn sensor for optical detection of a yarn moving in a longitudinal direction
CN110485009A (en) * 2018-05-15 2019-11-22 卓郎纺织解决方案两合股份有限公司 For optical detection along the Yarn senser of the yarn of its longitudinal movement
JP6947447B1 (en) * 2020-08-11 2021-10-13 株式会社山本製作所 Plastic judgment device and plastic judgment program
JP2022032346A (en) * 2020-08-11 2022-02-25 株式会社山本製作所 Plastics determination device and plastics determination program
JP2022043381A (en) * 2020-08-11 2022-03-16 株式会社山本製作所 Plastic determination device and plastic determination program
CN112964530A (en) * 2021-03-02 2021-06-15 南通海关综合技术中心(江苏国际旅行卫生保健中心南通分中心、南通海关口岸门诊部) Sample photograph and identification method for imported cellulose fiber solid waste series
CN114112982A (en) * 2021-10-09 2022-03-01 池明旻 Fabric fiber component qualitative method based on k-Shape
CN115436539A (en) * 2022-09-20 2022-12-06 浙江工商大学 Tuna variety and part identification method based on lipidomics analysis method

Also Published As

Publication number Publication date
JPWO2016027792A1 (en) 2017-06-01
JP2020034565A (en) 2020-03-05
JP6798885B2 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
WO2016027792A1 (en) Fiber identification method
Peets et al. Reflectance FT-IR spectroscopy as a viable option for textile fiber identification
Peets et al. Identification and classification of textile fibres using ATR-FT-IR spectroscopy with chemometric methods
Zhou et al. Textile fiber identification using near-infrared spectroscopy and pattern recognition
Zoccola et al. Identification of wool, cashmere, yak, and angora rabbit fibers and quantitative determination of wool and cashmere in blend: a near infrared spectroscopy study
Bergo et al. NIRS identification of Swietenia macrophylla is robust across specimens from 27 countries
CN101876633B (en) Terahertz time domain spectroscopy-based textile fiber identification method
Was-Gubala et al. Application of Raman spectroscopy for differentiation among cotton and viscose fibers dyed with several dye classes
JP5441703B2 (en) Visible / Near-Infrared Spectroscopy and Grape Brewing Method
CN104568778A (en) Textile component identification method based on hyperspectral imaging
Shou et al. Application of near infrared spectroscopy for discrimination of similar rare woods in the Chinese market
JP6771576B2 (en) Fiber identification method
Bianchi et al. Differentiation of aged fibers by Raman spectroscopy and multivariate data analysis
Enlow et al. Discrimination of nylon polymers using attenuated total reflection mid-infrared spectra and multivariate statistical techniques
CN113049528A (en) Fiber component identification method and module based on near infrared spectrum
Sharma et al. Rapid and non-destructive differentiation of Shahtoosh from Pashmina/Cashmere wool using ATR FT-IR spectroscopy
Davis et al. Rapid, non-destructive, textile classification using SIMCA on diffuse near-infrared reflectance spectra
Notayi et al. The application of Raman spectroscopic ratiometric analysis for distinguishing between wool and mohair
Saito et al. Discrimination of cellulose fabrics using infrared spectroscopy and newly developed discriminant analysis
JP6595982B2 (en) Fiber identification method
Lepot et al. Interpol review of fibres and textiles 2019-2022
Yang et al. Rapid detection of knot defects on wood surface by near infrared spectroscopy coupled with partial least squares discriminant analysis
Lv et al. Identification of less-ripen, ripen, and over-ripen grapes during harvest time based on visible and near-infrared (Vis-NIR) spectroscopy
CN108088808A (en) The near infrared spectrum quick nondestructive method for qualitative analysis of fur
Fuenffinger et al. Classification strategies for fusing UV/visible absorbance and fluorescence microspectrophotometry spectra from textile fibers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834124

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016544208

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15834124

Country of ref document: EP

Kind code of ref document: A1